
Journal of Artificial Intelligence Research 65 (2019) 209-269 Submitted 10/2018; published 07/2019

Goal Recognition Design in Deterministic Environments

Sarah Keren skeren@seas.harvard.edu
Harvard University
School of Engineering and Applied Sciences
Cambridge, Massachusetts 02138, USA

Avigdor Gal avigal@ie.technion.ac.il

Erez Karpas karpase@technion.ac.il

Technion — Israel Institute of Technology

Haifa 3200003, Israel

Abstract

Goal recognition design (GRD) facilitates understanding the goals of acting agents
through the analysis and redesign of goal recognition models, thus offering a solution for
assessing and minimizing the maximal progress of any agent in the model before goal
recognition is guaranteed. In a nutshell, given a model of a domain and a set of possible
goals, a solution to a GRD problem determines (1) the extent to which actions performed
by an agent within the model reveal the agent’s objective; and (2) how best to modify the
model so that the objective of an agent can be detected as early as possible. This approach
is relevant to any domain in which rapid goal recognition is essential and the model design
can be controlled. Applications include intrusion detection, assisted cognition, computer
games, and human-robot collaboration.

A GRD problem has two components: the analyzed goal recognition setting, and a
design model specifying the possible ways the environment in which agents act can be mod-
ified so as to facilitate recognition. This work formulates a general framework for GRD in
deterministic and partially observable environments, and offers a toolbox of solutions for
evaluating and optimizing model quality for various settings.

For the purpose of evaluation we suggest the worst case distinctiveness (WCD) mea-
sure, which represents the maximal cost of a path an agent may follow before its goal can
be inferred by a goal recognition system. We offer novel compilations to classical planning
for calculating WCD in settings where agents are bounded-suboptimal. We then suggest
methods for minimizing WCD by searching for an optimal redesign strategy within the
space of possible modifications, and using pruning to increase efficiency. We support our
approach with an empirical evaluation that measures WCD in a variety of GRD settings
and tests the efficiency of our compilation-based methods for computing it. We also ex-
amine the effectiveness of reducing WCD via redesign and the performance gain brought
about by our proposed pruning strategy.

1. Introduction

Goal recognition aims at discovering the goals of an agent based on observations of that
agent’s actions using data collected online (Kautz, 1987; Carberry, 2001; Ramirez & Geffner,
2010; Sukthankar, Geib, Bui, Pynadath, & Goldman, 2014).1 We investigate the problem of

1. In the remainder of this paper we refer to agents interchangeably as “he,” “she,” or “it,” depending on
the context.

c©2019 AI Access Foundation. All rights reserved.

Keren, Gal, & Karpas

(a) Airport GRD illustration (b) Schematic GRD problem

Figure 1: An example of a GRD problem

goal recognition design (GRD), that involves the analysis and optimization of goal recogni-
tion models. A GRD problem includes a description of a goal recognition model with a set
of possible goals and a description of the available ways to modify the model. The analysis
consists of two main stages: evaluation and optimization. In the evaluation stage we assess
to what extent the goal of an agent acting in the system may remain unrecognized, while
the optimization stage consists of finding the best way to modify the model so as to improve
recognition.

This research is motivated by developments in data science, which now provides tools
for efficiently and effectively gathering, managing, analyzing, and visualizing user data.
In turn, emerging applications in various domains, from urban transportation to medical
informatics, require systems to automatically and rapidly analyze agents’ behavior, identify
their goals, and then help them reach (or, depending on the application, prevent them
from reaching) those goals. In fact, GRD is relevant to any domain where rapid goal
recognition is essential and where the model design can be controlled. Potential applications
include intrusion detection (Jarvis, Lunt, & Myers, 2004; Kaluza, Kaminka, & Tambe, 2011;
Boddy, Gohde, Haigh, & Harp, 2005), assisted cognition (Kautz, Etzioni, Fox, Weld, &
Shastri, 2003), computer games (Kabanza, Bellefeuille, Bisson, Benaskeur, & Irandoust,
2010; Albrecht, Zukerman, & Nicholson, 1998; Ha, Rowe, Mott, & Lester, 2011), and
human-robot collaboration (Levine & Williams, 2014; Freedman & Zilberstein, 2017).

Example 1 A simple GRD problem is presented in Figure 1. We assume that, for security
reasons, airport officials wish to track the movements of passengers (Figure 1(a)). The
model consists of a simple room with a single entry point (Start) and two possible exit
points, marked as G0 (boarding gates for domestic flights) and G1 (international flights).
Agents can move vertically or horizontally from Start to either of these goals. Under the
assumption that agents behave optimally, for each goal there are several possible paths (a
subset of possible paths is marked by dashed lines in Figure 1(b)). As can be seen, paths to
different goals may share a common prefix. In this model, the agent’s goal becomes clear
once she turns left or right.

One measure of model quality (in terms of goal recognition) is how long an agent can
operate in the model without observers being able to identify its goal; the longer the agent
can operate, the worse the model. The worst case distinctiveness (WCD) measure represents
the maximal cost a plan may accrue before an agent’s goal can be recognized (when actions

210

Goal Recognition Design in Deterministic Environments

(a) A non-optimal solution (b) Airport non-optimal solution

(c) An optimal solution (d) Airport optimal solution

Figure 2: Improved GRD model

have uniform costs, the WCD counts the maximal number of actions an agent may perform
before its goal becomes known). In Figure 1(a), the WCD is illustrated by the circled user,
who can walk all the way up to the opposite side of the terminal (four steps in Figure 1(b))
before revealing her true intention.

Defining the quality of a model allows us to improve it. Towards this end, we need to
define the means available for modifying a model. One possible way of introducing change
to a model is by limiting the set of available actions an agent can perform. To maintain
user comfort, we can require our solution to preserve the original solution cost for all goals.
In addition, we wish to attain the maximal achievable reduction in WCD while minimizing
the changes introduced and respecting any design constraints that may be specified. To
illustrate, assume now that airport managers can place barriers in the terminal to control
the flow of passengers (a common and effective solution for passenger control), but also wish
to minimize obstruction to the ease of use of the terminal. Figure 2 presents two possible
solutions, both of which reduce the WCD from 4 to 0 without increasing the minimal cost
to goal. Assuming agents act optimally, the option in Figure 2(c) is intuitively preferable
since it offers the same result by disallowing a single action and creating a single barrier.

Consider now a setting where we replace the assumption of agent optimality with a
relaxed bounded suboptimality assumption, allowing agents to diverge from an optimal
plan by at most two steps. The WCD in this case is 6, and the optimal design solution
suggested above will leave the WCD unchanged. As depicted in Figure 3, the WCD can be
reduced to 0 by using three barriers.

The discussion so far has assumed that agents are fully observable to the goal recog-
nition system. However, many real-world applications must account for various forms of

211

Keren, Gal, & Karpas

Figure 3: The airport design example with suboptimal agents

(a) Partially observable setting

(b) WCD reduction using sensors

Figure 4: GRD with non-observable actions (gray cells indicate missing sensors)

uncertainty. In particular, goal recognition systems often suffer from reduced and noisy ob-
servability due to lack of suitable sensors, insufficient sensor coverage, faulty sensors, inac-
curate measurements, etc. Note that whereas in the fully observable setting goal recognition
is hampered only if the agent’s behavior could fit more than one goal, when observability
is partial the agent’s goal can remain unrecognized even if its behavior is goal-specific.

Example 2 The setting depicted in Figure 4 differs from the one described in Example
1 by accounting for partial sensor coverage (a move action ending in a blank cell is non-
observable). As can be seen, the modification applied to the fully observable setting does not
offer the same benefit in the partially observable setting. Even with the obstacle placed in
front of the entry point, optimal agents may advance one step before their goal is revealed
(Figure 4(a)) – i.e., WCD = 1. In Figure 4(b), a sensor is placed to the right of the entry

212

Goal Recognition Design in Deterministic Environments

point, thus guaranteeing recognition at the first step (to the left or right) and setting WCD
to 0.

The ideas presented above can be applied to a variety of goal recognition settings. For
example, consider a smart home in which the activity of a user with some physical or mental
disability is tracked so as to help the user perform daily activities and avoid dangers. In
such a setting, the environment may need to be redesigned (e.g., by repositioning furniture)
so that the goal recognition system can detect dangerous situations as early as possible
(e.g., if the user approaches a hot oven).

This work formulates a general framework for GRD in deterministic domains, and offers
a toolbox of solutions for assessing and optimizing model quality. It continues and extends
five previous conference papers that explored various aspects of the GRD problem. Our
initial work on GRD (Keren, Gal, & Karpas, 2014) puts forward a model based on three
simplifying assumptions, namely that the environment is fully observable both to the goal
recognition system and agents; that the outcomes of agent actions are deterministic; and
that agents, who are agnostic to the goal recognition system, act optimally. The model is
modified by disallowing (removing) actions from the set of applicable actions. In Keren,
Gal, and Karpas (2015) we account for suboptimal agents who have a budget for diverting
from optimal plans. In this setting, agents behave suboptimally either näıvely, by following
any plan within the specified bound, or intentionally, by following prefixes of optimal paths
to other goals, thus obfuscating their true goal as far as possible within the cost bound. In
Keren, Gal, and Karpas (2016a) we extend GRD to account for goal recognition systems
with partial sensor coverage. In this setting, actions can be either observable or non-
observable, and sensor placement is proposed to improve recognition. In Keren, Gal, and
Karpas (2016b) we generalize the sensor model to account for non-deterministic and noisy
sensor models. Sensor refinement – i.e., improving the system’s sensor resolution – is added
to the set of possible ways to modify the model. To assess these settings, novel compilations
from GRD to classical planning are proposed. A breadth-first search (BFS) is used to
identify optimal redesign strategies, and pruning is suggested as a way to increase efficiency.
Finally, in Keren, Gal, and Karpas (2018), we focus on the redesign process and formulate
it as a search within the space of modifications. The pruning approach suggested previously
is extended and elaborated by specifying the conditions under which the pruning strategy
is safe (i.e., such that at any point in the search, an optimal solution can be found in the
unpruned search space). This positioning allows us to generalize the GRD framework and
enrich the toolbox of redesign methods that can be applied to a goal recognition setting.

The extended GRD framework presented here provides three key contributions. First,
we offer a comprehensive account of the theoretical framework suggested previously. This
includes a complete description of the methods we apply and detailed proofs of the theorems
we use to justify them. Second, we account for arbitrary agent action costs and specify
a compilation-based WCD calculation method for this setting. Finally, in our empirical
evaluation we analyze a variety of GRD models and examine different redesign settings for
each problem, including new benchmarks that have not been examined previously.

In the remainder of this paper, we first review the necessary background on goal recog-
nition and automated planning (Section 2). In Section 3, we formulate the GRD task. In
section 4, we present methods developed for calculating WCD in settings where agents are

213

Keren, Gal, & Karpas

bounded-suboptimal. In section 5, we present methods for minimizing WCD. In Section 6
we provide an empirical evaluation of our methods, while in Section 7 we discuss related
work. Finally, in Section 8, we summarize our contributions and suggest directions for
future work.

2. Background

GRD creates a framework for analyzing various goal recognition settings. In this section, we
first provide a brief overview of automated planning, which underlies the goal recognition
settings we support in this work and most of the tools we have developed to solve the
GRD problem. We then describe the goal recognition task and its relationship to automated
planning.

2.1 Automated Planning

The basic form of automated planning, referred to as classical planning, is a model in
which agents’ actions are fully observable and deterministic. A common way to represent
classical planning problems is by using the strips formalism (Fikes & Nilsson, 1972): P =
〈F, I,A,G,C〉, where F is a set of fluents (and a state s is represented by the fluents that
are true in s), I ⊆ F is the initial state, G ⊆ F represents the set of goal states, and A is
a set of actions. Each action is a triple a = 〈pre(a), add(a), del(a)〉, which represents the
precondition, add, and delete lists respectively, all subsets of F . An action a is applicable
in state s if pre(a) ⊆ s. If action a is applied in state s, it results in a new state s′ =
(s \ del(a))∪ add(a). C : A→ R+

0 is a cost function that assigns each action a non-negative
cost.

The objective of a planning problem is to find a plan π = 〈a1, . . . , an〉, a sequence of
actions that brings an agent from I to a goal state. The cost c(π) of a plan π is Σn

i=1(C(ai)).
Often, the objective is to find an optimal solution for P , meaning an optimal plan π∗ that
minimizes the associated cost. In settings where the problem input includes actions with
uniform costs, a plan’s cost is equivalent to its length, and the optimal plan is the shortest
one.

The literature is rich with different approaches developed to solve the planning problem
(Geffner & Bonet, 2013). One popular approach views the problem as a directed graph and
uses graph-search algorithms to identify the optimal plan. Heuristic estimations, extracted
automatically from the problem description, are used to guide the search (Bonet & Geffner,
2001; Helmert & Domshlak, 2009). Specifically, admissible heuristics are guaranteed to
underestimate the cost to goal. Using admissible heuristics to guide search algorithms that
first explore paths with the lowest estimated cost (e.g., A∗, Hart, Nilsson, & Raphael, 1968)
is guaranteed to produce optimal solutions.

2.2 Goal Recognition

Goal recognition is the online analysis of an agent’s perceived behavior with the aim of
identifying the agent’s objective. This task is closely related to yet distinct from plan
recognition, which aims at identifying the complete plan being followed by an agent to

214

Goal Recognition Design in Deterministic Environments

Figure 5: The goal recognition process

achieve its objective (Kautz & Allen, 1986; Cohen, Perrault, & Allen, 1981; Lesh & Etzioni,
1995; Ramirez & Geffner, 2009, 2010; Pattison & Long, 2010; Hong, 2001).2

Figure 5 illustrates a typical goal recognition setting. An agent enters the system at an
initial state (labeled Start) and performs a sequence of actions that lead to a premeditated
goal (represented in this case by the lower box marked Goal in the figure). The execution
sequence emits an observation sequence that is perceived by the goal recognition system
(hereafter referred to as the recognition system). The observation sequence, which is not
necessarily either complete or accurate, is processed in order to reveal the agent’s goal.
Typically, the objective in such a setting is to identify the goal as early as possible.

A recognition setting can generally be classified as either keyhole, where the agent is
unaware of or agnostic to the recognition process; adversarial, where the agent seeks to
conceal its objective; and intended, where the agent helps the recognition system detect its
objective (Carberry, 2001; Cohen et al., 1981). In this work we focus on the first of these
settings, where the agent’s behavior is not affected by the recognition process.

Due to its generic nature, goal recognition has been modeled and solved using various
approaches. Examples include Bayesian networks (Bui, 2003; Han & Pereira, 2011), graph
construction (Hong, 2001), and specialized procedures (Lesh & Etzioni, 1995). Most existing
models rely on a specification of a plan library, which provides a representation of the set
of plans an agent may execute to achieve each goal.

Despite the close relationship between goal recognition and automated planning, which
aims to identify plans that lead to a desired goal, it was only less than a decade ago that
Ramirez and Geffner (2009) established the connection between these fields. They present
a compilation of plan recognition problems into classical planning problems that can be
solved by any off-the-shelf planner. Several works followed and extended this approach by
using various automated planning techniques to analyze and solve goal and plan recognition
problems (Pattison & Long, 2010, 2011; Ramirez & Geffner, 2010, 2011; Yolanda, R-Moreno,
Smith, et al., 2015; Sohrabi, Riabov, & Udrea, 2016; Freedman & Zilberstein, 2017; Pereira,
Oren, & Meneguzzi, 2017; Kaminka, Vered, & Agmon, 2018).

In this work, we rely on models and tools from automated planning to model and
solve GRD problems. Specifically, our approach uses planning-based tools to measure and
minimize the maximal number of observations that need to be collected before recognition
of an agent’s goal is guaranteed.

2. See Sukthankar et al. (2014) for a recent survey of goal and plan recognition frameworks.

215

Keren, Gal, & Karpas

Table 1: Table of Notations for GRD

R , goal recognition model

D , design model

T , goal recognition design (GRD) model

g ∈ G , goal in a goal set

π ∈ Π , plan (full action sequence from an initial state to a goal) in
a set of plans

~π ∈ ~Π , path (plan prefix) in a path set

πleg(g) ⊆ Πleg(G) , the legal plans to goal g as a subset of all legal plans

o ∈ O , observation token in an observation token set

o∅ , empty observation token (for non observable actions)

~o ∈ ~O , observation sequence in a set of sequences

op(~π) , the set of observable projections of path ~π, i.e., the observa-
tion sequences that may be emitted when ~π is executed

GA(~π) , goals satisfied by path ~π

GO(~o) , goals satisfied by observation sequence ~o

G
~O(~π) , goals satisfied by the observable projections of ~π

m ∈M , atomic modification in a set of modifications

~m ∈ ~M , modification sequence in a set of sequences

φ , indicator of allowed modification sequences

δ , modification transition function

appφ(R) , the set of modifications applicable in R

WCD(R) , worst case distinctiveness (WCD) of goal recognition model
R

WCDmin(T) , minimal WCD achievable in a GRD model T

WCDi(R) , maximal non-distinctive path to goal gi in goal recognition
model R

R , all goal recognition models

RT , all goal recognition models in GRD model T reachable from
the initial goal recognition model R0 via design

216

Goal Recognition Design in Deterministic Environments

3. Goal Recognition Design (GRD)

Goal recognition design (GRD) analysis includes two key tasks. The first measures how
efficiently and effectively the online goal recognition system performs in a given setting.
The second optimizes the goal recognition setting via redesign. We devote this section to
defining the GRD problem (Section 3.1) and the worst case distinctiveness (WCD) measure
used to assess it (Section 3.2). In Section 3.3, we formulate the objective of the redesign
process.

3.1 Model

The definition of a GRD problem has two components: the analyzed goal recognition setting,
and a design model specifying possible ways to modify the goal recognition setting. After
formulating the goal recognition task in Section 3.1.1 and the design model in Section 3.1.2,
we integrate both components into the GRD model in Definition 5.

3.1.1 Goal Recognition Model

Typically, the definition of a goal recognition task (generally described in Section 2.2)
includes a specific observation sequence that is analyzed (Ramirez & Geffner, 2009; Sohrabi
et al., 2016; Pereira et al., 2017). The recognition task then involves mapping the perceived
observation to a set of possible goals the agent may be trying to achieve.

In the context of GRD, we need to account for all possible sequences that may be
observed. Accordingly, the GRD analysis needs to consider all aspects of the recognition
setting that may affect goal recognition. To facilitate this analysis, in our definition we
divide the goal recognition setting into three main elements, namely the environment, agent
strategy, and observability.

The specification of the environment describes the dynamics of the setting in which
agents act, including all aspects of the model that dictate the possible behaviors of agents
within it. Instead of an explicit representation of agent plans, it is common to use a compact
representation of the model that includes the set of possible goals G, the initial state I and
the set of actions A that may be executed by an agent. In this context, a plan π is a sequence
of actions that take an agent from the initial state to some goal. A path ~π is a plan prefix.
While the actual representation formalism of the actions may vary, the description of each
action includes its applicability, or the set of states in which the action may be applied; its
possible outcomes; and its associated cost. This induces the set Π(g) of possible plans to
each goal g.

Given the set of possible plans to a goal, the agent strategy describes the set Πleg(g) ⊆
Π(g) of legal plans – i.e., the plans agents may choose to execute in order to achieve goal
g. These plans are those allowed under the assumptions made about the behavior of the
agent and how the agent chooses the action to execute at each stage. The set Πleg(G) =⋃
g∈G Πleg(g) is the set of all legal plans for all goals. (See Table 1 for an account of our

notations.)

The final element of a goal recognition model is the observability of agents and their
actions. Observability as considered here describes how the activity of an agent is perceived
by the recognition system, and is independent of how the agent perceives the environment.

217

Keren, Gal, & Karpas

Observability is defined via a sensor model, marked by S, which maps a path performed by
an agent to an observation sequence ~o that may be emitted by the executed trajectory.

The sensor model can be expressed in various ways. The simplest sensor model corre-
sponds to the fully observable setting, where the observation token emitted by the execution
of an action is the unique action name. In such a setting, ~o corresponds to the actual per-
formed path ~π. A sensor model can also be expressed by specifying S(a) ⊆ O, where O
is the set of observation tokens and o ∈ S(a) means token o may be observed when a is
performed (Geffner & Bonet, 2013). In this case, each path ~π is associated with a set of
observation sequences that may be emitted by its execution (see Definition 2). The set ~O
of possible observation sequences is therefore induced by the sensor model S and the set
of legal plans Πleg(G). Given a goal recognition model and its sensor model, each path is
associated with a set of goals satisfied by the observed behavior, i.e., the set of goals with
legal paths that may produce the observed sequence.

We use the characterization above to specify the goal recognition models we support
in this work, which comply with three underlying assumptions. The first is that system
dynamics are deterministic; i.e., the outcome of each possible agent action is known in
advance. The second states that an agent aiming at a given goal executes one of a predefined
set of legal plans to that goal. The third states that while the agent’s actions may be only
partially observable to the recognition system, the agent has full knowledge of the state of
the environment.

In accordance with the specification above, the agents in our setting are described using
the classical planning model defined in Section 2.1, in which a planning domain is defined
by the quadruple 〈F, I,A,C〉. As described in following sections, our framework supports
the process of redesigning goal recognition models, and potentially modifying the agent’s
planning model. We therefore use universal sets of fluents and actions to describe the
agent’s models. Specifically, we let F represent the set of all fluents. In addition, we let A
represent the set of all actions a, each represented by a triple 〈pre(a), add(a), del(a)〉, where
pre(a) ⊆ F is the set of action preconditions, add(a) ⊆ F is the set of fluents a adds to
the current state when executed, and del(a) ⊆ F is the delete list, representing the set of
fluents a deletes from the current state.

Given that agent actions have deterministic outcomes and the state space is discrete, a
plan π = 〈a0, ..., an〉, ai ∈ A is a full execution that takes an agent from the initial state to
a goal state and a path ~π = 〈a0, ..., ai〉, i ≤ n is an execution sequence that is a prefix of a
plan. Each path ~π emits a (possibly empty) observation sequence ~o = 〈o1, .., oj〉, which is a
sequence of observation tokens oi perceived by the recognition system.

The definition of a goal recognition model is given below.

Definition 1 A goal recognition model R is represented by the tuple

R = 〈F, I,A,CA, G, leg,O, S〉

where:

• F ⊆ F is a set of fluents.
• I ⊆ F is the initial state.
• A ⊆ A is a set of actions.

218

Goal Recognition Design in Deterministic Environments

• CA : A → R specifies the non-negative agent cost of performing each action. The
cost of a path ~π = 〈a1, . . . an〉 is the aggregated cost of its components CA(~π) =∑n

i=1CA(ai).
• G is a set of possible goals g s.t. |G| ≥ 2 and g ⊆ F .
• leg : ~Π×G→ {0, 1} is an indicator that specifies the legal paths to each of the goals.
• O is a set of observation tokens, including the special observation token o∅, denoting

that an action could be non-observable.
• S : A → 2O \∅ is a sensor model, mapping each action a ∈ A into a set of observation

tokens S(a) ⊆ O that may be emitted when a is executed.

We let R represent the set of goal recognition models that comply with Definition 1.

Corresponding to the elements described above that comprise a goal recognition
model, the environment of a goal recognition model is described by the planning domain
〈F, I,A,CA〉 and possible goals G. These induce the set of possible behaviors in the model.
Specifically, they induce the set Π(g) of plans to each goal g.

Agent strategy is described by the indicator leg, which, together with the planning
domain 〈F, I,A,CA〉 and goal set G, induce the set Πleg(g) of legal plans to each of the
goals. This set can be described either explicitly or symbolically (e.g., the set of all optimal
plans that do not make use of action a). An agent aiming at one of the goals in the set
g ∈ G enters the system at the initial state I and executes one of the legal plans π ∈ Πleg(g)
from I to g. The set of legal paths ~Πleg(g) is the set of prefixes of the plans in Πleg(g).
Hereafter, since we assume agents follow only legal paths, whenever we refer to paths or
plans we are implicitly referring to legal paths and legal plans, respectively.

Finally, observability is described by the sensor model S and token set O, which specify
how each action is perceived by the recognition system. A state of partial observability
implies a distinction between the agent’s activity and how it is perceived by the system.
When action a is performed by an agent, one of the possible observation tokens o ∈ S(a) is
emitted, with the special token o∅ denoting that the action is not observed by the recognition
system.3 Note that the sensor model refers to how the recognition system observes agent
actions, while the world state is assumed to be fully observable to the agent. Also note that
as opposed to typical goal recognition models (e.g., Ramirez & Geffner, 2009), which include
a description of an observation sequence to be analyzed, the models we support require an
account for the set ~O of all possible sequences that may be observed. Specifically, since
each action a is mapped to a set of observation tokens S(a) ⊆ O there are multiple possible
observation sequences, any one of which could be emitted when a path is executed.

Next, we formally define the relationship between a path ~π (a prefix of a plan) and the
set of observation sequences op(~π) it may emit.

3. The model presented above is a generalization of both the partially observable setting (Keren et al.,
2016a), in which each action is mapped to either the empty token (non-observable) or to the action’s
name (observable), and the fully observable setting (Keren et al., 2014, 2015), in which each action is
uniquely mapped to its name.

219

Keren, Gal, & Karpas

Definition 2 Given a path ~π = 〈a1, ..., an〉, the set of possible observable projections of ~π,
denoted op(~π), is recursively defined as follows:

op(~π) =

〈〉 ~π = 〈〉
S(a1)× op(〈a2, ..., an〉) ~π = 〈a1, . . . , an〉 ∧ o∅ /∈ S(a1)

(S(a1) \ {o∅})× op(〈a2, ..., an〉)
⋃

op(〈a2, .., an〉) ~π = 〈a1, . . . , an〉 ∧ o∅ ∈ S(a1)

The empty token o∅ is excluded from the observable projection of a path. This allows
the model to account for settings where there is no way to know if and when some action
has been performed.

3.1.2 Design Model

The design model, defined next, describes the modifications that can be applied to a goal
recognition setting.

Definition 3 A design model D is represented by the tuple

D = 〈M, δ, φ〉

where:
• M is a finite set of atomic modifications a system can apply. A modification sequence

is an ordered set of modifications ~m = 〈m1, . . . ,mn〉 s.t. mi ∈ M and ~M is the set
of all such sequences.
• δ : M× R → R is a deterministic modification transition function, specifying the

goal recognition model that results from applying a modification to a goal recognition
model.
• φ : ~M×R→ {0, 1} is a constraint indicator that specifies the modification sequences

that can be applied to a goal recognition model.

The constraint indicator φ imposes the set of modifications that are applicable in a goal
recognition model R. We represent this set as appφ(R) = {m ∈M | φ(m,R) = 1}.

In general, each modification m ∈ M is associated with a design cost CD(m), and the
cost of a sequence is the aggregated cost of its components (CD(~m) =

∑n
i=1CD(mi)). For

simplicity, we henceforth assume all modifications have a uniform cost, and the cost of a
modification sequence is equal to its length.4 Also, we assume a valid modification sequence
cannot have an invalid prefix.

The result of applying a modification sequence to a model is defined as follows:

Definition 4 Given a goal recognition model R, a design model D, and a modification
sequence ~m = 〈m1, . . . ,mn〉 s.t. mi ∈ M and φ(~m,R) = 1, R~m is the result of applying a
modification sequence to R s.t.

R~m = δ(mn, . . . , δ(m1, R))

4. As will be explained later, the model can be easily extended to support non-uniform design costs. This
assumption is made for the sake of clarity, to prevent confusion between the costs assigned to agent
actions in Definition 1 and the cost of modifications.

220

Goal Recognition Design in Deterministic Environments

Similarly, the model Rm is the model that results from applying a single modification
m to goal recognition model R. With a slight abuse of notation, we write R~m = δ(~m,R) to
represent the result of applying ~m to R.

The available ways to modify a goal recognition model and the different constraints
that may be imposed on the design process vary between applications and settings. Our
model supports this variety by accounting for arbitrary modifications that comply with
the definitions above. In Section 1 we discussed two modification examples. Disallowing
actions corresponds to removing actions from the action set, while sensor refinement, applied
in partially observable settings, is expressed as a change in the recognition system’s sensor
model. A constraint function may, for example, impose a design budget, limiting the cost
(or number) of allowed modifications. With the objective of maintaining usability, we can
also bound the increase in optimal costs to the goals in the modified setting. Specifically, we
may require the redesign process to leave the optimal cost for plans to all goals unchanged.5

Finally, a GRD model is defined as follows:

Definition 5 A goal recognition design (GRD) model is given by the pair T = 〈R0, D〉
where
• R0 is an initial goal recognition model, and
• D is the design model, specifying the possible ways to redesign a goal recognition model.

The design model D imposes a set RT ⊆ R of goal recognition models reachable from
the initial model R0 by applying a valid modification sequence.

3.2 Measure

In order to optimize goal recognition settings, we need to formulate the measure by which
we assess how well goal recognition can be performed in a given model. In Section 1, we
informally described the worst case distinctiveness (WCD) measure as the maximal cost
of a path an agent can follow before its goal is revealed. To formally define this notion we
first define the relationship between a path and a goal. We say that a path satisfies goal g
if it is a prefix of a legal plan to g.

Definition 6 A path ~π satisfies a goal g ∈ G if ∃π ∈ Πleg(g) s.t. ~π is a prefix of π.

The relationship between a goal and the observation sequence emitted by an executed
path is defined next.

Definition 7 An observation sequence ~o satisfies a goal g ∈ G if ∃~π ∈ ~Πleg(g) and ~o ∈
op(~π).

We denote by GAR(~π) the set of goals satisfied by path ~π in a goal recognition model R.
The set of goals satisfied by observation sequence ~o is denoted by GOR(~o). Finally, for every

~π, the set of goals satisfied by at least one of its observable projections is marked by G
~O
R(~π)

s.t. G
~O
R(~π) =

⋃
~o∈op(~π)(G

O
R(~o)). When R is clear from the context we use GA(~π), GO(~o) and

G
~O(~π), respectively.

5. By supporting arbitrary modifications and constraints we extend previous GRD models, which supported
only specific constraints and modifications.

221

Keren, Gal, & Karpas

(a) Full observability (FO) (b) Non-observable actions (NO)

(c) Low sensor resolution (POD) (d) Noisy sensors (POND)

Figure 6: Different sensor models for a goal recognition setting.

Our analysis is based on the discovery of behaviors for which the observable projection
may not reveal the goal of the executing agent (i.e., paths for which the observable projection
satisfies more than one goal). We define non-distinctive observation sequences as those
that satisfy more than one goal, and non-distinctive paths as those for which at least one
observable projection is non-distinctive.

Definition 8 An observation sequence ~o is non-distinctive if |GO(~o)| > 1. Otherwise, it is
distinctive.

Definition 9 A path ~π is non-distinctive if |GA(~π)| ≥ 1 (it is legal for some goal) and

|G ~O(~π)| > 1 (at least one of its observable projections is non-distinctive). Otherwise, it is
distinctive.

A non-distinctive path is a legal path that leads to some goal, and for which at least
one of its observable projections ~o ∈ op(~π) is non-distinctive and shared with a path to a
different goal. Note that according to Definition 9, the empty zero-cost path ~π∅ = 〈〉, which
is a legal path to all goals, is non-distinctive.

To illustrate the definitions given above, Figure 6 depicts the goal recognition setting
described in Example 1. In this example we assume agents are optimal. The figure describes
various sensor models and the observation sequences collected for a specific agent who enters

222

Goal Recognition Design in Deterministic Environments

the system and performs two move actions (moving right and then upward). The executed
path corresponds to the sequence ~π = 〈move(C1, D1),move(D1, D2)〉.

Under the assumption that agents act optimally in a fully observable (FO) setting
(Figure 6(a)), the emitted observation sequence corresponds to the performed sequence
and ~π satisfies a single goal, which is G1 on the right. In this setting, op(~π) = ~o = ~π and

GA(~π) = GO(~o) = G
~O(~π) = {G1}. This is because, under the full observability assumption,

the set GA(~π) of goals satisfied by the path is equal to the set GO(~o) satisfied by its
observable projection ~o. In addition, since the sensor model is deterministic, ~o is the only

possible observation sequence and GO(~o) = G
~O(~π). This means that ~π is distinctive and

the recognition system can infer the agent’s goal after ~π is executed. In fact, recognition
can occur as early as the first step since there is no legal path to G0 that starts by moving
right.

Figure 6(b) depicts a similar setting with partial sensor coverage (NO). The lack of
sensors near the initial state causes a delay in recognition of the second move action, where
~π emits the observation sequence ~o = 〈move(D1, D2)〉. As in the fully observable setting,

GA(~π) = GO(~o) = G
~O(~π) = {G1}.

Finally, consider the two partially observable settings depicted in Figures 6(c) (POD)
and 6(d) (POND), where the recognition system perceives the agent via a low-resolution
or noisy sensor model, respectively. The non-observable actions from the NO setting are
still non-observable here, and the observation tokens correspond to the zones A-F depicted
in the figure. In Figure 6(c), sensor resolution is poor and all move actions in a zone emit
the same token (each zone is depicted by a rectangle in the figure, and each move action
emits the token corresponding to the zone which includes the movement’s destination cell).
In this setting, referred to as POD (for Partially Observable Deterministic sensor model),
the execution of the path ~π emits the observation sequence ~o = 〈move(ZoneC)〉 (the first
action is non-observable). This observation sequence is non-distinctive since it may be
emitted by legal paths to both goals. In fact, the agent may almost reach its goal without
being recognized. Accordingly, while GA(~π) = {G1}, the set GO(~o) includes both goals (i.e.,
GO(~o) = {G0, G1}), since there is a legal path to G0 that may emit ~o. Since the sensor model

is deterministic, any path may emit a single observation sequence and GO(~o) = G
~O(~π).

A similar situation occurs in the noisy (non-deterministic) sensor model setting depicted
in Figure 6(d), and referred to as POND (for Partially Observable Non-Deterministic sensor
model). Here, after an agent performs move(D1, D2), the perceived observation is either
~o = 〈move(ZoneC)〉 or ~o

′
= 〈move(ZoneD)〉, which correspond to the tokens the move action

is mapped to by the non-deterministic sensor model. This is an example of a setting where
the set GO(~o) of goals satisfied by a possible observation sequence for a path differs from

the set G
~O(~π) of goals satisfied by the path. In particular, GO(~o) = G

~O(~π) = {G0, G1}
while GO(~o

′
) = {G1}.

The examples above demonstrate the type of goal recognition models we wish to support.
However, while the descriptions referred to a single observation sequence, our analysis needs
to reflect an aggregated account of all possible agent behaviors and the possible ways the
behavior may be perceived by the system. Accordingly, the measure by which we evaluate a
goal recognition model is worst case distinctiveness (WCD), which represents the maximal
cost of a path an agent can take in a system without its goal being revealed. We let ~Πnd(R)

223

Keren, Gal, & Karpas

represent the non-distinctive path set of a model R, which includes all the non-distinctive
paths in R, and define WCD as follows.

Definition 10 The worst case distinctiveness (WCD) of a model R, denoted by WCD(R),
is:

WCD(R) = max
~π∈~Πnd(R)

CA(~π)

The cost of a path in this setting signifies the degree to which an agent advances in the
environment. When action costs are uniform, we can replace CA(~π) with |~π| to measure the
maximal number of actions (steps) on a non-distinctive path. The empty path ~π∅ is con-
sidered non-distinctive (Definition 9) and therefore the minimal WCD of a goal recognition
model is 0.

Returning to the example depicted in Figure 6, in the fully observable setting (Fig-
ure 6(a)) the WCD is 4 since an (optimal) agent aiming for either goal can move up 4 steps
before turning left or right. In the partially observable settings (figures 6(b)–6(d)) WCD is
5, since an agent aiming for G1 can move up 4 steps and then one step to the right (to a
cell without a sensor) without revealing its goal. Note that if agents are suboptimal and
have a budget of at least 4 steps for diverging from optimal behavior, WCD is increased by
2 in each model.

3.3 Redesign

After formulating the WCD measure (i.e., the measure by which we assess a goal recognition
model), we turn to the second objective of GRD : redesigning the model so as to minimize
WCD. For this purpose, we must define a design model specifying possible ways to modify
the goal recognition model, along with any constraints that the design process must respect.

Given a GRD model T = 〈R0, D〉, our objective is to find a modification sequence
~m∗ ∈ ~M to apply to R0 which will minimize WCD under the constraints specified by φ.
We let WCDmin(T) represent the minimal WCD achievable in T when applying an optimal
modification sequence, and we let R~m

0 represent the model that results from applying ~m to
R0. We formulate our objective as follows:

WCDmin(T) = minimize
~m∈ ~M|φ(~m,R0)=1

WCD(R~m
0) (1)

In particular, given the minimal WCD possible, we prefer solutions with minimal length.

In the fully observable setting described in Example 1, physical barriers can be placed to
direct the flow of passengers to distinctive paths by disallowing specific move actions. The
constraints, specified by φ, may require the optimal cost to any goal to remain unchanged in
the modified model. In addition, a budget of available modifications may be defined. The
solution reveals that under the assumption agents are optimal, by placing a single barrier
WCD is reduced from 4 in the original setting to 0 in the redesigned model (Figure 2(c)).
However, even with this barrier, in the partially observable setting depicted in Example
2, the agent can advance one step without her goal being recognized (WCD = 1). Here,
sensors are used to improve agents’ visibility to the system, and WCD is minimized to 0 by
positioning a single camera at the entry point (Figure 4(b)).

224

Goal Recognition Design in Deterministic Environments

4. Calculating WCD

The calculation of WCD differs from both planning problems, where the aim is to find any
legal path to a goal, and goal recognition problems, where the aim is to find any legal path
that fits a perceived observation sequence. In contrast, the analysis of GRD must take
into account all possible observation sequences corresponding to all possible paths to all
goals. After describing a general approach for WCD calculation, we show that WCD can
be computed using a compilation from GRD to classical planning for settings where the set
of legal plans to a goal are cost-bounded.

Given a GRD model, the näıve approach to WCD calculation consists of exhaustively ex-
amining each possible legal path (legal plan prefix) and checking whether it is non-distinctive
(i.e., whether it is mapped to more than one goal by the recognition system). The value of
WCD is then the maximal non-distinctive path. However, in most cases, the set of possible
plans is large and the set of legal plans is not given explicitly, but instead compactly rep-
resented via the relationship between actions, states and goals. Hence, exploring the entire
plan set exhaustively becomes impractical for large problems.

One common way to compactly specify agent behavior is by using a planning domain
(formally defined in Section 2.1) to describe the environment dynamics and to set a bound
on the cost of plans agents may execute to achieve a goal. Accordingly, in this section we
present methods for WCD calculation in goal recognition models where divergence from
optimal behavior is assumed to be cost-bounded. In such models, which we refer to as cost-
bounded goal recognition (CB-GR), for each goal gi ∈ G agents have a bound θi such that
the set π ∈ Π(gi) of legal plans to gi includes all plans π to gi with cost CA(π) ≤ C∗A(gi)+θi,
where C∗A(gi) represents the optimal cost to goal gi. The set of legal plans to each goal is

represented by ~Πθ(g). As a special case, when agents heading for goal gi are assumed to
behave optimally, θi = 0, and the set ~Πleg(gi) of legal plans to goal gi is the set Π∗(gi) of
optimal plans that minimize the cost to the goal.

In the following sections we present methods to calculate WCD of a CB-GR model,
based on the following observations:

Theorem 1 If ~π is non-distinctive, any prefix of ~π is non-distinctive.

Proof: Let ~πpre be a prefix of ~π. According to Definition 9, ~πpre is non-distinctive if
|GA(~πpre)| ≥ 1 (the set GA(~πpre) of goals satisfied by the actual path includes at least one

goal) and |G ~O(~πpre)| > 1 (the set G
~O(~πpre) of goals satisfied by its observable projections

includes at least two goals).

The first condition is satisfied by the fact that ~π is a legal path to some goal g and ~πpre
is a prefix of ~π, thus satisfying g (Definition 6). The second condition is satisfied by the fact
that since ~π is non-distinctive, ∃~o ∈ op(~π) s.t. |GO(~o)| > 1 (at least one of ~π’s observable
projections is non-distinctive). This means that ∃g′ ∈ G and ~π′ s.t. g 6= g′, ~π′ ∈ ~Πleg(g′)
and ~o ∈ op(~π′) (Definition 7). Definition 2 guarantees that ∃~opre that is a prefix of ~o, s.t.
~opre ∈ op(~πpre), and that there is a prefix ~π′pre of ~π′ s.t. ~opre ∈ op(~π′pre), ensuring ~πpre is
non-distinctive.

Corollary 1 If ~π is distinctive, any path ~π′ ∈ ~Πleg(G) for which ~π is a prefix, is distinctive.

225

Keren, Gal, & Karpas

Proof: Assume to the contrary that ~π is distinctive and is a prefix of a non-distinctive path
~π′. However, according to Theorem 1, if ~π′ is non-distinctive, any prefix of ~π′, including ~π,
is non-distinctive, which serves as a contradiction.

The above observations assure us that any agent in a CB-GR setting will start its
progress in the system by following a (possibly empty) non-distinctive path and end with
a (possibly empty) distinctive path leading to its goal. This allows us to establish a rela-
tionship between a CB-GR model, which offers an online analysis of a single observation
sequence ~o emitted by the path performed by an agent (e.g., Ramirez & Geffner, 2009), and
its corresponding GRD model, which provides an offline account of the set ~O of all possible
observation sequences that may be generated by agents in the system. To formulate this
relationship we start by defining the action set of a token. Given a sensor model S and a
token o ∈ O, the action set of o, marked by AS [o], is the set of actions that may emit o
when executed.

Definition 11 AS [o] = {a′|o ∈ S(a′)}

Similarly, we define the non-distinctive action set of action a ∈ A as the set of actions
(excluding a) that share a common observation token with a. We notate this as AS [a].

Definition 12 AS [a] = {a′|a′ 6= a , S(a) ∩ S(a′) 6= ∅}

We let CA
min(~o) represent the minimal cost of a sequence of actions that may emit ~o

and define it as follows:

Definition 13 Let ~o = 〈o1, ..., on〉 be an observation sequence. Then,

CA
min(~o) = Σn

i=1(min
a∈AS [oi]

CA(a))

Note that CA
min(~o) does not necessarily represent the cost of a legal path, since a path

may include non-observable actions that are not accounted for by the sequence. We use
CA

min(~o) as a lower bound on the cost of the possible paths that may emit ~o to state the
following:

Theorem 2 Given a goal recognition model R and an observation sequence ~o, if CA
min(~o) >

WCD(R) then |GO(~o)| = 1.

Proof: We assume ~o is emitted by an agent following a legal path ~π ∈ Πleg(G). Definition 2
assures us that while not all executed actions in ~π emit a token, each token o ∈ ~o corresponds
to an executed action. Definition 13 assures us that among the paths ~π for which ~o ∈ op(~π)
there is no path with a lower cost than CA

min(~o). According to Definition 10, WCD(R) is
the maximal cost of a non-distinctive path. Therefore, if CA

min(~o) > WCD(R), then the
underlying path that generated ~o is distinctive. Definition 9 classifies a path as distinctive
if max~o′∈op(~π) |GO(~o′)| ≤ 1. In particular, this applies to the actual generated sequence

~o ∈ op(~π), and therefore |GO(~o)| = 1.

Theorem 2 provides a guarantee that any observation sequence ~o for which CA
min(~o) ex-

ceeds WCD(R) represents distinctive behavior. For each observation, the value of CA
min(~o)

226

Goal Recognition Design in Deterministic Environments

can be directly computed from the sensor model S and cost function CA by considering for
each token the cost of the least expensive action in its action set AS [o]. For the sake of com-
putational efficiency, the recognition system may exploit this observation to fully analyze
only observations that are guaranteed to represent distinctive paths. Therefore, the process
of minimizing the WCD of a model, described in Section 5, provides a way to guarantee
improved online recognition by minimizing the maximal non-distinctive paths agents can
follow before recognition is guaranteed.

Note that the above theorems are not guaranteed for all goal recognition models. In
particular, they do not apply to goal recognition settings based on the probabilistic measure
suggested by Ramirez and Geffner (2010). For each observation sequence ~o, Ramirez and
Geffner (2010) suggest computing for each goal g the minimal cost difference between a
plan to g that satisfies ~o and a plan to g that does not. The observation sequence is then
mapped to the goal that minimizes this difference. In such goal recognition settings, a
non-distinctive path may have a distinctive prefix and vice versa. Accordingly, the methods
for WCD calculation we suggest next, which are based on the theorems presented above,
are not guaranteed to find the WCD for such settings.

4.1 BFS-Based Method for WCD Calculation

A näıve way to discover all paths to all goals within a CB-GR model is to perform an
iterative and exhaustive exploration of the state space using, for example, a breadth-first
search (BFS) over the action space. The search starts at the initial state and explores at
each level all states that can be reached from the previous level. The search continues up to
the level at which the most expensive legal plans are found. The result is a tree depicting
all legal plans to all goals in G. In order to reveal the WCD value of the model, we need
to find the set of goals that share the most expensive non-distinctive path. We can do this
by maintaining a priority queue and performing a backward search starting at the most
expensive leaf, and advancing one level at time. We stop once a node that represents a
non-distinctive path is discovered.

The remaining question is how to identify distinctive paths. According to Definition

9, a path ~π is distinctive if |GA(~π)| = 0 (it is illegal) or if |G ~O(~π)| = 1 (all of its observ-
able projections are distinctive). Both criteria can be verified using one of the many goal
recognition techniques available, depending on the specific model at hand. The recognition
technique is used to identify the number of goals a path (and its observable projections)
satisfies.

Although this method is sound, it is highly inefficient, especially in scenarios where there
are many legal paths to each goal. The wcd-bfs, whose pseudocode is given in Algorithm 1,
is a variation of the BFS presented above — only instead of blindly exploring all paths in
the model we trim the search by pruning nodes representing distinctive paths. For CB-
GR models, Corollary 1 assures us that further exploring such nodes is futile, since any
path that has a distinctive prefix is also distinctive. Successors of non-distinctive paths
are generated by appending every applicable action to the current path and adding the
resulting path to a queue. It is worth noting that nodes represent paths rather than states
to support the task of accounting for all legal paths that may lead to a certain state. The

227

Keren, Gal, & Karpas

search continues as long as the queue is not empty. The WCD value of the model is the
maximal-cost path among the expanded paths.

Algorithm 1 wcd-bfs

1: create a (priority) queue Q = ∅
2: WCD= 0
3: enqueue 〈〉(empty path) onto Q
4: while Q is not empty do
5: ~π ← Q.dequeue()
6: if ~π is non-distinctive then
7: enqueue successors(~π) onto Q
8: if CA(~π) > WCD then
9: WCD= CA(~π)

10: end if
11: end if
12: end while
13: return WCD

Comparing this method to the baseline method presented above, it is clear that pruning
can prevent many unnecessary states from being expanded, especially in a domain with a
large branching factor. However, as shown by Keren et al. (2014), using goal recognition
several times for each node is expensive and impractical for large domains. In the next
section we will present compilation-based techniques for WCD calculation.

4.2 Calculating WCD via Compilations to Planning

BFS-based approaches for finding the WCD value of a model exhaustively explore the state
space and require solving a separate goal recognition problem for each examined path to
determine if it is distinctive. In this section we find the WCD value of a CB-GR model by
using a compilation to classical planning that can be solved using any off-the-shelf planner.

A key difference between goal recognition (design) and planning is that while a goal
recognition problem includes a set of at least two possible goals, a classical planning problem
has a single goal. The basic idea underlying our compilation is to transform a goal recogni-
tion problem with multiple goals into a single planning problem with multiple agents, each
with a different goal. The single objective of the compiled problem is then for all agents
to reach their respective goals. By manipulating the cost function, we incentivize agents to
prefer non-distinctive paths and reveal the WCD value of the model (see Figure 7 for an
illustration).

This idea is implemented in the common-declare compilation (described below) to find
the WCD of a CB-GR model with two goals. After presenting the compilation, we show
how WCD of a model with multiple goals is found by taking the maximal value over all
ordered goal pairs. In addition, we describe variations of the compilation, tailored to more
restricted forms of partial observability for which the computation can be performed more
efficiently.

228

Goal Recognition Design in Deterministic Environments

To define the measure found by our methods, we let ~Πnd
i (R) ⊆ ~Πnd(R) represent the set

of non-distinctive paths that are legal to goal gi but share at least one observation sequence
with a path to some other goal gj . Accordingly, WCDi(R) represents the maximal cost of

a path in ~Πnd
i (R).

Definition 14

~Πnd
i (R) = {~π|gi ∈ GA(~π) and ∃gj s.t. gi, gj ∈ G

~O(~π)}

WCDi(R) = max
~π∈~Πnd

i (R)
CA(~π)

Recall from Section 3.2 that the zero-cost empty path ~π∅ is shared by any two goals.
Accordingly, the set ~Πnd

i (R) includes ~π∅ and 0 ≤WCDi(R) for any goal gi.
Our model supports settings in which an agent may reach its goal without being ob-

served. Assuming agents are bounded suboptimal, we let CmaxA (gi) represent the maximal

cost to goal gi, i.e., the maximal cost of a plan π ∈ ~Πθ(gi). The value of WCDi(R) is bound
by CmaxA (gi).

Lemma 1 Given a goal recognition model R, for any goal gi ∈ G

WCDi(R) ≤ CmaxA (gi)

Proof: According to Definition 14, WCDi(R) represents the cost of a legal path to gi
bounded by the cost of a complete legal plan, thus creating a bound on WCDi(R) ≤
CmaxA (gi).

We let R0,1 represent a goal recognition model with two goals G = {g0, g1}. The
common-declare compilation, whose formal definition is given in Appendix A, is used to
calculate WCD0(R0,1), which is the maximal non-distinctive path that is legal for an agent
heading to g0 in R0,1. Note that for any two goals, WCD0(R0,1) is not necessarily equal to

WCD1(R0,1) (and ~Πnd
0 (R0,1) is not necessarily equal to ~Πnd

1 (R0,1)). This is due to the envi-
ronment’s partial sensor coverage and is exemplified in Figure 6(d), where WCD0(R0,1) = 4,
since an agent can only reach cell C5 while following optimal paths to both goals, but
WCD1(R0,1) = 5, since an optimal agent heading to G1 can remain unrecognized even after
turning right due to the missing sensor at cell D5.

The common-declare compilation involves two agents, agent0 and agent1, each with a
copy fi of each fact f ∈ F . The agents start at the same initial state but are aiming for
different goals (g0 and g1, respectively). Each agent has a separate copy Ai of the action set
A, where each action emits an observation token. Token emission is represented by setting
(assigning the value true to) the predicate performedki . To support non-deterministic
sensor models, each agent has a separate copy aki of the original action a for each token
k the action may emit (including the empty token o∅). This allows the planner to choose
among the different observation tokens by executing the corresponding action.

Each agent needs to account for the observation sequence of its path by “declaring”
emitted tokens. Each action deletes the predicate declaredi, which needs to be reset (by
performing one of the “declare” actions) before the agent can perform the next action.

229

Keren, Gal, & Karpas

Figure 7: The common-declare compilation

While the execution cost for agent1 is associated with the executed actions, agent0 “pays”
for its actions when declaring the action’s token. This is done using one of the Pay0 actions:
the Payc0 action pays the full cost of the action, while the corresponding PayDiscountedc0
pays a slightly discounted cost.

Agents can declare their observation tokens either separately (by performing Declareki
or Declare∅0), or jointly (by performing Declarek0,1) if both emit the same observation token.

Token declaration is “free” for both agents, but joint declarations Declarek0,1 and empty

token declarations Declare∅0, applicable only so long as the exposed flag is false, allow agent0
to execute PayDiscountedc0 and pay a discounted fee for its last performed action. The flag
is initially false and is set to true once and for all by the first separate declaration.

At the initial state, both agents have no pending tokens and can start execution. The
goal description requires both agents to reach their goal with no pending tokens. The
solution to the problem is a plan where both agents interleave execution and declaration (and
payment for agent0) until they achieve their goals. We note that although the compilation
includes two agents, the proposed model serves a single agent with the objective of finding
a plan to follow that maximizes the non-distinctive prefix of agent0. The two-agent model
is merely used to account for different agent behaviors within a single search.

To account for bounded suboptimal agents, we force each agent to follow a plan with
length Ti = C∗A(gi) + θi, which represents the maximal cost of a legal plan. To constrain
the plan lengths, we maintain a timer for each agent. Each action a advances the time step
from t to t + CA(a) for the acting agent. The goal specification requires that each agent
reach time step timeiT in addition to achieving its original goal. To support legal paths with
a cost smaller than Ti, we add to the model idle actions, Idleci , which cost c and advance
the counter by c time stamps. Idle actions set the exposed flag to true, ensuring that they
are not considered part of the non-distinctive prefix (Appendix A provides implementation
details for this mechanism).

230

Goal Recognition Design in Deterministic Environments

Accounting for suboptimal agents results in a numeric planning problem, which can be
solved by any off-the-shelf numeric planner, e.g., Aldinger, Mattmüller, and Göbelbecker
(2015). However, due to the computational limitations of current state-of-the-art numeric
planners, we transform the compiled problem into a classical planning problem (as first
presented by Keren et al., 2015). We let dom(CA) represent the set of possible action costs
in the model. We then add a sequence of time steps 〈time0

i , ..., time
Ti
i 〉 and a new predicate

next(timeti, time
t+c
i) for every time stamp 0 ≤ t ≤ Ti and c ∈ dom(CA). The predicates

enforce action execution durations and are added to the preconditions of every action in ak1
that has timeti as its starting point and timet+ci as its end point. In addition, a separate
Idleci action is created for each c ∈ dom(CA). Clearly, such a solution does not scale as
|dom(CA)| increases, but it allows the use of any off-the-shelf planner to find the WCD value
in GRD settings where |dom(CA)| is relatively small.

To demonstrate the compilation, consider the partially observable (POND) example
depicted in Figure 6(d), where agents have no budget for diverging from optimal behavior
(e.g., θi = 0 ∀gi ∈ G). If we apply the common-declare compilation to find WCD0(R0,1) and
solve it using an optimal solver, the path found by the solver will consist of four movements
upward for both agents, each followed by a shared declare (e.g., moveZoneC0 (C1, C2) and

moveZoneC1 (C1, C2) followed by a DeclareZoneC,10,1). These joint movements allow agent0 to

enjoy the discounted payment for its tokens and apply PayDiscounted1
0. After reaching

the wall (cell C5 in Zone F), the agents can no longer declare their tokens together without
diverging from optimal behavior. At this point the goal of agent0 is revealed after it
performs moveZoneE0 (C5, B5), which emits the token ZoneE. This forces the agent to
declare its token alone, setting the flag exposed to true and WCD to 4. Henceforth, declare
actions entail the full cost.

When measuring WCD1(R0,1), a higher WCD of 5 is revealed. This is because agent1,
which is now the agent that must pay for emitted tokens, will choose to move to the
right, move∅1(C5, D5), upon reaching the wall. Since no token is emitted the agent can
apply Declare∅1 without exposing its action. Only the last action, moveZoneF1 (D5, E5),
exposes the agent by forcing it to perform a separate declaration of its final move action,
moveZoneF1 (E5, F5), and applying DeclareZoneF1 .

It is worth noting that a diversion budget of at least 4 is needed to increase WCD1(R0,1)
to 6. This is because in such a setting agent0 is forced to perform 10 actions. The optimal
plan for the compiled problem would then be for both agents to advance together towards
G1, allowing agent1 to pay a discounted rate for declare (and remain unrecognized) until
reaching its goal.

To prove the correctness of the compilation, we let πP ′ represent a plan found by a
planner for the compiled problem P ′, and we let π∗

P ′
represent a solution found by an

optimal planner.6 The plan, which consists of actions for both agents, is divided into two
parts. The first part consists of actions declared by both agents together (using Declarek0,1),

along with non-observable actions performed by agent0, declared using Declare∅0. In the
second part, each agent declares its tokens separately. The two parts of the plan are
divided by the first time the flag exposed is set, thenceforth allowing tokens to be declared

6. Recall that an optimal solution for the compiled problem may represent suboptimal agent behavior.

231

Keren, Gal, & Karpas

only separately. The value of WCD0(R0,1) is the accumulated cost of “real” actions A0

(including non-observable actions) performed by agent0 before exposure.

Given a solution πP ′ to P
′
, we denote the projection of πP ′ on each agent i by proj(πP ′ , gi),

which includes all actions in Ai that appear in πP ′ (excluding the declare and payment ac-

tions). Accordingly, the projection of the optimal solution π∗
P ′

to P
′

for each agent is
denoted as proj(π∗

P ′
, gi). In addition, we let unexposed(π∗

P ′
, g0) be the unexposed prefix

of proj(πP ′ , g0), i.e., the actions performed by agent0 up to (but not including) the first
action declared separately by agent0.

The proof of correctness starts by showing that unexposed(πP ′ , g0) (of any plan πP ′

found by the compilation) represents a non-distinctive path of agent0. We then provide the
conditions under which π∗

P ′
is guaranteed to yield legal plans for both agents, and show that

unexposed(π∗
P ′
, g0) represents WCD0(R0,1). We conclude by proving that the WCD value

of the entire model can be found by taking the maximal value over individual WCD values
of all pairs.

To show that unexposed(πP ′ , g0) is non-distinctive we rely on the compilation definition,
which guarantees that those actions performed before the first separately-declared action
either emit a token that is shared by an action on a path to a different goal, or are non-
observable.

Lemma 2 unexposed(πP ′ , g0) is non-distinctive.

Proof: The compilation forces the agent to account for the observable projection of its
path by declaring each token emitted by its performed actions. A declaredi flag, initially
set to false, indicates whether that agent has a pending token. An action is only applicable
after declaredi is set to true. The action sets the flag to false, forcing the agent to declare
its pending token before the next action is performed or the goal can be achieved.

The compilation guarantees that any action in unexposed(πP ′ , g0) represents either a

non-observable action, which emits the empty token o∅ and is followed by a Declare∅0, or an
observable action which emits a token k and is followed by a Declarek0,1 action where both
agents declare their pending token together. Both types of declare actions can be performed
only before the flag exposed, initially set to false, is set to true. This happens when the first
separate declare is performed by agent0, and cannot thereafter be changed. This means that
actions which appear in unexposed(πP ′ , g0) form an observation sequence that produces an
observable projection shared by both goals, and is therefore non-distinctive.

We guarantee that proj(π∗
P ′
, gi) yields a legal plan for both agents by bounding the

discount agent0 may receive for token declaration. As detailed in Definition 20 (Appendix
A), ε represents the discount for payment actions s.t. for every action a that costs c, the full
payment for an action using Payc0 is c, while the discounted rate is c(1− ε). To guarantee
that agents follow legal paths in the compiled problem, we set ε such that the maximal
accumulated discount over an entire execution is lower than the smallest possible diversion
by any agent from a legal path.

232

Goal Recognition Design in Deterministic Environments

Given a CB-GR model R, we let δmin(R) represent the minimal cost difference between

any two paths in R.7 We show that when ε is smaller than
δmin(R0,1)
C∗A(g0) , both agents follow

legal paths in π∗
P ′

, i.e., proj(π∗
P ′
, gi) represents bounded suboptimal behavior in the original

model for both agents. Recall that CmaxA (gi) represents the maximal cost of a legal path to
goal gi in the original goal recognition model.

Theorem 3 Given a CB-GR model R0,1 with two goals G = {g0, g1} and a transformed
model P ′, proj(π∗

P ′
, gi) ∈ Πleg(gi) (both agents follow legal plans) if

ε <
δmin(R0,1)

CmaxA (g0)

Proof: To ensure both agents choose a path that is legal in the original model R0,1, we
require that the difference between the cost of achieving g′ in P ′ (denoted by C′A(π∗P ′(g

′)))
and the joint cost of achieving g0 and g1 in R0,1 (CmaxA (g0) and CmaxA (g1), respectively) be
smaller than the minimal cost of diversion from a legal path in R0,1. Under the assumptions
that an action is associated with a non-negative cost and that the cost of diversion from a
legal path is at least δmin(R0,1), we require the difference between the optimal cost of the
solution of the compiled problem and the sum of both agents’ maximal plan costs to be at
most δmin(R0,1):

C′A(π∗P ′(g
′))− [CmaxA (g0) + CmaxA (g1)] < δmin(R0,1)

According to C ′A, the difference between the costs of achieving the goals in the original
setting and in the compiled problem P

′
is due only to the discount agent0 receives for

actions in unexposed(π∗
P ′
, g0). Lemma 2 showed that unexposed(π∗

P ′
, g0) represents non-

distinctive behavior. The cost of unexposed(π∗
P ′
, g0) is bound by WCD0(R0,1) (Definition

14), the maximal cost of a non-distinctive legal path to g0. We therefore need to ensure
that

ε ·WCD0(R0,1) < δmin(R0,1)

and thus when

ε <
δmin(R0,1)

WCD0(R0,1)

agents will follow legal plans.

According to Lemma 1, WCD0(R0,1) ≤ CmaxA (g0). Therefore, when

ε <
δmin(R0,1)

CmaxA (g0)

the agents will follow legal plans.

Theorem 4, next, shows that the optimal solution to P ′ yields WCD0(R0,1).

7. We assume all costs are non-negative rational numbers, and therefore it is possible to scale all costs by
some factor such that all costs are integers and the minimal cost difference is 1.

233

Keren, Gal, & Karpas

Theorem 4 Given a goal recognition model R0,1 with two goals G = {g0, g1} and a planning

problem P ′, created according to the common-declare compilation with ε < δmin(R)
Cmax

A (g0) , then

WCD0(R0,1) = CA(unexposed(π∗
P ′
, g0)))

Proof: The bound on ε (Theorem 3) guarantees that apart from the declare and payment
actions, the solution to P ′ consists solely of actions that form a pair of legal plans to each
of the goals. Lemma 2 shows that unexposed(π∗

P ′
, g0) represents a non-distinctive path.

The only way to minimize the cost of the solution to P ′ is by maximizing the cost of
any actions agent0 performs before the first separate declaration. This guarantees that
π∗
P ′

is the solution to P ′ which maximizes CA(unexposed(π∗
P ′
, g0)) and therefore represents

WCD0(R0,1).

Note that throughout the execution no discount is assigned to agent1’s actions, guar-
anteeing maximization of the non-distinctive prefix of agent0 rather than choosing a path
that maximizes the cost of non-observable actions performed by both agents.

As a final stage of validating our approach, we observe that WCD(R) represents the
maximal non-distinctive path shared between at least a pair of goals. Therefore, by finding
WCD for all ordered pairs, we are guaranteed to find the maximal non-distinctive path of
a model.

Lemma 3 Given a goal recognition problem R,

WCD(R) = max
gi,gj∈G|gi 6=gj

(WCDi(Ri,j))

Proof: According to Definition 9, any path ~πwcd that is a non-distinctive path with maximal

cost in R has at least a pair of goals g, g′ ∈ G for which gi, gj ∈ G
~O(~πwcd) and gi ∈

GA(~πwcd). Therefore, ~πwcd ∈ ~Πnd
i (R). Since ~πwcd is maximal among non-distinctive paths

and according to Definition 14, WCDi(Ri,j) = WCD(R) and there is no other pair that
shares a more costly non-distinctive path.

We use Lemma 3 to justify our all-pairs approach. We find the WCD value of a
GRD problem with n > 2 by finding the WCD value shared between all goal pairs, and
we assign WCD to be the maximal WCD of all pairs. This method involves solving n2

planning problems, each with a branching factor of 2|A||O|. An alternative approach would
be to incorporate all goals into a single planning problem with n agents. This, however,
will lead to a planning problem with 2n versions of each action, since one needs to account
for all possible agent combinations.

As a final note, while the common-declare compilation (formally described in Defini-
tion 20) could admit many permutations of the same plan, we can optimize the process
by disallowing some permutations with additional constraints. In particular, after exposed
becomes true, we can force agent1 to wait until agent0 achieves its goal. This can be imple-
mented by adding a no-cost action that sets a flag done0. The flag allows agent1 to declare
its token separately but disallows separate declare actions for agent0. This in fact disables
actions performed by agent0, forcing it to achieve its goal before setting done0 and allowing
agent1 to achieve its goal.

234

Goal Recognition Design in Deterministic Environments

4.2.1 Variations of common-declare

Following the general idea used for the common-declare compilation, we now describe two
variations of the compilation that apply to two special cases of observability. Although
the general compilation applies to both settings, the specially tailored variations of the
compilation are preferable as they are more compact and more computationally efficient.

Fully observable agents A special case of partial observability is a setting with perfect
sensing where the sensor function deterministically maps each action to a unique token (i.e.,
the action’s name). Using the common-declare compilation in this setting is possible, but
would add unnecessary complexity to the solution. An alternative approach is to exploit
the correspondence between the executed action and the emitted token to incorporate token
declarations into the action’s description.

Similarly to the common-declare, the latest-split compilation, described in detail in
Keren et al. (2014), consists of two agents, each aiming at its respective goal. The agents
have two types of actions: separate actions, performed by one or the other agent alone,
and together actions, where both agents advance together. We guarantee the plan prefix
that agents follow together represents the maximal non-distinctive path by offering a small
discount ε for joint actions allowed only before a flag split, initially set to false, becomes true.
After splitting, represented by a one-time setting of split to true, only separate actions are
allowed. The value of WCD0(R0,1) (which is equal to WCD1(R0,1) in the fully observable
setting) is the cost of the sequence of actions agents perform together before splitting.

Acting together in the latest-split compilation is similar to performing an action and
then declaring its token together in the common-declare compilation. The benefit of the
latest-split compilation is that it avoids the need to specify the sensor model in the problem
description. As shown in our empirical evaluation, the compact representation results in a
more efficient solution.

Non-observable actions Another special case of partial observability is when the action
set A = Ao ∪ Ano is partitioned into observable (Ao) and non-observable (Ano) actions. In
this setting, first presented in Keren et al. (2016a), when an agent performs an observable
action it is correctly perceived by the observer, while the execution of a non-observable
action goes unnoticed.

Similarly to the common-declare compilation, the latest-expose compilation, fully de-
scribed in Keren et al. (2016a), consists of two agents, each aiming at its respective goal.
The solution is divided into two parts by a common exposure point. The prefix of the plan
up to the exposure point represents a non-distinctive path, and may consist of actions per-
formed by both agents simultaneously in addition to non-observable actions performed by
agent0. After the exposure point, each agent acts separately to achieve its goal. To discover
WCD0(R0,1) we discount the actions agent0 performs before exposure.

The latest-expose compilation differs from common-declare by integrating the execution
of actions and the declaration of their tokens, which can either be the action itself or the
empty token for non-observable actions. This reduces the size of the action space by not
including token declaration actions. In our empirical evaluation section we show the benefits
of this compact representation.

235

Keren, Gal, & Karpas

5. Redesign - Minimizing WCD

The design process formally described in Section 3.3 takes as input a goal recognition setting
and uses the available modifications to minimize the WCD value of the model. Typically,
the number of possible modifications is large, making it impossible to exhaustively explore
all possibilities. We thus need ways to efficiently search for an optimal redesign sequence. In
this section, we start by describing a general approach to design and then show how pruning
can be applied to reduce the computational effort of the design process. We then characterize
a class of GRD models for which the pruning approach we suggest (and presented previously
in Keren et al., 2018) is safe, i.e., guaranteed to yield an optimal modification sequence.
Such positioning allows us not only to justify our pruning approach for previously suggested
GRD models and reduce the computational overhead of design for these model, but also to
enrich the GRD framework with new modifications for which this approach is guaranteed
to yield optimal results.

With the above objective in mind, we view the GRD task as a search in the space
of modification sequences ~m ∈ ~M (and their corresponding goal recognition models) for
a sequence that minimizes WCD. The operators are modifications in M that transition
between goal recognition models. A node in the search tree represents a modification
sequence ~m ∈ ~M that in turn represents a goal recognition model R~m

0 , which is the result
of applying ~m to the initial model R0. The constraint function φ induces the set appφ(R) of
applicable modifications of each model (node) R ∈ RT (where RT are the goal recognition
models reachable from R0 via redesign). The search continues until an optimal modification
sequence is found.

A basic search method that can be used for WCD reduction is a breadth-first search
(BFS) through the space of allowed modification sequences. The root node of the search
is the empty sequence ~m∅ and the initial model R0. Each successor node appends a single
modification to the sequence applied to the parent node. If the sequence is valid, it is added
to a queue of sequences. Otherwise it is pruned, relying on the assumption that a valid
modification sequence cannot have an invalid prefix. For each explored node we calculate
WCD of the corresponding goal recognition model, updating the minimal WCD and opti-
mal modification sequence when relevant. The search continues, at each level of the tree
increasing the size of applied modification sequences until a model in which wcd = 0, or
until there are no more nodes to explore. The result is a modification sequence ~mmin ∈ ~M
that minimizes WCD. This approach is depicted in Figure 8. The upper portion of the
figure shows the design process as a search in the modification space, while the lower part
depicts the goal recognition models corresponding to each modification sequence.

In addition to satisfying the main objective of minimizing WCD under the specified
constraints, this approach fulfills our secondary requirement, guaranteeing that among all
the valid sequences which minimize WCD, the sequence selected is one with minimal length.
This is thanks to the iterative nature of the proposed algorithm, which adds at each stage
a separate node for each of the possible modifications appended to the parent node. We
note that in the case of non-uniform modification costs, we are interested in a modification
sequence with minimal cost. In this case, we can replace the BFS with a Dijkstra-based
exploration. Instead of the queue described above, the sequences are maintained in a priority
queue that returns at each stage the minimal-cost sequence.

236

Goal Recognition Design in Deterministic Environments

Figure 8: Design as a search in the modification space

The key question remaining is what modifications should be considered at each stage.
A näıve approach, denoted exhaustive-reduce, considers all possible combinations of modi-
fications. In the worst case, exhaustive-reduce examines all valid modification sequences.

Seeking improvement through pruning, we observe that the WCD value of a model
cannot decrease if at least one maximal non-distinctive path remains non-distinctive in the
modified model. Using ~Πnd(R) to represent the set of non-distinctive paths in R, we let
~Πwcd(R) ⊆ ~Πnd(R) represent the set of WCD paths, the set of non-distinctive paths with
maximal cost. Recall that given a GRD model T , RT represents the set of models reachable
from R0 in T . Lemma 4 guarantees that the WCD value of a model cannot decrease if at
least one non-distinctive path in ~Πwcd(R) remains non-distinctive in the modified model.

Lemma 4 Given a GRD model T and two goal recognition models R,R′ ∈ RT , if ∃~π ∈
~Πwcd(R) s.t. ~π ∈ ~Πnd(R′) then WCD(R) ≤WCD(R′).

Proof: Definition 10 sets WCD of a model as the maximal cost over non-distinctive paths
~Πnd(R), which is the cost of ~π. If ~π is non-distinctive in R′ then WCD is at least the cost
of ~π and WCD(R) ≤WCD(R′).

Typically, the WCD calculation of a goal recognition model, which can be performed
by (for example) any of the compilation-based methods discussed in Section 4, reveals one
of the WCD paths of the model. We refer to this path as the WCD path of model R and
denote it by ~πWCD(R). The WCD plans of model R, denoted by ΠWCD(R), are a pair
of complete plans that lead to two different goals, and at least one has the WCD path
~πWCD(R) as its prefix, while the other has a prefix that shares an observable projection
with ~πWCD(R).

We exploit Lemma 4 to avoid unnecessary computations by pruning sequences that
are guaranteed not to have an effect on the set of WCD plans of a model (in Figure 8

237

Keren, Gal, & Karpas

pruning is represented by the crossed-out branch). Accordingly, we propose the pruned-
reduce algorithm. This algorithm extends exhaustive-reduce by pruning modifications that
do not affect any action in the pair ΠWCD(R).

In this work we focus on modifications that change the model’s actions and observability.
Accordingly, to formally characterize the effect a modification may have on a path, we let
A(m,R) represent the set of affected actions of modification m in model R. The set is
comprised of two sets s.t. A(m,R) = Amod(m,R) ∪ AS(m,R): the set Amod(m,R) of
actions whose implementation is changed by m, and the set AS(m,R) of actions whose
observability changes as a result of applying m to R. Changing the implementation of
action a is expressed by a change in either pre(a), add(a) or del(a), which represent the
preconditions, add effects and delete effects of a, respectively. Changing the observability
of action a is expressed via the sensor model S as a change in the set of tokens S(a) that
may be emitted when a is executed, or in the set that may be emitted by any action which
shares a token with a. For any node R~mcur

0 , which represents the goal recognition model
that results from applying ~mcur to the initial model R0, the pruned-reduce algorithm prunes
modifications m for which the set of affected actions A(m,R~mcur

0) includes no action from
the set of WCD plans.

Both the exhaustive-reduce and pruned-reduce algorithms are presented in Algorithm 2.
When the flag bprune is set to false the iterative exploration is exhaustive, corresponding
to exhaustive-reduce. Otherwise, modifications that do not affect any action in the pair
ΠWCD(R) are pruned (Line 12), which corresponds to pruned-reduce.8

We devote the next section to specifying the conditions under which the pruning per-
formed by the pruned-reduce algorithm is guaranteed to preserve completeness and produce
a valid modification sequence that minimizes the WCD.

5.1 Safe Pruning for GRD Using Generalized Strong Stubborn Sets

To justify the pruning performed by pruned-reduce we observe that it can be viewed as a
form of partial order reduction used to reduce the size of the search space. Specifically, we
show that for every node, the modifications not pruned form a strong stubborn set (Valmari,
1989). Originally introduced in the realm of computer-aided verification, strong stubborn
sets guarantee that the subset of modifications applied at each node in the search are chosen
in a way that preserves completeness. In our setting, a strong stubborn set of a node in the
search is a subset of modifications which includes the first modification in a sequence that
minimizes the WCD of the goal recognition model represented by the node.

Specifically, we use the formulation of generalized strong stubborn sets (GSSS) (Wehrle
& Helmert, 2014), which considers planning tasks, and adapt it to our optimization task
of finding a valid modification sequence to apply to the initial goal recognition model, with
the aim of minimizing WCD.

Given a GRD model T , our objective is to find a strongly optimal modification sequence.
We consider a modification sequence ~m to be strongly optimal for model R if it is a minimal-

8. In the algorithm description, we use the · operator to represent the concatenation of a single modification
to a sequence. Therefore, ~m ·m is the modification sequence resulting from appending modification m
to ~m.

238

Goal Recognition Design in Deterministic Environments

Algorithm 2 Redesign(T = 〈R0, D〉,bprune)
(the bprune flag distinguishes the pruned-reduce and exhaustive-reduce approaches)

1: WCDmin =∞ (init)
2: ~mmin = ~m∅ (init with empty sequence)

3: Create a queue Q initialized to ~m∅ (Initialize queue with the empty sequence)

4: while Q is not empty: do
5: ~mcur ← Q.dequeue()
6: if WCD(R~mcur

0) < WCDmin then

7: WCDmin = WCD(R~mcur
0)

8: ~mmin = ~mcur

9: end if
10: for all m ∈MD do
11: if {φ(~mcur ·m,R0) = 1} (Check if the sequence is valid) then
12: if {not bprune} or { ∃a ∈ A(m,R~mcur

0) s.t. a ∈ ΠWCD(R~mcur
0)} then

13: enqueue ~mcur ·m onto Q
14: end if
15: end if
16: end for
17: end while
18: return ~mmin

length sequence that minimizes the WCD value of R.9 A terminal node either minimizes
WCD or has no valid successor modifications. The set Opt(T) represents the strongly
optimal solutions for model R0 in T . Finally, a successor function �: R → 2M yields for
every node R a set of successor modifications.

We let �pr represent the successor function of the pruned-reduce algorithm, which yields
for every node R a set of successor modifications �pr (R) ⊆ app(R). According to Algorithm
2, �pr prunes transitions that either violate any constraints or that have no effect on the
set of WCD plans of the current model.

To minimize WCD, we need to make sure our pruning method is safe; i.e., it is guar-
anteed that an optimal solution for the given GRD task can still be found in the pruned
search tree. Specifically, a successor function is safe if for every non-terminal model R,
�pr (R) includes at least one operator that starts an optimal solution for R. As described
by Wehrle and Helmert (2014), assuming all modifications have a non-zero uniform cost,
this is a necessary criterion for safety.

For the sake of readability, the complete and formal definition of a GSSS in the context
of GRD is given in Appendix B. We also show there that any pruning function which is
guaranteed to yield a GSSS for each node encountered in the search is guaranteed to be
safe. We devote the remainder of this section to a description of this formulation.

Given a GRD model T = 〈R0, D〉, we let TR represent the model that is the same as
T but with R as its initial goal recognition model (instead of R0). The set �pr (R) is a
GSSS in R if it complies with three requirements. First, for every modification m ∈�pr (R)

9. When design costs are non-uniform, a strongly optimal sequence is an optimal sequence that minimizes
design costs.

239

Keren, Gal, & Karpas

that is not applicable in R, the set contains a necessary enabling set for m and Opt(TR),
which are the modifications that are applied before m in all sequences in Opt(TR) where
m is applied. Second, for every modification m ∈�pr (R) that is applicable in R, the set
contains all modifications that interfere with m in R. Two modifications, m1,m2 ∈ M,
interfere in R if either one disables the other, or if they conflict in R. Modification m1

disables m2 in R if both are applicable in R but m2 /∈ app(δ(m1, R)). Two applicable
modifications conflict in R if applying them in any order to R is valid but yields different
non-distinctive paths (i.e., ~Πnd(Rm1,m2) 6= ~Πnd(Rm2,m1)). The final condition requires that
�pr (R) contain at least one modification from at least one strongly optimal solution for
TR (all these concepts are exemplified in Appendix B).

The key difference between the original formulation by Wehrle and Helmert (2014) and
our formulation of GSSSs for GRD is that the former requires non-interfering operators to
yield the same state for different orders of application. Our focus is on the non-distinctive
path set of a model. We therefore only require non-interfering modifications to yield the
same set of non-distinctive paths for different orders of application. This is enough to
guarantee that both models share the same WCD value.

The definition of GSSSs guarantees that for every non-terminal node, at least one per-
mutation of a strongly optimal solution is not pruned. Note that verifying a given set to be
a GSSS does not require complete knowledge of the sets of strongly optimal solutions. If
the specified conditions can be verified for an over-approximation of the sets, they hold for
the actual sets. Accordingly, in the next section (and Theorem 8 in particular), we show
how the pruning performed by the pruned-reduce algorithm uses an over-approximation of
the optimal solutions for every explored node while ensuring that successor pruning based
on GSSSs is safe.

5.2 Independent, Persistent, Monotonic-nd GRD Models

We are now ready to present a characterization of a class of GRD models that can take ad-
vantage of the GSSS characterization and perform effective pruning when using the pruned-
reduce algorithm. Clearly, to make use of GSSSs, an efficient method for their computation
is required. We show that, in the case of pruned-reduce, the computation of a GSSS is
given with a low computational overhead, as part of the WCD computation (Line 6 in
Algorithm 2).

A useful observation here is that a GRD model and its constraint function induce
a space of valid modification sequences. To guarantee that �pr, the successor pruning
function applied by pruned-reduce, is safe (i.e., that the space state induced by �pr includes
a strongly optimal sequence), we require the GRD model to be independent, persistent,
and monotonic-nd. Independence ensures that no two modifications interfere with each
other (i.e., modifications of a sequence can be applied in any order to yield the same
model). Persistence ensures that model constraints are not violated under any modification
permutations. Finally, monotonicity ensures that no new non-distinctive paths are added
as a result of modifying a model. After introducing these characterizations formally, we
show this categorization is sufficient to guarantee the safety of �pr. We then describe a
variety of GRD models that comply with the specified requirements.

Definition 15 A GRD model T is independent if for any modification m ∈M:

240

Goal Recognition Design in Deterministic Environments

• The necessary enabling set of m and Opt(T) is empty; and
• There are no modification m′ and goal recognition model R s.t. m′ interferes with m

in R.

Definition 16 A GRD model T is persistent if for any goal recognition model R ∈ RT and
modification sequences ~m, ~m′ ∈ ~M:
• If ~m is a prefix of ~m′ and φ(~m,R) = 0, then φ(~m′, R) = 0; and
• If ~m′ is a permutation of ~m and φ(~m,R) = 1, then φ(~m′, R) = 1.

Persistence and independence are sufficient for pruning invalid sequences or sequences
that are guaranteed to have a permutation which is not pruned. To prune modifications
that do not affect the pair of WCD plans when no new non-distinctive paths can be added
to the model, we define monotonic-nd models as follows:

Definition 17 A GRD model T is monotonic-nd if for any goal recognition model R ∈ RT
and modification m ∈M, ~Πnd(Rm) ⊆ ~Πnd(R).

In a monotonic-nd model, valid modifications may only remove paths from the set of
non-distinctive paths. Therefore, applying them cannot increase the WCD value of a model.

Lemma 5 Given a GRD model T , if T is monotonic-nd then for every goal recognition
model R ∈ RT and modification m ∈M s.t. φ(m,R) = 1,

WCD(Rm) ≤WCD(R)

Proof: According to Definition 17, modifications in a monotonic-nd model do not add
non-distinctive paths. In particular, there are no non-distinctive paths with a cost higher
than WCD(R) that are added to the model and WCD(Rm) ≤WCD(R).

In a monotonic-nd model, applying a modification that does not modify the pair of
WCD plans of the current model leaves WCD unchanged.

Corollary 2 Let T be a monotonic-nd GRD model. For every modification m ∈ M and
goal recognition model R ∈ RT s.t. φ(m,R) = 1, if ∀a ∈ A(m,R) a /∈ ΠWCD(R) then

WCD(Rm) = WCD(R)

Proof: According to Lemma 5, in a monotonic-nd GRD model WCD cannot increase as
a result of applying a valid modification, i.e., WCD(Rm) ≤ WCD(R). Since no action
in the pair of plans ΠWCD(R) is affected by m, both remain applicable in Rm and the
WCD path ~πWCD(R) remains non-distinctive in Rm. Moreover, since T is monotonic-nd
no non-distinctive paths are added to the model. This, according to Lemma 4, means that
WCD cannot decrease, i.e., WCD(Rm) ≥WCD(R), leaving WCD unchanged.

We note that the scope of models for which our suggested pruning approach is guaranteed
to be safe is restricted to monotonic-nd models. However, as we will show in the next
section, there are a variety of GRD models that comply with the above requirement, such
as models in which sensor placement is applied to improve recognition. In particular, various

241

Keren, Gal, & Karpas

models suggested previously in the literature (e.g., Keren et al., 2014, 2015, 2016b; Son,
Sabuncu, Schulz-Hanke, Schaub, & Yeoh, 2016; Mirsky, Stern, Gal, & Kalech, 2018) all
support monotonic-nd models for which our suggested pruning can be applied to enhance
performance.

Finally, we use the definitions above to specify the conditions under which the pruned-
reduce algorithm is guaranteed to produce an optimal solution, i.e., the conditions under
which �pr yields a GSSS for every model encountered in the search.

Theorem 5 Given a GRD model T = 〈R0, D〉 where R0 is the initial model and D =
〈M, δ, φ〉, if T is independent, persistent and monotonic-nd then for every model R ∈ RT ,
the set �pr (R) is a GSSS.

The full proof for Theorem 5 can be found in Appendix C.

Theorem 5 specifies conditions that guarantee �pr generates a GSSS for every node
R ∈ RT . According to Theorem 8 (in Appendix B), this guarantees that �pr is safe and
the search will find an optimal modification sequence.

5.3 Modifications for Independent, Persistent, and Monotonic-nd
GRD Models

Equipped with the conditions under which pruning performed by the pruned-reduce algo-
rithm is safe, we now describe a general GRD model that complies with these conditions.
We do this by specifying the constraints (φ) and modifications (M) of this model and prove
their compliance with the requirements.

The GRD model we characterize here, which was first presented by (Keren et al., 2018),
is a generalization of multiple GRD models presented in previous works (Keren et al., 2014,
2015, 2016b) and for which �pr has been shown to produce optimal results. By positioning
our pruning techniques in the context of GSSSs, we can support existing GRD models and
provide a method for understanding the impact of previously presented design modifications.
In addition, we can extend the GRD framework by offering new redesign modifications that
preserve the completeness of the pruned-reduce algorithm.

We assume the analyzed recognition system is a Cost-Bounded Goal Recognition (CB-
GR) model (as defined in Section 4), in which agents follow bounded sub-optimal plans to
their goals. This means agents have a limited budget for diverging from optimal behavior
(or no diversion budget if they are optimal). The constraint function we support here is
budget preserving, enforcing a design budget which limits the number of modifications that
can be applied. Such a budget can either limit the overall number of modifications or
represent a separate budget for each modification type. The constraint function is also cost
preserving, requiring that the maximal cost of a legal plan to any of the goals g ∈ G does
not increase.

The modification set consists of four modification types. Two modifications types,
namely action conditioning (Keren et al., 2018) and its extreme special case, action re-
moval (Keren et al., 2014), affect the applicability of agents’ actions. The other two, namely
single-action sensor refinement (Keren et al., 2018) and its extreme special case, sensor
placement (Keren et al., 2015), modify the recognition system’s sensor model.

242

Goal Recognition Design in Deterministic Environments

Action conditioning, defined next, restricts the applicability of an action by adding
preconditions necessary for its execution. Recall that A represents the set of all actions and
preR(a) is the set of preconditions of action a in model R (Section 3.1). Also, Rm is the
goal recognition model that results from applying m to R.

Definition 18 A modification m is an action conditioning modification if for every goal
recognition model R ∈ R, Rm is identical to R except that for every action a ∈ A, preR(a) ⊆
preRm(a).

Action conditioning can only remove paths from the set of applicable paths in the model,
as we show next.

Lemma 6 Let T = 〈R0, D〉 be a GRD model where R0 is the initial goal recognition model
and D = 〈M, δ, φ〉 is the design model. If m ∈ M is an action conditioning modification,
then for every model R ∈ RT , ~Πleg(Rm) ⊆ ~Πleg(R).

Proof: Assume to the contrary that there is a path ~π = 〈a1, · · · , an〉 s.t. ~π ∈ ~Πleg(Rm)
but ~π /∈ ~Πleg(R). Let i represent the first index s.t. the prefix 〈a1, · · · , ai−1〉 is applicable
in both models but 〈a1, · · · , ai〉 is applicable in Rm but not in R. Since the effect of all
actions is the same in both models, the state s〈a1,··· ,ai−1〉 reached by the application of
〈a1, · · · , ai−1〉 from the initial state is the same in both models. According to Definition 18,
preRm(ai) ⊆ preR(ai). Therefore, if ai is applicable in s〈a1,··· ,ai−1〉 in Rm it is also applicable
in R, contradicting our choice of i.

When an action is conditioned (i.e., preconditions are added to it), some of the paths
that include it may become invalid. Action conditioning can therefore be used to disallow
specific paths from the model. Specifically, it can be used to disallow specific permutations
of paths by forcing a partial order between actions. In Example 1, we described an extreme
special case of action conditioning where actions can be removed from the model by applying
action removal modifications. The barrier placed in Figure 2(c) reduces WCD from 4
in the original model to 0. Removing an action from the model is equivalent to adding
an unsatisfiable precondition. Applying action conditioning to the same setting can be
implemented by forcing an agent aiming at one of the goals to visit a specific location (e.g.,
to collect a key) before reaching her goal. For example, if we place a key in position A1
for G0 or E1 for G1, WCD is reduced to 0. As a generalization of action removal, action
conditioning modifications extend the toolbox of design solutions that can be applied to a
goal recognition setting and often correspond to modifications that are cheaper and easier
to implement in practice.

As we show above, action conditioning may potentially decrease WCD by removing
non-distinctive paths. In general, however, action conditioning may increase the optimal
cost to a goal (and WCD) by eliminating all the optimal plans that lead to it. Returning to
Example 1, if we apply action conditioning so as to force both agents to visit cell D1 before
reaching their destinations, the optimal cost and WCD increase. We show next that in
models with a cost-preserving constraint function, action conditioning modifications cannot
add non-distinctive paths to the model.

243

Keren, Gal, & Karpas

Lemma 7 Let T = 〈R0, D〉 be a GRD model where R0 is the initial goal recognition model
and D = 〈M, δ, φ〉 is the design model. If φ is cost preserving, then for any action condi-
tioning modification m ∈M and model R ∈ RT , ~Πnd(Rm) ⊆ ~Πnd(R).

Proof: Let Πleg
R (g) ⊆ ΠR(g) represent the legal plans to goal g in model R. Assume to

the contrary that there is an action conditioning modification m s.t. there exists a goal
recognition model R with a path ~π ∈ ~Πnd(Rm) but ~π /∈ ~Πnd(R) (non-distinctive in Rm but

distinctive in R). This implies that there are at least two legal plans π
′ ∈ Πleg

Rm(g
′
) and

π
′′ ∈ Πleg

Rm(g
′′
) to two different goals g

′ 6= g
′′
, where one has ~π as its prefix and the other

shares the observable projection of ~π in Rm but not in R (w.l.o.g. we say that ~π is a prefix
of π

′
).

Under the assumption that m is an action conditioning modification, Lemma 6 ensures
that both plans are valid in R (i.e., π

′ ∈ ΠR(g
′
) and π

′′ ∈ ΠR(g
′′
)). Moreover, since φ is

cost-preserving we know that both plans are legal in R (π
′ ∈ Πleg

R (g
′
) and π

′′ ∈ Πleg
R (g

′′
)).

The sensor models of R and Rm are the same. Therefore, ~π is a prefix of π
′

and shares an
observable projection with a prefix of π

′′
. Hence ~π is non-distinctive in R, contradicting

our choice of ~π, and concluding our proof.

Next, we consider modifications that improve the recognition system’s ability to ob-
serve agent behavior by changing the system’s sensor model. Specifically, we consider here
single-action sensor refinement modifications (Keren et al., 2018), which determine the
observability of a single action. Letting AS [a] ⊆ A represent the set of actions (exclud-
ing action a) that share an observation token with action a according to sensor model S
(Definition 12), we define single-action sensor refinement as follows:

Definition 19 A modification m is a single-action sensor refinement modification if for
every goal recognition model R ∈ R, Amod(m,R) = ∅ and:
(1) For every action a ∈ A, if o∅ ∈ SRm(a) then o∅ ∈ SR(a); and
(2) There exists an action am ∈ A s.t. for every action a ∈ A, ASRm [a] = ASR

[a] \ am.

Following Definition 19, we say that sensor model S′ is an s-refinement of sensor model
S if there is a sequence ~m = 〈m1, . . . ,mn〉 of single-action sensor refinement modifications
(hereafter referred to as sensor refinement) s.t. given any goal recognition model R with S
as its sensor model, R~m is the same as R except for its sensor model S′.

The key to single-action sensor refinement is that some action is uniquely mapped to a
(not necessarily new) token. Also, the token set of a given action can include the empty
token in the refined model only if it was included in the original model. This formalism is
meant to support both noisy and low-resolution sensors. To illustrate, consider the POND
setting depicted in Figure 6(d), where the sensor model is noisy and non-deterministic,
and movement from D1 to D2 can be perceived as movement to either ZoneC or ZoneD.
Sensor refinement can be applied to guarantee that the only token emitted in this case is
the token corresponding to the action name.

A special case of sensor refinement is sensor placement (Keren et al., 2016a), which
involves exposing a non-observable action (previously mapped to the null token) and map-
ping it to its unique token. To illustrate sensor placement, consider the NO setting depicted
in Figure 6(b), where WCD can be reduced by exposing move(C5, D5) (i.e., positioning a

244

Goal Recognition Design in Deterministic Environments

sensor to observe this action). While in the original model the non-observable action pro-
duced the null token o∅, in the modified setting the action becomes observable (and emits a
token corresponding to the action’s name). Note that in this setting, while the exhaustive-
reduce approach will consider all possible sensor placement and refinement modifications,
our proposed pruned-reduce algorithm will prune modifications that have no effect on the
current WCD path, such as the sensor placement modification that exposes move(C3, B3).

Another example which illustrates both sensor refinement and action conditioning is
given below.

Figure 9: Action conditioning example

Example 3 As an example of a controllable environment where action conditioning can be
applied, consider Figure 9, which depicts a variation of the well-known BlockWords domain.
In the example, a robot uses a gripper to move blocks so as to achieve one of two possible
configurations. In our setting, in order to lift a block, the gripper needs to be adjusted to the
width of the block. The blocks and gripper are hidden from the recognition system, which
knows the initial setting (depicted on the left) and possible goals (depicted on the right), but
only knows when some action is performed and not which one (the recognition system can
hear when the gripper is performing some action, but cannot distinguish between different
actions).

In the original setting, the only way to guarantee correct goal recognition is by counting
the number of performed actions, setting WCD to 3 as the cost of the optimal plan to Goal
1 (i.e., the sequence 〈putOnTable(B), putOnTable(D), stackOn(A,C)〉). Placing a sensor on
Block B (indicating when the block is picked up by the gripper) reduces WCD to 1, since
optimal plans to both goals can start with placing Block D on the table (putOnTable(D)). If
moving Block B is the next action performed, then the goal is Goal 1(and Goal 2 otherwise).
If, in addition to placing the sensor, we limit the robot’s movement so it can only expand
its gripper (initially closed), the only way to achieve Goal 1 is by first lifting Block B.
In this case WCD = 0, and the first action is guaranteed to reveal the goal. Note that
we cannot disallow moving any of the blocks while still guaranteeing that both goals can be
achieved, exemplifying the importance of supporting the more general and versatile action
conditioning modifications.

245

Keren, Gal, & Karpas

To demonstrate the effect of pruning, the exhaustive-reduce approach examines all modi-
fications, including those that affect Block E (i.e., constraining it from being lifted or placing
a sensor on the block to detect when it is moved). In contrast, the pruned-reduce algorithm
prunes these modifications since no action that affects Block E is ever part of the WCD plans
of the model.

Sensor refinement (and placement) modifications never add non-distinctive paths. We
prove this by showing that for every path, the number of paths that may share its observable
projection cannot increase due to sensor refinement. Recall that ~Πleg

R (G) represents the set
of legal plans to all goals in a model R, and GOR(~o) is the set of goals satisfied by the
observation sequence ~o.

Theorem 6 Given two goal recognition models R,R′ ∈ R and a sensor refinement modifi-
cation m, if R′ = m(R) and φ(m,R) = 1 then

∀~π ∈ ~Πleg
R (G), max

~o′∈opR′ (~π)
|GOR′(~o′)| ≤ max

~o∈opR(~π)
|GOR(~o)|

The full proof for Theorem 6 can be found in Appendix D.

Corollary 1 Given a sensor refinement modification m and two goal recognition models R
and R′, if R′ = m(R) and φ(m,R) = 1 then ~Πnd(R′) ⊆ ~Πnd(R).

Proof: Let ~π be a non-distinctive path in ~Πnd(R′). Recall that sensor refinement modifies
only the sensor model and leaves the set of agent paths unchanged. Therefore, R and R′

differ only in their sensor model and ~π ∈ ~Πleg
R (G) ∩ ~Πleg

R′ (G). From Theorem 6,

max
~o′∈opR′ (~π)

|GOR′(~o′)| ≤ max
~o∈opR(~π)

|GOR(~o)|

Therefore, ~π ∈ ~Πnd(R) (Definition 9). Since this holds for any non-distinctive path in R′,
we obtain that ~Πnd(Rm) ⊆ ~Πnd(R).

Corollary 1 guarantees that if the recognition system’s sensor model is improved, the
WCD value cannot increase. In particular, it establishes the relationship between any
partially observable GRD model, where an action can share its emitted tokens with other
actions (i.e., NO, POD and POND), and its fully observable (FO) version, where each action
is mapped to a single and unique token. The WCD value of the model with full observability
is therefore a lower bound on the WCD value of the same model with a partial or noisy
sensor model.

Before concluding our description, we show that our model complies with the three
requirements, described in Section 5.2, that guarantee the safety of �pr. We start by
showing that a model with only action conditioning and sensor refinement modifications
and a cost-preserving constraint function is guaranteed to be monotonic-nd.

Lemma 8 Given a GRD model T = 〈R0, D〉 where R0 is the initial model and D =
〈M, δ, φ〉, if φ is cost-preserving and the modification set M consists only of action condi-
tioning and sensor refinement modifications, then T is monotonic-nd.

246

Goal Recognition Design in Deterministic Environments

Proof: According to Lemma 7, under the assumption that the constraint function φ is
cost-preserving, action conditioning modifications never add paths to the model, and non-
distinctive paths in particular. Corollary 1 shows that this is true for sensor refinement
modifications in any GRD model. Therefore, for any modification m ∈ M and model
R ∈ RT , ~Πnd(Rm) ⊆ ~Πnd(R) and T is monotonic-nd according to Definition 17.

We now show that a GRD model which supports only action conditioning and sensor
refinement modifications is independent.

Lemma 9 Let T = 〈R0, D〉 be a GRD model where R0 is the initial goal recognition model
and D = 〈M, δ, φ〉 is the design model. If M consists only of sensor refinement and action
conditioning modifications, then T is independent.

The full proof for Lemma 9 is given in Appendix E.

The third condition requires the GRD model to be persistent, which depends on its
constraint function.

Lemma 10 Given a GRD model T = 〈R0, D〉 where R0 is the initial model and D =
〈M, δ, φ〉, if φ is cost- and budget-preserving, and the modifications set M consists only of
action-constraining and sensor refinement modifications, then T is persistent.

Proof: To show the model is persistent, we consider a sequence ~m in T . If ~m is pruned
because it violates the design budget, then adding modifications is not allowed, and there
is no valid sequence with ~m as its prefix. If ~m is valid then the sequence and all of its
permutations respect the budget constraints.

According to Definition 18, the set of actions affected by a modification is the same for
any model R ∈ R (for sensor refinement the preconditions of all action are unchanged).
Therefore, if sequence ~m′ is a permutation of ~m, it will induce the same set of paths, and
legal paths in particular. If applying ~m maintains for every goal g the maximal cost of
a legal plan, denoted by CmaxA (g), so will the application of any of its permutations ~m′.
Similarly, if ~m causes CmaxA (g) for one of the goals g to increase, appending modifications
to ~m will not reduce these costs. Therefore any sequence that has ~m as its prefix will be
invalid. This concludes our proof that T is persistent under the specified conditions.

Finally, we combine the ingredients specified above to describe a GRD model for which
the pruned-reduce algorithm is guaranteed to find an optimal modification sequence.

Theorem 7 Given a GRD model T = 〈R0, D〉, where R0 is the initial model and D =
〈M, δ, φ〉, if φ is both cost-preserving and budget-preserving and the modifications set M
includes only action-constraining and sensor refinement modifications, then �pr (R) is safe.

Proof: According to Theorem 8 (Appendix B), if a pruning function is guaranteed to
produce a GSSS for every node in the search, it is safe. According to Theorem 5, if R
is independent, persistent and monotonic-nd, the set �pr (R) is a GSSS for every model
R ∈ RT . Lemma 8 guarantees that, under the specified constraints, T is monotonic-nd,
while Lemma 9 guarantees it is independent. Finally, Lemma 10 concludes our proof by
guaranteeing the model is persistent.

247

Keren, Gal, & Karpas

6. Empirical Evaluation

In our empirical evaluation we instantiate a variety of independent, persistent and monotonic-
nd GRD models that comply with the requirements specified above and show the effect of
design on WCD.

GRD analysis consists of two core tasks, namely calculating WCD and minimizing
it. Accordingly, we divide our evaluation into two main parts. In the first, we measure
WCD in different goal recognition settings, and evaluate the methods we have suggested to
calculate it. In particular, we compare our compilation-based approaches, and examine their
efficiency for the different GRD settings. The second part of our analysis focuses on the
design task, and evaluates WCD reduction achieved through redesign in various settings,
using the different modification methods suggested in Section 5.3. We also examine the
benefits of pruning using the pruned-reduce algorithm, and compare it to exhaustive-reduce.

All our examined problems represent independent, persistent, and monotonic-nd
GRD models (as defined in Section 5.2). They vary both in the recognition system’s sensor
model, and in agents’ bounds for diversion from optimal behavior. This allows us to exam-
ine how WCD increases when moving from fully observable to partially observable settings,
and from settings with optimal agents to settings that support bounded-suboptimal agents.
We first describe the dataset used for the evaluation, followed by the experimental setup
and results for each of the empirical questions.

6.1 Dataset

Our dataset10 consists of four uniform cost goal recognition domains adapted from Ramirez
and Geffner (2009), namely Grid-Navigation (GRID), IPC-Grid+ (GRID+), Block-
words (BLOCK), and Logistics (LOG). We also examined three uniform cost domains
adapted from Pereira et al. (2017), namely Intrusion Detection (I-DET), Depots (DEP),
and Campus (CAM). All benchmarks are based on PDDL domains from the deterministic
track of the International Planning Competitions (IPC).11 Due to planner limitations, we
created smaller instances for I-DET, DEP and LOG for which the corresponding planning
problem could be solved optimally within 5 minutes.

For non-uniform action costs we evaluated the ISS-CAD (ISS) domain (E-Mart́ın, R-
Moreno, & Smith, 2015), which describes a space exploration setting where a robot needs
to recognize the goal of an astronaut performing maintenance tasks in a spaceship. The do-
main operators involve moving between spaceship areas, inspecting components, measuring
air and humidity levels, etc. The model propositions describe the location of astronauts,
subsystems, tools, and components, the availability of instruments and components, the
state (on, off, enabled, disabled) of the electrical equipment, etc.

We considered four observability settings (all described in Section 3), expressed via the
recognition system’s sensor model.

• Fully Observable (FO) - agent actions are fully observable by the recognition system.
• Non-Observable (NO) - agent actions are either observable or non-observable.

10. A full code base and dataset together with a GRD task generator can be found at
https://github.com/sarah-keren/goal-recognition-design

11. http://icaps-conference.org/index.php/main/competitions

248

Goal Recognition Design in Deterministic Environments

• Partially Observable Deterministic (POD) - each agent action is mapped to exactly
one token (but many actions can be mapped to the same token). Non-observable
actions are mapped to the null token.
• Partially Observable Non-Deterministic (POND) - a generalization of POD that allows

each agent action to be mapped to one or more tokens (non-observable actions are
mapped to the null token).

Each problem contains a domain description, a template for a problem description (with-
out a goal), and a set of possible goals. For each benchmark we generated a separate FO
problem for each pair of goals. For each FO problem we used a generator to create three
NO settings, where the non-observable actions were randomly selected. For each NO set-
ting, we created three POD settings, where the non-observable actions from the PO model
remain non-observable and the remaining actions are randomly mapped to an observation
token, chosen from an automatically generated set of possible tokens. The variety of tokens
is generated by mapping each (grounded) action (e.g., move(C1, D1)) to its corresponding
action name (e.g., move), to a subset of its parameters (e.g., C1), or to one of a set of
random tokens (e.g., O8). For each POD setting, we created three POND settings, where
noise is added to the sensor model. This is implemented by adding to the set of possible
observation tokens an additional token (each token emitted by an action in a POD setting
may be emitted by the action in its corresponding POND settings). The set of possible
tokens is the same as described for the POD setting.

This setup creates a dataset where each FO setting RFO has a set of NO settings RNO
such that SRFO

, the sensor model of RFO, is an s-refinement (see Definition 19) of SRNO
, the

sensor model of RNO. Similarly, each NO setting has a set of POD settings RPOD s.t. SRNO

is a s-refinement of SRPOD
, the sensor model of RPOD. Finally, each POD setting RPOD

has a set of POND settings RPOND, s.t. SRPOD
is a s-refinement of SRPOND

. Corollary 1
guarantees that WCD will not decrease as we move from FO to NO, from NO to POD, and
from POD to POND (i.e., WCD(RFO) ≤WCD(RNO) ≤WCD(RPOD) ≤WCD(RPOND)).

Non-observable action file Action tokens mapping file

FO Empty file Each action mapped to a unique token

NO Random selection of non-observable ac-
tions

Observable actions mapped to their name

POD NA Observable actions mapped to a single to-
ken. Non-observable actions mapped to
the null token.

POND NA Observable actions mapped to two distinct
tokens. Non-observable actions mapped
to the null token.

Table 2: Implementation of the various observability settings for GRD

To implement the variety of observability settings, we have two file types describing
the recognition system’s sensor model. For each NO setting we include a file specifying

249

Keren, Gal, & Karpas

the set of non-observable actions (with observable actions being the complementary set
of actions). For the POD and POND settings, each problem description includes a file
specifying the tokens emitted by each action. The variety of generated sensor models
and their corresponding files is described in Table 2, where each column represents the
type of file, and the rows are the different observability settings (‘NA’ stands for ‘non-
applicable’). Note that since we wanted to evaluate the efficiency of our calculation methods
(as described in the next section), we implemented both the FO and NO settings using the
action token files in addition to the more specialized implementation of each setting. In
total, we evaluated 660 GRID, 528 GRID+, 264 BLOCK, 620 LOG, 264 I-DET, 824 DEP,
220 CAM, and 352 ISS problems.

6.2 Setup

WCD calculation: We measure WCD in different GRD settings and evaluate the effi-
ciency of our WCD calculation methods, presented in Section 4.2.

• latest-split (LS) - a compilation to classical planning for fully observable agents.
• latest-expose (LE) - a compilation to classical planning for non-observable actions.
• common-declare (CD) - a compilation to classical planning for partial and non-deterministic

sensor models.

LS LE CD ASP

FO + + + +

NO - + + -

POD - - + -

POND - - + -

Table 3: Calculation methods examined for each observability setting

We performed a separate evaluation for each observability setting presented above, ex-
amining for each model the relevant calculation methods. As shown in Table 3 (where +
indicates performed evaluations), for FO models we examined all three methods. For the
NO settings we examined the LE and CD compilation techniques. The POD and POND
settings were evaluated using CD. To examine the effect of a diversion bound on the WCD in
GRD settings with bounded-suboptimal agents, we evaluated each setting with a bound of
1-3. In addition to our approaches, we examined the approach suggested by Son et al.
(2016), where answer set programming is used to find and reduce WCD. This approach,
which we denote as ASP, was used only for the fully observable models with optimal agents
(the only setting supported by ASP).

For the solution of the compiled planning problems, we used the Fast Downward plan-
ning system (Helmert, 2006), running A∗ with the LM-CUT heuristic (Helmert & Domshlak,
2009) for all but the ISS domain, for which the IPDB heuristic (Haslum, Botea, Helmert,
Bonet, Koenig, et al., 2007) was used. Experiments were run on Intel(R) Xeon(R) CPU

250

Goal Recognition Design in Deterministic Environments

X5690 machines, with a time limit of 30 minutes and memory limit of 2 GB.

Setup - WCD reduction: We implemented the four modification methods described in
Section 5.3, namely action removal (AR), action conditioning (AC), sensor placement (SP),
and single-action sensor refinement (SR). AR and AC were implemented by adding a special
parameterized predicate not-allowed to the domain description. This predicate is specific
to an action and its parameters. For example, in the GRID domain, disallowing movement
from cell C1 to C2 is represented by the predicate not-allowed-move(C1, C2).

We implemented AR, in which certain actions are disallowed altogether, by adding the
corresponding not-allowed predicate to the initial state. We implemented AC by forcing
pairs of actions to occur in a certain order. This was done by adding not-allowed predicates
to the effects of actions. For example, to disallow the execution of move(C2, C3) after
move(C1, C2), not-allowed-move(C2, C3) is added to the effects of move(C1, C2).

AR AC SP SR

FO + + - -

NO + + + -

POD + + + +

POND + + + +

Table 4: Modification methods examined for each setting

We implemented SP by removing an action from the non-observable action file for NO
settings, and by setting the token of a non-observable action (previously mapped to the null
token) to its corresponding action name for POD and POND settings. Similarly, SR was
implemented by mapping an action to its name. The modification methods examined for
each observability model are specified in Table 4 (+ indicates a method was used, and −
otherwise).

To evaluate the effect of design on WCD, and particularly the effect of specific modi-
fication types, we examined all instances with a design budget of 4 assigned once for each
modification type and once as an overall budget. The constraint function required the op-
timal cost to any of the goals to remain unchanged. To evaluate the power of pruning,
each problem was run with both the exhaustive-reduce and pruned-reduce algorithms. Dur-
ing execution, we kept track of intermediate results, allowing us to examine the maximal
reduction achieved by each design budget allocation.

6.3 Results

WCD calculation: Table 5 shows the average running time (in seconds) of the different
compilation techniques, as specified in Table 3, for WCD calculation for optimal agents.
The shortest running time (indicating the most efficient method) is highlighted (for POD
and POND, CD was the only method examined). The results show that where the more

251

Keren, Gal, & Karpas

specialized compilations can be applied, they perform better. Nevertheless, the most generic
compilation, CD (common-declare), which can account for all settings, managed to solve
all instances in the different observability settings, with a running time up to four times
higher than with the most tailored approach.

FO NO POD POND

LS LE CD LE CD CD CD

GRID 0.7 1.7 2.1 1.5 2.1 2.56 7.22

GRID+ 1.1 1.8 1.9 2.2 2.4 3.4 4.1

BLOCK 3.8 6.2 8.1 51.4 52.5 104.1 160.2

LOG 1.4 1.7 1.9 12.1 22.2 99.2 109.4

I-DET 0.3 0.7 1.2 1.5 2.3 2.4 2.4

DEP 4.2 5.3 8.3 8.9 9.5 9.7 9.9

CAM 0.8 1.2 2.2 2.3 2.4 2.3 2.3

ISS 2.7 3.9 5.5 4.9 7.3 13.4 13.5

Table 5: Average running time (in seconds) of different WCD calculation methods

Not shown in the table are the results comparing the latest-split and ASP methods. This
is because the only available benchmarks for running ASP comprised the complete goal sets
presented by Ramirez and Geffner (2009), while our dataset included pairs of goals from
different sources. For these problems, which we examined separately using both methods,
ASP outperformed latest-split with a time reduction of up to 30%. However, this method
is limited to the fully observable setting and could therefore not be used to evaluate our
extended partially observable settings.

FO NO POD POND

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

GRID 10.1 10.1 12.1 12.1 13.9 13.9 16.5 16.5 14.9 14.9 17.6 17.6 15.9 15.9 18.0 18.0
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

GRID+ 9.5 10.1 11.2 12.1 9.6 10.7 11.2 12.7 9.51 10.03 11.8 12.6 10.5 NA NA NA
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (0.4) (0.22)

BLOCK 7.01 7.6 9.3 10.1 9.5 10.9 11.6 13.2 10.5 10.9 11.4 12.9 11.7 NA NA NA
(1.0) (1.0) (1.0) (1.0) (0.8) (0.8) (0.4) (0.3) (1.0) (0.8) (0.4) (0.2) (0.14)

LOG 0 3.5 6.2 8.3 9.5 11.3 12.2 13.0 11.7 11.9 12.3 13.2 13.4 NA NA NA
(1.0) (1.0) (1.0) (1.0) (0.6) (0.3) (0.3) (0.3) (0.2) (0.2) (0.16) (0.16) (0.1)

I-DET 1.1 2.7 3.8 4.9 3.5 4.5 3.3 5.1 3.1 3.6 4.8 5.5 6.3 NA NA NA
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (0.9) (0.8) (0.3)

DEP 1.2 4.5 6.7 8.5 2.3 2.4 4.7 5.1 7.0 7.8 8.1 NA 7.5 NA NA NA
(1.0) (1.0) (1.0) (1.0) (0.8) (0.7) (0.3) (0.2) (0.2) (0.17) (0.17) (0.11)

CAM 1.2 2.8 4.3 5.3 2.3 2.8 4.3 5.3 2.9 3.1 4.5 5.4 6.2 NA NA NA
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (0.7) (0.4) (0.4) (0.4) (0.2)

ISS 42.01 43.02 NA NA 45.67 46.1 NA NA 45.67 NA NA NA 45.92 NA NA NA
(0.5) (0.4) (0.3) (0.3) (0.2) (0.2)

Table 6: Average WCD value for different observability settings and diversion bounds

Table 6 shows the average WCD for each domain, based on observability and diversion
bound. The ratio of solved instances is given in parentheses. We examined a diversion
bound range of 0−3, where 0 corresponds to optimal agents. Settings for which no instance
was solved are marked ‘NA’. The table shows the results acquired when using the most
tailored approach for each observability setting (i.e., LS for FO, LE for NO and CD for

252

Goal Recognition Design in Deterministic Environments

POD and POND). Note that WCD in the ISS domain is substantially higher since this
is a non-uniform cost domain, and the indicated value reflects path cost rather than path
length.

As expected, WCD increases for all domains as the diversion bound rises and/or ob-
servability worsens. It is noteworthy that the diversion bound and the introduction of noise
to the sensor model had different effects in each domain. This is apparent when comparing
the FO setting with optimal agents (FO-0) to the partially observable setting with optimal
agents (POND-0) and the fully observable setting for agents with the maximal examined
diversion bound (FO-3). For example, in the GRID domain, partial observability had a
stronger effect on WCD, while for GRID+, it was the diversion bound that caused a greater
increase in WCD.

Considering the overhead caused by the extended observability and diversion bound,
our compilation-based techniques were able to compute WCD for most examined instances.
Failure in all instances of a particular setting (e.g., diversion bound 2 and 3 for the ISS do-
main) mainly reflected failure to complete the task before reaching the allocated time limit.
The results indicate that the diversion bound had a stronger effect on computation than the
introduction of noise to the sensor model (as seen in a comparison between observability
models).

Results - WCD reduction

FO NO POD POND

Exhaustive Pruned Exhaustive Pruned Exhaustive Pruned Exhaustive Pruned

Solved Expanded Solved Expanded Solved Expanded Solved Expanded Solved Expanded Solved Expanded Solved Expanded Solved Expanded

GRID 148 135.25 160 48.5 53 240.1 72 168.3 142 341.3 148 198.4 232 437.42 288 252.57

GRID+ 71 161.25 75 36.75 70 173.4 73 52.4 63 234.4 68 54.3 63 212.66 68 50.04

BLOCK 15 136.1 20 47.6 16 142.3 24 58.2 20 132.6 23 20.4 32 136.75 48 21.33

LOG 41 194.6 45 11.66 40 202.3 42 50.5 32 346.5 35 170.1 19 580.01 22 172.66

I-DET 42 145.5 42 35.5 39 192.3 41 54.2 38 243.5 40 197.5 31 580.01 33 214.65

DEP 47 134.3 51 94.6 30 145.3 34 103.2 25 245.4 23 145.6 21 580.01 24 187.6

CAM 57 142.3 62 62.2 57 246.5 63 98.4 45 145.3 48 101.3 32 203.4 42 84.01

ISS 60 40.0 120 7.9 53 54.4 119 50.1 68 73.6 195 64.3 74 168.75 224 156.63

Table 7: Efficiency gain of pruning

Table 7 compares the performance of the exhaustive-reduce (Exhaustive) and pruned-
reduce (Pruned) algorithms. For each method and setting, the table shows the number of
problems solved to completion within the time bound (Solved), and, for those solved by
both methods, the average number of modification sequences expanded by each method
(Expanded). Evaluation shows that for all domains, pruned-reduce solves more problems
and expands fewer nodes than the exhaustive search, showing the efficiency gain brought
about by pruned-reduce. This computational gain is emphasized in domains with large
branching factors, such as ISS, where pruned-reduce examines as few as 20% of the nodes
examined by the exhaustive approach.

Table 8 shows the average WCD reduction achieved in each domain and observability
setting for optimal agents using each relevant modification method separately (AR, AC, SP
and SR), and a combination of all modifications (TOT). In parentheses we show the ratio
of problems for which WCD was reduced.

253

Keren, Gal, & Karpas

FO NO POD POND

AR AC TOT AR AC SP TOT AR AC SR TOT AR AC SR TOT

GRID 1.27 1.06 1.29 1.27 1.06 1.35 1.37 1.54 1.12 2.11 2.21 3.95 1.23 3.54 4.1
(0.67) (0.71) (0.82) (0.67) (0.71) (0.84) (0.84) (0.22) (0.35) (0.67) (0.72) (0.21) (0.3) (0.28) (0.43)

GRID+ 0.57 0.57 0.57 0.57 0.57 1.1 1.1 0.61 0.61 3.2 3.2 1.73 1.5 3.67 3.67
(0.5) (0.5) (0.5) (0.5) (0.5) (0.81) (0.81) (0.31) (0.31) (0.73) (0.73) (0.27) (0.33) (0.67) (0.71)

BLOCK 0.43 0.44 0.52 1.11 0.5 1.82 1.82 0.45 0.32 1.79 1.79 0.55 0.31 1.81 1.81
(0.4) (0.4) (0.61) (0.5) (0.65) (0.76) (0.76) (0.8) (0.3) (0.85) (0.85) (0.51) (0.32) (0.85) (0.85)

LOG 1.34 1.32 1.78 1.67 1.64 2.53 2.53 3.51 1.42 3.82 3.91 3.54 1.23 3.95 4.17
(0.53) (0.57) (0.58) (0.5) (0.55) (0.79) (0.79) (0.24) (0.32) (0.41) (0.44) (0.21) (0.3) (0.28) (0.32)

I-DET 0 0 0 0 0 1.73 1.73 0 0 1.9 1.9 0 0 1.65 1.65
(0) (0) (0) (0) (0) (0.71) (0.71) (0) (0) (0.74) (0.74) (0) (0) (0.66) (0.66)

DEP 0.15 0.25 0.25 0.15 0.25 0.35 0.35 0.11 0.12 1.92 1.92 0.11 0.12 2.1 2.1
(0.11) (0.23) (0.23) (0.11) (0.23) (0.5) (0.5) (0.1) (0.19) (0.61) (0.61) (0.1) (0.21) (0.63) (0.63)

CAM 0.44 0.46 1.01 0.89 0.38 0.92 0.92 0.82 0.35 2.1 2.1 0.43 0.23 1.9 1.9
(0.22) (0.23) (0.5) (0.68) (0.4) (0.79) (0.79) (0.17) (0.15) (0.65) (0.65) (0.14) (0.1) (0.63) (0.63)

ISS 0 0 0 0 0 1.5 1.5 0 0 9.5 9.5 0 0 9.57 9.57
(0) (0) (0) (0) (0) (0.17) (0.17) (0) (0) (0.15) (0.15) (0) (0) (0.15) (0.15)

Table 8: Comparing modifications in different observability settings

The results point to the feasibility of reducing WCD through redesign. In fact, with
the exception of the FO settings of ISS and I-DET, WCD can be reduced for at least 10%
of the instances in each domain. For most FO domains, a combination of AR and the
more refined AC approach yielded the best results. In addition, while sensor placement
and refinement were the dominating approaches in most partially observable settings, for
GRID and LOG a combined approach was better then any of the individual modifications.
Moreover, for the domains where reduction was achievable, all of our examined approaches
reduced WCD in some problems. This is important since in any realistic setting, the set
of possible modifications depends on the application and the available design resources.
The results show that even in domains where AR cannot be applied, the more refined AC
approach can achieve WCD reduction in all cases where AR is beneficial.

7. Related Work

GRD involves the analysis of goal recognition models. As such it is closely related to
and complements goal recognition research efforts, where the objective is to recognize the
goals (or plans for plan recognition) of agents on the basis of their observed behavior. As
mentioned in Section 2.2, there are many different models for goal and plan recognition,
and many different tools have been developed for their solutions.

However related, GRD is a different task. While goal recognition aims at discovering
the goals (and sometimes plans) of an agent by analyzing a specific observation sequence,
GRD analyzes the goal recognition setting and offers a solution for facilitating online recog-
nition. As such, the principles of GRD analysis can be adopted to any goal and plan
recognition setting where the environment can be controlled. In particular, it can be ap-
plied to continuous domains where, as in discrete domains, the recognition system may fail
because plan prefixes are shared by multiple goals (Vered & Kaminka, 2017). In such set-
tings, redesign can be applied to reduce ambiguity and improve recognition. In particular,
sensor refinement (Definition 19) can be viewed as a form of discretization (Kaminka et al.,
2018), where the recognition system’s sensor resolution is improved. Given a limited bud-

254

Goal Recognition Design in Deterministic Environments

get of possible modifications, GRD analysis finds the optimal set of refinement operators
to apply to the model so as to minimize WCD (i.e., to support early recognition).

GRD is also related to the problem of transparent (or explainable) planning (MacNally,
Lipovetzky, Ramirez, & Pearce, 2018; Chakraborti, Sreedharan, Zhang, & Kambhampati,
2017), where acting agents behave in ways meant to help the observer recognize their
objectives. Minimizing WCD guarantees a bound on the number of observations that need
to be collected before recognition is achieved, thus enhancing collaboration between agents.
Equally, GRD can be applied to the problem of finding behaviors that obfuscate an agent’s
goal. This is relevant to both adversarial agents (Kabanza et al., 2010; Keren et al., 2015;
Masters & Sardina, 2017) and privacy-preserving agents (Keren et al., 2016b). Specifically,
Keren et al. (2016b) show that agents can use GRD tools to identify WCD paths that lead
to their destination while keeping it ambiguous as long as possible.

The first GRD model, suggested in Keren et al. (2014), accounts for fully observable
deterministic settings where agents are assumed to behave optimally. This model can be
modified by disallowing actions. Several variations of this setting have since been suggested.
Son et al. (2016) modeled and solved the GRD setting specified in Keren et al. (2014) us-
ing Answer Set Programming (ASP). Keren et al. (2015) accounted for suboptimal agents,
while Keren et al. (2016a, 2016b) supported a recognition system with partial and noisy
sensor models that could be improved via sensor refinement. Mirsky et al. (2018) used plan
libraries to represent agent behavior. Wayllace, Hou, Yeoh, and Son (2016, 2017) extended
GRD to account for stochastic agent actions. In that work, instead of seeking the maximal
non-distinctive path, the model accounts for probabilistic behavior by measuring the maxi-
mal expected cost an agent may incur before its goal is revealed. This approach is extended
by Wayllace, Keren, Yeoh, Gal, and Karpas (2018) to account for partial observability in
stochastic models. Finally, Ang, Chan, Jiang, and Yeoh (2017) support a game-theoretic
version of GRD, in which a recognition system can alter the environment to facilitate the
early detection of attacks by strategic adversarial agents that obfuscate their targets. In
this work, we focus on GRD in settings where agents are either optimal or suboptimal,
actions are deterministic, and the recognition system’s sensor coverage (i.e., observability
of agents and their movements) is possibly partial and noisy. For such settings, we present
techniques for efficient WCD calculation based on compilations to planning, and provide
an efficient design method while specifying the conditions under which it is guaranteed to
yield optimal redesign sequences.

GRD can be viewed as a form of environment design (Zhang, Chen, & Parkes, 2009),
which provides a framework for utility maximization where an interested party seeks opti-
mal modifications to an environment. The agent is assumed to have a fixed form of decision
making and the system can influence the agent’s decisions via limited changes to the envi-
ronment. Several special cases of this model have been suggested, including policy teaching
(Zhang & Parkes, 2008), where the system aims to influence an agent’s decisions by mod-
ifying its reward function; and equi-reward utility maximizing design (ER-UMD) (Keren,
Pineda, Gal, Karpas, & Zilberstein, 2017), where design is used to maximize agent utility.
In GRD, the recognition system is penalized for non-distinctive behavior and modifications
are applied to minimize WCD.

GRD can also be seen as a form of mechanism design, where we want to influence future
interactions between an agent and the goal recognition system. Specifically, our approach of

255

Keren, Gal, & Karpas

reducing WCD by eliminating legal actions can be seen as an aspect of social law (Shoham &
Tennenholtz, 1995), with eliminated actions viewed as being made illegal. Agotnes, Van der
Hoek, and Wooldridge (2012) use Kripke structures as their model and apply social laws to
achieve a specified objective by eliminating some available transitions. A distance measure
between structures is defined to assess the quality of a given law. However, that work
offers no method for finding the social laws that fulfill the specified objective. We describe
concrete methods for finding the optimal set of modifications to apply to a model so as to
minimize WCD.

Our work, with its GRD framework, is not the first to highlight the influence of common
prefixes on the task of goal recognition. Geib (2004) theoretically discusses the complexity
of performing plan recognition by analyzing the prefixes of plans in a library. However, no
concrete measure is given that can be used in our model. In the work of Geib (2009), the
analysis of plan heads is proposed as a way to increase the efficiency of goal recognition
given an observation set. Our work relates to a different setting that does not commit to a
specific observation sequence and does not rely on a plan library being supplied.

Most of the tools we have created for assessing the GRD framework are based on compi-
lations to classical planning. This approach is inspired by the work of Ramirez and Geffner
(2009), which established the connection between goal recognition and automated planning.
Similarly to Ramirez and Geffner (2009, 2010), we use planning domains to model the goal
recognition environment. However, instead of analyzing a given observation, our work uses
compilations to planning in order to assess a goal recognition setting. In fact, Ramirez and
Geffner (2016) showed that the domain formulation subsumes the plan library approach
through a compilation of libraries into strips theories, making our approach applicable to
any description of the set of legal plans using plan libraries.

As for WCD reduction, we apply a BFS search in the space of modifications, and offer
ways to prune the search space. Son et al. (2016) use a declarative approach based on
Answer Set Programming (ASP) to assess and reduce WCD in fully observable settings.
As detailed in Section 6, this approach outperforms our compilation to planning approach,
but fails to account for the partial observability of our model.

8. Concluding Remarks

We described the problem of goal recognition design (GRD) and presented techniques for
assessing and redesigning different goal recognition settings for improved recognition. The
overall objective of this work is to propose a generic framework for GRD in deterministic
environments, and to offer efficient ways of both analyzing and optimizing a given goal
recognition setting.

As a measure of model quality, we presented the worst case distinctiveness measure
(WCD), which represents the maximal cost of a path an agent may follow before its goal is
revealed. After formulating the GRD framework and providing a formal definition of the
WCD measure, we offered methods for calculating WCD, mostly based on compilations of
GRD problems to classical planning.

For optimizing GRD models, we offer a BFS-like search in the space of modifications,
and suggest pruning as a way to reduce the size of the search space. Framing our pruning
methods in the context of strong stubborn sets, we specified conditions under which our

256

Goal Recognition Design in Deterministic Environments

pruning is safe. This allowed us not only to account for previously suggested GRD models,
but also to extend the framework with new models that comply with these requirements.

Our empirical evaluation examined the value of WCD in different GRD settings, and
the techniques we propose for its calculation and optimization. In particular, we examined
the efficiency gain brought about by our pruning approach, and WCD reduction that can
be achieved via design. We showed that our techniques can be used to efficiently evaluate
and minimize WCD in a variety of goal recognition settings.

Looking forward, there are many ways to extend the GRD framework. One such di-
rection involves accounting for agents with partial knowledge. To date, all existing models
of GRD are based on the assumption that agents enjoy perfect observability of the envi-
ronment and its dynamics. Enriching the GRD model to account for agents with partial
information is a promising direction for future work, relevant to many realistic applications
of GRD.

Another possible direction explores and enhances the design process. In this work, we
used pruning to increase efficiency. It may be beneficial to combine different search space
reduction techniques and heuristics in order to further reduce the computational overhead
of the search in the modification space. In particular, while we offered methods for finding
optimal redesign sequences, compromising optimality and applying approximate solutions
can be useful in real-world applications, which tend to be extremely complex. Also, this
work focused on modifications that change either the set of applicable actions at each
state or the recognition system’s sensor model. It may be valuable to examine other types
of modifications, including modifications designed to change the initial state, adjust the
position of the goals, etc.

Finally, while we evaluated GRD using goal recognition settings based on standard
benchmarks from the automated planning literature, it would be useful to enrich the
GRD framework by applying it to various real-world applications and examine the effect
GRD may have in such settings.

Appendix A. The common-declare Compilation

The definition of the compilation common-declare described and justified in Section 4.2
is given below. For clarity, we highlight the parts of the compilation that deal with sub-
optimal agents and that can be omitted for settings where agents are assumed to behave
optimally.

The input to the model is a CB-GR model as described in Section 4. We let θi represent
the diversion bound of each agent and ~Πθ(gi) represent the set of legal paths to goal gi,
including all paths with cost up to Ti = C∗A(gi) + θi, where C∗A(gi) is the optimal cost to gi.
We define the common-declare compilation as follows:

Definition 20 (common-declare compilation) For a CB-GR model R0,1 =
〈F, I,A,CA, G = {g0, g1}, O, 〈θ0, θ1〉, S〉, we create a planning problem P ′ =
〈F ′, I ′, A′, G′, C ′A〉 where:

• F ′ = {f0, f1 | f ∈ F} ∪ {declaredi | i ∈ {0, 1}} ∪ {performedki | k ∈ O, i ∈ {0, 1}} ∪
{costc | c ∈ dom(CA)} ∪ {exposed} ∪ {discounted0} ∪ {paid0} ∪ {timeti | i ∈ {0,1}}
• I ′ = {f0, f1 | f ∈ I} ∪ {declared0} ∪ {declared1} ∪ {paid0}∪{time00, time01}

257

Keren, Gal, & Karpas

• A′ = {Ai | i ∈ {0, 1}} ∪ {Declarek0,1 | k ∈ O} ∪ {Declareo
∅

0 } ∪ {Declareki | k ∈ O, i ∈
{0, 1}} ∪ {Pay0} ∪ {PayDiscounted0}∪{Idlei | i ∈ {0,1}} where

– Ai= {aki | a ∈ A, k ∈ S(a)} where
ak0 = 〈{f0 | f ∈ pre(a)} ∪ {declared0} ∪ {paid0}∪{timet0},
{f0 | f ∈ add(a)} ∪ {performedk0} ∪ {cost

CA(a)
0 }∪{time

t+CA(a)
0 },

{f0 | f ∈ del(a)} ∪ {declared0} ∪ {paid0}∪{timet0}〉
ak1 = 〈{f1 | f ∈ pre(a)} ∪ {declared1}∪{timet1},
{f1 | f ∈ add(a)} ∪ {performedk1}∪{time

t+CA(a)
1 },

{f1 | f ∈ del(a)} ∪ {declared1}∪{timet1}〉
– Declarek0,1= 〈{performedk0, performedk1,¬exposed}, {declared0, declared1, discounted0},
{performedk0, performedk1}〉

– Declare∅0= 〈{performedo∅0 ,¬exposed}, {declared0, discounted0}, {performedo
∅

0 }〉
– Declareki = 〈{performedki }, {declaredi, exposed}, {performedki }〉
– Payc0 = 〈{costc0, declared0}, {paid0}, {costc0}〉
– PayDiscountedc0 = 〈{discounted0, cost

c
0, declared0}, {paid0}, {discounted0, cost

c
0}〉

– Idleci = 〈{timeti}, {timet+c
i , exposed}, {timeti}〉

• g′ = {f0|f ∈ g0} ∪ {f1|f ∈ g1} ∪ {declared0} ∪ {paid0} ∪ {declared1}∪{timeTi
i }

• C ′A(a) =

0 if Declarek1, Declare
k
0,1, Declare

o∅
0 , A0

CA(a) if a ∈ A1

c if Payc0
c(1− ε) if PayDiscountedc0
c if Idleci

Appendix B. Generalized Strong Stubborn Sets for GRD

Given a GRD model T , our objective is to find a strongly optimal modification sequence.
A sequence ~m is optimal for model R if it is valid according to the specified constraints
and minimizes WCD. A sequence ~m is strongly optimal for model R if it is a minimal cost
(length) optimal sequence of R. A terminal node either minimizes WCD or has no valid
successor modifications. Finally recall from Section 3.1 that RT ⊆ R represents the set of
goal recognition models reachable from the initial model R0 by applying a valid modification
sequence.

Definition 21 (optimal solution, strongly optimal solution, terminal node)
Let T = 〈R0, D〉 be a GRD model where R0 is the initial goal recognition model and
D = 〈M, δ, φ〉 is the design model.

An optimal solution for a node R ∈ RT and its corresponding GRD model TR = 〈R,D〉,
is a finite sequence ~m = 〈m1, · · · ,mn〉 of modifications mi ∈ M s.t. φ(~m,R) = 1 and
WCD(δ(~m,R)) = WCDmin(TR).

A strongly optimal solution for node R is a sequence ~m s.t. for any optimal solution ~m′

of node R, |~m| ≤ |~m′|.
A terminal node is a node with no valid successors.

258

Goal Recognition Design in Deterministic Environments

The set Opt(T) represents the strongly optimal solutions for a GRD model T . Next, we
define a successor pruning function that yields for every node a set of successor nodes to be
explored in the search. Recall from Section 3 that app(R) represents the set of modifications
that are applicable in a goal recognition model R.

Definition 22 (successor pruning function) Let T = 〈R0, D〉 be a GRD model where
R0 is the initial goal recognition model and D = 〈M, δ, φ〉 is the design model. A successor
pruning function for T is a function �: R → 2M such that � (R) ⊆ app(R) for all R ∈ RT .

In GRD, a pruning function induces a subset of the applicable modifications at every
encountered goal recognition model. The pruning performed by the pruned-reduce algo-
rithm induces a successor pruning function, denoted by �pr, which takes a node of the
search (represented by a goal recognition model) and the set M of all possible transitions
(modifications) and prunes transitions that either violate the constraints or have no effect
on the set of WCD plans of the current model.

Since we want to minimize WCD, we need to guarantee our pruning method �pr pre-
serves completeness, i.e., strongly optimal solutions can still be found in the search tree
in spite of the pruning performed. Accordingly, a successor function is considered safe if
is guaranteed that an optimal solution for the given GRD task can still be found in the
pruned search tree.

Definition 23 (safe) Let � be a successor pruning function for a goal recognition design
model T . We say that � is safe if for every model R ∈ RT , the value of the optimal solution
for R is the same when using the pruned state space induced by � as when using the full
state space induced by app.

In general, it may be difficult to determine if a given successor pruning function is safe.
In order to make the definition operational, a successor function is safe if for every non-
terminal model R, the function includes at least one modification that starts an optimal
solution for R . As described by Wehrle and Helmert (2014), under the assumption the
model does not include zero-cost modifications, this is a necessary criterion for safety.

Proposition 1 Let � be a successor pruning function such that for every non-terminal
node R, � (R) contains at least one modification which is the first operator in an optimal
solution for R. Then � is safe.

After defining the pruning method applied at each node in the search and the conditions
that guarantee an optimal solution is found in spite of the pruning performed, we now
describe strong stubborn sets in the context of GRD. Specifically, we need to prove �pr
is safe by showing it produces a strong stubborn set for each encountered node. For this,
we first define interfering modifications as pairs of modifications that affect each other’s
applicability. In the context of GRD, non-interfering modifications yield the same set of
non-distinctive paths given any order of application. According to Definition 10, this is
enough to guarantee the two models have the same WCD value.

Definition 24 (interference) Let m1,m2 ∈M be modifications of a GRD model T , and
let R be a goal recognition model in RT . We say that m1 and m2 interfere in R if they are
both applicable in R (i.e. m1,m2 ∈ appφ(R)), and

259

Keren, Gal, & Karpas

• m1 disables m2 in R, i.e. m2 /∈ app(δ(m1, R)), or
• m2 disables m1, or
• m1 and m2 conflict in R, i.e., both Rm1,m2 = δ(m2, δ(m1, R)) and Rm2,m1 =
δ(m1, δ(m2, R)) are defined but ~Πnd(Rm1,m2) 6= ~Πnd(Rm2,m1).

In our description of the fully observable setting in Example 1, we considered modifica-
tions that create physical barriers, corresponding to the removal of actions from the model.
In this setting no modification can interfere with any other, since each modification relates
to a different position in the grid. If we extend this setting by considering also the removal
of barriers (i.e., extending the set of applicable actions), some modifications may interfere
with each other. In this case, the order of applications becomes important.

The second ingredient for computing strong stubborn sets is enabling sets. An enabling
set of a modification m and sequence set ~M consists of those modifications that are applied
before m in all sequences in ~M where m is applied.

Definition 25 (necessary enabling set) Let T = 〈R0, D〉 be a goal recognition design
model where R0 is the initial goal recognition model and D = 〈M, δ, φ〉 is the design model.
In addition, let m ∈M be one of the modifications, and ~M be a set of modification sequences
that are applicable in R0.

A necessary enabling set (NES) for modification m and ~M is a set M of modifications
such that every modification sequence in ~M which includes m as one of its operators also
includes some operator m′ ∈M before the occurrence of m.

In Example 1 and Example 2, no modifications have an NES. As an example of a setting
where modifications may have an NES, consider a variation of Example 2 where a nearby
power outlet needs to be installed before a sensor can be placed.

Based on Definitions 24 and 25, we define a modification as independent if it can be
applied to any goal recognition model without affecting the applicability of other modifica-
tions.

Definition 26 (independent modification) Let T = 〈R0, D〉 be a GRD model where
R0 is the initial goal recognition model and D = 〈M, δ, φ〉 is the design model. We say that
a modification m ∈M is independent in T if:
• The necessary enabling set of m and Opt(T) is empty; and
• For every goal recognition model R ∈ RT , there is no modification m′ s.t. m′ interferes

with m in R.

Finally, the formal definition of a generalized strong stubborn set (GSSS) is given below.
The definition uses an envelope (Wehrle & Helmert, 2014) to describe a subset of the
modification setM that is considered at each step and is known to be sufficient in the sense
that it is safe to ignore all modifications which are not within the envelope. A GSSS is then
a set of modifications that is guaranteed to contain a modification on a strongly optimal
sequence, all modifications that are preconditions to the application of other modifications,
and all modifications that interfere with a modification in the set.

Definition 27 (generalized strong stubborn set) Let T = 〈R0, D〉 be a goal recogni-
tion design model where R0 is the initial goal recognition model and D = 〈M, δ, φ〉 is the

260

Goal Recognition Design in Deterministic Environments

design model. A generalized strong stubborn set (GSSS) in R ∈ RT is a set of modifications
G ⊆M with the following properties.

If R is a terminal model, every set G ⊆M is a GSSS. Otherwise, G has an associated
set of operators E ⊆M (called the envelope of G). Let TER = 〈R,DE〉 be the goal recognition
design model with an initial goal recognition model R and a design model DE = 〈E, δ, φ〉,
which is the model that results from replacing the set of all modifications M with the set
E ⊆ M. In addition, let Opt(TER) be the set of strongly optimal solutions for TER , and
ROpt(TER) be the set of goal recognition models that are visited by at least one sequence in
Opt(TER). The following conditions must be true for G to be a GSSS:

• E includes all operators from at least one strongly optimal solution for R (in the
original model T).
• G contains at least one modification from at least one strongly optimal solution for
TER .
• For every modification m ∈ G that is not applicable in R, G contains a necessary

enabling set for m and Opt(TER).
• For every m ∈ G that is applicable in R, G contains all operators in E that interfere

with m in any model R′ ∈ ROpt(TER).

The definition above ensures that for every non-terminal node, at least one permutation
of an optimal sequence is not pruned. Note that verifying a given set is a GSSS does
not require complete knowledge of the sets of strongly optimal solutions. If the specified
conditions can be verified for an over-approximation of the sets, they hold for the actual
sets. Accordingly, we show that the pruning performed by the pruned-reduce algorithm uses
an over-approximation of the optimal solutions to yield a GSSS for every explored node.

Concluding the description we show that successor pruning based on GSSSs is safe.

Theorem 8 Let � be a successor pruning function defined as succ(R) = G(R) ∩ app(R),
where G(R) is a generalized strong stubborn set in R. Then � is safe.

Proof: Let R be a goal recognition model and G be a GSSS in R. We show that if R is
a non-terminal model, then G contains a modification which is the first modification in a
strongly optimal solution for R. The claim then follows from Proposition 1.

Let E denote the envelope of G, and let TER , Opt(TER) and ROpt(TER) be defined as in
Definition 27. In the following, we refer to the four condition of Definition 27 as C1− C4.

Every solution of TER (for its initial model R) is a solution for model R of T because
the two tasks only differ in their initial models and in the set of modifications, and the
modification set E of TER is a subset of operator setM. Further, because of C1 at least one
strongly optimal solution for R in T is also present in TER . It follows that strongly optimal
solution for TER are also strongly optimal for model R in T . Hence, it is sufficient to show
that G contains the first operator of some strongly optimal solution for TER .

Let ~m = 〈m1, . . . ,mn〉 be a strongly optimal solution for TER of which at least one
modification is contained in G. Such a solution must exist because of C2. Let k ∈ {1 . . . n}
be the minimal index for which mk ∈ G.

We show by contradiction that mk is applicable in R. Assume it is not applicable.
Because ok ∈ G, C3 guarantees that G contains a necessary enabling set for mk and
Opt(TER). Opt(TER) contains the sequence ~m, so by the definition of necessary enabling sets,

261

Keren, Gal, & Karpas

G must contain one of the operators in ~m that occur before mk . This is a contradiction to
the choice of k. It follows that mk is applicable in R.

Let R0, . . . , Rn be the sequence of models visited by ~m : R0 = R, and Ri = δ(mi, R
i−1)

for all 1 ≤ i ≤ n. Because ~m is strongly optimal, all these nodes are contained in ROpt(T
E
R).

It follows that mk does not interfere with any of the operators m1, . . . ,mk−1 in any of the
models Rj : if it did, then from C4 (with m = mk), the interfering operators would be
contained in G, again contradicting the minimality of k.

We now show that if mk is not already the first operator in ~m, we can use the method
suggested by Wehrle and Helmert (2014) to shift mk to the front of ~m. Consider the case
where k > 1 (otherwise mk is already at the front). We already know that mk is applicable in
R0; also, m1 is applicable in R0 (or ~m would not be applicable in R). Because m1 and mk do
not interfere in R0 , it follows that m1 does not disable mk, and hence mk is also applicable
in R1. This argument can be repeated to show that mk is applicable in all models Rj with
j < k. In particular, it is applicable in Rk−2, the node right before the one in which mk is
applied in ~m. Therefore, in this node, mk−1 and mk are both applicable and do not interfere,
so they can be applied in either order, leading to a model with the same set of non-distinctive
paths: ~Πnd(Rk) = ~Πnd(δ(mk, δ(mk−1, R

k−2))) = ~Πnd(δ(mk−1, δ(mk, R
k−2))). Hence we can

swap mk−1 and mk in ~m and still have a valid sequence.

This argument can be repeated to swap mk to position k − 2, k − 3 and so on, until we
end up with the sequence ~m′ = 〈mk,m1, . . . ,mk−1,mk+1, . . . ,mn〉 .

Because ~m′ is a permutation of ~m, it has the same cost as ~m and consists of the same set
of operators. It also induces the same set of non-distinctive paths and the same WCD value
and is therefore also a strongly optimal solution for TER . Its first operator, mk, belongs to G.
We have found a strongly optimal solution for TER whose first operator is in G, concluding
the proof.

Appendix C. Full Proof for Theorem 5

Below is the full proof for Theorem 5 given in Section 5.2 to show that under the specified
conditions, �pr yields a GSSS for every model encountered in the search.

Proof: In the following, we refer to the four conditions of Definition 27 (given in Appendix
B) as C1−C4. Assume, by way of contradiction, there exists a model R ∈ RT s.t. �pr (R)
is not a GSSS.

If R is a terminal node, then all subsets of M form a GSSS for R, so R must be
non-terminal and violate one of the conditions C1− C4.

Condition C1 requires that the envelope of R include at least one strongly optimal plan
for R. As described in Line 10 of Algorithm 2, pruned-reduce considers all modifications
at every iteration. The envelope E for every node is the same and includes all actions
and therefore C1 is not violated. According to Definition 26, since T is independent the
necessary enabling set of any m ∈M and Opt(T) is empty, and condition C3 is not violated.
Similarly, condition C4 is not violated since there are no two modifications that interfere in
an independent model.

To show that C2 cannot be violated under the specified assumptions, we show that
for every strongly optimal sequence that is pruned we can use the method suggested by

262

Goal Recognition Design in Deterministic Environments

Wehrle and Helmert (2014) to construct a strongly optimal sequence that is not pruned.
We let ~m = 〈m1, . . . ,mn〉 represent a strongly optimal solution for R s.t. m1 /∈�pr (R) (the
sequence is pruned). According to the pruned-reduce algorithm, modification m1 is not in
�pr (R) either because φ(δ(m1, R)) = 0 (applying m1 to R is invalid) or because m1 has no
effect on the WCD plans of R.

If applying m1 is invalid, then, under the assumption T is persistent, applying ~m to R
is also invalid, contradicting our choice of ~m. Otherwise, let k be the index of the first mod-
ification in ~m such that mk affects the set of WCD plans of R (i.e., ∃a ∈ A(mk, R) s.t. a ∈
ΠWCD(R)). If no such modification exists in ~m then the pair ΠWCD(R) remains unchanged
after executing ~m. According to Corollary 2, under the assumption T is monotonic-nd,
WCD(R) = WCD(R~m) and ~m is not strongly optimal, again contradicting our choice of ~m.

If such a modification exists, then, under the assumption T is persistent, we know that
mk is applicable at R (the beginning of the sequence ~m). If mk is the first operator in ~m it
will be included in �pr (R), contradicting our choice of ~m.

Otherwise, consider the case where k > 1. Let R0, . . . , Rn be the sequence of nodes
visited by ~m: R0 = R and Ri = mi(R

i−1). We know that m1 is applicable in R (or ~m would
not be applicable in R). Because m1 and mk are independent and do not interfere in R, it
follows that mk is also applicable in R1. This argument can be repeated to show that mk

is applicable in all models Rj with j < k. In particular, it is applicable in Rk−2, the node
right before the one in which it is applied in ~m. Therefore, in this model, mk−1 and mk can
be applied in either order, leading to a model with the same set of non-distinctive paths.
Hence we can swap mk−1 and mk and still have a valid sequence.

This argument can be repeated to swap mk to position k − 2, k − 3 and so on, until we
end up with the sequence ~m′ = 〈mk,m1, . . . ,mk−1,mk+1, . . . ,mn〉. Under the assumption
φ is consistent, we know that since ~m is valid, ~m′ is also valid. Because ~m′ is a permutation
of ~m with the same cost as ~m that yields the same set of non-distinctive paths, ~m′ is also a
strongly optimal solution. In addition, due to our choice of k we know that mk is the first
operator of a strongly optimal plan ~m′ included in �pr (R). The set �pr (R) is therefore a
GSSS for R.

The same argument is repeated for sequence 〈m1, . . . ,mk−1,mk+1, . . . ,mn〉 and model
Rk and all the sequences that follow. If we reach n, we have found a permutation of ~m
which is strongly optimal and is not pruned from the search. If, on the other hand, we reach
an index j < n s.t. there is no modification in the remaining sequence on the WCD plans
of the current model, then ~m is not strongly optimal, contradicting our choice of ~m and
concluding our proof.

Appendix D. Full Proof for Theorem 6

Below is the full proof for Theorem 6, given in Section 5.3 to show that sensor refinement
(and placement) modifications never add non-distinctive paths to a model.

Proof: By definition, sensor refinement only changes the system’s sensor model and not
the set of legal paths to each goal. According to Definition 2, the set of possible observation
sequences generated by the execution of a path ~π is opR(~π) in R and opR′(~π) in R′.

263

Keren, Gal, & Karpas

Assume to the contrary that m is a sensor refinement modification and R′ = m(R) but

∃~π ∈ ~Πleg
R (G) s.t. max

~o′∈opR′ (~π)
|GOR′(~o′)| > max

~o∈opR(~π)
|GOR(~o)| (2)

Since ~π ∈ ~Πleg
R (G), there is at least one goal g~π ∈ G which is the actual goal of the acting

agent and which is satisfied by all the observable projections ~o ∈ opR(~π) (by Definition 7).
Our assumption implies that there is at least one other goal go (go 6= g~π) s.t. at least one
observable projection of ~π satisfies both g~π and go in R′, but no such observable projection
in R, otherwise Eq. 2 fails to hold.

We now look at the path ~πgo ∈ ~Πleg
R (go) that shares a common observable projection

with ~π in R′ (but not in R). ~πgo exists in both models since the legal paths are the same in
both. The paths ~π and ~πgo share an observable projection in R′. Therefore, for all prefixes
of ~π there is at least one prefix of ~πgo with which it shares an observable projection in R′.
Let i represent the index of the first action ai in ~π s.t. the prefix ~π1···i = 〈a1, · · · , ai〉 of π
shares no common observable projection with a prefix of ~πgo in R (while there is always one
for R′, due to the way ~π is selected). According to Definition 2, this can happen in one of
two cases.

In the first case, o∅ ∈ S′(ai) but o∅ 6∈ S(ai) and op(~π1···i) ∩ op(~π1···i−1) 6= ∅. Since ai
is the first action for which no common observable projection exists in R, we know that
op(~π1···i−1) shares its observable projection with some prefix of ~πgo both in R and R′. This,
however, contradicts the assumption that if S′ is a refinement of S, then if o∅ ∈ S′(a), it is
also the case that o∅ ∈ S(a).

Otherwise, there is at least one action in ~πgo that shares a common token with ai in R′

and not in R. According to Definition 19, there exists an action am ⊆ A s.t. for every action,
a ∈ A ASR′ [a] = ASR

[a] \am. This means that for every action a ∈ A, AS′ [a] ⊆ AS [a]. This
is particularly true for ai, thus contradicting our choice of ai and concluding our proof.

Appendix E. Full Proof for Lemma 9

Below is the full proof for Lemma 9, given in Section 5.3 to show that a GRD model that
supports only action conditioning and sensor refinement modifications is independent.

Proof: According to Definition 26, any modification in an independent model has an
empty enabling set and does not interfere with any other modifications. The first condition
is satisfied by Definitions 18 and 19, according to which both action conditioning and sensor
refinement modifications have no preconditions and are applicable in any model R ∈ R. In
particular both Rm2,m1 and Rm1,m2 are well-defined and belong to RT .

To guarantee the second condition, we assume to the contrary that ∃R ∈ RT and
modifications m1 and m2 s.t. the modifications interfere in R. We have seen that all
modifications are applicable in all models, so the modifications do not disable each other.
Therefore m1 and m2 conflict and ~Πnd(Rm1,m2) 6= ~Πnd(Rm2,m1). W.l.o.g we let ~π represent
a path that belongs to ~Πnd(Rm1,m2) but not to ~Πnd(Rm2,m1). Because ~π is non-distinctive
in Rm1,m2 we know that there exists a path ~π

′
s.t. ~π and ~π

′
share an observable projection

that satisfies at least two goals in Rm1,m2 but not in Rm2,m1 (otherwise ~π would be non-
distinctive in both models). This can happen in one of two cases: either both ~π and ~π

′
are

264

Goal Recognition Design in Deterministic Environments

valid in Rm1,m2 but one of them is invalid in Rm2,m1 , or the two paths share an observation
sequence in Rm1,m2 but not in Rm2,m1 . Lemma 6 assures that the first case cannot occur
and if both ~π and ~π

′
are valid in Rm1,m2 they are valid in Rm2,m1 .

In the second case, ~π and ~π
′

are valid in both models but share an observable projection
in Rm1,m2 but not in Rm2,m1 . We let i represent the index of the first action in ~π =
〈a1, . . . , an〉 s.t. 〈a1, . . . , ai−1〉 is non-distinctive in both models but 〈a1, . . . , ai〉 is distinctive
in Rm2,m1 but not Rm1,m2 (recall that the empty sequence is non-distinctive). This means
that either ai is non-observable (mapped to the empty token) in Rm1,m2 but not in Rm2,m1

or that there is at least one action with which ai shares a token in Rm1,m2 but not Rm2,m1

(i.e. ∃a ∈ A s.t. a ∈ ASRm1,m2
[ai] \ASRm2,m1

[ai]).

According to Definition 18, action conditioning modifications do not affect the observ-
ability of an action. The observability of a path therefore depends only on any sensor
refinement modifications applied. Definition 19 states that an action cannot be mapped
to the null token as a result of sensor refinement. Therefore, ai is non-observable only if
it is non-observable in both models, and the first case cannot occur. The second case is
impossible since according to Definition 19, ASRm1,m2

[ai] = ASR
[ai] \ {am1} \ {am2}, which

is equal to ASR
[ai] \ {am2} \ {am1}, where ami is the action modification mi assigns to a

separate token. This contradicts our choice of ai and concludes our proof.

References

Agotnes, T., Van der Hoek, W., & Wooldridge, M. (2012). Conservative social laws. In
Proceedings of the European Conference on Artificial Intelligence (ECAI 2012).

Albrecht, D. W., Zukerman, I., & Nicholson, A. E. (1998). Bayesian models for keyhole
plan recognition in an adventure game. User Modeling and User-Adapted Interaction,
8 (1-2), 5–47.

Aldinger, J., Mattmüller, R., & Göbelbecker, M. (2015). Complexity of interval relaxed nu-
meric planning. In Proceedings of the Joint German/Austrian Conference on Artificial
Intelligence.

Ang, S., Chan, H., Jiang, A. X., & Yeoh, W. (2017). Game-theoretic goal recognition models
with applications to security domains. In Proceedings of the International Conference
on Decision and Game Theory for Security.

Boddy, M. S., Gohde, J., Haigh, T., & Harp, S. A. (2005). Course of action generation for
cyber security using classical planning. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS 2005).

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129 (1-
2), 5–33.

Bui, H. H. (2003). A general model for online probabilistic plan recognition. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI 2003).

Carberry, S. (2001). Technique for plan recognition. User Modeling and User-Adapted
Interaction, 11 (1-2), 31–48.

265

Keren, Gal, & Karpas

Chakraborti, T., Sreedharan, S., Zhang, Y., & Kambhampati, S. (2017). Plan explanations
as model reconciliation: Moving beyond explanation as soliloquy. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI 2017).

Cohen, P. R., Perrault, C. R., & Allen, J. F. (1981). Beyond question-answering. Tech.
rep., DTIC Document.

E-Mart́ın, Y., R-Moreno, M. D., & Smith, D. E. (2015). Practical goal recognition for
ISS crew activities. In Proceedings of the International Workshop of Planning and
Scheduling for Space (IWPSS 2015).

Fikes, R. E., & Nilsson, N. J. (1972). Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2 (3), 189–208.

Freedman, R. G., & Zilberstein, S. (2017). Integration of planning with recognition for
responsive interaction using classical planners. In Proceedings of the Conference of
the American Association of Artificial Intelligence (AAAI 2017).

Geffner, H., & Bonet, B. (2013). A concise introduction to models and methods for auto-
mated planning. Synthesis Lectures on Artificial Intelligence and Machine Learning,
8 (1), 1–141.

Geib, C. W. (2004). Assessing the complexity of plan recognition. In Proceedings of the
Conference of the American Association of Artificial Intelligence (AAAI 2004).

Geib, C. W. (2009). Delaying commitment in plan recognition using combinatory cate-
gorial grammars. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI 2009).

Ha, E., Rowe, J. P., Mott, B. W., & Lester, J. (2011). Goal recognition with Markov logic
networks for player-adaptive games. In Proceedings of the Artificial Intelligence for
Interactive Digital Entertainment Conference (AIIDE-11).

Han, T., & Pereira, L. (2011). Context-dependent incremental intention recognition through
Bayesian network model construction. In Proceedings of the UAI Bayesian Modeling
Applications Workshop (UAI-AW 2011).

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4 (2), 100–107.

Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S., et al. (2007). Domain-
independent construction of pattern database heuristics for cost-optimal planning. In
Proceedings of the Conference of the American Association of Artificial Intelligence
(AAAI 2007).

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence
Research (JAIR), 26, 191–246.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s
the difference anyway?. In Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009).

Hong, J. (2001). Goal recognition through goal graph analysis. Journal of Artificial Intel-
ligence Research (JAIR), 15, 1–30.

266

Goal Recognition Design in Deterministic Environments

Jarvis, P. A., Lunt, T. F., & Myers, K. L. (2004). Identifying terrorist activity with AI
plan recognition technology. In Proceedings of the National Conference on Innovative
Applications of Artificial Intelligence (IAAI 2004).

Kabanza, F., Bellefeuille, P., Bisson, F., Benaskeur, A. R., & Irandoust, H. (2010). Opponent
behaviour recognition for real-time strategy games. In Proceedings of the Workshop
on Plan, Activity, and Intent Recognition (PAIR-AAAI 2010).

Kaluza, B., Kaminka, G. A., & Tambe, M. (2011). Towards detection of suspicious behavior
from multiple observations. In Proceedings of the Workshop on Plan, Activity, and
Intent Recognition (PAIR-AAAI 2011).

Kaminka, G. A., Vered, M., & Agmon, N. (2018). Plan recognition in continuous domains.
In Proceedings of the Conference of the American Association of Artificial Intelligence
(AAAI 2018).

Kautz, H., & Allen, J. F. (1986). Generalized plan recognition. In Proceedings of the
Conference of the American Association of Artificial Intelligence (AAAI 1986).

Kautz, H., Etzioni, O., Fox, D., Weld, D., & Shastri, L. (2003). Foundations of assisted cog-
nition systems. University of Washington, Computer Science Department, Technical
Report.

Kautz, H. A. (1987). A Formal Theory of Plan Recognition. Ph.D. thesis, Bell Laboratories.

Keren, S., Gal, A., & Karpas, E. (2014). Goal recognition design. In Proceedings of the
International Conference on Automated Planning and Scheduling (ICAPS 2014).

Keren, S., Gal, A., & Karpas, E. (2015). Goal recognition design for non-optimal agents. In
Proceedings of the Conference of the American Association of Artificial Intelligence
(AAAI 2015).

Keren, S., Gal, A., & Karpas, E. (2016a). Goal recognition design with non-observable
actions. In Proceedings of the Conference of the American Association of Artificial
Intelligence (AAAI 2016).

Keren, S., Gal, A., & Karpas, E. (2016b). Privacy preserving plans in partially observ-
able environments. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI 2016).

Keren, S., Gal, A., & Karpas, E. (2018). Strong stubborn sets for efficient goal recognition
design. In Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS 2018).

Keren, S., Pineda, L., Gal, A., Karpas, E., & Zilberstein, S. (2017). Equi-reward utility
maximizing design in stochastic environments. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 2017).

Lesh, N., & Etzioni, O. (1995). A sound and fast goal recognizer. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI 1995).

Levine, S. J., & Williams, B. C. (2014). Concurrent plan recognition and execution for
human-robot teams. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS 2014).

267

Keren, Gal, & Karpas

MacNally, A., Lipovetzky, N., Ramirez, M., & Pearce, A. (2018). Action selection for
transparent planning. In Proceedings of the Conference on Autonomous Agents and
MultiAgent Systems (AAMAS 2018).

Masters, P., & Sardina, S. (2017). Cost-based goal recognition for path-planning. In Pro-
ceedings of the Conference on Autonomous Agents and MultiAgent Systems (AAMAS
2017).

Mirsky, R., Stern, R., Gal, Y. K., & Kalech, M. (2018). Goal and plan recognition design
for plan libraries. ACM Transactions on Intelligent Systems and Technology (TIST).

Pattison, D., & Long, D. (2010). Domain independent goal recognition. In Proceedings of
the Fifth Starting AI Researchers Symposium (Stairs 2010).

Pattison, D., & Long, D. (2011). Accurately determining intermediate and terminal plan
states using Bayesian goal recognition. In Proceedings of the First Workshop on Goal,
Activity and Plan Recognition(GAPRec 2011).

Pereira, R. F., Oren, N., & Meneguzzi, F. (2017). Landmark-based heuristics for goal
recognition. In Proceedings of the Conference of the American Association of Artificial
Intelligence (AAAI 2017).

Ramirez, M., & Geffner, H. (2009). Plan recognition as planning. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI 2009).

Ramirez, M., & Geffner, H. (2010). Probabilistic plan recognition using off-the-shelf classical
planners. In Proceedings of the Conference of the American Association of Artificial
Intelligence (AAAI 2010).

Ramirez, M., & Geffner, H. (2011). Goal recognition over POMDPs: Inferring the intention
of a POMDP agent. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI 2011).

Ramirez, M., & Geffner, H. (2016). Heuristics for planning, plan recognition and parsing.
In arXiv preprint arXiv:1605.05807.

Shoham, Y., & Tennenholtz, M. (1995). On social laws for artificial agent societies: Off-line
design. Artificial Intelligence, 73, 231–252.

Sohrabi, S., Riabov, A. V., & Udrea, O. (2016). Plan recognition as planning revisited.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI
2016).

Son, T. C., Sabuncu, O., Schulz-Hanke, C., Schaub, T., & Yeoh, W. (2016). Solving goal
recognition design using ASP. In Proceedings of the Conference of the American
Association of Artificial Intelligence (AAAI 2016).

Sukthankar, G., Geib, C., Bui, H. H., Pynadath, D., & Goldman, R. P. (2014). Plan,
Activity, and Intent Recognition: Theory and Practice. Newnes.

Valmari, A. (1989). Stubborn sets for reduced state space generation. In Proceedings of
the International Conference on Application and Theory of Petri Nets (PETRI NETS
1989).

268

Goal Recognition Design in Deterministic Environments

Vered, M., & Kaminka, G. A. (2017). Heuristic online goal recognition in continuous do-
mains. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI 2016).

Wayllace, C., Hou, P., & Yeoh, W. (2017). New metrics and algorithms for stochastic
goal recognition design problems. In Proceedings of International Joint Conference
on Artificial Intelligence (IJCAI 2017).

Wayllace, C., Hou, P., Yeoh, W., & Son, T. C. (2016). Goal recognition design with stochas-
tic agent action outcomes. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI 2016).

Wayllace, C., Keren, S., Yeoh, W., Gal, A., & Karpas, E. (2018). Accounting for partial
observability in stochastic goal recognition design: Messing with the marauders map.
In Proceedings of the Workshop on Heuristic Search in Domain-independent Planning
(HSDIP-ICAPS 2018).

Wehrle, M., & Helmert, M. (2014). Efficient stubborn sets: Generalized algorithms and
selection strategies. In Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2014).

Yolanda, E., R-Moreno, M. D., Smith, D. E., et al. (2015). A fast goal recognition technique
based on interaction estimates. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI 2015).

Zhang, H., Chen, Y., & Parkes, D. C. (2009). A general approach to environment design with
one agent. In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI 2009).

Zhang, H., & Parkes, D. C. (2008). Value-based policy teaching with active indirect elic-
itation. In Proceedings of the Conference of the American Association of Artificial
Intelligence (AAAI 2008).

269

