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Abstract

Many applications of machine learning and optimization operate on data streams. While these
datasets are fundamental to fuel decision-making algorithms, often they contain sensitive informa-
tion about individuals, and their usage poses significant privacy risks. Motivated by an application
in energy systems, this paper presents OPTSTREAM, a novel algorithm for releasing differentially
private data streams under the w-event model of privacy. OPTSTREAM is a 4-step procedure con-
sisting of sampling, perturbation, reconstruction, and post-processing modules. First, the sampling
module selects a small set of points to access in each period of interest. Then, the perturbation mod-
ule adds noise to the sampled data points to guarantee privacy. Next, the reconstruction module re-
assembles non-sampled data points from the perturbed sample points. Finally, the post-processing
module uses convex optimization over the privacy-preserving output of the previous modules, as
well as the privacy-preserving answers of additional queries on the data stream, to improve ac-
curacy by redistributing the added noise. OPTSTREAM is evaluated on a test case involving the
release of a real data stream from the largest European transmission operator. Experimental results
show that OPTSTREAM may not only improve the accuracy of state-of-the-art methods by at least
one order of magnitude but also supports accurate load forecasting on the privacy-preserving data.

1. Introduction

Differential privacy (Dwork, McSherry, Nissim, & Smith, 2006) has emerged as a robust framework
to release datasets while limiting the disclosure of participating individuals. Informally, it ensures
that what can be learned about an individual in a differentially private dataset is, with high proba-
bility, limited to what could have been learned about the individual in the same dataset but without
her data.

Many applications of machine learning and optimization, in areas such as healthcare, traffic
management, and social networks, operate over streams of data. The use of differential privacy for
the privacy-preserving release of time series has attracted increased attention in recent years (e.g.,
Dwork, Naor, Pitassi, & Rothblum, 2010; Dwork, 2010; Fanti, Pihur, & Erlingsson, 2016; Ding,
Kulkarni, & Yekhanin, 2017; Chen, Machanavajjhala, Hay, & Miklau, 2017) where aggregated
statistics are continuously reported. Two common approaches for time series data release are the
event-level and user-level privacy models (Dwork et al., 2010). The former focuses on protecting
a single event, while the latter aims at protecting all the events associated with a single user, i.e.,
it focuses on protecting a computation of an individual in the dataset. Additionally, Kellaris, Pa-
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padopoulos, Xiao, and Papadias (2014) proposed the notion of w-event privacy to achieve a balance
between event-level and user-level privacy, trading off utility and privacy to protect event sequences
within a time window of w time steps.

This paper was motivated by a desire to release privacy-preserving streams of energy demands,
also called loads, in transmission systems. The goal is that of protecting changes in consumer loads
up to some desired amount within critical time intervals. Although customer identities are typically
considered public information (e.g., each facility is served by some energy provider), their loads
can be highly sensitive as they may reveal the economic activities of grid customers. For example,
changes in load consumption may indirectly reveal production levels and strategic investments and
other similar information. Moreover, these time series are often input to complex analytic tasks,
e.g., demand forecasting algorithms (Nogales, Contreras, Conejo, & Espinola, 2002) and optimal
power flows (Ochoa & Harrison, 2011). As a result, the accuracy of the privacy-preserving datasets
is critical and, as shown later in the paper, existing algorithms for time series fall short in this respect
for this application.

The main contribution of this paper is a new privacy mechanism that remedies these limitations
and is sufficiently precise for use in forecasting and optimization applications. The new algorithm,
called OPTSTREAM, is presented under the framework of w-event privacy and is a 4-step procedure
consisting of sampling, perturbation, reconstruction, and post-processing modules. The sampling
module selects a small set of points for privacy-preserving measurement in each period of interest,
the perturbation module introduces noise to the sampled data points to guarantee privacy, the recon-
struction module reconstructs the non-sampled data points from the perturbed sampled points, and
the post-processing module uses convex optimization over the privacy-preserving output of the pre-
vious modules, as well as the privacy-preserving answers of additional queries on the data stream,
to redistribute the noise to ensure consistency of salient features of the data. OPTSTREAM is also
generalized to answer queries over hierarchical streams, allowing data curators to monitor simulta-
neously streams produced by energy profile data at different levels of aggregation. It is important
to emphasize that, although OPTSTREAM was motivated by an energy application, it is potentially
useful for many other domains since its design is independent of the underlying problem.

OPTSTREAM is evaluated on real datasets from Réseau de Transport d’Electricité, the French
transmission operator and the largest in Europe. The dataset contains the energy consumption for
one year at a granularity of 30 minutes. OPTSTREAM is also compared with state-of-the-art algo-
rithms adapted to w-event privacy. Experimental results show that OPTSTREAM improves the ac-
curacy of state-of-the-art algorithms by at least one order of magnitude for this application domain.
The effectiveness of the proposed algorithm is measured, not only in terms of the error between the
reported privacy-preserving streams and the original stream but also in the accuracy of a load fore-
casting algorithm based on the privacy-preserving data. Finally, the paper shows that the sampling
and optimization-based post-processing steps are critical in achieving the desired performance and
that the improvements are also observed when releasing hierarchical streams of data.

The rest of this paper is organized as follows. Section 2 discusses the stream model, summarizes
the privacy goals of this work, and reviews the notion of differential privacy over streams. Section
3 describes OPTSTREAM and the design choices of its components. Section 4 analyzes the accu-
racy of the proposed framework and shows how it reduces the error introduced to preserve privacy
when compared to a standard solution. Section 5 extends OPTSTREAM to the a-indistinguishability
privacy model, allowing privacy protection of arbitrary quantities and which is critical for the mo-
tivating application. Additionally, OPTSTREAM is extended to handle hierarchical stream data.
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Section 6 performs a comprehensive experimental analysis of real data streams from energy load
profiles. Section 7 discusses key aspects of the privacy model adopted to privately releasing streams
of data, as well as differences with the event-based model for data streams. Section 8 discusses the
related work and, finally, Section 9 concludes the work.

2. Preliminaries

This section first reviews basic concepts in differential privacy. It then presents the w-event privacy
model used to protect privacy in data streams and its definition of differential privacy.

2.1 Differential Privacy

This section reviews the standard definition of differential privacy (Dwork et al., 2006). Differential
privacy focuses on protecting the participation of an individual user in a computation. Such notion
relies on the definition of a adjacency relation ~ between datasets. Two datasets X, X’ are called
neighbors if their content differs in at most one tuple: X ~ X' < | X — X'/ < 1.

Definition1 (Differential Privacy) Let A be a randomized algorithm that takes as input a dataset
and outputs an element from a set of possible responses. A achieves e-differential privacy if; for all
sets O < O and all neighboring datasets X, X' € D:

Pr[A(X) € O]

PrlACO e0] =P w

The level of privacy is controlled by the parameter € > 0, describing the privacy loss, with values
close to 0 denoting strong privacy. The adjacency relation ~ captures the participation of an in-
dividual into the dataset. While differential privacy algorithms commonly adopts the 1-Hamming
distance as adjacency relation between datasets, the latter can be generalized to be any symmetric
binary relation ~C D2. In particular, the relation ~ captures the difference in the data D caused
by the addition or removal a single individual and has been generalized to protect locations of in-
dividuals (Fawaz & Shin, 2014) and quantities in general (Chatzikokolakis, Andrés, Bordenabe, &
Palamidessi, 2013). When a single entry is associated with a user in the dataset, an algorithm satis-
fying Equation (1) prevents an attacker with access to the algorithm’s output from learning anything
substantial about any individual.

2.1.1 PROPERTIES OF DIFFERENTIAL PRIVACY

Differential privacy enjoys several important properties, including composability and immunity to
post-processing.

Composability Composability ensures that a combination of differentially private algorithms pre-
serve differential privacy (Dwork & Roth, 2013).

Theorem1 (Sequential Composition) The composition A(D) = (A1(D), ..., Ax(D)) of a col-
lection {A;}¥_| of e;-differentially private algorithms satisfies (Zf;l €;)-differentially privacy.

Theorem2 (Parallel Composition) Let Dy and Dy be disjoint subsets of D, obtained through a
data independent process, and A be an e-differentially private algorithm. Then computing A(D N
Dy) and A(D n D») satisfies e-differential privacy.
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Post-processing Immunity Post-processing immunity ensures that privacy guarantees are pre-
served by arbitrary, data independent, post-processing steps (Dwork & Roth, 2013).

Theorem3 (Post-Processing Immunity) Ler A be an e-differentially private algorithm and g be
an arbitrary mapping from the set of possible output sequences O to an arbitrary set. Then, g o A
is e-differentially private.

We now introduce two useful differentially private algorithms.

2.1.2 THE LAPLACE MECHANISM

A numeric query ), mapping a dataset to R?, can be made differentially private by injecting random
noise to its output. The amount of noise to inject depends on the sensitivity of the query, denoted by
A and defined as,

Ag = max [Q(D) — Q(D)], -

In other words, the sensitivity of a query is the maximum L1-distance between the query outputs
from any two neighboring dataset D and D’. For instance, Ag = 1 for a query @ that counts the
number of users in a dataset.

The Laplace distribution with 0 mean and scale b, denoted by Lap(b), has a probability density

. || . . . . .
function Lap(z|b) = 2%6_ & . It can be used to obtain an e-differentially private algorithm to answer
numeric queries (Dwork et al., 2006). In the following, we use Lap()\)? to denote the i.i.d. Laplace
distribution over d dimensions with parameter \.

Theorem4 (Laplace Mechanism M,,) Let QQ be a numeric query that maps datasets to R%. The
Laplace mechanism that outputs Q(D) + z, where z € R? is drawn from the Laplace distribution

d
Lap (A—EQ> , achieves e-differential privacy.

2.1.3 SPARSE VECTOR TECHNIQUE

The Sparse Vector Technique (SVT) is an important tool of differential privacy (Dwork & Roth,
2013; Hardt & Rothblum, 2010) that allows answering a sequence of queries without incurring
a high privacy cost. The SVT mechanism is given a sequence of queries = ¢1,¢2,... and a
sequence of real valued thresholds © = 61,6, ... and outputs a vector indicating whether each
query answer ¢; is above or below the corresponding threshold 6;. In other words, the output is a
vector {T, L }¥ where £ is the number of queries answered and T (resp. L) indicates that the answer
to a noisy query is (resp. is not) above a noisy threshold.

The SVT mechanism is summarized in Algorithm 1. It takes as input a dataset D, a sequence
of queries () = q1, q2, - .., each with sensitivity no more than A, a sequence of thresholds © =
01,05, ..., and a constant k, denoting the maximum number of queries to be answered with value
T. Tts output consists of a sequence of answers ay, as, ... with each a; € {T, L}. For each query,
SVT perturbs the corresponding threshold and checks if the perturbed individual query answer is
above the noisy threshold.

Theorem5 (SVT) The SVT mechanism achieves e-differential privacy (Hardt & Rothblum, 2010).

The SVT mechanism is useful especially in situations when one expects that most answers fall
below the threshold, since the noise depends on k. The SVT mechanism will be used in this paper
to find good sample points in a stream.
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Algorithm 1: SVT - Sparse Vector Technique
input : D: the dataset
Q = q1,q2, . ..: asequence of queries
© = 01,05, ...: asequence of thresholds
k: the maximum number of queries to be answered positively
e: the privacy loss
p = Lap(2Aq/e);
count = 0;
foreach qguery ¢; € Q do
v; = Lap(4kAg/e);
if ¢;(D) +v; = 0; + p then
output a; = T;
count = count + 1;
Break if count > k;
else
L output a; = 1

AR B N

[
=]

2.2 The w-Event Privacy Model for Data Streams

This section presents the privacy model for streams adopted in this paper. A data stream D is
an infinite sequence of elements in the data universe % = I x 7T, where Z denotes the set of
user identifiers and 7 is a possibly unbounded set of time steps. In other words, each tuple (i,t)
describes an event reported by user ¢ that occurred at time ¢. Time is represented through discrete
steps 7 = {1,2,...} and user events are recorded periodically (e.g., every 30 minutes). In a data
stream D, tuples are ordered by arrival time. If tuple (i,t) arrives after tuple (i/,¢'), then t > ¢’
Additionally, in the following, D[t] denotes a stream prefix, i.e., the sequence D1, ..., D; of all
tuples observed on or before time ¢. Additionally, D denotes the set of all datasets describing
collections of tuples in %/ .

Examplel Consider a data stream system that collects location data from WiFi access points (APs)
in a collection of buildings. Users correspond to MAC addresses of individual devices that connect
to an AP. An item (i,t) in the data stream represents the fact that user i has made at least one
connection to an access point at time step t. In the following table, user 02:18:98:09:1a:a4
reports a connection at times t = 1 and t = 2. The example represents a data stream prefix D|3].

D Dy Ds

02:18:98:09:1a:a4 | 02:18:98:09:1a:a4 | 05:12:11:0a:30:03
05:12:11:0a:30:03 | 05:12:11:0a:30:03 | 11:28:18:a9:1b:a3
11:28:18:a9:1b:a3 | 11:28:18:a9:1b:a3 | 07:22:1a:12:31:33
07:22:1a:12:31:33 | 01:11:e2:14:43:b2
01:11:e2:14:43:b2

The data curator receives information from an unbounded data stream D in discrete time steps. At
time ¢, the curator collects a dataset D, of tuples (i,t) where every row corresponds to a unique
user. The curator reports the result of a count query ) : D — R that describes how many users are
in the dataset at time ¢, i.e., Q(Dy) = [{i : (i,t) € Dy}|.
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Example2 Consider the data stream prefix of Example 1. The associated result of the count queries
executed onto each dataset of the data stream is given in the following table.

Q(D1) | Q(D2) | Q(Ds)
3 5 4

In our target application, the data curator is interested in publishing every element Q(D;) for a
recurring period of w time steps. A w-period is a set of w contiguous time steps t —w+1,. ...t
(w > 1). Thus, the answers to each query Q(D;) are generated in real time for windows of w time
steps. As a result, this paper adopts the w-event privacy framework by Kellaris et al. (2014).

2.3 Differential Privacy on Streams

The w-event privacy framework (Kellaris et al., 2014) extends the definition of differential privacy
to protect data streams and has become a standard privacy notion for data streams (see, for instance,
Rastogi & Nath, 2010; Dwork & Roth, 2013; Andrés, Bordenabe, Chatzikokolakis, & Palamidessi,
2013; Bolot, Fawaz, Muthukrishnan, Nikolov, & Taft, 2013; Chan, Shi, & Song, 2011). The frame-
work operates on stream prefixes and two data streams prefixes D[t] and D'[t] are w-neighbors,
denoted by D[t] ~,, D'[t], if

i. for each D;, D} with i € [t], D; ~ D/, and
ii. foreach D;, D, Dj, D} suchthati < j € [t]and D; # D;, Dj # D}, j —i+ 1 < w holds.

In other words, two stream prefixes are w-neighbors if their elements are pairwise neighbors and all
the differing elements are within a time window of up to w time steps. As a result, when ensuring
the privacy guarantees, the w-event framework does not consider data streams where the differences
are beyond a time window of size w: It only needs to consider windows of w elements.

Definition2 (w-privacy) Let A be a randomized algorithm that takes as input a stream prefix D|t]
of arbitrary size and outputs an element from a set of possible output sequences O. Algorithm A
satisfies w-event e-differential privacy (w-privacy for short) if, for all t, all sets O < O, and all
w-neighboring stream prefixes D[t] and D'[t]:

PrlA(D[t]) € O]
PrlA(D'[t]) € O]

< exp(e). 2)

An algorithm satisfying w-privacy protects the sensitive information that could be disclosed from a
sequence of finite length w. When w = 1, w-privacy reduces to event-level privacy (Dwork et al.,
2010) that protects the disclosure of events in a single time step.

All the properties of differential privacy discussed above carry over to w-privacy. The Laplace
mechanism which adds Laplace noise to each element of the stream with parameter wA /e achieves
w-privacy (Kellaris et al., 2014).

The algorithms studied in this paper satisfy Definition 2. When clear from the context, the paper
uses e-differential privacy to denote w-event privacy. A list of common symbols is summarized in
Table 1.
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Symbol Definition Symbol Definition
U Data universe ~w Neighboring relation
D Data stream x¢ Result of query Q(Dy)
D; Dataset at time ¢ I Privacy-preserving estimate of x;
DJ[t] Stream prefixes x Data stream summary

() A query on a dataset
Ag Sensitivity of query )

Privacy-preserving data stream summary

T
rl. User’s u value at time ¢

Table 1: Commonly used symbols and notations.

3. OptStream For Stream Release

This section describes OPTSTREAM, a novel algorithm for privacy-preserving data stream release.
OPTSTREAM consists of four steps: (1) data sampling, (2) perturbation, (3) reconstruction of the
non-sampled data points, and (4) optimization-based post-processing. The algorithm takes as input
the data stream, denoted by D/ = D{ , Dg, ..., the period size w whose privacy is to be protected,
the privacy loss €, and some hyper-parameters used by its procedures, which will be described later.
Its output is a data stream summary & = (21, Z2, . . .) where each Z; represents a privacy-preserving
version of the aggregated real data in D}. Here, an aggregation operation is one that transforms the
dataset into a numerical representation (e.g., a count). The four steps can be summarized as follows:

1. SAMPLE: Selects a subsample of k points for each w-period. Its goal is to perform a di-
mensionality reduction over the data stream whose sample points can be used to generate
privacy-preserving answers to each query with low error. Two sampling strategies are con-
sidered: One that chooses k equally-spaced points in the w-period, and another that selects k
points such that the linear interpolation between their values minimizes the error.

2. PERTURB: Uses the canonical Laplace mechanism to guarantee privacy perturbing the k data
points sampled in Step 1.

3. RECONSTRUCT: Reconstructs the non-sampled data points values from the perturbed sam-
pled ones. Its goal is to map the dimension-reduced data stream back to the original space,
generating thus w data points.

4. PoST-PROCESS: Uses convex optimization to enforce consistency of salient features of the
data, employing the privacy-preserving output of the above modules, as well as privacy-
preserving answers to additional queries on the data stream.

OPTSTREAM balances two types of errors: a perturbation error, introduced by the application of
additive noise at the sampled points, and a reconstruction error, introduced by the reconstruction
procedure at the non-sampled points. The higher the number of samples in a w-period, the more
perturbation error is introduced while the reconstruction error may be reduced, and vice-versa. Sec-
tion 4 describes the error generated by these two components and analyzes the number of samples
that minimizes the error.

OPTSTREAM processes the data stream in consecutive and disjoint w-periods. To simplify
notation, throughout this section, the paper uses D = Dy,..., Dy, and * = x1,...,x, to denote,
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Algorithm 2: OPTSTREAM data stream release
input : D/ = (D!, D .. .): the data stream
w: the size of the period
€: the privacy loss
k, 0, .7 hyperparameters
output: X = (21, Z9,...): a privacy-preserving data stream summary
Let ¢ be the current time step
1 ift (mod w) =0 then
2 D<—Dt17w+1,...DtI
3 RELEASE (D, k, w, €, 0, F)
Function RELEASE (D, w, ¢, k, 0, %) :
4 x — aggr(Dy),...aggr (D)
5 €s, €p, €0 < splitloss €
6 S = SAMPLE (x, €5, k, 0)
7
8
9

Zg = PERTURB (z[5], ¢p)

& = RECONSTRUCT (Zg, w)

& = POSTPROCESS (&, €5, { Qr (D) }rc.7)
10 release &

respectively, the current w-period being processed, and its univariate discrete series representation,
where each x; denotes the result of an aggregation function aggr(D;) that transforms the dataset into
a numerical representation. Similarly, we use D’ and ' to denote their neighboring counterparts.
Additionally, given a set of time steps indexes .S, x[S] denotes the collection of points {z;|i € S}.
For simplicity, we will assume that the sensitivity of the aggregation operations is one. The results
directly generalize to arbitrary sensitivities.

OPTSTREAM is depicted in Algorithm 2. When a new w-period is observed (line 1), the algo-
rithm extracts the relevant portion of the stream (line 2) and calls function RELEASE, which releases
a privacy-preserving version of the data stream in the current w-period (line 3).

In addition to the portion D of the data stream to release, the size of the w-period w, and the
privacy loss ¢, function RELEASE takes, as inputs, three hyperparamers: k, 0, and .%. Parameters k
and @ are used by procedure SAMPLE and represent the maximum number of data points to extract
in the w-period and a threshold value, respectively. Parameter .% is a set of features queries used
by procedure POSTPROCESS; these queries and their uses will be covered in detail later. The four
steps of Function RELEASE operate on a discrete series representation a of the data stream (line
4). The privacy loss to be used in each step is computed in line 5. Procedure SAMPLE takes as
input the sequence of values «, the maximum number £ of data points to sample, and the portion
€s = 0 of the privacy loss € used in the sampling process' (line 6). It outputs the set S of indexes
associated with the values of & whose privacy must be protected. Procedure PERTURB takes, as
input, the vector x[S] of sampled data points from x and outputs a noisy version &g of x, using a
portion €, > 0 of the overall privacy loss (line 7). Procedure RECONSTRUCT takes, as inputs, the
vector g from the perturbation step and the size w of the period and outputs a vector & of size

1. €5 can be 0 if the sampling processes does not access the real data to make a decision on which points to sample.
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w whose values are privacy-preserving estimates of the data stream in the w-period (line 8). Next,
procedure POSTPROCESS takes as input the vector of points &, additional feature queries Qg (D)
for each feature F in the set of data features .% (which are defined in detail in Section 3.4), and uses
a portion €, > 0 of the overall privacy loss € to compute a final estimate & of  (line 9). Finally, the
privacy-preserving estimates & are released (line 10).

Lemmal Let e + ¢, + ¢, = €. When the SAMPLE, PERTURB, and POST-PROCESS procedures
satisfy €s-, €p-, and € -differential privacy, respectively, Algorithm 2 satisfies e-differential privacy.

Any sampling, perturbation, and reconstruction algorithms can be used within Algorithm 2, pro-
vided that they achieve the intended purpose and satisfy the required privacy guarantees. The next
section describes two variants of the sampling and reconstruction algorithms that may reduce the
error (Section 4) and are shown to perform well experimentally (Section 6). The perturbation pro-
cedure is a canonical application of the Laplace mechanism (Theorem 4) on the set of sampled data
points and parallel composition (Theorem 2). The post-processing step is described in Section 3.4.

3.1 The Sampling Procedures

The goal of the sampling procedure is to select k points of the given w-period that summarize the
entire data stream period well. This section considers two strategies.

Equally-Spaced Sampling A first strategy is to sample k equally-spaced data points in the w-
period. Since this approach does not inspect the values of the data stream to make its decisions, it
does not consume any privacy loss, i.e., €5 = 0.

L,-Based Sampling The second strategy also selects & out of w points but tries to minimize the
error between the values associated to the original data points and those associated to the points
generated by a linear interpolation of the k selected points. Let £ [4:3] be a function capturing the line
segment between two points x; and z;, i.e.,

lal() = (¢ — i) LT 4y,
Jj—1
for ¢ € [i, j]. Consider an ordered sequence S = (i1, ..., ) of k indexes in [w] and define £° as a

piecewise linear function whose pieces are line segments between every two adjacent points in .5,

g[u,bz] (t) ift e [u1,10]

R s U L G

é’[bkflvbk] (t) ifte [Lk:fh [‘k]'

Define the L{"*!-scoring function for 1 < a < b < w as,

b

Li"(D) = 37 [l (i) — a4 3)
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\

Figure 1: Tllustration example of the L7 function with S = (1, 3, 6). The solid black curve connects
the data point x, the dashed red curve denotes the function & S and the red arrows denote
the distance between the points in 2 and the function £°. The LY (D) value is the sum of
these distances.

The Li-based sampling procedure aims at selecting a sequence S of k indexes ¢ < 19 < ... < i
in a w-period that minimizes the Lf -scoring function defined as,

11<t2<...<tp “4

k—1
minL7(D) = _min 3 L), @)
7j=1

Figure 1 provides an example with a graphical illustration of the Lf function. The black solid curve
delineate . The set S = (1, 3,6) and the sampled points 1, 3, and z¢ are colored red. ¢° is the
piecewise linear function passing through the sampled points and is represented with dashed red
lines. The red arrows denote the distance between the points in & and their corresponding values in
¢ and the Ly -score for the set S is the sum of these distances. The procedure assumes that the first
and the last points of « are in S.

Intuitively, the set of k& points that minimizes Equation (4) produces the minimal reconstruction
error when linear interpolation is used as a reconstruction procedure. However, finding the set of
k points minimizing the L;-scoring function may be computationally expensive. Hence this paper
presents a differentially private greedy algorithm that approximates Equation (4). The sampling
procedure is depicted in Algorithm 3 and is an instantiation of the SVT mechanism where the
queries compute the L;-scores of the potential interpolation steps.

The mechanism takes, as inputs, the data stream a processed for the current w-period, the
number of points k£ to sample for measurements, along with the privacy loss ¢, and a user defined
threshold # > 0 which influences the acceptable L -score for choosing the next point to sample. The
values choice for # in our application of interest are detailed in Section 6. Line 1 initializes the set
of sample points S with the first element of the w-period (this choice is necessary for executing the
interpolation in the next steps), and it tracks the last point ¢,, selected for sampling. The algorithm
first generates the noise p (line 2) for the threshold 6 (line 5). For all but the first time step, the
algorithm adds Laplace noise with parameter 4kA[ /e to the Lgt”’l] -query (line 4), where Ay, is the
largest sensitivity associated with any of the L; scoring functions invoked by the algorithm (see
Theorem 6). If the result is above the threshold, then point ¢ is added to .S (line 6) and the last
selected point ¢, is updated (line 7). The mechanism keeps track of the number of index points
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Algorithm 3: SAMPLE - Adaptive L1 -based sampler
input : x: the data stream seen in the current w-period
k: the number of samples
€s: the privacy loss
0: a threshold
output: S: A sample set of k points in [w]
1 S={1l} t,=1
2 p = Lap(2Ap/es)
3fori=2...,wdo
4 w; = Lap(4kAp/es)
if Lgtp’l](a:) + p; = 6 + p then

LS=SU{Z'}

ty =i

ifw—1i<k—|S|then
LSzSu{j | i <j<w}
10 | Breakif |S| =Fk

11 return S

already stored. It stops when the size of S matches & (line 10). The mechanism also tests if there
are enough points to reach £ (line 8) and adds the remaining points if needed (line 9).
To run the mechanism, it is necessary to determine the sensitivity A[Lal’b] of the L;-score defined
in Equation (3), i.e.,
Al = max |\ D) - Ll (D)

where D and D’ are two w-neighboring data streams in a w-period.

The following theorem shows that A[Lal’b] can be bounded, yielding a procedure to privately

sample £ points in the w-period using an efficient, suboptimal, version of Equation (4).

Theorem6 For an arbitrary w-period and fixed indexes a,b € [w] with a < b, the sensitivity A
of the Lga’b] score is bounded by 2(b — a).

[a,b]
Ly

Proof. Consider two data stream w-periods D and D’ such that D ~,, D’ and focus, without
loss of generality, on their associated stream counts  and &’. Let £ and ¢’ be shorthands for £[%:]
and £/l*%] The goal is to bound

b
L) - L) = Y 1Ig'(0) — atl — 1€6) — il

and each term of the summation can be bounded independently. If i = a v i = b, then (i) = x, and
&(i) = x;, since 2} and x; are interpolated exactly and ||¢' (i) — z}| — |¢(i) — @;|| = 0. Otherwise,
note that |z} —x;| < 1since D; ~ D} = 1forall ¢ € [w] by definition of w-event privacy. Moreover,
since the pairs (£(a), &' (a)) and (£(b), &' (b)) differ by at most 1, it follows that |¢'(i) — £(7)] < 1
for every point ¢ € [a, b]. There are four cases to consider.

433



FIORETTO & VAN HENTENRYCK

(D IfE (i) = o) and £(7) = x;, then

1€/ (i) — ] — [€(i) — ]| = |(¢
(¢

(2) The case &' (i) < = and £(7) < a; is symmetric. (3) The case &’(¢) > z and £(i) < x; requires
a further case analysis.

() If &'(1) < &(4), we have oz, < €'(i) < &(i) < ;. Since |z; — x}| < 1, it follows that
|¢' (i) — x}] < 1and|{(i) — x;| < 1. Therefore

167(3) — @i] = 1€(1) — | < 1
(i) If €'(i) > £(4), then £(i) + 1 = €'(i) > £(i), since |€(i) — €' (4)] < 1. It follows that
<) <€)+ 1<z + 1.
Since |z; — 2| < 1and [£(7) — &'(2)] < 1,|¢'(4) — «}| < 1and |{(¢) — x;| < 1 and therefore
167(3) — @i] = 1€(1) — [ < 1
(4) Finally, the last case, &'(i) < 2/ and £(i) > x;, is symmetric to previous one. Therefore

AP = max [LP/(D') - LI*/(D)] < 2(0 - a).

T~y

U

Let S = (i1,...,t,) be a sequence of k indexes in [w]. Because of the stopping criteria, the

largest contiguous interval [¢;, ¢;] for i, j € k] has size w — k. The sensitivity of the L1-score on
such an interval is bounded by 2(w — k). Algorithm 3 thus uses

A L = 2(w - ]C)
Theorem?7 Algorithm 3 is es-differentially private.

Proof. The proof is a direct consequence of the correctness of the SVT mechanism (Hardt &
Rothblum, 2010), Theorem 6, and the definition of Ay,. O

3.2 The Perturbation Procedure

Given the set S of k£ sampling indexes for a w-period, the perturbation process takes as input the
k-ary vector of the data stream measurements x[.S| and outputs a noisy version &g of such vector
satisfying €,-differential privacy. The process simply applies the Laplace mechanism with parame-
ter kA 4/€,, where A 4 is the sensitivity of the aggregation query.

Theorem8 PERTURB satisfy ep-differential privacy.

The above result follows by straightforward application of the Laplace mechanism (Theorem 4) on
a set of k points and parallel composition (Theorem 2).
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Algorithm 4: POSTPROCESS — Optimization-based post-processing
input : x: the data stream seen in the current w-period
x: the privacy-preserving data stream seen in the current w-period
Qr(D); the set of feature queries
€o: the privacy loss
output: &: a privacy-preserving post-processed data stream
1 61 =x
2 ¢ = Mpap(x; Qr,,¢/(p—1)) Vie{2,...,p}

3 ¥ = argming |t — E:||%7/\

pomy
Xi Y (i — Gij)? (O1)
i=1  j=1
subject to :
Vili:Fy <Fiy jelm]idy = >, dn (02)
l:di/lgdij
Vi, j a5 = 0. (03)
return & = 211,..., 1y

3.3 The Reconstruction Procedure

The RECONSTRUCT procedure takes as input the noisy measurements &g € R* at the sample points
S in « and outputs a vector € € RY of privacy-preserving estimates for the sub-stream x. Each
value #; of & is obtained evaluating the function ¢ at i. Section 4 analyzes how well the poly-
nomial approximates the data stream at any point x;. The reconstruction procedure is not required
to query the real data stream and uses exclusively privacy-preserving information to compute its
output. Hence, the output & remains €5 + €,-differentially private by post-processing immunity of
differential privacy (Theorem 3).

3.4 The Optimization-based Post-Processing

The noise introduced in the previous steps may substantially alter the values of the elements in the
w-period, so that some global properties of interest, such as the total sum of elements in the w-period
may differ from its original value. The goal of the post-processing step is to redistribute the noise
introduced by the previous steps using noisy information on aggregated values of the w-period. It
does so by casting the noise redistribution as an optimization problem whose solution guarantees
the consistency of different estimates of identical quantities.

The POST-PROCESS step computes the final estimates & of the w-period data @ using the
privacy-preserving data & and additional queries over . The procedure is summarized in Algo-
rithm 4. It uses the concept of features to capture semantic properties of the application of interest
and queries these features in addition to using the noisy input & of the original data stream. For
example, two important features in the analysis of WiFi connections profiles are those periods when
peaks typically occur, as well as the total amount of connections occurring in an w-period.
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Formally, a feature is a partition of the w-period and the size of the feature is the number of
elements in the partition. We say that a feature F” is a sub-feature of F, denoted by F/ < F, if F’ is
obtained by sub-partitioning F. The feature query Qg (D) on data stream D associated with feature
F = {di,...,d,,} returns an m-dimensional vector (ci,. .., ¢,) wWhere each ¢; is the sum of the
values z; of x for j € d;.

Example3 Consider a w-period x = (10, 15,20,23,41, 72,55, 50,88, 72,40, 18) of size 12 re-
porting the number of WiFi connections to an access point in a day-period. Consider a fea-
ture F1 = {1,...,12} that includes the indexes for all the elements of the w-period. The as-
sociated feature query Qr,(D) = (10,15,20,23,41, 72,55, 50,88, 72,40, 18) returns each fre-
quency value observed during the day. Next, we consider a sub-feature ¥o of ¥, defined
as Fo = {{1,2,3,4},{5,6,7,8,9},{10,11,12}}. Its associated feature query Qw,(D) =
(68,306, 130) describes the sums of all connection frequencies associated with time steps in
{1,2,3,4}, {5,6,7,8,9}, and {10, 11,12}, representing morning, afternoon, and evening hours
respectively.

The optimization-based post-processing takes as input the noisy data stream & from the recon-
struction procedure and a collection of features queries Qr (D) for each F in the set of features
F = {Fq,...,F,}. For notational simplicity, we assume that the first feature always partitions the
data stream w-period into singletons, i.e., F; = {{i} : i € [w]}. The noisy answer to this query
is the output x of the perturbation procedure (line 8 of Algorithm 2). When viewed as queries,
the inputs to the mechanism can be represented as a set of values Qr,(D) = ¢; = (¢i1, ..., Cim,)
(1 <@ < p) or, more concisely, as ¢ = (c11, - . ., Cpm,, ). We assume that the partial ordering < of
features is given. Finally, notice that the feature queries Qg (D) form a lattice on D.

The first step of Algorithm 4 (line 1) associates the noisy data stream « to the vector ¢, cor-
responding to the query answers associated to the first feature in Qg. This step is already privacy
preserving and no additional noise is required. Line 2 applies the Laplace mechanism with privacy
parameter p%l to each remaining feature query, i.e.,

Mupap(x; Qr,, /p— 1) = € = (G, .- -, Cim;) (2<i<p).

The resulting values ¢ = (C11,...,Cpm,) are then post-processed by the optimization algorithm
depicted in line 3 to obtain the values * = (z7,,...,z . Finally, the mechanism outputs a data
stream & = (Z],...,T,)-

The essence of Algorithm 4 is the optimization model depicted in line 3. Its decision variables
are the post-processed values & = (&11,...,%pm,), and A = (A1,...,A,) € (0,1]7 is a vector
of reals representing weights for the terms of the objective function. The objective minimizes the
squared weighted La-Norm of @ — ¢, where the weight \; of element x;; — ¢;; is m%

The optimization is subject to a set of consistency constraints among comparable features and
non-negativity constraints on the variables. For each pair of features (F;, F;) with F;; < F,,
constraint O2 selects an element d;; € F; and all its subsets d;;; € ;7 and imposes the constraint

Tij = 2 il

l3di/[gdij

;mp )

which ensures that the post-processed value z;; is consistent with the sum of the post-processed
values of its partition in F;,. By definition of sub-features, there exists a set of elements in F
whose union is equal to d;;.
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Theorem9 The optimization-based post-process achieves €,-differential privacy.

Proof. Since each feature partitions the w-period over the data stream, each feature query is
a count query with sensitivity 1. Thus, each ¢; (¢ > 1) obtained from the Laplace mechanism

is €,-differentially private by Theorem 4 and the values & = ¢11,. . ., €14 are differentially private
(Theorems 7 and 8). Additionally, (€11, ..., Cpm, ) is €,-differentially private by Theorem 1. Finally,
the result follows from post-processing immunity (Theorem 3). O

Observe that the mechanisms considered in this paper all operate over the universe of the data
stream in the w-period. This is the case for instance of the Laplace mechanisms which runs in
polynomial time in the size of the w-period. The next theoretical result characterizes the complexity
of the optimization model depicted in line 3 and hence the complexity of Algorithm 4. Recall that
a d-solution to an optimization problem is a solution whose objective value is within distance § of
the optimum.

Theorem10 A J-solution to the optimization to the optimization model in line 3 (Algorithm 4) can
be obtained in time polynomial in w, the number of features, and %.

Proof. First observe that the number of variables and constraints in the optimization model are
bounded by a polynomial in size of the period w and the number of features p. Indeed, since the
features are partitions, every set d;; in Constraint (O2) is a subset of exactly one d;;. The result
then follows from the fact that the optimization model is convex, which implies that a §-solution can
be found in time polynomial in the size of the universe, the number of features, and % (Nemirovski,
2004). OJ

4. Error Analysis

This section analyzes how the sampling and reconstruction procedure can improve the accuracy
of the output. It characterizes the error E||& — |3 of the results of Algorithm 2 over a w-period
stream release, when the equally-spaced approach is selected as a sampling procedure and no post-
processing is applied (i.e., when the algorithm releases & (line 8, Algorithm 2)).

4.1 Sample and Reconstruct

Consider a w-period of the data stream x using the same notational assumptions introduced in
the previous period, and thus we focus in a w-period in [1,w]. Let k& = |S| be the number of
samples selected for measurements, by the equally-spaced sampling in addition to the initial point.
This determines the length of each segment m = w/k during which the RECONSTRUCT procedure
interpolates values without extra measurements. We assume m to be an even integer. Let L be the
Lipschitz constant defined as L := SUPe[w] Lt — Tt—1.

Theorem11 The error introduced by Algorithm 2 (ignoring post-processing) with the equally-

spaced sampling procedure with parameter k is bounded by O (mQsz + 2# + m“;; )

Proof. For notational simplicity, consider the first interval I = {1,...,m} of the w-period,
where the sample points 1 and m are selected. Thus, z; and z,, are measured privately. The
reconstruct procedure uses linear interpolation between x; and x,, to recover the values of the
non-sampling points g, . .., Tm_1-
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For each point i € [m], there are two sources of error: the perturbation error e, and the recon-
struction error e,. The worst-case reconstruction error is bounded by e, = mL. The perturbation
error e, is the additive Laplace noise. There are £ measurements taken, and hence the privacy
loss € must be divided by k, which results in e, = |Z; — x;| = Lap(k/e). This error adds to the
perturbation error at every point in the w-period. Therefore, for all i € [m], the expected error is:

E [(er + €p)°]

E|&; — a3 <
< EZwLap(k/e) [(’I?’LL + Z>2]

ko k
=m?L* + 2mL= + (=)
€ €

Multiplying this quantity by the number m of points in the interval gives

k k
E|Z[I] — 2[I][3 < mE|&; — 243 < m*L* + 2m*L= + m(=)%.
€ €
As aresult, the error |&[I] — x[I]|3 is bounded by O(m3L? + 2m?L% + m(%)?). Multiplying the
above by the number of intervals > in the w-period gives the final error which is bounded by

2L 3
o(m2L2w+2w+“;2).
€ m=e

L]
Form = \/6@ , the above expression generates an error of O(w?L/¢).? In comparison, applying the
Laplace mechanism to produce a privacy-preserving sub-stream in the w-period produces an error
3
of w ELap(w/e) [ZQ] = 1:7 .

The result above shows that choosing a sampling parameter £ to sample uniformly every m
time steps may allow Algorithm 2 to produce outputs with a substantially lower error than those
obtained by the Laplace mechanism. Although this result applies to the equally-spaced sampling
procedure, Section 6 demonstrates experimentally that the L1-sampling procedure outperforms its
equally-spaced counterpart.

4.2 Optimization-based Post-Processing

The following result is from Fioretto, Lee, and Van Hentenryck (2018). It bounds the error of the
optimization-based post-processing. It proves that the post-processing step can accommodate any
side-constraints without degrading the accuracy of the mechanism significantly. In the following
| - ||2,» denotes the weighted 2-norm, where X is a vector of real valued weights.

Theorem12 The optimal solution to the optimization model in line 9 of Algorithm 2 satisfies

lz* — z[2.x < 2| — z[2,A-
Proof. 1t follows that:

|2* —@2x < |z* —

o + | — [2a

2. Here, to simplify notation, we consider m as a real value.
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< 2|z — Z2,a-

where the first inequality follows from the triangle inequality on weighted Lo-norms and the second
inequality follows from
|l2* — Z[2x < |z — 2|22

by optimality of * and the fact that x is a feasible solution to constraints (O2) and (O3). O

5. Privacy Model Extensions

This section first presents an extension of the privacy model that protects disclosure of arbitrary
quantities within the w-event privacy model. It then generalizes the theoretical results of OPT-
STREAM to this extended privacy model. Finally, it describes an extension of OPTSTREAM that
supports hierarchical data streams.

5.1 «-Indistinguishability for Data Streams

The application studied in this paper requires the privacy-preserving release of energy load con-
sumption streams. Unlike the previous setting, where the participation of users is revealed at each
time step, the new privacy setting requires the load consumption of each customer to be revealed
at each time step. To capture this requirement, the data stream setting presented in Section 2.2 is
extended to an infinite sequence of elements in the data universe % = T x R x T, where Z and
7T are defined as in Section 2.2, and R is the set of possible events (i.e., the data items generated by
users). In other words, each tuple (7, r,t) describes an event that occurred at time ¢ in which user ¢
reported value 7.

Each user transmits an aggregate summary of the stream periodically (e.g., every 30 minutes)
and the discrete time step k represents an aggregate (e.g., the sum or the average) of all values
describing the event occurring in time period k. This setting implies that a tuple (i, r, t) describes the
aggregate behavior of user i during the time period ¢. Here, a numerical count query @ : D — RIZI
returns an |Z|-dimensional vector corresponding to the aggregated reports of each user in Z. The
following example illustrates such behavior.

Exampled Consider a data stream system that collects power consumption data from customers
of an electric company distributed on a wide geographical region. Customers may correspond to
facilities (such as homes, hospitals, industrial buildings) or electrical substations, transmitting their
power consumption at regular intervals (e.g., every 30 minutes). The value vy € R transmitted by
a customer at time t is a real number denoting the average amount of power (in MegaWatts) the
customer required during time interval t. The table below represents a the scenario in which user
customery consumes 3.1 MW at timet = 1, 3.2 MW at time t = 2, and 2.8 MW at time t = 3.

7 Q(D1) |, Q(D2) | Q(Ds)

customer 3.1 3.2 2.8
customers 1.0 15 1.6
customers 0.7 1.1 1.2

Customer identities are assumed to be a public information, as every facility consumes power.
However, their load fluctuations are considered to be highly sensitive. Indeed. changes in power
consumption may indirectly reveal production levels and hence strategic investments, decreases in
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sales, and other similar information. These changes should not be revealed within some application-
specific period of w time steps. Thus, within each w-period, the privacy goal of the data curator is to
protect observed increases or decreases of power consumptions. More precisely, consider 7" and '), ¢
to be two distinct values that may be reported by user u at time ¢ and that satisfy |rf, — 1’ ] «a for
some positive real value o. An attacker should not be able to confidently determine that u reported
value 7%, instead of value 7’ Z and vice-versa.

This goal can be achieved by using a more general adjacency relation between datasets. This re-
lation needs to capture the distance between reported quantities whose magnitudes must be protected
up to some given value o > 0. The value « is called the indistinguishability level. This generalized
definition of differential privacy has been adopted in several applications and has sound theoretical
foundations (e.g., Koufogiannis, Han, & Pappas, 2015; Andrés et al., 2013; Chatzikokolakis et al.,
2013)3x. Consider a dataset X to which n individuals contribute their real-valued data r; € R, i.e.,
X =(r1,...,ry) € R™ For a > 0, an adjacency relation that captures the indistinguishability of a
single individual to the aggregating scheme is:

X ~o X' & Jist|ry—ri| <aandr; =71},Vj #i. (5)

Such adjacency definition, in our target domain, is useful to hide increases or decreases of loads up
to some quantity a.. The generalization of differential privacy that uses the above adjacency relation
is referred to as a-indistinguishability (Chatzikokolakis et al., 2013).

The w-privacy definition, introduced in Definition 2, can be extended to use a-
indistinguishability by replacing the standard neighboring relation between datasets with the ad-
jacency relation defined in Equation (5). More precisely, for a given o > 0, two data streams
preﬁxes D|[t], D'[t] are said (w, a)-neighbors, written D[t] ~% D'[t], if (i) for each D;, D} with

€ [t], D; ~o Dj, and (ii) for each D;, D!, DJ,D]-, withi¢ < j € [t] and D; # D}, D; +# D;-, it
must be the case that j — 1+ 1 < w holds.

Definition3 ((w, o)-indistinguishability) Ler A be a randomized algorithm that takes as in-
put a stream prefix D[t] of arbitrary size and outputs an element from a set of possible out-
put sequences O. A satisfies w-event e-differential privacy under a-indistinguishability ((w, «v)-
indistinguishability for short) if, for all sets O < O, all (w,«a)-neighboring stream prefixes
D[t], D'[t], and all t:
Pr[A(D[t]) € O] < exp(e). ©)
Pr[A(D'[t]) € O]

This privacy definition combines w-event privacy (Kellaris et al., 2014) and a metric-based gener-
alization of differential privacy (Chatzikokolakis et al., 2013) in order to meet the requirements of
the motivating application. Notice that (w, a)-indistinguishability is a generalization of w-privacy,
and it reduces to w-privacy when o = 1.

OPTSTREAM can be naturally extended to satisfy this definition, by calibrating the noise intro-
duced by the Laplace mechanism, used during the sampling (Theorem 6), perturbation (Theorem
8), and post-processing (Theorem 9) steps, to satisfy the above definition. More practically, it is
achieved by updating the definition of query sensitivity as:

A= max  [QDI]) - QD't]]1-

D[t]~2D'[t

3. We refer the interested reader to (Chatzikokolakis et al., 2013) for a broad analysis of indistinguishability when
differential privacy uses different notions of distance.
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Thus, in the (w, av)-indistinguishability model, the sensitivity of each query @) used during the per-
turb (see Section 3.2) and the post-process (see Section 3.4) procedures is Ag = «, and the sen-
sitivity A, of of the queries adopted in the L1-based reconstruction procedure (see Section 3.3)
is A;, = 2a(w—k) . The behavior of OPTSTREAM for different indistinguishability levels is pre-
sented in Section 6.

5.2 Hierarchical Data Streams

OPTSTREAM can also be generalized to support hierarchical data streams. A data stream D is
called hierarchical if, for any time ¢, there is an aggregation entry a = (iq,74,t) associated with
an aggregation set S, 7 that reports the sum of values reported by all entries in S, at time ¢,
ie,Tq = Qe S, ! . More formally, a data stream is hierarchical if, for any two aggregation entries
ay, ag, either S,, < Sy, or Sg, < S,, holds or S, NSy, = F is true.

A set of aggregation entries S can be represented hierarchically through a tree (called an aggre-
gation tree) in which the root is defined by the entry that is not contained in any other entries and
the children of an aggregation entry p are all the entries in D whose identifiers are contained in 5.
The height of a hierarchical data is the maximum path length from the root to any leaf of its tree.

Example5 In our target application, a data curator is interested in the aggregated load consump-
tion stream at the level of a small geographical region, at a group of regions within the same elec-
trical sub-station, and finally at the nation-level. These aggregations form a hierarchy whose root is
represented by the nation-level aggregation entry, its children by the electrical sub-station entries,
and the tree leaves by the region-level entries.

To answer each query of the hierarchical stream, OPTSTREAM is extended as follows. For each w-
period, the algorithm runs the sampling, perturbation, and reconstruction procedure for each level of
the aggregation tree representing the hierarchical stream. Finally, the post-processing optimization
takes as input the answers to all the aggregation entries queries with the set of features being equal
to the set of aggregation entries. The post-processing step thus enforces consistency between the
aggregation counts at a node and the sum of counts at its children nodes in the tree, in addition to
the features described earlier in the paper.

Theorem13 For a hierarchy of height h, OPTSTREAM, when using a privacy loss of €/h for each
level of the hierarchy, satisfies e-differential privacy.

The result follows from the privacy guarantee of OPTSTREAM (Theorem 1), parallel composition
of differential privacy across each level of the hierarchy (Theorem 2), and sequential composition
of differential privacy, for each of the h hierarchical queries (Theorem 1).

6. Evaluation

This section evaluates OPTSTREAM on real data streams for a number of tasks. It first evaluates the
accuracy of the privacy-preserving release of a stream of data within the w-privacy model. Then, it
studies the accuracy of each of the four individual components of the algorithm. Finally, it evaluates
the algorithm within the (w, a)-indistinguishability model.
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Stream Data Regions (#) Daily Average (MW) Stream Data Regions (#) Daily Average (MW)
Auvergne-Rhone-Alpes 7717.58 Ile de France (Paris) 8315.13
Bretagne 2554.23 Nouvelle Aquitaine 4985.68

Bourgogne - Franche-Comte 2498.23 Normandie 3267.22
Centre - Val de Loire 2157.97 Occitanie 4314.70

Grand Est 5286.24 Pays de la Loire 3174.17

Hauts de France 5832.26 Provence - Cote d’ Azur 4782.40

Table 2: Overview of the power load consumption stream data derived from the France regions in
2016. Daily Average refers to the average power (in MW) demanded daily. The number
of time steps available for all regions is 17,520.

Dataset The source data was obtained through a collaboration with Réseau de Transport
d’Electricité, the largest energy transmission system operator in Europe. It consists of a one-year
national-level load energy consumption data with a granularity of 30 minutes. The data is aggre-
gated at a regional level and & denotes the set of regions. Each data point in the stream represents
the total load consumption of the customers served within a region during a 30 minute time period.
Thus, for every region R € %, a stream of data ¢ (R) = x1(R), x2(R), . . . is generated where z(R)
represents the energy demand to supply in order to serve the region R at time ¢t. When the streams
of all regions are aggregated, the resulting load consumption data constitutes a data stream of the
energy profile at a national level.

For evaluation purposes, the experiments often consider a representative region (Auvergne -
Rhoéne-Alpes) to analyze the data stream release. For the evaluation of hierarchical data streams,
the experiments consider a hierarchical aggregation tree of height 2, where the root node is the
national level and each of the leaves corresponds to one region. Table 2 lists an overview of the data
streams derived from the real energy load consumption data for each French region in 2016. Each
data stream contains 17,520 entires.

Algorithms The following sections evaluate two versions of OPTSTREAM, with equally-spaced
sampling and with the L1-sampling. They are compared against the Laplace mechanism and the
Discrete Fourier Transform (DFT) algorithm (Rastogi & Nath, 2010). All the algorithms release
privacy-preserving data associated with the sub-streams x for each w-period.

To ensure e-differential privacy for each w-period, the Laplace mechanism applies Laplace noise
with parameter €/w to each value in the period. To ensure e-differential privacy, the DFT algorithm
works as follows. For each w-period, and given a value k£ < w, it first computes the Fourier

coefficients DFT(x); = Y7, exp(% jix;) of each sub-stream « and each j € [w]. It then
considers the k coefficients of lowest frequencies — which represent the high-level trends in & —
and perturbs them using Laplace noise with parameter \/EAQQ /€, where Agq is the Lo sensitivity
of the count query. It then pads the vector of noisy coefficients with a (w—k)-dimensional vector
of 0’s to obtain a w-dimensional vector. Finally, it applies the Inverse Discrete Fourier Transform
(IDFT) to this w-dimensional vector to obtain a noisy estimate of the elements in the w-period. In

more details, if fj is the j-th perturbed coefficient of the series, the noisy estimate for the value x;
is obtained through the IDFT function as: = 3% | exp( 2my/—1 3i) f;.

w w

442



13000

Real

OPTSTREAM: RELEASING TIME SERIES PRIVATELY

13000

Laplace

DFT

OPTSTREAM

12000
11000
10000
9000
8000
7000
6000
5000
4000

12000
11000
10000
9000
8000
7000
6000
5000
4000

13000
12000
11000
10000
9000
8000
7000
6000
5000

04
Jan
2016
13000

25

Feb

04
Jan
2016
13000

Feb

4000

Jan Feb
2016

12000
11000
10000
9000
8000
7000
6000
5000
4000

12000
11000
10000
9000
8000
7000
6000
5000
4000

13000
12000
11000
10000
9000
8000
7000
6000
5000

04
Jan

2016

13000

25

Feb

04
Jan
2016

13000

Feb

12000
11000
10000
9000
8000
7000
6000
5000
4000

12000
11000
10000
9000
8000
7000
6000
5000
4000

Jan
2016

Figure 2:

Feb

Jan
2016

4000

13000

04 11 18 25
Jan Feb
2016

12000
11000
10000
9000
8000
7000
6000
5000
4000

Real load consumption data, in MW, for the Auvergne-Rhone-Alpes region in January
2016 (first column) and its privacy-preserving versions obtained using Laplace (second
column), DFT (third column), and OPTSTREAM (fourth column) with privacy loss € = 1
(top), € = 0.1 (middle), and € = 0.01 (bottom).

6.1 Stream Data-Release in the w-Privacy Model

This section evaluates the accuracy of privately releasing a data stream within the w-privacy model.
It first studies the prediction error of the algorithms. It then analyzes the accuracy of privately
releasing hierarchical streams on aggregated queries. Finally, it analyzes the accuracy of forecasting
tasks from the released privacy-preserving data streams.

Answering queries over contiguous w-periods corresponds to releasing the privacy-preserving
stream over the entire available duration. Figure 2 illustrates the real and privacy-preserving ver-
sions of the data-stream for the Auvergne-Rhone-Alpes region in January, 2016. It uses w-periods
of size 48 for given privacy losses € = 1.0, 0.1, and 0.01, shown in the top, middle, and bottom rows
respectively. Recall that the choice for the w-period allows the data curator to ensure the protection
of the observed power consumptions within each period. Thus, the released stream protects loads
in each entire day.

The real loads are illustrated in the first column. The figure compares our proposed OPT-
STREAM algorithm (fourth column) against the Laplace mechanism (second column), and the DFT
algorithm (Rastogi & Nath, 2010) (third column).

The experiments set the number of Fourier coefficients in the DFT and sampling steps in OPT-
STREAM to 10. The privacy loss allocated to perform each measurement is split equally. Addi-
tionally, for OPTSTREAM €5, = ¢, = %e, and the L1-sampling procedure uses a thresh-

€ =
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Figure 3: Lj-error analysis: Load stream data for the months of February (left), June (middle), and
October (right). The y-axis reports log, of the average Li-error for all the stream data
streams R € %.

old value 6 of 1000 (which is about one tenth of the average load consumption in each region).
This information was publicly revealed. Finally, OPTSTREAM uses the following feature query
set # = {F1,F9, F3} in the optimization-based post processing step, with F; < Fy < F3. F;
is defined as described in Section 3.4; Fo partitions each w-period in 4 sets, the intervals [0, 14),
[14,24), [24,36), and [36,48) that correspond to aggregated consumption for the following times
of the day: [0am-7am), [7am-12pm), [12pm-6pm), and [6pm-0am) respectively. F'5 partitions each
w-period in a single set, listing all the time steps within the w-period and thus describing the ag-
gregated daily energy consumption. The query set represents salient moments in the day associated
with different consumption patterns. These are proxy of consumer behaviors and thus energy con-
sumption. Because these queries return privacy-preserving answers, the privacy is guaranteed by
the post-processing immunity of DP (see Theorem 3). Finally, if an algorithm reports negative noisy
value for a stream point, we truncate it to zero.

Figure 2 clearly illustrates that, for a given privacy disclosure level, OPTSTREAM produces
privacy-preserving streams that are more accurate than its competitors when visualized. The next
paragraph quantifies the error reported by the algorithms.

6.1.1 AVERAGE L1-ERROR ANALYSIS

This section reports the average Li-error for each w-period produced by the algorithms. For each
input data stream « g associated to a region R € Z (illustrated in Table 2) and each reported privacy-
preserving stream &, we compare the average Li-error defined as: NLR |Z£r — xR|1, where Np is
the length of the data stream associated with region R. Figure 3 reports the average errors across
all streaming regions r € Z for the months of February (left), June (middle), and October (right).
The consumptions in these three months capture different customers load profile behaviors due to
different weather patterns and durations of the day light. Each histogram reports the logig value
of the average error of 30 random trials. Two version of OPTSTREAM (OPTSTREAMES and OPT-
STREAMLS) are presented and correspond to the qqually-spaced sampling, and the L1-sampling
procedures, respectively. While all algorithms induce a notable L-error which increases as the
privacy loss decreases, the figure highlights that OPTSTREAM consistently outperforms competitor
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Figure 4: L;-error analysis: Hierarchical energy load stream data for the months of February, June,
and October. The y-axis reports log, of the average Li-error at national level (top) and
at the regional level (bottom).

algorithms. Additionally, OPTSTREAM with L1-sampling is found to outperform its equally-spaced
sampling counterpart, especially for large privacy losses. For small privacy losses, the two versions
of the algorithm tend to perform similarly. This is due to the fact that the L1-score becomes less
accurate as the amount of noise increases.

6.1.2 HIERARCHICAL PRIVACY-PRESERVING DATA-STREAM RELEASE

This section evaluates the extensions proposed in Section 5.2 for releasing aggregated queries over
hierarchical data streams. We answer the following queries over contiguous w-periods for the whole
duration of the stream: count queries over the data stream x(R) = x1(R), z2(R), . . . for each region
R € Z listed in Table 2, as well as count queries = z1,x2, ..., where each x; = ZRE% x¢(R)
represents the aggregated load consumption at national level. Thus, we create a hierarchy of two
levels and answer simultaneously all queries. We allocate a privacy loss of § to each level of
the hierarchy. OPTSTREAM is compared against the Laplace mechanism applied to each stream
data, using a uniform allocation of the privacy loss (5) for each query in a different level of the
stream hierarchy and the DFT algorithm which answers queries over each data stream by uniformly
allocating a portion of the privacy loss at each level of the hierarchy.

Figure 4 shows the results for three different months of the year: February (left), June (middle),
and October (right), and under different indistinguishability parameters o for privacy loss € = 1.0.
The top row of the figure reports the average Lj-errors when releasing stream data x(R) associated
with each region R, while the bottom row gives the Li-errors when releasing the stream data x
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Figure 5: Prediction error: Forecast for a one day load consumption through an ARMA model on
the real load consumption data (Real) and its privacy-preserving versions obtained using
Laplace, DFT, and OPTSTREAM with privacy loss € = 0.1.

at national level. Each histogram reports the log;o value of the average error of 30 random trials.
The results illustrates similar trends to those in previous experiments. Overall, OPTSTREAM with
the adaptive L1-sampling produces stream data with the lowest average L;-errors for both levels
of the stream hierarchy. In addition to the improved error it is important to note that OPTSTREAM
ensures the consistency of the values of the privacy-preserving stream in the hierarchy, i.e., for each
time step, the reported sum of the loads across all regions equals the reported load at national level.
Neither the Laplace mechanism nor DFT ensure such property.

6.1.3 IMPACT OF PRIVACY ON FORECASTING DEMAND

The final results evaluate the capability of the released privacy-preserving streams to accurately
predict future consumptions. To do so, we adopt the Autoregressive Moving Average (ARMA)
model (Alwan & Roberts, 1988; Zhang, 2003; Cochrane, 2005; Hipel & McLeod, 1994). ARMA is
a popular stochastic time series model used for predicting future points in a time series (forecast).
It combines an Autoregressive (AR) model (Alwan & Roberts, 1988) and a Moving Average (MA)
model (Alwan & Roberts, 1988; Cochrane, 2005), i.e., ARMA(p, ¢) combines AR(p) and MA(q)
and is suitable for univariate time series modeling. In an AR(p) model, the future value of a variable
x; is assumed to be a linear combination of the past p observations and a random error: x; =
c+ Zf;l ¢ixs—; + Bt, where c is constant, 3; is a random variable modeling white noise at time
t, and the ¢;(i = 1,...,p) are model parameters. A MA(q) model uses the past ¢ errors in the
time series as the explanatory variables. It estimates a variable x; using p + 8; + >0, 08—,
where the 6;(i = 1,...,q) are model parameters, yu is the expectation of z;, and the /3; terms
are white noise error terms. The ARMA model with parameters p and g refers to the model with
p autoregressive terms and g moving-average terms: It estimates a future time step value x; as
c+ By + Zle ;i + Z;’zl 0; B1—;. In our experiments, we use an ARMA model with parameters
p = q = 1 to estimate the future 48 time steps (corresponding to a day) when trained with the past
four weeks of the privacy-preserving data stream estimated using Laplace, DFT, and OPTSTREAM
with L1-sampling. All models use the same parameters adopted in the previous sections.

Figure 5 visualizes the forecast for the load consumptions in the Auvergne-Rhone-Alpes region
for February 2, 2016. The black and gray solid lines illustrates, respectively, the real load values
observed so far and those of the day to be forecasted. The dotted red lines illustrates the privacy-
preserving stream data estimated so far (and used as input to the prediction model) and the solid
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Figure 6: L; error analysis: ARMA forecasting model on stream data for the energy loads of the
months of February, June, and October for the Auvergne-Rhone-Alpes region.

red lines depict the prediction obtained using the ARMA model. Figure 5 shows the forecast results
using the real data (Real) and the privacy-preserving stream obtained through Laplace, DFT, and
OPTSTREAM, respectively. The figure clearly shows that OPTSTREAM is able to visually produce
better estimates for the next day forecast.

We also quantitatively evaluate the average L;-error for each prediction produced by the mech-
anisms. We adopt the same setting as above for the prediction and report, in Figure 6, the average
Lq-error for predicting each day in the month of February, June, and October for the Auvergne-
Rhone-Alpes region. Each histogram reports the logig value of the average error of 30 random
trials. We observe that OPTSTREAM reports the smallest errors compared to all other privacy-
preserving algorithms, and that the error made by OPTSTREAM in reporting the next day forecast
is closer to the error made in the forecast prediction using the real data than when using another
method.

6.2 Evaluation of OPTSTREAM Individual Components and Hyperparameters

We also evaluate the effect of the sampling step, the benefits of the post-processing procedure, and
the hyperparameters of OPTSTREAM. Figure 7 visualizes the real (first column) and OPTSTREAM-
based privacy-preserving version (other columns) load consumption data for the Auvergne-Rhéne-
Alpes region in January, 2016. The top row and bottom rows illustrate results for privacy losses of
e = 0.1 and 0.01 respectively.

In order from the second to the last row, Figure 7 illustrates the results of a version of OPT-
STREAM that enables only the perturbation step ({P, o, o)), the perturbation and the optimization
steps ((P, 0, 0)), the perturbation and the sampling steps (( P, S, 0)), and all steps ((P, S, O)). The
privacy loss is divided equally among all active components of the algorithm. When only the pertur-
bation step is enabled (second column), OPTSTREAM has the same behavior of the Laplace mech-
anism. The addition of the optimization step (third column) helps increasing the fidelity of the data
stream reported (for instance, the heavy peaks are less pronounced), although the overall signal is
still noisy. When the perturbation step is combined with the sampling step under the L1 reconstruc-
tion procedure (fourth column), the resulting privacy-preserving stream captures with much higher
fidelity the salient load peaks and the streams looks much more similar to the real one. However,
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Figure 7: Real load consumption data for the Auvergne-Rhone-Alpes region in January, 2016
(Real) and OPTSTREAM activating: exclusively the perturbation step ((P, o, o)), per-
turbation and optimization steps (( P, o, O)), perturbation and sampling steps ((P, S, o)),
and all steps ((P,S,0) ). The top row, illustrates the results for privacy loss € = 0.1,
while the bottom row uses € = 0.01. The boxes in the last two quadrants provide a zoom
to illustrate in more details the reconstructed time series.
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Figure 8: OptStream components analysis: Average L-error associated with the energy loads of
the months of February, June, and October.

a careful inspection reveals several shortcomings: Several load peaks are not captured accurately,
and the loads are often distributed uniformly between sampled points, making the resulting stream
unrealistic. Finally, the optimization-based post-processing shines when integrated with the pertur-
bation and sampling steps (5-th column). The salient features of the data are effectively captured
and the noise redistribution provides higher resemblance to the real data stream.

Figure 8 details the L1-errors associated with the privacy-preserving energy loads for the months
of February, June, and October. This quantitative analysis further highlights the importance of the
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Figure 9: OptStream components analysis: Average Lj-error associated with the energy loads at
varying of the threshold # and number of samples k of Algorithm 3, for different privacy
losses e.

four components of the proposed OPTSTREAM algorithm. It illustrates a gradual error reduction
of the framework when it adopts, in order, the perturbation step only, the perturbations and the
optimization steps, the perturbation and the sampling with linear interpolation steps, and finally, all
four steps.

The final results evaluate the effect of the hyperparameters & and 6 adopted in the L1-sampling
procedure of OPTSTREAM (Algorithm 3). Here, k£ denotes the number of samples the algorithm
selects within each w-period and 6 is a threshold used to adaptively select the next point to sample.
These parameters are responsible for the perturbation and reconstruction errors discussed in Section
3.1. Figure 9 illustrates the effect of changing the values of 6 from 500 to 10,000, and k& from
5 to 20, for different privacy losses € € {1.0,0.1,0.01}. The figure shows the average L1-errors
associated with the year-long data streams of each region r € Z.

For a given pair of € and k values, the effect of modifying the threshold 6 results in negligible
error differences, except when the number of samples k is very small (e.g., 5). In such a case,
larger thresholds € result in more precise reconstructions. This is because larger thresholds allow
the sampling procedure to subsample within the whole w-period, while small 6 values force the
subsamples to be drawn in smaller portions of the w-period. The results also show that, for different
privacy levels, the number of samples has a large effect on the produced error. In particular, for
large privacy losses (e = 1.0), the error reduces as the number of samples increase while, for small
privacy losses (e = 0.01), the error increases as the number of samples increase. For moderate
privacy losses (e = 0.1) the effect of changing & is less noticeable. Therefore, the best number
of sampling steps depends on the privacy loss adopted. This behavior illustrates the dichotomy
between the reconstruction and the sampling errors and highlights the accuracy results of Theorem
11.

The evaluation considers the average daily demanded by each region to be publicly available.
When this is not the case, one can allocate a very small portion of the overall privacy budget to esti-
mate such a quantity. Hence, one can choose a threshold value 6 that is approximately proportional
to the average daily consumption divided by the number of samples k.
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6.3 Stream Data-Release in the (w, «)-Indistinguishability Model

Having analyzed the algorithms in the w-privacy setting, this section illustrates the results of the
privacy-preserving data streams released under the combined w-event and a-indistinguishability
models (see Section 5.1). The motivating application requires releasing the privacy-preserving data
streams without disclosing chosen amounts of load changes within a time window. We thus analyze
the results of privately releasing a stream of data under the (w, «v)-indistinguishability model and
use an adapted version of OPTSTREAM, the Laplace mechanism, and the DFT algorithm. These
versions recalibrate the noise required by the mechanisms to satisfy the (w, «)-indistinguishability
definition as detailed in Section 5.1.
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Figure 10: Real load consumption data for the Auvergne-Rhéne-Alpes region in January 2016, and
its privacy-preserving versions obtained using Laplace, DFT, and OPTSTREAM with
privacy loss € = 1 and a = 10 (top), 50 (middle), and 100 (bottom).

Figure 10 illustrates the real and privacy-preserving versions of the data stream for w-periods
of size 48 (i.e., one day) given privacy loss of € = 1 and indistinguishability parameter o = 10 (top
row), o = 50 (middle row) and o = 100 (bottom row). Recall that the choice of the indistinguisha-
bility parameter o allows the data curator to ensure the protection of the observed increase/decrease
power consumption up to a MegaWatts (MW), while the w-period specifies the length of the ob-
fuscation period. The figure compares our proposed OPTSTREAM algorithm against the Laplace
mechanism and DFT .

For DFT and OPTSTREAM, the experiments set the number of Fourier coefficients and sampling
steps to 10 (when v < 50) and 5 (when o = 100). As in the previous experiments, the privacy
loss allocated to perform each measurement is divided equally. Finally, OPTSTREAM uses the same
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Figure 11: Lq-error analysis: Energy load stream data for the months of February, June, and Octo-
ber. The y-axis reports log, errors averaged across the L; errors for each stream data
ReXZ.

feature query set .# used in the previous experiments. Figure 10 clearly illustrates that OPTSTREAM
produces privacy-preserving streams that are more accurate than its competitors when visualized.
This is especially evident for high indistinguishability parameters, when the Laplace mechanism
can barely preserve any signal from the original data.

We now report the Li-errors averaged for each w-period produced by the algorithms. Figure
11 reports the average results for each streaming region for the months of February, June, and
October, at varying of the indistinguishability parameter o = {10, 50, 100} given a privacy loss
e = 1.0. Each histogram reports the logio value of the average error of 30 random trials. While
all algorithms induce an Lj-error which increases as the indistinguishability level « increases, the
figure highlights that OPTSTREAM consistently outperforms the other algorithms.

7. Discussion

One of the core advantages of the w-privacy model is that it provides flexibility regarding the size of
the time frame to protect. OPTSTREAM exploits this flexibility to select a small set of representative
points to sample and performs additional optimization over such values to redistribute noise and
enhance accuracy. Practically, this means that the data stream needs to be batched in periods of w
times steps, each of which is privately released at once.

Recall that the privacy model adopted in this paper combines the w-privacy model (Kellaris
et al., 2014) with the definition of a-indistinguishability (Chatzikokolakis et al., 2013). The result-
ing (w, «)-indistinguishability model allow us to protect events related to quantities which are not
directly related to user identities but can be used as a proxy to disclose a secret (e.g., a sensitive
information) about a user. For instance, in our application domain, it is important to both protect
the given stream from inferences about load increases or decreases—which are typically related to
sensitive user activities—while also protecting the stream in an entire day.

While setting w = 1 would allow to use OPTSTREAM to release the stream data online —
without requiring batching —, this setting offers no room for OPTSTREAM to improve accuracy,
since it would be similar to the Laplace mechanism. To the best of our knowledge, the only available
algorithm that can release a privacy-preserving data stream online is PeGaSus (Chen et al., 2017). It
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Figure 12: Real load consumption data for the Auvergne-Rhdne-Alpes region in January 2016
(left), and its privacy-preserving versions obtained using PeGaSus (center), and OPT-
STREAM (right) with privacy loss € = 1 (top-row), € = 0.1 (middle-row), and e = 0.01
(bottom-row).

uses a combination of the Laplace mechanism, a partitioning strategy to group values in contiguous
time steps whose deviation is small, and a smoothing function. PeGaSus, was not introduced in the
w-event model as it focuses on protecting data in a single time-step.

Despite the fact that the two algorithms were designed for solving different problems, we
adapted PeGaSus to the w-privacy model and to satisfy the (w, «)-indistinguishability and com-
pare it against OPTSTREAM for completeness. Figure 12 illustrates a comparison of the algorithms
on privately releasing load streams for the Auvergne-Rhone-Alpes region in January 2016. The
real loads are highlighted in the first column, while their privacy-preserving counterparts are shown
in the second and third columns. The figure compares our proposed OPTSTREAM (third column)
against PeGaSus (second column) for indistinguishability parameters o« = 10 (top rows) @ = 50
(middle row) and o = 100 (bottom row), and fixed a privacy loss € = 1. For PeGaSus, the privacy
loss is divided equally for each time step in the w-period. Additionally, the experiments use the val-
ues of the meta-parameters indicated in the original paper (Chen et al., 2017). The settings for OPT-
STREAM are the same as in the previous sections. Figure 12 clearly illustrates that OPTSTREAM
produces privacy-preserving streams that are more accurate than those produced by PeGaSus, when
the (w, «)-indistinguishability model is adopted. It is an interesting research avenue to combine
PeGaSus and OPTSTREAM.
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8. Related Work

Continuous release of aggregated real-time data has been studied in previous work including by
Dwork (2010), Dwork et al. (2010). Most of the state-of-the-art either focuses on event-level pri-
vacy on infinite streams (Rastogi & Nath, 2010) or on user-level privacy on finite streams (Dwork
et al., 2010). Dwork proposed an adaptation of differential privacy to a continuous observation set-
ting (Dwork et al., 2010). Her work focused on releasing bit-streams and proposed an algorithm
for counting the number of 1s in the stream under event-level differential privacy. Mir, Muthukr-
ishnan, Nikolov, and Wright (2011) proposed pan-privacy for estimating counts, moments, and
heavy-hitters on data streams while preserving differential privacy even if the internal memory of
the algorithms is observed by an attacker. Kellaris et al. (2014) proposed the notion of w-event
privacy to balance event-level and user-level privacy, trading off utility and privacy to protect event
sequences within a time window of w time steps. OPTSTREAM applies to the last model.

Within the differential privacy proposal for data streams that fit such model, Wang, Zhang, Lu,
Wang, Qin, and Ren (2016) proposed Rescue DP, which is designed explicitly for spatiotemporal
traces. PeGaSus (Chen et al., 2017) is another seminal work that allows to protect event privacy
using a combination of perturbation, partitioning, and smoothing. The algorithm uses a combina-
tion of Laplace noise to perturb the data stream for privacy, a grouping strategy which incrementally
partitions the space of observed data points by grouping points with small deviations, and a smooth-
ing schema which is used to post-process the privacy-preserving data stream. Both algorithms rely
on the idea of contiguous grouping time steps and average the perturbed data within every region
in a group. We compared OPTSTREAM against PeGaSus, which is the state-of-the-art on privacy-
preserving data-stream release and has been showed to be effective in several settings.

Rastogi and Nath (2010) proposed an algorithm which perturbs a small number of Discrete
Fourier Transform (DFT) coefficients of the entire time series and reconstructs a released version of
the Inverse DFT series. While, in the original paper, the algorithm requires the entire time-series,
such approach has been used for w-event privacy in the context of data streams (Fan & Xiong,
2014). We also compare OPTSTREAM against DFT.

Fan, Xiong, and Sunderam (2013) proposed Fast, an adaptive algorithm for privacy-preserving
release of aggregate statistics which uses a combination of sampling and filtering. Their algorithm
is based on user-level differential privacy, which is not comparable to the chosen model of w-event
level differential privacy. Additionally, in their work, the authors compare the proposed approach
against DFT (Rastogi & Nath, 2010) and, while showing improvements, the error remains within
the same error magnitude of those produced by DFT. In contrast, our experimental analysis (Section
6) clearly illustrates that OPTSTREAM reduces the error of one order of magnitude when compared
to DFT.

Finally, Chan et al. (2011) focused on releasing prefix-sums of the streaming data counts while
adopting an event-based privacy model. Bolot et al. (2013) also used an event-based model and
proposed an algorithm for answering sliding window queries on data streams. The model adopted
in their work is however incompatible with the privacy model adopted in this work, and hence we
did not compare against such approaches.
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9. Conclusions

This paper presented OPTSTREAM, a novel algorithm for privately releasing stream data in the
w-event privacy model. OPTSTREAM is a 4-step procedure consisting of sampling, perturbation,
reconstruction, and post-processing modules. The sampling module selects a small set of data points
to measure privately in each period of interest. The perturbation module injects noise to the sam-
pled data points to ensure privacy. The reconstruction module reconstructs the data points excluded
from measurement from the perturbed sampled points. Finally, the post-processing module uses
convex optimization over the privacy-preserving output of the previous modules, along with the
privacy-preserving answers of additional queries on the data stream, to ensure consistency of quan-
tities associated with salient features of the data. OPTSTREAM was evaluated on a real dataset from
the largest transmission operator in Europe. Experimental results on multiple test cases show that
OPTSTREAM improves the accuracy of the state-of-the-art by at least one order of magnitude in this
application domain. The accuracy improvements are measured, not only in terms of the error dis-
tance to the original stream but also in the accuracy of a popular load forecasting algorithm trained
on privacy-preserving data sub-streams. The results additionally show that OPTSTREAM exhibits
similar benefits on hierarchical stream data which is also highly desirable in practice. Finally, the
experimental analysis has demonstrated that both the adaptive sampling and post-processing op-
timization are critical in obtaining strong accuracy. An important direction of future work is to
generalize these results to the streaming setting where a data element is emitted at each time step.
Another direction is to develop models to privately learn temporal patterns that can further improve
the data release of streams in certain domains. Future work will also focus on ensuring that salient
properties of an optimization problem of interest hold, when the problem relies on inputs that in-
clude the load consumption data, e.g., as in Fioretto and Van Hentenryck (2018), Fioretto, Mak, and
Van Hentenryck (2019). Finally, it is interesting to integrate recent studies on the correlation of the
series over time (e.g., see Liu, Chakraborty, & Mittal, 2016) in order to take into account their effect
on the privacy loss.
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