
Journal of Artificial Intelligence Research 65 (2019) 519-568 Submitted 11/2018; published 08/2019

Autonomous Target Search with Multiple Coordinated UAVs

Chiara Piacentini chiarap@mie.utoronto.ca
Department of Mechanical and Industrial Engineering
University of Toronto, Toronto, Canada, ON M5S

Sara Bernardini sara.bernardini@rhul.ac.uk
Department of Computer Science
Royal Holloway University of London
Egham, Surrey, UK, TW20 0EX

J. Christopher Beck jcb@mie.utoronto.ca

Department of Mechanical and Industrial Engineering

University of Toronto, Toronto, Canada, ON M5S

Abstract

Search and tracking is the problem of locating a moving target and following it to its
destination. In this work, we consider a scenario in which the target moves across a large
geographical area by following a road network and the search is performed by a team of
unmanned aerial vehicles (UAVs). We formulate search and tracking as a combinatorial
optimization problem and prove that the objective function is submodular. We exploit
this property to devise a greedy algorithm. Although this algorithm does not offer strong
theoretical guarantees because of the presence of temporal constraints that limit the fea-
sibility of the solutions, it presents remarkably good performance, especially when several
UAVs are available for the mission. As the greedy algorithm suffers when resources are
scarce, we investigate two alternative optimization techniques: Constraint Programming
(CP) and AI planning. Both approaches struggle to cope with large problems, and so we
strengthen them by leveraging the greedy algorithm. We use the greedy solution to warm
start the CP model and to devise a domain-dependent heuristic for planning. Our extensive
experimental evaluation studies the scalability of the different techniques and identifies the
conditions under which one approach becomes preferable to the others.

1. Introduction

The problem of searching for lost targets has a long history in mathematics and operation
research, with the first theoretical studies dating back to the World War II (Koopman, 1946).
Since then, the field has continued to evolve and, with the advent of unmanned aerial vehicles
(UAVs), autonomous search has become pivotal to numerous real-world applications: from
surveillance to border interdiction and law enforcement (Girard et al., 2004), from assisted
agriculture (Ammad-Udin et al., 2016) to disaster response (Adams & Friedland, 2011)
and protection of wildlife (Hodgson et al., 2016; Bondi et al., 2018), from civil engineering
inspections (Liu et al., 2014) to environmental monitoring (White et al., 2008).

When search involves moving targets, the problem is often cast as search and tracking
(S&T) because the observer is typically required to track the target to its destination after
finding it; we consider S&T here, but focus on the search phase. The tracking phase is
handled via a simple reactive controller described in previous work (Bernardini, Fox, Long,
& Bookless, 2013).

c©2019 AI Access Foundation. All rights reserved.

Piacentini, Bernardini & Beck

While the literature on S&T is vast (see Section 7 for an overview), the prevalent method
is to formulate search as a path-planning problem and solve it within a probabilistic frame-
work (Bourgault, Furukawa, & Durrant-Whyte, 2006; Lavis & Furukawa, 2008; Tisdale,
Ryan, Kim, Tornqvist, & Hedrick, 2008; He, Bachrach, & Roy, 2010; Lin & Goodrich,
2014). The probability distribution (PD) of the target location is recursively updated and
predicted over time and the search control problem is solved greedily over a very short
planning horizon. This strategy has proven successful for short search missions (e.g., a few
minutes) over small areas (e.g., one to five square kilometres) with static or predictable
targets (Bourgault et al., 2006; Lavis & Furukawa, 2008).

In this paper, we approach the problem of search from a different angle: we focus
on the decision-making process to build long-term strategies for the observers to search
for the target and on the corresponding action generation to implement such strategies.
This aspect has received considerably less attention so far, but it is crucial to improving the
search mission performance in realistic domains where the probabilistic approach is too fine-
grained to be efficient. We cast S&T as a deterministic combinatorial optimization problem
consisting of choosing a set of maneuvers for the observers that maximizes the probability of
discovering the target. We then use optimization techniques to find high-quality solutions
efficiently. Existing work in applying generic optimization techniques to S&T is scarce and
limited to static targets (Abi-Zeid, Nilo, & Lamontagne, 2011; Morin, Abi-Zeid, Quimper, &
Nilo, 2017) or single UAV domains (Bernardini, Fox, Long, & Piacentini, 2016; Bernardini,
Fox, & Long, 2017). We use these techniques for hard realistic problems where multiple
coordinated observers search for a mobile, evasive target over a large geographical area
(around 100 square kilometres) and for an extended period of time (up to 90 minutes).

Our investigation of search emerges from the observation (proven in Section 3) that, in
our formulation of the problem, the objective function is submodular. Greedy techniques
are known to produce bounded approximations when used to maximize submodular func-
tions subject to cardinality (Nemhauser & Wolsey, 1978; Alaei & Malekian, 2010) or other
specific types of constraints (Calinescu, Chekuri, Pál, & Vondrák, 2007; Kulik, Shachnai,
& Tamir, 2009). In our problem, however, the objective function is subject to a set of
temporal constraints that limit the feasibility of solutions, and therefore our greedy algo-
rithm does not enjoy the typical theoretical guarantees. Nonetheless, we implemented the
greedy approach and, via an extensive experimental evaluation, we show that, as happens
in other applications (Krause & Guestrin, 2011), this technique performs remarkably well
in practice, both in general and even more so as the number of available observers increases.

We compare the greedy approach with two different optimization techniques, AI plan-
ning and constraint programming (CP), and explore when it is better to use these more
sophisticated strategies. AI planning and CP are mature technologies for which fast solvers
are available (e.g. Coles, Coles, Fox, & Long, 2010; Laborie, Rogerie, Shaw, & Viĺım, 2018).
The advantage of using these generic techniques is that the specificity of the problems re-
sides in the models, while the solvers are generic. Systems for S&T based on these methods
are flexible and easily extensible: when the mission changes, the models are modified ac-
cordingly, but there is no need to develop different algorithms. Both AI planning and CP,
if appropriately configured, are exact approaches: if the solvers are given enough time, they
will eventually find the optimal solution. In our scenario, however, time is critical and the
solvers are configured to produce a solution within a given time limit, even if the solution

520

Autonomous Target Search with Multiple Coordinated UAVs

is not optimal. Our experiments show that, even when the time available is short, both
AI planning and CP outperform the greedy solution, especially when a limited number of
search assets are at hand. Both AI planning and CP benefit from the finding of a greedy
solution first and using it to guide their search processes. So it is in the integration of
the greedy algorithm with more advanced optimization approaches that we find the best
solutions for the S&T problem.

Our experimental evaluation is extensive. We study the scalability of different versions
of the three optimization techniques as we vary the complexity of the problem, in particular,
the number of the possible maneuvers and the number of the observers that can execute
them. We identify the conditions under which it is preferable to use one approach instead
of the others, in so doing, provide a tool to solve real-world S&T problems in the most
effective and cost-efficient way.

1.1 Contributions of the Paper

With respect to previous work on S&T, the novel contributions of this paper are the fol-
lowing:

• As in previous work (Bernardini et al., 2016), we formulate S&T as a deterministic
combinatorial optimization problem. We expand the existing formulation by consid-
ering search with multiple coordinated observers (Section 2) and we prove several
properties of the objective function, most notably that it is submodular (Section 3).

• Leveraging the submodularity of the objective function, we propose a greedy algorithm
that is very efficient and exhibits strong performance across all the different settings
and problems that we consider (Section 4.1).

• We expand previous work on solving S&T via CP (Bernardini, Fox, Long, & Pia-
centini, 2017b) in three ways (Section 4.2): (i) we consider missions with multiple
UAVs instead of a single observer; (ii) we improve the model by using optional in-
terval variables; and (iii) we use the solution produced by the greedy algorithm to
warm-start the CP model. The last two contributions allow us to find substantially
better solutions more efficiently than the previous CP approach.

• We also expand an earlier formulation of S&T as a planning problem (Bernardini
et al., 2016) to multiple UAVs (Section 4.3) and we exploit the solution provided
by the greedy algorithm to formulate a domain-dependent heuristic that significantly
improves the performance of the planner we use, i.e. popf-tif (Bernardini, Fox, Long,
& Piacentini, 2017a).

• Finally, we present a broad experimental evaluation in simulation where these tech-
niques are compared to each other and against existing solutions appropriately ex-
panded to multiple UAVs (Section 5).

2. The Search and Tracking Problem

We consider the following scenario, originally designed in collaboration with our industrial
partner, BAE Systems (Bernardini et al., 2013). The target moves on a Euclidean 2-

521

Piacentini, Bernardini & Beck

dimensional (2D) space characterized by a road network and has a distant destination that
it wants to reach. The observers are UAVs that can freely move on a 2D plane as we ignore
altitude. The UAVs are tasked with following the target to its destination and they are
equipped with sensors (cameras in our simulation) to detect the position of the target. Due
to the imperfections of the sensors or obstacles in the environment, UAVs can lose sight of
the target. The mission starts with one of the UAVs tracking the target. When the UAV
loses it, for a short period of time (three minutes), the UAV follows the target’s predicted
trajectory. If the UAV does not recapture the target, it enters a search phase to re-locate
the target in collaboration with the other UAVs in the team. In every S&T mission, the
two phases of searching and tracking alternate until the end of the mission (see Figure 1).
We focus on search in this paper.

Plan%Execution

Plan

Plan%request

Planning

Tracking

Target%
found

Planning% task

Target%
not%found

Time%out

End%of%Mission

Start%of%Mission

Target%
in%view

Target%lost

Target%
tracked%to%
destination

Figure 1: Structure of a typical S&T mission.

As in related work (Paterson, Timmons,
& Williams, 2014; Bernardini et al., 2016,
2017b), the UAVs exploit standard flight
patterns to search for the target, in partic-
ular spirals and lawnmowers (see Figure 2).
The spiral pattern is effective for covering
areas of high density road network, espe-
cially in urban or suburban terrain, while
the lawnmower is useful when attempting
to search over an elongated stretch covering
a major road and including some possible
side roads. The advantage of using search
patterns is twofold. From a practical point
of view, search patterns are predictable ma-
neuvers, easily recognizable by pilots and
other flying machines, which facilitates the
use of autonomous vehicles by promoting
trust in autonomy. From a technical point

of view, patterns allow us to model target search as a combinatorial optimization problem
instead of a continuous optimization one, as it has been done traditionally (Stone, 1975).
This approach opens the door to applying combinatorial algorithms to search. The combi-
natorial problem is to find a set of executable patterns that maximizes the probability of
(re)discovering the target while satisfying temporal and resource constraints. We assume
that a control unit on the ground runs those algorithms to identify the best patterns and
then communicates them to the team of UAVs for execution.1

In the rest of this section, we provide a formal definition of the search problem and its
objective function, while in the next section we study properties of this objective function.

1. It would be interesting to explore distributed solutions to our problem. We leave that for future work.

522

Autonomous Target Search with Multiple Coordinated UAVs

Figure 2: The UAVs exploit standard search patterns to search for the target: spirals (left)
and lawnmowers (right).

2.1 Problem Definition

We model the target search as a combinatorial optimization problem: find a set of patterns
in specified locations among a pool of candidates that maximizes a closed-form expression
that approximates the total probability of discovering the target.2

Let O be a set of observers, all with the same flight and sensing capabilities. We assume
that the observers know (i) the road network, (ii) a set of potential destinations D for
the target; and (iii) a set of possible paths Γ that the target might follow to reach the
destinations. Each path γ ∈ Γ is associated with a probability PD(γ) that represents the
initial belief of the observers on the target trajectory and depends on the behavioral model
of the target. For example, if no information on the target motion is available, a uniform
distribution can be used for the paths; if the target has an evasive behavior, the probability
distribution can incorporate information on the different concealment levels of the paths
(Bernardini et al., 2017b).

Let C be a set of search patterns laid over specific locations on the map that the observers
can execute (candidates) and Do be a matrix for every observer o ∈ O, with m+1 positions,
where m is the number of search pattern candidates. Given a matrix Do, position (0, σi) is
the flight time from the initial position of the observer o to the start point of the pattern
σi and position (σi, σj) is the flight time from the end point of the pattern σi to the start
point of the pattern σj . We generate the initial set of patterns C by running a Monte Carlo
simulation (MCS) over the area of operation. In particular, as in previous work (Bernardini
et al., 2017), we consider as our search area a circular sector centred on the target’s last
known position (LKP). The road network is represented as a graph G = 〈V,E〉, built by
discretizing the search area in cells with fixed side-length. The vertexes V correspond to the
cells, while the edges are given by pairs of adjacent cells that are connected by at least one
road. We select a set of paths in the graph from the LKP to the candidate destinations D
(the shortest path and all those paths whose length differs from the shortest path’s length
by a customizable factor that represents the concealment level that the target is assumed to
adopt) and we simulate the target motion with a standard MCS. The MCS identifies points
in the search area that present the highest probability of finding the target at different

2. In previous work (Bernardini et al., 2016), the objective function is a linear combination of the total
probability and the expected time to rediscover the target. Here, we consider only the total probability
because a preliminary experimental analysis that we conducted in simulation shows that adding the
expected time does not change the success rate of finding the target.

523

Piacentini, Bernardini & Beck

points in time. We create candidate patterns that have those points as their centres and
can be executed in appropriate time windows when the target can plausibly be in the areas
covered by those patterns based on its motion model. For more details on the MCS, the
interested reader can consult Appendix A, Bernardini et al. (2017) or Bernardini et al.
(2017b).

Each pattern σ is associated with a duration dσ, which is the time that the UAV takes
to execute that pattern, and a time window, i.e., minimum t−σ and maximum t+σ times at
which the observers can start the execution of the pattern σ. Once a pattern is scheduled
for execution, we call t : C → R the function that returns the exact time t(σ) ∈ [t−σ , t

+
σ]

at which the execution of σ starts. The value of t−σ and t+σ are calculated considering the
distance between the LKP of the target and σ and the minimum and maximum velocity
of the target. Each search pattern σ ∈ C is also associated with a subset Γσ ⊆ Γ called
the set of compatible paths, i.e., the set of paths that the UAV can observe while executing
the pattern σ because they are in its cone of visibility. Finally, we associate a detection
probability φσ to each pattern σ. This is the probability of finding the target in an execution
of the pattern σ conditioned on the target having initially chosen any of the paths in Γσ. The
function φσ encodes both the randomness in the motion of the target and the sensor noise
and is conditioned on the execution of its corresponding pattern σ within the associated
time window.

Note that each candidate in C can be executed more than once. It can be beneficial
to execute a pattern multiple times when it covers an area that carries a high probability
of discovering the target. We can transform the problem to an equivalent version where
each search pattern can be executed at most once, by creating kσ copies of each pattern σ.
The constant kσ indicates the maximum number of times that σ can be executed. For each
pattern σ, kσ can be easily calculated considering its duration, its window of activation

and the number of available observers: kσ = b t+σ−t−σ
dσ+mino∈O,ρ∈C Do(ρ,σ) |O|c. We call C̃ the set

of patterns that we obtain by following this procedure and D̃o the updated travel-time
matrices.

Given a subset Σ = {σ1, . . . , σn} of C̃ and a partition of Σ, P(Σ), with at most |O|
elements, we call observer assignment a function S : O → P(Σ) that assigns an element
of P(Σ) to each observer in O. Given an observer o ∈ O, we call its (possibly empty)
associated partition S(o) a plan for o.

Given a subset Σ = {σ1, . . . , σn} of C̃, we say that Σ is executable if we can find a
function t and an observer assignment S such that, for each observer o ∈ O, if we order the
elements of S(o) according to t, i.e., S(o) = (s1, . . . , sk), where si indicates the ith search
pattern in the sequence S(o), the following two conditions are satisfied:

• for every two consecutive patterns si and si+1 in S(o), with i = 1, . . . , |S(o)| − 1,
t(si+1) ≥ t(si) + dsi + D̃o(si, si+1);

• t(s1) ≥ D̃o(0, s1).

The temporal constraints associated to the executability of a sequence of search patterns
executed by a UAV (e.g., Figure 3) can be encoded in a Simple Temporal Network (STN)
(Dechter, Meiri, & Pearl, 1991), whose consistency can be determined in polynomial time.

524

Autonomous Target Search with Multiple Coordinated UAVs

0 s1 s2 s3
[Do(0, s1),∞] [Do(s1, s2),∞] [Do(s2, s3),∞]

[t−s1 , t
+
s1]

[t−s2 , t
+
s2]

[t−s3 , t
+
s3]

Figure 3: Simple temporal network representing the constraints of a sequence of search
patterns S = (s1, s2, s3) executed by an observer o ∈ O.

Note that, according to our definitions, different observers can execute search patterns
simultaneously and the same pattern can be executed by multiple observers at different
times or at the same time. Also note that the number of observers to use can vary from 1
to |O|.3

We call P (Σ) the total probability of finding the target by executing the set Σ. In
our model, the total probability depends only by the execution of search patterns and
not explicitly on the execution time. Instead, the time-dependency of the target motion is
captured by the pre-computed time windows associated with each search pattern candidate,
which affect the execution order of the search patterns.

Target search can be formally defined as the problem of finding an executable set of

search patterns Σ ∈ 2C̃ that maximizes the total probability P (Σ).

2.2 The Objective Function

As in Bernardini et al. (2016, 2017b), given a set of patterns Σ ∈ 2C̃ and a pattern σ ∈ C̃
that is not already in Σ, we can express the objective function P (Σ) using the following
closed-form expression (see Appendix B for the derivation of all the formulas in this section):

P (Σ ∪ {σ}) = P (Σ) + PΣ∪{σ}∗ · (1− P (Σ))

P (∅) = 0
(1)

This equation gives us a recursive structure to compute P (Σ) and tells us that the proba-
bility of finding the target by executing Σ ∪ {σ} is equal to the sum of the probability of
finding the target at the previous step, i.e., by executing Σ, and the probability of finding
the target by executing the newly added pattern σ provided that the target has not been
discovered earlier, PΣ∪{σ}∗. Given a path γ, let PΣ(γ) be the probability that the target
is following the path γ after the execution of the search patterns in Σ and conditioned on
their failure. The probability PΣ∪{σ}∗ can then be expressed as follows.

PΣ∪{σ}∗ = φσ
∑
γ∈Γσ

PΣ(γ) (2)

3. It might be interesting to find an optimal executable set Σ̂ in C̃, defined as an executable set with a
partition P̂(Σ) that minimizes the number of observers necessary to execute the patterns in Ŝ as well as
that maximizes the total probability P (Σ̂). We leave this as future work.

525

Piacentini, Bernardini & Beck

We consider all the paths γ that are compatible with σ and sum the probabilities that
the target is following the path γ after the execution of the patterns in Σ and conditioned
on their failure, weighting each summand by the probability of detection associated with
σ, φσ. The probability PΣ∪{σ}(γ) that the target is following the path γ conditioned on
the failure of the search patterns in Σ ∪ {σ} can be expressed by using another recursive
equation:

PΣ∪{σ}(γ) =
PΣ(γ) · (1− φσ · 1Γσ(γ))

1− PΣ∪{σ}∗
(3)

P∅(γ) = PD(γ) (4)

where 1 is the indicator function: 1A(x) = 1 if x ∈ A and 0 otherwise.
Equation (4) sets the initial probability of the target following a path γ according to

our initial hypothesis, PD(γ). Once we start executing the patterns, we gain information
about the target: any unsuccessful pattern gives us negative information about which path
the target is following. As expressed in Equation (3), if the observer has failed to recapture
the target when executing a pattern σ from which the path γ is visible, the observers will
decrease their confidence that the target is following γ by a quantity that depends on the
quality of their sensors, represented by the detection probability φσ.

Note that (1) can be rewritten as:

(1− P (Σ ∪ {σ})) = (1− P (Σ)) · (1− PΣ∪{σ}∗) (5)

The recursive definitions of P (Σ) and P (Σ)(γ) can be written as follows.

Proposition 2.1. Given a path γ, let Σ = {σ1, . . . , σn} be a set of search patterns in C̃.
Then:

PΣ(γ) =

P∅(γ) ·
n∏
i=1

(1− φσi · 1Γσi
(γ))

n∏
i=1

(1− P{σ1,··· ,σi}∗)

(6)

1− P (Σ) =

n∏
i=1

(1− P{σ1,··· ,σi}∗) (7)

2.3 Example

We now consider an illustrative example of the problem.

Example 2.1. Figure 4 shows a problem instance with one observer, three destinations d1,
d2 and d3, and a path for each destination γ1, γ2, γ3 with initial probability PD(γi) = 1

3
and five search pattern candidates σi, ∀i = 1, . . . , 5. The total detection probabilities and
activation time windows of each search pattern are shown in the figure. We assume that
the duration of each search pattern is 99 and that the travel time between every position is
1, hence each search pattern can be executed only once.

If we want to maximize the total probability of finding the target, the optimal sequence is
S∗ = (σ5, σ4, σ3), producing a total probability of P (S∗) = 2

3 . This value is calculated using
the recursive Equation (1): when executing the first search pattern σ5, the probability that

526

Autonomous Target Search with Multiple Coordinated UAVs

σ1

φσ1 = 0.05
t−σ1

= 1
t+σ1

= 100

σ2

φσ2 = 0.2
t−σ2

= 1
t+σ2

= 200

σ5

φσ5 = 0.4
t−σ5

= 1
t+σ5

= 200

d3

σ3

φσ3 = 0.7
t−σ3

= 101
t+σ3

= 300

σ4

φσ4 = 0.9
t−σ4

= 101
t+σ4

= 300

d1

d2

Figure 4: Simple scenario for the S&T problem with one observer.

the target has not been discovered earlier is Pσ5∗ = φσ5P∅(γ3) = 2
15 . The total probability

of finding the target after the execution of σ5 is therefore P (σ5) = 2
15 . For the next

iteration, we update the probabilities that the target is following each path. For the path

γ3, which is compatible with σ5, the probability decreases: Pσ5(γ3) =
P∅(γ3)(1−φσ5)

1−Pσ5∗
= 3

13 ,

while for the other two paths, the probability increases: Pσ5(γ1) = Pσ5(γ2) = P∅(γ1)
1−Pσ5∗

= 5
13 .

We can now compute the probability of finding the target when executing σ4 after σ5:
Pσ5,σ4∗ = φσ4Pσ5(γ2) = 9

26 and P (σ5, σ4) = P (σ5) + Pσ5,σ4∗ · (1 − P (σ5)) = 13
30 . Similarly,

for the final step, we update the probability for each path Pσ5,σ4(γ1) = 10
17 , Pσ5,σ4(γ2) = 1

17
and Pσ5,σ4(γ3) = 6

17 . The probability of finding the target when executing σ3 after σ5

and σ4 is Pσ5,σ4,σ3∗ = φσ3Pσ5,σ4(γ1) = 7
17 and the total probability is P (σ5, σ4, σ3) =

P (σ5, σ4) + Pσ5,σ4,σ3∗ · (1− P (σ5, σ4)) = 2
3 .

3. Properties of the Objective Function

In this section, we analyze the properties of the objective function P . We first observe
that, despite having a recursive definition, the total probability of finding the target is
defined over sets Σ of search patterns (i.e., it is a set function) and so does not depend
on the order of the elements that appear in Σ. This property comes from our definition
of total probability, which abstracts the notion of time and depends only on whether or
not we executed a particular combination of search patterns. In fact, the dependency on
time of the candidate search patterns is pre-computed thanks to the notion of time window
attached to each pattern so that, since a pattern is located both in space and in time, the
probabilities for the target position can be assumed to depend only on the search patterns
executed so far (and not on the exact time the pattern is executed). To show this property
we can simply expand the recursive definition of total probability and show that all the
terms are commutative.

Proposition 3.1. The total probability P (Σ) is a set function.

527

Piacentini, Bernardini & Beck

Proof. To see this more directly, given a set Σ = {σ1, . . . , σn}, it is sufficient to write the
value of P (Σ) as follows:

P ({σ1, . . . , σn}) =P ({σ1, . . . , σn−1}) + P{σ1,...,σn}∗(1− P ({σ1, . . . , σn−1}))

=P ({σ1, . . . , σn−1}) + P{σ1,...,σn}∗

n−1∏
j=1

(1− P{σ1,...,σj}∗)

=

n∑
i=1

P ({σ1, . . . , σi})
n−1∏
j=1

(1− P{σ1,...,σj}∗)

=
n∑
i=1

φσi
∑
γ∈Γ

P{σ1,...,σi−1}(γ)1Γσi

n−1∏
j=1

(1− P{σ1,...,σj}∗)

=
∑
γ∈Γ

P∅(γ)
n∑
i=1

φσi1Γσi

i−1∏
j=1

(1− φj1Γσj
)

=
∑
γ∈Γ

P∅(γ)

∑
s∈2Σ

∏
σi∈s

(−1)2|s|+1φσi1Γσi

 (8)

Clearly, Equation (8) does not depend on the order of the elements in Σ.

Since performing more search patterns can only increase our chance to observe the
target, we show that our objective function is non-decreasing.

Proposition 3.2. The total probability function P (Σ) is a non-decreasing function.

Proof. Let Σ ⊂ C̃, σ ∈ C̃ respectively be a set of search patterns and a single search pattern,
with σ 6∈ Σ. We show that:

P (Σ ∪ {σ})− P (Σ) = PΣ∪{σ}∗(1− P (Σ)) ≥ 0

This is satisfied because PΣ∪{σ}∗ ≥ 0, P (Σ) ≤ 1.

We now prove that the objective function is submodular. In mathematical optimiza-
tion, problems characterized by monotonic submodular set functions have been extensively
studied and it has been proven that greedy algorithms are guaranteed to produce solutions
close to optimality (Nemhauser & Wolsey, 1978).

Let N be a finite set and f : 2N → R be a set function that assigns each subset H ⊆ N
a value f(H). The function f is called submodular if for every X,Y ⊆ N , with X ⊆ Y and
every x ∈ N \ Y , we have that f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y). Intuitively, if f is
a utility function, submodularity captures the concept that the marginal utility of adding
x to a set X is at least as high as the utility of adding it to a superset Y .

Proposition 3.3. Given a set Σ ⊆ C̃, the total probability function P (Σ) is submodular.

Proof. Let Σ ⊆ C̃, σ ∈ C̃ respectively be a set of search patterns and a single search pattern,
with σ 6∈ Σ. Consider Ψ ⊆ Σ such that Ψ = {σf(1), . . . , σf(k)}, with k ≤ n and f : N→ N a
monotonic function with f(k) ≤ n, then:

P (Ψ ∪ {σ})− P (Ψ) ≥ P (Σ ∪ {σ})− P (Σ) (9)

528

Autonomous Target Search with Multiple Coordinated UAVs

Considering the r.h.s. of the inequality and using Equation (1) first, then Equation (32)
and finally Equations (6) and (7), we obtain:

P (Σ ∪ {σ})− P (Σ)

= PΣ∪{σ}∗(1− P (Σ))

= φσ
∑
γ∈Γσ

PΣ(γ)(1− P (Σ))

= φσ ·
∑
γ∈Γσ

P∅(γ) ·
n∏
i=1

(1− φσi · 1Γσi
(γ))

n∏
i=1

(1− P{σ1,··· ,σi}∗)

(1− P (∅))
n∏
i=1

(1− P{σ1,··· ,σi}∗)

= φσ(1− P (∅))
∑
γ∈Γσ

[
P∅(γ) ·

n∏
i=1

(1− φσi · 1Γσi
(γ))

]
(10)

We now consider the l.h.s. of the inequality. We can apply the same line of reasoning
applied to the r.h.s:

P (Ψ ∪ {σ})− P (Ψ)

= φσ(1− P (∅))
∑
γ∈Γσ

[
P∅(γ) ·

k∏
i=1

(1− φσf(i)
· 1Γσf(i)

(γ))

]
(11)

Let us now compare Equations (10) and (11). First, we observe that every term in these
equations is non-negative. The only difference is the presence in Equation (10) of the factors∏n
i=1(1− φσi ·1Γσi

(γ)), such that i 6= f(j),∀j = 1, . . . , k. Since this term is less or equal to
one, the result follows.

4. Solution Approaches

In this section, we describe three different solution approaches for the search problem de-
scribed in Section 2. In particular, given the pattern candidates C̃, the set of possible paths
Γ, the observers O with their associated distance matrices D̃o for each o ∈ O, we want
to find a set Σ of search patterns such that Σ is executable and maximizes the objective
function P . Note that for all approaches, the sequence is calculated offline: during the com-
putation of the solution, the solver adds a new pattern to the plan under the assumption
that the previous pattern has failed. If a pattern had been successful, the sequence becomes
irrelevant as the UAV switches back to tracking. Failed patterns give the planner (negative)
information about the position of the target, which is reflected in the updated probabilities.
At execution time, the search patterns in the sequence are executed by the UAVs until the
target is found.

Given the submodularity of the objective function, we first explore a greedy algorithm
that incrementally builds the set Σ by choosing, at each step, the search pattern that yields
the highest increment for the objective function and by assigning it to an observer that is

529

Piacentini, Bernardini & Beck

free to execute it. We then consider two theoretically complete approaches by modelling the
search problem, respectively, as a constraint program and an AI planning task. For both
these approaches, we consider how to take advantage of the greedy solution to improve the
performance of the solvers.

4.1 Greedy Algorithms

Greedy algorithms perform very well when used to solve problems that involve the maxi-
mization of a submodular non-decreasing function (Lin & Bilmes, 2010; Krause & Guestrin,
2011; Alon, Gamzu, & Tennenholtz, 2012; Jawaid & Smith, 2015; Parambath, Vijayaku-
mar, & Chawla, 2018). In fact, such greedy algorithms have a theoretical guarantee to find
(1− 1/e)-approximations. In our problem, however, this guarantee is not ensured because,
although the objective function is non-decreasing and submodular, a solution must satisfy
the temporal constraints associated with the patterns. In our experimental evaluation, we
study the performance of the greedy algorithm and analyze how imposing executability
impacts its performance.

Suppose that the set of search pattern candidates C̃, the set of observers O, the set of
possible destinations Γ, and the set of distance matrices D = {D̃o,∀o ∈ O} are given. The
greedy procedure, outlined in Algorithm 1, proceeds iteratively to construct a set of patterns
according to the recursive structure of Equation (1). The algorithm starts from an empty set
(Algorithm 1: line 2) and iteratively adds a search pattern to the set if it can find an observer
that can execute the pattern considering the temporal constraints (Algorithm 1: lines 7-14).
The assignment algorithm (Algorithm 2) runs through all the possible observers and, for
each observer (Algorithm 2: line 2), iterates over the sequence of the search patterns that
are already assigned to it in the time window associated with the new pattern (Algorithm
2: line 3). The algorithm tries to insert the new pattern between each consecutive pair
of patterns by checking the consistency of the temporal constraints imposed by the new
sequence (Algorithm 2: lines 5-6). These temporal constraints can be checked in linear
time with respect to the number of elements in the sequence, as shown in the procedure
CheckConsistency. For every element si of a sequence S = (s1, . . . , si, . . . , sn), the
procedure assigns the exact start time τ(si) to si by taking the maximum time between the
sum of the end time of si−1 and the travel time between si−1 and si and the minimum time
t−si (Algorithm 2: lines 9-12). If the calculated time τ(si) is greater than t+si , the pattern
cannot be executed and the sequence is marked as not-executable (Algorithm 2: line 11).
The greedy algorithm returns the set of patterns Σ to be executed and their associated
observers. If we group the patterns associated with each observer into sets, they clearly
form a partition of Σ.

We also devise an alternative version of the assignment algorithm, which we call Right
Assignment Algorithm. For each observer, we add the new candidate search pattern at the
end of sequence built so far instead of iterating over all possible positions (Algorithm 2:
line 3) in the sequence. The greedy algorithm with this variation of the assignment problem
can be also interpreted as an online algorithm, where the search pattern with the highest
reward is assigned to one of the available observers.

To see the difference between the two assignment algorithms, consider the problem in
Example 2.1. Let us start with Algorithm 1 in combination with the Right Assignment

530

Autonomous Target Search with Multiple Coordinated UAVs

Algorithm 1 Greedy Algorithm

1: procedure Greedy(C̃,O,Γ, D)
2: S(o)← ∅ ∀o ∈ O
3: return UpdateSequence(C̃,O,Γ, D, ∅, S)

4: procedure UpdateSequence(C̃,O,Γ, D,Σ, S)
5: for i = 0, ...,maxσ∈C(t

+
σ + dσ)/minσ∈C(dσ)|O| do

6: δ ← 0
7: for σ ∈ C̃ \ Σ do
8: ∆← P (Σ ∪ {σ})− P (Σ)
9: if ∆ ≥ δ then

10: (S∗, o∗)← Assignment(O, C̃, D, σ, S)
11: if (S∗, o∗) 6= (∅, ∅) then
12: σ∗ ← σ
13: δ ← ∆
14: (S∗, o∗)← (S, o)

15: if δ ≤ 0 then return Σ, S
16: else
17: Σ← Σ ∪ {σbest}
18: S(o∗)← S∗

return Σ, S

Algorithm 2 Assignment Algorithm

1: procedure Assignment(O, C̃, D, σ, S)
2: for o ∈ O do
3: for i = 1, . . . , |So| do
4: S′o ← (s1, . . . , si, σ, si+1, . . . s|So|)

5: if CheckConsistency(S′o, C̃, Do) then
6: (S∗, o∗)← (σ, S′o, o)
7: return (S∗, o∗)

return (S∗, o∗)

8: procedure CheckConsistency(S, C̃, Do)
9: t← max(Ds0,s1 , t

−
s1)

10: for i = 1 . . . |S| − 1 do
11: if t > t+si then return False

12: t← max(t+ dsi +Dsi,si+1 , t
−
si+1

)
return t ≤ t+s|S|

Algorithm that adds search patterns at the end of the sequence only. The search pattern
returning the highest probability of finding the target is σ4, which becomes the first element
of the sequence. The observer will then execute σ3 (the second best pattern), after which,
due to the temporal constraints, it cannot execute any other patterns. The total probability
of this solution is P (σ4, σ3) = 8

15 . However, we can improve on this solution by using the
standard Assignment Algorithm (Algorithm 2). After choosing σ4 and σ3, Algorithm 2

531

Piacentini, Bernardini & Beck

selects search pattern σ5 and positions it at the beginning of the sequence, when it can be
executed. In this way, it finds the optimal solution for this problem.

We now show, with a counterexample, that the quality of the solutions provided by the
greedy algorithm can be lower than (1− 1/e) of the optimal solution.

Example 4.1. Consider a set of candidate search patterns C = {σ1, σ2, σ3, σ4}, a set of
paths Γ = {γ1, γ2, γ3, γ4} and a single observer. The parameters associated with each search
pattern are reported in Table 1, where Do(σ, ρ) is an element of the symmetric distance
matrix and ρ is either 0 or another search pattern different than σ. We assume a uniform
initial probability distribution for the every path.

σ Γσ φσ [t−σ , t
+
σ] dσ Do(σ, ρ) Do(σ, σ)

σ1 {γ1} 1 [10, 11] 2 10 2
σ2 {γ2} 0.8 [1, 2] 2 1 2
σ3 {γ3} 0.8 [4, 5] 2 1 2
σ4 {γ4} 0.8 [7, 8] 2 1 2

Table 1: Search pattern candidates.

In Example 4.1, search pattern σ1 is associated with the highest detection probability,
but it is located further away from the other search patterns. The optimal solution is the
sequence Σ∗ = (σ2, σ3, σ4), which yields a total probability of P (Σ∗) = 3

5 . The greedy
algorithm is initially agnostic to the temporal constraints and selects σ1, which will be
execution at time 10. No further search patterns can be inserted in the sequence, as none
of them can be executed before nor after σ1. The solution ΣG = {σ1} found by the greedy
algorithm has a total probability of P (ΣG) = 1

4 . Clearly, P (ΣG) < (1− 1/e)P (Σ∗).

4.2 A Constraint Programming Approach

Constraint Programming (CP) is a technique to solve combinatorial problems that involve
decision variables subject to a set of constraints. Constraint solvers explore the solution
space systematically by interleaving search and inference until a solution is found. CP
has been successfully applied to many different domains to solve discrete optimization and
scheduling problems (Weil, Heus, Francois, & Poujade, 1995; Beck, Davenport, Davis, &
Fox, 1998; Baptiste, Le Pape, & Nuijten, 2001; Harjunkoski & Grossmann, 2002; Rodriguez,
2007), as well as robot task planning problems (Booth, Nejat, & Beck, 2016a; Booth, Tran,
Nejat, & Beck, 2016b; Tran, Vaquero, Nejat, & Beck, 2017). Target search lends itself well
to a CP formulation, given the combinatorial nature of the problem and the presence of the
temporal constraints.

A CP model for problems with a single observer was proposed by Bernardini et al.
(2017b). The model discretizes time into a set of time points and uses time-indexed binary
variables for each search pattern indicating whether the search pattern is being executed
at a time point. Bernardini et al. (2017b) use a coarse time discretization because, if
the discretization is too fine, the number of variables becomes very large, and the solver
struggles to find a solution. A coarse discretization, however, could make the representation
of the temporal constraints inaccurate, possibly resulting in some of the search patterns in
the solution not being executable.

532

Autonomous Target Search with Multiple Coordinated UAVs

In this work, we propose a new CP model for the target search problem that overcomes
the limits of the previous model. Our new model is able to handle multiple observers and
exploits optional interval variables to represent the execution of search patterns, improving
accuracy and scalability. We start in Section 4.2.1 with a generalization of the model
presented in the work by Bernardini et al. (2017b) to multiple observers, which will be
useful for an experimental comparison between the different models. We then describe our
new model in Sections 4.2.2.

4.2.1 Extended Time-discretized CP Model

We extend the CP model proposed by Bernardini et al. (2017b) to multiple observers,
as shown in Figure 5. The model requires the discretization of time into a set of τ time
points T = {t0, . . . , tτ}, where tτ = dmaxσ∈C(t

+
σ + dσ)/∆e and ∆ is the discretization

granularity. A binary variable zσ,t,o = {0, 1} for every σ ∈ C ∪ {σ0}, where σ0 is a dummy
node representing the initial position of the observers, o ∈ O and t ∈ T indicates if a
pattern σ starts at time point t. In addition, the continuous variables Pt, ∀t ∈ T are
used to indicate the total probability of finding the target at time point t; P ∗t , ∀i ∈ T
indicate the probability of finding the target when executing a search pattern at time point
t provided that the target has not been discovered earlier, Pt,γ ∀γ ∈ Γ, ∀t ∈ T to indicate
the probability that the target is following path γ at time point t.

The model finds the values of zσ,t,o, ∀ σ ∈ C, ∀t ∈ T , ∀o ∈ O such that the weighted
sum of the total probability in the last time point tτ is maximized and is subject to the
following constraints (see Figure 5): Constraint (13) ensures that only one pattern at the
time can be executed by each observer, while Constraint (14) indicates that a pattern can
be executed only within its time window. Two patterns σ and ρ can be performed one after
the other only if the sum of the time needed to execute σ and the time needed to reach ρ has
elapsed, as shown by Constraint (15). Constraints (16)-(18) maintain the total probability
in order to calculate the objective function. It should be noted that if no search pattern is
started at a given time point, the total probability does not change. Constraints (19)-(22)
represent the initial state.

This model does not require the explicit representation of possible repeated search pat-
terns: each element in C can be potentially executed multiple times by every observer,
provided that the temporal Constraints (14)-(15) are satisfied.

4.2.2 CP Model based on Optional Interval Variables

In our new model, to limit the number of variables necessary to represent the search problem,
we use optional interval variables, which allow us to avoid time-indexing (Laborie & Rogerie,
2008; Laborie, 2009). Optional interval variables have been successfully used in many
scheduling applications (Booth et al., 2016a; Tran et al., 2017; Laborie & Messaoudi, 2017)
to represent tasks. They are variables that encode three quantities: whether or not an
activity is executed, the start time and the end time of the activity. More formally, optional
interval variables have domains of the form {⊥} ∪ {[s, e) s.t. s, e ∈ Z, s < e}, where ⊥
indicates that the variable is not present in the solution, while s and e are the start and
the end points of the interval. Associated with these variables, there are several functions
and constraints, for which efficient filtering algorithms have been developed. Constraints are

533

Piacentini, Bernardini & Beck

max Ptτ (12)∑
σ∈C

zσ,t,o ≤ 1 ∀t ∈ T , ∀o ∈ O (13)

zσ,t,o = 0 ∀σ ∈ C, ∀o ∈ O, ∀t ∈ T |t < t−σ ∧ t ≥ t+σ (14)

zσ,t,o +

t+(dσ+Doσ,ρ)/∆∑
i=t

zρ,i,o ≤ 1 ∀σ, ρ ∈ C, ∀o ∈ O,∀t ∈ T (15)

P ∗t =
∑
σ∈C

∑
γ∈Γ

∑
o∈O

(Pγ,t−1φσ1Γσ) zσ,t,o ∀t ∈ T \ {t0} (16)

Pγ,t = Pγ,t−1

(
1−

∑
σ∈C

∑
o∈O

(
1−

1− φσ1Γσj

1− P ∗t

)
zσ,t,o

)
∀t ∈ T \ {t0}, γ ∈ Γ (17)

Pt = Pt−1 +
∑
σ∈C

P ∗t (1− Pt−1) zσ,t,o ∀t ∈ T \ {t0} (18)

zσ0,0,o = 1 ∀o ∈ O (19)

P0 = 0 (20)

P0,γ = PD(γ) ∀γ ∈ Γ (21)

P ∗0 = 0 (22)

Figure 5: Time-indexed CP model for the target search problem extending the model of
Bernardini et al. (2017b) to multiple observers.

divided into logical, temporal and hybrid constraints. Logical constraints express conditions
on the executions of interval variables, while temporal constraints involve the start and
the end time of the variables. Hybrid constraints are constraints that combine both the
logical and the temporal aspect of the variables. An example of a hybrid constraint is
noOverlap(x0, . . . , xn, D). This constraint is set over the interval variables {x0, . . . , xn} and
a distance matrix D that enforces that the present intervals are pairwise non-overlapping
and that a minimal distance Dxi,xi+1 between the end and the start of two consecutive
present interval variables, xi, xi+1, is respected. Figure 6 shows an example of a noOverlap

constraint imposed to three interval variables x1, x2, x3, which distance matrix Dxi,xj =
1,∀i, j = 1, 2, 3.

A key observation in our CP formulation is that the total probability does not depend
on the order of the execution of the search patterns, and therefore, to update its value, we
can choose an arbitrary order and use the recursive definition in Equation (1).

Given the problem defined in Section 2 and a set of patterns C̃ ∪ {σ0}, where σ0 is
a dummy node representing the initial position of the observers, we create an arbitrary
sequence Σ containing |O| copies of each search pattern and beginning with σ0. We associate
a search pattern σi ∈ C̃ and an observer oi ∈ O to every element i ∈ Σ. The decision
variables are: (i) optional interval variables tσ,o, present if the search pattern σ ∈ C̃ ∪ {σ0}

534

Autonomous Target Search with Multiple Coordinated UAVs

x1
x2

x3

0 1 t

Figure 6: noOverlap constraint on three interval variables x1, x2, x3. Variable x1 can start
from 0 and end before 6 and has a duration of 4 while x2 and x3 can start after
1, end before 13 and have duration 2. The constraint enforces that none of the
intervals overlap in time. By convention, interval variables are half-open: closed
at their start times, open at their end times.

is executed by the observer o ∈ O; (ii) continuous variables Pi, ∀i ∈ Σ, which indicate the
total probability of finding the target after the execution of the ith element of Σ; (iii) P ∗i ,
∀i ∈ Σ, which indicate the probability of finding the target by executing the pattern at step
i provided that the target has not been discovered earlier; and (iv) Pi,γ ∀γ ∈ Γ, ∀i ∈ Σ,
which indicate the probability that the target is following path γ after the ith element of Σ.

Besides the noOverlap constraint, we use the following functions: Length(x) is a func-
tion returning the length of the interval x, if the interval is present; Pres(x) is a function
that returns a boolean value that indicates whether the variable x is present or not.

The CP model is defined in Figure 7. Constraint (24) models the travel time between
two consecutive search patterns executed by the same observer, while Constraint (25) sets
the length of every search pattern. Constraints (26)-(28) update the total probabilities
recursively, Constraint (29) sets the initial position of the observers and Constraints (20)-
(22) set the initial values of the variables representing the probabilities.

4.2.3 Exploiting the Submodularity of the Objective Function

To exploit submodularity, we warm start the CP solver with a greedy solution. Warm start
is a procedure that exploits a known solution by using it as a starting point of another
algorithm. The warm-start solution can be used by a CP solver to impose a lower bound
on the quality of the solution, allowing additional inference and heuristic guidance of the
search (Beck, 2007). Details on how the warm-start is used inside CP solvers largely depend
on the implementation of the solver and they are opaque to the final user (Laborie, Refalo,
& Shaw, 2013).

4.3 A Planning Approach

In formulating and solving the search problem described in Section 2 as a planning task,
we build on the planning model for a single observer presented in the work by Bernardini
et al. (2017b) and extend it to handle a team of UAVs. This extension is straightforward,
essentially involving the addition of a parameter to each action in the domain that indicates
which UAV will execute the action and the enumeration of the available UAVs in the initial

535

Piacentini, Bernardini & Beck

maxP|Σ| (23)

s.t.noOverlap(tσ0,o, tσ1,o, ..., tσ|C̃|,o;D
o) ∀o ∈ O (24)

Length(tσ,o) = dσ ∀σ ∈ C̃,∀o ∈ O (25)

P ∗i =
∑
γ∈Γ

(
Pi,γφσ1Γσi

)
∀i ∈ Σ \ {σ0} (26)

Pi,γ = Pi−1,γ

(
1−

(
1−

1− φσ1Γσi

1− P ∗i

)
Pres(tσi,oi)

)
∀i ∈ Σ \ {σ0}, ∀γ ∈ Γ (27)

Pi = Pi−1 + P ∗i (1− Pi−1) Pres(tσi,oi) ∀i ∈ Σ \ {σ0} (28)

Pres(tσ0,o) = 1 ∀o ∈ O (29)

Constraints (20)-(22)

Figure 7: CP Model based on optional interval variables for the target search problem.

state specification. All the other components of the planning system remain unaltered,
demonstrating the benefits of using general-purpose solvers: when the task at hand changes,
only the model needs to be updated, not the algorithms. More significantly, based on our
recognition of the submodularity of the objective function, we integrate the greedy heuristic
as a planning heuristic.

The PDDL (Fox & Long, 2003) model that we use presents a set of objects that cor-
responds to the main symbols in the mathematical formulation in Section 2: the search
patterns, the paths that the target might follow to reach its destination, the relevant way-
points (start and end points of the patterns as well as the last known position of the target)
and the UAVs. We use functions to keep track of the total probability and the path prob-
abilities, both at the current step (respectively, P (Σ) and PΣ(γ)) and when the current
plan is concatenated with a new pattern (respectively, P (Σ ∪ σ) and PΣ∪{σ}(γ)). We have
a fly action, which corresponds to a UAV going from one point in space to another and
one action for each search pattern (doPattern). All these actions have a parameter that
indicates which UAV is executing them. The conditions of the actions that represent search
patterns check that the UAV is ready at the entry point of the pattern to execute it and the
pattern is active, i.e., the associated time window has started. The effects move the UAV
from the entry point to the exit point of the pattern and, crucially, update the functions
corresponding to probabilities according to Equations (1)-(4). The full PDDL domain is
presented in Appendix C.

The initial state of the planning task contains information regarding all the available
UAVs, the relevant points in space, the paths that the target might follow to arrive at
its destination and the activation windows of each pattern, which are specified by using
timed initial literals (TIL). The objective of the planning task is to maximize the objective
function P , which is expressed in the metric of the planning task.

536

Autonomous Target Search with Multiple Coordinated UAVs

We use the planner popf-tif (Piacentini, Alimisis, Fox, & Long, 2015) to build plans
for the UAVs. popf-tif is based on the partial order temporal planner popf2 (Coles et al.,
2010) and uses a cost-improving search: it finds the first plan and then improves on the first
solution while time is available. Since the PDDL model for the search problem involves non-
linear mathematical calculations, we combine popf-tif with an external solver to calculate
Equations (1)-(4) at each iteration based on the approach described by Bernardini et al.
(2017a).

4.3.1 Exploiting the Submodularity of the Objective Function

The planner popf-tif relies on a greedy best-first search (GBFS) algorithm (Doran &
Michie, 1966), where the heuristic is calculated as the length of the relaxed plan built from
the Temporal Relaxed Planning Graph (TRPG) (Smith & Weld, 1997; Coles, Fox, Halsey,
Long, & Smith, 2009; Coles, Coles, Fox, & Long, 2009; Coles et al., 2010). This heuristic is
not particularly effective in our domain. In fact, until a first solution is found, the heuristic
function is completely insensitive to the objective function of the problem, as the TRPG
tries to find the shortest relaxed plan that satisfies the goal conditions, which in our case
corresponds to the addition of a single search pattern in the plan. After a feasible solution
is found, a further goal condition is imposed requiring a new goal state to have a metric
function strictly greater than the best metric found so far. However, the heuristic function
still favours goal states that are achieved by fewer steps, rather than goal states with a
higher objective function.

To improve the performance of the planner, we exploit the submodularity of the objective
function and propose a domain-dependent heuristic based on the greedy solution that takes
into account the objective function of the problem.

Starting from the partial plan π necessary to achieve a state, Algorithm 3 calculates
the remaining part of the plan π̂, based on the sequence of search patterns that the greedy
algorithm would produce (Algorithm 1) and returns the heuristic value of the state and
the number of actions in π̂. We use the symbols ` and a to indicate the start and the
end of a durative action, respectively. The heuristic function of the state is calculated as
the difference between 1 (the maximum theoretical value of a solution) and the objective
value of the partial plan π ∪ π̂. We use the difference because our greedy best-first-search
algorithm expands states with lower heuristic value, but we have a maximization problem.
The number of actions in π̂ is used to break ties when states have the same heuristic value.

The heuristic is not admissible, hence the optimality of the solutions can be guaranteed
only if the search explores the entire space. However, since the heuristic function is based
on feasible sequences, the first plan found by the algorithm, in which no more candidates
can be inserted, is guaranteed to be at least as good as the solution found by the greedy
algorithm.

More formally, let Z be a finite set, 2(Z) the set of all possible sequences constructed
over Z and C a set of constraints over the elements in Z, and f : 2(Z) → R a sequence
function that we want optimize. We call a sequence S ∈ 2(Z) a maximal sequence if @z ∈ Z
such that S ∪ {z} satisfies all the constraints in C. We define the state transition graph
G(Z, C) = 〈S, T 〉 where the set of states S is the set of all the feasible sequences of Z (i.e. the
sequences in 2(Z) that satisfy C) and the transitions T are the concatenation operations

537

Piacentini, Bernardini & Beck

Algorithm 3 Greedy Algorithm-Based Heuristic

1: procedure heuristic(C,O,Γ, D, π)
2: Σ← ∅
3: S(o)← ∅ ∀o ∈ O
4: for a ∈ π do
5: if a is (fly o σfrom σto) then
6: Σ← Σ ∪ σto
7: S(o)← S(o) ∪ σto
8: Σ̂, S ← UpdateSequence(C,O,Γ, D,Σ, S)
9: t← 0

10: for σ ∈ Σ̂ do
11: o← o s.t. σ ∈ S(o)
12: if (fly o σo σ) not in π then π̂ ← π̂∪(fly o σo σ)

13: if (doPattern o σ)` not in π then π̂ ← π̂∪(doPattern o σ)`
14: if (doPattern o σ)a not in π then π̂ ← π̂∪(doPattern o σ)a
15: if t−σ > t then t← t−σ
16: σo ← σ
17: for TIL ≤ t do
18: if TIL not in π then π̂ ← π̂ ∪ TIL
19: return 1− P (Σ̂), |π̂|

of one element z ∈ Z to a sequence S ∈ 2(Z). We denote with AZ,C : 2(Z) → 2(Z)

an algorithm that produces a maximal sequence S̄ from a subsequence S ∈ 2(Z), such
that S̄ = S ∪ S′. In addition, we required that AZ,C produces a consistent solution, i.e.
f(AZ,C(S ∪ {σ}) ≤ f(AZ,C(S)), for σ s.t. σ ∈ S′ where AZ,C(S) = S ∪ S′.

Proposition 4.1. Let Z be a finite set, C a set of constraints over the elements in Z,
f a sequence function and AZ,C a consistent algorithm that produces maximal sequences.
Denote with S̄ ∈ 2(Z) the first maximal sequence found by a GBFS algorithm with evaluation
function f ◦ AZ,C on the state transition graph G(Z, C) starting from an empty sequence.
We have that: f(S̄) ≤ f(AZ,C(∅)).4

Proof. The proposition follows from the fact that AZ,C produces a maximal sequence, which
by definition is a feasible sequence. By contradiction, assume that f(S̄) > f(AZ,C(∅)). This
means that all the sequences with a lower f -value expanded before S̄ cannot be further ex-
tended, contradicting the hypothesis that S̄ is the first maximal sequence found. Moreover,
because AZ,C is consistent, GBFS is guaranteed to terminate.

While this general proposition is simple, we are not aware of any other work in heuristic
search planning that uses heuristics based on feasible solutions.

Lemma 4.1. Given the planning task of a S&T problem defined by C,O,Γ, D, the first
maximal sequence of actions found by GBFS with heuristic function given by Algorithm 3

4. GBFS prioritizes states with lower value of the evaluation function.

538

Autonomous Target Search with Multiple Coordinated UAVs

has an objective function value that is greater or equal than the objective function of the
greedy algorithm (Algorithm 1).

Proof. First, we note that the heuristic value is 1 − P (S). We need to show that Algo-
rithm 1 produces maximal sequence and it is consistent. The algorithm produces maximal
sequences by definition, as it terminates when no more search patterns can be inserted
without violating temporal constraints. In principle, it is not consistent since the observer
assignment is not optimal. However, we can force consistency by caching the solutions
of sequences explored by GBFS: when GBFS adds a search pattern σ we simply take the
minimum between f(AZ,C(S)) and f(AZ,C(S ∪ {σ})) as heuristic value.

We show the different behavior of the GBFS algorithm when using the default TRPG
heuristic and the solution of the greedy algorithm, using Example 2.1. Figure 8a shows that
the TRPG heuristic value at the root is 4: the number of actions necessary to add σ1 in the
final solution (fly σ1, TIL0, doPattern σ1 `, doPattern σ1 a). Before adding a new search
pattern after σ1, the search algorithm expands states starting with alternative patterns,
whose heuristic value is now higher due to the additional actions that the TRPG inserts
to achieve a better value of the metric function. It should be noted that the effects of the
action on the metric function are calculated by the external solver and during the heuristic
calculation such effects are approximated (Bernardini et al., 2017a). The search continues
adding search patterns to σ1 and only investigating other patterns when it cannot append
anything to the initial sequence. In contrast, as seen in Figure 8b, our greedy heuristic
identifies that adding σ5 instead of σ1 could lead to a state with a better objective value,
therefore it allows the search algorithm to achieve the solution in fewer states.

4.3.2 Implementation Details

Instead of the greedy algorithm presented in Section 4.1, which is quadratic in the number
of search pattern candidates, we consider an accelerated (linear) version of it, following the
procedure presented by Minoux (1978) (Algorithm 4). The paper shows that the two greedy
algorithms produce the same results when the objective function is submodular. As for the
Algorithm 1, we adapt the original algorithm to solve the observer assignment problem and
to exclude search patterns that cannot be executed (Algorithm 4: lines 11-17).

5. Experimental Evaluation

In this section, we present an empirical evaluation of the proposed approaches. We omit the
Partially Observable Markov Decision Process (POMDP) approach considered in previous
work on single observer because we have empirically shown that it is outperformed by the
CP and planning approaches (Bernardini et al., 2017b). We do not expect the POMDP
technique to perform better on problems with multiple UAVs as the action space becomes
even larger.

First, we consider a set of toy problems and vary the number of search patterns in order
to investigate the scaling behavior of different solution approaches. Then, we implement all
the approaches in a S&T simulator to evaluate their impact in a realistic scenario.

We run all the experiments on a Xeon 3.5GHz processor machine running
Mac OS X Sierra. All solvers are given one minute to generate the plans. Although this

539

Piacentini, Bernardini & Beck

0

−1

256

5

256

256

4

103 102 103103 102 102 102 103

−1 256256 256

103

1 256

256

4

33 44 33

1

2

1

4

257

5

0

−1

−1

102

54 45

102

5

0

4

−1

257

5−1−1

256

TIL0

TIL1

fly σ4

doPattern σ2 `

fly σ5

fly σ5fly σ2

TIL2

fly σ2

TIL1

fly σ2TIL0

fly σ1

doPattern σ1 a

fly σ4TIL1

fly σ1

TIL0

TIL1

doPattern σ2 a

doPattern σ1 `

fly σ3TIL1

fly σ5

TIL0 fly σ3

TIL1

fly σ4

TIL1

TIL1

fly σ1

TIL2

fly σ1

doPattern σ3 a

fly σ4

TIL1

fly σ3

doPattern σ2 `

fly σ2

fly σ4

TIL2

doPattern σ3 `

TIL1fly σ3

fly σ1TIL0

TIL0

TIL1

doPattern σ5 a

fly σ3

fly σ5

fly σ2

fly σ5

(a) Default heuristic TRPG.

0.334 0.334 0.564 0.334

0.334 0.334

0.334 0.334

0.334 0.334

0.467

0.4410.444 0.4670.467 0.4670.334

0.334

0.334

0.334

0.334

0.334

0.334

0.3340.494 0.4870.334

0.334

0.334

0.3340.334

0.3340.334

fly σ1

fly σ5

fly σ2

TIL1

fly σ5

fly σ1

doPattern σ5 a

fly σ2

doPattern σ3 a

doPattern σ5 `

fly σ5

TIL2

fly σ4

TIL1fly σ1

doPattern σ3 `

TIL2

TIL2

TIL1

doPattern σ4 a

fly σ4

doPattern σ4 `

fly σ3

fly σ3

TIL2

TIL2

fly σ4

TIL0

TIL1

fly σ3

TIL0

fly σ2

(b) Greedy algorithm-based heuristic. Note
that the heuristic value is 1− P (Σ).

Figure 8: Example of the two different search space explorations obtained by the default
heuristic and our domain specific heuristic. The heuristic value of each state is
reported inside the node.

540

Autonomous Target Search with Multiple Coordinated UAVs

Algorithm 4 Accelerate Greedy Algorithm

1: procedure AccelerateUpdateSequence(C̃,O,Γ, D,Σ, S)
2: H ← ∅
3: for σ ∈ C̃ do
4: ∆P (σ) = P ({σ})
5: for i = 0, ...,maxσ∈C(t

+
σ + dσ)/minσ∈C(dσ)|O| do

6: H ← ∅
7: δ ← 0
8: while H ⊂ C do
9: σ ← argmax

σ∈C̃\Σ∆P (σ)

10: if σ ∈ H then
11: (S, o)← Assignment(O, C̃, D, σ)
12: if (S∗, o∗) 6= (∅, ∅) then
13: σ∗ ← σ
14: (S∗, o∗)← (S, o)
15: break
16: else
17: ∆P (σ) = 0

18: else
19: ∆P (σ) = P (Σ ∪ {σ})− P (Σ)
20: H ← H ∪ {σ}
21: δ ← ∆P (σ∗)
22: if δ ≤ 0 then return Σ, S
23: else
24: Σ← Σ ∪ {σ∗}
25: So

∗ ← S∗
return Σ, S

541

Piacentini, Bernardini & Beck

time limitation compromises the ability for the CP solver and the AI planner to find optimal
solutions, in surveillance operations, time is a critical factor. It is therefore preferable to
find suboptimal solutions in a short period of time, than produce provably optimal solu-
tions. We solve the CP model using IBM ILOG CPLEX CP Optimizer v12.8.0 (Laborie
et al., 2018).

5.1 Scaling Behavior of the Approaches

For the first experiment, we randomly generate 40 instances with 30 candidate search pat-
terns. For each instance, we reduce the number of search patterns to a minimum of six,
and we vary the number of observers, from a minimum of one to a maximum of five. For
this set of experiments, we record the objective values of the different solution approaches
as a function of the number of search patterns.

5.1.1 Comparison of the Greedy Solutions

We first compare the two greedy algorithms that we consider. We identify with G the
accelerated version (Algorithm 4) and with Gonline the simplified version with the Right
Assignment Algorithm. Figure 9a shows the fraction of problem instances for which the
difference in the objective values found by G and Gonline is within given intervals. Figure
9b reports the execution time of every instance for the two algorithms. As shown in the
plots, G finds equal or better quality solutions than Gonline for every problem instance.
Although the execution time of G is higher than Gonline, the algorithms always run within
0.07 seconds. The difference between the two algorithms in the quality of the solutions
decreases as the number of observers increases. The increase in the number of observers
makes the problem less constrained, making it more likely to find an available observer for
the execution of a search pattern at the end of the current sequence.

As already noted, a greedy algorithm is theoretically guaranteed to produce solutions
close to optimality for problems that require the maximization of a submodular function. In
our problem, this theoretical guarantee does not hold because of the presence of temporal
constraints. We argue that, in practice, these constraints do not affect the performance
of the greedy algorithm significantly. To verify our claim, we take our problem instances
and modify the starting time-window [t−σ , t

+
σ] associated with each search pattern σ ∈ Σ by

scaling the length of the interval by a constant value. When the time-windows are narrow,
the sequence of search patterns is more constrained, which means that it is more likely that
the best pattern chosen by the greedy approach cannot be added to the solution because
it does not respect the temporal constraints. With wide time-windows, the best pattern
chosen by the algorithm can almost always be added to the solution, making the problem
very similar to a simple maximization problem. In Figure 10, we show the average objective
value obtained as a function of the scaling factor of the starting time-windows. As shown
in the figure, when the problem is highly constrained, the greedy algorithm finds solutions
within 10% from the optimal value. As the length of starting time-windows become larger,
the greedy algorithm finds increasingly better quality solutions. When considering problems
with several observers, the effect of the temporal constraints is even less visible, as at every
step multiple vehicles are available to execute the search pattern with the best impact on
the objective value.

542

Autonomous Target Search with Multiple Coordinated UAVs

(a) Difference in the objective values of G and Gonline
categorized into buckets. [x:y) = “Fraction of instances
where the difference in the objective values obtained by
G and Gonline is within [x:y)”.

(b) Comparison of the execution time of the accel-
erated (G) and online (Gonline) greedy algorithms.
The execution time of G is consistently higher than
Gonline, but both algorithms always run within 0.06 s.

Figure 9: Comparison between the accelerated (G) and online (Gonline) greedy algorithms.

(a) Effect of the temporal constraints on the objective
function for G.

(b) Effect of the temporal constraints on the objective
function for Gonline.

Figure 10: Average of the solution quality found by the greedy algorithm for problems with
different scaled length of starting time-windows.

5.1.2 Comparison of CP Models

We now compare the two CP models presented in Section 4.2. For the first model (Figure
5), previously proposed by Bernardini et al. (2017b)), we use a time-discretization of 10
and 100 seconds, and we indicate these two variations as CP∆10 and CP∆100, respectively.
The new CP model in Figure 7 using interval variables is referred to as CPiv.

543

Piacentini, Bernardini & Beck

Figure 11: Comparison between different CP models for problems with 1 observer.

Figure 11 shows the average objective value as a function of the number of search pat-
terns for problems with one observer. As expected, CP∆10 and CP∆100 produce relatively
good quality solutions for problems with a small number of search patterns, but CP∆10

cannot produce any solution when the number of search patterns increases. CPiv pro-
duces better quality solutions than both CP∆10 and CP∆100. This improvement can be
attributed to two reasons. First, CPiv is more efficient in the limited time allocated to
solve the problems because it needs fewer variables and exploits the inference power of the
interval variables. In addition, when using CP∆10 and CP∆100, some of the search patterns
cannot be executed due to the coarse-time discretization and, as a consequence, they do not
contribute to the objective value. This phenomenon never happens when we apply CPiv.

We can observe the effect of the warm start on the CPiv model in Figure 12. We call
CPwsiv the model that is warm-started with the G solution. As shown in the figure, the warm
start has a little effect on smaller problems (1 observer) since they are simple enough to be
optimally solved by the CP model alone. As the problem size increases, the warm-started
model can find solutions that are better than CPiv and G, but for larger problems, the
warm-started CP model only marginally improves on the G solution.

5.1.3 Comparison of the Planning Approaches

We compare the solutions obtained by the planner with the standard TRPG heuristic
(ΠTRPG) and our greedy-based heuristic (ΠG). In Figure 13a, we compare ΠTRPG and
ΠG, while in Figure 13b we compare ΠG and G. As expected, the planner with the greedy-
based heuristic outperforms the standard TRPG heuristic and improves on the initial greedy
solution. We observe that, for problems with one observer, the difference between ΠG and
ΠTRPG is relatively small and increases as the number of observers increases. When more
observers are present, the TRPG heuristic produces particularly poor solutions, with one
search pattern for each observer. This is because the heuristic is based on the length of the
relaxed plan and the search explores all the states with the same number of search patterns,

544

Autonomous Target Search with Multiple Coordinated UAVs

(a) Difference in objective value of CPiv and CPwsiv
categorized into buckets.

(b) Difference in objective value of G and CPwsiv cate-
gorized into buckets.

Figure 12: Comparison between CPiv, CPwsiv and G.

(a) Difference in the objective value of ΠTRPG and ΠG

categorized into buckets.
(b) Difference in the objective value of G and ΠG cat-
egorized into buckets.

Figure 13: Comparison between different planning heuristics.

before adding a new one. As in the CP model, the improvement of ΠG with respect to the
greedy solution decreases for larger problems.

5.1.4 Comparison of the Approaches

We now compare the different approaches: greedy, CP and AI planning. In Figure 14 and
Table 2, we show a summary of the average solution quality P (S) found by each method
considering problems with a number of observers varying from one to five. The approaches
are ranked according to the sum of the considered score function for problems with a different
number of search patterns.

545

Piacentini, Bernardini & Beck

From the figure, it emerges that the best overall approaches are CPwsiv and ΠG, which
have comparable performance, as shown also in Figure 15. Both approaches improve on the
greedy solution. We can observe that neither ΠTRPG nor any of the CP models scale to
large size instances without the help of the greedy solution. From Table 2, it also emerges
that, as the number of observers increases, the greedy algorithm performs very similarly to
the best approaches, i.e. ΠG and CPwsiv .

Figure 14: Average solution quality for problems with a different number of search patterns
and observers. Each box is an average over 40 instances and the color indicates
the measure of the solution quality.

5.2 Simulation

We conducted a set of experiments using a simulator of fixed-wing UAVs operating in a
square area of about 100 kilometers width. The target is mobile, moving from a fixed origin
to a random destination located in one of the urban centers of Scotland. The target follows
a route acquired using GraphHopper (Karich, 2015). When it realizes that it is observed,
the target can dynamically change its route to prefer concealed paths (Bernardini et al.,
2017b). At the beginning of a mission, one UAV tracks the target, while the others are
located at a base station. When the tracking UAV loses the target, it communicates that
to the ground station and the search phase is initiated. The ground station performs the
MCS to generate the candidate search patterns. The search area considered in the MCS
is an angular sector from the LKP. When only one observer is available the angle is 120◦

and it increases uniformly as more observers are available, up to a maximum of 180◦ for 5

546

Autonomous Target Search with Multiple Coordinated UAVs

SP 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ΠG 5 0.976 0.982 0.981 0.977 0.978 0.977 0.976 0.977 0.978 0.978 0.978 0.979 0.977 0.978 0.977 0.977 0.978 0.979 0.979 0.980 0.981 0.981 0.980 0.981 0.979
CPwsiv 5 0.976 0.982 0.981 0.977 0.978 0.977 0.976 0.977 0.978 0.977 0.978 0.979 0.976 0.978 0.977 0.976 0.975 0.979 0.979 0.980 0.981 0.981 0.981 0.981 0.979
CPwsiv 4 0.969 0.978 0.979 0.974 0.976 0.976 0.975 0.975 0.977 0.977 0.977 0.977 0.975 0.976 0.975 0.976 0.977 0.978 0.978 0.979 0.979 0.980 0.980 0.980 0.978
ΠG 4 0.969 0.977 0.979 0.974 0.976 0.976 0.975 0.975 0.976 0.976 0.977 0.978 0.975 0.976 0.975 0.976 0.977 0.978 0.978 0.979 0.980 0.980 0.980 0.980 0.978
G 5 0.975 0.981 0.981 0.976 0.978 0.974 0.973 0.968 0.971 0.971 0.972 0.972 0.970 0.971 0.973 0.974 0.973 0.973 0.974 0.975 0.976 0.975 0.980 0.981 0.979

Gonline 5 0.973 0.979 0.980 0.975 0.977 0.973 0.972 0.967 0.970 0.970 0.971 0.971 0.969 0.970 0.972 0.973 0.972 0.973 0.973 0.974 0.975 0.975 0.980 0.980 0.978
G 4 0.968 0.976 0.978 0.974 0.976 0.972 0.971 0.966 0.969 0.969 0.970 0.971 0.968 0.969 0.971 0.973 0.971 0.972 0.973 0.974 0.974 0.974 0.979 0.979 0.978

CPwsiv 3 0.952 0.964 0.972 0.968 0.971 0.971 0.970 0.970 0.973 0.973 0.973 0.973 0.971 0.972 0.971 0.972 0.974 0.976 0.976 0.976 0.978 0.978 0.978 0.978 0.976
ΠG 3 0.954 0.964 0.972 0.968 0.971 0.970 0.969 0.969 0.972 0.972 0.973 0.973 0.971 0.972 0.971 0.972 0.974 0.975 0.976 0.977 0.978 0.978 0.978 0.978 0.976

Gonline 4 0.963 0.972 0.975 0.970 0.973 0.970 0.969 0.963 0.967 0.967 0.968 0.968 0.965 0.966 0.968 0.969 0.969 0.971 0.971 0.972 0.973 0.973 0.979 0.979 0.977
G 3 0.950 0.963 0.970 0.965 0.969 0.965 0.965 0.959 0.963 0.964 0.965 0.965 0.963 0.964 0.967 0.968 0.967 0.969 0.969 0.970 0.971 0.971 0.977 0.977 0.975

Gonline 3 0.936 0.953 0.962 0.957 0.962 0.959 0.960 0.952 0.959 0.959 0.960 0.959 0.957 0.959 0.961 0.962 0.962 0.966 0.966 0.967 0.968 0.968 0.974 0.975 0.973
CPiv 3 0.952 0.940 0.947 0.896 0.923 0.946 0.946 0.945 0.948 0.948 0.973 0.973 0.970 0.971 0.970 0.971 0.974 0.973 0.974 0.971 0.976 0.976 0.975 0.977 0.975
ΠG 2 0.910 0.934 0.950 0.947 0.952 0.955 0.955 0.953 0.957 0.958 0.959 0.959 0.957 0.958 0.959 0.962 0.964 0.966 0.967 0.967 0.969 0.969 0.970 0.971 0.968

CPwsiv 2 0.905 0.931 0.949 0.946 0.951 0.954 0.955 0.952 0.957 0.959 0.959 0.960 0.958 0.959 0.960 0.962 0.964 0.966 0.966 0.968 0.969 0.969 0.970 0.971 0.968
CPiv 2 0.904 0.931 0.949 0.946 0.927 0.906 0.907 0.928 0.933 0.934 0.959 0.960 0.958 0.959 0.960 0.962 0.963 0.966 0.967 0.967 0.969 0.969 0.968 0.970 0.968

G 2 0.902 0.927 0.946 0.941 0.947 0.947 0.949 0.940 0.945 0.946 0.945 0.946 0.943 0.943 0.947 0.953 0.954 0.958 0.958 0.959 0.960 0.960 0.966 0.967 0.965
CPiv 4 0.945 0.953 0.908 0.876 0.879 0.927 0.902 0.902 0.903 0.878 0.903 0.879 0.974 0.975 0.975 0.950 0.952 0.976 0.952 0.954 0.976 0.954 0.953 0.955 0.976

Gonline 2 0.874 0.898 0.929 0.925 0.934 0.931 0.933 0.922 0.931 0.928 0.927 0.930 0.927 0.930 0.934 0.939 0.943 0.948 0.948 0.949 0.949 0.953 0.960 0.961 0.959
ΠTRPG 2 0.902 0.929 0.930 0.911 0.905 0.898 0.873 0.887 0.902 0.895 0.894 0.886 0.883 0.879 0.888 0.886 0.899 0.903 0.903 0.905 0.898 0.907 0.902 0.904 0.906
ΠTRPG 3 0.899 0.903 0.901 0.886 0.875 0.874 0.868 0.882 0.907 0.893 0.890 0.867 0.860 0.858 0.883 0.888 0.901 0.909 0.909 0.912 0.907 0.916 0.911 0.916 0.925
CPwsiv 1 0.737 0.776 0.842 0.845 0.853 0.861 0.871 0.868 0.873 0.881 0.882 0.878 0.879 0.880 0.888 0.892 0.898 0.904 0.906 0.907 0.909 0.915 0.918 0.921 0.921
CPiv 5 0.952 0.957 0.861 0.855 0.854 0.832 0.874 0.879 0.778 0.782 0.734 0.784 0.854 0.903 0.903 0.855 0.856 0.880 0.905 0.905 0.906 0.904 0.927 0.977 0.975
ΠG 1 0.739 0.776 0.842 0.845 0.853 0.857 0.866 0.864 0.869 0.876 0.878 0.875 0.875 0.877 0.884 0.892 0.898 0.904 0.906 0.907 0.909 0.915 0.918 0.921 0.921

CPiv 1 0.726 0.766 0.829 0.830 0.845 0.853 0.865 0.863 0.868 0.880 0.882 0.878 0.879 0.880 0.888 0.892 0.898 0.904 0.906 0.907 0.909 0.915 0.918 0.921 0.921
ΠTRPG 1 0.718 0.764 0.834 0.842 0.849 0.852 0.861 0.859 0.867 0.875 0.876 0.873 0.873 0.874 0.882 0.874 0.880 0.892 0.894 0.896 0.898 0.906 0.907 0.908 0.906

G 1 0.722 0.761 0.833 0.838 0.844 0.848 0.857 0.851 0.858 0.865 0.863 0.864 0.864 0.864 0.872 0.880 0.882 0.889 0.890 0.891 0.892 0.899 0.909 0.913 0.913
ΠTRPG 4 0.886 0.873 0.884 0.880 0.877 0.859 0.847 0.850 0.855 0.843 0.854 0.826 0.815 0.810 0.830 0.838 0.845 0.852 0.845 0.828 0.818 0.836 0.847 0.855 0.862
Gonline 1 0.689 0.730 0.806 0.812 0.822 0.824 0.835 0.830 0.838 0.841 0.838 0.838 0.839 0.840 0.848 0.856 0.860 0.867 0.869 0.872 0.873 0.886 0.895 0.899 0.903
ΠTRPG 5 0.705 0.697 0.712 0.663 0.697 0.696 0.682 0.623 0.405 0.445 0.468 0.460 0.463 0.456 0.464 0.464 0.513 0.554 0.554 0.554 0.556 0.594 0.619 0.634 0.638
CP∆100 1 0.400 0.450 0.578 0.633 0.786 0.789 0.787 0.657 0.590 0.611 0.542 0.464 0.472 0.440 0.430 0.428 0.411 0.375 0.363 0.356 0.342 0.385 0.335 0.340 0.366
CP∆10 1 0.358 0.417 0.574 0.684 0.783 0.826 0.792 0.778 0.747 0.694 0.576 0.540 0.384 0.351 0.348 0.166 0.103 0.062 0.043 0.023 0.017 0.000 0.000 0.000 0.000

Table 2: Average solution quality for problems with a different number of search patterns
and observers. Each box is an average over 40 instances.

Figure 15: Difference in the objective value of ΠG and CPwsiv categorized into buckets.

observers. The MCS considers 20 time points and, for each time point, it generates up to
|O| + 1 search pattern candidates. Once the candidate search patterns are generated, the
ground station calls a solver (greedy, AI planning, or CP) to find the sequence of search
patterns to execute and the plan is dispatched to each UAV, which executes the search
patterns assigned to it. The first UAV that finds the target takes control of the tracking
operations, while the other UAVs abandon the search until the target is lost again and a new
search phase is activated or the mission is concluded. The mission is declared successful if
the target is tracked at the moment of its arrival to the destination. For every configuration,
we simulate 500 missions.

As a baseline, we use a simple random policy, where, starting from the LKP and knowing
the estimated direction of the target, each observer performs a random walk. As in the

547

Piacentini, Bernardini & Beck

MCS, we consider 20 time points. At each time point, the observer moves from its previous
position in a random direction and distance. The direction and the distance are chosen
using a uniform distribution between two fixed angles and the two minimum and maximum
distances estimated by the minimum and maximum velocity of the target.

As an alternative approach, we consider a static policy defined by our initial industrial
partner (Bernardini et al., 2013). The policy for one observer consists in performing a
spiral search around the LKP of the target and then executing a lawnmower pattern that
has a longitudinal axis aligned with the estimated direction of the target. We extended this
strategy to multiple observers by adding one lawnmower pattern for each additional UAV.
The lawnmower is obtained by rotating the longitudinal axes of the first added lawnmower
by a fixed angle.

Table 3 reports the results of the simulation. For each method, we show the average
success rate over all the simulated missions. The final success rate is given by the execution
of multiple plans. In order to show the correlation between the objective function found by
each solver and the success rate, we report the success rate of the first executed plan. As
expected, solvers that produce plans with higher objective values have a higher success rate.
Finally, we report the average tracking time of the missions and the standard error. The
relatively high values of the errors reflect the high variability of each run of the simulation
caused by the many choices that contribute to the target behavior (i.e., the target chooses
its destination, the path to follow, the evasion level of its behavior, velocity, etc.).

As shown in the table, when only one observer is present, both ΠTRPG and CPiv and their
enhancements ΠG, CPwsiv , obtain the best performance, succeeding in 1/3 of the missions.
The greedy approach performs almost as well as planning and CP, achieving a success rate of
30%. The static and the online policies follow with a similar success rate (25.2% and 23.8%,
respectively), while the random approach gives the worst results, successfully tracking the
target until its destination in 17.0% of the cases. When we have two observers, all techniques
improve their success rate and a similar behaviour as before can be observed: ΠG and CPwsiv
obtain the highest success rate, followed by G. While the success rates of ΠTRPG and
CPiv do not increase as much as the other techniques, but they both still perform better
than the static, online and random policies. As we increase the number of observers up
to five, G becomes similar to ΠG and CPwsiv and dominates both ΠTRPG and CPiv, as well
as the online, static and random policies. The static policy becomes competitive with our
optimization techniques only once enough observers are deployed.

6. Discussion

As noted in Section 1 the primary contributions of this paper are application-oriented: the
proof of submodularity allowing the exploitation of the greedy algorithm, the development
of a novel CP model and an extension of the existing AI planning approach for the prob-
lem, the integration of the greedy heuristic into the CP and AI planning approaches, and
the extensive experimental evaluation. The paper provides a detailed treatment of the
combinatorial optimization approach to the search and tracking problem.

Nonetheless, the paper also provides insight beyond the application in at least two areas:
the comparison of scheduling and planning approaches for problems with characteristics of

548

Autonomous Target Search with Multiple Coordinated UAVs

Average % of success rate
UAVs 1 2 3 4 5
random 17.0± 1.7 24.2± 1.9 32.8± 2.1 30.0± 2.1 34.6± 2.1
static 25.2± 1.9 30.6± 2.1 39.8± 2.2 46.0± 2.2 52.8± 2.2
Gonline 23.8± 1.9 37.8± 2.2 42.8± 2.2 46.0± 2.2 49.4± 2.2
G 30.0± 2.1 41.8± 2.2 50.8± 2.2 50.2± 2.2 53.6± 2.2
CPiv 32.8± 2.1 41.8± 2.2 40.6± 2.2 30.4± 2.1 33.4± 2.1
CPwsiv 33.0± 2.1 44.8± 2.2 47.2± 2.2 51.8± 2.2 52.0± 2.2
ΠTRPG 34.6± 2.1 38.0± 2.2 26.6± 2.0 11.0± 1.4 7.2± 1.2
ΠG 34.2± 2.1 45.6± 2.2 49.6± 2.2 49.0± 2.2 48.6± 2.2

Average % of success rate after the execution of the first plan
UAVs 1 2 3 4 5
random 45.5± 2.3 53.8± 2.3 68.9± 2.1 70.1± 2.1 72.8± 2.0
static 60.7± 2.2 70.1± 2.1 76.9± 1.9 84.3± 1.6 89.8± 1.4
Gonline 68.8± 2.1 82.7± 1.7 89.6± 1.4 93.5± 1.1 93.9± 1.1
G 75.8± 1.9 87.9± 1.5 92.2± 1.2 94.5± 1.0 96.5± 0.8
CPiv 78.9± 1.9 84.2± 1.7 84.0± 1.7 73.8± 2.0 74.4± 2.0
CPwsiv 79.1± 1.8 88.6± 1.5 92.0± 1.2 94.9± 1.0 96.5± 0.8
ΠTRPG 77.9± 1.9 83.4± 1.7 64.4± 2.2 27.0± 2.0 20.4± 1.8
ΠG 79.8± 1.8 88.1± 1.5 92.4± 1.2 90.6± 1.3 90.6± 1.3

Average number of losses
UAVs 1 2 3 4 5
random 1.52± 0.04 1.77± 0.05 2.10± 0.06 2.20± 0.06 2.28± 0.06
static 1.73± 0.04 1.97± 0.05 2.43± 0.06 2.66± 0.06 2.80± 0.06
Gonline 1.85± 0.04 2.14± 0.05 2.64± 0.06 2.79± 0.06 2.80± 0.06
G 2.01± 0.05 2.37± 0.06 2.78± 0.06 2.91± 0.06 2.99± 0.06
CPiv 2.04± 0.05 2.29± 0.06 2.61± 0.06 2.24± 0.06 2.28± 0.06
CPwsiv 2.05± 0.05 2.42± 0.06 2.80± 0.06 2.93± 0.06 3.00± 0.06
ΠTRPG 1.99± 0.05 2.22± 0.05 2.05± 0.05 1.33± 0.03 1.23± 0.03
ΠG 2.07± 0.05 2.39± 0.06 2.82± 0.06 2.83± 0.06 2.84± 0.06

Average tracking time is seconds
UAVs 1 2 3 4 5
random 1405± 40 1538± 42 1701± 44 1721± 45 1745± 46
static 1599± 37 1699± 38 1876± 45 2065± 43 2163± 43
Gonline 1627± 37 1836± 37 2037± 38 2149± 35 2126± 37
G 1773± 38 1996± 36 2203± 37 2266± 33 2241± 35
CPiv 1774± 36 1928± 38 2015± 40 1754± 45 1728± 45
CPwsiv 1775± 36 2039± 37 2194± 37 2273± 33 2236± 35
ΠTRPG 1790± 38 1861± 36 1607± 45 1045± 41 868± 35
ΠG 1797± 36 2026± 35 2180± 36 2170± 37 2115± 39

Table 3: Average % of success rate, average % of success rate after the execution of the first
plan, and the average tracking time using different solvers. For each parameter we
report the average over 500 missions and the standard error.

both and the tension between domain-dependent planning and domain-independent plan-
ning.

549

Piacentini, Bernardini & Beck

Planning vs. Scheduling. The fundamental difference between planning and scheduling
is the existence of a fixed number of operations in the latter.5 This difference is not only
reflected in the different complexity classes of the problems but also in the fact that most
of the inference done in CP scheduling techniques is only sound because of the inability to
dynamically add new operations.

For problems with a non-fixed number of operations that require detailed numeric,
resources and temporal reasoning, we are left with the challenge of the richer model of AI
planning, with relatively weak techniques for such reasoning tasks versus the creation of
a scheduling model with a valid upper bound on the number of optional operations. This
challenge is what we have investigated here and in previous work on diverse application
problems (e.g., Tran et al. (2017), Booth, Do, Beck, Rieffel, Venturelli, and Frank (2018)).
It seems clear that as the problem size scales, planning will be the only viable option: the
CP models become too large. However, we have demonstrated here and elsewhere (e.g.,
Tran et al. (2017)), that, if it is possible to fix the maximum number of actions that are
considered, realistic-sized problems are within the reach of CP.

Another challenging aspect of the problem tackled in this paper is the representation
of the objective function. From a CP perspective, the recursive structure of the objective
function results in a weak propagation of its upper and lower bounds, compromising the
performance of the solver. In planning, the challenge is overcome by augmenting the solver
with domain-specific components that update the value of the objective function and guide
the search using a customized heuristic.

The relationship between planning and optimization and, more fundamentally, state-
based and constraint-based knowledge representations, is a key area for research into prob-
lem solving. Some valuable and perhaps foundational work has already been done (Pom-
merening, 2017) but much is left to do.

Planning vs. Heuristic Search. Our planning model is posed in PDDL and is solved
by a domain-independent planner. However, the primary reason for the strong performance
of the model is the use of the domain-specific heuristic function and an external solver
for the nonlinear objective function. A narrow interpretation of AI planning as domain-
independent planning may therefore result in the conclusion that our “planning” approach
is more accurately described as heuristic search.6

However, we would like to argue that the contributions of our work and the value of
this style of planning/heuristic search (PHS) research does not depend on whether the
work is planning or heuristic search. Our goal, beyond developing the search-and-tracking
application, is to extend the power and use of PHS technology. One way to do this is
through comparing the performance of PHS to other state-of-the-art techniques on specific
problems.7 A fair comparison with other technology requires the same level of domain-
dependent specializations – otherwise the more general purpose technique is likely to always
perform worse and not because of the underlying problem solving approach.

5. In scheduling such elements are variously referred to as jobs, activities, tasks, or operations, while in
planning they are typically called (ground) actions.

6. Indeed, some of the authors are of this opinion.
7. We are, of course, not the only researchers who work in this direction (e.g. Sewell & Jacobson, 2012;

Tierney et al., 2012; Kelareva et al., 2013; Tran et al., 2017; Haslum et al., 2018; Booth et al., 2018).

550

Autonomous Target Search with Multiple Coordinated UAVs

Further, we believe that such an approach is not contrary to the long-term goal of AI
planning to develop a general problem solver. First, such comparisons, if done fairly, will
likely demonstrate the value of planning technology and increase its use amongst researchers
and practitioners who are more focused on solving their problems. In the worst case, if no
such value can be demonstrated, the planning community is left with a worthy challenge to
understand why and how to improve the technology. Second, the approaches that are devel-
oped to achieve strong planning performance in an application can then be generalized and
synthesized by subsequent researchers to contribute more directly to domain-independent
planning. As a specific example, consider the nonlinear objective function in our search-
and-tracking problem. We seek to maximize the probability of finding the target and an
increase in the plan length by performing an additional search pattern cannot decrease
the probability. Yet most of the existing domain-independent heuristic functions of which
we are aware seek to minimize plan length, cost, or makespan. A general problem solver
will need to be able to deal with a much richer set of objective functions and, while some
work exists on maximization functions via heuristic search (Stern, Kiesel, Puzis, Felner,
& Ruml, 2014) and planning (e.g., in planning with preferences Gerevini, Haslum, Long,
Saetti, and Dimopoulos (2009), Baier, Bacchus, and McIlraith (2009), Benton, Coles, and
Coles (2012) and in over-subscription planning Domshlak and Mirkis (2015)), only a few
works exploit submodularity (Chen, Chen, & Weinberger, 2015; Sakaue & Ishihata, 2018).
Ideally, domain-dependent research on useful applications will inspire subsequent domain-
independent research on common problem characteristics.

7. Related Work

Optimal search is a very complex problem. It is NP-hard even in the simple formulation
of finding a stationary target within a grid of cells (Trummel & Weisinger, 1986). Given
the inherent complexity of the problem, the literature on search is vast and spread across
many disciplines including operations research, graph theory, robotics, control theory and
artificial intelligence (AI). It is difficult to compare the methods proposed since the formu-
lations of the problem vary considerably from one work to another. For example, models
of target motion range from stationary targets to targets moving according to predictable
forces (e.g., wind or currents), to intentional targets, having a goal to achieve or trying
to escape. Observers are assumed to have a wide range different sensing, motion and en-
durance capabilities. There may be one or many targets and observers. The environment
can be known in advance or unknown and vary in size and features (e.g., indoors and out-
doors). Depending on the search region representation, the sensor types and the possible
actions, search can be formulated in discrete or continuous settings. In addition to all these
possibilities, search is often combined with other problems. For example, when the target
is static and the environment is known, the problem is framed as “search-and-coverage”,
while if the environment is unknown, it is “search-and-exploration”. If the target needs to
be followed to destination, as in our case, then the problem is “search-and-tracking”. It
is not our ambition to summarize all the work on search. Readers can refer to Hollinger
(2010) for an interesting survey on search and to Chmaj and Selvaraj (2015) for a survey
on the applications of cooperative teams of UAVs, including search-and-tracking. In what
follows, we focus on the main approaches to coordinated target search that have inspired our

551

Piacentini, Bernardini & Beck

approach and are related to it. We organize these techniques based on their main features,
but there are several overlaps among the categories.

7.1 Classical Approaches

Search for lost targets was posed as a research problem in the context of US Navy opera-
tions during World War II (Koopman, 1946) and involved providing efficient methods for
detecting submarines. Theory of search methods were then used by the US Navy in prac-
tical missions to search for objects such as the H-bomb lost in the ocean near Palomares,
Spain in 1966 and the submarine Scorpion lost in 1968 (Richardson & Stone, 1971). A
few years later, theory of search emerged as a branch of operations research focusing on
analytic, optimal solutions for stationary target search (Stone, 1975). Benkoski, Monticino,
and Weisinger (1991) offer an annotated bibliography of the search theory literature.

Based on research on search in the maritime domain, the systems CASP (Computer As-
sisted Search Planning) (Richardson & Discenza, 1980) and its successor SAROPS (Search
and Rescue Optimal Planning System) (Kratzke, Stone, & Frost, 2010) have been developed
and used by the US Coast Guard since 1974 for search-and-rescue operations involving ob-
jects lost at sea. SAROPS has two main components: the simulator and the planner. The
simulator produces a time-dependent probability distribution (PD) for the target location
using Monte Carlo (MC) particle filtering. The system uses information about the object
in distress, provided by human operators, and environmental data, provided by the En-
vironmental Data Server, which gathers environmental data from government and private
sources concerning winds, currents, cloud cover, drifters, weather and visibility conditions.
Based on the target PD and a collection of available search and rescue units (SRUs), the
planner assigns one lawnmower pattern to each SRU. Each SRU executes only one pattern
and there is no routing of a vehicle from one pattern to another. The planner seeks to max-
imize the probability of discovering targets by placing the patterns intelligently: using an
iterative strategy, it tries different combinations of locations until a pre-determined period
of time has elapsed and, then, reports the best solution. If no SRU finds the target, the
simulator generates a new PD by incorporating information about motion (drift) and about
the previous unsuccessful search and then the planner generates a new set of patterns. A
human always coordinates the two systems and supervises the entire process.

The SAROPS system has some similarities with our approach. For example, it uses
MC particle filtering to develop a prior PD for the target’s location and it uses lawnmower
patterns. However, in contrast to our approach, SAROPS regenerates the target PD at each
step and works on a one-step lookahead horizon. As a consequence, it does not incorporate
any long term strategic reasoning: based on the target PD and a set of available vehicles,
SAROPS assigns one lawnmower to each vehicle, which immediately proceeds to execute
it. SAROPS performs geometric reasoning to position the lawnmowers in such a way to
maximize the probability of discovering targets. Differently from our approach, the iterative
process is not automated, but it involves the presence of a human who supervises the entire
process and incorporates simulation and pattern positioning.

552

Autonomous Target Search with Multiple Coordinated UAVs

7.2 Probabilistic Approaches

A rich area of research in target search is based on a Bayesian construction of the prob-
lem where the probability of detection of the targets is used as the objective function for
optimal search trajectory generation. This probabilistic approach relies on the use of Re-
cursive Bayesian Estimation (RBE) techniques that recursively update and predict the PD
of the target location over time, under the assumption that the prior distribution and the
probabilistic motion model of the target are known (Bourgault et al., 2006). Although
Bourgault, Furukawa, and Durrant-Whyte (2004) discuss a number of possible constraints
that can impact the target motion model (obstacles, force fields and terrain), the target is
usually assumed to be subjected to external disturbances and not to move on the basis of
its own intentions.

RBE techniques work in two stages: update and prediction. The update stage calculates
the posterior distribution of the current state given a prior estimation of the state and
a new observation. The prediction stage calculates the PD of the next state using the
posterior distribution and the target’s motion model. Since the implementation of these two
stages is computationally expensive, several approaches have been explored to compute them
efficiently, including grid-based methods (Bourgault et al., 2006), particle filters (Chung &
Furukawa, 2006), element-based techniques (Furukawa, Durrant-Whyte, & Lavis, 2007) and
hybrid particle-element approaches (Lavis & Furukawa, 2008).

The search control problem is solved in a greedy fashion over a very short planning
horizon (typically, a one-step lookahead). This myopic planning approach is used to control
the computational cost of the technique, which quickly becomes intractable as the number
of lookahead steps, the size of the search area, or the number of dimensions of the search
space, increases.

The Bayesian filtering approach often tackles S&T at the same time (Furukawa, Bour-
gault, Lavis, & Durrant-Whyte, 2006) and a unified objective function is used, allowing a
vehicle to switch from one mode to the other while maintaining information gained during
the previous phases. Other approaches that tackle search-and-tracking as a unified problem
can be found in the literature (Tian, Bar-Shalom, & Pattipati, 2008; Hoffmann & Tomlin,
2010; Ryan & Hedrick, 2010; Pitre, Li, & Delbalzo, 2012).

Probabilistic-based S&T has proven successful for problems involving stationary targets
or targets moving in small geographical areas, simple motion models, static search spaces
and short-term missions (e.g. Furukawa, Mak, Durrant-Whyte, & Madhavan, 2012). How-
ever, when these assumptions are not satisfied as in our scenario, RBE techniques are likely
to perform poorly due to the high computational cost of accurately maintaining a large
state space that includes all the possible positions of the moving targets.

Some probabilistic approaches overlap with information-theoretic methods that formu-
late search in terms of the estimation of quantities such as Shannon entropy, conditional
entropy and Kullback-Leibler divergence. Charrow, Kumar, and Michael (2014), for exam-
ple, present a particle-filter based method to search for a single moving target using a team
of robots equipped with range-only sensors. The robots select actions that maximize the
mutual information between the estimate of the target and the future measurements of the
robots. Bertuccelli and How (2006) also use particle filtering to approach the problem of

553

Piacentini, Bernardini & Beck

search for moving targets when the target motion is poorly known, while Roy and Earnest
(2006) use it for search and exploration.

Another probabilistic approach to search is based on formulations using Partially Ob-
servable Markov Decision Processes (POMDPs), both for single targets (Hollinger, Keha-
gias, & Singh, 2007; Hsu, Sun, & Rong, 2008) and multiple targets (Bertuccelli & How,
2006). Carvalho, Teichteil-Konigsbuch, and Lesire (2013) use POMDPs for on-line multi-
target detection and recognition missions by an autonomous UAV. Hsu et al. (2008) unify
tracking and searching in a unique POMDP model, which is approximatively solved using
a sampling technique. He et al. (2010) present an online, forward search, planning-under-
uncertainty algorithm for the road-constrained target-tracking problem. In this work, the
agent’s belief of each target’s position is represented as a multi-modal Gaussian belief which
is exploited to compute the distribution of posterior beliefs after actions are taken. This
analytic computation allows the planner to search deeper by considering policies composed
of multi-step action sequences. Deeper searches are beneficial as they result in keeping the
targets well-localized for longer periods. This technique has proven successful for small
geographical areas, but has not been tested yet on larger regions.

7.3 Combinatorial Optimization

Combinatorial optimization techniques have been explored for the coordinated search do-
main, although in a more limited way than other techniques. Bernardini et al. (2017, 2016,
2017b) solve S&T problems with a single observer using AI planning and CP. We refer the
readers to Sections 4.2 and 4.3 for the main differences between this work and our current
approach.

Lau, Huang, and Dissanayake (2006) present a dynamic programming technique to
efficiently find a target and a branch-and-bound technique for finding multiple targets (Lau,
Huang, & Dissanayake, 2005). These methods suffer from poor scalability when large
instances of the problem are considered.

Vidal et al. (2002) consider a pursuit-evasion game with a team of both ground and
aerial pursuers and ground evaders. They cast the problem in a probabilistic game theo-
retic framework and consider two computationally feasible greedy pursuit policies. They
do not show performance guarantees on solution quality relative to the optimal one, but
demonstrate empirically that their method is efficient in locating targets attempting to
evade capture. However, the evaders have only limited escape capabilities and the solution
is sensitive to the accuracy of the target motion model.

CP and Mixed Integer Programming have been used to define multiple non-overlapping
feasible areas over which UAVs can fly to maximize the total probability of finding stationary
targets (Abi-Zeid et al., 2011; Morin et al., 2017).

In the context of AI research and video-game development, Sun, Uras, Koenig, and Yeoh
(2012) propose the first incremental anytime search algorithm for moving-target search
in known terrain. Their technique is very effective in small grid environments, but its
scalability has not yet been studied.

554

Autonomous Target Search with Multiple Coordinated UAVs

7.4 Path Planning

The simplest path-planning strategies for search focus on visiting known locations while min-
imizing distance traveled or the time to finish the mission (Bellingham, Tillerson, Alighan-
bari, & How, 2002; Enright, Savla, Frazzoli, & Bullo, 2009). More sophisticated methods
consider searching for one or multiple targets in unknown positions and aim to maximize
the probability of detection. In these works, the target is no longer considered after it is
found. Chung and Carpin (2011), for example, present a method to search for and localize
a stationary target using a team of flying robots. The estimation is done using a quad-tree
decomposition of the environment to maximize computational efficiency over large search
areas. The objective is to maximize the probability of detection divided by the control
effort.

Considerable work has been devoted to devising efficient path-planning methods for
UAVs involved in search-and-rescue operations. Lin and Goodrich (2014), for example,
consider the problem of wilderness search and rescue where mini-UAVs are used to locate
missing persons. They propose a new family of path-planning algorithms that use a special
spatial representation, the task difficulty map, to model the sensor detection probability.
The map is used during planning with a new heuristic, the mode goodness ratio, to prioritize
search sub-areas that present a higher probability of rediscovering the target. This work
has a number of similarities with our approach. Both techniques aim to produce efficient
flight maneuvers for the UAV to maximize the probability of finding the target in the face
of sensor limitations and environmental constraints. We exploit probabilistic reasoning to
guide the planner to visit the most promising sub-regions first. However, our approach
is not devised specifically for path-planning, but rather tackles the entire decision-making
process that underpins the behavior of the UAVs. As well as trajectories, when necessary,
we can plan additional actions for the UAVs, such as performing search patterns, and
potentially refilling depleted resources and avoiding localization failures. In addition, we
consider moving targets in wide spaces (hundreds of square kilometers), while Lin and
Goodrich (2014) assume the target to be stationary within a limited space.

8. Conclusions

In this paper, we consider the problem of search-and-tracking for a single, mobile target with
multiple UAVs in a large geographical region and for an extended period of time. S&T is a
difficult problem that is often encountered in real-world missions such as disaster response,
surveillance, law enforcement, and monitoring. So far, progress in the area of S&T has been
limited to unrealistic scenarios or missions with a single UAV. In our work, we take up the
challenge of developing techniques that can scale to solve real-world problems.

We cast S&T as a deterministic combinatorial problem, departing from the traditional
formulation as a probabilistic continuous problem, and we prove that the objective function
of our formulation is submodular. Starting from this observation, we develop three different
optimization approaches to tackle S&T. The first is a greedy algorithm, which works very
well in our case even if the temporal constraints in our problem do not admit the sub-
optimality guarantee that holds for algorithms that maximize pure submodular functions.
We also apply AI planning and constraint programming (CP) to S&T. We extend previous
work in the area to multiple observers, improve existing models and use the solutions

555

Piacentini, Bernardini & Beck

provided by the greedy algorithm for warm starting the CP model and for a new domain-
dependent heuristic for the planner popf-tif.

Our experimental evaluation shows that the greedy solution is fast and effective, es-
pecially when there are multiple observers available for search. However, when resources
are limited, using more powerful optimization techniques pays off. Since our problems are
large and complex, CP and AI planning, however, are not efficient enough if they are not
enhanced by the greedy solution. It is in the integration of the greedy algorithm with CP
or AI planning that a winning strategy can be found.

In our future work, we will consider missions where multiple targets need to be discovered
and tracked to their destinations. We expect that the introduction of multiple targets will
partially erode the efficiency of our solution approaches and thus, to control the complexity
of the problem, we plan to explore powerful decomposition techniques such as logic-based
Benders decomposition (Hooker & Ottosson, 2003) and branch-and-check (Beck, 2010). We
also plan to study the similarities between our scenario and the combined location-routing
problem from the operations research (OR) literature (Min, Jayaraman, & Srivastava, 1998;
Fazel-Zarandi, Berman, & Beck, 2013).

Acknowledgments

We would like to thank the anonymous reviewers whose valuable feedback helped improve
the final paper. This research has been supported by the Engineering and Physical Sci-
ences Research Council (grant EP/S0164473/1), Natural Sciences and Engineering Research
Council of Canada, Royal Holloway University of London and Massachusetts Institute of
Technology.

Appendix A. Generation of Candidate Search Patterns via MCS

In this appendix, we give a detailed account of the technique that we follow to generate
the candidate search patterns. The technique was presented in previous work (Bernardini
et al., 2017), but we repeat the material here to make this paper self-contained.

In S&T, the optimization solver’s role is to select a set of search patterns and sequence
them over time. To operate effectively, we need to provide the solver with an initial pool
of candidate search patterns from which it chooses a subset to execute. It is preferable to
keep the cardinality of this set small so as to reduce the computational complexity but also
to have a large enough set of candidates to allow a high probability of successful tracking
of the target to its destination. We perform MCS to identify points in the search area that
present the highest probability of finding the target at different points in time and then
create candidate patterns that have those points as their centres.

A.1 Graph Construction

We assume that the target is located in Euclidean 2-space and that this space is charac-
terized by a road network (RN), where each road is a sequence of connected line segments.
The target motion on each segment is assumed to follow a constant speed randomly and
uniformly sampled in an interval [νmin, νmax], where νmin and νmax are the minimum and

556

Autonomous Target Search with Multiple Coordinated UAVs

maximum speed allowed in that segment depending on the road type. Each segment in a
road is characterized by a concealment level η ∈ [0, 1] that represents an estimate of how
easy is for the target to hide from the observer when travelling over that segment.

We take a circle centred on the target’s last known position (LKP) as the search area
and then superimpose a grid X on it, with the side of each square cell being δ. To represent
the topology of the search area, we build a graph G = 〈V,E〉 based on the RN enclosed in
the grid. V represents the set of cells that contain at least one road segment within the
grid. Edges in E are those pairs (v, w) where v and w are adjacent cells in the grid and
there exists a road segment that intersects both of them. Each edge (v, w) is labelled with:
(i) the minimum νmin

(v,w) and maximum νmax
(v,w) speed allowed in the segment that connects v

to w and (ii) its concealment level η(v,w). We denote by v0 the cell that corresponds to the
target LKP and assume that a set of target possible destinations, which we will identify
with a subset D ⊂ V of cells, is given together with a probability distribution (PD) over
them: µ : D → [0, 1].

A.2 Probabilistic Motion Model

Given the graph G, we define the weight of an edge (v, w) as w(v,w) := (δ/νmax
(v,w)(1−αη(v,w))),

where the parameter α ∈ [0, 1] needs to be established case-by-case based on the desired
trade-off between the time to travel an edge and the concealment level over it. Given a
path γ in G, we define the cost of γ as cost(γ) :=

∑
(vi,wi)∈γ w(vi,wi).

From the graph G and for l equally partitioned values of α, we calculate the k cheapest
loop-less paths from v0 to each destination in D by using a variant of the Dijkstra’s single-
source-shortest-path algorithm (Yen, 1971). Given v0 and a destination x ∈ D, we denote
with Γx = {γ1, . . . , γ(k·l)} the set of the (k · l) cheapest paths associated with destination
x. For each destination x, we define a PD over Γx, θ : Γx → [0, 1] as follows: θ(γ) =

1
Z(β)e

−βcost(γ), where β ∈ R is a free parameter and the normalising constant Z(β) is the

partition function
∑

γi∈Γx
e−βcost(γi). When β = 0, the probability is uniform over all

paths; when β increases, the cheapest path progressively becomes the most probable. This
function, therefore, gives us the flexibility to treat different degrees of evasiveness within
the same framework.

Given the graph G, consider the subgraph G′ determined by the LKP node v0, the
destination nodes D and the nodes on the cheapest paths Γx1 , . . .Γxd that connect v0 to
the destination x1, . . . , xd. Given a node w in this graph, consider the subgraph Gw that
is determined by all the paths from w to the destination nodes D (these are subpaths of
the paths in Γx1 ∪ . . . ∪ Γxd). We call Γ(w) the set of paths γ ∈ Gw and we say that γ are
compatible with w.

The target motion is modelled as a continuous time stochastic process X(t) that takes
values on V and is described as follows:

• the final destination cell x ∈ D is sampled according to the PD µ;

• the path γ ∈ Γx from v0 to x is sampled according to the PD θ;

• X(t) moves with a velocity scaled by a constant factor ω uniformly sampled in the
interval [0,1];

557

Piacentini, Bernardini & Beck

• X(t) moves from v0 to x by following the path γ = (v0, v1, . . . , vl = x) and by jumping
from vk to vk+1 at the time tk; and

• the jumping time tk’s are iteratively determined according to the following formula:
tk+1 − tk = δ/νk, where νk = νmin

(vk,vk+1) + ω(νmax
(vk,vk+1) − ν

min
(vk,vk+1)).

A.3 Approximation of Marginal Distributions

X(t) is a continuous time process, but we look at it only at certain time points. Given
the mission time interval [0,T], we establish the time check points t0 = 0, t1, . . . , tn, where
ti+1 = ti + T/n. Our goal is to estimate the marginal PD of the process X(t) on the above
check points. We then use these marginals to generate candidate search patterns.

Estimation of the marginal is performed through standard Monte Carlo Simulation
(MCS). More specifically, we consider a set of M particles moving in the graph as inde-
pendent realisations of the stochastic process X(t). Let χj(t) be the position of the jth

particle at time t. We define the approximated distribution of the process X(t) at time tk
as qtkv = | {j|χj(tk) = v} | /M for v ∈ V. From the law of large numbers, we know that qtkv
approximates, for a sufficiently large M , the true marginal distributions of X(tk).

A.4 Generation of Search Patterns

For each time check point ti, we select the n nodes that have collected the highest number
of particles and then generate n non-overlapping candidate search patterns centred around
them, which are subsets of R2. We denote the set of all search patterns chosen at any
time check point by C. Each search pattern σ ∈ C has a time window [t−σ , t

+
σ] associated

with it that corresponds to the activation window of the pattern. This window is set up by
calculating the shortest and longest time of arrival for the target to the pattern’s centre.
For every σ ∈ C, we call Vσ the set of nodes in the graph G that are contained by σ (in the
embedding environment R2), i.e. Vσ = {v ∈ V |v ⊆ σ}. We indicate with Γσ =

⋃
v∈Vσ Γ(v)

the paths γ that are compatible with σ.

Appendix B. Iterative Update of Probabilities

Following Bernardini et al. (2016), we report here the derivation of the total probability of
rediscovering the target after the execution of a sequence of search patterns Σ.

Let Fσ represent the event of finding the target in a search of the area covered by the
pattern σ and F̃σ its negation. Given a set of search patterns Σ = {σ1, σ2, . . . , σk}, we call
FΣ the event of finding the target during the execution of the set Σ, and F̃Σ its negation,
i.e.:

FΣ = Fσ1 ∪ · · · ∪ Fσk F̃Σ = F̃σ1 ∩ · · · ∩ F̃σk

We call PΣ(γ) the probability that the target is following the path γ conditioned to the
failure of the search patterns in Σ.

PΣ(γ) := P(target→ γ|F̃Σ)

Given an initial probability distribution for each path, we have that P∅(γ) = PD(γ).

558

Autonomous Target Search with Multiple Coordinated UAVs

The probability P (Σ) of finding the target by executing the set of search patterns Σ is
defined as:

P (Σ) := P(FΣ) (30)

We now show how to calculate P (Σ) in a recursive fashion. We start by analyzing the path
probabilities PΣ(γ), which play a pivotal role in our computation. Given a set of search
patterns Σ and a search pattern candidate σ ∈ C̃ \ Σ, we can write PΣ(γ) using a total
probability argument:

PΣ(γ) = PΣ∪{σ}(γ)P(F̃σ|F̃Σ) + P(target→ γ|F̃Σ ∩ Fσ)P(Fσ|F̃Σ) (31)

The different terms in this equation can be rewritten as follows. We let PΣ∪σ∗ := P(Fσ|F̃Σ)
and call PΣ∪σ∗ the probability that the target is found during the execution of a search
pattern σ, conditioned to the event that it has not been discovered earlier. This probability
is the product of two terms: 1. the probability that the target is following a path compatible
with σ (i.e. γ ∈ Γσ) computed according to the distribution PΣ(γ), which encodes the fact
that the target has not been discovered earlier; and 2. the probability that the observer
finds the target when it is in view, i.e. the detection probability φσ. In formula:

PΣ∪σ∗ = φσ
∑
γ∈Γσ

PΣ(γ) (32)

Let us consider now the term P(target→ γ|F̃Σ ∩Fσ). To expand it further, we need to
distinguish whether the path γ is in the set of destinations compatible with the pattern σ
or not. Evidently, if γ 6∈ Γσ, this term is equal to 0. If γ ∈ Γσ, this term can be computed
by simply conditioning the probability distribution PΣ(γ) on the subset of the destinations
Γσ which are compatible with σ. We thus obtain the following expression:

P(target→ γ|F̃Σ ∩ Fσ) =


PΣ(γ)∑

η∈Γσ

PΣ(η) if γ ∈ Γσ

0 if x 6∈ Γσ

(33)

If we substitute Equations (32) and (33) into (31), we obtain the following recursive structure
for the computation of PΣ∪{σ}(γ):

PΣ∪{σ}(γ) =
PΣ(γ) · (1− φσ · 1Γσ(γ))

1− PΣ∪{σ}∗
(34)

where 1 is the indicator function: 1A(x) = 1 if x ∈ A and 0 otherwise.
A recursive structure for the computation of P (Σ∪{σ}) can now be obtained as follows:

P (Σ ∪ {σ}) = P(FΣ) + P(Fσ|F̃Σ) · P(F̃Σ) (35)

or, in more compact notation,

P (Σ ∪ {σ}) = P (Σ) + PΣ∪{σ}∗ · (1− P (Σ))

P (∅) = 0
(36)

If we combine Equations (32), (33) and (36), we obtain an exact recursive formula for
the computation of P (Σ).

559

Piacentini, Bernardini & Beck

Appendix C. PDDL2.1 Specification of the Search Domain

(d e f i n e (domain UAV)
(: requ i rements : typing : durat ive−act ions : f l u e n t s

: t i m e d− i n i t i a l− l i t e r a l s : e q u a l i t y)
(: types pattern waypoint d e s t i n a t i o n uav)

(: p r e d i c a t e s
(at ?u − uav ?p − waypoint)
(a c t i v e ?p − pattern)
(beginAt ?w − waypoint ?p − pattern)
(endAt ?w − waypoint ?p − pattern))

(: f u n c t i o n s
(prob ?d − d e s t i n a t i o n)
(previous−prob ?d − d e s t i n a t i o n)
(total−prob)
(heur i s t i c−approx imat ion)
(previous−total−prob
(is−doing ?p − pattern ?u − uav)
(is−uav ?u − uav)
(t ime fo r ?p − pattern)
(d i s t anc e ?p1 ?p2 − waypoint)
(n−pattern)
(n−pattern−active ?p − pattern))

(: durat ive−act ion f l y
: parameters (? from ? t to − waypoint ?u − uav)
: durat ion (= ? durat ion (d i s t ance ? from ? t to))
: c ond i t i on (and

(at s t a r t (at ?u ? from))
(at s t a r t (not (= ? from ? t to))))

: e f f e c t (and
(at s t a r t (not (at ?u ? from)))
(at end (at ?u ? t to))))

(: durat ive−act ion doPattern
: parameters (? from ? to − waypoint ?p − pattern ?u − uav)
: durat ion (=? durat ion (t ime fo r ?p))
: cond i t i on (and

(at s t a r t (beginAt ? from ?p))
(at s t a r t (endAt ? to ?p))
(at s t a r t (at ?u ? from))
(at s t a r t (a c t i v e ?p))
(at s t a r t (< (is−uav ?u) 10)))

: e f f e c t (and
(at end (at ?u ? to))
(at s t a r t (not (at ?u ? from)))
(f o r a l l (? pp − pattern)

(and (at s t a r t (a s s i g n (is−doing ?pp ?u) 0))))
(f o r a l l (? v − uav) (and (at s t a r t (a s s i g n (is−uav ?v) 0))))
(at end (a s s i g n (is−doing ?p ?u) 1))
(at end (a s s i g n (is−uav ?u) 1))
(f o r a l l (?d − d e s t i n a t i o n)

560

Autonomous Target Search with Multiple Coordinated UAVs

(and (at end (a s s i g n (previous−prob ?d) (prob ?d)))))
(at end (a s s i g n (previous−total−prob) (total−prob)))
(f o r a l l (?d − d e s t i n a t i o n)

(and (at end (i n c r e a s e (p r o b a b i l i t y ?d) 0 . 0 0 0 1))))
(at end (i n c r e a s e (total−prob) (heur i s t i c−approx imat ion)))
(at end (a s s i g n (n−pattern) (n−pattern−active ?p))))))

References

Abi-Zeid, I., Nilo, O., & Lamontagne, L. (2011). Resource allocation algorithms for planning
search and rescue operations. INFOR, 49 (1), 15–30.

Adams, S. M., & Friedland, C. J. (2011). A survey of unmanned aerial vehicle (UAV) usage
for imagery collection in disaster research and management. In Proceedings of the 9th
International Workshop on Remote Sensing for Disaster Response, Vol. 8.

Alaei, S., & Malekian, A. (2010). Maximizing sequence-submodular functions and its ap-
plication to online advertising. In arXiv:1009.4153v1, pp. 1–18.

Alon, N., Gamzu, I., & Tennenholtz, M. (2012). Optimizing budget allocation among
channels and influencers. In Proceedings of the 21st international conference on World
Wide Web, pp. 381–388. ACM.

Ammad-Udin, M., Mansour, A., Le Jeune, D., Aggoune, E. H. M., & Ayaz, M. (2016). Uav
routing protocol for crop health management. In Proceedings of the 24th European
Signal Processing Conference (EUSIPCO), pp. 1818–1822. IEEE.

Baier, J. A., Bacchus, F., & McIlraith, S. A. (2009). A heuristic search approach to planning
with temporally extended preferences. Artificial Intelligence, 173 (5), 593.

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based Scheduling. Kluwer
Academic Publishers.

Beck, J. C., Davenport, A. J., Davis, E. D., & Fox, M. S. (1998). The ODO project: Toward
a unified basis for constraint-directed scheduling. Journal of Scheduling, 1 (2), 89–125.

Beck, J. C. (2007). Solution-guided multi-point constructive search for job shop scheduling.
Journal of Artificial Intelligence Research, 29, 49–77.

Beck, J. C. (2010). Checking-up on branch-and-check. In Cohen, D. (Ed.), Proceedings
of the 16th International Conference on the Principles and Practice of Constraint
Programming (CP), pp. 84–98, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bellingham, J. S., Tillerson, M., Alighanbari, M., & How, J. P. (2002). Cooperative path
planning for multiple uavs in dynamic and uncertain environments. In Proceedings of
the 41st IEEE Conference on Decision and Control, Vol. 3, pp. 2816–2822 vol.3.

Benkoski, S. J., Monticino, M. G., & Weisinger, J. R. (1991). A survey of the search theory
literature. Naval Research Logistics, 38 (4), 469–494.

Benton, J., Coles, A. J., & Coles, A. (2012). Temporal planning with preferences and time-
dependent continuous costs.. In Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS), Vol. 77, p. 78.

561

Piacentini, Bernardini & Beck

Bernardini, S., Fox, M., & Long, D. (2017). Combining temporal planning with probabilistic
reasoning for autonomous surveillance missions. Autonomous Robots, 41 (1), 181–203.

Bernardini, S., Fox, M., Long, D., & Bookless, J. (2013). Autonomous search and track-
ing via temporal planning. In Proceedings of the 23rd International Conference on
Automated Planning and Scheduling (ICAPS).

Bernardini, S., Fox, M., Long, D., & Piacentini, C. (2016). Leveraging probabilistic rea-
soning in deterministic planning for large-scale autonomous search-and-tracking. In
Proceedings of the 26th International Conference on Automated Planning and Schedul-
ing (ICAPS).

Bernardini, S., Fox, M., Long, D., & Piacentini, C. (2017a). Boosting search guidance in
problems with semantic attachments. In Proceedings of the 27h International Confer-
ence on Automated Planning and Scheduling, (ICAPS), pp. 29–37.

Bernardini, S., Fox, M., Long, D., & Piacentini, C. (2017b). Deterministic vs probabilis-
tic methods for searching for an evasive target. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence (AAAI).

Bertuccelli, L. F., & How, J. P. (2006). Uav search for dynamic targets with uncertain
motion models. In Proceedings of the 45th IEEE Conference on Decision and Control,
pp. 5941–5946.

Bondi, E., Fang, F., Hamilton, M., Kar, D., Dmello, D., Choi, J., Hannaford, R., Iyer, A.,
Joppa, L., & Tambe, M. (2018). Spot poachers in action: Augmenting conservation
drones with automatic detection in near real time. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence.

Booth, K. E. C., Do, M., Beck, J. C., Rieffel, E. G., Venturelli, D., & Frank, J. (2018). Com-
paring and integrating constraint programming and temporal planning for quantum
circuit compilation. In Proceedings of the 28th International Conference on Automated
Planning and Scheduling, (ICAPS), pp. 366–374.

Booth, K. E. C., Nejat, G., & Beck, J. C. (2016a). A constraint programming approach to
multi-robot task allocation and scheduling in retirement homes. In Proceedings of the
22nd International Conference on Principles and Practice of Constraint Programming
(CP), pp. 539–555.

Booth, K. E. C., Tran, T. T., Nejat, G., & Beck, J. C. (2016b). Mixed-integer and con-
straint programming techniques for mobile robot task planning. IEEE Robotics and
Automation Letters, 1 (1), 500–507.

Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2004). Process model, constraints,
and the coordinated search strategy. In Proceedings of the 2004 IEEE International
Conference on Robotics and Automation (ICRA)), pp. 5256–5261.

Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2006). Optimal search for a lost
target in a bayesian world. In Field and Service Robotics, Vol. 24 of Springer Tracts
in Advanced Robotics, pp. 209–222. Springer Berlin.

Calinescu, G., Chekuri, C., Pál, M., & Vondrák, J. (2007). Maximizing a submodular
set function subject to a matroid constraint. In International Conference on Integer
Programming and Combinatorial Optimization, pp. 182–196. Springer.

562

Autonomous Target Search with Multiple Coordinated UAVs

Carvalho, C., Teichteil-Konigsbuch, F., & Lesire, C. (2013). Multi-target detection and
recognition by uavs using online pomdps. In Proceedings of the 27th AAAI Conference
on Artificial Intelligence (AAAI).

Charrow, B., Kumar, V., & Michael, N. (2014). Approximate representations for multi-
robot control policies that maximize mutual information. Autonomous Robots, 37 (4),
383–400.

Chen, W., Chen, Y., & Weinberger, K. (2015). Filtered search for submodular maximization
with controllable approximation bounds. In Eighteenth International Conference on
Artificial Intelligence and Statistics, Vol. 38, pp. 156–164.

Chmaj, G., & Selvaraj, H. (2015). Distributed processing applications for uav/drones: a
survey. In Progress in Systems Engineering, pp. 449–454. Springer.

Chung, C. F., & Furukawa, T. (2006). Coordinated search-and-capture using particle filters.
In Proceedings of the 9th International Conference on Control, Automation, Robotics
and Vision (ICARCV), pp. 1–6.

Chung, T. H., & Carpin, S. (2011). Multiscale search using probabilistic quadtrees. In
Proceedings of the 2011 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2546–2553.

Coles, A. J., Coles, A. I., Fox, M., & Long, D. (2009). Temporal planning in domains
with linear processes. In Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI), pp. 1671–1676.

Coles, A. J., Coles, A. I., Fox, M., & Long, D. (2010). Forward-chaining partial-order
planning. In Proceedings of the 20th International Conference on Automated Planning
and Scheduling (ICAPS).

Coles, A., Fox, M., Halsey, K., Long, D., & Smith, A. (2009). Managing concurrency in
temporal planning using planner-scheduler interaction. Artificial Intelligence, 173 (1),
1–44.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelli-
gence, 49, 61–95.

Domshlak, C., & Mirkis, V. (2015). Deterministic oversubscription planning as heuristic
search: Abstractions and reformulations. Journal of Artificial Intelligence Research,
52, 97–169.

Doran, J. E., & Michie, D. (1966). Experiments with the graph traverser program. Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 294 (1437), 235–259.

Enright, J. J., Savla, K., Frazzoli, E., & Bullo, F. (2009). Stochastic and dynamic routing
problems for multiple uninhabited aerial vehicles. Journal of Guidance, Control, and
Dynamics, 32 (4), 1152–1166.

Fazel-Zarandi, M. M., Berman, O., & Beck, J. C. (2013). Solving a stochastic facility
location/fleet management problem with logic-based benders’ decomposition. IIE
Transactions, 45 (8), 896–911.

563

Piacentini, Bernardini & Beck

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20.

Furukawa, T., Bourgault, F., Lavis, B., & Durrant-Whyte, H. F. (2006). Recursive bayesian
search-and-tracking using coordinated UAVs for lost targets. In Proceedings of the
2006 IEEE International Conference on Robotics and Automation (ICRA), pp. 2521–
2526.

Furukawa, T., Durrant-Whyte, H. F., & Lavis, B. (2007). The element-based method —
theory and its application to bayesian search and tracking. In Proceedings of the 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
2807–2812.

Furukawa, T., Mak, L. C., Durrant-Whyte, H. F., & Madhavan, R. (2012). Autonomous
bayesian search and tracking, and its experimental validation. Advanced Robotics,
26 (5-6), 461–485.

Gerevini, A. E., Haslum, P., Long, D., Saetti, A., & Dimopoulos, Y. (2009). Determinis-
tic planning in the fifth international planning competition: Pddl3 and experimental
evaluation of the planners. Artificial Intelligence, 173 (5-6), 619–668.

Girard, A. R., Howell, A. S., & Hedrick, J. K. (2004). Border patrol and surveillance
missions using multiple unmanned air vehicles. In Proceedings of the IEEE Conference
on Decision and Control (CDC), Vol. 1, pp. 620–625. IEEE.

Harjunkoski, I., & Grossmann, I. E. (2002). Decomposition techniques for multistage
scheduling problems using mixed-integer and constraint programming methods. Com-
puters & Chemical Engineering, 26 (11), 1533–1552.

Haslum, P., Ivankovic, F., Ramirez, M., Gordon, D., Thiébaux, S., Shivashankar, V., &
Nau, D. S. (2018). Extending classical planning with state constraints: Heuristics and
search for optimal planning. Journal of Artificial Intelligence Research, 62, 373–431.

He, R., Bachrach, A., & Roy, N. (2010). Efficient planning under uncertainty for a target-
tracking micro-aerial vehicle. In Proceedings of the 2010 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 1–8.

Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A., & Clarke, R. H. (2016). Precision
wildlife monitoring using unmanned aerial vehicles. Scientific reports, 6, 22574.

Hoffmann, G. M., & Tomlin, C. J. (2010). Mobile sensor network control using mutual
information methods and particle filters. IEEE Transactions on Automatic Control,
55 (1), 32–47.

Hollinger, G., Kehagias, A., & Singh, S. (2007). Probabilistic strategies for pursuit in
cluttered environments with multiple robots. In Proceedings of the 2007 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 3870–3876.

Hollinger, G. (2010). Search in the physical world. Tech. rep., Robotics Institute, Carnegie
Mellon University.

Hooker, J., & Ottosson, G. (2003). Logic-based benders decomposition. Mathematical
Programming, 96 (1), 33–60.

564

Autonomous Target Search with Multiple Coordinated UAVs

Hsu, D., Sun, W., & Rong, L. N. (2008). A point-based pomdp planner for target tracking. In
Proceedings of the 2008 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2644–2650.

Jawaid, S. T., & Smith, S. L. (2015). Submodularity and greedy algorithms in sensor
scheduling for linear dynamical systems. Automatica, 61, 282–288.

Karich, P. (2015). GraphHopper. https://graphhopper.com. Accessed: 2016-09-11.

Kelareva, E., Tierney, K., & Kilby, P. (2013). Cp methods for scheduling and routing with
time-dependent task costs. In Proceedings of the 10th International Conference on
AI and OR Techniques in Constriant Programming for Combinatorial Optimization
Problems (CPAIOR), pp. 111–127. Springer.

Koopman, B. (1946). Search and screening – operations research evaluation group report
56. Tech. rep., Center for Naval Analyses.

Kratzke, T., Stone, L., & Frost, J. (2010). Search and rescue optimal planning system. In
Proceedings of the 13th Conference on Information Fusion, pp. 1–8.

Krause, A., & Guestrin, C. (2011). Submodularity and its applications in optimized infor-
mation gathering. ACM Transactions on Intelligent Systems and Technology, 2 (4),
1–20.

Kulik, A., Shachnai, H., & Tamir, T. (2009). Maximizing submodular set functions sub-
ject to multiple linear constraints. In Proceedings of the 20th annual ACM-SIAM
symposium on Discrete algorithms, pp. 545–554. Society for Industrial and Applied
Mathematics.

Laborie, P. (2009). IBM ILOG CP optimizer for detailed scheduling illustrated on three
problems. In Proceedings of the 6th International Conference on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR), pp. 148–162.

Laborie, P., & Messaoudi, B. (2017). New results for the GEO-CAPE observation scheduling
problem. In Proceedings of the 27th International Conference on Automated Planning
and Scheduling (ICAPS), pp. 382–390.

Laborie, P., Refalo, P., & Shaw, P. (2013). Model presolve, warmstart and conflict refining
in cp optimizer. In Presentation at the CP2013 Workshop on CP Solvers: Modeling,
Applications, Integration, and Standardization.

Laborie, P., & Rogerie, J. (2008). Reasoning with conditional time-intervals.. In Proceedings
of the FLAIRS Conference, pp. 555–560.

Laborie, P., Rogerie, J., Shaw, P., & Viĺım, P. (2018). IBM ILOG CP optimizer for schedul-
ing. Constraints, 23 (2), 210–250.

Lau, H., Huang, S., & Dissanayake, G. (2005). Optimal search for multiple targets in a
built environment. In Proceedings of the 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

Lau, H., Huang, S., & Dissanayake, G. (2006). Probabilistic search for a moving target in an
indoor environment. In Proceedings of the 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

565

Piacentini, Bernardini & Beck

Lavis, B., & Furukawa, T. (2008). HyPE: Hybrid particle-element approach for recursive
bayesian searching and tracking. In Proceedings of the 2008 Robotics: Science and
Systems Conference, pp. 135–142.

Lin, H., & Bilmes, J. (2010). Multi-document summarization via budgeted maximization
of submodular functions. In Proceedings of the 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pp. 912–920.
Association for Computational Linguistics.

Lin, L., & Goodrich, M. A. (2014). Hierarchical heuristic search using a gaussian mixture
model for uav coverage planning. IEEE Transactions on Cybernetics, 44, 2532–2544.

Liu, P., Chen, A. Y., Huang, Y.-N., Han, J.-Y., Lai, J.-S., Kang, S.-C., Wu, T.-H., Wen,
M.-C., & Tsai, M.-H. (2014). A review of rotorcraft unmanned aerial vehicle (UAV)
developments and applications in civil engineering. Smart Structures Systems, 13 (6),
1065–1094.

Min, H., Jayaraman, V., & Srivastava, R. (1998). Combined location-routing problems: A
synthesis and future research directions. European Journal of Operational Research,
108 (1), 1 – 15.

Minoux, M. (1978). Accelerated greedy algorithms for maximizing submodular set functions.
Optimization Techniques, XXXIII (2), 234–243.

Morin, M., Abi-Zeid, I., Quimper, C.-G., & Nilo, O. (2017). Decision support for search
and rescue response planning. In Proceedings of the 14th ISCRAM Conference.

Nemhauser, G. L., & Wolsey, L. (1978). An analysis of approximations for maximizing
submodular set functions. Mathematical Programming, 14, 265–294.

Parambath, S. P., Vijayakumar, N., & Chawla, S. (2018). SAGA: A submodular greedy
algorithm for group recommendation. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence (AAAI).

Paterson, J. G., Timmons, E., & Williams, B. C. (2014). A scheduler for actions with iterated
durations. In Proceedings of the 28th AAAI Conference on Artificial Intelligence
(AAAI).

Piacentini, C., Alimisis, V., Fox, M., & Long, D. (2015). An extension of metric temporal
planning with application to AC voltage control. Artificial Intelligence, 229, 210–245.

Pitre, R. R., Li, X. R., & Delbalzo, R. (2012). UAV route planning for joint search and
track missions: An information-value approach. IEEE Transactions on Aerospace and
Electronic Systems, 48 (3), 2551–2565.

Pommerening, F. (2017). New perspectives on cost partitioning for optimal classical plan-
ning. Tech. rep., Faculty of Science, University of Basel.

Richardson, H. R., & Discenza, J. H. (1980). The united states coast guard computer-
assisted search planning system (CASP). Naval Research Logistics Quarterly, 27 (4),
659–680.

Richardson, H. R., & Stone, L. D. (1971). Operations analysis during the underwater search
for Scorpion. Naval Research Logistics, 18, 141–157.

566

Autonomous Target Search with Multiple Coordinated UAVs

Rodriguez, J. (2007). A constraint programming model for real-time train scheduling at
junctions. Transportation Research Part B: Methodological, 41 (2), 231–245.

Roy, N., & Earnest, C. (2006). Dynamic action spaces for information gain maximization
in search and exploration. In 2006 American Control Conference.

Ryan, A., & Hedrick, J. K. (2010). Particle filter based information-theoretic active sensing.
Robotics and Autonomous Systems, 58 (5), 574 – 584.

Sakaue, S., & Ishihata, M. (2018). Accelerated best-first search with upper-bound com-
putation for submodular function maximization.. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI).

Sewell, E. C., & Jacobson, S. H. (2012). A branch, bound, and remember algorithm for the
simple assembly line balancing problem. INFORMS Journal on Computing, 24 (3),
433–442.

Smith, D. E., & Weld, D. S. (1997). Temporal planning with mutual exclusion reasoning.
In Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 326–333.

Stern, R. T., Kiesel, S., Puzis, R., Felner, A., & Ruml, W. (2014). Max is more than min:
Solving maximization problems with heuristic search. In Proceedings of the 7th Annual
Symposium on Combinatorial Search (SOCS), pp. 148–156.

Stone, L. D. (1975). The Theory of Optimal Search. Operations Research Society of America.

Sun, X., Uras, T., Koenig, S., & Yeoh, W. (2012). Incremental ARA*: An incremental
anytime search algorithm for moving-target search. In Proceedings of the 22nd Inter-
national Conference on Automated Planning and Scheduling (ICAPS).

Tian, X., Bar-Shalom, Y., & Pattipati, K. R. (2008). Multi-step look-ahead policy for
autonomous cooperative surveillance by UAVs in hostile environments. In Proceedings
of the 47th IEEE Conference on Decision and Control, pp. 2438–2443.

Tierney, K., Coles, A. J., Coles, A., Kroer, C., Britt, A. M., & Jensen, R. M. (2012).
Automated planning for liner shipping fleet repositioning.. In Proceedings of the 22nd
International Conference on Automated Planning and Scheduling (ICAPS), pp. 279–
287.

Tisdale, J., Ryan, A., Kim, Z., Tornqvist, D., & Hedrick, J. (2008). A multiple uav system
for vision-based search and localization. In Proceedings of the 2008 American Control
Conference, pp. 1985–1990.

Tran, T. T., Vaquero, T. S., Nejat, G., & Beck, J. C. (2017). Robots in retirement homes:
Applying off-the-shelf planning and scheduling to a team of assistive robots. Journal
of Artificial Intelligence Research, 58, 523–590.

Trummel, K. E., & Weisinger, J. R. (1986). The complexity of the optimal searcher path
problem. Operations Research, 34 (2), 324–327.

Vidal, R., Shakernia, O., Kim, H., Shim, D., & Sastry, S. (2002). Probabilistic pursuit-
evasion games: Theory, implementation, and experimental evaluation. IEEE Trans.
Robotics and Automation, 18 (5), 662?669.

567

Piacentini, Bernardini & Beck

Weil, G., Heus, K., Francois, P., & Poujade, M. (1995). Constraint programming for nurse
scheduling. IEEE Engineering in medicine and biology magazine, 14 (4), 417–422.

White, B. A., Tsourdos, A., Ashokaraj, I., Subchan, S., & Zbikowski, R. (2008). Con-
taminant cloud boundary monitoring using network of UAV sensors. IEEE Sensors
Journal, 8 (10), 1681–1692.

Yen, J. Y. (1971). Finding the K shortest loopless paths in a network. Management Science,
44, 712–716.

568

