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Abstract

We investigate the problem of generating natural language summaries from knowledge
base triples. Our approach is based on a pointer-generator network, which, in addition to
generating regular words from a fixed target vocabulary, is able to verbalise triples in several
ways. We undertake an automatic and a human evaluation on single and open-domain
summaries generation tasks. Both show that our approach significantly outperforms other
data-driven baselines.

1. Introduction

Natural Language Generation (NLG) is the task of generating text that captures the content
of structured-data records in a human-readable way (Reiter and Dale, 2000). In the context
of knowledge graphs, structured data takes the form of triples. As an example, the DBpe-
dia knowledge graph (Lehmann et al., 2015) contains triples such as: dbr:Barack Obama

dbo:spouse dbr:Michelle Obama, where dbr:Barack Obama is the subject of the triple,
dbr:Michelle Obama is the object, and dbo:spouse is the predicate (or property1) that
connects the two to each other.

NLG systems for knowledge graphs take as input a subset of the graph’s triples and out-
put a text summary (Bouayad-Agha et al., 2014). They are deployed in various domains,
from search (Li et al., 2017; Kartsaklis et al., 2018) and chatbots (Celikyilmaz et al., 2015;
Ma et al., 2015) to digital humanities (Dannélls et al., 2012). Earlier attempts to generate
text from triples tend to use rules or template-based techniques, which work well in domains
with a regular structure and limited vocabulary (Bouayad-Agha et al., 2012). More recent
proposals leverage deep learning, which was successful in similar text-generative tasks, in-

1. In this paper we will use these terms interchangeably.
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Triples

Atlas Shrugged literaryGenre Science fiction

Atlas Shrugged country United States

John Galt series Atlas Shrugged

Atlas Shrugged publicationYear ‘‘1957’’

Atlas Shrugged author Ayn Rand

Text Summary Atlas Shrugged is a science fiction novel by Ayn Rand.

Table 1: A simplified NLG example. Our systems generate a text summary from an input set
of un-ordered triple-facts about Atlas Shrugged. Predicates (or properties) are highlighted
in red. The items before and after each predicate are the subject and object respectively of
each triple. Numerical values (e.g. 1957) can only appear in the third, object position.

cluding machine translation (Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2014)
and text summarisation (Rush et al., 2015; See et al., 2017). Systems such as those de-
scribed by Chisholm et al. (2017); Lebret et al. (2016) and Vougiouklis et al. (2018a) are
able to generate coherent, relevant text for Wikipedia from structured data, without any
input from linguists or domain experts. However, these newer systems are not without
their challenges: while they could, in principle, scale to open-domain tasks, they only re-
port their performance on one domain, people’s biographies. In addition, they struggle to
verbalise rare or previously unseen entities, which are represented as placeholder tokens
in the output and are meant to be replaced in a post-processing step. This introduces a
degree of stochastic behaviour when multiple relations from the input match the predicted
placeholders.

In this paper, we present an approach that addresses these concerns. Table 1 presents
a canonical NLG task. Our aim is to automatically generate a textual summary describing
the graph about Atlas Shrugged. The input contains triples in which the given entity, in this
case Atlas Shrugged, is the subject or the object of the triples. Our approach is inspired
by pointer-generator networks which have been recently introduced in text summarisation
(Gu et al., 2016; See et al., 2017). Our systems jointly learn to: (i) verbalise the entities
from pointed triples in several ways; (ii) copy the label or the number in the case that the
pointed triple consists of either infrequent entities or numbers; and (iii) generate words or
other human-readable realisations of entities from a fixed target vocabulary.

Following the methodology proposed by Vougiouklis et al. (2018a), we create a dataset
encompassing the entirety of Wikipedia rather than just the biographies. We use this
dataset to demonstrate our model’s ability to generalise on a much more challenging task.
We evaluate our approach in two ways: automatically and manually. For the former, we
use the BLEU, ROUGE and METEOR metrics in order to evaluate the performance of
our approach in both the widely cited task of biographies generation (Chisholm et al.,
2017; Lebret et al., 2016; Liu et al., 2018; Vougiouklis et al., 2018a; Yeh et al., 2018), and
the generation of open-domain Wikipedia summaries. Furthermore, we run a user study
in which we explore the fluency and coverage of the summaries, as well as the presence
of contradictions. In all scenarios, our systems outperform a variety of competing base-
lines of different natures. Our dataset along with the code of our systems is available at:
https://github.com/pvougiou/Point-at-the-Triple.
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2. Related Work

NLG commonly has three steps: (i) document planning, (ii) micro-planning, and (iii) surface
realisation (Reiter and Dale, 2000; Bouayad-Agha et al., 2014). During document planning,
the system selects and structures the information that will be captured in the text. The
result is used by the micro-planner to decide how the information would be expressed.
Finally, the realiser generates text that matches the linguistic requirements set by the
micro-planner, and verbalises the information as it was structured in the first step. In
traditional, rule-based NLG systems these steps are carried out independently, and are
custom-built with an end-application in mind. This means that often they are optimised
for a particular domain, type of language, and application capability (Reiter et al., 2005;
Green, 2006; Turner et al., 2009), which makes them costly for large domains and difficult
to reuse.

More recent, data-driven approaches “learn” to perform content selection and realisation
in a single framework (Angeli et al., 2010; Chen and Mooney, 2008; Chen et al., 2010; Kim
and Mooney, 2010; Konstas and Lapata, 2012a,b, 2013). For example, Chen and Mooney
(2008) and Chen et al. (2010) learn to generate descriptions for robotic football matches
(using the RoboCup dataset) by retraining a system that does supervised semantic parsing
and syntax-based statistical machine translation, using an iterative algorithm similar to
Expectation Maximisation (EM). A more advanced system on the same task has been
proposed by Kim and Mooney. They enhanced a generative alignment model (Liang et al.,
2009) with additional linguistic information produced by Lu et al. (2008)’s semantic parser.
Angeli et al. introduced a system that jointly learns to perform the full NLG pipeline as a
sequence of local decisions using a log-linear classifier. The end-system also leverages Liang
et al.’s alignment model in order to infer the alignment between words in the text and
database records. They use a set of domain-independent features for their log-linear model,
which enables them to handle long-range dependencies. The final output is fluent due to
several domain-specific features that are considered by their template generation system.
Konstas and Lapata propose an approach based on a probabilistic context-free grammar
that uses a set of trees to capture how the records from a database are rendered into text
(Konstas and Lapata, 2012a,b, 2013). Text generation is then achieved by approximating
the best derivation tree in the hyper-graph. In contrast to previous work using templates,
in their case fluency is enhanced by intersecting the hyper-graph with an n-gram language
model, which is trained separately on the dataset of interest.

There is a large body of literature that uses the encoder-decoder framework from ma-
chine translation (Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2014) for NLG
(Sleimi and Gardent, 2016; Gardent et al., 2017; Chisholm et al., 2017; Mei et al., 2016;
Lebret et al., 2016; Wiseman et al., 2017; Vougiouklis et al., 2018a; Liu et al., 2018; Li and
Wan, 2018; Gehrmann et al., 2018; Yeh et al., 2018). The decoder, typically a multi-gated
Recurrent Neural Network (RNN), formed of either Long Short-Term Memory cells (Hochre-
iter and Schmidhuber, 1997) or Gated Recurrent Units (Cho et al., 2014), is conditioned
on a set of structured records and acts as a language model. Adaptation of such systems
have shown great potential at tackling various aspects of triples-to-text tasks ranging from
microplanning by Gardent et al. (2017) to generation of paraphrases by Sleimi and Gardent
(2016). Pointer-generator networks have been brought up recently by Gu et al. (2016) and
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See et al. (2017) as alterations of the original pointer architecture proposed by Vinyals et al.
(2015). While the original model was generating an output sequence by copying tokens from
the input sequence, the newer architectures are also able to generate words from the fixed
vocabulary of the decoder. Overall, the results are promising, especially for domains with
limited linguistic variability. For example, Mei et al. introduced a system that generates
textual descriptions from datasets about weather and RoboCup football matches. In a
similar context, Wiseman et al. and Li and Wan used pointer-generator networks to gen-
erate descriptions of basketball games, while Gehrmann et al. did the same for restaurant
descriptions. The latter started from See et al.’s pointer-generator network, and proposed
a training strategy based on ensemble learning that helped them capture distinct sentence
templates.

Several authors proposed end-to-end systems to generate Wikipedia biographies (Lebret
et al., 2016; Chisholm et al., 2017; Vougiouklis et al., 2018a; Liu et al., 2018; Yeh et al., 2018).
Lebret et al. used a feed-forward language model with slot-value templates to generate
the first sentence of a Wikipedia summary from its corresponding infobox. Liu et al.’s
system outperformed them by adapting an encoder-decoder architecture equipped with
LSTM cells and a novel double-attention mechanism over the input table’s fields and their
values. Chisholm et al. introduced a system that generates a biography given a sequence
of slot-value pairs extracted from the Wikidata knowledge graph. A similar task has been
tackled by Yeh et al., who used the pointer-generator network described by Gu et al. (2016)
to write single-sentence biographies given slot-value pairs from Freebase, another knowledge
graph, now part of Wikidata.

In all the above cases, the representation of the input is essentially limited to expressing
only one-subject relationships. In our case, the input set of triples that is allocated to
each Wikipedia summary is made of more than just the knowledge graph triples of the
corresponding Wikipedia article. As we discuss in more detail in Section 4, the input also
includes triples with entities that are related to the main entity of a Wikipedia article, and
their object is the main subject of the Wikipedia summary. Furthermore, we believe that
constraining the generative process to only the first sentence significantly simplifies the task
in terms of the amount of information (i.e. in our case number of triples) that is lexicalised
in the summary. Consequently, we choose to train on longer snippets of text to generate
more elaborate summaries. In a recent work of our own, we sought to extend the length
of the generated textual content to two sentences (Vougiouklis et al., 2018a). The system
described by Vougiouklis et al. has a feed-forward architecture that encodes knowledge
base triples (i.e. from Wikidata and DBpedia) in a vector of fixed dimensionality, and an
RNN-based decoder that generates the two-sentence summary one word at a time.

All of the above approaches use a set of placeholder tokens to verbalise rare or unseen
entities. These tokens are replaced in a post-processing step with the part of the input
that matches their requirements (for instance, field type or instance type). If more than
one candidate is found, the system chooses randomly. In this paper, we propose a different
approach. Our end-to-end architecture learns a model that predicts both the entities that
should appear in the summary (e.g. United States) and their surface form (e.g. “Ameri-
can”, “United States” etc.). In addition, we evaluate the system on a new dataset that is
extracted from the entire Wikipedia, rather than focusing on specific domains (e.g. weather,
sports or biographies).
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3. Our Model

We assume our model is trained on records consisting of an English language summary
and a set of triples. The alignment of the elements of each triple to their realisation in
the vocabulary of the summary is either explicit or inferred. For example, the triple:
Dwayne Johnson occupation Actor is explicitly aligned to this sentence: “Dwayne Johnson
is an actor ...”. By comparison, the alignment of Michael Jordan birthPlace Brooklyn

to “Michael Jordan is an American retired professional basketball player ...” is inferred.

Let Fz = {f1, . . . , fE : fi = (si, pi, oi)} be the set of triples f1, . . . , fE about the entity
z (i.e. z is either the subject or the object of the triples in the set), where si, pi and oi are
the one-hot vector representations of the respective subject, predicate and object of the i-th
triple. We build a model that computes the probability of generating a sequence of tokens
y = y1, y2, . . . , yT , given the initial set of triples f1, f2, . . . , fE :

p(y|F ) =
T∏
t=1

p(yt|y1, . . . yt−1, F ) , (1)

where T > 1. We regard y as a textual summary of the input set of triples Fz.

We build upon architectures from the literature (See et al., 2017) and our own previous
work (Vougiouklis et al., 2018a). See et al. introduces a pointer-generator network capable of
both copying tokens from the input sequence and generating words for the fixed vocabulary
of the decoder. While this model handles sequential inputs and outputs (i.e. sentences),
in our case the sets of input triples are un-ordered, and not sequentially correlated. For
this reason, we use the encoder proposed in the latter work by Vougiouklis et al., and we
compute the attention scores on top of this feed-forward architecture.

In many cases, the entities that participate in the properties contained in the input
triples cannot be directly copied to the generated text. For example, the entities of
dbr:Actor and dbr:United States could be expressed, based on the context, as both
“actor” or “actress”, and “United States” and “American”, respectively. To tackle this, we
propose a technique that enables our model to learn different realisations for the entities of
the pointed triples. The technique also helps with handling rare entities, for which we do
not have good vector representations, numerical values that are in the third, object position
of the pointed triples, and their labels. We discuss this in more detail in Section 3.3.

3.1 Decoder

We implement the decoder as a multi-gated RNN variant with Gated Recurrent Units
(GRUs). Let hlt ∈ Rm be the aggregated output of a hidden unit at timestep t = 1 . . . T
and layer depth l = 1 . . . L. All matrices that follow have dimension [m,m] unless stated
otherwise. The vectors at zero layer depth, h0

t = Wx→hxt, represent the tokens that are
given to the network as an input. The parameter matrix Wx→h has dimensions [|X|,m],
where |X| is the cardinality of all the potential one-hot input vectors (i.e. size of the
dictionary of all the available tokens in the Wikipedia summaries dictionary). At each
timestep t, hlt is computed as follows:

hlt = GRU(hlt−1, h
l−1
t ) . (2)
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3.2 Triple Encoder

We compute the vector representation hfi of the i-th triple by forward propagating the
triple encoder as follows:

h̃fi = [Wx→h̃si;Wx→h̃pi;Wx→h̃oi] , (3)

hfi = ReLU(Wh̃→hh̃fi) , (4)

where ReLU is the rectifier (i.e. non-linear activation function), [. . . ; . . .] represents vector
concatenation, Wx→h̃ : R|N | → Rm is a trainable weight matrix that represents an unbiased
linear mapping, where |N | is the cardinality of all the potential one-hot input vectors (i.e.
size of the dictionary of all the available entities and predicates of the triples’ dictionary),
and Wh̃→h : R3m → Rm is an unbiased linear mapping.

Attending the Triples Rather than asking the model to compress all available infor-
mation from the triples in a single vector (Vougiouklis et al., 2018a), we implement an
attention mechanism over all triples, based on works in semantic parsing (Dong and Lap-
ata, 2016) and machine translation (Luong et al., 2015). The attention scores between the
current state of the decoder hLt and the representation of each one of the E input triples
are computed from the attention weights Wa : Rm → Rm as:

a
(i)
t =

exp[(hLt )TWahfi ]∑E
j=1 exp[(hLt )TWahfj ]

. (5)

Based on the attention scores, the model computes a context vector that aggregates
the information from the most important triples for the token that is to be generated at
timestep t as a weighted sum over the representation of each triple of the encoder:

ct =

E∑
i=1

a
(i)
t hfi . (6)

This vector allows the decoder to selectively decide to which part of the input triples it
should pay attention to. The alignment between the context vector and the information that
has already been processed in a generated summary are jointly learned through trainable
weights Wc : Rm → Rm and Wh : Rm → Rm as follows:

hL+1
t = tanh

(
Wcct + Whh

L
t

)
. (7)

3.3 Dynamically Expanding the Vocabulary

As discussed earlier, the pointer-generator network which has been proposed by See et al.
(2017) learns to copy only a single representation per input token. This means that the
system uses the same label for each copied entity regardless of the context in the text,
which impacts fluency (Vougiouklis et al., 2018a). Our approach addresses this concern by
learning multiple realisations for the entity of a pointed triple. We propose an architecture
that can: (i) generate words from a fixed target vocabulary; (ii) copy a number of different
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Figure 1: The architecture of our pointer-generator network. At timestep t = 4, pgen
4 weighs

the probability of copying a word from V ext higher than generating a word from the fixed
vocabulary V †. The decoder learns to interpret the weighted sum of hL4 and c4 in order
to compute a probability distribution for the most appropriate text realisation given the
context of the triples. The attention mechanism highlights f2 as the most important triple
for the generation of the upcoming token. The attention scores are distributed among the
entries of V ext, and accumulated into the final distribution over V . As a result, the model
copies “science fiction” that is one of the surface forms associated with f2.

surface forms for the entities in the input triple set; or (iii) copy the number or literal for
triples whose objects are numerical values or infrequent entities.

Our approach is partially inspired by how humans would perform on the same task.
When provided with a set of triple-facts which they are asked to summarise in text, people
would start summarising by using their own known vocabulary. However, they would focus
their attention on a particular triple when they would want to realise an entity’s name or
a number in the text2.

2. We base this on work by Jing (2002) that looked at how human abstractors summarise articles. The
abstractors were found to reuse portions of the input text in their summaries. Similarly to our task, this
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Let K = {k1, k2, . . . , kD} be the set of all the entities that have been expressed in the
textual summaries of a training dataset. In addition, let (gkdj , z

kd
j ) be the tuple of the j-th

surface form gkdj of the entity kd ∈ K, along with the number of occurrences of the realisation

gkdj in the dataset, zkdj ∈ N. Additionally, let lkd = {(gkd1 , zkd1 ), (gkd2 , zkd2 ), . . . , (gkdR , z
kd
R )} be

the partially ordered set of the triples that are associated with the entity kd, s.t. zkdj ≥
zkdj+1∀j ∈ [1, R − 1], where R is the total number of realisations of kd. We compute the

95th percentile of the number of all the possible textual realisations of kd, qkd . We define
Gkd = {gkd1 , gkd2 , . . . , gkdQ } s.t. Q ≤ R as the set of all possible verbalisations through which
our model learns to express kd in the generated summary. Q is a dataset-specific hyper-
parameter for our model, and is calculated by averaging the number of possible realisations
qkd ∀kd ∈ K.

Let H(f) and H(i) be the sets of all the frequent and infrequent entities that participate
in the triples (see first paragraph of Section 5.1). In addition, let E = {e1, e2, . . . , eE} s.t.
ej ∈ (sj , oj) and ej 6= z ∀j ∈ [1, E] be the set of all the items (numerical values or entities)
other than entity z that participate in the corresponding relationships in F . We assume a
fixed target vocabulary V † = {v†

1, v
†
2, . . . , v

†
|X|}. In comparison to similar pointer-generator

networks that expand the decoder’s fixed vocabulary by the length of their input E, we
expand it by Q ·E, and we define the dynamic vocabulary extension (where the values are

based on the input triples), V ext = {vext
1 , vext

2 , . . . , vext
Q·E} along with its subsets V f

ext, V
copy

ext

and V null
ext , s.t.:

vext
j =
g
edj/Qe
j%Q ∈ V f

ext edj/Qe ∈ H(f)

g
edj/Qe
1 ∈ V copy

ext edj/Qe ∈ H(i) and j%Q = 1

g
edj/Qe
1 ∈ V copy

ext edj/Qe ∈ R and j%Q = 1

null ∈ V null
ext otherwise

(8)

∀j ∈ [1, Q · E], where d. . .e represents the ceiling function.

During both training and testing, for each set of input triples we form the values of the
extended vocabulary V ext. Each triple is provided with Q slots in V ext. For example in
Figure 1 where Q = 3, the frequent entity United States ∈ H(f) results in the inclusion
of “United States”, “American” and “U.S.” in the vocabulary extension V ext. In case a
rare entity is either the subject or the object of a triple in the triple set, it is replaced by
its corresponding instance type token before it is provided to our model (e.g. John Galt

is replaced by the Character token when it is inputted in the triple encoder in Figure 1).
In such scenario, all values of V ext that correspond to this particular triple are filled with
null, except the first one which refers to the copy of the label of this rare entity. A similar
methodology is used for numbers3. For instance, in Figure 1, ‘‘1957’’ is replaced by the

was notable in the case of copy-pasting named entities from the original article into the resulting text.
However, they would still perform syntactical transformations and lexical paraphrasing using their own
vocabulary in order to produce more compact and less “noisy” summaries.

3. In the current implementation, we focus on years only, but the approach would work all the same for
any other type of numerical data types.
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<year> token, and the first slot of the positions in V ext that correspond to this triple is
filled with the copy of this token.

3.4 Summarising By Pointing and Generating

The probability distribution qt for each entry in the vocabulary extension V ext after dis-
tributing the attention scores over the realisations of the relevant triples is computed as
follows:

q̃
(i)
t =

{
exp[a

(di/Qe)
t ] vext

i ∈ V f
ext ∪ V

copy
ext

0 vext
i ∈ V null

ext

(9)

q
(i)
t =

q̃
(i)
t∑Q·E

j=1 q̃
(j)
t

(10)

∀i ∈ [1, Q ·E]. We adopt the notion of generation probability pgen
t ∈ [0, 1], to simulate a soft

switch at each timestep t between generating a token from the fixed vocabulary or copying
either the surface form or the label of an entity from the highlighted triple (See et al., 2017).

pgen
t = sigm(Wĉct + Wĥh

L
t ) , (11)

where Wĉ :: Rm → R1 and Wĥ :: Rm → R1 are biased linear mappings.

Our model computes the following probability distribution for each entry w in the ex-
tended vocabulary V = V † ∪ V ext as follows:

Pt(w) =


pgen
t P voc

t (w) + (1− pgen
t )q

(w)
t w ∈ V f

ext ∪ V
copy

ext

pgen
t P voc

t (w) w ∈ V †

0 w ∈ V null
ext ,

(12)

where P voc
t = softmax(Wyh

L+1
t ), and Wy : Rm → R|X|+Q·E is a trainable weight matrix.

The decoder learns to interpret hL+1
t to make a decision about which realisation is the

most appropriate over the V given the context from both the input and the text that it
has generated so far. The attention scores point at the triple that should be verbalised in
the summary. The model makes the final prediction about the token that will be outputted
only after these scores are accumulated in the final distribution over V .

While our formulation for Q favours batch-level operation, its functionality in our system
goes beyond that. Since Q remains unaltered for all input triples, our model is able to easily
learn the association of each triple position with its corresponding Q slots in V ext easier,
throughout the training process. Furthermore, while the position of the input entities can
vary, its verbalisations and their order in V ext are consistent across all training and testing.
During the initial training stages, the model learns that realisations of the j(+Q)-th entry
from V ext is usually attributed to their co-existence with certain entities in the dj/Qe
position of E . Since the possible realisations of the entities remain in the same order, at
subsequent training stages, the decoder learns to interpret hL+1

t in order to choose the most
appropriate entry from the Q realisations, that correspond to the single triple to which the
attention mechanism pays most attention.

9



Vougiouklis, Maddalena, Hare, & Simperl

In contrast to the architecture proposed by See et al. (2017), our model does not aggre-
gate the probabilities of potentially common entries in the extended and the fixed target
vocabulary, V ext and V † respectively. This enables us to achieve better separation of the
particular action required at each timestep, in terms of either selecting a regular word
or explicitly realising a triple using the corresponding extended vocabulary. Furthermore,
in comparison to See et al. who extend the fixed target vocabulary by only the single-
token entries of the source sequence, our extended vocabulary consists of both single- and
multi-token labels, such as “sci-fi” and “science fiction”, in Figure 1, respectively. Since all
entries of V † consist of single tokens, aggregating probabilities only for potentially common
single-token labels would substantially skew the resulting distribution over V against their
multi-token counterparts. Our model is also agnostic with respect to the number of tokens
of which each entry of V ext consists. Consequently, both single- and multi-token labels are
directly appended to a summary should their corresponding entry of V ext is selected during
the decoding stage.

4. Datasets

We train and evaluate our system on two corpora. The first is the D1 Biographies corpus
provided by Vougiouklis et al. (2018a), which consists of triples from DBpedia aligned with
Wikipedia biographies. The second corpus, which we refer to as the Full corpus, has been
built for the purpose of this paper. It uses the same methodology as the one described by
Vougiouklis et al., applied, however, to the entire Wikipedia. Table 2 provides statistics for
both.

Parameter Biographies Full

# Articles 256850 864862

# Entities 609k 1173k

# Predicates 450 1124

Vocab. Size 400k 1114k

Avg. # Triples / Article 10.68 (7.87) 8.59 (6.33)

Avg. # Tokens / Summary 41.30 (17.83) 39.95 (21.05)

Table 2: Statistics of the two corpora. Average parameters are shown with standard devi-
ations in brackets.

We leverage the intrinsic alignment of DBpedia and Wikipedia in order to create a
corpus of loosely aligned triples and text summaries. We extracted DBpedia triples from the
Mapping-based Objects4 and Literals4 DBpedia datasets. All relevant Wikipedia summaries
were extracted using the Long Abstracts4 DBpedia dataset retaining only articles with at
least a single triple in the Mapping-based Objects and Literals corpora. We retained only
the first two sentences of each Wikipedia summary.

Entities in the summaries are identified using DBpedia Spotlight (Daiber et al., 2013).
We excluded any Wikipedia summaries whose main discussed entity (e.g. Atlas Shrugged

4. http://wiki.dbpedia.org/downloads-2016-10
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in the example of Table 1) was not identified in the text. For each entity that has been
identified in a Wikipedia summary using DBpedia Spotlight, we extracted its corresponding
triples from the Mapping-based Objects dataset. We assume that the subjects or objects of a
set of triples are consistent with the main subject of the corresponding Wikipedia summary.
Consequently, from this additional set of triples, we only retain those whose object matches
the main discussed entity in each summary, and we append them to the initial set. Table 3
presents the distribution of the 10 most common predicates, and entities in the resulting
Full dataset. We urge interested readers to refer to our previous work (Vougiouklis et al.,
2018a) for further details about the dataset building process.

Predicates In Triples Entities In Triples Entities In Summaries

Predicate % Entity % Entity %

birthDate 4.52 United States 0.56 United States 2.23

birthPlace 3.92 United Kingdom 0.25 Mile 0.72

country 3.47 India 0.15 Actor 0.64

isPartOf 2.83 France 0.14 Town 0.60

genre 2.79 Canada 0.12 Village 0.59

location 2.12 England 0.12 England 0.54

careerStation 2.00 Animal 0.12 Association football 0.49

type 1.97 Italy 0.11 City 0.48

starring 1.92 Germany 0.10 Germany 0.43

occupation 1.89 Australia 0.10 France 0.43

Table 3: Distribution of the 10 most frequent predicates and entities in the Full dataset.
The left and middle columns display the distribution of the 10 most common predicates
and entities in the triples that have been allocated to the Full dataset. The right column
depicts the distribution of the 10 most common entities in the Wikipedia summaries as they
have been identified using DBpedia Spotlight.

After an entity is annotated in the text, its realisation is replaced by a surface form tuple
that consists from this realisation and the name of the entity. These annotations are used
for the construction of the Gkd sets for each entity kd (cf. Section 3.3) that the approach
determines in the summaries of each corpus. When the realisation of an annotated entity
or a year in the text is identified in the V ext of an input set of triples, it is replaced by
the token of the position of the surface form in V ext. Table 4 shows an example of the
alignment of the datasets, after some pre-processing. We note that the output of DBpedia
Spotlight might not always be ideal. For example, during data preparation, only the first
part of “Bosnia and Herzegovina” in the original summary has been identified as realisation
of dbr:Bosnia and Herzegovina. However, our model during generation should be able to
first select the first realisation from V ext for dbr:Bosnia and Herzegovina, and then sample
the remaining tokens for “and” and “Herzegovina” from the fixed target vocabulary, V †, at
the subsequent decoding timesteps.

For each input triple set, we determine the values of the extended vocabulary V ext.
Each triple has Q slots in V ext. Years which have not been identified in the input set of
triples are mapped to a pre-defined <year> token. Regular numbers are replaced by the
special 0 token and are not considered further in the evaluation. Every out-of-vocabulary
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token in summaries is represented by the special <rare> token in the case of words, and
their corresponding instance-type token (e.g. dbo:SoccerPlayer) in the case of surface
form tuples. The special tokens of an entity’s instance type are retrieved from the Instance
Types DBPedia5 dataset. We compute a Q value of 2 (for the D1 Biographies dataset),
and 3 (for the Full corpus), which results in ∼ 98% coverage of the total number of textual
realisations of the triples’ entities for both corpora (see Section 3.3).

<item> dbr:C̆izma V ext

Triples

<item> dbo:country dbr:Bosnia and Herzegovina

[dbo:Country]

1: Bosnia

2: Bosian

3: Bosnia-Herzegovina

<item> dbo:isPartOf dbr:Kiseljak [dbo:Settlement]

4: Kiseljak

5: null

6: null

<item> dbo:timeZone dbr:Central European Time

[unknown type]

7: CET

8: cet

9: UTC+2

<item> dbo:type dbr:Village [owl#Thing]

10: village

11: rural community

12: selo

<item> dbo:utcOffset 0 [unknown type]

13: 0

14: null

15: null

Original
Summary

C̆izma is a village in the municipality of Kiseljak, Bosnia
and Herzegovina.

Annotated
Summary

<start> <item> is a (dbr:Village, village) in the
(dbr:Municipalities of Bosnia and Herzegovina,

municipality) of (dbr:Kiseljak, Kiseljak) ,
(dbr:Bosnia and Herzegovina, Bosnia) and Herzegovina .
<end>

Summary w/
Surf. Form

Tuples

<start> <item> is a [ext 10] in the
(dbr:Municipalities of Bosnia and Herzegovina,

municipality) of [ext 4] , [ext 1] and Herzegovina .
<end>

Summary w/o
Surf. Form

Tuples

<start> <item> is a [ext 10] in the municipality of
[ext 4] , [ext 1] and Herzegovina . <end>

Table 4: An example alignment in our dataset. Each triple has Q = 3 slots in V ext. The
main entity in both the input triples and the summaries is replaced with the <item> token.
Each triple is stored along with the instance type of the other, besides the main, entities it
contains (e.g. [dbo:Settlement] for dbr:Kiseljak). The word “village” in the summary
is recognised as the DBpedia entity dbr:Village, which is mentioned in the triples of the
input set. Since “village” is also one of the realisations of dbr:Village in the 10th position
of V ext, it is replaced by the [ext 10] token in the text. Each summary is augmented with
start-of-summary <start> and end-of-summary <end> tokens.

5. Available at http://wiki.dbpedia.org/downloads-2016-10.
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In order to constrain the space complexity of the task, we limit the number of triples E
that are allocated to each summary to:

bEmin + 0.25σEc ≤ E ≤
⌊
E + 2σE

⌋
. (13)

With this limitation, the model size of the pointer-generator systems is around 10 GB,
which is comparable with the available GPU memory of the Titan X (Pascal) GPU used for
the evaluation. When the number of triples of an input set exceeds this threshold, we filter
out any potential redundant triples from the oversized sets (Vougiouklis et al., 2018a), and
prioritise triples whose objects or subjects have been mentioned in the text. We found that
triple sets whose size exceeds the above threshold account for 4% and 4.7% in the case of
the Full and Biographies dataset respectively. We perform this during training in order to
maximise the effect of the proposed pointer mechanism and the property-type placeholders
of the competing Triples2GRU and Triples2LSTM (see Section 5.2) models. During testing,
we first attempt to exclude potential duplicates; in case their number still exceeds the limit,
we retain only the first ones until the Emax threshold is reached (Vougiouklis et al., 2018a).

5. Experiments

We trained and evaluated the performance of our approach on the two corpora from the
previous section. Both datasets were split into training, validation and test, corresponding
to 85%, 10%, and 5% of the data. We implemented our neural network models using Torch6.
We make the Full corpus along with the code of our system available on GitHub7.

Furthermore, we investigated whether the inclusion of the frequent surface form tu-
ples (Vougiouklis et al., 2018a), whose entities had not been associated with any triple from
the input set, enhanced the performance of our models. We see surface form tuples as a
mechanism of implicitly realising entities in the text—for instance, generating a summary
about “... an American author” when the only relevant input triple is author birthPlace

Brooklyn. In our prior work, we found that the inclusion of surface form tuples can gener-
ally improve the performance since the model learns easier to correlate particular realisation
of entities (that can consist of more than a single token) with particular predicate-entities
patterns from the input triple set (Vougiouklis et al., 2018a). However, the Triples2GRU
and Triples2LSTM systems had the ability to directly verbalise entries from the input (i.e.
by copying the corresponding labels using the property-type placeholder mechanism) only
in the case of infrequent input entities. Consequently, we sought to explore the effect of the
surface form tuples on our new architecture which due to its pointer mechanism has the
ability to directly realise all input entities.

For each dataset, we ran two sets of experiments: one in which the surface form tuples
were part of the fixed vocabulary of the decoder (w/ Surf. Form Tuples), and one in which
they were treated as regular words (w/o Surf. Form Tuples). At test time, our systems
are provided with the Gkd sets of the up to Q verbalisations with which each kd entity in
our knowledge graph can be realised in the texts. Given an input set of triples, a textual
summary is generated after V ext is formed from the Gkd sets of the frequent entities and
the single labels of both the infrequent ones and the numerical objects that participate in

6. http://torch.ch

7. https://github.com/pvougiou/Point-at-the-Triple
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the input. The expected output of our model, in the case of the former and latter setup,
is displayed in the “Summary w/ Surf. Form Tuples” and “Summary w/o Surf. Form
Tuples” rows of Table 4 respectively. At a post-processing step, the special <item> token is
replaced by the label of the main entity, and any occurrences of [ext 1−Q·E] tokens with
their respective entries in V ext.

5.1 Training Details

On the encoder side, we included all entities and properties that occurred at least 30 times
in each dataset. Triples with rare properties were excluded, while infrequent entities were
replaced with instance-type tokens. This resulted in a source vocabulary size of |N | = 5785
for the Biographies dataset, and |N | = 17146 tokens for the Full dataset.

On the decoder side, we used a single layer of 500 GRUs, and included the |X| = 15k
and |X| = 17k more frequent tokens (i.e. only words in the case of w/o Surf. Form Tuples
systems, and words and surface form tuples in the case of w/ Surf. Form Tuples systems)
from the two datasets. In all experiments, we set the dimensionality of the hidden states to
m = 500. We initialised all parameters with a random uniform distribution between −0.1
and 0.1, and used batch normalisation before each non-linear activation function and after
each fully-connected layer (Ioffe and Szegedy, 2015) on the encoder side.

Our training objective was to minimise the sum of the negative log-likelihoods of a
mini-batch of 80 predicted summaries. Optimisation was performed using Adam (Kingma
and Ba, 2014) with a learning rate of 5 · 10−5. An l2 regularisation term of 0.05 over the
parameters was also included in the cost function.

For Biographies, the networks converged after the 13th epoch8. For the Full dataset,
convergence was achieved after 95 epochs in the w/o Surf. Form Tuples system, and after
80 in the case of w/ Surf. Form Tuples. All systems were trained on a single Titan X
(Pascal) GPU. The pointer-generator networks completed an epoch of training in around
36 minutes when trained on biographies, and in around 2 hours for the Full dataset.

During testing and evaluation, we did beam-search (Sutskever et al., 2014; Rush et al.,
2015; Vougiouklis et al., 2018a) with a beam size of 8 and retained only the the summary
with the highest probability.

5.2 Baselines

We demonstrate the effectiveness of our approach by comparing it against a set of compet-
itive baselines.

Random We computed the expected lower bounds for performance across all metrics by
using a random Wikipedia summary baseline. For each set of triples in the validation and
test set, the system retrieves a response by randomly selecting a summary from the training
set.

KN We used the KenLM toolkit (Heafield et al., 2013) to train a 5-gram Kneser-Ney
(KN) language model.

8. The epoch at which the model converged to the lowest possible validation error. After this epoch, the
error on the validation set either did not improve further or it increased, causing the models to overfit.
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IR We implemented an Information Retrieval (IR) baseline similar to the one used for
abstractive sentence summarisation (Rush et al., 2015). It encodes the sets of input triples
in the training set using TF-IDF followed by LSA (Halko et al., 2011). For each set of
triples in the validation and test set, we performed K-Nearest Neighbours to retrieve the
closest vector from the training set, and output the related summary.

Triples2GRU and Triples2LSTM We compared against the encoder-decoder architec-
tures from our prior work (Vougiouklis et al., 2018a). Both systems are equipped with the
surface form tuples mechanism. We set the dimensionality of their hidden state to 500.

Pointer-Generator We trained and tested an adaptation of the original pointer-generator
system proposed by See et al. (2017). Similarly to our approach, “Pointer-Generator” uses
a feed-forward encoder that processes the input triples (see Section 3.2) and an RNN de-
coder based on GRUs that attends the input. The decoder can generate words from a fixed
target vocabulary or by copying them from the input without, however, being able to learn
different entity realisations. Parameter Q, discussed in Section 3.3, was set to 1.

All baselines included the special <item> tokens, and except Pointer-Generator, all of
them were also equipped with the property-type placeholders (Vougiouklis et al., 2018a).
After a summary was generated, the first were replaced by the label of the main discussed
entity, and the second by the label of the entity of the triple from the input set that satisfied
the requirements of the placeholder. In the case of the Pointer-Generator system, entities
from the triples were realised in the generated summaries using the corresponding input’s
extended vocabulary V ext with Q = 1. During testing, in the case of KN, Triples2GRU,
Triples2LSTM and Pointer-Generator, we perform beam-search with a beam size of 8 in
order to sample the most likely summaries for each set of triples.

5.3 Automatic Evaluation

We report the results in terms of the following three metrics on the validation and test sets:
(i) BLEU (Bilingual Evaluation Understudy) (Papineni et al., 2002), (ii) ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) (Lin, 2004), and (iii) METEOR (Lavie and
Agarwal, 2007). BLEU is a precision-oriented metric for measuring the quality of generated
text by comparing it to the actual, empirical text. BLEU-n calculates similarity scores
based on the co-occurrence of up to n-grams in the generated and the empirical text.
ROUGE is a metric that computes the recall of n-grams in the generated text with respect
to the n-grams of the actual text. ROUGEL is a variant of ROUGE based on the longest
common sequence in the two texts. METEOR computes a weighted average of the precision
and recall of uni-grams in the generated and the empirical text by considering stemming,
synonyms and paraphrases.

We adapted the code from the evaluation package that was released by Peter Anderson9,
originally used to score the quality of image captions.

5.3.1 Results

We report the results for BLEU 2, BLEU 3, BLEU 4, ROUGEL and METEOR in Table 5. In
almost all scenarios, we outperformed the baselines. On the Full corpus, both our systems

9. http://github.com/peteanderson80/coco-caption
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Model
BLEU 2 BLEU 3 BLEU 4 ROUGEL METEOR

Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test

B
io
g
ra

p
h
ie
s

Random
15.78

(±.01)
15.56

(±.02)
10.25

(±.00)
10.09

(±.01)
6.71

(±.00)
6.59

(±.01)
27.68

(±.01)
27.51

(±.02)
14.15

(±.01)
14.07

(±.01)

KN 15.16 14.97 11.00 10.85 8.04 7.94 36.74 36.47 31.46 31.32

IR 24.60 24.44 18.16 17.96 13.66 13.45 36.20 36.08 18.12 18.02

Triples2GRU 25.54 25.18 20.46 20.14 16.35 16.07 48.20 47.87 33.38 33.19

Triples2LSTM 25.27 24.99 20.33 20.08 16.28 16.08 48.48 48.23 33.96 33.84

Pointer-
Generator

28.78 28.77 24.40 24.40 21.13 21.14 49.63 49.77 34.57 34.68

Ours w/o Surf.
Form Tuples

29.40 29.27 24.79 24.67 21.39 21.26 49.11 49.12 33.92 33.98

Ours w/ Surf.
Form Tuples

28.68 28.81 24.37 24.54 21.15 21.34 49.65 49.90 34.96 35.30

F
u
ll

Random
13.13

(±.01)
13.17

(±.01)
7.92

(±.01)
7.95

(±.01)
4.92

(±.01)
4.94

(±.01)
23.57

(±.01)
23.59

(±.01)
11.34

(±.01)
11.34

(±.00)

KN 11.98 11.99 8.07 8.06 5.55 5.53 28.49 28.50 16.50 16.50

IR 27.24 27.09 20.88 20.68 16.66 16.45 38.62 38.46 17.77 17.59

Triples2GRU 27.21 27.13 21.84 21.73 17.87 17.73 47.33 47.36 27.21 27.23

Triples2LSTM 25.89 25.85 20.56 20.48 16.68 16.58 46.20 46.23 27.08 27.03

Pointer-
Generator

27.45 27.27 22.24 22.08 18.45 18.30 46.86 46.73 30.02 29.88

Ours w/o Surf.
Form Tuples

28.05 27.97 22.84 22.73 19.07 18.95 47.21 47.14 29.50 29.47

Ours w/ Surf.
Form Tuples

28.07 28.11 22.81 22.86 19.04 19.09 47.02 47.20 28.20 28.31

Table 5: Automatic evaluation of our architectures against baselines using BLEU 2 − 4,
ROUGEL and METEOR on the validation and test sets of the Biographies and Full cor-
pora. The average performance of the random baseline along with its standard deviation is
reported after sampling 10 times.

achieved an improvement that ranges from 0.59 to 0.79 and 0.16 to 0.47 BLEU 4 and
ROUGE points, respectively, in comparison to Pointer-Generator, which is our strongest
competitor. On the Biographies corpus, we can show small improvements of at least 0.02
in terms of both BLEU and ROUGE points. We believe that the lower performance on the
smaller corpus is mainly a function of the limited linguistic variability of biographies—in
92.67% of the cases, entities from the triples in that corpus were realised in the text with
their most frequent surface form. Our approach, which is more ambitious in terms of entity
verbalisations, paid a higher cost than Pointer-Generator, which relies on a single label per
entity (Q = 1). The advantages of our approach become more clear on the Full corpus,
which is linguistically more challenging and includes entities with varied realisations—in
that corpus, in 14% of the cases, entities were realised with their 2nd or 3rd label. The high
METEOR results of the Pointer-Generator also indicate that it often generated text that
differed from the empirical summaries due to morphological or synonymic variations. In
Section 5.4, we explore the extent to which these variations influence people’s perceptions
of the fluency of the generated summaries.

The two corpora overlap. Table 6 shows how the models trained on the Full dataset
performed on validation and test triples that are also in the Biographies corpus. We note
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that when we trained our systems on the more challenging task, with the same hyper-
parameters for the dimensionality of the hidden states and number of layers, we were still
able to achieve reasonably good results compared to the systems trained specifically on
the narrower task. Our pointer-generator network w/o Surf. Form Tuples could generate
biographies regardless of the complexity of the dataset (Full or Biographies) on which it
was originally trained.

Model
BLEU 2 BLEU 3 BLEU 4 ROUGEL METEOR

Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test

KN 10.13 10.16 6.47 6.46 3.64 3.61 25.31 25.33 15.84 15.81

IR 24.23 24.37 17.75 17.82 13.24 13.27 35.81 35.91 17.58 17.48

Triples2LSTM 24.41 24.64 19.32 19.47 15.37 15.46 47.06 47.41 30.73 30.71

Triples2GRU 24.95 25.06 19.92 19.99 15.88 15.90 47.71 47.99 32.56 32.52

Pointer-
Generator

27.54 27.62 23.21 23.39 19.95 20.17 48.94 49.08 35.09 35.12

Ours w/o Surf.
Form Tuples

28.77 28.92 24.34 24.48 21.05 21.18 49.37 49.47 33.14 33.20

Ours w/ Surf.
Form Tuples

27.76 27.64 23.49 23.37 20.30 20.17 49.47 49.51 34.19 34.42

Table 6: Automatic evaluation of our systems against all other baselines using BLEU 2−4,
ROUGEL and METEOR, trained on the Full corpus, on the triples from the validation and
test set that are also in the Biographies dataset.

Ours
w/ Surf.

Form Tuples

Ours
w/o Surf.

Form Tuples

Pointer-Generator Triples2GRU Triples2LSTM IR KN
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Figure 2: Performance across 225 domains

To understand how well our systems generalise across different domains, we grouped the
Wikipedia summaries from the Full dataset according to the instance type of their main
entity (e.g. dbo:Village and dbo:SoccerPlayer). Figure 2 shows performance results
against the baselines across the 99th percentile of the included instance types (i.e. ∼ 225
different instance types). Furthermore, Table 7 shows the BLEU 4 performance of our two
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Instance Type
Triple

Coverage

BLEU 4

Ours w/ Surf.
Form Tuples

Ours w/o Surf.
Form Tuples

Pointer-
Generator

Triples2GRU

dbo:Village 11.36 (±5.58) 37.10 39.09 36.20 34.98

dbo:Mollusca 11.09 (±5.82) 32.99 32.59 35.77 34.08

dbo:Congressman 10.85 (±4.37) 42.20 41.02 39.01 25.57

dbo:IceHockeyPlayer 10.58 (±4.54) 36.01 39.60 38.02 32.68

dbo:City 10.53 (±6.10) 30.08 31.31 26.26 31.56
...

...
...

...
...

...

dbo:RugbyPlayer 2.39 (±3.42) 21.91 19.90 19.28 19.40

dbo:Country 2.24 (±2.74) 3.20 5.42 4.58 4.65

dbo:ComicsCreator 1.99 (±2.75) 13.94 15.09 13.47 13.37

dbo:ComicsCharacter 1.53 (±2.60) 19.02 21.67 17.93 20.31

owl#Thing 0.95 (±1.89) 5.36 5.75 5.90 6.01

Table 7: BLEU 4 performance of our systems against the top performing baselines across
different domains (i.e. instance types). The domains with the greatest coverage with respect
to the triples whose content is directly copied in the text appear on the top part of the table;
domains with the least coverage are at the bottom. Only instance types with more than 20
generated summaries in the test sets were considered.

systems against the two stronger baselines in the domains (i.e. instance types) with the
most and least coverage with respect to the triples whose content is directly copied in the
text. The lowest performance bounds of our systems are similar to the ones of Triples2GRU
and Pointer-Generator and higher than the ones of the other baselines. However, in domains
with greater coverage with respect to the triples that are verbalised in the text, both our
systems either outperformed or were on par with the competition.

For example, dbo:Village and dbo:IceHockeyPlayer were one of the highest scored
instance types10 for both Triples2GRU and Pointer-Generator. The two achieve a BLEU
4 scores of 34.98 and 32.68, respectively using Triples2GRU and 36.20 and 38.02 using
the Pointer-Generator system. By comparison, they are scored at the same level by the
w/ Surf. Form Tuples system (i.e. with respective BLEU 4 scores of 37.10 and 36.01)
and are outperformed by the one w/o Surf. Form Tuples with BLEU 4 performance
of 39.09 and 39.60 respectively. Moreover, in summaries about dbo:Congressman and
dbo:MixedMartialArtsEvent, which are among the domains in which our systems achieve
their best performance, the competing baseline are significantly outperformed (cf. Table 7).

5.4 Human Evaluation

The three metrics we used for the automatic evaluation do not capture performance well in
tasks where the input and the output are loosely correlated (Reiter, 2010). Furthermore,
while our pointer-generator systems (with or without surface form tuples) outperformed the
competition, the difference to some of the stronger baselines were not substantial enough
to allow one to choose among them. To understand how well our approach would do in

10. Only instance types with more than 20 generated summaries in the test sets were considered.
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practice, we undertook two user studies with participants recruited from the Figure Eight
crowdsourcing platform11. In the first one, we looked at the performance of our networks
against the two most competitive baselines, Triples2GRU and Pointer-Generator, on the
open-domain task. In the second one, we explored whether training our systems on the Full
dataset with the same hyper-parameters (except the size of the input/output vocabularies)
would yield results comparable to systems that were trained on the biographies task.

5.4.1 Inputs and Outputs

We included only input sets of at least six triples—our experiments have shown that all
systems from the automatic evaluation did not do well on smaller inputs since they tend
to lack adequate information to form a two-sentence summary. Both studies used sets
of triples that occurred in the test sets of all four systems of interest (ours two plus two
stronger baselines). From those, for the first study we sampled 32 sets of triples according
to the instance-type distribution of the main discussed entities in the Full dataset. For
the second study, we used a random sample of the same size. In both cases, we took the
summaries generated by the four systems and asked 10 participants to assess them against
three criteria: (i) fluency ; (ii) coverage12, which is concerned with the triples in the input
whose content is mentioned either implicitly or explicitly in the text; and (iii) contradiction,
which refers to information that is conveyed by the sentence, but conflicts with one or more
of triples from the input set.

In addition to the results from our crowdsourcing experiment, we report the expected up-
per bounds for coverage and contradiction by manually annotating the empirical Wikipedia
summaries that correspond to the selected triples sets.

5.4.2 Selecting Participants

For each of the 32 sets of triples used in each study, we also compiled a gold standard
of 8 additional sets of triples with manually written summaries. The goal was to form
summaries that are straightforward to assess against the three criteria to allow us to filter
out crowdworkers who would perform poorly on the tasks, as explained below.

5.4.3 Tasks Design

We designed three crowdsourcing tasks, one for fluency, one for coverage, and one for
contradiction. In previous work of ours (Vougiouklis et al., 2018b), we piloted alternative
designs that covered two or even all three aspects, but they proved to be challenging for the
participants. Both the analysis of the answers and qualitative feedback from the participants
suggested that mixing the three activities increased the cognitive effort of the tasks and
impacted on the accuracy of the results. In particular, some participants seemed to believe
contradictions were complimentary to coverage and scored the former higher when the text
was simply missing triples from the input.

11. https://www.figure-eight.com

12. Based on the notion of coverage described by Ell and Harth (2014). They use coverage to measure the
number of sub-graphs that are included in the text.
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Fluency Participants had to rank the coherence and grammatical correctness of four
summaries, one per competing system, for a given set of triples. A task consisted of five
such ranking questions, of which one was a gold standard example created by us, for a
fee of 15¢. A single question on the task interface that we used for the evaluation of
fluency is presented in Figure 3. Participants were considered for payment only when they
answered the gold standard question correctly. To distinguish between participants who
genuinely found it challenging to complete the work and those who were spamming, we
provided feedback on the failed gold standard question and allowed people to review their
answers two more times. This is in line with current discussions into the ethics of microtask
crowdsourcing for scientific work (Le et al., 2010; Daniel et al., 2018). Per study, we collected
ten judgements for each of the 32 graphs from the sample. The average rank of each system
for a given set of triples is computed after we compute its mean relative position across the
ten collected judgements. We subsequently average these values across all the 32 samples
in order to obtain the mean fluency of each competing system.

Figure 3: An example of question on the task interface that was designed for the evaluation
of the fluency of the competing systems.

Coverage Participants saw a summary generated by one of the competing system along-
side its corresponding input triples, and had to determine whether each triple in the set
was either “Absent” or “Present” in the summary. Figure 4a displays a question on the
task interface that we designed for the evaluation of coverage. Similarly to the fluency
task, we presented each participant with five questions. We paid 15¢ per task. One of the
questions was from the gold standard; participants who missed more than a triple in the
gold standard question were able to review and re-submit two more times. If they failed
after three attempts, they were excluded from the study. We allocated each pair of triples
and text summaries to ten participants and used majority voting to decide whether a triple
was covered by a summary or not. We then computed the total number of triples present
and normalised by the total number of input triples to obtain the final score.
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(a) Coverage (b) Contradiction

Figure 4: Examples of questions on the task interfaces that were designed for the evaluation
of the coverage (a) and the contradiction (b) of the competing systems.

Contradiction The design of the contradiction task is very similar to the coverage one
(see Figure 4b). Each participant had to answer five questions. For each question, the par-
ticipants had to assess whether a triple from the input set would be a “Direct Contradiction”
of the information from the accompanying text summary or not.

5.4.4 Results of the First Study

The results of the two studies are summarised in Table 8. The numbers are average scores
for fluency, coverage and contradiction over the 32 summaries sampled for each study. The
Wikipedia scores refer to the coverage and contradiction of the corresponding empirical
summaries as they have been annotated by the authors. The results of the two studies are
in alignment with the results of the automatic evaluation.

Fluency In the first study, which focused on the performance on the Full dataset, the
summaries generated by both our systems were ranked significantly higher than those of
the the two baselines (one-way ANOVA test, p < .05). Among our two systems, the one
with surface form tuples was also found to generate significantly more fluent summaries
than the one without. It should also be noted that summaries generated by the Pointer-
Generator system were consistently ranked lower than the competition. This confirms our
original hypothesis that realising entities from the triples with a single label does not lead to
fluent text. It also emphasises the contribution of our realisation mechanism, which enables
our pointer mechanism to “point” at the entity labels that are the most suitable for the
generated text.

Coverage Both our systems realised more information from the input triples in the gener-
ated summaries; the coverage of both systems is also significantly better than Triples2GRU,
our former work. Figure 5a shows the extent to which different number of predicates from
the input triples are covered in the text. Notably our architectures are able to realise not
only more predicates than the competition but also to address these predicates with higher
consistency (i.e. greater coverage) in the corresponding summaries.

Contradiction All four systems scored low with respect to the amount of information in
the text that is contradicted by the triples, and no statistically significant differences were
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noted. In the vast majority of the cases the generated summaries were considered to be in
alignment with the input set of triples. When any contradictions occurred, they were usually
isolated to single triples. Out of the total of 12 summaries across all systems for which
contradiction > 0% after the aggregation of annotations, only two of them had a second
triple whose information was contradicted in the text; the other 10 had only a single triple
marked as a potential contradiction. In a prior study, we have established a tendency of
crowdworkers to overestimate contradictions (Vougiouklis et al., 2018b), which we believe is
due to participants confusing missing and contradictory information. While the introduction
of gold standard examples and splitting coverage and contradictions tasks helped, upon
manual inspection, we found that there were still triples marked as contradicting to the
summary simply because the corresponding information had not been captured in the text.

F
u
ll

Model Fluency Coverage Contradiction

Wikipedia − 53.10 0.01

Triples2GRU 2.67(∗) 27.50(∗) 0.35

Pointer-
Generator

2.83(†) 32.60 1.04

Ours w/o Surf.
Form Tuples

2.38(∗,†,‡) 36.07(∗) 1.14

Ours w/ Surf.
Form Tuples

2.13(∗,†,‡) 37.11(∗) 1.40

B
io
g
ra

p
h
ie
s

Wikipedia − 56.15 0.00

w/o Surf. Form
Tuples on Bio

2.47 40.51 1.09

w/ Surf. Form
Tuples on Bio

2.51 40.68 0.74

w/o Surf. Form
Tuples on Full

2.71(‡) 40.78 0.00

w/ Surf. Form
Tuples on Full

2.31(‡) 37.53 0.95

Table 8: Average scores of the four investigated systems for the three criteria. The
Wikipedia scores refer to the coverage and contradiction of the corresponding empirical
summaries, annotated by the authors. Fluency shows the average relative position (out of
four) in which summaries from a particular system are ranked. Coverage and contradiction
are percentages; for the former, the higher the score the better whereas for the latter, the
lower the score the better. ∗, † and ‡ denote statistical significance with p < .05 using pair-
wise one-way ANOVA of a system against Triples2GRU, Pointer-Generator and Ours w/o
Surf. Form Tuples respectively. Top: Scores of the systems on the Full dataset. Bottom:
Scores of the systems evaluated on the Biographies dataset. The “... on Bio” systems have
been trained only on biographies.

5.4.5 Results of the Second Study

Training our systems on a much more challenging corpus results in minimal performance
differences in comparison to the performance of the same systems when trained solely on
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Biographies. While the average coverage (cf. Table 8 and Figure 5b) of the systems that
have been trained on the Full corpus appears to be slightly lower than their respective
fine-tuned versions (i.e. “... on Bio” systems), no statistically significant outcomes were
observed. Nonetheless, when trained on the Full corpus and tested on biographies, the
system w/ Surf. Form Tuples is significantly (p < .05) more fluent than w/o Surf. Form
Tuples (cf. Table 8).
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Figure 5: The percentage with which the unique predicates from the input triples are
implicitly or explicitly covered in the generated summaries.

6. Discussion

Following the two evaluations, we note that while our pointer-generator network without
the surface form tuples performed slightly better than the competition when trained and
tested on a single domain, it is difficult for it to reproduce the same quality of summaries
when trained on the Full dataset. Nonetheless, the inclusion of the surface form tuples
makes the model more flexible at addressing larger vocabulary sizes without paying a high
cost on single domains.

In the training portion of the Full dataset, the entities are realised with their first label
86% of the times, with their second label 11.5% of the times, and with their third label
2.5% of the times. During testing, our system realises entities from the triples using the
first, second, and third realisation with respective percentages of 85, 11, and 4. We believe
that this, along with the higher average fluency achieved by our summaries confirms the
added value of our verbalisation approach.

In addition to the above experiments, we grouped Wikipedia summaries that are allo-
cated to the same number of input triples and computed a BLEU score per group. Figure
6 shows the performance of our models with the BLEU 4 metric on the 97th percentile of
the Biographies and Full test sets, across different numbers of input triples. We note that
the sets of triples that consist of more than 26 triples for Biographies, and 21 triples for the
Full corpus are inputted to the systems after they are stripped of their additional triples,
according to the methodology described in Section 4. We noticed that when the systems
are initialised with a low number of triples, they lack the information required to form a
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Figure 6: Performance of our models with the BLEU 4 metric across the different sizes of
triple sets from the test set of the Biographies (a) and the Full (b) dataset. Please note
that sets of triples that consist of more than 26 and 21 triples in the case of the Biographies
and the Full corpus respectively are inputted to the systems after they are stripped of their
additional triples according to the methodology described in Section 4.

two-sentence summary. On the biographies task, the performance of the pointer-generator
networks (i.e. Pointer-Generator, Ours w/ Surf. Form Tuples and Ours w/o Surf. Form
Tuples) progressively increases as more triples are fed into the system. This shows the
ability of the model to successfully “select” the relevant triples and address them in the
generated summary. The Full dataset is much more challenging due to the size of its source
and target dictionaries (cf. Table 2). In addition, only a low number of triples’ entities
can be on average identified in the non-biographical articles (∼ 1.8 entities per summary).
The latter is of great importance since the ability to directly copy information from the
triples to the text is essentially what separates the architectures that leverage the pointer
mechanism from the other neural architectures (i.e. Triples2GRU and Triples2LSTM). In
a scenario in which no information in the text is directly taken from the triples, we would
expect all systems to score almost identical performance13. However, even in this scenario,
the systems based on the pointer mechanism consistently outperform the competition.

We also observe a drop in performance when our systems were provided with over-
sized triple sets. This is more noticeable on the Full corpus, and is mainly because of the
upper bounds with respect to the number of allocated triples that we set per summary
(Eq. 13). Based on these upper bounds, we applied a simple approach to eliminate redun-
dant triples (Vougiouklis et al., 2018a). When their number still exceeded the threshold,
during training, we used an Emax number of them by prioritising triples whose subjects
or objects have been mentioned in the text. However, since the number of tokens in the
summaries that were recognised as realisations of entities or years was relatively low, it

13. In theory, the architectures that are based on pointer-generator networks should still have some advantage
due their attention mechanism.
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is likely the Emax triples that we retained from a very large set would not be reflected in
the text summary. The result of this misalignment of triples and summaries might not be
noticeable in the case of biographies due to their regular structure, but its effect is amplified
in the context of an open-domain corpus.

We see the generation of multi-sentence summaries (i.e. very long sequences) given
very large input sets of triples as a natural extension of this work. Based on our above
findings, we identify the following challenges with respect to this direction: (i) our encoder
should be provided with all the information it needs in order for the end-system to meet
the challenging generative expectations, and (ii) the decoder should be able to retain the
information from the input at very distant timesteps.

A valid approach for overcoming the former challenge would be to allow the model to
“select” the most appropriate triples from an oversized set. Selection of triples is already
actively performed by the proposed systems, but only on the basis of the Emax parameter.
Our pointer-generator networks generate a summary by attending the most relevant parts
of the input at each decoding timestep. Consequently, triples which are more relevant to the
task are rewarded with higher probabilities. An iterative process that is worth investigating
is to identify the properties of the triples that are attended the most by a trained system,
and retrain the system by prioritising triples whose predicates have been attended the most
during testing. The process would eventually stop when no further improvement in the
automatic evaluation metrics could be observed.

The second challenge gives ground to repetition, which is an additional problem associ-
ated with the generation of much longer snippets of text using attentive adaptations of the
general encoder-decoder framework. While such behaviour was not commonly observed in
our experiments, it might prove to be one of the challenges in a multi-sentence generation
scenario. This problem had been recently addressed with the implementation of a coverage
architecture on top of the attention mechanism (Tu et al., 2016; Mi et al., 2016). Coverage
is a vector that records the part of the input that the encoder had paid attention to dur-
ing previous timesteps in order to avoid attending them, and thus, mentioning them again
in the text, at subsequent timesteps. The existing attention mechanism with which our
pointer-generator network is equipped allows us to explore to what extent monitoring the
coverage of the generated text is required in a triples-to-multi-sentence-summaries scenario.

7. Conclusion

We presented a data-driven approach to generate open-domain text summaries from knowl-
edge base triples. We proposed a pointer-generator network that jointly learns to verbalise
in a different number of ways the content from the triples, while retaining the ability to
generate regular words from a fixed target vocabulary. We trained and evaluated two sys-
tem variants on two different datasets of aligned DBpedia triples with Wikipedia summaries
with respective vocabulary sizes of 400k and 1114k words.

We evaluated our approach using well-established automatic text similarity metrics and
conducted two user studies to determine how fluent the summaries are, how well they
match the input, both in terms of coverage of the information conveyed and unintended
contradictions. Both the automatic and the user evaluation show promising results. Our
approach outperforms the state of the art; in particular, compared to other encoder-decoder
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architectures, our summaries are significantly more fluent and convey a greater share of the
content of the input triples.
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761, Montréal, Canada. Association for Computational Linguistics.

Konstas, I. and Lapata, M. (2013). A global model for concept-to-text generation. J. Artif.
Int. Res., 48(1):305–346.

Lavie, A. and Agarwal, A. (2007). METEOR: An automatic metric for mt evaluation with
high levels of correlation with human judgments. In Proceedings of the Second Workshop
on Statistical Machine Translation, StatMT ’07, pages 228–231, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Le, J., Edmonds, A., Hester, V., and Biewald, L. (2010). Ensuring quality in crowdsourced
search relevanceevaluation: The effects of training question distribution. In ACM SIGIR
2010 Workshop on Crowdsourcing for Search Evaluation (CSE 2010), pages 17–20.

Lebret, R., Grangier, D., and Auli, M. (2016). Neural text generation from structured
data with application to the biography domain. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pages 1203–1213. Association for
Computational Linguistics.

28



Point at the Triple: Generation of Text Summaries from Knowledge Base Triples

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hellmann,
S., Morsey, M., van Kleef, P., Auer, S., and Bizer, C. (2015). DBpedia - A large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167–195.

Li, H., Xiong, C., and Callan, J. (2017). Natural language supported relation matching
for question answering with knowledge graphs. In Proceedings of the First Workshop on
Knowledge Graphs and Semantics for Text Retrieval and Analysis (KG4IR 2017).

Li, L. and Wan, X. (2018). Point precisely: Towards ensuring the precision of data in
generated texts using delayed copy mechanism. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 1044–1055, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Liang, P., Jordan, M. I., and Klein, D. (2009). Learning semantic correspondences with
less supervision. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 1 - Volume 1, ACL ’09, pages 91–99, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. In Marie-
Francine Moens, S. S., editor, Text Summarization Branches Out: Proceedings of the
ACL-04 Workshop, pages 74–81, Barcelona, Spain. Association for Computational Lin-
guistics.

Liu, T., Wang, K., Sha, L., Chang, B., and Sui, Z. (2018). Table-to-text generation by
structure-aware seq2seq learning.

Lu, W., Ng, H. T., Lee, W. S., and Zettlemoyer, L. S. (2008). A generative model for parsing
natural language to meaning representations. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing, pages 783–792, Honolulu, Hawaii.
Association for Computational Linguistics.

Luong, T., Sutskever, I., Le, Q., Vinyals, O., and Zaremba, W. (2015). Addressing the rare
word problem in neural machine translation. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 11–19, Beijing, China.
Association for Computational Linguistics.

Ma, Y., Crook, P. A., Sarikaya, R., and Fosler-Lussier, E. (2015). Knowledge graph inference
for spoken dialog systems. In 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5346–5350.

Mei, H., Bansal, M., and Walter, M. R. (2016). What to talk about and how? selective
generation using LSTMs with coarse-to-fine alignment. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 720–730, San Diego, California. Association for
Computational Linguistics.

29



Vougiouklis, Maddalena, Hare, & Simperl

Mi, H., Sankaran, B., Wang, Z., and Ittycheriah, A. (2016). Coverage embedding models
for neural machine translation. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 955–960, Austin, Texas. Association for
Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A method for auto-
matic evaluation of machine translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pages 311–318, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Reiter, E. (2010). Natural Language Generation, chapter 20, pages 574–598. Wiley-
Blackwell.

Reiter, E. and Dale, R. (2000). Building Natural Language Generation Systems. Cambridge
University Press, New York, NY, USA.

Reiter, E., Sripada, S., Hunter, J., Yu, J., and Davy, I. (2005). Choosing words in computer-
generated weather forecasts. Artif. Intell., 167(1-2):137–169.

Rush, A. M., Chopra, S., and Weston, J. (2015). A neural attention model for abstractive
sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 379–389, Lisbon, Portugal. Association for Compu-
tational Linguistics.

See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1073–1083. Association
for Computational Linguistics.

Sleimi, A. and Gardent, C. (2016). Generating paraphrases from DBpedia using deep learn-
ing. In Proceedings of the 2nd International Workshop on Natural Language Generation
and the Semantic Web (WebNLG 2016), pages 54–57. Association for Computational
Linguistics.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q., editors, Advances in Neural Information Processing Systems 27, pages 3104–3112.
Curran Associates, Inc.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016). Modeling coverage for neural machine
translation. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 76–85, Berlin, Germany. Association
for Computational Linguistics.

Turner, R., Sripada, Y., and Reiter, E. (2009). Generating approximate geographic descrip-
tions. In Proceedings of the 12th European Workshop on Natural Language Generation,
ENLG ’09, pages 42–49, Stroudsburg, PA, USA. Association for Computational Linguis-
tics.

30



Point at the Triple: Generation of Text Summaries from Knowledge Base Triples

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Cortes, C., Lawrence,
N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Informa-
tion Processing Systems 28, pages 2692–2700. Curran Associates, Inc.

Vougiouklis, P., Elsahar, H., Kaffee, L.-A., Gravier, C., Laforest, F., Hare, J., and Simperl,
E. (2018a). Neural wikipedian: Generating textual summaries from knowledge base
triples. Journal of Web Semantics.

Vougiouklis, P., Maddalena, E., Hare, J., and Simperl, E. (2018b). How biased is your nlg
evaluation? In Proceedings of the 1st International Workshop on CrowdBias (CrowdBias
2018).

Wiseman, S., Shieber, S., and Rush, A. (2017). Challenges in data-to-document genera-
tion. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 2253–2263, Copenhagen, Denmark. Association for Computational Lin-
guistics.

Yeh, S., Huang, H., and Chen, H. (2018). Precise description generation for knowledge base
entities with local pointer network. In 2018 IEEE/WIC/ACM International Conference
on Web Intelligence (WI), pages 214–221.

31


	Introduction
	Related Work
	Our Model
	Decoder
	Triple Encoder
	Dynamically Expanding the Vocabulary
	Summarising By Pointing and Generating

	Datasets
	Experiments
	Training Details
	Baselines
	Automatic Evaluation
	Results

	Human Evaluation
	Inputs and Outputs
	Selecting Participants
	Tasks Design
	Results of the First Study
	Results of the Second Study


	Discussion
	Conclusion

