
Journal of Artificial Intelligence Research 66 (2019) 197-223 Submitted 10/2018; published 09/2019

Timed ATL: Forget Memory, Just Count

Étienne André ETIENNE.ANDRE@LIPN.UNIV-PARIS13.FR
Laure Petrucci LAURE.PETRUCCI@LIPN.UNIV-PARIS13.FR
LIPN, CNRS UMR 7030, Université Paris 13,
Sorbonne Paris Cité, F-93430, Villetaneuse, France

Wojciech Jamroga W.JAMROGA@IPIPAN.WAW.PL

Michał Knapik MKNAPIK@IPIPAN.WAW.PL

Wojciech Penczek PENCZEK@IPIPAN.WAW.PL

Institute of Computer Science, Polish Academy of Sciences,
Warsaw, Poland

Abstract
In this paper we investigate the Timed Alternating-Time Temporal Logic (TATL), a discrete-

time extension of ATL. In particular, we propose, systematize, and further study semantic variants
of TATL, based on different notions of a strategy. The notions are derived from different assump-
tions about the agents’ memory and observational capabilities, and range from timed perfect recall
to untimed memoryless plans. We also introduce a new semantics based on counting the number
of visits to locations during the play. We show that all the semantics, except for the untimed me-
moryless one, are equivalent when punctuality constraints are not allowed in the formulae. In fact,
abilities in all those notions of a strategy collapse to the “counting” semantics with only two actions
allowed per location. On the other hand, this simple pattern does not extend to the full TATL.

As a consequence, we establish a hierarchy of TATL semantics, based on the expressivity of the
underlying strategies, and we show when some of the semantics coincide. In particular, we prove
that more compact representations are possible for a reasonable subset of TATL specifications,
which should improve the efficiency of model checking and strategy synthesis.

1. Introduction

The field of Multi-Agent Systems (MAS) concerns design, implementation, modeling, and veri-
fication of interacting agents, often assumed to be intelligent and autonomous. Alternating-time
temporal logic ATL? and its fragment ATL (Alur, Henzinger, & Kupferman, 1997, 2002) provide
a logical framework that allows for modeling, reasoning about, and verification of strategic inter-
actions in MAS (Alur, Henzinger, Mang, Qadeer, Rajamani, & Tasiran, 1998; Alur, de Alfaro,
Grossu, Henzinger, Kang, Kirsch, Majumdar, Mang, & Wang, 2001; Kacprzak & Penczek, 2004,
2005; Lomuscio & Raimondi, 2006; Bursztein & Goubault-Larrecq, 2007; Ezekiel & Lomuscio,
2009; Boureanu, Jones, & Lomuscio, 2012; Jamroga & Penczek, 2012; Huang & van der Mey-
den, 2014; Busard, Pecheur, Qu, & Raimondi, 2014; Lomuscio, Qu, & Raimondi, 2015; Jamroga,
Konikowska, & Penczek, 2016; Boureanu, Kouvaros, & Lomuscio, 2016). However, ATL does not
support timing constraints which are of high importance as they allow for expressing, e.g., that each
request should be served in a reasonable amount of time, or that no agent should block the service
for more than t time units.

c©2019 AI Access Foundation. All rights reserved.



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

In this paper, we investigate a discrete-time extension of ATL, called Timed Alternating-time
Temporal Logic (TATL). The basic version of TATL was proposed in (Laroussinie, Markey, &
Oreiby, 2006b), and enables to capture strategic properties that depend on both the visited locations
(states of the environment) and the time measured along the paths. We propose and study a number
of semantic variants, based on different constraints on the expressivity of strategies available to
agents and coalitions. The variants range from timed perfect recall (the agents can memorize the
whole history of the play, including all the visited locations and their time stamps) to untimed
memoryless (only the current location can be used to determine the next action).

In this respect, we show that the timed perfect recall and timed memoryless semantics coincide
for TATL. This corresponds to the well-known equivalence of the perfect recall and memoryless
semantics for ATL, but the timed version of the result is much more intricate and difficult to prove.
Moreover, we show that, for TATL without punctuality constraints, all the more expressive seman-
tics collapse to the “counting” semantics where choices are based on how many times the current
location has been visited during the play. In fact, it even suffices to consider the “1-threshold”
strategies that specify only up to two actions per location. On the other hand, we prove that the
semantics do not collapse for the full TATL (i.e. with ≤, ≥ and = operators), leading to a whole hi-
erarchy of different semantic variants corresponding to different observational and memory-related
capabilities of agents.

The results can be interpreted in two ways. On one hand, they indicate that verification and
strategy synthesis for TATL≤,≥ (i.e., Timed ATL without punctuality constraints) are relatively
easy because the underlying notion of ability reduces to simple, almost Markovian strategies. This
allows for a significant optimization of data structures and algorithms involved in the verification.
As the same is not valid for the full TATL, the results suggest that TATL≤,≥ specifications should
be used whenever possible.

At the same time, our results show that the language of TATL≤,≥ is not expressive enough to
capture many subtleties of strategic play of agents who can observe and measure the flow of time.
Thus, when expressivity is essential, one should rather sacrifice the complexity, and use the full
language of TATL for specification of properties.

1.1 Motivation

The focus of the paper is theoretical: we study how the inclusion of timing information in a strategy
influences the actual abilities of agents in the context of reachability and safety objectives. We note,
however, that the issue has important practical implications. In particular, timing is highly relevant
in strategic reasoning for broadly conceived security, e.g. potential terrorist attacks, hacking attacks,
phishing etc. An excellent introduction based on empirical evidence can be found in Farhang and
Grossklags (2017). For the purpose of motivating our research, we quote two real-life examples
after that paper:

Hijacking incident of Ethiopian Airlines, 2014. On Monday, 17th of February 2014, an Ethiopian
Airlines flight from Addis Ababa to Rome was hijacked, with its pilots planning to fly the
plane over Switzerland to Geneva. The plane eventually landed in Geneva shortly after 6am.
Interestingly, no escort could be provided by the Swiss Air Force because they did not op-
erate before 8am on weekdays. They also did not work during lunch breaks and on week-
ends. Clearly, those timing aspects had been relevant for the hijackers’ strategy (Saner, 2014;
Farhang & Grossklags, 2017).

198



TIMED ATL: FORGET MEMORY, JUST COUNT

Data security. Three timing factors are recognised as highly important for the strategies of both the
attacker and the system: protection time, detection time, and reaction time (Schwartau, 1999).
The optimal strategy of the attacker depends also on the time needed to compromise the
system. The strategic relevance of those factors has been demonstrated in multiple empirical
studies. For instance, Nadella (2015) showed that the analysed organisations on average failed
to detect attacks for over 225 days (!). Similarly, it was reported that for a majority of data
breach incidents at Verizon (2016) the time needed to compromise was a matter of minutes,
while the reaction time was typically a matter of days.

Our results show that, for a broad subclass of reachability and safety properties that may repre-
sent the objective of the attacker (hijacker, hacker, phishing agent), the relevant timing information
to construct a winning strategy is actually quite limited. The same applies to defence strategies on
the part of the system.

1.2 Structure of the Paper

The rest of the paper is organised as follows. In Section 2 we recall the basic definitions behind
TATL from Laroussinie et al. (2006b), and illustrate them on a scenario concerning security of
online services. In Section 3, we introduce several semantic variants of TATL. Namely, we consider
timed vs. timeless, and memoryful vs. memoryless variants of strategies, followed by counting
strategies and their n–threshold subclass. In Section 4 and Section 5, we explore the correspondence
between the semantics. The positive results, showing equivalence or refinement between different
semantic definitions are grouped in Section 4. The negative ones (i.e., non-equivalence proofs) are
presented in Section 5. The paper ends in Section 6 with a short summary and an outline of future
work.

1.3 Related Work

Strategic behaviour that uses timing information and strives to obtain timed properties have been re-
ferred to in many branches of computer science. For instance, timely fulfilment of contractual obli-
gations is an important subject in deontic analysis of deadlines (Dignum & Kuiper, 1998; Broersen,
Dignum, Dignum, & Meyer, 2004). As another example, the existence of timing attacks, where the
attacker can compromise the system by analysing the time taken to execute different operations, cre-
ate the need for timing analysis in verification of security (Kocher, 1996). The relevance of timing
in construction of an attack strategy was demonstrated and discussed e.g. in Farhang and Grossklags
(2017), Schwartau (1999), Saner (2014), Nadella (2015), Verizon (2016).

The work presented in this paper fits within the broad context of research on timed games (Maler,
Pnueli, & Sifakis, 1995; Alur, Bernadsky, & Madhusudan, 2004; Cassez, David, Fleury, Larsen, &
Lime, 2005; Brázdil, Forejt, Krcál, Kretínský, & Kucera, 2013; David, Fang, Larsen, & Zhang,
2014). Dense-timed games have been also specifically explored in Henzinger, Horowitz, and Ma-
jumdar (1999), Faella, La Torre, and Murano (2002), Bouyer, D’Souza, Madhusudan, and Petit
(2003), Henzinger and Prabhu (2006), Jurdzinski and Trivedi (2007), Brihaye, Laroussinie, Markey,
and Oreiby (2007), Faella, La Torre, and Murano (2014). Consequently, two kinds of semantic ap-
proaches are possible to logical reasoning about strategic ability: for strategies working in discrete
vs. dense time. The former has been studied in Laroussinie et al. (2006b), with a discrete-time ex-
tension of the best known strategic logic ATL (Alur et al., 1997, 2002). The latter was investigated

199



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

in Henzinger and Prabhu (2006), with an extension of a two-player fragment of ATL with physically
meaningful strategies, real time, and freeze quantifiers.

As time is a resource, also the work that pertains to game logics describing behaviours of
agents that can produce or consume resources should be mentioned. In particular, Alechina, Logan,
Nguyen, and Rakib (2010), Alechina, Bulling, Demri, and Logan (2018) introduce and investigate
Resource-Bounded ATL that allows for expressing strategic properties under limited reserves.

We build upon the theory introduced in Laroussinie et al. (2006b) that can be seen as the
simplest timed strategic logic. Note that our aim is not to propose a new logical framework for
reasoning about timed strategies. Instead, we identify natural restrictions on strategies in timed
games, and study their relative expressiveness.

1.4 Previous Versions of the Material

The main ideas of this article appeared in the short conference paper (André, Knapik, Jamroga,
& Petrucci, 2017). Here, we thoroughly extend and revise the material. The definitions are now
properly formalized, we provide proofs of all the results, and add running examples. We also correct
some erroneous statements regarding the relationships between non-equivalent semantic variants of
the logic. To this end we provide an extended and corrected picture of these relationships and show
that certain results hold only for the existential parts of TATL and TATL≤,≥.

2. Background

In this section we recall the basic definitions concerning Timed Alternating-time Temporal Logic
(TATL), proposed in Laroussinie et al. (2006b). The framework of TATL is a natural platform
for investigating the consequences of strategic decisions that take the flow of time explicitly into
account. The strategies of agents and coalitions can depend on the visited locations in the model as
well as the time measured along the paths. Note that, since we consider a discrete version of time
and since transitions take at least one time unit, all the runs are non-Zeno. A remark in Laroussinie
et al. (2006b) suggests that the results presented in the cited paper carry to the general case of
non-progressive time, but the proof is missing. Therefore, we leave this avenue for future research
and keep the assumption of strictly progressive time.

We begin by introducing the syntax of TATL. Then, we recall the semantics based on Tight Du-
rational Concurrent Game Structures (TDCGS) and their unfoldings to Duration Transition Systems
(DTS).

2.1 Syntax of TATL

Timed Alternating-time Temporal Logic (TATL) (Laroussinie et al., 2006b) extends Alternating-
time Temporal Logic (ATL) (Alur et al., 1997, 2002) with timing constraints.

Definition 1 (TATL Syntax) Let AP be a set of atomic propositions and Agt be a finite set of all
agents. The language of TATL is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉ϕU∼ηϕ | 〈〈A〉〉ϕR∼ηϕ

where p ∈ AP , A ⊆ Agt, ∼ ∈ {≤,=,≥}, and η ∈ N.

200



TIMED ATL: FORGET MEMORY, JUST COUNT

We interpret 〈〈A〉〉ϕ as “the coalition A can enforce ϕ”, X stands for “in the next state”, U for
“until”, and R for “release”. The Boolean constants > and ⊥ are defined as usual. The ∼η
subscript of the U and R operators allow for expressing a timing constraint.

Following the choice made in Laroussinie et al. (2006b), and in contrast to the usual definitions
of ATL, we also include both the “release” and the “until” modality in our syntax: indeed, it was
proved in Laroussinie, Markey, and Oreiby (2008) that the release cannot be expressed using only
〈〈A〉〉U and 〈〈A〉〉G.

Additional modalities 〈〈A〉〉F∼ηϕ := 〈〈A〉〉>U∼ηϕ and 〈〈A〉〉G∼ηϕ := 〈〈A〉〉⊥R∼ηϕ, are intro-
duced, where F is interpreted as “eventually,” and G as “always from now on” are also introduced.

Note that following (Laroussinie et al., 2006b) and unlike in vanilla ATL we introduce 〈〈A〉〉G
as a derived modality, as it is known (Laroussinie, Markey, & Oreiby, 2006a) that 〈〈A〉〉R cannot be
expressed using only 〈〈A〉〉U and 〈〈A〉〉G.

By TATL≤,≥ we denote the subset of the TATL formulae with ∼ ∈ {≤,≥}, i.e. where equality
is disallowed. Existential TATL, denoted by ∃TATL, is the subset of TATL such that negation can
be applied only to the atomic propositions.

Example 1 (Online services) Consider a system that offers online services to its users, e.g. pro-
vides information about garbage collection in a municipality, handles submission of tax reports,
conference registrations, etc. Let srva be an atomic proposition that holds whenever agent a has
just accessed the service. Moreover, we assume that users are willing to spend up to t time units
waiting for the service to be provided. The following formulae specify interesting properties that
may (or shall not) hold for the system:

Serviceability. 〈〈a〉〉F≤tsrva: agent a can use the service within t time units;

Denial of service (DoS). 〈〈a〉〉G≤t
(∧

j∈Agt\{a}¬srvj
)
: agent a can prevent all the others from using

the service within t time units;

Selective DoS.
∧
j∈Agt\{a}〈〈a〉〉G≤t¬srvj: agent a can prevent any other agent from using the ser-

vice (though not necessarily all of them together) within t time units;

Weak DoS.
∨
j∈Agt\{a}〈〈a〉〉G≤t¬srvj: agent a can prevent another agent from using the service

within t time units;

Distributed DoS. 〈〈A〉〉G≤t
(∧

j∈Agt\A ¬srvj
)
: agents in A can collude to prevent all the other

agents from using the service within t time units. Coalitional variants of weak and selective
DoS can be obtained analogously;

Service crash. 〈〈a〉〉G≥t′
(∧

j∈Agt ¬srvj
)
: agent a can effectively disable the service from time t′

on.

In order to define the semantics of TATL we need to recall two semantic structures: Tight Durational
Concurrent Game Structures and their Duration Transition Systems.

2.2 Tight Durational CGS

Tight Durational Concurrent Game Structures (Laroussinie et al., 2006b) are Concurrent Game
Structures (Alur et al., 2002) with transitions labelled by positive integers interpreted as their dura-
tions.

201



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

q0start

q1

srv1

q2

srv2

(wait ,wait)

1

(req1,wait)
2

(req1, req2)
3

(wait ,wait)1

(wait , req2) 2

(wait ,wait)1

Figure 1: A simple model of online services

Definition 2 (TDCGS) A Tight Durational Concurrent Game Structure is a tupleA = (Agt,Act ,Q,
AP,L, pr , t), where:

• Agt is a finite set of agents,

• Act is a finite set of actions,

• Q is a finite set of locations,

• AP is a set of atomic propositions,

• L : Q → P(AP) is a location labeling function,

• pr : Agt×Q → P(Act) \ {∅} is a protocol function,

• t : Q × Act |Agt| → Q × N+ is a partial transition function such that t(q, act) is defined iff
act |a ∈ pr(a, q) for each a ∈ Agt.

Transitions in TDCGS model the outcomes of behaviours of coalitions of agents. Each location
is assigned a set of atomic propositions by the labelling function L. In any location q, an agent a
can take one among several possible actions, as described by its protocol function pr(a, q). Note
that this set of actions cannot be empty. Finally, the transition function t specifies the effect of the
move of all agents such that each of them performs one action of its protocol. From a location and
a tuple of actions (one per agent), the transition function t leads to another location with a duration
specified by a positive integer.

Example 2 (Online services continued) A very simple model of access to an online service can be
defined by a TDCGS Aksrv consisting of k agents (labelled 1, . . . , k). In the initial location, each
agent can either do nothing (action wait) or request access to the service (action req i). If all the
agents do nothing, the system stays in the same location for 1 unit of time. If one agent sends a
request, s/he is granted access and uses the service, which takes 2 time units. If two agents request
access simultaneously, access is granted to the agent with the higher priority, i.e. the one with the
lower id, and the overall step takes slightly longer (3 time units). Once the service is used, the
agents can only execute wait , returning to the initial state, which takes 1 time unit. Finally, if more

202



TIMED ATL: FORGET MEMORY, JUST COUNT

(q0, 0)

start

(q0, 1) (q1, 2) (q1, 3) (q2, 2)

(wait ,wait)

(req1,wait) (req1, req2)

(wait , req2)

Figure 2: Partial unfolding of the TDCGS for services

than two agents send their requests at the same time, the system refuses to serve any of them, and
the decision to refuse takes 2 time units. The variant A2

srv for k = 2 agents is shown in Fig. 1.

In what follows, instead of pr(a, q) we write pra(q), for each a ∈ Agt and q ∈ Q. Moreover,
we extend protocols to coalitions by taking prA(q) =

∏
a∈A pra(q). Intuitively, prA(q) contains all

the tuples of actions viewed as possible synchronous moves of agents in A, enabled in the location
q. If A = Agt, we omit the subscript, simply writing pr(q).

We will use A as a shorthand for Agt \ A, Let act ∈ prA(q) be a tuple of actions of all the
agents in A and act ′ ∈ prA(q) a tuple of actions of all the agents in A. Then, (act , act ′) ∈ pr(q)
denotes the unique action such that the projection of (act , act ′) on A (respectively, A) yields act
(respectively, act ′).

We define the execution semantics for TDCGS by means of an unfolding to Duration Transition
Systems (DTS).

Definition 3 (DTS) Let A = (Agt,Act ,Q,AP,L, pr , t) be a TDCGS. The Duration Transition
System of A is a tupleM(A) = (S, E), where

• S = Q× N is a set of states, and

• E : S × Act |Agt| → S is a (partial) transition function such that E((q, n), act) = (q′, n +
l) iff t(q, act) = (q′, l), for q, q′ ∈ Q, act ∈ Act |Agt|, and n ∈ N+.

A state of a DTS is a pair composed of a location q and a timestamp n. An edge from a state
(q, n) uses the actions act as in the transition t(q, act) leading to a new state composed of the
location q′ and the time incremented with the transition duration.

Example 3 (Online services continued) A part of a DTS, showing the first step of unfolding for
the timed model of online services from Example 2, is shown in Fig. 2.

Let π ∈ S+ ∪ Sω be a finite or infinite sequence of states, and i ∈ N. By π(i) we denote
the i–th state of π (starting from 0), by πi its prefix of length i, and by πi its suffix starting from
π(i). For each state s = (q, n) ∈ S , its location q is denoted by loc(s) and its time n by τ(s). If
π ∈ S+ is a finite sequence of states, then its final state is denoted by πF , and its time length is
defined as τ(π) := τ(πF ). Moreover, by locs(π) we denote the set of all locations present on π, i.e.
locs(π) = {loc(π(k)) | k ∈ N}. If q ∈ Q is a location, then by #q(π) we denote the number of
states of π whose location is q.

203



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

2.3 Semantics of TATL

Let A = (Agt,Act ,Q,AP,L, pr , t) be a TDCGS and M(A) = (S, E) its DTS. Moreover, let
a ∈ Agt. A strategy for a is a function σa : S+ → Act such that, for each sequence π ∈ S+,
we have σa(π) ∈ pra(loc(πF )). That is, a strategy assigns choices saying how to continue to
all possible histories of the game, where each history is a finite sequence of the visited locations
together with their time stamps.

A joint strategy σA for a coalition A ⊆ Agt is a tuple of strategies, one for each agent a ∈ A.
Let A = {a1, . . . , ak} for some k ∈ N and σA = (σa1 , . . . , σak) be a joint strategy for A. For each
i ∈ N and π ∈ Sω we denote σA(πi) := (σa1(πi), . . . , σak(πi)).

Definition 4 (Outcome) The outcome of a joint strategy σA in a state s ∈ S is the set out(s, σA) ⊆
Sω such that π ∈ out(s, σA) iff π(0) = s and for each i ∈ N there is act ′ ∈ prA(loc(π(i))) such
that E(π(i), act) = π(i+ 1), where act |A = σA(πi) and act |A = act ′.

Intuitively, the outcome of a joint strategy σA in a state s is the set of all the possible paths that can
occur when the agents of coalition A execute the strategy σA and each other agent, in A, follows its
own protocol. Since the action durations are strictly positive, the sequences of the outcome cannot
form loops, i.e. for each π ∈ out(s, σA) and i, j ∈ N if π(i) = π(j), then i = j. In what follows,
for technical convenience, instead of out((q, 0), σA) we write out(q, σA).

Definition 5 (Semantics of TATL) Let A = (Agt,Act ,Q,AP,L, pr , t) be a TDCGS, q ∈ Q a
location, ϕ,ψ ∈ TATL, and A ⊆ Agt a set of agents. The semantics of TATL is given by the
following clauses:

• A, q |= p iff p ∈ L(q),

• A, q |= ¬ϕ iff A, q 6|= ϕ,

• A, q |= ϕ ∧ ψ iff A, q |= ϕ and A, q |= ψ,

• A, q |= ϕ ∨ ψ iff A, q |= ϕ or A, q |= ψ,

• A, q |= 〈〈A〉〉Xϕ iff there exists a joint strategy σA for A s.t. for each π ∈ out(q, σA) we
have A, loc(π(1)) |= ϕ,

• A, q |= 〈〈A〉〉ϕU∼ηψ iff there exists a joint strategy σA for A s.t. for each π ∈ out(q, σA)
there exists i ∈ N such that τ(π(i)) ∼ η and A, loc(π(i)) |= ψ and for all 0 ≤ j < i :
A, loc(π(j)) |= ϕ,

• A, q |= 〈〈A〉〉ϕR∼ηψ iff there exists a joint strategy σA for A s.t. for all π ∈ out(q, σA) and
for each i ∈ N such that τ(π(i)) ∼ η we have A, loc(π(i)) |= ψ or there exists 0 ≤ j < i :
A, loc(π(j)) |= ϕ.

The model can be omitted if it is clear from the context. As shown in Laroussinie et al. (2006b),
the model checking problem for TATL is EXPTIME-complete, but it can be solved in polynomial
time for its fragment TATL≤,≥. The EXPTIME-hardness (Laroussinie et al., 2006b, Theorem 13)
follows from the reduction of the problem of the existence of a winning strategy in countdown
games to the problem of model checking 〈〈A〉〉F=ηϕ over TDCGS.

204



TIMED ATL: FORGET MEMORY, JUST COUNT

Example 4 (Online services continued) Consider the TDCGSA2
srv of Example 2 and Fig. 1. It is

easy to see that A2
srv, q0 |= 〈〈1〉〉F≤5srv1 ∧ ¬〈〈2〉〉F≤5srv2 (the system is serviceable for agent 1 but

not for agent 2). Moreover, agent 1 can perform the DoS attack: A2
srv, q0 |= 〈〈1〉〉G≤5¬srv2, the

strategy being to request the access to the service at least twice in a row. On the other hand, agent 2
cannot do DoS unless the other agent is less patient: A2

srv, q0 |= ¬〈〈2〉〉G≤5¬srv1 ∧ 〈〈2〉〉G≤2¬srv1.
Interestingly, when more agents are involved, any two of them can starve the other ones, e.g.
Aksrv, q0 |= 〈〈1, 2〉〉G≤t

(∧
j=3,...,k ¬srvj

)
for any k ≥ 3, t ∈ N (the strategy being to always re-

quest access). Still, they cannot crash the service completely, which requires at least 3 agents to
collaborate:

Aksrv, q0 |= ¬〈〈1, 2〉〉G≥t
( ∧
j∈Agt

¬srvj
)
∧ 〈〈1, 2, 3〉〉G≥t

( ∧
j∈Agt

¬srvj
)
.

Note that all the positive properties above can be obtained by strategies that make no use of
time stamps. Thus, an interesting question arises: does the timing information increase the abilities
of agents at all? We look closer into this issue in the next sections.

3. Hierarchy of Strategies and Semantic Variants of TATL

It was implicitly assumed in Laroussinie et al. (2006b) that the agents have perfect memory and
can memorise not only the exact sequence of the past locations, but also their timing. On the other
hand, Example 4 shows that such sophisticated capabilities are often redundant; agents can as well
achieve their (timed) goals by using simpler strategies. In this section, we propose several semantic
variants of TATL by restricting the allowed strategies. To this end, we introduce a hierarchy of
strategy types.

The main types of strategies that we consider are timed vs. timeless on one hand, and perfect
recall vs. memoryless on the other. We will also formally define counting strategies, including a
very simple form of counting that we call threshold counting. As we prove in Section 4, whenever
strict punctuality is not needed, most of the considered semantics are equivalent.

3.1 Strategy Types

Let A = (Agt,Act ,Q,AP,L, pr , t) be a TDCGS and S = Q × N the underlying set of states.
Following Brázdil et al. (2013), Bulling and Jamroga (2014), Schobbens (2004), we consider sev-
eral variants of strategies for agents. To obtain a uniform view, we take the strategies from Section 2
as the starting point. The other classes of strategies are defined as subsets by imposing suitable
constraints.

Definition 6 (Classes of strategies) For each a ∈ Agt we define five classes of strategies:

(TTT) A timed perfect recall strategy for a is a function σa : S+ → Act such that for each sequence
π ∈ S+ we have σa(π) ∈ pra(loc(πF )). I.e., these are exactly the strategies from Laroussinie
et al. (2006b), that we already presented in Section 2. We denote the set of such strategies
by ΣT.

(ttt) A timed memoryless strategy is a strategy σa ∈ ΣT such that, for each π, π′ ∈ S+, if πF = π′F ,
then σa(π) = σa(π

′). We denote the set of such strategies by Σt.

205



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

(RRR) A timeless perfect recall strategy is a strategy σa ∈ ΣT such that, for each n ∈ N and π, π′ ∈
Sn, if loc(π(i)) = loc(π′(i)) for all 0 ≤ i ≤ n, then σa(π) = σa(π

′). We denote the set of
such strategies by ΣR.

(rrr) Timeless memoryless strategies are defined analogously to timed memoryless strategies, and
denoted by Σr.

(###) A counting strategy is a strategy σa ∈ ΣT such that, for each π, π′ ∈ S+, if loc(πF ) = loc(π′F )
and #loc(πF )(π) = #loc(πF )(π

′), then σa(π) = σa(π
′). We denote the set of such strategies

by Σ# .

Intuitively, a perfect recall strategy selects an action based on the sequence of previous situations,
whereas a memoryless strategy is a plan that looks only at the current situation. Similarly, a timed
strategy can vary its choices depending on the time stamps, whereas timeless strategies cannot
do so. Finally, counting strategies select actions by looking at the location and the number of its
occurrences in the history so far. Notice that a timed memoryless strategy σa can be also defined by
a function σ′a : S → Act such that σ′a(s) := σa(π) if s = πF , for some π. Timeless perfect recall
and timeless memoryless strategies can be defined analogously. Moreover, each counting strategy
σa can be defined by a function σ#a : Q× N+ → Act such that σ#a (q, n) := σa(π) if q = loc(πF )
and n = #loc(πF )(π), for some π. Apart from general counting strategies, we will use some that
are bounded in a special way, see below for the definition.

Definition 7 (Threshold strategies) Let n ∈ N+. A counting strategy σa for a is called n–threshold
iff for each q ∈ Q there exist actions act1, . . . , actn+1 ∈ Act , and integer intervals I1 = [1, i1), I2 =

[i1, i2), . . . , In+1 = [in,∞) such that for all 1 ≤ j ≤ n+ 1: σ#a (q, k) = act j if k ∈ Ij .
We denote the set of n–threshold strategies by Σ#n .

Intuitively, a counting strategy is n–threshold if for each location there exists a sequence of n thresh-
olds, such that when the next threshold is exceeded, another action is used. Observe that once the
final threshold is reached, the same action is executed whenever the location is visited.

Example 5 (Online services continued) Consider strategies of agent 1 in the model of online ser-
vices (Example 2). An example timed perfect recall strategy prescribes action req1 whenever
the system has stayed in q0 for more than 15 time units in a row, and action wait otherwise,
i.e. s1(h) = req1 if h = (q0, t0), . . . , (qn, tn), . . . , (qn+k, tn+k), qn = · · · = qn+k = q0,
tn+k − tn > 15, and otherwise s1(h) = wait . An example timed memoryless strategy prescribes
req1 whenever the system is in q0 and the time stamp is a prime number, and wait otherwise. A
timeless perfect recall strategy can specify to do req1 if and only if the latest 15 locations have
been q0. A timeless memoryless strategy must fix a single action (e.g. req1) for all states where
the location is q0. A counting strategy may prescribe req1 iff the current location is q0 and it has
been visited a prime number of times. An example 1–threshold strategy specifies req1 for the first
15 occurrences of q0, and wait after that.

Remark 1 Clearly, more expressive strategy types subsume the more restricted ones. The inclu-
sions are graphically depicted in Figure 3.

Again, a joint strategy for A ⊆ Agt is a tuple of individual strategies, one per agent in A. The
notion of the outcome of a strategy is the same as in Section 2.3.

206



TIMED ATL: FORGET MEMORY, JUST COUNT

Σr = Σ#0
( Σt (

ΣT(
Σ#1 ( · · · ( Σ#n−1 ( Σ#n ( · · · ( Σ# ( ΣR (

Figure 3: Relationships between strategy types

|=T

|=t |=R

|=#

|=#1

|=#0 |=r

Th.1 Prop.1, Ex.6

Prop.2, Ex.6 Prop.1, Ex.7

Prop.1, Ex.8

Prop.1, Ex.9

Figure 4: Correspondence between semantic variants for full TATL. The thick arrows indicate that
the relationship holds for the whole language of TATL. The thin arrows indicate that the relationship
holds only for the existential fragment of the language.

3.2 Semantic Variants of TATL

The classes of strategies give rise to different semantic variants in a natural way.

Definition 8 (Semantic variants for TATL) We define the semantic relations |=Y , parametrised by
strategy types Y ∈ {T, t,R, r,#} ∪ {#n | n ∈ N+}, by replacing “|=” with “|=Y ” and “joint
strategy” with “joint Y-strategy” in the clauses of Definition 5.

Proposition 1 For every A, q, and formula ϕ ∈ ∃TATL, if ΣY ⊆ ΣZ then A, q |=Y ϕ implies
A, q |=Z ϕ.

Proof. Straightforward induction on the structure of ϕ. �

We further investigate the relationships between the semantic variants in the subsequent sec-
tions.

4. Getting Your Timing Right Without the Clock

In the next two sections, we study the relationship between semantic variants of TATL defined by
different restrictions on strategies, proposed in Section 3. This section presents the positive results;
Section 5 shows which implications do not hold. A summary of all the results is presented in Fig. 4

207



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

|=T

|=t |=R

|=#

|=#1

|=#0 |=r

Th.1 Prop.1 & transitivity

Th.3 Prop.1 & transitivity

Th.4

Prop.1, Ex.9

Figure 5: Correspondence between semantic variants for TATL≤,≥. The thick arrows indicate that
the relationship holds for the whole language of TATL. The thin arrows indicate that the relationship
holds only for the existential fragment of the language.

and Fig. 5. A double-direction arrow indicates that the two semantics are equivalent. That is, given
A, q, and ϕ, we have that A, q |=1 ϕ iff A, q |=2 ϕ. A single-direction arrow from |=1 to |=2

indicates that satisfaction in |=1 implies satisfaction in |=2. That is, given A, q, and ϕ, we have
that A, q |=1 ϕ always implies A, q |=2 ϕ. We also point to the formal results that establish the
relationships in the rest of paper.

The most striking conclusion is that, for a significant subset of TATL, keeping track of the times-
tamps does not increase the agents’ abilities. For goals without punctuality constraints, strategies
with counting up to one threshold per location are as good as strategies based on the whole sequence
of locations and clock readings. In the rest of the section, we prove that the relationships are indeed
as depicted in the graphs.

4.1 Two Technical Lemmas

We begin with two technical lemmas that will be useful in proving the subsequent results. The first
lemma states that it suffices to consider only existential formulae in order to prove the equivalence
of any two semantic variants of TATL. The second lemma considers the relationship between abil-
ities based on timed memoryless strategies and counting strategies. Its main importance lies in the
technique used to prove the lemma; we will later reuse it to prove other results, too. The readers not
interested in technical details of the proofs are advised to skip this material, and proceed directly to
Section 4.2. We have also provided figures that illustrate the proofs of Lemma 2 and Theorem 1, so
that the reader can consult them while reading the proofs.

Lemma 1 If ∀q∈Q∀ϕ∈∃TATL (q |=Y ϕ ⇐⇒ q |=Z ϕ), then also ∀q∈Q∀ϕ∈TATL (q |=Y ϕ ⇐⇒
q |=Z ϕ), for any Y, Z ∈ {T, t,R, r,#} ∪ {#n | n ∈ N+}.

The same applies to proving equivalence for semantics of TATL≤,≥.

208



TIMED ATL: FORGET MEMORY, JUST COUNT

q

(¬α ∧ β) ∧ time ≤ η

(α ∧ β) ∨ time > η

(q′, T qmin)

(q′, T )

Figure 6: The outcome of σA enforcing αR≤ηβ, cut after time exceeds η or β is released by α. For
each q′ ∈ Q, T qmin(σA, q

′) is the smallest time value among all T such that (q′, T ) is reached in the
pictured segment.

Proof. The proof is by contradiction. Let us assume that ∀q∈Q∀ϕ∈∃TATL (q |=Y ϕ ⇐⇒ q |=Z

ϕ). Suppose that ψ is a shortest TATL formula such that either (A, q |=Y ψ and A, q 6|=Z ψ)
or (A, q 6|=Y ψ and A, q |=Z ψ), i.e. ψ holds in q of A under one of the semantics, but not
under the other. It is easy to see that if ψ ∈ AP or ψ is of the form ¬α, α ∧ β, or α ∨ β, then
we immediately obtain a contradiction with the minimality of ψ. Therefore, let us suppose that
ψ ∈ {〈〈A〉〉Xα, 〈〈A〉〉αUηβ, 〈〈A〉〉αRηβ}. Next, replace the subformulae α and β in ψ with new,
fresh atomic propositions pα and pβ , respectively, to obtain the formula ψ∃TATL which is in ∃TATL.
Define a new model, A∃TATL, which is obtained from A in such a way that pξ is assigned to the
states where ξ holds, for ξ ∈ {α, β}. Now we have A, q |=Y ψ iff A∃TATL, q |=Y ψ∃TATL and
A, q |=Z ψ iff A∃TATL, q |=Z ψ∃TATL. To conclude, observe that by our assumption we have
A∃TATL, q |=Y ψ∃TATL iff A∃TATL, q |=Z ψ∃TATL. So, this contradicts our assumption that ψ holds
in q of A under one of the semantics, but not under the other.

The proof for TATL≤,≥ is analogous. �

As shown in Lemma 2 below, satisfaction of TATL≤,≥ formulae under timed memoryless se-
mantics implies satisfaction in the counting semantics. The techniques employed in the proof of the
lemma will be reused in further parts of the paper.

Lemma 2 ∀q∈Q∀ϕ∈∃TATL≤,≥(q |=t ϕ =⇒ q |=# ϕ).

Proof. The proof follows by induction on the structure of ϕ, with ϕ ∈ ∃TATL≤,≥. Let α, β ∈
∃TATL≤,≥ and η ∈ N. Let us assume q ∈ Q such that q |=t ϕ. The proof is straightforward
if ϕ ∈ AP or ϕ is of the form ¬α, α ∧ β, α ∨ β, or 〈〈A〉〉Xα. Therefore, we consider only the
remaining cases. For simplicity, we treat memoryless strategies as functions from the set of states
to the set of actions.

The case of ϕ = 〈〈A〉〉αU≤ηβ follows from Laroussinie et al. (2006b, Lemma 6), which shows
that a perfect recall strategy for which each outcome satisfies αU≤ηβ can be modified in such a
way that for the resulting strategy along each of its outcomes any location is present in at most one
state until a state in which β holds is reached. This is sufficient for building a counting strategy that
implements ϕ.

Let us now move to the case of ϕ = 〈〈A〉〉αR≤ηβ. Let σA be a timed memoryless stra-
tegy such that ∀π∈out(q,σA)π |=t αR≤ηβ. Using σA we build a counting strategy σ#A such that

209



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

∀
π∈out(q,σ#

A )
π |=# αR≤ηβ. Similarly to the previous case, the strategy σ#A associates the choice

of an action with each location, thus the time component of a state is not relevant. For each
π ∈ out(q, σA) let πRmin be the shortest prefix of π such that π′ |=t αR≤ηβ for each extension
π′ of πRmin (its existence follows from the progress of time). Formally, let πRmin = πk, where k ∈ N
is the cutting point defined as the minimal index such that the following alternative is satisfied:

τ(π(k)) ≥ η ∧ τ(π(k − 1)) < η (1)

or
(
τ(π(k)) < η ∧ ((π(k) |=t α ∧ β) ∧ (k ≥ 1 =⇒ (π(k − 1) |=t ¬α ∧ β)))

)
. (2)

Recall that we assumed that αR≤ηβ holds along π. Eq. (1) covers the case where β is satisfied
and not released by α along π until time η is reached, thus ∀i<kπ(i) |=t β and π(k) |=t β if
τ(π(k)) = η. Eq. (2) deals with the case where α releases β for the first time along π before time
reaches η, therefore π(k) |=t α ∧ β and ∀i<kπ(i) |=t ¬α ∧ β. To compute πRmin we select the
minimal index k for which any of the above cases is satisfied.
Now, for each q′ ∈ Q we define:

T qmin(σA, q
′) := min

{
t | ∃π∈out(q,σA)∃i∈N πRmin(i) = (q′, t)

}
if the right side of the above is properly defined (i.e. min operates over a non-empty set) or
T qmin(σA, q

′) := 0 otherwise. Intuitively, T qmin(σA, q
′) is the smallest time value such that q′ can

be encountered by starting from q and following the strategy σA until the traversed path satisfies
αR≤ηβ. If such value does not exist for a given q′, then a state with this location either cannot be
reached from q or can be reached only along a path that fulfills the path condition αR≤ηβ over a
prefix that does not visit q′. In this case we arbitrarily assign T qmin(σA, q

′) = 0. This construction is
illustrated in Fig. 6. Now, we can define the counting strategy σ#A as follows:

∀q′∈Q∀n∈N+ σ
#
A (q′, n) := σA(q′, T qmin(σA, q

′)).

Note that τ(s) ≥ T qmin(σA, loc(s)) for all states s ∈ S that appear along the paths of out(q, σ#A ).
We now prove that σ#A enforces αR≤ηβ along each outcome. Let us consider a path in out(q, σ#A ).
Along the path, σ#A follows the earliest decisions of σA that concern the location component of the
current state, traversing states labelled with β that are not released by α. A state s encountered
on the path escapes the part of the model that satisfies ¬α ∧ β only if σA was able to do so in
s ′ = (loc(s), T qmin(σA, loc(s))). This can happen only if the relevant successor of s ′ satisfies α ∧ β
or its time component exceeds η. Both of these properties transfer to the successor of s on the
considered path, which ends the proof of the case.

Next, we consider the case of ϕ = 〈〈A〉〉αU≥ηβ. As previously, let σA be a timed memoryless
strategy such that ∀π∈out(q,σA)π |=t αU≥ηβ and for each π ∈ out(q, σA) let πUmin be the shortest
prefix of π such that π′ |=t αU≥ηβ for each extension π′ of πUmin. Formally, let πUmin = πk, where
k ∈ N is the cutting point defined as the minimal index such that:

τ(π(k)) ≥ η ∧ π(k) |=t β ∧ (k ≥ 1 =⇒ (π(k − 1) |=t α)).

The cutting point is indeed obtained when β is reached for the first time after time η.
For each q′ ∈ Qwe define TU,qmin (σA, q

′) as in the previous case, substituting αU≥ηβ for αR≤ηβ.
We also define:

TU,qmax(σA, q
′) := max

{
t | ∃π∈out(q,σA)∃i∈N πUmin(i) = (q′, t)

}
210



TIMED ATL: FORGET MEMORY, JUST COUNT

q

α ∧ time < η

(α ∧ ¬β) ∧ time ≥ η

β ∧ time ≥ η

(q′, TU,qmin )

(q′, TU,qmax)

Figure 7: The outcome of σA enforcing αU≥ηβ, cut after reaching a state where β holds and time
is at least η. For each q′ ∈ Q, by TU,qmin (σA, q

′) (resp. TU,qmax(σA, q
′)) we denote the smallest (resp.

greatest) time value among all T such that (q′, T ) is reached in the pictured segment.

whenever the set over which max operates is non-empty and TU,qmax(σA, q
′) := 0 otherwise. This

construction is illustrated in Fig. 7. Intuitively, TU,qmax(σA, q
′) and TU,qmin (σA, q

′) are the largest and
smallest, respectively, time values such that q′ can be encountered by starting from q and following
the strategy σA until the traversed path satisfies αU≥ηβ. We now define the counting strategy σ#A
as follows:

∀q′∈Q∀1≤n<η σ#A (q′, n) := σA(q′, TU,qmin (σA, q
′)), (3)

∀q′∈Q∀n≥η σ#A (q′, n) := σA(q′, TU,qmax(σA, q
′)). (4)

The strategy σ#A selects the actions of σA such α holds until we reach a time greater than or
equal to η (the case of Eq. (3)) and then reaches a state in which β holds (the case of Eq. (4)). To
observe that ∀

π∈out(q,σ#
A )
π |=# αU≥ηβ, notice that every path π ∈ out(q, σ#A ) first proceeds by

traversing along the states labelled with α and with time component smaller than η. In the initial
fragment of π, strategy σ#A assigns to each state s the actions σA(s ′), where s ′ is either time-earliest
(via Eq. (3)) or time-latest (via Eq. (4)) state with the same location as s , selected from the bounded
unfolding of out(q, σ#A ), pictured in Fig. 7. Observe that the Eq. (3)-based part of strategy σA can
only be executed a finite number of times and Eq. (4)-based part does not allow two states with the
same location along a path. Thus, eventually the progression of π along states labelled with α must
lead to reaching a state s ′′ such that loc(s ′′) = loc(s ′′′), for some s ′′′ ∈ {πUminF | π ∈ out(q, σA)},
i.e. the dark bottom of Fig. 7. Of course, β is true in s ′′′, hence it is also true in s ′′. Now, we only
need to check that the time component of s ′′′ is at least η. This, however stems from the fact that,
if s ′′ is reached while executing the Eq. (3)-based part of the strategy, then its time component is
not smaller than the time component of s ′′′. On the other hand, if s ′′ is reached while executing
the other part of the strategy, then the time must have exceeded η by definition (recall that time is
discrete and each transition takes at least one time unit).

Remark 2 The construction exhibited in our proof aims at correctness but not necessarily at effi-
ciency. Consider the single-agent TDCGS in Fig. 8 and formula ϕ = 〈〈A〉〉αU≥10β. Let σA be a

211



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

q0start
α

q1

α

q2

β

2

5

1

1

1

Figure 8: Exemplifying the complexity in the proof of ϕ = 〈〈A〉〉αU≥ηβ

q

¬α ∧ time < η

α ∧ time < η

(α ∧ β) ∧ time ≥ η
(¬α ∧ β) ∧ time ≥ η

Figure 9: The outcome of σA enforcing αR≥ηβ, cut after β is released by α.

timed memoryless strategy such that: (1) σA(q0, t) selects the loop labelled with 2 for t < 2, the
loop labelled with 5 for t = 2, and the transition to q1 if t > 2; (2) σA(q1, t) chooses to loop in q1
if t < 9 and to move to q2 if t ≥ 9. As it can be readily seen, following σA enforces a single path
and proves that q0 |=t ϕ. Moreover, a “natural” counting strategy built from σA is to select the
2-labelled transition when in q0 for the first time, the 5-labelled transition for the second time, and
the transition to q1 for the third time. Then in q1, the strategy would be to firstly follow the loop and
then to move to q2. However, using our construction, the strategy built from σA loops nine times
on q0 via transition labelled with 2 before moving to q1 where it loops nine times, again, followed
by transition to q2.

Remark 3 The considered case is the only one where a 1–threshold strategy is constructed. In all
the remaining cases 0–threshold strategies are built.

We now move to the final case of the proof, i.e. ϕ = 〈〈A〉〉αR≥ηβ. Let σA be a memoryless
strategy such that ∀π∈out(q,σA)π |=t αR≥ηβ. For each π ∈ out(q, σA) let TRrelease(π) be the time
of the earliest appearance of α along the path (or ∞, if α is not visited). Formally: TRrelease(π) =
min

{
{τ(π(k)) | k ∈ N∧π(k) |=t α},∞

}
. Let q′ ∈ Q. Depending on the structure of π we define

TRencounter(π, q
′) as: (1) the time of the latest encounter of q′ along π, up to the moment of reaching

α; (2) the time of the earliest encounter of q′ along π, after exceeding η, when α never holds along
π; (3) the arbitrary value of 0 if q′ is visited along π only after reaching α or not at all. Formally we
have:

212



TIMED ATL: FORGET MEMORY, JUST COUNT

TRencounter(π, q
′) =


max{τ(π(k)) | loc(π(k)) = q′ ∧ τ(π(k)) ≤ TRrelease(π)}

if TRrelease(π) <∞∧ q′ ∈ locs(π)
min{τ(π(k)) | loc(π(k)) = q′ ∧ τ(π(k)) ≥ η}

if TRrelease(π) =∞∧ q′ ∈ locs(π)
0 otherwise

The final building block of our counting strategy is defined as:

TR,qsel (σA, q
′) = max

π∈out(q,σA)
{TRencounter(π, q

′)}

Let us define the counting strategy σ#A as follows:

∀q′∈Q∀n∈N+ σ
#
A (q′, n) := σA(q′, TR,qsel (σA, q

′))

We now show that for all ∀
π∈out(q,σ#

A )
π |=# αR≥ηβ. Let π ∈ out(q, σ#A ) and π′ be a finite

prefix of π. Observe that if π′ 6|=# αR≥ηβ, then τ(π′F ) ≥ η implies that TR,qsel (σA, π
′
F ) ≥ η. This

in turn means that π′F |=t β. Therefore, if β is not released by α over π before exceeding time
η, then either β holds along π until infinity or eventually π′ 6|=# αR≥ηβ for a prefix π′ of π. Let
us refer to Fig. 9 to provide more intuitions. Strategy σ#A selects actions by copying the relevant
choices from the pictured segment of outcome of σA. If the time of a current state along a path
enforced by σ#A reaches or exceeds η, then the strategy copies actions of σA associated with those
states of the outcome whose time component exceeds η. All these states satisfy β and the only way
to escape is to reach the darker fragment where α ∧ β holds. This concludes the proof of the case
and the lemma. �

4.2 Time Makes Memory Obsolete

We now establish that the memoryless and perfect recall timed semantics of TATL are equivalent,
similarly to the well-known result for standard (timeless) ATL (Alur et al., 2002).

Theorem 1 (Perfect recall = Memoryless) ∀q∈Q∀ϕ∈TATL(q |=T ϕ ⇐⇒ q |=t ϕ).

Proof. First, observe that by Lemma 1 it suffices to prove that q |=T ϕ ⇐⇒ q |=t ϕ for all
ϕ ∈ ∃TATL. Moreover, we can focus only on q |=T ϕ =⇒ q |=t ϕ, as the other direction easily
follows from the definition.

Let ϕ = 〈〈A〉〉αU=ηβ and σA ∈ ΣT be a strategy such that αU=ηβ holds along each path from
out(q, σA). Let π′ ∈

{
πk | π ∈ out(q, σA) ∧ k ∈ N ∧ τ(π(k)) ≤ η

}
be such that π′F = (q′, n),

for some q′ ∈ Q and n ≤ η. We are targeting (q′, n) and plan to build from σA a new strategy that
unifies all the selections that reach this state. Notice that q′ |=T 〈〈A〉〉αU=(η−n)β. We now alter σA
to obtain σ̂A

π′ as follows:

σ̂A
π′(π) =

{
σA(π′π2) if π = π1π2 and π1F = (q′, n)
σA(π) otherwise

213



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

q

α ∧ time < η

β ∧ time = η

π′

(q′, n)

π1

π2

(q′, n)

π2

Figure 10: Timed memoryful strategy σA enforcing αU=ηβ is unified over (q′, n). A finite sequence
π′ reaching (q′, n) is fixed. A choice of action made for π1π2 in the unified strategy is the same as
after traversing π′π2 under σA.

for all π ∈ S+. Intuitively (see Fig. 10), in σ̂A
π′ we replace the current path in the memory by

π′ once (q′, n) is encountered while travelling from q. Observe that αU=ηβ holds along each path
from out(q, σ̂A

π′).
We can now iteratively update the strategy σA in accordance with the following: ∀q′ ∈ Q,∀n <

η : ∃π′ ∈ out(q, σA), π′F = (q′, n) =⇒ σA := σ̂A
π′ . Note that this process cannot take more

than |Q| · η steps.
Finally, we alter the updated strategy σA by assigning to each finite sequence π ∈ S+ such that

τ(πF ) ≥ η any fixed selection of actions that only depends on loc(πF ). Thus, we have built a timed
memoryless strategy such that αU=ηβ holds along each of its outcomes from q.

As the same technique can be used to deal with the case of ϕ = 〈〈A〉〉αR=ηβ, we conclude the
proof.

�

Additionally, we get the following as a corollary.

Proposition 2 ∀q∈Q∀ϕ∈∃TATL(q |=# ϕ =⇒ q |=t ϕ).

Proof. Let ϕ be a formula of ∃TATL. By Remark 1 and Proposition 1, we have that q |=# ϕ =⇒
q |=R ϕ =⇒ q |=T ϕ. Moreover, by Theorem 1, we have q |=T ϕ =⇒ q |=t ϕ, which concludes
the proof. �

4.3 Too Much Time Will Not Help You

As it turns out, time is also of limited importance, once it exceeds a certain value. To see this, we
need the following definition.

Definition 9 (n–time–agnostic strategy) Let n ∈ N. A joint memoryless strategy σA for a coali-
tion A ⊆ Agt is n–time–agnostic iff for each s, s ′ ∈ S such that loc(s) = loc(s ′) if τ(s) ≥ n and
τ(s ′) ≥ n, then σA(s) = σA(s ′). We denote the set of such strategies by Σt(n).

214



TIMED ATL: FORGET MEMORY, JUST COUNT

Intuitively, a strategy is n–time–agnostic if it does not track the passage of time once it exceeds n.
For example, consider the model from Example 2 and strategy σ1 for agent 1 such that σ1(q0, k) =
req1 for k ∈ {0, 1, 2} and σ1(q0, k) = wait for k ≥ 3. This strategy is 3–time–agnostic and allows
agent 1 to enforce three consecutive visits in q1 after which the location is avoided indefinitely.

The memoryless n–time–agnostic semantics of TATL, denoted by |=t(n), is obtained similarly
to the previous semantics (cf. Definition 5), with strategies from Σt(n) used instead.

Theorem 2 Let ϕ ∈ TATL, and cϕ ∈ N be the maximal integer occurring in ϕ (with cϕ = 0 if ϕ
contains no time constraints). Then, ∀q∈Q (q |=t ϕ ⇐⇒ q |=t(cϕ) ϕ).

Proof. The proof follows by contradiction.1 Let ϕ be a formula of minimal size among the formulae
whose truth value in some location q is different under timed memoryless semantics than under
|=t(cϕ). That is, we assume that q |=t ϕ and q 6|=t(cϕ) ϕ, or q 6|=t ϕ and q |=t(cϕ) ϕ. It is not
difficult to see that the negation and the conjunction cannot be the main operators of ϕ, as this
would conflict with the minimality of the formula. We can thus assume that ϕ = 〈〈A〉〉γ for some
A ⊆ Agt. Moreover, a cϕ–time–agnostic strategy is a timed memoryless strategy, hence q |=t(cϕ) ϕ
implies q |=t ϕ. We can thus assume that q |=t ϕ and q 6|=t(cϕ) ϕ.

Let γ ∈ {Xα,αU∼ηβ, αR∼ηβ}, where ∼ ∈ {≤,=} and η ∈ N. Let σA be a strategy under
which ϕ holds in q. As there is no need to track the passage of time after it exceeds η, formula
ϕ holds in q under any extension of σA|{s∈S | τ(s)≤η}. In particular we can use cϕ–time–agnostic
extension, because by definition we have η ≤ cϕ. Therefore, we necessarily have q |=t(cϕ) ϕ, which
contradicts the aforementioned assumption. Hence, we can assume that ∼ = ≥. At this stage we
inferred that γ ∈ {αU≥ηβ, αR≥ηβ}, for some η ∈ N.

Let us consider the case of ϕ = 〈〈A〉〉αU≥ηβ, where η ∈ N, The proof utilizes elements of the
proof of the same subcase of Lemma 2. Let σA be a strategy such that αU≥ηβ holds along each path
of out(q, σA). Recall that for each q′ ∈ Q we define TU,qmax(σA, q

′) as the greatest time value τ(s)
among all the states s such that loc(s) = q′, encountered while following any outcome of strategy
σA from (q, 0) before reaching a state where β holds and its time component reaches or exceeds
η (cf. Fig. 7). If there is no such state, then TU,qmax(σA, q

′) = 0. We define the cϕ–time–agnostic
strategy σ′A as follows:

∀{s∈S | τ(s)<η} σ′A(s) := σA(s), (5)

∀{s∈S | τ(s)≥η} σ′A(s) := σA(loc(s).TU,qmax(σA, loc(s))). (6)

Strategy σ′A enforces in (q, 0) (via Eq. (5)) the same initial fragments of its outcome as σA (hence
traversing along states labelled with α), until time reaches or exceeds η. After this moment it
switches (via Eq. (6)) to consistently assigning to each state s the actions σA(s ′) of the latest ap-
pearance along any πUmin such that π ∈ out(q, σA) of a state s ′ satisfying loc(s) = loc(s ′). Similarly
to the proof of the same subcase of Lemma 2 we can now prove that once the second part of defini-
tion of strategy σ′A is activated, no location can appear twice before reaching a state labelled with β.
Given the fact that the number of locations is finite and the path keeps traversing states that satisfy
α, this concludes the proof of the case. To provide a more intuitive explanation of this proof, refer
to Fig. 7 and observe that every outcome σ′A starts by following the same paths as enforced by σA
(the upper part of the triangle), until it reaches the dashed line that depicts time η. Afterwards, it

1. A direct proof is also possible, but it is less readable due to the larger number of subcases.

215



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

consistently selects the same actions as the latest choice of σA in the lower part of the triangle. From
the fact that the latest choices are made, at this stage σ′A cannot visit two different states sharing the
same location, so it eventually needs to enter the bottom of the triangle.

We have one case left to consider, i.e. ϕ = 〈〈A〉〉αR≥ηβ. It is simple, however, since q |=t ϕ

implies the existence of a counting strategy σ#A that enforces ϕ in q and the strategy built in the
proof of Lemma 2 for this subcase assigns to each state s a selection of actions based on its location
component loc(s), ignoring the time. We have therefore reached a contradiction and the end of the
proof. �

4.4 Time is Counting (for Unpunctual Agents)

The following theorem states that in TATL≤,≥, i.e. when strict punctuality is not needed, the strate-
gies based on observing the current time and based on tracking the number of visits in the current
location are of the same expressive power.

Theorem 3 (Time is Counting) ∀q∈Q∀ϕ∈TATL≤,≥(q |=t ϕ ⇐⇒ q |=# ϕ).

Proof. Let ϕ ∈ ∃TATL≤,≥ and assume that q |=# ϕ. By Remark 1 and Proposition 1, each counting
strategy is a timed perfect recall strategy, hence we also have q |=T ϕ. By Theorem 1 this implies
q |=t ϕ. Combining this with Lemma 2 we obtain q |=t ϕ ⇐⇒ q |=# ϕ. It now suffices to apply
Lemma 1 to extend this result to TATL≤,≥. �

The proof of Lemma 2 revealed the simplicity of the structure of strategies that implement for-
mulae in TATL≤,≥. Namely, we presented how to transform each counting strategy implementing
a strategic formula ϕ ∈ TATL≤,≥ such that it still enforces ϕ and assigns to each location at most
two actions. We thus have the following as a corollary.

Theorem 4 (Simple Counting Is Enough) ∀q∈Q∀ϕ∈TATL≤,≥(q |=# ϕ ⇐⇒ q |=#1 ϕ).

In the next section we show that, in the other cases, the semantics being considered are not
equivalent.

5. Some Things that Make the Difference

We have just showed that TATL for agents with full perfect recall is in fact equivalent to the se-
mantics based on memoryless timed strategies. Moreover, for TATL≤,≥, all the semantic variants
– except for the one based on untimed memoryless strategies – collapse to |=#1 . Even the abilities
of agents with perfect recall of locations and timestamps can be verified by looking at 1-threshold
strategies. In this section, we prove that the semantic hierarchy does not collapse further. To this
end, we present a series of examples showing that the converse of the implications depicted in Fig. 4
and Fig. 5 do not hold.

5.1 Time Matters for Punctual Agents

We start by showing that Theorem 3 cannot be extended to full TATL. That is, there exist A, q, and
ϕ ∈ TATL, such that A, q |=t ϕ but A, q 6|=# ϕ. The same example can be used to show that |=T

does not imply |=R.

216



TIMED ATL: FORGET MEMORY, JUST COUNT

q0start

q1

p

q2

p

(a, y)

2

(a, x)

1

(b, x), (b, y)

1

(c, x), (c, y)

2

Figure 11: Punctuality needs clocks

q0

start q1

q2

q3

q4

p

q5

p

(a, x)

1

(a, y)

1

(a, x)

2

(a, x)

1

(a, x)

2

(b, x)

3

Figure 12: Timeless perfect recall is stronger than counting

Example 6 Consider the TDCGS presented in Fig. 11. The model contains three locations: q0, q1,
and q2, of which q1 and q2 are labelled by p. In q0, agent 1 can select one of its three actions, while
agent 2 selects one of its two actions. The protocols are thus as follows: pr(1, q0) = {a, b, c}, and
pr(2, q0) = {x, y}. To see that q0 |=t 〈〈1〉〉F=5p, observe that agent 1 can follow a simple strategy
of enforcing the loops in q0 until the time reaches either 3 or 4, depending on the response of the
second agent. Then, agent 1 selects the action c or b, respectively, to reach one of the states labelled
with p precisely at time 5. It is easy to see that q0 6|=# 〈〈1〉〉F=5p, as there is no counting strategy
that allows to decide when to leave q0 for a location labelled with p and which branch to take in
order to reach the target in 5 time units. It is also not difficult to observe that q0 6|=R 〈〈1〉〉F=5p.

5.2 Smart Agents Recall, and Not Only Count

Next, we show that |=R does not imply |=# for the full language of TATL.

Example 7 Consider the TDCGS presented in Fig. 12. Observe that agent 2 controls the branch
selection in the location q0 while agent 1 selects the branch to take in q3. Under timeless perfect
recall, agent 1 that started in q0 knows in q3 whether it has visited the location q1 or q2. The agent
is thus able to select the next action in such a way that p is reached in precisely 5 time units, i.e.
q0 |=R 〈〈1〉〉F=5p. However, q0 6|=# 〈〈1〉〉F=5p.

217



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

q0start
p

1001

1002

1004

Figure 13: Three distinct actions needed in q0 to reach p in exactly 3007 time units

q0start q1

p

1

1

Figure 14: Two distinct actions are needed in q0 to reach p in at least 2 time units

5.3 Punctual Agents Have to Count More

As we have shown, 1–threshold strategies are sufficient to implement any property expressed in
TATL≤,≥. The following example presents a case where at least 2–threshold strategies are required
for full TATL.

Example 8 Consider the one-agent TDCGS in Fig. 13. A simple 2–threshold strategy of firing each
action one after another and repeating the final one ad infinitum shows that q0 |=#2 〈〈1〉〉F=3007p.
However, it can be verified by hand calculations that 3007 cannot be represented as a natural canon-
ical combination (i.e. a linear combination with non-negative natural coefficients) of 1001, 1002
and 1004, other than 1001 + 1002 + 1004. We therefore have q0 6|=#k

〈〈1〉〉F=3007p for any
k ∈ {0, 1}.

This result can be extended to an arbitrary value n ∈ N+. To this end, define a TDCGSAeqn that
contains a single state q0 labelled with p and n transition loops actn1 , . . . , act

n
n such that τ(actni ) =

10n + 2i for all 0 ≤ i < n. It can be proved using elementary arguments that
∑n−1

i=0 τ(actni )
can be obtained only by this single canonical combination of time values. Therefore, for each
n ∈ N+ we have Aeqn |=#n−1 q0〈〈1〉〉F=

∑n−1
i=0 10n+2ip and Aeqn 6|=#k

q0〈〈1〉〉F=
∑n−1

i=0 10n+2ip for all
0 ≤ k < n− 1.

5.4 Untimed Memoryless Agents Are Dumb Beyond Count

Finally, the following example illustrates that a single action per location is not sufficient to imple-
ment properties expressed in TATL≤,≥, i.e. |=#1 does not imply |=#0 .

Example 9 Consider the two-state TDCGS in Fig. 14. Observe that q0 |=#1 〈〈1〉〉F≥2p iff the agent
decides first to traverse the loop in q0 and then to move to q1. It is straightforward to see that this
1–threshold strategy cannot be reduced to a 0–threshold strategy.

218



TIMED ATL: FORGET MEMORY, JUST COUNT

5.5 Summary

This concludes our comparative analysis of semantic variants of TATL, based on different notions of
strategic play. The relationships were already summarized in Fig. 4 and Fig. 5. The most important
conclusion is that timed perfect recall strategies provide no extra ability over timed memoryless
strategies. Moreover, all the timed strategies collapse to simple counting strategies for goals without
equality constraints. This is somewhat similar to the classical results for standard ATL (Alur et al.,
2002; Schobbens, 2004), and suggests that TATL≤,≥ is only slightly more expressive that untimed
ATL.

While we do not provide the detailed complexity analysis, we can infer that model checking
of TATL≤,≥ over the counting semantics is in PTIME. This follows immediately from Theorem 3
and the fact that model checking of TATL≤,≥ over the timed semantics is in PTIME (Laroussinie
et al., 2006b). Moreover, we conjecture that model checking of the entire TATL over the counting
semantics is in PSPACE w.r.t. the product of the size of statespace, the number of bits needed to
represent the largest number present in the verified formula, and the length of the formula. This is in
contrast to Laroussinie et al. (2006b) where it is shown that the problem is EXPTIME-complete for
the timed semantics. Our intuitions base on Theorem 2 and standard techniques for implementing
non-deterministic bit counters (Sipser, 1997).

6. Conclusions and Future Work

In this paper, we investigate TATL which is a natural extension of Alternating-time Temporal Logic
with discrete time. We propose and study a hierarchy of strategy types, leading to a hierarchy of
semantic variants that differ in the assumptions about the agents’ mental capabilities. In particular,
we introduce several variants of counting strategies, where the agents’ decisions are based on the
number of visits at locations encountered along the execution path. As we have shown, those count-
ing strategies play a key role in defining the expressivity TATL≤,≥, i.e. the logic of timed strategic
ability for goals without strict punctuality constraints. In fact, it is sufficient to consider 1-threshold
strategies that use only two actions per location to reason about any TATL≤,≥ property, even for
agents with perfect recall of the past.

If equality constraints are allowed in a formula, then the picture is much more intricate. Still,
we prove that the full power of perfect recall strategies with timestamps is never needed, and one
can use timed memoryless strategies instead.

The work opens several interesting paths for future research. First, the strict coupling of strate-
gic and temporal modalities in TATL can be relaxed to obtain TATL?, similarly to ATL?. The
correspondence between various timed and counting semantics of TATL? is definitely worth inves-
tigating, especially since in TATL? equality can be expressed using inequality constraints. Secondly,
TATL deals only with agents that have perfect information about the current state of the environ-
ment. Following Schobbens (2004), Jamroga and van der Hoek (2004), we would like to study the
consequences of introducing indistinguishability relations to TDCGS. We expect that this should
significantly influence the complexity and decidability of the model checking problem. Another
natural extension of TATL consists in a parametric variant of the logic, with parameters added to
the formulae (Bruyère, Dall’olio, & Raskin, 2008), the models (Alur, Henzinger, & Vardi, 1993), or
both (Bruyère & Raskin, 2007). Our preliminary analysis suggests that the decidability of the as-
sociated emptiness problem, i.e. the existence of parameter valuations under which a given formula
holds, depends on both the formula and the choice of place for parameter injection.

219



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

Finally, we plan to investigate the applications of Timed ATL in the context of cyber-security,
where the lack of a timely response is often the culprit for the system’s failure.

Acknowledgements

We would like to thank Łukasz Mikulski for his help in extending Example 8 to the general case.
W. Jamroga, W. Penczek, and M. Knapik acknowledge the support of the National Centre for Re-
search and Development (NCBR), Poland, and the Luxembourg National Research Fund (FNR),
under the PolLux/FNR-INTER project VoteVerif (POLLUX-IV/1/2016). W. Jamroga is also af-
filiated with the Interdisciplinary Centre for Security, Reliability, and Trust, SnT, University of
Luxembourg. This work was also supported by the CNRS/PAS project PARTIES and the invited
professorship programme of University Paris 13.

References

Alechina, N., Logan, B., Nguyen, H., & Rakib, A. (2010). Resource-bounded alternating-time
temporal logic. In Proceedings of AAMAS, pp. 481–488.

Alechina, N., Bulling, N., Demri, S., & Logan, B. (2018). On the complexity of resource-bounded
logics. Theor. Comput. Sci., 750, 69–100.

Alur, R., de Alfaro, L., Grossu, R., Henzinger, T., Kang, M., Kirsch, C., Majumdar, R., Mang, F., &
Wang, B.-Y. (2001). jMocha: A model-checking tool that exploits design structure. In ICSE,
pp. 835–836. IEEE Computer Society Press.

Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., & Tasiran, S. (1998). MOCHA: Mod-
ularity in model checking. In CAV, Vol. 1427 of Lecture Notes in Computer Science, pp.
521–525. Springer.

Alur, R., Henzinger, T. A., & Kupferman, O. (1997). Alternating-time Temporal Logic. In Pro-
ceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS), pp.
100–109. IEEE Computer Society Press.

Alur, R., Bernadsky, M., & Madhusudan, P. (2004). Optimal reachability for weighted timed games.
In ICALP, Vol. 3142 of Lecture Notes in Computer Science, pp. 122–133. Springer.

Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. Journal of
the ACM, 49(5), 672–713.

Alur, R., Henzinger, T. A., & Vardi, M. Y. (1993). Parametric real-time reasoning. In STOC, pp.
592–601. ACM.

André, É., Knapik, M., Jamroga, Wojciech Penczek, W., & Petrucci, L. (2017). Timed ATL: Forget
memory, just count. In Larson, K., Winikoff, M., Das, S., & Durfee, E. (Eds.), AAMAS, pp.
1460–1462. ACM.

Boureanu, I., Jones, A. V., & Lomuscio, A. (2012). Automatic verification of epistemic specifica-
tions under convergent equational theories. In AAMAS, pp. 1141–1148. ACM.

Boureanu, I., Kouvaros, P., & Lomuscio, A. (2016). Verifying security properties in unbounded
multiagent systems. In AAMAS, pp. 1209–1217. ACM.

220



TIMED ATL: FORGET MEMORY, JUST COUNT

Bouyer, P., D’Souza, D., Madhusudan, P., & Petit, A. (2003). Timed control with partial observ-
ability. In CAV, Vol. 2725 of Lecture Notes in Computer Science, pp. 180–192. Springer.

Brázdil, T., Forejt, V., Krcál, J., Kretínský, J., & Kucera, A. (2013). Continuous-time stochastic
games with time-bounded reachability. Information and Computation, 224, 46–70.

Brihaye, T., Laroussinie, F., Markey, N., & Oreiby, G. (2007). Timed concurrent game structures.
In CONCUR, Vol. 4703 of Lecture Notes in Computer Science, pp. 445–459. Springer.

Broersen, J. M., Dignum, F., Dignum, V., & Meyer, J. C. (2004). Designing a deontic logic of
deadlines. In Deontic Logic in Computer Science, Proceedings of DEON, pp. 43–56.

Bruyère, V., Dall’olio, E., & Raskin, J.-F. (2008). Durations and parametric model-checking in
timed automata. ACM Transactions on Computational Logic, 9(2), 12:1–12:23.

Bruyère, V., & Raskin, J. (2007). Real-time model-checking: Parameters everywhere. Logical
Methods in Computer Science, 3(1:7), 1–30.

Bulling, N., & Jamroga, W. (2014). Comparing variants of strategic ability: How uncertainty and
memory influence general properties of games. Autonomous Agents and Multi-Agent Systems,
28(3), 474–518.

Bursztein, E., & Goubault-Larrecq, J. (2007). A logical framework for evaluating network resilience
against faults and attacks. In ASIAN, pp. 212–227.

Busard, S., Pecheur, C., Qu, H., & Raimondi, F. (2014). Improving the model checking of strate-
gies under partial observability and fairness constraints. In Formal Methods and Software
Engineering, Vol. 8829 of Lecture Notes in Computer Science, pp. 27–42. Springer.

Cassez, F., David, A., Fleury, E., Larsen, K. G., & Lime, D. (2005). Efficient on-the-fly algorithms
for the analysis of timed games. In CONCUR, Vol. 3653 of Lecture Notes in Computer
Science, pp. 66–80.

David, A., Fang, H., Larsen, K. G., & Zhang, Z. (2014). Verification and performance evaluation of
timed game strategies. In FORMATS, Vol. 8711 of Lecture Notes in Computer Science, pp.
100–114. Springer.

Dignum, F., & Kuiper, R. (1998). Specifying deadlines with continuous time using deontic and
temporal logic. International Journal of Electronic Commerce, 3(2), 67–85.

Ezekiel, J., & Lomuscio, A. (2009). Combining fault injection and model checking to verify fault
tolerance in multi-agent systems. In AAMAS, pp. 113–120. IFAAMAS.

Faella, M., La Torre, S., & Murano, A. (2002). Dense real-time games. In LICS, pp. 167–176. IEEE
Computer Society.

Faella, M., La Torre, S., & Murano, A. (2014). Automata-theoretic decision of timed games. Theo-
retical Computer Science, 515, 46–63.

Farhang, S., & Grossklags, J. (2017). When to invest in security? empirical evidence and a game-
theoretic approach for time-based security. CoRR, abs/1706.00302.

Henzinger, T. A., Horowitz, B., & Majumdar, R. (1999). Rectangular hybrid games. In CONCUR,
Vol. 1664 of Lecture Notes in Computer Science, pp. 320–335. Springer.

Henzinger, T. A., & Prabhu, V. S. (2006). Timed alternating-time temporal logic. In FORMATS,
Vol. 4202 of Lecture Notes in Computer Science, pp. 1–17. Springer.

221



ANDRÉ, JAMROGA, KNAPIK, PENCZEK & PETRUCCI

Huang, X., & van der Meyden, R. (2014). Symbolic model checking epistemic strategy logic. In
AAAI, pp. 1426–1432.

Jamroga, W., Konikowska, B., & Penczek, W. (2016). Multi-valued verification of strategic ability.
In AAMAS, pp. 1180–1189.

Jamroga, W., & Penczek, W. (2012). Specification and verification of multi-agent systems. In
Lectures on Logic and Computation, Vol. 7388 of Lecture Notes in Computer Science, pp.
210–263. Springer.

Jamroga, W., & van der Hoek, W. (2004). Agents that know how to play. Fundamenta Informaticae,
63(2–3), 185–219.

Jurdzinski, M., & Trivedi, A. (2007). Reachability-time games on timed automata. In ICALP, Vol.
4596 of Lecture Notes in Computer Science, pp. 838–849. Springer.

Kacprzak, M., & Penczek, W. (2004). Unbounded model checking for alternating-time temporal
logic. In AAMAS, pp. 646–653. IEEE Computer Society.

Kacprzak, M., & Penczek, W. (2005). Fully symbolic unbounded model checking for alternating-
time temporal logic. Autonomous Agents and Multi-Agent Systems, 11(1), 69–89.

Kocher, P. C. (1996). Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Advances in Cryptology, Proceedings of CRYPTO, pp. 104–113.

Laroussinie, F., Markey, N., & Oreiby, G. (2006a). Expressiveness and complexity of ATL. Tech.
rep. LSV-06-03, CNRS & ENS Cachan, France.

Laroussinie, F., Markey, N., & Oreiby, G. (2006b). Model checking timed ATL for durational
concurrent game structures. In FORMATS, Vol. 4202 of Lecture Notes in Computer Science,
pp. 245–259. Springer.

Laroussinie, F., Markey, N., & Oreiby, G. (2008). On the expressiveness and complexity of ATL.
Logical Methods in Computer Science, 4(2).

Lomuscio, A., Qu, H., & Raimondi, F. (2015). MCMAS: An open-source model checker for the
verification of multi-agent systems. International Journal on Software Tools for Technology
Transfer, 24, 84–90. Available online.

Lomuscio, A., & Raimondi, F. (2006). MCMAS: A model checker for multi-agent systems. In
TACAS, Vol. 4314 of Lecture Notes in Computer Science, pp. 450–454. Springer.

Maler, O., Pnueli, A., & Sifakis, J. (1995). On the synthesis of discrete controllers for timed systems.
In STACS, Lecture Notes in Computer Science, pp. 229–242. Springer.

Nadella, S. (2015). Enterprise security in a mobile-first, cloud-first world. Available at http:
//news.microsoft.com/security2015/.

Saner, E. (2014). The Swiss air force: armed and dangerous, but only in office hours. The Guardian,
19 Feb 2014. Available at https://www.theguardian.com/world/shortcuts/2014/
feb/19/swiss-air-force-ethiopian-airlines-hijacking-office-hours.

Schobbens, P. Y. (2004). Alternating-time logic with imperfect recall. Electronic Notes in Theoret-
ical Computer Science, 85(2), 82–93.

Schwartau, W. (1999). Time based security: Practical and provable methods to protect enterprise
and infrastructure. Interpact Press.

222

http://news.microsoft.com/security2015/
http://news.microsoft.com/security2015/
https://www.theguardian.com/world/shortcuts/2014/feb/19/swiss-air-force-ethiopian-airlines-hijacking-office-hours
https://www.theguardian.com/world/shortcuts/2014/feb/19/swiss-air-force-ethiopian-airlines-hijacking-office-hours


TIMED ATL: FORGET MEMORY, JUST COUNT

Sipser, M. (1997). Introduction to the theory of computation. PWS Publishing Company.

Verizon (2016). Data breach investigations report (DBIR). Available at http://www.

verizonenterprise.com/verizon-insights-lab/dbir/2016/.

223

http://www.verizonenterprise.com/verizon-insights-lab/dbir/2016/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/2016/

	1 Introduction
	1.1 Motivation
	1.2 Structure of the Paper
	1.3 Related Work
	1.4 Previous Versions of the Material

	2 Background
	2.1 Syntax of TATL
	2.2 Tight Durational CGS
	2.3 Semantics of TATL

	3 Hierarchy of Strategies and Semantic Variants of TATL
	3.1 Strategy Types
	3.2 Semantic Variants of TATL

	4 Getting Your Timing Right Without the Clock
	4.1 Two Technical Lemmas
	4.2 Time Makes Memory Obsolete
	4.3 Too Much Time Will Not Help You
	4.4 Time is Counting (for Unpunctual Agents)

	5 Some Things that Make the Difference
	5.1 Time Matters for Punctual Agents
	5.2 Smart Agents Recall, and Not Only Count
	5.3 Punctual Agents Have to Count More
	5.4 Untimed Memoryless Agents Are Dumb Beyond Count
	5.5 Summary

	6 Conclusions and Future Work
	References

