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Abstract

Online social networks are nowadays one of the most effective and widespread tools used
to share information. In addition to being employed by individuals for communicating with
friends and acquaintances, and by brands for marketing and customer service purposes, they
constitute a primary source of daily news for a significant number of users. Unfortunately,
besides legit news, social networks also allow to effectively spread inaccurate or even entirely
fabricated ones. Also due to sensationalist claims, misinformation can spread from the
original sources to a large number of users in a very short time, with negative consequences
that, in extreme cases, can even put at risk public safety or health.

In this work we discuss and propose methods to limit the spread of misinformation
over online social networks. The issue is split in two separate sub-problems. We first aim
to identify the most probable sources of the misinformation among the subset of users
that have been reached by it. In the second step, assuming to know the misinformation
sources, we want to locate a minimum number of monitors (that is, entities able to identify
and block false information) in the network in order to prevent that the misinformation
campaign reaches some “critical” nodes while maintaining low the number of nodes exposed
to the infection.

For each of the two issues, we provide both heuristics and mixed integer programming
formulations. To verify the quality and efficiency of our suggested solutions, we conduct
experiments on several real-world networks. The results of this extensive experimental
phase validate our heuristics as effective tools to contrast the spread of misinformation in
online social networks.

Regarding the source identification step, our approach showed success rates above 80%
in most of the considered settings, and above 60% in almost all of them.

With respect to the second issue, our heuristic proved to be able to obtain solutions
that exceeded (in terms of number of required monitors) the ones obtained through our
MILP-based approach of more than 20% in only few test scenarios. Our heuristics for both
problems also proved to outperform significantly some previously proposed algorithms.

1. Introduction

In the last years online social networks have indisputably emerged as a phenomenon of
ever-growing relevance. Every day, a vast amount of users access, consume and create new
content on popular platforms like Facebook or Twitter. According to recent estimates, 2.23
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billion people (two-thirds of the world population with access to internet) use Facebook
(Frier, 2018).

Online social networks offer a venue to quickly and conveniently exchange information
among a single user and other individuals or entities with which the user has established a
bond of friendship or trust. The set of users and of these relationships constitute the so-
called social graph, on which a content considered of high general interest can easily become
viral, that is, spread from its originating sources to a vast audience and possibly become a
subject of public debate. However, the s ame ease of communication and trust relationships
also favor the diffusion of inaccurate or entirely false information. Such type of content can
be introduced in the network either by mistake or with malicious intents, such as attracting
traffic towards specific social profiles or websites in order to increase advertising revenue or
influence the public opinion formation.

Misinformation can have very undesirable or even dangerous consequences.
It is well-known, for instance, that misinformation about the side-effects of vaccinations

is leading many parents to refuse immunization for their children, putting herd immunity at
risk (Hotez, 2016; Lewandowsky et al., 2012). During the Ebola outbreak in 2014, Twitter
became a vector for the diffusion of panic and incorrect, harmful medical advice. Indeed,
rumors spread about the diffusion of the disease in the US (Luckerson, 2014) and alleged
curative powers of salt water (Vijaykumar et al., 2018). Similarly, misinformation has been
and is currently being spread online about the COVID-19 pandemic (Mian & Khan, 2020).
According to recent surveys, more than 30% U.S. adults claim to often notice entirely
false political news on social media, and more than 50% see inaccurate ones (Shin et al.,
2018). The exposition to political misinformation has been linked to influence on voting
decisions and lack of trust in the institutions (Einstein & Glick, 2015; Weeks & Garrett,
2014; Pogue, 2017). False information coming from social media may also cause instability
or manipulations of the financial markets (Ferrara et al., 2016; Jin et al., 2013).

The problem of contrasting the spread of misinformation in an online social network is
complex and multi-faceted. We can identify three main steps:

(i) recognize misinformation;
(ii) identify misinformation sources;
(iii) limit their ability to diffuse fake or inaccurate news.
In this paper we focus on the last two points. We consider a scenario where misin-

formation has already been diffused in the network and administrators have been able to
recognize it and find the set of the infected users, where we use the term infected to refer
to a user that has been reached by misinformation, and that possibly contributed (in good
faith or not) to disseminate it. We want to identify the sources of misinformation and limit
their ability to continue in diffusing misinformation in the network.

Identifying sources is crucial in contrasting misinformation, since it allows network ad-
ministrators to understand the ultimate goals of its creators, recognize their targets, take
actions against the guilty nodes or orchestrate effective strategies for containing its diffusion.

Due to the size of online social networks, recognize misinformation sources can be a very
challenging task and in several scenarios it is not possible to identify them for certain. For
this reason, social network administrators are reluctant to ban users from the network if they
do not have incontrovertible evidence of their misbehavior. A more pragmatic approach is
to create a list of “suspects” that can be monitored in order to recognize the fake news that
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they could inject in the network in an early stage and thus reduce its effect. As will be
discussed in Section 4, our proposed strategy for source identification proved to be able to
identify most misinformation sources in the considered test scenarios, and an even higher
number of them can be found by looking at nodes in their close proximity. This would allow
us to obtain highly reliable lists of such suspect users.

The control can be performed through monitors placed on users to parse all their ac-
tivities, recognize misinformation and block it. With monitors, we refer to either human or
software-controlled accounts able to detect false information and report it.

Given the huge number of users in online social networks it may be impossible or too
expensive to place monitors on all nodes. On the other hand, it could be impossible or
undesired to place monitors directly on suspect users, because we cannot have access to
them or we do not want to raise their suspicions. Thus, we have to select a set of users
to monitor, distinct from the set of suspected sources, such that we can guarantee misin-
formation injected into the network will be intercepted. Clearly, we cannot guarantee that
misinformation is recognized as soon as it is created, but we would like to reduce as much as
possible the number of exposed users. Moreover, in several contexts we could have specific
users that must be protected from misinformation.

We remark that asking a user to act as monitor would require an explicit consent. Fur-
thermore, in our proposed strategy the network administrator would not need to track or
store any user activity, while each monitoring user should just report the detected misin-
formation, thus mitigating privacy concerns.

1.1 Our Contribution

We now describe in details the problems that we address in this work, and our contribution.
Let G = (V,E,w) be a directed weighted graph, representing the considered social

network. For each edge (i, j) ∈ E among two users, the weight 0 ≤ w(i, j) ≤ 1 is interpreted
as the probability for user i to transmit a given piece of information to user j.

We model the diffusion of (mis-)information on this network through the Independent
Cascade Model, that has been first investigated by Goldenberg et al. (2001a, 2001b) and
by Kempe et al. (2003). In this model, it is assumed that there is a set S ⊆ V of
nodes, denoted sources that originated the cascade. The cascade then proceeds in discrete
time steps: at step t nodes that have been infected at time t − 1 will try to infect their
neighbors. Formally, let Vinf (t) ⊆ V be the subset of users reached by an information (in
our case, infected by misinformation) originating from the sources S in a given time period
t. Furthermore, let V t

inf =
⋃
t′≤t Vinf (t′) be the set of all nodes reached within time t.

Clearly, Vinf (0) = V 0
inf = S. For any given value of t, given a node i ∈ Vinf (t − 1) and a

node j ∈ V \ V t−1
inf such that (i, j) ∈ E, j ∈ Vinf (t) with probability w(i, j). The infection

process stops at the earliest time t∗ such that Vinf (t∗) = ∅ (no new node is infected). In

the following, we refer to V
(t∗−1)
inf as Vinf .

Both the Independent Cascade model and epidemics models (which will be discussed in
Section 1.2.1) have been used in the literature to model the spread of information through
social media, regardless of its truthfulness. Even assuming that the misinformation sources
have malicious intents, which may not always be the case, many users contribute to spread
it further because they assume it to be true, therefore the diffusion of true or false infor-
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mation should not be modeled differently. However, as already mentioned and as analyzed
by Vosoughi et al. (2018), false information tends to have a greater degree of novelty and
to stimulate emotional reactions more than true one, which leads to a higher sharing prob-
ability. This would therefore lead to higher values for the weights w in the case of willingly
deceitful misinformation. Another difference is that we may expect legit information to
be generally verifiable, and possibly include references to its original sources, hence source
identification is generally an easier task in this case.

1.1.1 Source Identification

The first problem that we consider in this paper is the Source Identification (SI) problem.
Here, given the graph G and the set Vinf of nodes infected at the end of an Independent
Cascade originated by a (possibly unknown) number k of sources, the aim is to return the
set S of sources. Clearly, since the diffusion of information is probabilistic, it is impossible
to optimally identify these sources for each possible input. However, our objective would
be to design an approach able to find the correct sources (or at least a large subset of them)
with high probability. Ideally, one may think to solve the following optimization problem:
given the sets G and Vinf as above, and a bound k on the number of sources, find the most
probable set of k sources from which an Independent Cascade can terminate with the set
of infected nodes being exactly Vinf . Unfortunately, this problem has been showed to be
very hard to solve: it is in fact NP-hard even to produce a β-approximate solution to this
problem, for every β > 1 (Lappas et al., 2010).

For this reason, we here propose an heuristic approach to the problem. The main idea
behind our work is to reduce our problem to the Maximum Spanning Branching problem,
i.e., the problem to find the forest of maximum probability in the subgraph of G defined by
nodes in Vinf . Note that this problem is known to be solvable in polynomial time (Chu &
Liu, 1965; Edmonds, 1967; Camerini et al., 1980).

The idea behind our approach has been partially introduced already by Lappas et al.
(2010). However, they did not work the details of the algorithm, and thus they failed in
fully appreciating how this approach can be effective for the problem of source identification.
Indeed, we run extensive experiments on real-worlds networks, that shows that our approach
very often returns a small set of nodes that contains many, if not all, the real sources, and
it outperforms the most effective alternatives known in literature.

Unfortunately, despite their polynomial-time running time, the known algorithms for
solving the Maximum Spanning Branching problem turn out to require very large running
time, and thus they are infeasible to use with very large social networks. To address this
issue, we provide a mixed integer linear programming (MILP) formulation, that turns out
to be more time-efficient and effective in recognizing most of the misinformation sources.

1.1.2 Monitor Placement

A correct identification of sources enables to implement efficient strategies to limit their
ability to diffuse misinformation.

Zhang et al. (2015a) suggest to use monitors to limit the spread of misinformation
originated from a set of known (or suspected) sources. The role of these nodes should be to
filter the information they receive and block what they recognize as misinformation. Their
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goal is to use as few monitors as possible, since they may be expensive to deploy and/or
maintain, and place them as close as possible to the sources in order to limit the number
of nodes reached by misinformation.

Specifically, Zhang et al. (2015a) considered the following problem, named τ -Monitor
Placement. Let G be a network, S be a set of misinformation sources and t be a single
target node that we have to protect from misinformation. A set of monitors placed in a set
M ⊆ V of vertices detects misinformation if there is at least one path from a node in S to
a node in M on which there is a successful diffusion. Specifically, we denote as LS,M the
set of all paths whose starting endpoints are in S and the final endpoints are in M , and
as D(S,M) the probability that monitors in M detect the misinformation originated in S.
The τ -Monitor Placement problem then asks for a subset M of vertices chosen among the
vertices at distance at most δ from S, such that t /∈ LS,M and the misinformation detection
probability D(S,M) ≥ 1 − τ . Zhang et al. (2015a) proved that the τ -Monitor Placement
problem is #P -complete and presented a heuristic to compute a monitor placement.

In this paper we consider a generalization of the τ -Monitor Placement problem, called
Monitor Placement (MP) problem. Here, given G, the set S of (identified or suspected)
misinformation sources, the (possibly empty) set T of target nodes and an integer k, the
aim is to identify a minimum cardinality set of nodes M ⊆ V on which monitors should
be installed in order to avoid information originating from any element of S to reach any
element of T . Furthermore, we require no more than |S| ≤ k ≤ |V |−|T | nodes to be infected
overall. Finally, it is a realistic assumption that in most practical scenarios monitors cannot
be placed directly on sources, hence we also require that M ∩ S = ∅.

It is immediate to check that multiple extensions to the τ -Monitor Placement problem
are introduced by our formulations. First, we assume to have a set T of target nodes to
protect from misinformation (not only a single node). Moreover, we require that whenever
misinformation spreads over the network starting from the known set S of sources, then it
will be detected and blocked by monitors in M before it reaches nodes in T , i.e. τ = 0.
Finally, in order to limit more effectively the spread of misinformation, we put an explicit
bound on the number of nodes that can receive misinformation before it is blocked by
monitors. Specifically, we require that the number of nodes in V \ (S ∪ M) that lie on
paths in LS,M (these are the only nodes that can be reached by misinformation) is upper
bounded by k. This requirement generalizes and strengthens the request of placing monitors
in nodes within distance at most δ from S, considered by Zhang et al. (2015a). Indeed,
if the number of nodes close to S is small our requirement achieves the same effect as the
τ -Monitor Placement problem, but it allows to keep low the number of infected nodes even
if there are many nodes around the sources.

Clearly, the hardness result for the τ -Monitor Placement problem shown by Zhang et al.
(2015a) extends to our problem. Moreover, since our problem is much more constrained than
the τ -Monitor Placement problem, we should expect that more monitors will be required
and their placement would be more difficult to compute. Nevertheless, we here propose
an heuristic for the MP problem, based on the concept of k–unbalanced cut (Hayrapetyan
et al., 2005), and we show that its performances are comparable (and in some cases even
better) to the ones of the approach by Zhang et al. (2015a) both in terms of number of
monitors and of computation time.
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To further evaluate the quality of the solutions provided by the heuristic, we provide a
MILP-based method for the problem, and compare the results of our heuristic against this
benchmark: the results confirm the quality of our approach.

1.2 Related Works

Here, we resume the main proposed contributions for both problems of source identifica-
tion and of limiting misinformation diffusion. Several authors have also faced detection of
misinformation (Hamidian & Diab, 2016; Wu et al., 2017; Shu et al., 2017; Zubiaga et al.,
2018; Ko et al., 2019; Yang et al., 2019), whose discussion is out of the scope of this work.

1.2.1 Source Identification

The first works on the source identification problem used simple epidemics models: that is,
they describe the information diffusion process as an infection disease spreading over the
population. These works adopted centrality measures to identify the sources of the diffusion
process. In particular, Comin and da Fontoura Costa (2011) run several experiments to
compare degree, betweenness, closeness, and eigenvector centrality in identifying the sources
of the misinformation.

Along the same line of research, Shah and Zaman (2011) proposed a new centrality mea-
sure, named rumor centrality, and showed that it outperforms all the previously considered
centrality measures.

Rumor centrality revealed to be very influential and it has been largely used, and ex-
tensions and generalizations have been proposed to identify sources of epidemics spread in
several different settings, varying in the number of sources, the topology of the network and
the coarseness of information about the set of affected nodes that is known to the algorithm.
We refer interested readers to the survey of Jiang et al. (2014) and references therein.

Epidemics models assume that there exists a global parameter that describes the prob-
ability that a user is infected by a neighbor. While this assumption simplifies the compu-
tational complexity of the model, it fails in describing real-world situations where users are
differently bent to accept information from their neighbors. To overcome this difficulty, the
Independent Cascade model has been proposed as a generalization of the epidemics model
where each edge has its specific activation probability.

Clearly, this generalization makes the problem extremely more complex to deal with.
Indeed, as indicated above, Lappas et al. (2010) prove that it is NP-hard even to produce a
β-approximation, for every β > 1, for the Source Identification problem when information
diffuses according to an Independent Cascade model.

This hardness result leaves us only two possible research directions: either we focus on
special network topologies where the problem is tractable or we consider general heuristics
with good experimental performances. Lappas et al. (2010) follow the first direction and
study the Source Identification problem on tree networks.

Nguyen et al. (2012a), instead, follow the second direction and propose efficient heuristics
for identifying sources of misinformation in general networks. In this work we build upon
their contribution. We present a new heuristic approach whose performances turn out to
be much better than previously presented algorithms. Moreover, we remark that both
algorithms by Lappas et al. (2010) and Nguyen et al. (2012a) need to know in advance the
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number k of sources to find. Our heuristic, instead, works well even if the number of sources
is not known.

1.2.2 Limiting the Diffusion of Misinformation

Two main approaches have been proposed in literature to address this problem. The first
one, proposed by Budak et al. (2011), requires that a true information campaign is initiated
from a subset of highly influential nodes. In this way, the diffusion of misinformation
and true information proceeds in parallel, except that nodes that have received the true
information will be immune to the misinformation and will not transmit it. However, in
order to have a true information campaign that would be effective in the tentative of limiting
misinformation, one must carefully choose the seeds from which the diffusion starts. We
remark that this approach requires perfect knowledge of the sources of misinformation in
order to correctly selecting the seeds of the contrasting campaign.

Budak et al. (2011) studied the computational complexity of this problem and proposed
some preliminary solutions. A similar approach has been taken by Nguyen et al. (2012b)
and Li et al. (2013). They introduced the Node Protector problem which aims to find
the smallest set of highly influential nodes whose decontamination with good information
helps to contrast the viral spread of misinformation. They give inapproximability results
and propose greedy approximation algorithms. Heuristics improving on this algorithm have
been proposed by Tong et al. (2020). Variants of the problem have been also considered by
Fan et al. (2013), that focused on a community-based network, and by Zhang et al. (2015b)
and Hosni et al. (2018) that, instead, not only aim to minimize the spread of misinformation,
but also to maximize the diffusion of true information.

The second approach consists in individuating nodes or links in the network that would
block the diffusion of the misinformation. Many works have been proposed on this topic,
varying in the objective to optimize, in the model for information diffusion, and in the
technique adopted for computing these blocking nodes or monitors. For example, Aspnes
et al. (2006) considered a setting with a single random source, no target, and no threshold
on the number of infected nodes, but the objective is to minimize the sum of the number of
monitors and the number of infected nodes. Similarly, Kimura et al. (2008) assumed that
the source is unique and selected at random, no target exists, and the goal is to remove
links in order to minimize the contaminantion degree, i.e., the expectation over the choice
of the source of the number of nodes infected after the cascade. A similar problem has
been also addressed by Zhang et al. (2016). Habiba et al. (2010) and Kuhlman et al.
(2010) proposed heuristics for the problem, based on centrality measures and on covering
and potential approaches, respectively. Both these works do not consider the presence of
a target to protect. Moreover, Kuhlman et al. (2010) also focus on a simpler deterministic
diffusion model.

As indicated above, the setting that is more closely related to the one considered in this
work has been proposed by Zhang et al. (2015a). Namely, they propose to place monitors
over the network that are able to detect misinformation and block it. However, a good
monitor placement should satisfy two requirements: on one side, we would like to place
as few monitors as possible, on the other side, we would like that our monitors limit the
number of nodes exposed to misinformation. These two discording goals make the problem
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very difficult. Indeed, Zhang et al. (2015a) proved that the problem is #P -complete, and
proposed an heuristic for placing monitors so that misinformation is detected with high
probability before it reaches target nodes.

In this work, we strengthen the model proposed by Zhang et al. (2015a), by putting more
stringent requirements on the number of nodes exposed to misinformation and requiring that
misinformation is always detected (more details in Section 3). Nevertheless, experiments
show that our heuristic has performances comparable or even better than the algorithm
proposed by Zhang et al. (2015a).

1.3 Organization of the Paper

The rest of the work is organized as follows. Our proposed approaches and formulations are
presented and discussed in Sections 2 and 3, respectively. The results of our computational
experience are reported in Section 4.

2. Source Identification

This section is devoted to the presentation of the proposed approaches for the Source Iden-
tification problem, with either a known or an unknown number of sources. The underlying
idea to model the problem and the proposed algorithm are presented in Section 2.1, while
a MILP formulation for the same problem is discussed in Section 2.2.

2.1 The Approach

As mentioned, we model source identification as a maximal spanning branching problem.
Given the input network G = (V,E,w) and the infected users subset Vinf ⊆ V , we consider
the subgraph Ginf = (Vinf , Einf , winf ) induced in G by Vinf . That is, for each (i, j) ∈ E,
(i, j) ∈ Einf if and only if i ∈ Vinf and j ∈ Vinf . Furthermore, winf (i, j) = w(i, j) for each
(i, j) ∈ Einf . It is straightforward to understand that infection could only have spread on
nodes and edges belonging to Ginf , since edges in V \ Vinf were not exposed to it.

In order to help the reader in understanding how our approach works, we first start by
considering the simple case in which misinformation starts from a unique source. Then, we
show how the deployed ideas can be extended in order to take in account multiple sources.

2.1.1 Warm-up: Single Source

An arborescence of the graph Ginf is a directed subgraph T on a subset V ′ ⊆ Vinf of vertices
of Ginf , such that there is a distinguished node r ∈ V ′, called root, and a single directed
path from r to every other vertex in V ′. A spanning arborescence of Ginf is an arborescence
containing all the vertices of Ginf . Roughly speaking, an arborescence is a directed tree
and a spanning arborescence is a directed spanning tree.

The weight of an arborescence T = (V ′, E′) is the sum of the weights of the edges in
T , i.e., W (T ) =

∑
(u,v)∈E′ winf (u, v). The maximum spanning arborescence is a spanning

arborescence of maximum weight.
Notice that the probability that a given node is the source is the sum of the weights

of all the arborescences rooted in that node. Unfortunately, computing this probability is
not computationally affordable. Still the weight of a spanning arborescence T turns out
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to be a measure of the probability that the misinformation spreads according to T , i.e.,
that an Independent Cascade starting from the node r(T ), i.e., the root of T , has each
node v ∈ Vinf infected by its unique predecessor in T . Hence, the root r∗ of the maximum
spanning arborescence T ∗ of the subgraph Ginf is a very natural candidate for being the
source of misinformation.

We note that the problem of computing spanning arborescences is very well-studied and
a lot of algorithms are known both for general networks and for specific classes of graphs.
In particular, it is possible to efficiently compute the maximum spanning arborescence of
a graph through the Chu-Liu/Edmonds algorithm independently proposed by Chu and Liu
(1965) and by Edmonds (1967).

2.1.2 Multiple Sources

Clearly, the assumption that misinformation originated in only one source is too restrictive
and in this paragraph we show how to relax it.

The approach described for the the single source case works by computing the maximum
spanning arborescence. However, this does not help when there are multiple sources. Indeed,
even if we assume that misinformation diffuses exactly along the edges of that arborescence,
it is not clear how to select sources out of the root of the arborescence. For example, if we
select nodes that are close to the root, we are implicitly limiting the influence of the root
node, but nodes that are far away from the root may be scarcely influential.

However, the arborescence approach can still be fruitful. Suppose that misinformation
starts from k different sources and proceeds as in k parallel threads. Then we can model the
diffusion process by simply considering multiple arborescences, up to one for each source.
Hence, if we can identify these diffusion trees, we can choose their roots as natural candidates
for misinformation sources, exactly as done when we have a single arborescence. This
motivates us to use branchings in places of arborescences.

A branching of the graph Ginf is a forest of disjoint arborescences. In a natural way,
we can define the maximum spanning branching of Ginf as a set of disjoint arborescences
containing all the vertices of Ginf and such that the sum of their edges’ weights is maximum.

Our approach consists then of computing the maximum spanning branching ofGinf . The
roots of the identified arborescences correspond to the identified sources (that is, the nodes
that we suspect to belong to S). Additionally, as mentioned, we may require the identifica-
tion of a predefined number of sources k′ > 0; in this case, we look for the maximum-weight
spanning branching such that |T | = k′.

As for the case of arborescences, algorithms are known to efficiently computing a maxi-
mum spanning branching (e.g., Camerini et al., 1980). Nevertheless, the algorithms, despite
their polynomial running time, turns out to be very time expensive when run on large social
networks. For this reason, in next section we provide a more efficient MILP formulation
that we adopted in our experiments.

2.2 MILP Formulation

We first describe how to model the case in which the number of sources to be identified
is fixed to an integer value k′ > 0. We modify the definition of Ginf by adding to it a
super-source node s0, which is connected to every other node i belonging to Vinf through
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an edge (s0, i) ∈ Einf . We do not need to define a specific weight for these additional edges,
since they will not be considered in the evaluation of any objective function; however, for
sake of consistency, we may assign an equal weight c to each of them.

We then look for a maximum weight arborescence of Ginf rooted in s0, constraining the
super-source degree to k′. As mentioned, we exclude from the objective function computa-
tion the weight of the k′ edges outgoing from s0. It is easy to understand that every node
connected to s0 in the solution corresponds to the root of an arborescence in the maximum
spanning branching problem with k′ components.

The proposed mixed integer linear programming formulation (called [SI]) is the follow-
ing:

[SI] max
(i,j)∈Einf :i 6=s0

winf (i, j)xij (1)

s.t.∑
(s0,i)∈Einf

xs0i = k′ (2)

∑
(s0,i)∈Einf

fs0i = |Vinf | − 1 (3)

∑
(j,i)∈Einf

fji −
∑

(i,k)∈Einf

fki = −1 ∀i ∈ Vinf \ {s0} (4)

∑
(j,i)∈Einf

xji = 1 ∀i ∈ Vinf \ {s0} (5)

xij ≤ fij ∀(i, j) ∈ Einf (6)

(|Vinf | − k′)xij ≥ fij ∀(i, j) ∈ Einf (7)

xij ∈ {0, 1} ∀(i, j) ∈ Einf (8)

fij ≥ 0 ∀(i, j) ∈ Einf (9)

For each (i, j) ∈ Einf , the binary variable xij assumes value 1 if and only if the edge is
chosen to belong to the solution, while fij is a flow variable used to ensure the connectivity
of the solution. The objective function (1) maximizes the weight of the found arborescence.
Constraint (2) imposes s0 to have k children nodes. Constraint (3) states that s0 must pro-
duce one flow unit for each node in Vinf \{s0} and, along with flow conservation constraints
(4), ensures that each node in the infected network is reached. Constraints (5) ensure that
each node in Vinf \ {s0} has exactly one parent. Finally, Constraints (6)-(7) impose a pos-
itive flow on each and only edge chosen to belong to the solution. In (7), |Vinf | − k′ is a
tight upper bound on the maximum flow on an edge for a feasible solution. Indeed, if in a
solution there are k′−1 children of s0 that are leaves (corresponding to trivial arborescences
with a single node), then |Vinf | − 1− (k′ − 1) flow units must reach the remaining one.

Clearly, each node i ∈ Vinf \ {s0} is identified as one of the k′ sources if and only if
xs0i = 1 in the optimal solution.

In order to model the case in which the number of arborescences composing the branch-
ing is unknown, it is sufficient to remove Constraint (2) and substitute the |Vinf |−k′ bound
in (7) with |Vinf |−1. Indeed, this is a tight bound in the case in which s0 has a single child
(corresponding to a branching composed of a single arborescence).
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3. Monitor Placement

In this section, approaches for the Monitor Placement problem are discussed. The proposed
heuristic is the object of Section 3.1, while a MILP-based approach is presented in Section
3.2.

3.1 The Approach

Given the set of (identified or suspected) misinformation sources S ⊂ V , and set of sensitive
target nodes T ⊂ V (S ∩ T = ∅), the aim is to identify a minimum cardinality set of nodes
M ⊆ V on which monitors should be installed in order to avoid information originating
from any element of S to reach any element of T . Furthermore, we require no more than
|S| ≤ k ≤ |V | − |T | nodes to be infected overall. Finally, it is a realistic assumption that
in most practical scenarios monitors cannot be placed directly on sources, hence we require
M ∩ S = ∅.

3.1.1 Monitors and Cuts

Let us start by considering a simple setting where we have a network represented by the
graph G = (V,E,w), with w(u, v) = 1 for each edge (u, v) ∈ E, a single source s of
misinformation and a single target t to protect. Let C be a (s, t)-cut of the graph G. By
definition of cut, if we remove from G all edges in C then there will be no paths from s to
t. Thus, by placing monitors in the endpoints of the edges in C we can guarantee that all
the information diffused by s will be blocked before it reaches t.

Observe that the number of monitors required by this approach depends on the size
of the cut. Therefore, in order to minimize the number of required monitors we need an
(s − t)-cut of minimum size. However, our requirements are not only to protect t from
the misinformation but also to have a small number of nodes exposed to misinformation.
Observe that a minimum cut does not give any guarantee on the number of nodes that can
be reached by the misinformation before monitors detect it. Suppose, for example, that
the minimum cut contains only edges adjacent to t. In this case, by placing monitors on
the endpoints of these edges we have that only the target node t and the nodes hosting the
monitors are protected by the misinformation. Thus, we have to impose another constraint
to our cut: the set of nodes reachable from s after the removal of the edges in the cut must
be small. To meet these additional requirement we will consider unbalanced cuts.

Formally, given a graph G, a source s, a target t, and an integer k, a k–unbalanced (s, t)-
cut is a partition of the nodes of the graph in two sets, L and R, such that s ∈ L, t ∈ R, and
|L| ≤ k. The size of the cut (L,R) is given by the number of edges that have an endpoint in
L and the other endpoint in R, i.e. W (L,R) = |{(u, v) ∈ E : u ∈ L, v ∈ R}|. A minimum k–
unbalanced (s, t) cut is a cut (L∗, R∗) such that W (L∗, R∗) = minL,R : s∈L,t∈R,|L|≤kW (L,R).
Roughly speaking, a minimum k–unbalanced (s, t)-cut is a (s, t)-cut of minimum size among
all the (s− t)-cuts where the source side is bounded to contain at most k nodes.

Interestingly, a polynomial time algorithm is known for computing a minimum k–
unbalanced cut for every graph G (Gallo et al., 1989; Hayrapetyan et al., 2005). The
basic idea of this algorithm consists in finding a minimum cut in a graph Gα obtained from
G by adding edges of weight α from all the nodes of the graph to t. Clearly, if α = 0 then
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Gα = G. If α > 0, instead, the size of a cut (L,R) of Gα is given by the size of the same cut
in the original graph G plus an additive factor of α|L|. As α increases the size of L becomes
more and more relevant with respect to the size of the cut. Hence, if α is sufficiently large,
then a cut of Gα becomes a k–unbalanced cut of G.

Even if this algorithm seems to be very “expensive” in computational terms (we could
compute a lot of cuts to find the correct value of α), Gallo et al. (1989) proved that using
the parametric-flow technique we can efficiently build a new cut on top of the previous one.
Moreover, Gallo et al. (1989) described a procedure to compute the next α that rapidly
converges to a value that produces a minimum k–unbalanced cut.

3.1.2 The Heuristic

Even if the core of our solution is given by the computation of an unbalanced cut, as
described above, there are still several aspects and optimizations that have to be addressed
in designing our heuristic.

First of all, the approach described above was designed for a single source - single
target scenario on an unweighted graph (actually, we assumed that all edge weights are
equal). Here, we will explain how we can adapt our approach to many sources - many
targets scenarios on weighted graphs. We address the problem of many sources and targets
through a source and target contraction. Let G = (V,E,w) be a weighted graph representing
our network, let S be the set of known or suspected misinformation sources (as, e.g., the
one returned by our source identification algorithm) and T be the set of targets. Then we
consider a new graph G∗ = (V ∗, E∗, w∗) in which we contract all sources in a single node
s∗, and all targets in a single node t∗, i.e., V ∗ = (V \ (S ∪ T ))∪ {s∗, t∗} and E∗ =

⋃5
i=1E

∗
i ,

where

• E∗1 = {(u, v) : (u, v) ∈ E and u, v ∈ V ∗ \ {s∗, t∗}},

• E∗2 = {(s∗, v) : (u, v) ∈ E, u ∈ S and v ∈ V ∗ \ {s∗, t∗}},

• E∗3 = {(u, s∗) : (u, v) ∈ E, u ∈ V ∗ \ {s∗, t∗} and v ∈ S},

• E∗4 = {(t∗, v) : (u, v) ∈ E, u ∈ T and v ∈ V ∗ \ {s∗, t∗}}, and

• E∗5 = {(u, t∗) : (u, v) ∈ E, u ∈ V ∗ \ {s∗, t∗} and v ∈ T}.

As for the weights, we clearly set w∗(u, v) = w(u, v) for every (u, v) ∈ E∗1 . For edges
(s∗, v) ∈ E∗2 , let C(v) be the set of sources that are connected with v in the original graph,
i.e., C(v) = {s ∈ S : (s, v) ∈ E}. Then, w∗(s∗, v) = 1 −

∏
s∈C(v)(1 − w(s, v)), that is the

probability that at least one of the source nodes transmit the misinformation to v. Similarly,
for edges (u, s∗) ∈ E∗3 , let D(u) be the set of sources at which u is connected in the original
graph, i.e., D(u) = {s ∈ S : (u, s) ∈ E}. Then, w∗(u, s∗) = 1 −

∏
s∈D(u)(1 − w(s, v)). A

similar approach can be taken for edges in E∗4 and E∗5 .
The graph G∗ has now a single source s∗ and a single target t∗. Since this graph is

weighted we need to specify which cuts we should compute. A natural choice would be to
take minimum cuts (i.e. cuts that minimize the sum of the weights of their edges). However,
since an edge weight represents the probability that information flows on that edge, placing
monitors on the endpoints of a minimum cut would mean to place monitors on endpoints
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of edges where it is unlikely that the misinformation spreads. Monitoring these edges can
then be a useless waste of resources.

We propose, instead, to place monitors on edges with large transmission probability.
This indeed would also help in reducing the number of nodes infected by misinformation:
in fact, not only the monitor placement guarantees that target nodes will not be reached
by misinformation and there are no more than k nodes reached by misinformation, but it
may be also the case the number of infected nodes is much less than k since edges between
nodes in the size of the cut containing the sources have small transmission probabilities. In
order to achieve this goal, we run the minimum k–unbalanced (s∗, t∗)-cut procedure on the
graph Ĝ = (V ∗, E∗, ŵ), where edge weights are integers and they are inversely proportional
to their weights in G∗. We observe that the use of integer weights has the positive side
effect to make easier to compute the next α to use in the computation of the unbalanced
cut.

Another optimization is related to the placement of monitors in the endpoints of the
unbalanced cut’s edges. In our informal discussion for the single source case we stated
that monitors can be placed on all the endpoints of the cut’s edges. However, it is clearly
unnecessary to place monitors on all these nodes. Instead, we will use a more clever place-
ment algorithm in order to reduce the number of monitors. Specifically, given a cut (L,R)
of Ĝ, where L is the side of the cut that contains s∗, we consider the unweighted graph
C = (W,F ) induced by the edges of (L,R), i.e, W = {u ∈ L : (u, v) ∈ E∗, v ∈ R} ∪ {v ∈
R : (u, v) ∈ E∗, u ∈ L} and F = {(u, v) ∈ E∗ : u ∈ L, v ∈ R}. Then, we compute a mini-
mum vertex cover M of C and place monitors in all the nodes in M . Notice that, since C
is a bipartite graph, it is possible to compute its minimum vertex cover in polynomial time
(via a reduction to a problem of min cut/max flow).

Summarizing, our procedure works as described in Algorithm 1. Notice that our heuristic
may place a monitor in s∗. In this case, we simply replace s∗ with all its neighbors.

Input: Graph G, Sources S, Targets T , and integer k.
Output: Monitor vertices M .

1 G∗, s∗, t∗ = SourceContraction(G,S, T )

2 Ĝ = WeightConversion(G∗)

3 (L,R) = UnbalancedCut(Ĝ, s∗, t∗, k)
4 C = BipartiteGraphFromCut(L,R)
5 M = VertexCover(C)
6 return M

Algorithm 1: Algorithm for monitoring placement

3.2 MILP Approach

In order to validate the performances of the heuristic described by Algorithm 1, we provide
a MILP method that provides a solution to the problem without the need of artificially
transform the input (i.e., the MILP does not need to contract the sources and to convert
weights). Clearly, the MILP resolution turns out to be much slower than our proposed
heuristic, and it does not scale with the size of the network.
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As above, the problem is solved in two separate steps. In the first one, we look for
a k-unbalanced S-T cut. That is, in order to separate sources from targets, we look for
a partition of V in two disjoint subsets L and R (L ∪ R = V , L ∩ R = ∅), such that
S ⊆ L, T ⊆ R and |L| ≤ k. As above, among all feasible solutions, we look for the one
that maximizes the weight of the edges that cross the cut from L to R, in order to reduce
the probability of infection for the nodes contained in L. Once the cut is found, monitors
could be possibly placed in all endpoints of edges crossing the cut. However, as previously
explained, it is possible to reduce the number of required monitors by only placing one
in a single endpoint of any such edges. Formally, given the sets L and R, we construct
the unweighted graph Gcut = (Vcut, Ecut), with Ecut = {(i, j) ∈ E|i ∈ L, j ∈ R} and
Vcut = {i ∈ L : (i, j) ∈ Ecut} ∪ {j ∈ R : (i, j) ∈ Ecut}, and look for a minimum-cardinality
vertex cover of Gcut that does not contain elements of S.

Regarding the first step, in more detail, we define U = V \{S∪T} as the set of undecided
nodes, that is, nodes that in the k-unbalanced cut may belong to either L and R. It is easy
to understand that S, T and U define a partition of V . Given the bound on the size of the
subset containing S in any feasible solution (that is, |L| ≤ k), it is also easy to note that
|U ∩L| cannot be greater than k− |S|, and that therefore |U ∩R| must be at least equal to
|U | − (k− |S|). Furthermore, we consider a modified weighting function w′, such that each
edge weight w′(i, j) is inversely proportional to the original weight w(i, j). We propose the
following mathematical formulation [MP1]:

[MP1] min
(i,j)∈E

w′(i, j)yij (10)

s.t.

yij ≥ zj − zi ∀(i, j) ∈ E (11)

zi = 0 ∀i ∈ S (12)

zi = 1 ∀i ∈ T (13)∑
i∈U

zi ≥ |U |+ |S| − k (14)

zi ∈ {0, 1} ∀i ∈ V (15)

yij ≥ 0 ∀(i, j) ∈ E (16)

Each binary variable zi is equal to 0 if i ∈ V is chosen to belong to L, and 1 if it will belong
to R. Variables yij will be equal to 1 if (i, j) crosses the cut (i ∈ L, j ∈ R) and 0 otherwise.

The objective function (10) minimizes the weight of the edges crossing the cut. By effect
of the w′ function, this favors the selection of edges with high transmission probability.
Constraints (11) impose yij to be at least equal to 1 if i ∈ L and j ∈ R. In every other
case, yij is free to assume (also by effect of Constraints (16)) any value ≥ 0. Given that all
weights are strictly positive, and the minimization imposed by (10), in the optimal solution
the yij variables will be set to their minimal feasible values, that is, yij = 1 if i ∈ L and
j ∈ R and yij = 0 otherwise, as desired.

Constraints (12) and (13) make sure that all sources and all targets belong to L and
R, respectively. Finally, Constraint (14) imposes the above illustrated lower bound on the
number of nodes in U that must belong to R.
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Finally, after identifying the cut and constructing the graph Gcut as described above,
we model the problem of identifying the minimum number of monitors and their locations
as follows:

[MP2] min
i∈Vcut

hi (17)

s.t.

hi + hj ≥ 1 ∀(i, j) ∈ Ecut (18)

hj = 1 ∀(i, j) ∈ Ecut|i ∈ Vcut ∩ S (19)

hi ∈ {0, 1} ∀i ∈ Vcut (20)

Each binary variable hi is equal to 1 if and only if a monitor should be placed in node i.
Constraints (18) impose the installation of a monitor in at least an endpoint of each edge,
while Constraints (19) state that a monitor should be installed on each neighbor of nodes
in Vcut ∩ S.

4. Experiments

We validated the proposed approaches by performing experiments on a set of freely available
benchmark instances, deriving from real-world data. All tests were conducted on a machine
running CentOS Linux 7, equipped with an Intel Xeon E5-2650 v3 processor running at 2.3
GHz and 128 GB of RAM. The IBM ILOG CPLEX solver (version 12.6.1) was used to solve
the proposed [SI], [MP1] and [MP2] formulations. The algorithms and the Independent
Cascade infection model are implemented in Python.

Next subsections contain descriptions of our computational experience for the Source
Identification and Monitor Placement problems, respectively.

4.1 Source Identification

Tests related to source identification were conducted on 12 instances. In particular, we
considered 10 directed graphs and 2 undirected ones. With respect to directed instances,
we considered the Epinions network to make our results comparable with the one given by
Nguyen et al. (2012a) and Zhang et al. (2015a). For this graph we adopted an approach
for generating transmission probabilities similar to the one used in these papers, i.e. as
described by Richardson et al. (2003): to each node u, it has been assigned a quantity
γu ∈ [0, 1] chosen according to a Gaussian distribution with mean 0.5 and standard deviation
0.25; then to an edge (u, v) it is assigned weight w(u, v) uniformly chosen from [max{γu +
γv − 1, 0},min{γu − γv + 1, 1}]. This instance will be referred to as Epinions-1 from now
on.

Furthermore, we considered the following 8 instances coming from the Social category
of the Konect database1: “Advogato” (from now, referred to as Advogato); “Digg Friends”
(Digg), “Epinions trust” (Epinions-2 ), “Google+” (Gplus), “Slashdot Zoo” (Slashdot),
“Twitter lists” (Twitter), “Youtube friendship” (Youtube-1 ), “Youtube links” (Youtube-
2 ). Finally, we considered the “Political blogs” (Polblogs) network of hyperlinks, available

1. http://konect.uni-koblenz.de
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Advogato Digg Epinions-1 Epinions-2 Facebook-1 Facebook-2
|S| nodes edges nodes edges nodes edges nodes edges nodes edges nodes edges

2 182.33 1222.33 152.00 1409.00 177.67 2240.00 175.33 2325.00 223.67 454.00 126.00 916.67
3 190.33 1621.00 143.33 3864.00 145.00 1719.67 171.00 1265.33 156.33 346.00 172.67 1398.67
5 203.33 2082.33 118.33 1231.00 136.67 1454.33 185.67 1101.67 170.00 336.67 116.00 1032.00

Gplus Polblogs Slashdot Twitter Youtube-1 Youtube-2
|S| nodes edges nodes edges nodes edges nodes edges nodes edges nodes edges

2 206.67 251.67 145.67 2193.67 169.00 818.00 154.67 306.67 153.00 727.33 116.67 511.00
3 167.33 173.00 203.67 4004.33 160.67 1331.33 137.00 233.67 197.67 818.67 176.00 595.67
5 177.33 189.00 149.33 3190.67 145.00 725.00 117.33 199.00 150.67 522.67 153.67 571.00

Table 1: Infected networks sizes

through the database of network data maintained by Mark Newman2, used in a recent
study on social influence during elections (Wilder & Vorobeychik, 2018). The two consid-
ered undirected graphs are “Facebook (NIPS)” (Facebook-1 ) and “Facebook friendships”
(Facebook-2 ), again available through the Konect database. For all mentioned instances,
except Epinions-1, a random weight between 0 and 1 was generated for each edge and used
as transmission probability.

For each network, to simulate an infection process, we chose at random a subset S
of nodes and assumed them to be the misinformation sources. Afterwards, we ran the
Independent Cascade diffusion process starting from them. Given a set of infected nodes
Vinf resulting from the process, Ginf = (Vinf , Einf ) is the subgraph induced in the input
graph G by Vinf , to be used as input instance for the [SI] model. We chose 2,3 and 5 as
values for |S|, and simulated the process for 3 different random choices of the sources for
each value of |S| (for a total of 9 simulations for each network). It follows that we obtained
108 different infected networks (9 for each of the 12 input instances). Average sizes of such
networks for every choice of instance and |S| are reported in Table 1.

4.1.1 The Results

We first analyze in the detail the performances of our approach when the number of sources
to be found is fixed to k′ = |S|. As mentioned, all instances are solved quickly using the
MILP model, indeed computational times reached around 30 seconds for a single test in
the worst case. For 9 out 12 instances (that is, excluding Facebook-1, Facebook-2 and
Youtube-2), no individual test required more than 3 seconds.

Performances on directed networks are shown in Figure 1. In the figure, the nodes
marked as source by the model (that is, children of the super-source s0) are identified as
nodes at distance 0. Given the 9 computational tests run for each instance, the overall
number of sources to be identified is 30 (i.e., 2 sources for three simulations, 3 sources
for other three simulations, and 5 sources for the remaining simulations). Then, for each
instance we report how many of them, in percentage, were correctly identified (on Figure 1
this is the percentage of true sources when the value of the distance from identified sources
is set to 0).

Overall, we note that at least 80% of the true sources are identified correctly for 6 out
of 10 instances (Digg, Epinions-1, Epinions-2, Gplus, Slashdot, Twitter). For Advogato
and Youtube-2, 63.33% of the sources are identified correctly (that is, 19 out of 30). For
Youtube-1, the true sources at distance 0 are 16. The only result below 50% is related to

2. http://www-personal.umich.edu/˜mejn/netdata/
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Figure 1: Source identification model performances on directed social graphs
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Figure 2: Source identification model performances on undirected (Facebook) social graphs

Polblogs, for which 13 true sources are at distance 0. We remark that nodes at distance 0
correspond to below 2.5% of the overall infected nodes for all instances. An analysis of the
inferior performances on this instance will be presented later.

To better assess the performances of the method, we are also interested to know how far
from the identified sources are the missed ones, that is, true sources that were not marked
as such in a solution found by the model. This metric can be very important in practical
applications. Indeed, if by keeping under observation some additional nodes the number
of controlled true sources increases significantly, the trade-off can be very favorable. We
define nodes at distance 1 as nodes that are not at distance 0 but are directly connected
to at least one of them. Generalizing, nodes at distance i are nodes connected to those at
distance i − 1 that were not reached yet. In Figure 1 we show the percentage of infected
nodes that are at distance i from the identified source, where the percentage is evaluated
on the total number of nodes in the 9 corresponding infected networks. For all 12 instances,
100% of the infected nodes are reached within distance 5 from the identified sources.

To illustrate in detail how our results are reported in Figure 1, we describe the subfigure
related to the Epinions-1 network. At distance 0, 27 of the 30 identified sources correspond
to true ones. Furthermore, given that the overall number of nodes in the Epinions-1 infected
networks is 1378, the 30 identified sources correspond to 2.18% of them. By also considering
the nodes at distance 1, we reach 31 new nodes, and an additional true source is among
them. Hence, 93.33% of the sources are found by considering 4.43% of the nodes. By adding
nodes at distance 2, we find 100% of the true sources, however the number of observed nodes
grows to 43.47% of the nodes. In general, we note that for Epinions-1, Epinions-2, Slashdot,
Youtube-1 and Youtube-2 adding nodes at distance 1 allows to identify additional sources
while keeping the number of observed nodes relatively low (around 5.5% for Slashdot and
below 5% in the other cases). In the case of Polblogs, adding nodes at distance 1 the number
of reached true sources grows to 53.33% (16 out of 30), considering 16.84% of the infected
nodes.

We move on the results for undirected instances, shown in Figure 2. Results are generally
worse than what shown for the directed case. At distance 0, we identify 43.33% and 23.33%
of the true sources for Facebook-1 a Facebook-2, respectively. Looking at the Facebook-1
subfigure, we note that almost all nodes (98.18%) are reached within distance 2, similarly
to the Polblogs case. However for Facebook-1, even considering nodes at distance 1 the
number of true sources reached remains below 50%. Facebook-2, as said, has the lowest
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Advogato Digg Epinions-1 Epinions-2 Facebook-1 Facebook-2
#Src %True src #Src %True src #Src %True src #Src %True src #Src %True src #Src %True src

23 63.33 33 96.67 29 90.00 31 83.33 24 43.33 20 20.00

Gplus Polblogs Slashdot Twitter Youtube-1 Youtube-2
#Src %True src #Src %True src #Src %True src #Src %True src #Src %True src #Src %True src

30 100.00 15 33.33 32 86.67 31 86.67 25 56.67 29 63.33

Table 2: Source identification model performances with unknown sources number

success rate with respect to correctly identified sources among the 12 considered instances.
Adding nodes ad distance 1 (and hence considering 10.53% of the overall infected nodes)
allows to reach 53.33% of the true sources. However, it is necessary to add nodes at level 3
(corresponding to 72.83% of the nodes) to reach the 80% threshold.

The results for Polblogs and the undirected Facebook graphs seem to suggest that the
proposed method is less fit for these two cases. We will now discuss them separately.
Looking at Table 1, we note that the Polblogs infected networks are significantly denser
than the others. This may depend from the nature of the instance itself, which represents a
network of hyperlinks rather than connections among people. As an additional metric, we
also measured the average number of edges between nodes belonging to consecutive distance
levels. This value is below 100 for Twitter and Youtube-2, between 101.31 and 174.88 for
all other directed or undirected networks except Polblogs, and 452.04 for Polblogs. The
significantly higher number of connections leads to a larger solutions space, that is, to a
larger number of feasible spanning branchings, which in turn can correspond to a higher
number of nodes that could correspond to the original sources with high probability.

Inferior performances on undirected graphs were an expected result, since the proposed
maximum spanning branching approach is naturally oriented towards directed ones. More
in general, given the assumption to only know the subset of infected nodes, any approach
aimed at identifying the misinformation sources on undirected networks is bound to face
severe difficulties. Indeed, given any two infected nodes linked by a bidirectional connection,
each of them has the same probability of having been the cause of infection for the other.

We believe that performances on undirected networks can be improved by means of
any type of additional information capable of (completely or partially) break the symmetry
deriving from its bidirectional connections. A best-case scenario would be the one in which
we are able to know, for each edge connecting two infected nodes, which of its endpoints
was infected first. Such preceding orders would allow us to interpret all the edges of the
infected network as directed edges. Another type of useful information could be related
to asymmetric transmission probabilities among the two endpoints of a connection. For
instance, given two users connected by a bidirectional friendship bond on a social network,
it is reasonable to assume one of the two to have a larger influence over the other. Also in
this case, taking into account this additional level of information would require to interpret
the originally undirected network as a directed one.

Finally, we briefly discuss the results related to the case in which the number of sources is
not known in advance. We executed the tests on the same set of 108 infected networks, using
the [SI] formulation modified as described in Section 2. Computational times were again
very low, with each test running within 30 seconds. In Table 2 we report, for each instance,
how many sources were identified in total (#Src) and how many of them correspond in
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percentage to true ones (%True src). We note that, with the exception of Gplus, a higher
or lower number of sources was always returned. In terms of true sources identification,
however, the performances are quite comparable. Indeed, the same number of true sources
as the previous tests were found for 9 out of 12 instances, that is Advogato, Digg, Epinions-
1, Epinions-2, Facebook-1, Gplus, Slashdot, Twitter and Youtube-2. For Facebook-2 and
Polblogs, the percentage of found true sources drops from 23.33% and 43.33% to 20% and
33.33%, respectively, again confirming the higher difficulty to detect sources in these cases.
Finally, in the case of Youtube-1, 17 sources are found instead of 16, hence the percentage
grows from 53.33% to 56.67%. To resume, moderate drops in the source identification rate
occurred only for 2 highly challenging instances. The proposed method proved therefore to
be applicable and competitive even in the realistic scenario in which it is not possible to
know in advance the number of the sources that should be identified.

4.1.2 Experiments with Different Sources Selection

We performed some additional experiments in order to verify how different choices for the
subset of sources S (as opposed to the uniformly random case) can affect the performances
of our approach. In particular, we chose nodes with relatively low or relatively high cen-
trality in the network. To this end, we considered two different centrality metrics, namely
PageRank (Page et al., 1998) and out-degree. While the out-degree of a node models the
number of users directly reached by the information that it produces, that is, the number of
its followers, PageRank gives a measure of the influence of the node in the network beyond
these direct connections.

These additional tests were run on three directed networks for which the model per-
formed with different degrees of success when sources are chosen at random, that is, Ad-
vogato, Epinions-1 and Polblogs. Indeed, we recall that for these instances we identified
correctly the 63.33%, 90% and 43.33% of the sources, respectively.

We now first describe the tests related to sources with low centrality. We premise
that there is a clear motivation for focusing on this case. Indeed, as documented in the
scientific literature, misinformation originates often from users with questionable credibility,
unknown identities and a limited number of followers (Gupta et al., 2013; Vosoughi et al.,
2018), and false news become viral quickly only once they reach more popular users. In
some cases, these source users may be likened or may coincide with automated spamming
accounts (“bots”), which have similar features (Eshraqi et al., 2015; Masood et al., 2019;
Wang, 2010).

For each instance and each centrality metric, we considered as potential sources only the
users ranked in the lowest third according to the metric itself. Again, we chose 2, 3 and 5
as values for |S|, and for each value of |S| we simulated the infection process for 3 different
sets of sources, chosen at random among the potential ones. It follows that each instance
and each metric define a test scenario composed of 9 independent tests, with a total of 30
sources to be identified for each scenario, as in the previously discussed ones. The results
are illustrated in Figure 3.

We can observe that a significant number of sources is always identified, and that indeed
we improve the results on the same instances and random sources selection in 5 out of 6
cases. In more detail, depending on the chosen centrality metric, either the 90% or the
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Figure 3: Source identification model performances - sources with low centrality
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76.67% of the true sources are at distance 0 from the identified ones for Advogato, either
the 100% or the 83.33% for Epinions-1, and either the 83.33% or the 70% for Polblogs. We
find it is highly remarkable that in a more realistic scenario, as the one resulting from the
adopted sources selection strategy, the performances for Polblogs improve from below 50%
to at least 70%.

The general improvement in performances can be clearly explained. Indeed, comment-
ing the tests with random sources selection, we noted that Polblogs (which was the worst-
performing directed network) had the densest infected subgraphs, which led to larger solu-
tion spaces. Conversely, for any instance, choosing sparsely connected sources is likely to
produce infected networks containing fewer feasible spanning branchings. Furthermore, we
note that the best performances are in general obtained when sources are chosen accord-
ing to PageRank, witnessing the higher effectiveness of this metric to express the overall
influence of the nodes in the network.

As mentioned, in a single case out of 6 (Epinions-1 with sources chosen according to
out-degree) performances are worse with respect to the random case, that is, 83.33% (25
out of 30 sources) instead of 90% (27 out of 30). Given the small performance gap, and the
consistently good performances of the method on this instance, this can be easily justified by
considering the randomness existing in both the sources selection phase and the Independent
Cascade infection process.

We find instructive also to test our algorithms in the case that sources are selected among
nodes with high centrality (specifically, random sources are selected among the potential
sources, that are the nodes ranked in the highest third according to the two centrality
metrics). The main aim for performing these experiments is to confirm our intuition that
this selection strategy would negatively affect the performances of the proposed method,
for reasons that are opposite to those of the previously discussed improvements obtained
when sources have low centrality.

The results of these tests are illustrated in Figure 4. The results fully confirm our
expectations. Indeed, we note that the percentage of successfully identified sources drops
to 26.67% for Advogato and, depending on the considered metric, to either 50% or 43.33%
for Epinions-1 and to either 10% or 20% for Polblogs.

We point out that this strategy has limited real-world adherence. Indeed, popular nodes
of the network are not likely to compromise their reputation and status by willingly share
misinformation, and may only occasionally and inadvertently do so. When a node with high
centrality with respect to a network or a portion of it shares misinformation repeatedly, it is
likely to be a known source, such as an account officially linked to a known disinformation
website (Pierri et al., 2020; Shao et al., 2018), and therefore there is no need to identify it.

Finally, we remark that choosing sources according to centrality metrics did not neg-
atively affect the computational time needed to solve the model. Indeed, none of these
additional 108 tests required more than 7.5 seconds, and in 102 out of 108 cases the com-
putational time was below 3 seconds.

4.1.3 Comparison with the Algorithm Proposed by Nguyen et al. (2012b)

In order to appreciate our results, we find useful to compare our results with the ones
obtained by Nguyen et al. (2012b). To this aim, we implemented in Python the algorithm
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Figure 4: Source identification model performances - sources with high centrality
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proposed in that work, that from now on we name NNT. In order to make our results
comparable with the one given in their paper, we run our experiments only with a fixed
number k of sources, with k ranging from 1 to 4 and on the Epinions-1 network.

Due to the poor performances of algorithm NNT on this network, we considered also
two smaller networks, namely Wiki-Vote and Gnutella08 (Leskovec & Krevl, 2014): in-
deed, Wiki-Vote is a dense network with of 7115 nodes and 103689 edges; Gnutella08 has
comparable size, but it is much sparser, since it has 6301 nodes, but only 20777 edges.

Moreover, in order to compare the performances of the two approaches with respect to
the number of infected nodes we grouped our experiments in five groups, depending on the
size of the set of infected nodes Vinf : [100, 250], [500, 650], [1000, 1200], [1500, 1700], and
[2100, 2700]. To force each test to be in one of these ranges, we choose a random integer i
within that range, and we stop the cascade process as soon as i nodes have been infected
by misinformation.

For each of these experimental settings, i.e., for every graph, each value of k, and each
range, the experiment has been repeated at least 15 times.

First, we tested our heuristic for single source identification. As you can see in Figure 5,
it was able to find the right sources in approx. 70% of the experiments, with a slight
decrease of the success rate only when the number of infected nodes is very large. Instead,
the algorithm proposed by Nguyen et al. (2012a), run on the same inputs, finds the correct
source in less than 10% of experiments, and it never finds the correct source when the
number of infected nodes is within the range [2100, 2700].

Figure 5: Comparison of success rates of the single source identification.

We also compared the performances of our algorithm and NNT with multiple sources.
Clearly, in this case an algorithm can correctly identify all the sources or only part of them.
Figure 6 shows the rate of (partial) successes of our approach when k = 3 and when k = 4
(results for k = 2 are similar and we do not present them here). As you can see, in almost
all the experiments our approach correctly identified at least half of sources and in more
than 70% of experiments it correctly identified all sources except at most one. Moreover,
it was able to correctly identify all the sources in at least 40% of experiments, even if the
success rate tends to decrease as the number of infected nodes increases. This success rate
is more than five times larger than the one achieved on the same inputs by NNT, and this
rate is up to twenty times larger when the number of infected nodes is large.
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(a) k = 3 (b) k = 4

Figure 6: Comparison of success rates of the multiple source identification.

4.2 Monitor Placement

For the Monitor Placement problem, we performed tests on 8 instances, corresponding
to 5 directed networks and 3 undirected ones. The considered directed networks are the
Advogato, Digg, Epinions-1, Polblogs and Slashdot instances described in the previous sub-
section. As undirected networks, in addition to Facebook-1 and Facebook-2, we considered
the “Hamsterster Full” instance available through the Konect database (from now on, re-
ferred to as Hamsterster). We further categorize these instances by their size. That is, from
now on we refer to Advogato, Facebook-1, Hamsterster and Polblogs instances as small, and
to the remaining ones as large. Small instances have between 1224 and 5155 nodes, while
for the large ones the number of nodes ranges between 63731 and 279630.

In the tests, we consider the case in which a target node t has to be protected by a
set S composed of 10, 20, 30, 40 or 50 known or suspected misinformation sources. In the
k-unbalanced cut solution that we look for, we always limit the size of the subset containing
the sources to 5% (rounded to integer) of the number of nodes. Indeed, a value below this
threshold would lead to an infeasible scenario for the smallest instance (Polblogs), while we
experimentally verified that a larger threshold rarely brings improvements. In more detail,
we run the models [MP1] and [MP2] to find solutions for all instances and values of |S|,
considering a single random choice for the elements of S and t, and (rounded) thresholds
set to 5%, 6%, 7% and 8% of the number of nodes. The higher threshold values allowed to
identify a smaller number of monitors only for Polblogs and |S| ≥ 30, with improvements
up to 10.55%.

In the computational tests reported in this section, for each instance and each value of
|S|, we made 3 different random choices for the elements of S and for t. Therefore, overall
we considered 120 different test cases (15 for each different instance).

4.2.1 The Results

Here we compare the two approaches described above for the Monitor Placement problem:
the heuristic described in Algorithm 1 and the one given by solving the MILP formulations
[MP1] and [MP2] in sequence. Our intent is twofold. On the small instances, we show
both approaches to perform similarly. However, even if on small instances the MILP-based
is usually effective, and sometimes even faster than the heuristic, on the large ones, it is
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Instance |S| # Monitors Time
mod heu %gap mod heu

Advogato 10 110.67 113.67 2.71 16.83 27.19
20 172.33 181.67 5.42 51.06 44.12
30 217.00 230.33 6.14 67.68 77.71
40 329.67 336.33 2.02 60.68 100.14
50 313.33 344.67 10.00 66.62 102.61

Facebook-1 10 5.67 5.67 0.00 2.91 0.53
20 5.67 5.67 0.00 0.87 0.37
30 7.33 7.67 4.55 1.28 0.38
40 7.67 8.33 8.70 1.12 0.54
50 210.67 194.33 -7.75 1.04 31.60

Hamsterster 10 107.67 111.67 3.72 4.97 39.49
20 207.33 218.67 5.47 27.38 105.92
30 319.67 340.33 6.47 28.06 133.73
40 333.67 354.33 6.19 13.67 101.17
50 470.33 501.00 6.52 17.89 177.87

Polblogs 10 101.33 110.33 8.88 11.91 66.50
20 179.00 183.00 2.23 14.37 60.76
30 188.33 187.00 -0.71 2.11 81.56
40 341.67 323.33 -5.37 0.72 190.96
50 367.00 337.67 -7.99 0.45 186.83

Table 3: Model-based vs. Heuristic approach for Monitor Placement on small graphs

shown that the resolution of the proposed MILPs becomes less and less viable, due to the
steep increase of computational times deriving from the larger set of decision variables and
the resulting larger solutions space. However, in this case, this approach still provides
validation for the heuristic, which is shown to still produce solutions of good quality, within
a fraction of the time needed to solve the models. This would allow to confidently use the
heuristic to produce results on even larger networks, where validation through mathematical
models would not be possible.

The results for the small instances are summarized in Table 3. Each row contains
average results related to the scenarios corresponding to the same choice of instance and
|S| value. The first two columns contain the scenario characteristics. Values under the #
Monitors heading contain the average number of monitors obtained by using each approach,
while values under the Time one report computational times, in seconds. The mod and
heu sub-headings refer to the MILP-based approach and the heuristic one, respectively;
from now on, we will use these heading names to refer to the two approaches. Finally, the
%gap subheading refers to percentage gaps between mod and heu solutions, evaluated as
100× heu−mod

mod .
We note that the gap is never significant, indeed it varies in the [−7.99, 10] interval. A

negative gap means that heu found on average better solutions in the related scenario. While
this may seem unintuitive, it must be remembered that the minimum k-unbalanced cut is
used as a proxy of the actual monitor minimization problem, as well as to favor the presence
of edges with low transmission probability in the subset containing the misinformation
sources. Therefore, the k-unbalanced cut with minimum weight (which is always identified
by [MP1]) could potentially not lead to the minimum number of monitors. Overall, we
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Instance |S| # Monitors Time
mod heu %gap mod heu

Digg 10 7.67 7.67 0.00 1922.67 180.64
20 72.67 75.67 4.13 42277.23 301.81
30 137.00 180.00 31.39 38684.60 409.50
40 115.67 130.67 12.97 36573.10 267.80
50 256.67 258.00 0.52 54586.37 341.81

Epinions-1 10 73.00 75.67 3.65 2303.80 68.57
20 128.67 150.33 16.84 3791.17 73.36
30 108.33 146.00 34.77 3079.57 95.12
40 159.33 159.33 0.00 2631.34 121.67
50 325.33 331.00 1.74 4036.33 226.17

Facebook-2 10 185.67 199.67 7.54 11456.06 465.08
20 496.33 529.33 6.65 23493.13 1015.44
30 791.00 833.33 5.35 43993.73 1162.04
40 1066.67 1181.00 10.72 39974.83 2226.79
50 1573.33 1708.33 8.58 39872.60 3752.70

Slashdot 10 18.00 22.67 25.93 2518.09 53.11
20 165.33 175.33 6.05 4679.56 94.55
30 134.67 145.33 7.92 4208.21 94.22
40 92.33 99.00 7.22 3449.51 54.63
50 207.00 216.33 4.51 3182.19 142.63

Table 4: Model-based vs. Heuristic approach for Monitor Placement on large graphs

note that mod finds better solutions in 16 out of 20 scenarios, with heu performing better
in the remaining 4.

We note that, in general, the number of monitors to be placed grows as |S| grows. The
10% gap occurs for Advogato with |S|=50, while the −7.99% gap occurs for Polblogs, again
in the case |S|=50.

With respect to computational times, both algorithms result to be efficient. However
for heu, we notice a general increase for larger |S| values. No such trend can be noted for
mod. Overall, heu requires up to 190.96 seconds, while mod runs within 66.62 seconds in
the worst case.

Table 4 contain results for large instances. All table headings have the same meanings
discussed for Table 3. We note that, for these scenarios, gaps are always positive. However,
heu remains remarkably competitive. Indeed, out of 20 scenarios, the gap is null twice,
within 5% in 7 cases, within 10% in 14 cases, and over 20% (up to 34.77%) only three
times. An interesting result is that the gap is always below 10% in the cases with |S|=50,
which generally require a higher number of monitors. For lower values of |S|, the higher
gap values are in part justified by the fact that solution values, in absolute terms, are
smaller; see for instance the case of the Slashdot instance with |S|=10, where the 25.93%
gap corresponds to a difference of 4.67 monitors.

In terms of computational times, heu is (as anticipated) more efficient by a significant
margin. Indeed, it is in all cases faster by at least one order of magnitude. Overall, the
highest computational time for heu corresponds to the Facebook-2 instance with |S|=50,
and it is equal to 3752.70 seconds. The related computational time for mod is 39872.60,
while its highest one, corresponding to Digg with |S|=50, is equal to 54586.37 seconds.
Furthermore, heu runs within 100 seconds in 7 out of 20 scenarios, and within 1000 seconds

873



Anello, Amoruso, Auletta, Cerulli, Ferraioli & Raiconi

in 16 cases. On the other hand, the fastest computational time for mod is 1922.67 seconds,
corresponding to Digg with |S|=10.

4.2.2 Comparison with the Algorithm Proposed by Zhang et al. (2015a)

As above, we find instructive to compare our heuristic with previous works. Specifically,
we will show the results for the comparison with the algorithm MMSC proposed by Zhang
et al. (2015a). To this reason we implemented this algorithm in Python. Due to the large
running time of the MMSC algorithm, we compared the performances of the two approaches
only on three small networks: the Wiki-Vote and the Gnutella08 network discussed above,
and on a subset of the Epinions-1 network, named SUB-Epinions, consisting of 7479 nodes
and 25855 edges. The network SUB-Epinions has been created by randomly choosing an
integer n between 7000 and 7500, selecting n nodes at random from the largest strongly
connected component of Epinions, and considering the graph induced by these nodes. Edge
weights have been randomly assigned.

We also followed the choice of misinformation sources made by Zhang et al. (2015a). We
considered a set S of sources, with |S| = 10, 20, . . . , 50, and only one target node t. Sources
are selected randomly among the set of nodes with low out-degree that are neighbors of the
|S| nodes with the largest degrees. Target is selected uniformly at random among nodes
with low in-degree. Here, we say that the degree of node is low (high) if it is below (above,
resp.) the average degree of the network.

For each graph G and each set of sources S, we first contracted sources into a single
source (see Section 3 for details) and then we run algorithm MMSC with parameters τ = 0.1
and δ ∈ {1, 2} (recall that if we increase δ, then we are allowing more nodes to be infected
by misinformation).

In order to make the results of the algorithms comparable, we would like to have more
or less the same expected number of nodes that are reached by misinformation. For this
reason, we run 100 separate executions of the Independent Cascade diffusion process on the
network G with sources from S and monitors placed according to algorithm MMSC, and let
k be the average number of nodes infected by misinformation in these executions. Then we
run our heuristic on input (G,S, t, k)

For each graph, each value of |S| and each value of δ we executed the experiment 10
times and evaluated both the average number of monitors and the average number of vertices
reached by misinformation.

The results of our experiments show very different behaviors for the cases of δ = 1 and
δ = 2. When δ = 1 our heuristic places a number of monitors that is slightly greater than
algorithm MMSC.

We remark that this slightly increase in the number of monitors, never greater than
20%, is counterbalanced by the much more stronger results of our heuristic in terms of
limitations to the spread of misinformation.

Moreover, with our heuristic the average number of nodes that are reached by misinfor-
mation even in presence of monitors is much less than MMSC and the difference between the
two algorithms explodes as the number of sources increases. In Figure 7a and 7b, we show
results only for the Wiki-Vote network, since results for the other networks are similar.
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(a) Monitors (b) Infected

Figure 7: Performances of the two algorithms for Monitor Placement on Wiki-Vote, when
δ = 1.

When δ > 1 our heuristic outperforms the MMSC algorithm with respect to both the
number of monitors placed and the number of nodes exposed to the misinformation. As
you can see in Figure 8a, the number of monitors placed by our heuristic remains almost
unchanged regardless of the value of δ, whereas the number of monitors placed by MMSC

explodes. Moreover, as shown in Figure 8b, even if MMSC places much more monitors, our
heuristic has much better performances with respect to the number of infected nodes.

(a) Monitors (b) Infected

Figure 8: Performances of the two algorithms for Monitor Placement on Wiki-Vote, when
δ = 2.

5. Conclusions and Future Work

In this paper we considered the problem of contrasting the spread of misinformation in
an online social network. We proposed two heuristics for first identifying the sources of
misinformation and then placing a set of monitors on nodes of the network to limit the
spread of misinformation.

Our heuristics are based on well-studied graph-theoretic problems, namely computing
the maximum spanning branching of a directed graph, or an unbalanced cut. Both our
heuristics can have arbitrarily large approximation guarantees, due the previously known
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hardness results. However, they performed very well in the extensive tests we run and
largely outperformed previously known algorithms.

We also observed that there are implementations of our approaches that return the
solution very quickly even for large networks. However, we believe that further research
on how improve both the performances and the running time of source identification and
monitor placement algorithms would be of huge practical and theoretical relevance.

In our setting infected nodes are surely recognized. It would be very interesting to
consider the case that infected nodes are recognized only with some level of confidence.
Our feeling is that our techniques still work by simply down-weighting the edges that leave
a node with a factor that corresponds to the probability that node is infected. However, we
do not have run experiments on this extension.

Finally, we assume that misinformation spreads according to a cascade model. However,
it would be interesting to evaluate the extent at which our approach works with other well-
known models, such as epidemics and threshold models, and their noisy variants (Auletta
et al., 2013a, 2013b).

Yet another interesting direction would be to design misinformation containment strate-
gies that are robust even in settings in which the location of seeds of misinformation may
change over time and adapt itself to minimize the effectiveness of placed monitors. A first
step in this direction has been recently taken by Auletta et al. (2020).
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