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Abstract

We present a novel approach for decreasing state uncertainty in planning prior to
solving the planning problem. This is done by making predictions about the state based
on currently known information, using machine learning techniques. For domains where
uncertainty is high, we define an active learning process for identifying which information,
once sensed, will best improve the accuracy of predictions.

We demonstrate that an agent is able to solve problems with uncertainties in the state
with less planning effort compared to standard planning techniques. Moreover, agents
can solve problems for which they could not find valid plans without using predictions.
Experimental results also demonstrate that using our active learning process for identify-
ing information to be sensed leads to gathering information that improves the prediction
process.

1. Introduction

Consider a service robot which operates in a dynamic and complex household environment
to help people in daily tasks such as serving lunch or tidying a room. Environments such as
a household contain hundreds of objects with various properties. The robot is equipped with
many different manipulation actions to interact with these objects, i.e. grasping, pulling,
pushing, placing, or dropping, as well as sensing actions to detect an object’s properties. It
is difficult for a robot to have a complete and up-to-date model of the environment due to
the environment’s complexity and dynamic nature. Humans interact with the environment,
constantly changing the state of it, for example by introducing new objects or changing
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their positions. In this example, sensing and exploration are costly, and the robot cannot
sense every type of unknown information. Additionally, not all knowledge can be modelled
or inserted by a human operator, so the robot must make some assumptions about the
state to complete its task. However, some actions have irreversible effects on the objects, a
dropped and broken mug cannot be repaired. For this reason, the assumptions must be as
accurate as possible.

In robotics and control, partial-knowledge is often used to estimate the state of a dy-
namic system or a dynamic model (Barfoot, 2017; Krivic & Piater, 2018). Similarly, instead
of sensing all unknown information, a robot could exploit the similarities between objects
in the environment based on the information it already possesses, and predict the missing
knowledge. For example, suppose the robot knows some properties for a new object. In
that case, it can predict whether that object can be dropped without breaking by exploiting
similarities with other objects. We utilize this idea and embed it to a standard planning
procedure.

Automated planning uses a model of the agents and their environment to reason over
complex choices of action, and thereby achieve goals. However, planning in real-world
dynamic environments often means planning with incomplete and uncertain information.
This is often the case in robotic domains, as described in the motivating example. Domains
such as this are complex due to a large number of objects and areas that are unknown to
a robot as well as a large number of object properties. Exploration and observation can be
costly, and a scenario like this may contain some information that cannot even be sensed.
In real-world dynamic environments, planning often has to be completed quickly, and this
uncertainty has severe consequences: the planning problem becomes more complex, taking
longer to solve, and exacerbating scalability issues.

Uncertainty in planning problems is handled with a variety of different approaches.
For example, approaches such as conformant planning (Smith & Weld, 1998; Palacios &
Geffner, 2006, 2009), contingency planning (Bonet & Geffner, 2000; Hoffmann & Brafman,
2005), probabilistic planning (Camacho, Muise, & McIlraith, 2016), or replanning tech-
niques (Brafman & Shani, 2012) take some uncertainties into account. However, handling
uncertainty in the planning process with these approaches comes with complexity and ro-
bustness costs. Moreover, if the lack of information is severe, then the problem can be
rendered unsolvable.

We introduce a new approach based on a state prediction and optional active-learning
step between sensing and planning in a standard planning and execution loop, as shown
in Figure 1. The input to the prediction step is a single incomplete state. The output of
the prediction step is an estimated state. The outcome of the active learning component
is a set of observation goals that can be added to the problem description. Any domain in
the Planning Domain Description Language (PDDL) (McDermott et al., 1998; Fox & Long,
2003) family of languages can be used with our proposed approach.

In this way, the uncertainty is reduced by making predictions about the current state
before each planning or replanning process. We translate the incomplete state to a partially-
known multigraph in order to apply machine learning techniques. This enables us to capture
the underlying structure of the state. Unknown edges in the multigraph are predicted by
exploiting the similarities between known properties. Each predicted edge is labelled with
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Figure 1: The proposed approach for decreasing state uncertainty in planning using predic-
tions. When confidences for predictions are low, the agent is guided to acquire
the necessary information to improve predictions.

a prediction confidence measure. Edges with high prediction confidence are translated back
to the state, decreasing uncertainty.

With new information from predictions in the state, the cost of problem-solving is
smaller, and generated plans require fewer sensing actions. Although incorrect predictions
can increase the chance of plan failure during execution, we show in our evaluation over a
range of planning domains that the accuracy of the predictions is very high. Failures in
predictions are rare, and they appear when there is a small amount of initial knowledge
about the state.

The confidence and accuracy of the prediction depend on the available information
about the state. For problems with very high uncertainty in the initial state, confidences
for predictions can be very low. To be able to solve a planning problem in such cases, an
agent might have to sense some missing information and replan until the completion of a
task is possible or generate a contingent plan that branches upon the outcome of sensing
actions. We pose this problem in an active learning setting. We formulate a process to
select unknown propositions to be sensed. These propositions are those for which the least
is known, and whose sensing will best improve the overall prediction accuracy. This active
learning strategy enables state exploration, and it generates new goals for the planner to
sense the missing information.

In addition to this, given the complexity of the domain and the planning task, it is
possible that some information cannot be sensed by the actions available to the agent. In
this case, we use the active learning procedure for generating new goals to observe informa-
tion that will best improve the prediction of the unavailable information. For example, in
robotics scenarios, the robot can have a number of available sensing actions, such as tactile
sensing, localization, object classification, and so on. However, much information cannot be
sensed and is not directly available to the robot. In scenarios like this, the robot can select
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which information should be sensed to improve the prediction confidence over the useful
information.

We implemented an integrated prediction, planning, and execution system. The system
uses an adapted version of Maximum Margin Multi-Valued Regression (M3VR) (Krivic
et al., 2015) for learning the model of the state, integrated with ROSPlan (Cashmore
et al., 2015), a framework for planning with robotics. The contingent Closed-Loop Greedy
Planner (CLG) (Albore & Geffner, 2009) and POPF (Coles et al., 2010) are used to solve
the resulting planning problems.

Experimental results show positive impact in terms of reducing uncertainty in the plan-
ning problem and improving abilities to solve them compared to standard planning ap-
proaches. More precisely, we demonstrate that prediction increases scalability when con-
tingency planning with CLG. We also show that using the active learning approach enables
a higher prediction accuracy with fewer sensing actions taken. Finally, using a determinis-
tic planner, we investigate the impact of prediction on the robustness of plans, evaluating
the negative impact of incorrect predictions against different baselines. The benchmark
set for our experimental evaluation was generated by removing literals from problems with
complete information. The literals considered for removal were those that could not be
predicted through domain axioms alone, and so the benchmarks could sensibly be used as
problems in planning with incomplete information.

In this paper, we present a significantly more detailed description of the prediction step
that was introduced in our previous work on initial state prediction (Krivic et al., 2017).
Additionally, we present the state prediction as part of a replanning approach shown in
Figure 1, extend the prediction process to n-ary predicates, define the confidence measure
for a multigraph representation of the planning state, present a procedure for actively
selecting sensing goals, and perform a more-in-depth evaluation and discussion. The main
contributions of the paper are:

• posing the problem of missing information in the state as the problem of partially-
known multigraph completion;

• a novel approach which utilizes machine learning techniques to predict missing infor-
mation in a partially-known state;

• devising active learning procedures for improving predictions of the state by generating
new sensing subgoals.

The paper is structured as follows. First we give some background in the problem of
planning under uncertainty. In Section 3, we present the problem of state prediction using
machine learning. Section 4 describes the active learning process for identifying the new
sensing actions needed for the improvement of predictions. In Section 5 we present the
experimental results. We discuss the proposed approach and compare it with the related
work in Section 6 and we conclude in Section 7.

2. Background

This section describes basic concepts in automated planning, and planning under uncer-
tainty.

768



Decreasing State Uncertainty in Planning

2.1 Automated Planning Problems with Incomplete Initial States

Definition 1 (Planning Instance with Incomplete Initial State) A planning instance
with incomplete initial state Π is a pair 〈D,P 〉, where domain D = 〈Pred, Func,A, arity〉 is
a tuple consisting of a finite set of predicate symbols Pred, function symbols Func, a finite
set of actions A, and a function arity mapping all symbols in Pred and Func to their respec-
tive arities. The triple describing the problem with incomplete initial state P = 〈O, s′, G〉
consists of a finite set of domain objects O, the incomplete initial state s′, and the goal
specification G.

The atoms of the planning instance, also referred to as propositions, are the (finitely
many) expressions formed by grounding, i.e., applying the predicate symbols Pred to the
objects in O (respecting arities). The resultant expressions are the set of propositions Prop.
The numeric-valued fluents of the planning instance are formed in a similar fashion by
grounding the function symbols. The goal specification G is a formula over the propositions
and numeric fluents. PDDL (McDermott et al., 1998; Fox & Long, 2003) is used to describe
both the planning domain D and problem P . Actions are not specified since the proposed
approach is flexible with respect to the action type. However, the approach will need some
adaptation to work with PDDL actions which involve time or numeric quantities. A simple
example is shown in Figure 2 and Figure 3.

;; PDDL domain description of the simply tidy task

(define (domain tidy-room-simple)

(:requirements :strips :typing :durative-actions)

(:types object area edge)

(:predicates (untidy ?o - object) (tidy ?o - object)

(explored ?r - area) (at ?r - area) (visited ?r - area)

(:durative-action push

:parameters (?o - object)

:duration ( = ?duration 10)

:effect (at end (and (tidy ?o) (not (untidy ?o)))))

(:durative-action explore

:parameters (?r - area)

:duration ( = ?duration 120)

:effect (at end (explored ?r)))

(:durative-action visit

:parameters (?r1 ?r2 - area)

:condition (and (at start (at ?r1)))

:duration ( = ?duration 100)

:effect (and (at start (not (at ?r1)))

(at end (visited ?r2)) (at end (at ?r2)))

)

Figure 2: The simplified planning domain for a tidying task encoded in PDDL.
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;; PDDL problem description for the simple tidy domain

(define (problem sample-problem)

(:domain tidy-room-simple)

(:objects ob0 ob1 - object room0 - area)

(:init (untidy ob0) (untidy ob1))

(:goal (and (tidy ob0) (tidy ob1))))

Figure 3: A sample problem for the simple tidying task encoded in PDDL.

;; PDDL problem description with partial observability

(define (problem sample-travel)

(:domain tidy-room-simple)

(:objects door table sofa - area)

(:init (and (edge door table) (edge table door)

(edge table sofa) (edge sofa table)

(edge sofa door) (edge door sofa)

(oneof (at door) (at table) (at sofa))))

(:goal (and (visited door) (visited table) (visited sofa)))

)

Figure 4: A conformant planning task in which the initial position of a robot is uncertain.

The set of propositions for the planning instance is obtained by grounding the predicates
as described above to obtain the set:

(tidy ob0) (tidy ob1)
(untidy ob0) (untidy ob1)

(explored room0)

A literal lp represents a valuation of one proposition p ∈ Prop, i.e. lp and ¬lp. A single
state s is described by a set of literals formed from the propositions in Prop, {lp,¬lp,∀p ∈
Prop}. A state is well-formed if it does not include conflicting literals, i.e. if lp ∈ s then
¬lp 6∈ s. If every proposition from Prop is represented by a literal in the state, then we say
that s is a complete state. Otherwise, we say that s is an incomplete state.

PDDL makes a closed-world assumption about the state. If the literal lp is not in the
state s, then it is assumed that ¬lp ∈ s (every state is a complete state). In contrast,
we assume that if ¬lp /∈ s and lp /∈ s then instead the value of proposition is unknown.
Contingent and Conformant planning reason over incomplete information and also make
no closed-world assumption.

The approach presented in this paper applies to problems with a well-formed, incomplete
initial state.

2.2 Contingent and Conformant Planning

Contingent planning tackles the problem of planning with incomplete information. In a
problem with incomplete information the initial state is a set of clauses over the set of
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propositions defining the initial situation, as defined by Albore and Geffner (2009). This
is different from the notion of incomplete state in that the clauses can define relationships
between propositions, such as oneof constraints. An example of a conformant planning
problem is shown in Figure 4. This problem describes an uncertain tidy room problem,
in which the initial position of the robot is unknown. The initial position of the robot is
represented by the disjunction:

(oneof (at door) (at table) (at sofa))

The notion of a incomplete state in this paper does not include this information provided
by these constraints. For example, in Figure 4, the three at propositions are unknown,
and given the oneof constraint, only three possible complete initial states can be true.
In contrast, by representing the initial state as an incomplete state in which these three
propositions are unknown, there are 23 = 8 possible initial states.

An incomplete planning state s can be represented by a state with incomplete informa-
tion in the following way: for each proposition p not represented by a literal in s, the state
with incomplete information can include the clause (oneof lp ¬lp). A state with incomplete
information can be represented by an incomplete state by including only those propositions
whose values are known to be true or false. Note that this loses information.

A conformant solution to a problem with incomplete information, produced by planners
such as Conformant-FF (Brafman & Hoffmann, 2004) and POND (Bryce, Kambhampati, &
Smith, 2006), is a sequence of actions that will achieve the goals for every possible complete
initial state. No sensing actions can be taken. When sensory actions are expensive or
dangerous, as is often the case in robotics planning, then conformant planning may be
the best approach (Smith & Weld, 1998). However, in many real-world robotics domains
with partial observability, a conformant plan does not exist. As an example, sensing which
elevator has arrived in an office building, and branching execution to enter the right door is
possible, producing a solution that can be executed without relying on sensory information
is more difficult.

A contingent solution to a problem with incomplete information uses sensing actions
to observe missing information and its execution branches upon the result. Contingent
planners, such as Contingent-FF (Hoffmann & Brafman, 2005) and CLG (Albore & Geffner,
2009), are useful in such domains, where it cannot be assumed that a conformant solution
exists. A contingent solution assumes that uncertainty is monotonically decreasing, i.e., once
the value of a proposition has been observed by a sensing action, then it cannot become
unknown again. A contingent solution also assumes that there is no known probability
distribution over the possible results of the sensing action.

The domains we consider in this paper are those in which a conformant solution is
difficult, or not feasible, and sensing actions are expensive, such as robotics domains, e.g.
the Mars rover domain (Francis et al., 2017).

2.3 Probabilistic Planning

If the probability distribution over a non-deterministic effect of an action is known, then the
problem could be encoded as a probabilistic PDDL (PPDDL) instance (Younes & Littman,
2004). Probabilistic planning with PPDDL extends PDDL with probabilistic effects, which
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;; PPDDL domain description of the simply tidy task

(define (domain tidy-room-simple-probabilistic)

(:requirements :conditional-effects :probabilistic-effects)

(:types object room)

(:predicates (untidy ?o - object) (tidy ?o - object))

(:durative-action push

:parameters (?o - object)

:effect (at end (probabilistic 0.75 (and (tidy ?o) (not (untidy ?o))))))

)

;; PPDDL problem

(define (problem probabilistic-sample)

(:domain tidy-room-simple-probabilistic)

(:requirements :negative-preconditions)

(:objects ob0 ob1 - object)

(:init

(probabilistic 0.75 (untidy ob0))

(probabilistic 0.85 (untidy ob1)))

(:goal (and (tidy ob0) (tidy ob1))))

Figure 5: PPDDL encoding of the probabilistic effect example.

allows the specification of Markov decision processes (MDPs). An example PPDDL domain
and the problem is shown in Figure 5. In this problem, there are two objects, both of
which have some probability of being untidy. The objects can be tidied by pushing them
away, but there is a probability that this action fails. PPDDL allows specifying action cost
and planning horizons, and the objective is generally defined in the form of minimizing the
expected cost.

Planning with non-deterministic effects, including observations encoded as sensing ac-
tions with probabilistic effects, differs from contingent planning. Contingent sensing actions
for partial observability assume that once the fact is known, it does not change by repeated
sensing. We make the same assumption in our domains.

3. State Prediction

In this section, we describe in detail our approach to the problem of state prediction in the
case of partial observability.

3.1 Problem Description and Proposed Approach

The problem is, given an incomplete initial state s′ as defined in Definition 1, to add at least
one new literal to the state so that the state remains well-formed. We call this function
extending a incomplete state as defined below.

Definition 2 (Extending an Incomplete State) Let s′ be an incomplete state of a plan-
ning problem Π. Extending the state s′ is a function Extend(Π, s′) : s′ → s′′ where s′ ⊂ s′′

and s′′ ⊆ s, where s is a well-formed complete state.
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(define (problem toy-problem)

(:domain tidy-room-domain)
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(:init
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(can-push robot block01)

(can-push robot cup01)
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(can-stack-on box01 block01)

(can-stack-on block01 cup01)
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(:goal ...)
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Figure 6: A fragment of an example problem from the tidy-room domain where a prediction
step is applied. First, the state is translated to the multigraph. Known edges are
denoted by solid lines and unknown ones by dashed lines. Then, using prediction,
a multigraph is completed. In the last step, the estimated edges are translated
back to literals and are added to the state.
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The procedure of extending an incomplete state by adding a prediction step is sum-
marised in Figure 6. To be able to apply a machine learning technique to extend an
partially-known state, we first translate it to a multigraph. Thus, the function Extend(Π, s′)
is implemented as follows:

1. The incomplete state s′ is converted into a multigraph (Section 3.2).

2. Learn a predictive model for prediction of missing edges and extend the multigraph
(Section 3.3).

3. The new edges are added as literals to the incomplete state (Section 3.4).

3.2 Constructing the Multigraph

We use E to denote a set of edge values in a complete multigraph M and E′ to denote the
set of edge values in a partially-known multigraph M ′. We represent an incomplete state s′

as a partially-known multigraph M ′, in which vertices represent objects and edges represent
propositions.

Definition 3 (Partially-Known Multigraph) A partially-known multigraph M ′ is a pair
〈V,E′〉, where V is a set of vertices, and E′ a set of directed edge values.

An incomplete state s′ is described as a partially-known multigraph with vertices cor-
responding directly to the PDDL objects. That is,

V ≡ O.

We use the function
Lpred : ν → {0, 1, ?} (1)

to describe the existence of an edge in a partially known multigraph, where ν ⊆ V is
the set of objects used to ground the predicate. The set {0, 1, ?} corresponds to {not-
existing, existing, unknown}. For example, consider a proposition p, formed by grounding
the predicate pred with objects b and u. Existences of edges are determined as follows.

¬lp ∈ s′ ↔ Lpred(b, u) = 0
lp ∈ s′ ↔ Lpred(b, u) = 1

(lp 6∈ s′ ∧ ¬lp 6∈ s′)↔ Lpred(b, u) =?

For each predicate and set of objects used to ground the predicate, a directed edge ex-
ists in the multigraph of s′ if and only if Lpred(ν) 6= 0. Therefore, an edge exists in the
partially-known multigraph if the corresponding proposition exists in the state or if the
proposition is unknown. The order of objects in a proposition’s parameters is important,
and therefore edges in the multigraph are directed in the order the object symbols appear
in the proposition.

Since there can be several edges between two vertices, we form an edge-vector for each
pair of origin and destination vertices. For an origin object b and a destination object u,
we define the edge-vector as the vector:

ebu =
[
epredbu , ∀pred ∈ Pred

]
= [Lpred(b, u),∀pred ∈ Pred] (2)
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This vector describes the existence of all edges directed from b to u. For example, with
objects b and u and predicates Pred = {pred1, pred2, pred3, pred4}, an edge vector ebu
could look like:

ebu =


epred1
bu

epred2
bu

epred3
bu

epred4
bu

 =


Lpred1(b, u)
Lpred2(b, u)
Lpred3(b, u)
Lpred4(b, u)

 =


1
1
?
0


3.2.1 Example Multigraph

Observe the problem where a robot is able to move between waypoints and make simple
operations with objects such as: pick up, push, stack, and drop in box. The predicates
can-pickup, can-push, can-stack-on, and can-fit-inside describe if these actions are
possible, as shown in Figure 6.

In this problem we restrict our attention to four objects: robot, cup01, box01, and
block01. In PDDL literals that are absent from the state are assumed to be false. However,
as described in Section 2.2 we assume those literals to be unknown.

A graph M is generated, and its vertices are

O := {robot, cup01, box01, block01}

As an example, an edge-vector between the vertices robot and block01 in this multigraph is
given with:

erobot,block01 =
ecan−fit−insiderobot,block01

ecan−stack−onrobot,block01

ecan−pushrobot,block01

ecan−pickuprobot,block01

 =


Lcan−fit−inside(robot, block01)
Lcan−stack−on(robot, block01)
Lcan−push(robot, block01)
Lcan−pickup(robot, block01)

 =


0
0
1
?

 (3)

In the example state shown in Figure 6, it is known that the propositions (can-fit-inside
robot block01) and (can-stack-on robot block01) are false. Therefore, the edges that
correspond to them do not exist in the multigraph. The state also contains information
about the proposition (can-push robot block01), which is known to be true. Finally,
the proposition (can-pickup robot block01) is unknown.

3.3 Completing a Partially-Known Multigraph

Once a multigraph representing the incomplete state is created, a machine learning method
can be used for completing a multigraph where edges are partially known. With the assump-
tion that the planning state has an underlying structure, and it is not describing a system
without any order, laws or structure, the multigraph can be completed via a supervised
learning problem.

As described in Section 3.2, we differentiate between origin and destination vertices for
each edge. B denotes the set of origin vertices and U the set of destination vertices, where
B,U ⊆ V . Edges between the vertices describe a mapping between the sets B and U
(Figure 7).
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v1

v2

v3

v4 b4

b3

b2

b1

u4

u3

u2

u1

Figure 7: A multigraph representation with directed edges for vertices v ∈ V (left). Another
representation of the multigraph where edges connect origin vertices b ∈ B with
destination vertices u ∈ U where B,U ⊆ V (right).

To predict an unknown edge between two vertices, knowledge about other known edges
involving those vertices can be exploited. The completion of the multigraph is the task of
building a predictive model:

m : B × U → E (4)

which maps inputs (ordered pairs of vertices (b, u)), to the outputs (edges values ebu defined
in Eq. 2) based on the existing knowledge about edges values in a multigraph. The model is
trained based on the pairs ((b, u), Lpred(b, u)) for known values Lpred(b, u), 0 or 1, in edges
ebu ∈ E′. The predictive model m aims to capture the underlying structure of a multigraph,
and therefore the structure of the planning state.

Various machine learning techniques can be used to learn the predictive model m from
the known information such as ML methods for completing a multigraph (Cesa-Bianchi
et al., 2013; Gentile et al., 2013; Latouche & Rossi, 2015), recommender systems (Jahrer
et al., 2010), or data imputation methods (Lin et al., 2011; Bertsimas et al., 2018). We
utilize Maximum Margin Multi-Valued Regression (M3VR) for predicting edges which is
described in Appendix A.

Once the predictive model m is created and learned for the incomplete planning state, it
is used to predict unknown Lpred(b, u) =? values for that state, and so update the function
Lpred (Eq. 1) In this way, predictions are performed for all unknown edges and the graph
completed.

When the agent acquires new information and discovers the true values of some edges,
the model m is updated to capture the current planning state. The method in which the
model m is updated with new information depends upon the machine learning algorithm
used, particularly whether the algorithm is incremental, and whether the planning prob-
lem is probabilistic. Incremental algorithms make updates with new information, without
retraining the entire model from scratch. In the case that knowledge about the state is
probabilistic, it is necessary to train the model from scratch since there can be changes in
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the state. M3VR creates the model m of the current single incomplete state each time State
Prediction step is triggered (Figure 1).

3.3.1 Completing a Partially-Known Hypergraph

So far we have discussed only binary relations – predicates with only two object parameters
(b, u). Now we extend this concept to predictions for n-ary relations. N-ary relations can
be represented by hyperedges, which are edges that can join N number of vertices.

A hypergraph is a tuple 〈V,E〉, where V is a set of vertices, and E ⊆ 2V is the set of
hyperedges. Thus E is a subset of the power set of the vertices. It is assumed that the
subsets corresponding to the hyperedges are not empty, and all subsets of V with size 1, the
singletons, are included into E. Every hyperedge representing an N-ary relation corresponds
to a subset of vertices with size N. A general hypergraph might contain hyperedges of any
size.

The extension can be carried out by transforming the corresponding hypergraph into
a factor graph. That graph is a bipartite graph with two sets of vertices: one is formed
from the original vertices, and the other contains the hyperedges (factored vertices). An
edge is drawn between two sets if a hyperedge covers a vertex in the original graph. The
order of the arguments of predicates is preserved in the direction of the hyperedge in a new
factored vertex by keeping the same order in the factored vertex subscript. To distinguish
the connection between an original vertex and the introduced factored vertex, we use the
notation of parentheses (., .) in edges subscripts to denote factored vertices. An example is
given in Figure 8.

From the tidy-room domain, consider the predicate:

(can-drop-at ?robot ?object ?waypoint)

Consider the proposition grounded from this predicate using objects o1, o2, and o3. These
will be connected by the hyperedge e1,2,3 as shown on the left side of Figure 8 in the original
hypergraph. To create a multigraph, a factored vertex h2,3 is generated and connected with
edge e1,(2,3) as shown on the right side of Figure 8.

Edges and vertices in the factor graph can be treated as the edges and vertices in a
graph with binary relations, and the prediction process described above can then be directly
applied.

3.3.2 Confidence Measure

In the prediction process, the estimation of unknown values in an edge vector is made by
exploiting the knowledge about other edges. Based on the assumption that two edges are
similar if they share either the same origin b or the same destination vertex u, we can
determine a confidence measure for an unknown value in the edge ebu. Let us define the set
of all known edge values which share the same origin vertex b as

E′b = {epredbv ∈ E′|v ∈ U, pred ∈ Pred} (5)

and the set of all known edge values which share the same destination vertex u as

E′u = {epredvu ∈ E′|v ∈ B, pred ∈ Pred}. (6)
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v1

v2

v3

v4

v5

v6

e1,2,3
e2,3

e3,6,5
e4

v1

v2

v3

v4

v5

v6

h2,3

h4
h6,5

e1,(2,3)

e2,3
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Figure 8: Transforming hypergraph into a factor graph by adding factored vertices h4, h2,3

and h6,5. As the edge e2,3 connects two vertices, it does not require adding any
factored vertices. In the factored graph on the right side, introduced factored
vertices are denoted in edges with parentheses, e.g. the edge e1,(2,3) is an edge
from vertex v1 to the vertex h2,3. In this way, the order of predicates in the
direction of the hyperedge is preserved.

If there is no information about edges with vertices b or u, sets E′b and E′u are empty.
This also means that there is no knowledge which can be used for prediction of the missing
edge ebu. Therefore, we define the confidence measure as

conf{ebu} =
1

2

NE′
b

NEb

(1− σ2
E′
b
) +

1

2

NE′
u

NEu

(1− σ2
E′
u
) (7)

where NE′
b

denotes numbers of known edge values with the vertex b as the origin vertex,

and σ2
E′
b

is variance1 of those values. Similarly NE′
u

and σ2
E′
u

are defined for edges that share

the same destination vertex u. NEb denotes numbers of all edge values with the vertex b
as the origin vertex, and NEu denotes numbers of all edge values with the vertex u as the
destination vertex. In our case NEb = NEu = NV ∗ NPred since B = U = V . In this way,
the uncertainty of the prediction is high if the standard deviation of known edge values is
high or if the number of unknown edges exploited for the prediction is high. Confidence
values are between 0 and 1.

Example Observe the problem presented in Section 3.2.1 and in Figure 6 top-right
where the partially known multigraph is presented. In this example we would like to
predict missing value ecan−pickuprobot,block01 in edge erobot,block01 (Eq. 3). The set of all edge val-

ues which share the same origin vertex b = robot consists of all values epredbv of edges

1. The variance σ2 is defined as the average of the squared deviations from the mean (µ). For a set
X = {x1, x2, ..., xN}, the variance is calculated as σ2 =

∑N
i=1(xi − µ)2/N .
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erobot,robot, erobot,box01, erobot,cup01 and erobot,block01. From Figure 6 this is:

Eb=robot = {0, 0, 0, 0, 0, 0, ?, ?, 0, 0, 1, 1, 0, 0, 1, ?}.

The set of all edge values that share the same destination vertex u = block01 is similarly
determined:

Eu=block01 = {0, 0, 1, ?, ?, 1, 0, 0, 0, ?, 0, 0, ?, ?, 0, 0.}

In this case the number of edge values are NEb = NEu = 16, NE′
b

= 13, NE′
u

= 11 where
the set of known edge values which share the same origin vertex b = robot is E′b=robot =
{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1} and the set of all known edge values that share the same
destination vertex u = block01 is E′u=block01 = {0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0}. The variance is
calculated for these. The confidence value of the missing link is therefore calculated as:

conf{ecan−pickuprobot,block01} =
1

2
· 13

16
· (1− 0.1775) +

1

2
· 11

16
· (1− 0.1488) = 0.6266

.

3.4 Extending a Partially-known State with Predictions

Given a completed multigraph and prediction confidences, we extend the partially-known
state s′. We add new literals to the state where the confidence exceeds a confidence thresh-
old, i.e.:

lp ∈ s′ ↔
(L∗pred(b, u) = 1) ∧ conf{epredbu = 1} > ct,

(8)

where lp is the positive literal of the proposition p which is formed by the predicate pred
grounding objects b and u, and ct is the confidence threshold. We discuss the choice of the
threshold in Section 6.

For edges predicted not to exist in a graph with confidence higher than a threshold value
ct, we can extend the incomplete state s′ similarly:

¬lp ∈ s′ ↔
(L∗pred(b, u) = 0) ∧ conf{epredbu = 0} > ct,

(9)

In the example given in Figure 6, the partially-known graph contains a dashed edge
which represents that the proposition (can-pickup robot box01) is unknown. Before
prediction,

Lcan−pickup(robot, box01) = ?

After the state prediction, Lcan−pickup(robot, box01) = 1, with confidence higher than ct = 0
and the literal (can-pickup robot box01) is added to the state.

Note that as we are completing an incomplete state the predictions should be valid
with respect to the description of the possible initial situations. For example, if using a
contingent planner and performing prediction on the initial state given in Figure 4, it would
not be correct to add both (at door) and (at table) to the initial state, even if both are
predicted to be true.
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(:action classify-object

:parameters (?r - robot ?wp - waypoint ?o - object)

:precondition(and

(at_robot ?r ?wp)

(at_object ?o ?wp))

:observe (at end (is_class ?o))

:effect()

)

Figure 9: Example of sensing action.

4. Guiding an Agent to Improve Predictions

For cases where the uncertainty in the state is too high, such that the state cannot be pre-
dicted with high confidence, we propose to use an active learning approach. This approach
is used to identify the best sensing actions for observing the information that will increase
the confidence of predictions. For example, in the robot scenario described in Section 3.2.1,
there are many objects of a similar type, and the robot has low confidence about whether
these objects can be grasped. In this situation, it is desirable to perform sensing actions
that will generate the most significant improvement in predictions over the unknown in-
formation, such as attempting to grasp one of the many objects. The robot could sense
whether it is possible to grasp one such object, and so predict that the similar objects can
also be grasped with increased confidence. This approach allows us to reduce the number
of sensing actions needed in general to achieve the planning task. An example of a sens-
ing action is given in Figure 9. This sensing action observes the value of the proposition
(is class ?o) for some object described by parameter ‘?o’.

During the last decades, active learning has evolved into a popular paradigm to improve
the accuracy of learning algorithms (Cohn, Ghahramani, & Jordan, 1996). It is widely used
for data collection and annotation in pattern recognition (Li & Sethi, 2006), and natural
language processing (NLP) (Tong & Koller, 2002; Chen et al., 2015). It works by selecting
the most informative sample from unlabelled data and querying information about it. In
many settings, this information is provided by a user.

Following this idea, we guide an agent to acquire information with an active learning
approach. This process is denoted as Proposition Selection in Figure 1. It is an optional
step that can be performed when the uncertainty in the state is high, and thus the process
is represented by dashed lines. The main problem for this step is how to choose which
information should be sensed. This information is chosen for one of two reasons:

1. Greedy Task Solving: to select specific information to help solve the planning task
(Section 4.2). When solving a planning problem, the planner selects sensing actions
to obtain missing information necessary for completing the task. However, in some
situations, that information cannot be sensed or is expensive to sense. For those
cases, we present an active learning approach that selects different information to be
sensed that will increase the confidence of prediction over the useful information. For
example, in the problem given in the Figure 6 the robot cannot sense if it can pick
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up the object ‘cup01’ without simply trying that action, but attempting the action
and failing can break the cup. In this case, the robot can improve its prediction using
other knowledge in the state that is safe to observe, such as picking up similar objects
that are not in danger of breaking.

2. State Exploration: to select information used for general exploration of the state
(Section 4.3) when there is much information about which prediction confidence is
low, and for which performing comprehensive sensing is expensive. Propositions can
be selected to improve the overall confidence of predictions without targeting any
specific predictions that are important to a single planning problem.

Below we formally define the Active Learner (Section 4.1) and how it is used to select
propositions (Sections 4.2 and 4.3) with two different motivations. Then we describe how
this selection produces goals that are added to the planning problem (Section 4.4).

4.1 Active Learner

Based on the confidence measure conf{ebu} defined in Section 3.3.2, we select information
important to the predictive model. This information represents an unknown proposition
which needs to be observed by the agent. This is realized with an approach similar to
uncertainty pool-based sampling (Lewis & Gale, 1994) which is based on selecting the least
confident sample from a pool of unknown data.

The assumption is that the most uncertain samples are the ones with the lowest con-
fidence. The confidence measure of an edge captures the information provided by known
neighbours. As a consequence, the confidence measures for all edges indirectly depend on
each other via the topology of the graph. Therefore selecting an edge with the lowest confi-
dence is not independent of other unknown edges. That underlying interdependence is also
a source of information to update the confidences when new information, a measurement
on a selected edge, becomes available by recomputing the predictor function F .

An agent decides which sample to retrieve in order to provide more information to the
predictor F , and to improve the prediction accuracy and confidences. This selection is
determined by the active learner, defined as follows:

Definition 4 (Active learner) An active learner is a quintuple 〈F,E,E′, S, P 〉 where F
is a predictor function learned on a set of known values E′ ⊂ E. P ⊆ E r E′ is the set
of unknown values from which information is selected to be sensed. S is a function which
selects a set I ⊆ P of informative sample edges.

We describe a procedure implementing function S.

1. The incomplete state s′ is converted into a multigraph.

2. Edges in the multigraph are learned using a predictive model F .

3. Given the confidences of predictions and set of missing values P , a set of unknown
edges are selected based on the prediction confidence values:

I = {epredbu | conf(epredbu ) = arg min
epredbu ∈P

conf(epredbu )}
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The active learner can be used to sample from different sets P based on the domain, the
planning task and available information. As previously noted, we present the selection of
information for two reasons. These processes differ in the definition of the set P as described
below.

4.2 Selecting Information to Solve the Planning Task

When solving a specific planning task, it can happen that a proposition unknown to a
planner is also not observable, but is essential in solving the planning problem. For example
in the tidy-room domain, which contains a large number of different objects, some properties
cannot be observed but are significant for decision making, such as whether an object can be
pushed of picked up. The two propositions that describe this property can form a disjunctive
landmark in completing the goal of tidying the object. Trying to execute some actions in
order to gain knowledge can be harmful to the robot or an object, e.g. if the object is too
heavy, contains liquids, or is very fragile. Rather than sensing the property directly, a robot
can make observations of some other properties of the object or a similar object which
will improve its predictions. In a case like this, it is of interest to improve predictions for
the information about the unknown literal lp represented by a specific unknown edge value

epredbu .

To improve prediction of the specific missing information represented by the edge value
epredbu in the multigraph, the function S will select from a set of samples P that are the most
relevant for the prediction of this unknown edge value. These are edges which share the
same origin b or the same destination u with the edge ebu. The unknown values of these
edges define the set P from which informative samples are selected. We call this strategy
Greedy Task Solving .

4.3 Selecting Information to Explore the Domain

Selecting which information to observe first can also be used in domains where the agent
has a very small amount of initial information available. In the example problem of the
tidy-room domain, this would be the case when the robot enters a child’s room for the first
time where almost all objects and their properties are unobserved. Immediate planning
with the task of tidying up the room can fail due to the lack of information. Instead, a
robot can make some observations to gain more knowledge about the state.

An approach to choose which sensing actions an agent should take first could be random
or defined by some domain or task-specific exploration strategy. However, in order to
minimise sensing actions needed to perform general exploration, we suggest using the active
learner by selecting propositions from all unknown data in the state. Thus, the set P
contains all unknown values of E. We call this strategy State Exploration.

We make a trade-off similar to the exploration vs. exploitation in reinforcement learning
strategies: the set I is selected with an ε-greedy strategy. The information in the state for
which the agent is least certain about is selected with a probability of 1-ε, and a random
unknown value to be sensed is selected with a probability ε. This prevents possible over-
fitting or under-fitting of the prediction m in Eq. 4. The ε component can play a significant
role in domains where the domain is highly complex or in real-world executions where the
model is not entirely describing the real-world state. For the case ε = 0.0, the strategy
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becomes purely greedy. The values of ε are usually chosen to be small so that the greedy
approach selects the unknown information to be sensed. Therefore, the least certain infor-
mation based on the confidence measure defined with Eq. 7 is often chosen, while sometimes
the algorithm explores the other randomly selected unknown values. This approach ensures
that all the space of unknown information about the state is explored.

4.4 Introducing Sensing Goals in the Planning Problem

Given the set of propositions that should be sensed, p ∈ Prop, represented by the edges
described by I, goals to sense these propositions are added to the planning problem. To do
this, for each such edge value epredbu ∈ I, a new proposition is added to the planning problem:
(sensed p). This new proposition describes whether the proposition p has been observed,
and is added as an effect of each sensing action that observes p.

The goal G of the planning problem is then updated to include that these propositions
must be observed. These new propositions (sensed p) are either added as new goals to the
estimated state (see Figure 1), or replace the existing goals. In both cases, any valid plan
must involve an action that observes the information important to the predictive model.
This information is then used in future planning iterations.

In this way, the plan is forced to include that observation. The planner can also decide
on other necessary sensing actions to achieve the current goal. Also, if there can be more
than one sensing action to observe the same proposition, then the planner is able to make
the choice about which sensing action is used, considering costs or other constraints.

5. Evaluation

We integrated the prediction process into the planning and execution framework ROS-
Plan (Cashmore et al., 2015) in the Robot Operating System (ROS) (Quigley, Conley,
Gerkey, Faust, Foote, Leibs, Wheeler, & Ng, 2009). The M3VR method is integrated as a
ROS service enabling its use as an automatic routine. Gaussian kernels, which appeared
the best for this type of the problem, are used as the feature functions in M3VR with equal
parameters for all domains and experiments. The confidence value for completing the graph
with predictions was set to ct = 0 in all experiments.

With this framework we were able to generate randomised problem instances from eight
domains: tidy-room, inspired by the problem of cleaning a child’s room with an autonomous
robot presented by Krivic et al. (2015), course-advisor, adapted from Guerin et al. (2012)
who model an academic advising tool; mars-rovers, a multi-robot version of the navigation
problem by Cassandra et al. (1996), in which several robots are gathering samples; and
persistent-auv, a domain of autonomous underwater vehicles for intervention described by
Palomeras et al. (2016), The domains TPP, blocksworld, openstacks, and satellite were taken
from the International planning Competition (Pommerening, Torralba, & Balyo, 2018). The
number of predicates in each domain is given in Table 1. The system can be easily used with
other domains as well (Krivic, Cashmore, Magazzeni, Ridder, Szedmak, & Piater, 2018).
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Domain tidy-room mars-rovers course-advisor persistent-auv
Number of predicates 6 10 7 11

Domain blocksworld openstacks satellite TPP
Number of predicates 12 3 8 5

Table 1: Number of predicates in each test domain

5.1 Accuracy of Prediction

Experimental Setup To evaluate prediction accuracy, we generated examples of states
in each domain varying the size of the problem and the percentage of the knowledge in
the state. For the first 4 domains, the problem size is varied by increasing the number of
objects from 5 to 100 by an increment of 5. For the second 4 (IPC) domains, the problem
size is varied by increasing the number of goals from 1 to 8. In each, the number of goals
is proportional to the number of objects. Prediction accuracy was calculated over the
estimated planning state in comparison with the ground truth.

The initial knowledge is varied by generating complete states and removing literals at
random. After prediction, the estimated state was verified against the original complete
state, the ground truth. The literals considered for removal are propositions that describe
the properties of objects, and cannot be predicted through the propagation of domain-
knowledge axioms. For example, while the position of a rover can be derived directly from
the knowledge of where it is not, the “can be picked up” property of a cup cannot be derived
and must be sensed or predicted. Therefore the partially known states produced can be
sensibly represented as states with incomplete information, as defined in Section 2.2.

The known data in the state is the training data for prediction. The percentages of
knowledge used as known data of the state in tests are 0.5%, 1%, 2%, 3%, 5%, 8%, 10%, 20%,
30%, 40%, 50%, 60%, 70%, and 80%. To examine the reproducibility of prediction problems,
we randomly generated 10 states for each combination of the percentage of knowledge and
problem size. Thus, for each domain were generated 20 × 14 × 10 problems in total. The
prediction was applied to every problem independently, and results were compared to the
ground truth. Accuracy was calculated over the set of predicted unknown literals with
respect to the ground truth.

Results The prediction results for the first four domains are shown in Figure 10. The
results represent a mean over the 10 problem instances. Brighter colors indicate high accu-
racy. To examine the lower limit on problem size, we extracted the amount of the known
data that is needed to achieve accuracy higher than 90%. This is shown in Figure 11. The
number of learned relations is large for each domain. With 20% of the known predicates
and with 20 objects, accuracy is higher than 90% for all domains except mars-rovers. For
a better overview of the results, we illustrate mean values together with the variance of ac-
curacy, precision and recall in the case of 20 and 40 objects in Figure 12. These line charts
represent slices of the 3-D plots given in Figure 10. Precision and recall are calculated with
respect to predicted positive literals.2

2. Precision is calculated over the predicted set of unknown literals as
number of true positive literals/(number of true positive literals + number of false positive literals).
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Figure 10: Accuracy results obtained by varying the number of objects and the known data.

The prediction results for the second 4 (IPC) domains are shown in Figure 13. The
figure contains a table with information about the number of objects corresponding to the
number of goals.

Accuracy increases with the size of the problems, as can be seen in Figures 10 and 13.
With 40 objects in each problem domain, only 8% of known data is enough for accuracy
over 90% except for satellite domain where 20% of known data is necessary. Blocksworld
and persistent-auv domains contain more predicates compared with the other domains.
This results in denser multigraphs. Thus, for these domains, the accuracy is better for
smaller numbers of objects as well. The high accuracy of predictions in these domains
indicates domains with structure and order. Compared to other domains, the rovers and
satellite domains appear to be the least ordered. With a small number of objects and initial
knowledge, it is harder to capture the structure of the domain. Thus 60% initial knowledge
is required to achieve 90% accuracy in the case of 15 objects for rovers domain.

5.2 Evaluating Robustness

In further experiments, we investigate whether the high accuracy results in robust prediction
and plans.

Recall is calculated over the predicted set of unknown literals as
number of true positive literals/(number of true positive literals + number of false negative literals).
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Figure 11: Minimal percentage of known data which gives stable accuracy equal to or higher
than 90% for different problem sizes.

Experimental Setup We make the problems deterministic in three ways: (a) by accept-
ing all predictions (i.e., lowering the confidence threshold to 0), (b) by an optimistic baseline
of assuming unknown propositions to be true, and (c) by a pessimistic baseline of assuming
unknown propositions to be false. This corresponds to solving the problem according to
the closed-world assumption of the PDDL semantics. This was repeated 10 times for each
different percentage of initial knowledge. The problems were then solved using the planner
POPF (Coles et al., 2010). The resulting plans were validated against the ground truth
using VAL (Howey, Long, & Fox, 2004).

Results The results are shown in Figure 14 showing that even for 30% of known data, the
prediction approach (a) leads to robust plans. Using the pessimistic baseline (c), without
prediction, none of the problems could be solved using a deterministic planner. Even with
the knowledge of 80% of the state, the goal was not in the reachable state-space. On the
other hand, using the optimistic baseline (b), many plans were generated, but only plans
in the tidy-room domain were found to be valid. At 40% of initial knowledge, the planner
produced 6 valid plans out of 10 problems. This comparison with the optimistic approach
demonstrates that higher accuracy in the prediction approach does provide a benefit in
terms of robustness. Note that the prediction approach does not provide a guarantee that
all plans will be valid, and as shown in Figure 14, produces invalid plans as a result of
incorrect predictions when the initial known data is low.

5.3 Impact of Predictions on the State

Experimental Setup To provide an illustrative analysis of the impact of predictions on
a state, we generate a relaxed plan-graph (RPG) and count the number of reachable actions
for an agent before prediction (where unknown propositions are assumed to be false) and
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tidy-room mars-rovers course-advisor persistent-auv

Figure 12: Comparison of accuracy, precision and recall with standard deviation in the case
of 20 and 40 objects. Each of the six graphs represents one slice through each
of the four graphs of Figure 10, plus standard deviations.
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after prediction (using the resulting complete state). This is done for the first four test
domains.

Results Figure 15 shows the number of new reachable actions as a percentage of the total
number of reachable actions in the ground truth. The increase in reachable actions is very
large, especially with a smaller amount of known data. This increase in the number of valid
actions enabled by the prediction demonstrates an increase in the size of reachable state
space. This is an indication that the prediction does have the potential to improve the
performance, especially in deterministic planning, by making reachable a goal that could
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Number of goals 1 2 3 4 5 6 7 8
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Figure 13: Accuracy results obtained by varying the number of goals and the known data.

788



Decreasing State Uncertainty in Planning

not be achieved prior to prediction. Note that since the RPG is an over-approximation of
the reachable state-space, Figure 15 only shows the potential for improving the planner’s
performance and no guarantee that a previously unsolvable problem can then be solved after
prediction. Instead, what we show is that prediction can bring the potentially reachable
state-space from a partially-known state closer to the state-space that would be reachable
if the ground truth was known.

5.4 Contingency Planning Effort

We also set up experiments to examine the planning effort in terms of complexity and
time needed to complete planning with incomplete information both with and without
predictions.

Experimental Setup In this set of experiments, sensing actions were introduced into
the tidy-room domain, allowing the agent(s) to determine the ground truth of unknown
propositions. As described in Section 5.1, the problems for this domain were constructed
in such a way that they can be sensibly represented as initial states with incomplete in-
formation and solved using a contingent planner. Problems were generated with 10% to
80% of known information in the initial state. All of the problems involve 20 objects. For
each percentage of known data, we randomly created 10 instances of problems, and results
represent the mean values. The number of goals was varied from 2 to 6. We used the

Figure 14: The number of problems for which valid plans were generated, for varying
amounts of knowledge. Experiments were done for the problems with 6 goals
(blocksworld, openstacks, satellite), or 70 objects (tidy-room). With the pes-
simistic baseline, none of the problems was solved. Plans produced with opti-
mistic baseline were invalid except for tidy-room domain.
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Figure 15: The number of newly reachable actions after prediction, as a percentage of ac-
tions in the ground truth. Tests were done for problems with 20 objects and
varying amounts of knowledge in all four domains.

planner CLG (Albore & Geffner, 2009) (offline mode) to solve problems in these extended
domains, producing branching contingent plans. A time limit of 1800 [s] was given to plan-
ning (including any prediction). Experiments were done with and without predictions. The
prediction was applied before a single planning attempt.

Results We recorded the time taken to generate a contingent plan. The solution times
are shown in Figure 16. For problems with 5 goals and 6 goals, the problem could not be
solved by CLG without predictions within the time limit. With prediction these problems
were solved with an average of 89 [s]. These results illustrate the benefit of prediction in
enhancing the scalability of contingent planning.

5.5 Domain Exploration with Active Learning

In this experiment we examine the impact of active selection of sensing actions on prediction
accuracy.
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Figure 16: The time taken by CLG to solve problems with 2, 3, and 4 goals, without
prediction (upper lines) and with prediction (lower lines). The values also include
prediction time.

Experimental Setup To test the proposed ε-greedy exploration of the domain, we com-
pare it with passive learning, where new information added to the state is randomly selected,
and with the pure greedy strategy, where exploration component is set to 0. In our experi-
ments, an autonomous agent starts planning with 5% of known information about the initial
state. We examine the behaviour of the prediction accuracy by adding 1000 missing literals
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Figure 17: Prediction accuracy following ε-greedy active learning compared with random
selections of newly added data and pure greedy strategy for tidy-room and mars-
rovers domains. Points represent the mean accuracy of ten experiments, while
the shaded regions represent corresponding variances.
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Figure 18: Prediction accuracy following ε-greedy active learning compared with random
selections of newly added data and pure greedy strategy for Openstacks and
TPP domains. Points represent the mean accuracy of ten experiments, while
the shaded regions represent corresponding variances.
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one by one, chosen randomly and with active exploration. Prediction is made after each
new instance of information added. We repeat this procedure 10 times with different initial
states. We performed tests with tidy-room, mars-rovers with 30 objects, openstacks with 3
goals, and TPP with 2 goals since they appear to have a more complex structure, as shown
in prediction tests (Section 5.1). The number of literals added (1000) represents 12.76% of
the complete state in the mars-rovers domain, 7.23% in the tidy-room domain, 25.72% in
openstacks domain and 19.5312% in TPP domain. The value of ε = 0.05 is set for ε-greedy
exploration for all domains.

Results The mean and variance of learning curves are shown in Figures 17 and 18. In all
domains, the accuracy of the predictions is much higher using the active learning approach
compared to random selection. This demonstrates that the approach is an effective means
of directing the planning agent in its exploration. With sensing actions selected by the
active learner, the agent is able to have higher accuracy with less known data. With only
7.82% of known data in the tidy-room domain and 7.67% in the mars-rovers domain, the
accuracy of prediction is higher than 90%. In addition, the low variance shows that the
agent is consistent in selecting informative data for improving the prediction accuracy. The
impact of the exploration component ε is not high since the domains are structured. In
the tidy-room domain, the variance is slightly smaller in the case of ε-greedy domain. The
accuracy is higher with the ε-greedy strategy in the openstacks domain, while in mars-rovers
and TPP domains, the pure greedy strategy has slightly better accuracy results.

6. Discussions

In this section, we discuss contributions, advantages, and disadvantages of the proposed
approach, as well as related work.

6.1 General Discussion

Decreasing Uncertainty in the State using Predictions. Predictions can be com-
bined with the planning in the following way. The prediction can be applied with a high
confidence threshold, removing some of the uncertainty in the state. Contingent planning
(or conformant planning, etc.) can be used to deal with the remaining uncertainty by exe-
cuting sensing actions to observe remaining unknown propositions. This alleviates the high
complexity of contingent planning while reducing errors from inaccurate prediction with
lower confidences.

Choice of Confidence Threshold. Confidence values range between 0 and 1. In some
domains, e.g. the course-advisor domain, all predictions can be added to the state since
a wrong prediction will not harm the agent or execution. In such domains, the confidence
threshold can be ignored, i.e. ct = 0, and the resulting complete state s is used for planning.
However, for many other domains, the confidence threshold plays an important role, e.g. in
robotic domains where an incorrect prediction can lead the robot into a state from which it
is very expensive to recover. In such cases, it is better to set a positive confidence threshold
ct > 0. The confidence threshold can be set as a firm value manually, or it can be obtained
via some automatic procedure that depends on the properties of the specific domain. The
confidence itself depends on the available data of the state, so the percentage of known data
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can be used as one of the parameters for the threshold choice. Strategies for the selection of
the confidence threshold with respect to the domain and known data are part of the future
work.

Predicates with Categorical Values. It is possible to perform predictions on plan-
ning domains with integer variables if they are bounded. These bounded integers can be
represented as a categorical value (in which each integer value is a category). To enable
prediction in these domains we assign a separate edge to every category for each predicate.
The incomplete state s′ in such domains is described with a partially-known multigraph:

V ≡ O
E′ = {epredc(b, u)|(b, u) ∈ V × V,∀c ∈ Cpred}

where Cpred is a set of possible categories of the predicate pred. This represents a limited set
of planning domains with numeric variables. Extending predictions to unbounded numeric
variables and real variables is left for future work.

The Effect of Incorrect Predictions. Introducing the prediction step into the planning
routine may also introduce incorrect facts into the state, even if the prediction accuracy
is high. This can result in plans impossible to realise, and the agent can fail in executing
a task. However, as seen from the experimental results, if there are uncertainties in the
state, the performance of planning is already low, and introducing predictions improves it
significantly. Also, when planning in real-world dynamic and changeable domains, there
is always a risk of inconsistency between the state and the real world. Taking confidences
into account when introducing new information into the state reduces the possibility of
obtaining invalid plans, but does not eliminate it.

Applicability. The impact of incorrect predictions also varies based on the domain and
the task. The importance of incorrect predictions is not the same in different domains. In
hazardous and sensitive domains such as power plant management it can be very dangerous.
On the other hand, in domains such as a robotic household, failure in executing a plan with
an incorrect prediction could have no lasting consequence and allow the robot to refine its
knowledge for another attempt.

Proposition Selection. In the approach in this article, guiding an agent to acquire new
information is based on the prediction confidence. In standard active learning settings,
there is an assumption that getting a label for unlabelled instances comes without a cost.
In planning domains, this is not the case. Different sensing actions come with an associated
cost of execution. Also, as previously noted, sometimes information cannot be sensed or
explored by the agent. In the presented approach for selecting information to be sensed
in order to improve predictions, sensing action execution costs are not taken into account
when selecting which information has to be acquired. However as future work in active
learning, sensing costs can be taken into account in two ways. Firstly, a cost function derived
from the planning domain can be taken into account by the active learner when selecting
which new information should be obtained. Secondly, the active learner can choose sets
of propositions which can improve predictions, then the sensing actions which provide the
desired information with minimal cost can be chosen by the agent. Finally, these options can
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be combined, so that the active module takes costs into account when providing suggestions,
and the planner also uses those costs during planning. We will explore this in future work.

Greedy Task Solving vs. State Exploration. Two different strategies for actively
sensing information are presented. These strategies can be used in different planning sce-
narios and for different planning goals and metrics. If the purpose of the planning system is
to achieve the goal as rapidly as possible, then the Greedy Task Solving strategy should be
used. On the other hand, if the purpose of the agent is exploration, or there is a trade-off be-
tween completing the current task and exploration to aid future tasks, the State Exploration
strategy can be used.

6.2 Related Work

We discuss the proposed approach with respect to the related work in this subsection.

6.2.1 Planning Under Uncertainty

Planning under uncertainty has been addressed in a wide variety of forms (Boutilier et al.,
1996; Blythe, 1999; Jimnez et al., 2012). Blythe (1999) provides an overview of planning
under uncertainty. There are different sources of uncertainty in the planning process, such
as uncertainty in the initial state, uncertainty caused by non-deterministic effects of action
models or the uncertainty caused by noise in sensing actions.

In this article, we focused on the first problem, which is reflected in missing information
in the initial state by introducing a new paradigm in AI planning field based on ML. This
problem can also be addressed within standard planning approaches at the expense of time
needed for planning, such as contingency planning (Bonet & Geffner, 2000; Hoffmann &
Brafman, 2005), conformant planning (Smith & Weld, 1998; Palacios & Geffner, 2006), or
replanning techniques (Brafman & Shani, 2012). Conformant planners take the uncertainty
of the system into account by observing a set of possible initial states s0 ∈ S instead of a
single initial state. These planners work under the assumption of null run-time observability,
meaning that sensing actions cannot be a part of the domain. Contingent planners address
the problem of planning in domains with incomplete information in the state and where
the current state can be observed with sensing actions. If the lack of information is severe,
the problem can become unsolvable by these techniques. Our proposed approach can be
combined with these techniques for planning under uncertainty, using state prediction first
to reduce the uncertainty and complete information about the state.

The problem of uncertainty in planning due to non-deterministic effects of actions is
commonly addressed with probabilistic planners. Mausam and Weld (2006) address the
problem of probabilistic temporal planning with uncertain durations. Pineda and Zilber-
stein (2014) introduce a family of MDP reduced models which improve the performance of
planning. Celorrio et al. (2008) show that machine learning algorithms can efficiently as-
sist automated planning to build robust plans in stochastic environments by upgrading the
probabilistic action model with knowledge learned from execution. Problems with partial
observability due to noisy or lack of sensing actions can be formulated as partially observ-
able Markov decision processes (POMDPs) (Blythe, 1999; Kaelbling et al., 1998; Ong et al.,
2010). In this manner Ong et al. (2010) use a factored model to represent separately the
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Planning problem State Action Models Sensing actions

Classical planning complete deterministic -
Conformant planning incomplete deterministic and stochastic no
Contingent planning incomplete deterministic yes

MDP complete stochastic yes
POMDP incomplete stochastic yes

Table 2: Comparison of planning problems with respect to uncertainty in state and action
models as well as applicability of sensing actions.

fully and partially observable components of a robots state and derive a compact lower-
dimensional representation of its belief space. This factored representation allows them to
compute approximate POMDP solutions. Generally, planning with POMDPs has a high
computational complexity, and therefore the size of the state space compared to classical
planners is limited.

We give an overview of planning problems and properties of the planning model in
Table 2. The approach that we describe in this paper addresses the problem of incomplete
information in a preprocessing step prior to planning. The predictions from this step do
not necessarily result in a complete state. As such, it can be used in combination with any
of the techniques for planning with incomplete information discussed above.

6.2.2 Machine Learning and Automated Planning

Zimmerman and Kambhampati (2003) and Jimnez et al. (2012) provide extensive coverages
of approaches that combine machine learning techniques and automated planning: learning
to speed up planning, improving the plan quality, learning and improving domain knowledge,
and using reinforcement learning as to learn policies for selecting a suitable action which
should be executed in the current state as alternative to standard planning procedures.
Our work follows the trends of speeding up the planning process as well as improving
the domain knowledge. However, there is not much work on learning-based approaches
for planning under uncertainty. Yang et al. (2007) developed an action-relation modelling
system for learning action models from a set of successful observed plans. Amir and Chang
(2008) also address the problem of uncertainty in action models by learning outcomes of
deterministic actions from partial observations over time.

There are some architectures which use standard planning languages such as PDDL
with learning techniques. Botea et al. (2005) propose an adaptive technique that learns
macro-operators from previous experience. This exploits the domain structure to solve new
problems more quickly. Similar to our method, they also exploit underlying structure of
the domain. Coles and Smith (2007) propose Marvin, a planner that learns macro-actions.
de la Rosa et al. (2011) use decision trees to guide the search of a heuristic planner. Aineto
et al. (2018) propose an approach for learning STRIPS action models from examples that
compile this inductive learning task into a classical planning task. Celorrio et al. (2008)
integrate a relational tree learner for learning probabilistic action models from experience
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with classical and decision-making planners. Similarly to ours, their architecture offers the
possibility of applying different machine learning and planning techniques.

There are fewer machine learning methods used to acquire knowledge for classical plan-
ning. Fuentetaja and Borrajo (2006) present active learning schemas to generate new train-
ing problems for machine learning techniques in the context of problem-solving. The pro-
posed active learning methods are independent of the planner and the used machine learning
technique, as in our approach.

6.2.3 Sensing Action Selection in Contingent Planning

There are a number of approaches to planning with incomplete information and sensing
actions. For example, Weld et al. (1998) extend Graphplan with an explicit model of
sensing actions and introducing a conditioning threat-resolution method into the backward-
chaining solution extraction. The solution extracted by their planner SGP is a contingent
plan. In another approach, Albore and Geffner (2009), based on the conformant planning
approach of Palacios and Geffner (2007), translate the non-deterministic search problem in
belief space into a non-deterministic problem in state space whose literals represent beliefs.
Then, planners perform a search in this state space, selecting sensing actions necessary for
achieving the goal of the problem. In contrast, Bonet and Geffner (2000) and Hoffmann
and Brafman (2005) both perform forward-search in the belief space. As a final step of the
heuristic used by Hoffmann and Brafman (2005), observation goals are produced. These
represent an approximation of the observations that are required to achieve the goal.

In all of these approaches, the planner is used to select observation actions that are
necessary to achieve the goal of the problem. This is related to our strategy for the selection
of sensing actions. A crucial difference is that the active-learning approach can select
observation goals that are not necessary for achieving the goal, but instead for improving the
prediction of the observation that is necessary. This can be used to address expensive, risky,
or impossible observations. The active learning approach we propose creates observation
goals that the planner is required to achieve. This is external to the planning process. In
addition to this, the observation goals can have other purposes, unrelated to the immediate
goal of the problem: for general exploration or to aid the prediction step (as described
above). As such, the selection of these observation goals cannot be made by the planner.

7. Conclusions

In this paper, we have shown how state uncertainty in planning can be decreased with
predictions using machine learning. To enable predictions in the state, we introduced an
approach in which a state with uncertainty is represented as a partially-known multigraph.
We demonstrated how M3VR is used to predict edges and how these edges are translated
into the state as predicted propositions.

With tests in different domains, we demonstrated that with 20% knowledge about the
state, the accuracy of the state prediction is higher than 90%. We also showed that the
accuracy of the predictions leads to robust plans increasing the scalability of planners.

The proposed system uses the confidence measure of predictions to select which predicted
information can be introduced in the state and which should be verified with sensing actions.
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We demonstrated how the proposed approach could be used to inform a planner in
directing the agent to perform sensing actions. Selecting the right information to improve
predictions significantly reduces overall sensing costs and time, avoiding redundant and un-
necessary sensing actions. The importance of the proposition selection step is also reflected
in increasing the confidence of predictions for information which the agent cannot sense.

In future work, we plan to explore the similarities between different domain models and
how knowledge can be transferred between different domains. Also, we will examine how
the active learning process can take into account the cost of sensing actions.

Appendix A. Multigraph Completion with M3VR

In our system, we use the Maximum Margin Multi-Valued Regression (M3VR), also used
at the core of a recommender system (Ghazanfar et al., 2012), for an affordance learning
problem (Szedmak et al., 2014), and to refine spatial relations for planning to tidy up
a child’s room (Krivic et al., 2015). These results show that it can deal with sparse,
incomplete and noisy information, that predictions are fast despite the algorithm reacquires
retraining from scratch each time new information is obtained. We build on the previous
work, describing how the approach can be generalised and used for planning.

The main idea of M3VR is to capture this hidden structure in the graph with a model
and use it to predict unknown edges. This model is represented by a collection of predictor
functions that learn mappings between edges and vertices.

Using M3VR we construct a function which captures knowledge about existing edges.
This is done by assigning a predictor function fb(u) : U → E to each origin vertex b ∈ B
that maps all destination vertices to corresponding edges. Thus the number of predictor
functions is equal to the number of vertices B.

These predictor functions have to capture the underlying structure of a graph, which
can be very complex and non-linear. Thus representing that accurately in a low dimensional
Euclidean space has strong limitations. We assume that there is a linear relationship in
feature space between the feature vector of all destination vertices and the feature vector of
all connected edges. A feature space or a Hilbert space is a vector space H defined over the
field of the real or complex numbers equipped with an inner product 〈·, ·〉 and norm defined
by ‖x‖ =

√
〈x, x〉 which turn H into a complete metric space. The functions mapping

vertices and edges into feature spaces are defined on feature representations of vertices and
edges with following conditions.

Condition 1 There exists a mapping φ of all subsets of B = U into a Hilbert space Hφ,
equipped by a kernel function κvertice defined for all possible pairs B′ and U ′ of all subsets
of B × U such that κvertice(B

′, U ′) = 〈φ(B′), φ(U ′)〉.

Condition 2 There exists a mapping ψ of E into a Hilbert space Hψ equipped by a kernel
function κedge defined for all pairs (ei, ej) ∈ E×E, such that κedge(ei, ej) = 〈ψ(ei), ψ(ej)〉.

Kernel functions are symmetric functions which return the inner product between feature
vectors of the data in some feature space. Hφ and Hψ are feature representations of domains
of U and E. The vectors φ(·) and ψ(·) are called feature vectors. 〈., .〉 is the inner product
and it can be used as a measure of similarity between feature vectors.
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This allows us to assign prediction functions for each origin vertex b defined on feature
vectors, i.e., Fb : Hφ → Hψ. The relationship in feature space between the feature vector of
all destination vertices Hφ and the feature vector of all connected edges Hψ is represented
by linear operator Wb. The non-linearity of the mapping fb can be expressed by choosing
non-linear functions ψ and φ. The predictor functions Fb can be created as

Wbφ(u)→ ψ(fb(u)) ∼ ψ(ebu), (b, u) ∈ B ∩ U. (10)

The similarity between the vectors Wbφ(u) and ψ(ebu) is described by the inner product
〈ψ(ebu),Wbφ(u)〉Hψ . If the similarity between Wbφ(u) and ψ(ebu) is higher, the inner
product will have a greater value.

To measure the error of predictor functions fb we use the following maximum margin
Hinge loss function:

Lb(ebu, Fb(u)|B) = max(0, 1− 〈ψ(ebu),Wbφ(U)〉). (11)

To exploit the knowledge about existing edges linking the same destination vertices u ∈ U ,
predictor functions Fb for origin vertices b ∈ B are coupled by shared slack variables ξu
representing the loss to be minimized by the predictor function Fb. While training prediction
functions Fb , the value of slack variables ξu has to remain the same. With this procedure,
knowledge about existing edges is exploited to train prediction functions Fb (Figure 19).

The training is done via an optimisation process where Hinge loss Lb is minimised.
To write down the entire optimisation problem realizing the learning task we need some
additional notation. Let the projection of known edges E′ into U be given by

Ub = {u|u ∈ U, ebu ∈ E′}, ∀b ∈ B.
Linear mappings Wb are determined by optimization routine:

min 1
2

∑Nb
b=1 ‖Wb‖2Frobenius + C

∑Nu
u=1 ξu

w.r.t. {Wb} : Hφ → Hψ, linear operators
ξ ∈ RNu , error vector

s.t. 〈ψ(ebu),Wbφ(u)〉Hψ ≥ 1− ξu, b ∈ B, u ∈ Ub
ξu ≥ 0, u ∈ U

(12)

Here, C is a constant, Nu = Nb is the number of vertices and ξu is the error vector for
all incoming edges for the same destination vertex u.

Once determined, the linear mappings Wb allow us to make predictions of unknown
edges for elements b. In the optimization procedure for determining linear mappings there
are as many constraints as the number of known edges in E′. Therefore the complexity of
the prediction problem is proportional to O(|E′|), where |E′| stands for the cardinality of
the set E′.

A.1 Predictions

The value of the inner product of the edge feature vector ψ(ebu) and learned Wbφ(u) should
be interpreted as a measure of the edge belonging to a specific class (in this case 0 or 1).
Thus, for each prediction L∗pred(b, u), we update the existence of the directed edges:

Lpred(b, u) = arg max
k∈{0,1}

〈ψ(ebu|L∗pred(b, u) = k),Wbφ(u)〉
Hψ
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Figure 19: The core mechanism of M3VR to predict an unknown edge based on the available
information on the object relation graph. For simplicity, in this example, origin
vertices are represented as rows and destination vertices as columns for a single
predicate pred. The edge which represents proposition pred(b4, u5) is missing.
To predict the value of Lpred(b4, u5), those edges that share the same origin or
destination vertices as the unknown edge can be exploited.

where k ∈ {0, 1}, and L∗pred(b, u) is an unknown value in ebu ∈ E rE′ of predicate pred. In
this way predictions are done for all unknown edges and the graph is completed.

A.2 Feature Vector Selection

Kernel functions represent a similarity measure between two objects. They are given by
the relation: κ(x1,x2) = 〈ψ(x1), ψ(x2)〉 where ψ(x) is a mapping function that embeds a
vector x in the feature space. By replacing inner products of feature representations ψ(x)
with kernels, it is possible to obtain flexible representations, which enables the use of the
kernel trick. We choose Gaussian kernels for κvertice and κedge. The Gaussian kernel is
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defined by

κ(x1,x2) = e

−||x1 − x2||2
2σ2

where σ determines the width of the Gaussian kernel. With a Gaussian kernel, each point
x is represented by the distance to all other points in the dataset in the feature space.

Gaussian kernels are universal kernels since they have the universal approximating prop-
erty regardless of the Gaussian width. This means that they can approximate arbitrary
functions uniformly on any compact subset of the input space (Micchelli et al., 2006).
Choice of Gaussian kernels results in smooth functions in the feature space.
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