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Abstract
The problem of achieving common understanding between agents that use different

vocabularies has been mainly addressed by techniques that assume the existence of shared
external elements, such as a meta-language or a physical environment. In this article, we
consider agents that use different vocabularies and only share knowledge of how to perform a
task, given by the specification of an interaction protocol. We present a framework that lets
agents learn a vocabulary alignment from the experience of interacting. Unlike previous
work in this direction, we use open protocols that constrain possible actions instead of
defining procedures, making our approach more general. We present two techniques that
can be used either to learn an alignment from scratch or to repair an existent one, and we
evaluate their performance experimentally.

1. Introduction

Multiagent systems are conceived as open, distributed and heterogeneous environments
where agents from different design backgrounds interact, each of them contributing with
their own knowledge or abilities. From autonomous cars that inform each other of their po-
sition and other traffic-related data to improve circulation and avoid accidents, to medical
assistant robots who collaborate with humans in hospitals, the multiagent scenarios envi-
sioned by the artificial intelligence community require communication to coordinate their
actions when the objective is to perform a task together.

Agent heterogeneity is commonly addressed by means of some mediating architectural
abstraction such as, for instance, the A&A meta-model for multiagent systems (Omicini
et al., 2008). By means of boundary agents one defines interfaces between agents and the
multiagent interaction space so as to deal with all sources of change in a uniform way
(Mariani & Omicini, 2015). In very dynamic settings, however, it will be difficult to ensure
that all participants use the same vocabulary in their communication, and that they interpret
it equivalently; or, given different vocabularies, to ensure that these are translated by means
of translator artifacts in a uniform way. Even if this were possible at some point in time,
vocabularies may continuously change in an evolving system, when they are adapted to
satisfy new needs, for instance. In these situations, it becomes essential to address the
problem of dynamic heterogeneity: finding ways in which agents in an open, distributed and
heterogeneous multiagent system may be capable of dynamically aligning their respective
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Figure 1: FSM protocols for Waiter (W) and Customer (C)

vocabularies to successfully interact through communication, even when confronted with
continuous change and evolution. This is necessary to ensure meaningful interactions, and
therefore crucial for the success of systems in which agents act jointly by communicating.

The multiagent community has proposed several solutions to the problem of vocabulary
alignment in multiagent systems. As we will discuss in Section 2, in general these contribu-
tions either consider the existence of external contextual elements that all agents perceive,
or assume agents share a common meta-language that they can use to discuss the meaning
of words and their alignments. In this article we take a different approach to multiagent
vocabulary alignment, proposing a method that uses only information about the interaction
that is being performed. An analogy with human communication can be useful to introduce
this idea. Consider an English speaker trying to get a glass of wine in Italy. While the first
time the situation can be confusing, after some attempts the customer will likely learn how
to perform the interaction successfully in Italian. This is, in part, due to two factors. First,
the customer and the seller (mostly) agree on how the interaction for buying wine should
unfold. Second, the interaction context is very reduced, which means that the number of
possible mappings can be kept small, and therefore the correct ones are easier to discover.

To make the example more concrete, consider the interaction in Figure 1, in which an En-
glish speaking customer C communicates with an Italian waiter W . Although W , may not
“understand” what C wants to drink, it could just guess one of the possible message align-
ments and attempt to continue its task. After repeated interaction with English speaking
customers, W would be capable to progressively learn which alignments lead to success-
ful outcomes, relating, for example, beer to birra. This idea was first developed by Atencia
and Schorlemmer (2012)—and further extended by Chocron and Schorlemmer (2016)— who
consider an interaction as successful when both agents jointly reach a final state in the exe-
cution of their respective interaction protocols. However, their use of finite state automata
as specifications implies that agents need to agree on the exact order in which messages
should be sent, which is unnecessarily restrictive. In addition, in the approach presented by
Atencia and Schorlemmer (2012), agents learn an alignment that is only useful for one task.
How this can be extrapolated to other interactions is not explored.

In our previous work (Chocron & Schorlemmer, 2017b) we presented a version of the
interaction-based alignment technique for agents that specify interactions with constraint-
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based open protocols that define temporal rules about what can be said, instead of forcing
particular executions (Endriss, 2006; Pham & Harland, 2007). For example, instead of speci-
fying that the waiter must ask color? after the customer asks for wine, these protocols could
include a constraint saying that the color must be asked at some point in time after wine is
ordered, leaving to the agent the decision of exactly when to do it. These protocols provide
a much more flexible specification that does not define the complete flow of the messages but
only some relevant constraints, avoiding over-specification. In particular, we used ConDec
protocols (Pesic & van der Aalst, 2006; Pesic et al., 2007), that employ linear temporal logic
to specify constraints. One ConDec protocol may not be enough to completely define the
meaning of all words in a vocabulary, so in previous work (Chocron & Schorlemmer, 2017b)
we study how agents can learn mappings when they perform different tasks.

Learning while interacting has several advantages. First of all, no extra interactions
or information are necessary; agents exchange only the messages they need to perform
the task. This implies that they do not need to access extra information in the semantic
representations of their interlocutors, which might be impossible or undesirable. Since agents
learn gradually as different interaction opportunities appear, they can use what they learned
earlier, even if they still do not know the alignment completely. A more subtle advantage
is that agents learn the vocabulary that is actually used to perform the tasks they need to
perform. This is particularly important when they are restricted to a specific domain, that
can have its particular jargon.

Our techniques do require that agents can participate in many interactions, particularly
when vocabularies are large. Nowadays, however, obtaining these rehearsal interactions is
likely cheaper than crafting a linguistic or ontological resource that is useful to obtain align-
ments. In particular, these interactions do not need to have any type of human intervention.
For example, consider an agent trying to learn a new vocabulary that is already spoken by
other artificial interlocutors. This agent can be introduced into the new community and
start learning immediately. It is only necessary to identify it as a learner so that other
agents are aware of its situation. A different application scenario that we envision for our
techniques is one in which there are emergent semantics (Aberer et al., 2003). This term
refers to new meaning that is created dynamically by other interlocutors, which is difficult to
capture since it is usually not explicit. Using our techniques, an artificial agent could infer
the meaning of expressions that appear spontaneously in social media communities only by
analyzing their use. Since the agent only needs to learn the meaning of a small vocabulary,
it does not require that many interactions.

In this article we extend and improve the work presented in our previous work (Chocron
& Schorlemmer, 2017b). Concretely, our contributions are:

- We present a formalization of the learning process (Section 5).

- We propose new learning methods. Concretely, we introduce agents that choose their
utterances to improve their chances of learning (Section 5).

- We improve the learning techniques, obtaining agents that learn significantly faster
(Section 5 and 6).

- We expand the experiments, considering new interesting cases (Section 6).
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- We compare our techniques with an existing method (Section 6).

- We discuss how a particular class of rules (called p-necessary) can be taken into account
in the learning process (Section 7).

- We compare the agents we propose, that use a probabilistic learning technique, with
an agent that makes only logical inferences (Section 8).

The remainder of this article is organized as follows. After reviewing related work in
Section 2, we introduce open interaction protocols in Section 3, and in Section 4 we define a
framework for interacting with partners that use different vocabularies. Section 5 presents
different techniques to learn an alignment from the experience of interacting that improve
the ones in previous work (Chocron & Schorlemmer, 2017b), as well as other ones that
consider agents that actively want to learn. All methods can be used to learn alignments
from scratch when there is no information, as well as to repair alignments obtained with
other methods. We evaluate the different techniques experimentally in Section 6. Section
7 discusses agents that can use a particular class of p-necessary constraints in the learning
process, and in Section 8 we compare our probabilistic learning technique to one based on
logical inference. We conclude with Section 9.

2. Related Work

Vocabulary alignment has been extensively studied in the field of ontology and ontology
matching (Kalfoglou & Schorlemmer, 2003; Euzenat & Shvaiko, 2013), but the dynamic
character of multiagent interactions adds a dimension of heterogeneity that cannot be cap-
tured solely with the static knowledge that ontologies and ontology alignments provide about
some particular domain. Consequently, the multiagent community has explored the vocab-
ulary alignment problem also in relationship to the dynamics of multiagent interactions.

Steels (1998) explored mechanisms by which a group of agents forms a vocabulary and
ontology in a self-organised way through local interaction and without central control au-
thority. His focus was on robotic agents that share the same sensorimotor capabilities
and which, by means of language games, develop their own shared ontology, creating and
grounding their vocabulary on the perception of a shared physical space.

Reaching a common vocabulary or vocabulary alignment has also been the focus of
the work of Bailin and Truszkowski (2002), Laera et al. (2007), Santos et al. (2016), van
Diggelen et al. (2006), and Silva et al. (2005), but without assuming the existence of external
elements that all agents perceive, drawing instead from techniques developed for multiagent
argumentation and negotiation. Without sharing the same physical space, agents can now
communicate remotely but they need a common meta-language to reach agreements over
word meanings and their alignments.

The idea of letting agents create and refine vocabulary alignments by means of interaction
games in the spirit of Steels (1998) has also been explored by Euzenat (2014, 2017). His
approach assumes a shared collection of objects with shared Boolean features that are to
be classified according to the diverse vocabularies. Interaction games are successful if the
resulting classification of an object by both agents is compatible with the public ontology
alignment. Otherwise these alignments are repaired using adaptation operators.
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Sharing the instances that are classified into different categories is also the assumption
behind the work of Wang and Gasser (2002), who present an alignment algorithm of on-
tologies in a multiagent system based on the k-means algorithm, a classical partition-based
clustering method. Ontologies are partitions of domain instances into categories, and the
alignment is done by communicating instances between two agents.

Focusing on the information one can gain from the interactions themselves, Besana and
Robertson (2007) have explored how interactions between agents can be used to predict
vocabulary alignments, reducing the search space of a priori possible mappings between
vocabularies and without the need to map the entire ontologies, which simplifies the ontology
mapping problem for open and distributed environments.

A complementary angle to the vocabulary alignment problem in multiagent systems has
been pursued by Bravo and Velazquez (2008) who focused on pragmatic interoperability,
i.e., the actual use of exchanged messages and their effect according to the interaction
dynamics as specified in multiagent interactions. The pragmatic similarity they define and
compute bears some ressemblance with the sort of alignment that one can infer from what
Atencia and Schorlemmer (2007) called the ‘communication product’, which captures the
global interaction with respect to the compatible message-passing behaviour of agents with
different interaction models.

Protocol compatibility is also behind the techniques developed by Ancona et al. (2018)
for computing the vocabulary alignments that would allow an agent designed for a particular
multiagent protocol to be successfully deployed in a different one. Protocols are specified as
trace expressions, which are more expressive than the FSA-based formalism studied by Bravo
and Velazquez (2008) and Atencia and Schorlemmer (2007). But as with the ‘communication
product’, access to the entire protocol specifications of the agents is needed in order to
compute a mapping, which needs to be established before the agents start interacting.

Goldman et al. (2007) investigated how agents can learn to communicate in a way that
maximizes rewards in an environment that can be modeled as a Markov Decision Process.
Barrett et al. (2014) studied a version of the multiagent, multiarmed bandit problem in which
agents can communicate with each other in a common language, but message interpretations
are not known.

In the area of cognitive language acquisition there exists extensive work on computational
models of first language acquisition that models the way in which children learn word-
meaning mappings from disambiguating sentences that are described in a given observable
situation (Xu & Tenenbaum, 2007; Siskind, 1996; Angluin & Becerra-Bonache, 2017; Akhtar
& Montague, 1999). However, this implies that there exists a physical situation that is
observed by both the learner and the speaker. The problem of learning translations only
from the experience of interacting is therefore notably unexplored also in this area. Our
work could also be a model of second language immersion learning that takes advantage of
the cultural procedural similarities between the speakers.

How to achieve agent coordination from interaction experience, by learning from repeated
interaction with multiple agents, has been studied for instance for norm emergence by Sen
and Airiau (2007); and how to infer coordination structures such as finite automata or
grammars has also been described by de la Higuera (2010). These approaches, in which the
vocabulary is shared while some other coordination structure —either norms or grammars—
is inferred, can be seen as the reverse of our work.
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3. Open Interaction Protocols

To explain how agents can infer alignments from the information about the dynamics of
an interaction, it is first necessary to define how this information is represented. To this
end, we use interaction protocols that restrict what can or cannot be said by an agent at a
certain time. The question of what should be expressed by an interaction protocol has been
extensively discussed in the multiagent systems community. Traditional approaches such as
finite state automata and Petri Nets are simple to read and verify, but extremely rigid, since
any message that can be uttered at a certain time needs to be explicitly defined. This lack
of flexibility hinders their design, change, or reuse, making them only adequate for simple
and static interactions.

A different approach, that provides more flexibility, consists in specifying protocols by
constraining possible actions instead of defining a fixed procedure. Constraint Declarative
Protocols (commonly known as ConDec protocols) are an example of these approaches.
ConDec protocols were first proposed by Pesic and van der Aalst (2006) as a language to
describe business protocols. In later work they have been used as a specification language for
agent interactions, for example by Montali (2010), who presents an extension of the ConDec
language and tools for its verification, and by Baldoni et al. (2010, 2013), who integrates
ConDec constrains with commitment protocols, a framework to specify interactions with
social semantics (Singh, 2000). An important advantage of ConDec protocols is that they
use linear temporal logic, a well-known formalization for which many reasoning tools are
available. These protocols specify only the temporal aspect of the interaction, without any
link to a more global view of the task that is being performed (see the work by Marengo
et al. 2011 for a discussion on this), or to any other semantic information about the concepts
that agents are talking about. In this article we show that temporal information is enough
to infer an alignment between vocabularies that allows agents to communicate meaningfully.
Of course, agents with richer protocols can incorporate the extra information to the learning
process to make it faster or more precise.

The rest of this section is divided in three parts. In Section 3.1, we present the basic
notions of ConDec protocols as they were defined by Pesic and van der Aalst (2006). In Sec-
tion 3.2 we present our adaptation to use ConDec protocols as specifications of interactions
between agents that may use different vocabularies. In Section 3.3 we introduce the idea of
compatibility between protocols.

3.1 Preliminaries

Linear Temporal Logic (LTL from now on) is a natural choice to express constraints about
actions that occur in time. We will describe it following the conventions used in Huth and
Ryan (2004). The syntax of LTL consists of a finite set of propositional variables Atoms, the
logical operators ¬, ∧ and →, and the temporal modal operators {G,F,X,W}.1 The set of
LTL formulas over Atoms is defined as follows:

1. if p ∈ Atoms, then p is an LTL formula, and

1. This set is not minimal, but it is the most useful one for our purposes. For the same reason we use weak
until (W) instead of until (U).
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2. if φ, ψ are LTL formulas, then ¬φ, φ ∧ ψ, φ → ψ, Gφ, Fφ, Xφ, φWψ are LTL
formulas.

LTL formulas are interpreted over sequences of states, with each state being associated
to a truth-valuation of the propositional variables in Atoms. The intuitive idea is that Gφ
means that φ must be true in the truth-valuation of all following states, Fφ means that φ
must be true eventually, Xφ means that φ must be true in the next state, and φW ψ means
that φ must be true until ψ is true, if that ever happens, or true always otherwise. Formally,
consider a set of states S , and a labeling function L : S → 2Atoms assigning each state to a
subset of Atoms. Given a propositional variable p ∈ Atoms and a state s ∈ S , the value of
p in s is interpreted as true if p ∈ L(s) and as false otherwise. A word w = s1, s2, . . . is
an infinite sequence of states in S , that is, an element in Sω. We write w i : for the suffix
starting at si , that is, w i : = si , si+1, . . .

The semantics of LTL is defined as follows. Let p ∈ Atoms, and let φ, ψ be two LTL
formulas.

- w |= p if p ∈ L(s1)

- w |= ¬φ if w 6|= φ

- w |= φ ∧ ψ if w |= φ and w |= ψ

- w |= φ→ ψ if w |= ψ whenever w |= φ

- w |= Gφ if for all i ≥ 1, w i : |= φ

- w |= Fφ if there is some i ≥ 1 such that w i : |= φ

- w |= Xφ if w2: |= φ

- w |= φWψ if either there is some i ≥ 1 such w i : |= ψ and for all j such that
1 ≤ j ≤ i − 1 we have w j : |= φ, or for all k ≥ 1 we have wk : |= φ

A set of LTL formulas, called a theory, is satisfiable if there exists a sequence of states
in S for which all the formulas are true. In that case, the sequence is a model of the theory.
The satisfiability problem in LTL is decidable, as well as the model checking problem, which
consists in deciding if a given sequence of states in S is a model of a theory.

The ConDec specification language provides a set of constraint templates, which rename
some particular basic LTL formulas. The first column of Table 1 shows the ones that we use
in this article. We use a simplified version2 of the original templates that were introduced
by Pesic and van der Aalst (2006) and by van der Aalst and Pesic (2007). The most similar
version is the one proposed by Baldoni et al. (2010). A ConDec protocol, then, is a set of
constraints over a particular set of variables.

2. Since we are not interested in the usability of the protocols here, we do not include those constraints
that work as syntactic sugar, such as exactly(n, a), that can be replaced by including existence(n, a) and
!existence(n, a).
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Definition 1. (ConDec protocol) Let M be a set of propositional variables. We call
Cons(M ) the set of all ConDec constraints over M , that is, the templates in the first column
of Table 1 for any m,m ′ ∈ M and n ∈ N+. A ConDec protocol over M is a finite subset of
Cons(M ). �

The LTL meanings of the constraints can be seen in the second column of Table 1.
In general, constraints are classified into two types. Existential constraints (existence and
!existence) predicate over how many times some action can be performed. Relational con-
straints (the remaining ones) describe binary relations between two actions. Constraints
can be positive or negative, representing obligations or prohibitions respectively. Negative
constraints start with an exclamation mark.

Constraint LTL meaning

existence(1,m) Fm

existence(n + 1,m) F(m ∧ Xexistence(n,m))

!existence(n,m) ¬existence(n,m)

correlation(m,m ′) Fm → Fm ′

!correlation(m,m ′) Fm → ¬Fm ′

response(m,m ′) G(m → Fm ′)

!response(m,m ′) G(m → ¬Fm ′)
before(m,m ′) ¬m ′Wm

!before(m,m ′) G(Fm ′ → ¬m)

premise(m,m ′) G(Xm ′ → m)

!premise(m,m ′) G(Xm ′ → ¬m)

imm_after(m,m ′) G(m → Xm ′)

!imm_after(m,m ′) G(m → X¬m ′)

Table 1: LTL definitions of constraints, where m,m ′ ∈ M and n ∈ N+.

3.2 Open Protocols as Interaction Protocols

We can now define interaction protocols, which constrain the way in which agents can utter
messages. Intuitively, an interaction protocol is a ConDec protocol where variables are
utterances.

Definition 2. (Interaction protocol) Let a vocabulary V be a set of words, and A be a set
of agent IDs. M = A× V is the set of messages over V and A. An interaction protocol is
a ConDec protocol P ⊆ Cons(M ). �

To simplify we include only the sender agent in the message, which is useful for interac-
tions between two agents or when messages are always sent to all participants. In Section
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5.3 we discuss other situations. The semantics of an interaction protocol is defined over
interactions that represent a sequence of uttered messages.

Definition 3. Let M be a set of messages. An interaction over M is a finite sequence
I ∈ M ∗. �

Any operation over sequences can be applied to an interaction I . We will use the length
function (len(I )), the function that appends an element (I .m), and the notion of prefix
(written I 4 I ′ if I is a prefix of I ′). We will also use indexes (I (i)) to obtain the element
in the i-th position. From now on, let V , A and M be, respectively, a vocabulary, a set of
agent ids, and a set of messages over them, including a message m. Let also P and I be,
respectively, a protocol and an interaction over M .

Since interaction protocols are essentially LTL theories, we will define their semantics
using the existing definitions for that logic. To this end it is only necessary to encode
interactions into infinite sequences of states that are labeled with subsets of M . Let I be an
interaction over messages M and S be a set of states and L : S → 2M a labeling function.

Definition 4. (Satisfiability) Let wI be the infinite sequence of states in S such that:

1. L(wI (i)) = {I (i)} for 1 ≤ i ≤ len(I )

2. L(wI (i)) = ∅ for i > len(I )

We call I a model of P (noted I |= P) if wI |= P. We call I a partial model of P (noted
I |=p P) if it is a prefix of a model of P, that is, there exists I ′ such that I 4 I ′ (I is a
prefix of I ′) and I ′ |= P. Sometimes we will refer to the satisfiability of a single constraint
c. In those cases we will use I |= c for I |= {c} and I |=p c for I |=p {c}. �

Definition 4 implies that checking satisfiability of an interaction protocol is equivalent
to checking LTL satisfiability, and is therefore decidable.

3.3 Compatibility between Protocols in Different Languages

As already mentioned, we are interested in agents that use different vocabularies, but share
the knowledge of how to perform a task. In the rest of this section we define more precisely
what this means. Let us start by defining the notion of vocabulary translation. From now
on, let V ′ be another vocabulary, and M ′ = A×V ′ a set of messages with the same agents
as M , but vocabulary V ′. Let also P′ ⊆ Cons(M ′) be a protocol.

Definition 5. A translation between V and V ′ is a function τ : V → V ′.
τ can be extended homomorphically to a function between:

- messages in M = A× V and in M ′ = A× V ′ (τ : M → M ′)

- constraints over M and M ′ (τ : Cons(M )→ Cons(M ′))

- interactions over M and M ′ (τ : M ∗ → M ′∗) and sets of interactions (τ : 2M ∗ → 2M ′∗)

- protocols over M and M ′ (τ : 2Cons(M ) → 2Cons(M ′)) �
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We will call mapping a pair of words from different vocabularies. We will say a mapping
between words v ∈ V and v ′ ∈ V ′ is correct for a translation τ if τ(v) = v ′, or incorrect
otherwise.

To capture the idea of sharing the knowledge of how to perform a task, we define the
notion of compatibility between protocols, which consists simply in having the same models
modulo a translation.

Definition 6. Let Int(P) = {I ∈ M ∗ such that I |= P} be the set of models of a protocol
P. The protocols P and P′ are compatible if there exist translations τ : V → V ′ and
τ ′ : V ′ → V such that

Int(P) = τ(Int(P′))

Int(P′) = τ ′(Int(P))

In many cases we will be working with a bijective translation τ such that τ−1 = τ ′. If we
know the translations τ and τ ′ for which this condition holds, we can say they are compatible
under τ . �

Example (ordering drinks). Let us formalize ConDec protocols for an interaction to
order drinks, alternative to the specification in Figure 1. Consider again a waiter W and a
customer C interacting to order drinks. Let the vocabulary of the customer be VC = {to
drink, beer, wine, water, size, pint, half pint}, and that of the Waiter be VW = {da bere, birra,
vino, acqua, tipo, media, piccola}. Consider the bijective translation τ : VW → VC such
that τ(da bere) = to drink, τ(birra) = beer, τ(vino) = wine, τ(acqua) = water, τ(tipo) = size,
τ(media) = pint, τ(piccola) = half pint.

The following protocols can specify the ordering drinks interaction. PC is the protocol
used by the customer, with English messages, while PW is the one of the waiter, in Italian.
Both agents agree on the first six constraints, which describe what can happen after the
waiter asks what the customer wants to drink. For example, the fourth constraint states
that if the customer orders beer, then at some point after that the waiter has to ask for the
size (or tipo in Italian, in this particular interaction). The protocol of the waiter, however,
has one extra constraint, stating that beer and wine cannot be ordered together. This is not
a constraint for the customer.

PC = {existence(1, 〈W , to drink〉),
premise(〈W , to drink〉, 〈C , beer〉),
premise(〈W , to drink〉, 〈C ,wine〉),
response(〈C , beer〉, 〈W , size〉),

premise(〈W , size〉, 〈C , half pint〉),
premise(〈W , size〉, 〈C , pint〉)}

PW = {existence(1, 〈W , da bere〉),
premise(〈W , da bere〉, 〈C , birra〉),
premise(〈W , da bere〉, 〈C , vino〉),
response(〈C , birra〉, 〈W , tipo〉),
premise(〈W , tipo〉, 〈C , piccola〉),
premise(〈W , tipo〉, 〈C ,media〉),

!correlation(〈C , birra〉, 〈W , vino〉)}
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The two protocols above are not compatible under any translation. The protocol PC has
a model in which the customer orders wine and beer, while PW , due to the last constraint,
only accepts as models interactions in which only one alcoholic beverage is ordered. If
!correlation(beer,wine) is added to PC , the resulting protocols would be compatible, in
particular under τ .

The notion of compatibility will be a key one in our techniques. If agents have compatible
protocols, at each state they agree on which messages are possible modulo a translation,
provided they interpreted correctly the previous messages. This can be used to obtain
information about possible mappings. Concretely, when an agent receives a message it
will analyze each possible interpretation to see whether choosing it makes the interaction
consistent or not with the constraints, extracting information about the mappings from this.
The following defines formally the notion of not being consistent with a constraint.

Definition 7. (Constraint violation) Let c ∈ Cons(M ) be a constraint. We say c is violated
by an interaction I if I 6|=p c. If, for interaction I and message m, I |=p c but I .m 6|=p c,
we will say that m violates c in that situation. �

It is important to note that we say a constraint is violated when the interaction does not
partially satisfy it. This is because we are interested in the situation for which a message is
definitely not possible. For example, we may have I . 〈a2, v1〉 6|= response(〈a2, v1〉, 〈a1,w1〉),
but this does not mean that a2 cannot say v1, because a1 could later say w1 making the
interaction satisfy the constraint. A constraint is only violated when no subsequent utterance
can make the interaction satisfy it. For some constraints (such as response) this is never
possible. These constraints can only be identified as not satisfied when observing a complete
interaction. Other constraints can be violated by a message before the interaction has
finished. The concept of p-necessity captures this difference.

Definition 8. Let c ∈ Cons(M ) be a constraint. We say c is p-necessary when, for any
interaction I over M , I |=p c. Inversely, c is non-p-necessary if there exists an interaction
I such that I 6|=p c. �

We will call (non)-p-necessities (non)-p-necessary constraints. In words, a constraint is
p-necessary when, even if it is not satisfied by a given interaction, it is partially satisfied by
it, i.e, it can always eventually be satisfied by a continuation of the interaction. A constraint
is non-p-necessary if there exists an interaction that cannot be continued in any way that
satisfies it. In fact, as we will show, this happens for every interaction that is not a model
of the constraint. That is, for non-p-necessities, all interactions that are not models are also
not partial models.3

The following proposition divides the constraints in our protocols between those that are
p-necessary and those that are not.

3. The notions of ‘partial model’, ‘constraint violation’ and ‘p-necessity’ introduced in the previous defi-
nitions bear some relationship with related concepts as used in the three-valued semantics for LTL of
Bauer et al. (2011) for runtime verification of software systems. In particular, an interaction I is a
partial model of a protocol P whenever —in LTL3— P is either true or inconclusive with respect to I ;
a constraint c is violated by an interaction I if —in LTL3— c is false with respect to I (i.e., I is a “bad
prefix”); and a constraint c is p-necessary if no interaction is a “bad prefix” for satisfying c.
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Proposition 1. The constraints existence, correlation, and response are p-necessary. All
other constraints are non-p-necessary.

PROOF. Let #(m, I ) be the number of times that message m appears in I . We will use I i :

to denote the suffix of I starting at index i , and I :i for the prefix that finishes at index i .
Let us first prove p-necessity. We need to show that I |=p c for any interaction I . If I |= c,
then I |=p c trivially. We consider, for each p-necessary constraint c, an interaction I such
that I 6|= c, and show that I |=p c.

- For c = existence(n,m), if I 6|= c, then #(m, I ) < n. Let I ′ be an interaction such
that #(m, I ′) = n−#(m, I ), and consider a new interaction I ′′ composed of I followed
by I ′. Then I ≺ I ′′, and #(m, I ′′) = n, so I ′′ |= c, and therefore I |=p c.

- For c = correlation(m,m ′), if I 6|= c, then either m ∈ I and m ′ 6∈ I or vice versa.
Suppose m ∈ I ; the other case is analogous. Let I ′ = I .m ′. Then I ≺ I ′, and both
m ∈ I ′ and m ′ ∈ I ′, so I ′ |= c, and therefore I |=p c.

- For c = response(m,m ′), if I 6|= c, then there exists i , 1 ≤ i ≤ len(I ), such that
I (i) = m but m ′ 6∈ I i :. Taking I ′ = I .m ′ as in the previous case also works as proof
here.

To prove non-p-necessity, we need to show an example of an interaction I such that, for any
I ′, if I ≺ I ′ then I ′ 6|= c. As we show, it is enough to consider any I such that I 6|= c:

- If c = before(m,m ′) and I 6|= c, there is an index i , 1 ≤ i ≤ len(I ), such that
I (i) = m ′, but m 6∈ I :i . Then this is also true for any I ′ if I ≺ I ′.

- If c = premise(m,m ′) and I 6|= c, then either I (1) = m ′ or there is an index i ,
2 ≤ i ≤ len(I )) such that I (i) = m ′ and I (i − 1) 6= m. In any case, this holds for any
I ′ such that I ≺ I ′.

- If c = !response(m,m ′) or c = !before(m,m ′) and I 6|= c, there are indexes i , j (1 ≤
i < j ≤ len(I )) such that Ii = m and Ij = m ′. This is also true for any I ′ if I ≺ I ′.

- If c = !correlation(m,m ′) and I 6|= c, then m ∈ I and m ′ ∈ I . If I ≺ I ′, then also
m ∈ I ′ and m ′ ∈ I ′.

- If c = !premise(m,m ′) or c = !imm_after(m,m ′) and I 6|= c, there is I (j ) = m and
I (j + 1) = m ′ for some 1 ≤ j < len(I ). If I ≺ I ′, this is also true in I ′.

- If c = !existence(n,m) and I 6|= c, then #(m, I ) > n. This is the same for any I ′ if
I ≺ I ′. 2

Corollary 1. Let c be a non-p-necessary constraint and I an interaction. If I 6|= c, then
I 6|=p c.

PROOF. It is derived from the proof of the proposition, since we did not impose any re-
striction on the interaction I chosen as an example. 2
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4. Communicating with Heterogeneous Partners

Let us now describe the communicative situation that we study in this article. From now
on, we consider interactions between two agents a1 and a2, who need to collaborate with
each other to perform certain tasks. They both know the tasks to perform, but use different
vocabularies V1 and V2 respectively. The objective of the methods we propose is to allow
agents to learn to understand each other, enabling them to perform the tasks together.
Note that to simplify the problem, we consider only interactions between two agents, each
of whom speaks only one vocabulary. This does not imply that all interactions need to
be with the same partner. As long as the foreign vocabulary remains the same, an agent
can change its interlocutor and keep learning. If there is more than one foreign vocabulary,
agents need to know which one is used by each interlocutor to apply our method directly.
Our method can also be used for interactions between more than two agents. We discuss
this simple extension in Section 5.3.

As we mentioned before, the translation technique that we propose is based on the
assumption that, for each task, both agents share the procedural knowledge that describes
how it must be performed. This can be made more concrete as follows:

1. Both agents agree on a set of tasks that they can perform together.

2. For each task, agents have protocols that are compatible with each other.

3. Agents use their vocabulary consistently throughout different tasks, i.e., the protocols
for all tasks are compatible under the same translation.

Formally, let M1 = {a1, a2} × V1 and M2 = {a1, a2} × V2 be sets of messages. Let the
function τ : V1 → V2 be a bijective translation such that, for each task that a1 and a2 can
perform together, they have protocols P1 and P2 over M1 and M2 respectively, and P1 and
P2 are compatible under τ . We assume that whenever agents interact, they use protocols
that correspond to the same task, or more concretely, compatible protocols.

Note that we assume that the translation τ is bijective. Recall that we defined compat-
ibility as equivalence of all models modulo a translation. If this translation is not bijective,
and there are, for example, two words v1 and v ′1 in V1 mapped to v2 in V2, these two words
would have to be indistinguishable at least in the context of the protocols that are consid-
ered. If there is a situation in which, for example, v1 can be said and v ′1 cannot, the protocols
could not be compatible under τ . Therefore, in practical terms, in that context it would be
equivalent to consider a vocabulary V ′1 with only one of the words. For this reason, and since
it simplifies the exposition significantly, we simply assume that the translation is bijective.
This assumption, however, is not necessary for our techniques to work as we report. We will
discuss at each point how to handle non-bijective translations.

Finally, we also assume agents have a way of finishing the interaction that their inter-
locutor is also able to interpret. This can be simply modeled as a shared timeout period
after which, if no agent has spoken, the interaction is considered finished. We will later show
why this assumption is important.

During an interaction, an agent can send messages using words of its vocabulary and
receive others from its interlocutor, or finish the communication if certain conditions hold.
We do not force them to follow any particular turn-taking pattern, but we assume that they
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both know who speaks at each point. We also assume messages are not lost and arrive on
time, at least most of the times. Since we propose a probabilistic approach, we can handle
a certain amount of errors, but we do not analyze this aspect in depth here.

Since agents send messages in their own vocabulary, the receiver needs to decode the
words it gets, interpreting them in its own terms to be able to continue the execution.
Specifically, agents need to learn the translation that allows them to interpret received
words correctly, that is, the τ under which their protocols are compatible. We present a
general approach to learn τ from the experience of interacting to perform different tasks
sequentially. The methods we present are used by one agent individually, and do not require
that its interlocutor uses them as well. For simplicity, from now on we adopt the perspective
of agent a1. Since the objective of this agent is to translate words from V2, it needs to find
the function τ : V2 → V1.

We propose to learn τ by taking into account which messages are allowed by the protocols
at each state. When a1 receives a message in the vocabulary V2 used by a2, it analyzes which
interpretations are allowed by the protocol and which ones are not, and learns from this
information. To this end, we use a probabilistic learning technique, in which agents maintain
a confidence distribution over possible meanings for foreign words, and update their values
with the experience of interacting. Probabilistic techniques are commonly used for all kind
of learning problems and particularly for learning word-meaning correspondences (see for
example the work by Xu & Tenenbaum 2007), and, as we will explain, they are useful to
capture the uncertainty that agents encounter during the learning process. In our problem,
an alternative to using probabilistic techniques is possible. It consists on storing relevant
information about every observed interaction, and then extracting logical consequences from
it. In Section 8 we compare our techniques with one that only uses logical inference.

Definition 9. Let V1 and V2 be two vocabularies. An alignment is a partial function
ω : V1 × V2 7→ [0, 1]. �

Intuitively, if v1 ∈ V1 and v2 ∈ V2, the value ω(v1, v2) represents a1’s confidence in that
v1 is the correct meaning for v2, that is, that τ(v2) = v1. The function is partial because a1
does not know V2 a priori, and therefore it is only defined for those words that the agent
received in a message at some point. For the same reason we will keep

∑
v∈V1

ω(v , v2) = 1
but do not require the same in the other direction.

In the following section we will explain in detail how ω is updated with the agent’s
interacting experiences. Now, let us focus on the dynamics of the interaction; concretely, on
how agents send messages, interpret received ones, and finish the interaction.

As we discussed, agents send messages in their own vocabularies that the receivers have
to interpret. This implies that the sequence of messages that were actually sent differs from
the interaction that each agent interpreted. We will call the former ones global interactions,
where messages can either be 〈a1, v1〉 or 〈a2, v2〉 with v1 ∈ V1 and v2 ∈ V2. Local interactions
are the ones interpreted by agents and contain only messages with words in V1 or only
messages with words in V2. We will call I1 and I2 the local interactions of a1 and a2
respectively. To explain the actions of choosing utterances, interpretations, and when to
finish the interaction we will make use of the notion of possible messages. That is, those
messages that can be uttered at a certain point in the interaction.
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Definition 10. Let M be a set of messages and P a protocol over it. Let I be a local
interaction that has happened so far (and I |=p P). We call the possible messages at that
point all m ∈ M such that when they are added to I , the interaction remains a partial
model, that is I .m |=p P. �

Notice, first, that we use the notion of partial satisfiability to define possible messages.
That is, a message is possible if, after being uttered, the interaction can be finished in a
way that satisfies the protocol. Second, possible messages for a1 are not necessarily the
translation of the ones for a2. This is because the local interactions of each agent depend
on their interpretations of past messages, which are not necessarily correct.

Now we can explain the dynamics of the interaction.

Choosing messages to send The choice of messages to utter is internal to each agent
and depends on its goals while interacting. We do not impose any restriction on this, except
for not violating the constraints in the protocol. That is, agent a with protocol P can utter
a word v after interaction I only if 〈a, v〉 is a possible message for I and P.

Choosing interpretations When agent a1 receives a message v2 ∈ V2 from a2, it needs
to interpret it in V1 to be able to continue the interaction. To this aim, agents use the
information in the alignment ω. We assume that, in an interaction, agents choose always
the same mapping for a foreign word, and they do not choose the same mapping for two
different words. To formalize this we define the function µ, that represents the mappings
made in an interaction.

Definition 11. Let I be a global interaction and I1 agent a1’s corresponding local inter-
action. The partial function µ : V2 7→ V1 maps all the foreign words received by a1 in an
interaction to the local ones chosen as interpretations. That is, µ(v2) = v1 if and only if
there exists an index i such that 1 ≤ i ≤ len(i), I (i) = 〈a2, v2〉, and I1(i) = 〈a2, v1〉. �

Note that if the interaction has not started (I = I1 = []), then dom(µ) = ∅. If agent a1
receives v2 after local interaction I1, it will choose a word v ∈ V1 only if forms a possible
message when uttered by a2, and if it was not already chosen as an interpretation before.
Between the words that satisfy those conditions, it chooses (randomly) one that has highest
confidence. Let W be all v ∈ V1 such that 〈a2, v〉 is possible, and such that v 6∈ img(µ).
Let random be a function that selects a random element from a set. The agent will choose
an interpretation for v2 as follows:

random( argmax
v∈W

ω(v , v2)) if v2 6∈ dom(µ)

µ(v2) if v2 ∈ dom(µ) and 〈a2, µ(v2)〉 is possible

In the remaining case, when v2 ∈ dom(µ) but 〈a2, µ(v2)〉 is not possible, the agent
considers the interpretation failed and it finishes the interaction. Note that the way in
which agents choose interpretations makes µ injective.
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Finishing the interaction An interaction can finish in two ways. First, an interaction
always finishes when an agent has no possible messages to say. An agent can also finish the
conversation whenever it wants if it considers that the interaction is successful, i.e., if it is
a model (not partial) of the protocol when it ends. In this case, it simply stops talking,
producing a time-out that lets the other agent realize the interaction has finished.

5. Learning Translations from Interactions

In the approach we introduce in this paper the alignment ω is updated with the experience
that agents collect when interacting. More concretely, agents decide how to update the
alignment by analyzing whether an interpretation is possible or not for a received word.
Recalling Definition 8, the constraints that can be violated by a new message are those
that are not p-necessary. In this article we will focus mainly on the information obtained
from this kind of constraints. In Section 7 we discuss how we could also take into account
p-necessary constraints, and we discuss why this is a more challenging problem.

The approach that we propose to update ω can incorporate external alignments, as
we did in previous work (Chocron & Schorlemmer, 2016) for the case of protocols specified
with finite state machines. These alignments represent previous knowledge about the foreign
vocabulary, which can have been obtained from previous experience, from a matching tool
(Euzenat & Shvaiko, 2013), or with techniques based on semantic vectors (see for example
the work by Pennington et al. 2014). The alignments that are obtained with these automatic
techniques, however, can never be completely trusted. First, the methods themselves always
have a precision lower than 100% for technical reasons (see the work by Cheatham et al. 2015
for a recent evaluation of ontology matching techniques, and the papers they refer to for
evaluations of vector-based techniques). In addition, which mappings are considered correct
can change from one application context to another, so an alignment with high precision
for a context can be less useful for interactions in a different environment. For example, an
Italian-English dictionary might translate piccola as small and media as half (or medium).
Therefore, the mapping between half pint and piccola would hardly if ever be found. In an
ordering drinks situation, however, this is the mapping that makes the customer obtain the
size of beer she wants.

When external alignments are available, the techniques in this article can be applied
as methods for testing and repairing possibly wrong mappings between words. In general,
existing tools provide a function that assigns confidence values to mappings, just like our
alignments (see Definition 9). An external alignment for agent a1 is, then, a confidence
distribution ωp : V1 ×V ′2 7→ [0, 1], where V ′2 is a set of terms such that V ′2 ∩V2 6= ∅. Even
when the alignment ωp is not defined over V2, the information it provides about words in
that set can still be used. We interpret the confidences always positively when the confidence
is greater than 0, meaning that a mapping with low (but positive) confidence has always
more confidence than one that does not exist. If the agent has an alignment that maps
words between them instead of assigning values (a translation, as in Definition 5), it can be
converted into an alignment by assigning value 1 to each correct mapping.

External alignments are taken into account in the initialization of the values of ω. This
is done the first time an agent receives each foreign word. When a1 receives message 〈a2, v2〉
for the first time, it assigns a value ω(v , v2) for each v ∈ V1. This is done in a way such
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that it takes into account the external alignment alignment, and no word has value 0 or 1,
considering in this way that the previous translation could be incorrect. If a1 has an external
alignment ωp and v2 ∈ dom(ωp), it updates ω using that information. For each v1 ∈ V1,

ω(v1, v2) =

ωp(v1, v2) if (v1, v2) ∈ dom(ωp)

0 otherwise

Then it normalizes the values using an exponential method (we use softmax ). This
ensures that the values for all mappings start in the open interval (0, 1). If there is no external
alignment, the agent initializes the interpretation values with a uniform distribution, setting

ω(v1, v2) =
1

| V1 |
for all v1 ∈ V1.

After the initialization phase, or whenever a1 receives a word v2 that it has already
received before, the update phase begins. For each word v1 ∈ V , the value ω(v1, v2) will
be updated according to whether v1 is or not a possible interpretation. The technique that
we propose to this end is inspired in Bayesian updates, combining the previous value of the
mapping in ω and the information about which interpretations are possible in the current
interaction. Intuitively, if the word v2 is received after interaction I1, we want ω(v1, v2) to
express the probability that v1 is the correct interpretation for v2 in this situation, that we
write p(τ(v2) = v1 | I1 . 〈a2, v2〉). According to Bayes’ rule this can be expressed as follows:4

p(τ(v2) = v1 | I1 . 〈a2, v2〉) = p(I1 . 〈a2, v2〉 | τ(v2) = v1) p(τ(v2) = v1) (1)

Let us analyze this expression. First, p(τ(v2) = v1) is the prior probability that v1 is a
correct interpretation of v2. This information can be obtained from the alignment ω(v1, v2).
Since we keep the function normalized for v ∈ V1, we can use the value directly. Second,
the value p(I1 . 〈a2, v2〉 | τ(v2) = v1) represents the probability that v2 is said by a2 after I1
if the correct translation of v2 is v1. This is equivalent to the probability that v1 is said after
I1. Therefore we can rewrite Equation 1 as:

p(τ(v2) = v1 | I1 . 〈a2, v2〉) = p(I1 . 〈a2, v1〉) ω(v1, v2) (2)

Since it only involves words in the local vocabulary, the probability that a2 says v1 after
I1 can be computed as follows:

p(I1 . 〈a2, v1〉)) =

1 if 〈a2, v1〉 is possible for I1

0 otherwise
(3)

These updates are only meaningful if agents are completely sure that they interpreted
every foreign message up to I1 correctly and, moreover, that the same is true for their
interlocutor. That is, it is necessary that τ(I2) = I1. Not taking this into account can be
problematic when a message 〈a2, v1〉 is not possible. According to Equation 3, the probability
that v2 should be interpreted as v1 is 0. However, it might be that τ(v2) = v1, but that the

4. If τ is bijective, the denominator in Bayes’ rule, also known as the marginal probability of I1 . 〈a2, v2〉,
can be omitted directly, since

∑
v∈v1 p(I1 . 〈a2, v2〉 | τ(v2) = v)p(τ(v2) = v) = 1. Otherwise, it should be

included as a normalizing constant.
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message 〈a2, v1〉 is not possible because of a previously misinterpreted word, either by a1
or a2. This happens, for example, if P1 has a constraint !response(〈a2, v ′1〉, 〈a2, v1〉) and a1
interpreted a word incorrectly as v ′1 before. Since it is not possible to ensure that previous
messages were correctly interpreted by everyone, we present a way of taking this uncertainty
into account when updating ω. To this aim we introduce the distribution psh , that represents
the confidence that the interaction is shared, that is, that τ(I2) = I1. If the interaction is
not shared, no inference can be made from the observation, and the probability should be
kept as ω(v1, v2). Now the alignment is updated by considering both possibilities, weighted
by psh :

p(τ(v2) = v1 | I1.〈a2, v2〉) = p(I1.〈a2, v1〉) ω(v1, v2) psh(I1) + ω(v1, v2) (1− psh(I1))

As we already mentioned, psh is impossible to compute exactly. This is because agents
have no access to the alignment of their partners, and therefore cannot assign a probability
to the words that they interpreted. In Section 5.1 we show two different ways of choosing psh .
Another particularity of our learning setup is that agents contribute directly into building
part of the evidence, since they send the messages that will later make up the interaction.
In Section 5.2 we discuss how agent can exploit this to learn faster. The performance of
these agents is evaluated in the next section.

5.1 Estimating the Confidence in the Interaction

We now present different ways of estimating psh , the confidence that the interaction is
shared, to take it into account in the updates. The first method is independent of the
specific constraints in ConDec protocols, and can be used for any constraint system for
which satisfiability can be computed. The second one takes into account the particularities
of each constraint to make a more fine-grained update.

5.1.1 Simple Strategy

A first straightforward approach consists in setting the value of psh(I ) to a constant for any
I . This method only takes into account the already defined notion of possible messages,
without any reasoning about the semantics of ConDec constraints. Therefore, it can be
applied to any kind of logical specification, provided that there is a method to decide if an
interaction is a model of a protocol. Concretely, the resulting update function decreases
the confidence in a mapping if the resulting message is not possible, and leaves the same
value otherwise. This corresponds to the Randomized Weighted Majority (RWM) update
proposed by Blum and Mansour (2007) for learning from experience by minimizing regret.
Formally, let r ∈ [0, 1] be a punishment parameter. The update for each v ∈ V1, when v2 is
received after interaction I , is as follows:

ω(v1, v2) :=

ω(v1, v2) (1− r) if 〈a2, v1〉 is not possible

ω(v1, v2) otherwise
(RWM)

After all the updates for a given message are completed, the values are normalized in
such a way that

∑
v∈V1

ω(v , v2) = 1.
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The key difference between the Randomized Weighted Majority technique and the Simple
Strategy that we present here lies in the way in which a mapping is chosen at each step.
In RWM, the agent chooses an action with a probability proportional to its weight. In our
Simple Strategy agents use the selection technique we presented in Section 4.

5.1.2 Reasoning Strategy

The other method we propose is a way of considering the semantics of ConDec constraints
in particular, and to use the extra information they contain. To illustrate the importance of
this information, recall the ordering drinks example, and particularly the waiter’s protocol
PW . Consider an interaction in which the customer said water but the waiter interpreted
it as vino (meaning wine in Italian). If the customer says beer, the waiter may think that
interpreting it as birra (meaning beer) is impossible, since ordering two alcoholic beverages is
not allowed (!correlation(birra, vino) would be violated). However, this is only due to having
misunderstood water in the first place. We now present an approach that lets agents make
use of the semantics of violated constraints to perform a more fine-grained update of the
alignment ω.

If a1 finds that v1 is not a possible interpretation for v2, consider all constraints c ∈ P1

that are violated by 〈a2, v1〉. The idea is to identify, for each violated constraint, which are
the mappings that can be wrong, thus leading to the violation. The mapping between v1
and v2 is always a candidate, but not the only possibility, since previous mappings may also
be involved. To take this into account, when an interpretation is not possible the value of its
corresponding mapping is updated as indicated in Table 2, according to which constraints
were violated. The updates are performed iteratively for each violated constraint. After
they are completed, all values are normalized to obtain

∑
v∈V1

ω(v , v2) = 1. In this case,
we need to use a normalization method that maintains the values that equal 0.

To find possibly wrong mappings agents use the function µ from Definition 11 that
provides information about which mappings were made in an interaction. Concretely, we
use µ−1 to obtain the foreign term that was mapped with a local word. Note that this is only
possible under the assumption of bijectivity of τ . When this is not the case, the confidence
with which v1 was a correct interpretation should be

∏
v∈µ−1(v1) ω(v1, v), taking µ

−1(v1) as
a set, instead of ω(v1, µ−1(v1)).

Let us explain the motivation for each update. Violating the negative existential con-
straint is different to violating a relation constraint, because it expresses a condition over
only one message. Therefore if the chosen interpretation violates it, it must be wrong. For
this reason, the value of the mapping is set to 0. Similarly, if before depends on a message
by an agent that has not said anything the mapping is definitely wrong and set to 0.

When a negative relational constraint is violated, there is one message that might have
been misinterpreted. We take this into account by subtracting a value that is proportional
to the confidence in the mapping of that message with its interpretation. In the case of
premise, the constraint depends on the immediately previous message. When the constraint
requires that it is sent by an agent different to who actually sent the last message, the
mapping being considered is impossible and its value is set to 0. Otherwise, if the message
was sent by a2, the mapping that may have been misinterpreted is the last one, so the update
subtracts a value that is proportional to the mapping of the last received word. In the case
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Violated Constraint Update

!existence(n, 〈a2, v1〉) ω(v1, v2) := 0

!correlation(〈a2, v ′1〉, 〈a2, v1〉)
!response(〈a2, v ′1〉, 〈a2, v1〉)
!before(〈a2, v ′1〉, 〈a2, v1〉)
!premise(〈a2, v ′1〉, 〈a2, v1〉)

!imm_after(〈a2, v ′1〉, 〈a2, v1〉)

ω(v1, v2) := ω(v1, v2)− r · ω(v ′1, µ
−1(v ′1))

premise(〈a, v ′1〉, 〈a2, v1〉)

ω(v1, v2) := 0

if the last message in I1 was not uttered by a

ω(v1, v2) := ω(v1, v2)− r · ω(v ′′1 , µ
−1(v ′′1 ))

if a = a2 and 〈a2, v ′′1 〉 is the last message in I1

imm_after(〈a2, v ′1〉, 〈a2, v ′′1 〉)
(if v ′1 6= v1)

ω(v1, v2) := ω(v1, v2)− r · ω(v ′1, µ
−1(v ′1))

before(〈a, v ′1〉, 〈a2, v1〉)
ω(v1, v2) := 0

if a did not send any message

Other ω(v1, v2) := ω(v1, v2)− r · ω(v1, v2)

Table 2: Reasoning Strategy: Updates for each violated constraint, where r ∈ [0, 1] is a
punishment parameter.

of imm_after , the constraint can be violated if it expected a different word after the last
message.

In other cases it is impossible to determine the message that might have been wrongly
interpreted. This happens, for example, when before is violated (and it does not fall in the
case above), when the violated constraint depends on a message that a1 has sent, or when
there is no violated constraint. In these cases agents use the default punishment r .

Lastly, in our experiments we choose r = 1
|V1| because then our technique has the effect

of subtracting a larger value when the agent is confident in the correctness of the previous
interpretation.

5.2 Students and Teachers: Agents that Actively Want to Learn

The agents we considered in the previous section have as their main objective to complete a
task, and learning a translation is a byproduct of this process. However, as we mentioned,
the interaction I is not an externally observed part of the environment, but is created by
the agents themselves. Interlocutors can therefore decide to utter words that will make the
interaction possibly more informative in the future, with the particular objective of learning
the translation. In the ordering drinks example, this is the difference between an agent that
wants to drink wine and will only ask for that, and another one that goes to the bar with
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the main objective of learning the vocabulary, and will order anything that will likely lead
to an interesting interaction.

In this section we explore some heuristics that can be used by agents to try to actively
improve their learning rate. Let us first define a new class of possible messages, called
predecessors.

Definition 12. A word v ∈ V1 is local predecessor for agent a1 if there is a relational non-
p-necessary constraint in P1 that is not before or premise, and such that the first message
of the constraint is 〈a1, v〉, and the second one is 〈a2, v ′〉 for some v ′ ∈ V1. The word v is
also a predecessor if !correlation(〈v ′, a2〉, 〈v , a1〉) ∈ P1 for some v ′ ∈ V1

A foreign predecessor is defined equivalently, but requiring that the constraint’s second
message (or possibly the first one for !correlation) is a1. �

An interaction that includes predecessors will more likely be informative in the future
than one that does not. This is because agents learn when constraints are violated, and some
relational constraints can only be violated when a predecessor was uttered. We propose two
different agents based on how they choose to utter predecessors.

- Students: These agents choose local predecessors with higher probability. Concretely,
they make unsaid local predecessors twice as likely as the rest of possible messages.

- Teachers: These agents choose foreign predecessors with higher probability. Con-
cretely, they make unsaid foreign predecessors twice as likely as the rest of possible
messages.

While ‘students’ try to utter words that will be more informative for themselves in the
future, ‘teachers’ choose those that will be useful for their interlocutors. As we show in the
evaluation, ‘teachers’ make a better use of the available information. This is because foreign
predecessors are more useful to learn from than local ones. With local predecessors, the
agent that utters a word does not know whether the other agent has interpreted it correctly,
but it still makes inferences about it. Foreign predecessors, instead, are interpreted by the
same agent that will later use the rules. If they are interpreted correctly, the inferences
drawn from them will also be correct. If they are interpreted incorrectly, no information is
obtained. To illustrate this difference, consider an agent a1 that says v1 because it has a
constraint !response(〈a1, v1〉, 〈a2, v ′1〉). After this, it will infer that all the words it receives
are not mapped with v ′1. If a2 interpreted v1 wrongly and is violating the constraint, these
inferences could be incorrect. If instead the constraint is !response(〈a1, v1〉, 〈a1, v ′1〉), it will
be a2 who will use the information, but only if it interprets v1 correctly.

5.3 Interactions between More Than Two Agents

All the techniques that we introduced until now assume a scenario in which two agents
interact with each other repeatedly. These restrictions allow us to explain the methods in
a simple way, making each agent correspond to a different vocabulary. However, our solu-
tions can be easily extended to scenarios in which more than two agents interact, provided
that everyone tracks which vocabulary each agent uses (but not necessarily its meaning, of
course). In what follows we explore how these extensions can be implemented.
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First, let us consider the case in which there are several agents, but only two vocabularies.
The simplest case corresponds to a scenario where interactions are still between two agents,
but not necessarily the same ones. For example, consider an English speaking customer that
interacts with multiple Italian speaking waiters. In this case the techniques can be applied
directly; the fact that the agents change does not have any effect on the learning process. A
reasonable question in this scenario is whether an agent can learn if it is constantly facing
new interlocutors who do not necessarily learn its own vocabulary. In Section 6.2 we show
experimentally that this does not stop the learning process.

A more complex case concerns a situation in which interactions can include more than
two agents, each of them using one of two vocabularies. These interactions can be specified
in different ways:

1. All messages are sent to everyone. This is useful to specify, for example, a conversation
between many participants, where each of them talks to everyone else.

2. Messages have one target in the interaction. This can be specified formally by adding
a second agent to messages, representing the receiver. Correspondingly, constraints in
protocols will be expressed over this type of messages.

3. Some messages have one target, while others are for everyone else. This can be specified
by adding a second agent to messages, and including a special name, broadcast, which
signals messages for everybody.

In all cases, we assume the interaction is fully observable by all participant agents. This
is a key requisite since agents need to know what has been said to learn from it. Our
technique can be applied for interactions with many participants in any of the three cases
before. Let A1 be the set of agents that use vocabulary V1, and A2 the set of agents that
uses vocabulary V2. An agent a1 ∈ A1 can use our techniques by treating any message
uttered by agents in A1 as uttered by itself, and any message uttered by agents in A2 as
uttered by the interlocutor. Since agents only reason about interpretations they made, they
can consider all foreign words in the same way.

Finally let us consider the case in which there are more than two vocabularies simul-
taneously. To learn two or more vocabularies in parallel, an agent needs to maintain one
alignment for each of them with its own vocabulary. Our techniques can be applied in the
same way. This holds even when there are more than two vocabularies in a single interac-
tion. Agents can still use the reasoning strategy, even combining interpretations for words
in two different vocabularies. Again, this is possible because all the reasoning is performed
on local interpretations.

All these extensions assume that agents know which vocabulary everybody else speaks.
It is possible to relax this restriction further by learning first to identify vocabularies. We
leave an exploration of this problem for future work.

6. Experimental Evaluation

In this section we present experimental results that show the performance of each agent type
in different situations. In the first subsection we compare the performance of different agent
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types. We analyze an agent using the Randomized Weighted Majority technique, agents
using our simple and reasoning strategies (that we call ‘simple’ and ‘reasoner’ respectively),
and the effects of using the student and teacher heuristics. In the second part of this
section we explore how agents perform in other scenarios, namely when they have external
alignments, when the words in the vocabularies do not appear uniformly in the protocols,
and when only one of the two agents is learning. The hypotheses that we intend to test with
the experiments are:

1. With repeated interactions, agents improve their knowledge about the correct trans-
lation.

2. Agents that use our learning techniques outperform those that use a traditional learn-
ing method such as the Randomized Weighted Majority technique.

3. Agents that use the reasoning strategy (Section 5.1.2), as well as the ones those choose
the words they send to learn more (Section 5.2), outperform agents following the simple
strategy (Section 5.1.1) in terms of the amount of interactions that are necessary to
discover the correct translation.

Before presenting the results, let us briefly discuss the generation of the data we used
and explain the experimental setup.

Data Generation

The protocols that we use in this article have an abstract representation, making it possible
to adapt the techniques that we propose to many different more concrete formalizations.
However, adapting them to available real-world examples is not trivial, and the generality
can be lost in some cases. In this article we evaluate the techniques that we propose with
randomly generated data, which allows us to abstract away from any implementation details.

The procedure to generate a protocol starts from a vocabulary, and consists in choosing
constraints randomly and adding them to the protocol if it remains satisfiable with the new
constraint. Since we evaluate techniques that use non-p-necessary constraints, we included
only this type of rules. We generated only !existence constraints with n ≤ 2. We created
protocols with different sizes in vocabulary and in the set of constraints. In previous ex-
periments we had simplified the constraints used in the protocols, considering them to be
expressed over only words, instead of tuples of words and agents, which allowed us to exper-
iment with larger protocols in less running time (Chocron & Schorlemmer, 2017b). For the
experiments reported in this article we consider the version that we defined in 3.1, where
a constraint is expressed over a tuple 〈agent ,word〉. We used the NuSMV model checker
(Cimatti et al., 2002) to perform all the necessary satisfiability checks.

Starting from one protocol P1 over vocabulary V1, a compatible protocol P2 can be
generated in a simple way by taking τ(P1), where τ : V1 → V2 is a bijective alignment
created for a different vocabulary V2. Note that this implies that all our evaluation is done
for bijective translations.
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Experimental Setup

The objective of our experiments is to determine how fast agents can learn a correct trans-
lation between their vocabulary and the one of their interlocutor. A run of an experiment
consists of two agents a1 and a2 with vocabularies V1 and V2 who are sequentially given
pairs of protocols compatible under one same translation τ . We implicitly assume that,
after many tasks have been executed, there is only one translation between V1 and V2 un-
der which all the pairs of protocols are compatible. Agents interact following each pair of
protocols, with the dynamics presented in Section 4. To simplify the termination of the
interaction, we used bounds that all agents agreed upon to determine the maximum length
of an interaction; however, this does not have any effect on the learning process.

We let agents interact 300 times. After each interaction, we measured how close agents
were to the correct translation τ . To this aim, we first need to define a measure of how
well an agent knows a translation. Since agents always choose the possible mapping with
highest weight, we can easily extract from the alignment ω a translation that contains, for
each foreign word, the interpretation that would be chosen as a first option in the following
interaction. We will refer to the translation extracted from the alignment of agent a1 as
τ1. The domain of τ1 are all v2 ∈ V2 such that (v , v2) ∈ dom(ω) for all v ∈ V1 and
τ1(v2) = random(argmaxv∈V1

ω(v , v2)). Note that if there are multiple possibilities with the
same value, τ1 randomly chooses one of them.

To compare the local translations τ1 and τ2 with the reference τ , we used the standard
precision and recall measures, and their harmonic combination, commonly known as F-score.
Given two alignments β and γ expressed as relations, the precision of β with respect to γ is
the proportion of the mappings in β that are also in γ:

precision(β, γ) =
| β ∩ γ |
| β |

, while its recall is the proportion of the mappings in γ that were found by β:

recall(β, γ) =
| β ∩ γ |
| γ |

The F-score of β is computed as follows:

F-score(β, γ) = 2 · precision(β, γ) · recall(β, γ)
precision(β, γ) + recall(β, γ)

In our case, precision and recall can be different in the first interactions, when agents
may still have not observed the complete foreign vocabulary. After the interlocutor has
uttered all the words in the vocabulary at least once, precision and recall are equivalent.

We performed experiments parametrized with a protocol and vocabulary size. We ini-
tially performed the experiments with the same vocabulary sizes that are used for testing
by Atencia and Schorlemmer (2012), which are 5, 10, 15, 40, 80. However, the interactions
for size 80 were too slow to be able to perform a reasonable amount of repetitions for each
agent type. This problem is intrinsic to the protocols we use (since agents have to decide
if the messages they want to send are possible), and should be taken into account in future
work. Since varying the vocabulary size did not provide particularly interesting results, we
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show here the experiments for a vocabulary of 12 words and four different protocol sizes.
We used the values r = 0.3 for the punishment parameter of the simple strategy.

Each experiment was repeated 10 times, and we averaged the results. The F-scores that
we refer to in the figures are the average of the F-score of each agent that participates in
the interaction.

6.1 Comparing Strategies

The first part of this experimental section compares the performance of different types of
agents. To this aim, we measured how many interactions agents have to perform before they
find the correct alignment. We compared the performance of seven agent types:

• an agent using the Randomized Weighted Majority method, that we call ‘RWM’

• agents ‘simple’ and ‘reasoner’

• agents combining the ‘simple’ and ‘reasoner’ with students and teachers, that we call
‘student simple’, ‘student reasoner’, ‘teacher simple’ and ‘teacher reasoner’.

In all cases we consider pairs of agents of the same type. The plots in Figure 2 show
how many of the 100 experiments that were performed achieved an F-score of 1.0 after n
interactions. We show the results for agents using protocols with 6, 8, 10 and 12 constraints.
The difference is more pronounced for smaller protocols; when there is less information, it
is more evident who makes a better use of it. The agent using the existing Randomized
Weighted Majority technique is always significantly worse than the ones using our technique,
because its way of selecting interpretations is not adequate for the problem. ‘Reasoner’ does
better than ‘simple’ because it is able to use more efficiently the information it obtains after
some interactions.

Agents always improve their performance when combined with ‘teacher’, because this
technique uses the information in the protocols more efficiently, extracting what is more
useful. However, as we have already discussed in Section 5.2, ‘student’ is not consistently
better than ‘simple’ or ‘reasoner’. This is because they learn from local predecessors very
often, which depend on how their interlocutor has interpreted messages. However, they have
no information about how these words were interpreted. Given that there is no improvement,
from now on we will not consider ‘student’, using only ‘teacher’. Since observing how long
agents take to converge shows more clearly the difference between agent types, from now on
we will show the results in this way.

6.2 Special Scenarios

Let us now focus on some particular cases that we consider particularly interesting.

6.2.1 Alignment Repair

As we mentioned, the interaction-based alignment technique can be combined in a simple
way with external alignments. Of course, these alignments may have incorrect mappings, in
which case our learning method works as a repair technique. We studied the performance
of our methods when used by agents with external alignments of different qualities, by
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Figure 2: Performance for different types of agents, for protocols of different sizes (measured
in number of rules)

varying their precision and the recall with respect to τ . We analyzed the combinations
between precision and recall levels of 0.2, 0.5, and 0.8. We also included the recall level of
1.0, to analyze the case in which all correct mappings are found. Again, we performed 100
experiments, with 10 different sets of protocols and 10 repetitions for each set. We used
protocols with 8 constraints, and a vocabulary of 12 words.

Figure 3a shows convergence results for ‘simple’ with different values of precision and
recall. Since there are some cases that do not converge in 300 interactions, it is impossible
to measure the average amount of interactions that are necessary to converge. Instead,
we show how many interactions converged in less than 200 interactions. The figure shows
an interesting tendency. While the number of interactions that converge grows with the
precision of the existing alignment, the same is not observed for the recall. In fact, agents
seem to be worse with larger values of recall. This is because a larger recall value for the
same precision means that there are more incorrect mappings. According to the results,
incorrect mappings are very harmful for the learning process, and agents perform better
when they have less of both correct and incorrect ones.
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(a) Number of experiments that converged before
200 interactions for different external alignments
(‘simple’ agent).

(b) Results for different agents, with external alignments of two different qualities.

Figure 3: (Alignment repair) Results for agents with previous alignments. Vocabulary of 12
words, protocols of 8 constraints.

Another interesting question is how the different agents perform for each alignment
quality. Figure 3b presents the results for the cases when recall is low and precision is
high and vice-versa. We include, as a reference, a plot showing the convergence for agents
without an alignment. Interestingly, we observe that ‘reasoner’ improves significantly the
performance when there is low precision and high recall. This may be because it has a way
of discarding alignments completely, which is useful when there are many of them. This
shows that, in addition to learning faster from scratch, our ‘reasoner’ strategy is better at
repairing wrong alingments.

6.2.2 Non-Uniform Word Distributions in the Protocols

Until now, we have always considered that all words are equally likely to be uttered and to
appear in the constraints of a protocol. This is not always the case, and words that appear
less frequently can be more difficult to learn. To study how this influences our learning
technique, we generated protocols in which some words appeared with less likelihood than
others. Concretely, we set a frequency for each word v . When building the protocols, each
word was chosen to generate constraints with a probability proportional to its frequency. If
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Figure 4: (Non-Uniform Word Distributions) Results for different types of agents, for the
case when 1

4 of the words are half as frequent as the rest.

a word does not appear very often in constraints agents can obtain less information about
it, which makes it difficult to learn its translation.

Figure 4 shows the convergence results for the case of 12 words and a protocol with 8
constraints, where three of the words were half as likely as the other ones to be chosen. Since
it is more difficult to find that mapping, agents have a slower convergence when compared to
the general case in Figure 2. Note that in this case, ‘simple’ is only able to reach convergence
in 300 interactions in half of the cases. It is likely that this is because it is very difficult
to obtain information about the less common words. ‘Reasoner’ and ‘teacher’, which use
information more efficiently, are much better in this case.

6.2.3 Unilateral Learning

Having two agents trying to learn each other’s vocabulary is not a common situation. While
it can be useful in the kind of artificial interactions that we presented, in a more realistic
scenario there often exists an established vocabulary in a community, and it is the responsi-
bility of the agent that does not speak it to try to understand it. The other agent may try
to understand the messages it receives, but without making an effort to learn. We tested
our methods in this situation by implementing a lazy agent that always chooses a random
interpretation between the set of possible ones when it receives a message.

In Figure 5 we show the learning process for three types of agents, with vocabulary of
12 words and protocols of size 8. We show results for ‘simple’ and ‘reasoner’. ‘Teacher’ will
not have any effect here, since this agent tries to make its partner learn better, but here
only one agent learns. The F-score here is the one corresponding to the learning agent, since
the lazy agent does not have an alignment. Remarkably, agents (in particular ‘reasoner’)
are still able to learn a translation, even when their interlocutor is not getting any better at
interpreting their utterances.

6.3 Discussion

The experiments described above show, first of all, that the techniques introduced in previous
sections allow agents to learn alignments with foreign vocabularies using only the experience
of interacting. We compared our techniques with a well-known learning method based on
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Figure 5: (Unilateral learning) Results for different types of agents, for pairs where only one
agent learns.

regret minimization (Randomized Weighted Majority). This method is similar to our simple
strategy, but it chooses interpretations in a different way. The experimental results show
that our approach works notably better for this problem.

Comparison with other vocabulary alignment techniques is not straightforward because
of the type of knowledge used in each case. Most existing techniques use some kind of
linguistic or ontological knowledge and assume access to information about the two vocab-
ularies at the same time (Euzenat & Shvaiko, 2013). Some approaches designed for online
alignment in multiagent interactions relax the latter assumption (van Diggelen et al., 2006),
but still rely on the exchange of ontological information. Our approach, instead, uses only
information about procedures. These differences makes it difficult to establish an evaluation
framework to compare the techniques, since it is not possible to give all of them the same
information. However, we can observe that in most cases our agents achieve, after less than
200 interactions and with randomly generated protocols, a perfect alignment with F-score
1.0. Vocabulary alignment techniques based, for example, on ontological knowledge do not
normally achieve these results (Achichi et al., 2016), and the obtained precision depends
completely on the amount of information existent for the vocabularies. Our approach is
therefore more general and can be applied to the specific vocabulary that the agent wants
to align, regardless of the existing resources.

We also showed how our techniques can be useful to repair non-perfect alignments,
when words are not equally distributed in constraints, and when only one of the agents is
learning. This last experiment is particularly relevant when considering the application of
our techniques in situations when, for example, an agent arrives to a new community and has
to learn a vocabulary from interacting with different interlocutors. Since it is unrealistic to
expect all the community to learn the foreign vocabulary, it is important to have a technique
that works when only one side learns.

7. Including p-Necessary Constraints

Until now, we have presented techniques that exploit the information that can be obtained
from constraints that are not p-necessary. As we explained, an agent can learn from non-
p-necessary constraints when considering possible interpretations for a received word, by
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analyzing which candidate interpretations violate a constraint. Considering only the viola-
tion of non-p-necessary constraints is simple because, for many of them, there are only two
candidates for the words that can have been interpreted incorrectly. This allows agents to
use specific techniques, as does ‘reasoner’ in Section 5.1.2.

Constraints that are p-necessary, instead, are not affected by new messages; they can only
be considered violated when the interaction is over. For example, if existence(1, 〈a1, buy〉)
belongs to a protocol, there is always time for a1 to say buy eventually; only when observing
a complete interaction one can conclude that the message was never sent.

Even without considering them explicitly, p-necessary constraints provide extra informa-
tion. A protocol that consists of a mix between p-necessary and non-p-necessary constraints
might not be satisfiable even without any violated constraint. Consider, for example, a
protocol containing the following set of constraints:

{response(〈a1, u〉, 〈a2, v〉), !correlation(〈a2, v〉, 〈a1,w〉), existence(1, 〈a1,w〉)}

In this case, the message 〈a1, u〉 cannot be uttered, since then a2 would have to say v ,
making it impossible for a1 to say w .

Protocols that include p-necessary constraints already take them into account in the sim-
ple update we proposed in the first section, since the unsatisfiability of subsets of constraints
is considered in the definition of possible messages. For example, according to our definition
〈a1, u〉 is never a possible message for the protocol above. This effect is more pronounced
if the protocols of both agents have extra information specifying that an interaction should
finish after a certain number of utterances. We call these protocols bounded.

Definition 13. Let M be a set of messages. A bounded protocol over M is a tuple 〈P,n〉
where P ⊆ Cons(M ), and n is a positive natural number.

The models of a bounded protocol 〈P,n〉 are interactions I over M such that len(I ) ≤ n
and I |= P. We require that there exists at least one such interaction. Two protocols
〈P1,n1〉, 〈P2,n2〉 are compatible if P1 and P′2 are compatible, and n1 = n2. �

For bounded protocols, the definition of possible messages, which remains the same,
requires that the interaction can be completed satisfying the protocol in a maximum number
of steps, which is more informative.

In Table 3 we show, for different types of protocols, the average of how many interactions
agents need to perform before converging to the correct translation. We use a vocabulary of
8 words and different protocol sizes. We compared the case of non-bounded protocols only
with constraints that are not p-necessary (such as the ones in the previous section), and of
both bounded and non-bounded protocols with a mix of p-necessary and non-p-necessary
constraints. We also included an agent that has the same mixed protocols, but only takes
into account their non-p-necessary constraints, to show that they do play a role in inferring
the alignment. In all cases we used the ‘simple’ agent.

Taking into account p-necessary constraints explicitly is more difficult. We explored
two possibilities. The first one consists in analyzing the violated p-necessary constraints at
the end of an interaction. This can be done in different ways; either punishing the chosen
mappings or rewarding those that would satisfy the violated constraints. However, both
methods deal with highly uncertain information. For example, consider a simple case in
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Non-p-necessities Mixed Mixed, agents using
only non-p-necessities Mixed, bounded

Prot 6 117.72 180.88 215.82 96.68
Prot 8 87.92 116.64 149.26 71.92
Prot 10 69.72 82.78 125.9 61.1

Table 3: Average number of interactions before convergence, for the ‘simple’ agent, with
vocabularies of 8 words.

which a1 finds that existence(1, 〈a2, v〉) was violated in an interaction. First, a1 cannot
know if the interaction finished successfully for a2, or if it finished because there was no
possible message. Second, the available information only allows a1 to either punish all
mappings made or to reward the mapping of each received word with v . Since only one of
those words needs to be v , this implies all the rest are wrong updates. The second approach
does not use violated p-necessary constraints, but those that were satisfied. It consists on
rewarding those mappings that made a p-necessary constraint become valid. In the case
before, if w was mapped with v , the agent would reward this mapping. However, this also
resulted in rewarding many wrong mappings.

Due to the high uncertainty, none of these approaches resulted in significant improve-
ments in the performance. In some cases they were even worse than the basic case. It remains
as future work to develop useful techniques for p-necessary constraints, or to analyze the
case in which protocols consist of only constraints of this kind.

8. A Purely Logical Approach to Alignment Inference from Interactions

From a technical perspective, the work we presented in the past sections is a way of using
learning techniques to extract information from logical specifications. There exist other
inference methods to obtain this kind of information, some of which have been extensively
studied, that are not based on probabilistic techniques. Instead, these methods use the
logical information directly to make deductions. In this section we introduce an ad-hoc
logical agent that extracts all the available information from the interactions it is involved
in. This method extracts more precise information from the experience, since it can take
into account the exact information about the relations that it sees. However, it has no way
of extracting information from an uncertain situation, which can only be considered with a
probabilistic approach. For example, it can learn nothing at all when a violated constraint
involves a word interpreted by its interlocutor.

We will call ‘logical’ the agent that uses only logical inferences, that works as follow.
First, it generates all possible translations. Since it does not know the foreign vocabulary,
it represents possible translations as all permutations of its own vocabulary, which will be
mapped with a unique sequence of foreign words as soon as the agent learns them. At the
beginning of each interaction it chooses a translation between the possible ones to translate
received words. Then, it starts interacting with the other agent. When it is its turn to
speak, ‘logical’ chooses the utterance in the same way as ‘simple’. Interpretations are chosen
according to the selected translation. When a message is received, it analyzes the possible
translations and discards those that are impossible according to this new evidence. This is
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Violated Constraint Update

!existence(n, 〈a2, v1〉) discard translations τ ′ if τ ′(v2) = v1

!correlation(〈a2, v ′1〉, 〈a2, v1〉)
!response(〈a2, v ′1〉, 〈a2, v1〉)
!before(〈a2, v ′1〉, 〈a2, v1〉)
!premise(〈a2, v ′1〉, 〈a2, v1〉)

!imm_after(〈a2, v ′1〉, 〈a2, v1〉)

discard translations τ ′

if τ ′(v2) = v1 and τ(µ−1(v ′1)) = v ′1

premise(〈a, v ′1〉, 〈a2, v1〉)

discard translations τ ′ if τ ′(v2) = v1

if the last message in I1 was not uttered by a

discard translations τ ′

if τ ′(v2) = v1 and τ(µ−1(v ′1)) = v ′1
if 〈a2, v ′′1 〉 is the last message in I1

imm_after(〈a2, v ′1〉, 〈a2, v ′′1 〉)
discard translations τ ′

if τ ′(v2) = v1 and τ(µ−1(v ′1)) = v ′1

before(〈a, v ′1〉, 〈a2, v1〉)
discard translations τ ′ if τ ′(v2) = v1

if a did not send any message

Other nothing

Table 4: Updates for each violated constraint.

done in a similar way to how ‘reasoner’ updates its alignment, since it is based on the same
information. Table 4 shows the actions for each case. If the chosen translation is updated
as impossible, agents finish the interaction.

To evaluate the performance of ‘logical’ we performed the same kind of experiments as
before, letting agents interact for 500 interactions. We used a vocabulary of 8 words and
protocols with both p-necessary and non-p-necessary constraints. As before, we measure
how many interactions agents perform until they both find the correct translation, that is,
when their set of possible translations has only one element. We compared this value to
the number of interactions after which ‘simple’ and ‘reasoner’ obtain an F-score of 1. As
before, we averaged the values for 100 experiments, performing 10 repetitions for 10 different
protocol sets.

Table 5 shows the convergence results for different agents and protocol sizes. ‘Logical’
takes more to converge than ‘simple’, even when the latter one uses no specific information
about the type of constraints. When comparing ‘logical’ to ‘reasoner’, which uses the same
information, we can observe that ‘reasoner’ is significantly faster.

The time of convergence is, however, not the main problem of ‘logical’. The vocabularies
of 8 words that we used in the experiments were the larger ones for which the technique
could be executed on our server. After that, it became prohibitively space-consuming, and
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‘simple’ ‘reasoner’ ‘logical’
6 constraints 215.82 164.14 310.82
8 constraints 149.26 112.4 203.5
10 constraints 125.9 96.1 157.84

Table 5: Convergence for vocabularies of size 8

was automatically killed. In our learning techniques, the number of possible mappings in ω
grows polynomially with the size of the vocabulary (n2). The number of possible bijective
translations grows much faster, proportionally to the factorial (n!). In addition, while the
mappings are two numbers, the translations are n mappings in themselves. This makes
the logical technique use much more memory, and also much more computing time since
the techniques require to perform searches through all the space. The logical agent can be
optimized to use less space, but learning agents do it automatically and converge faster.

In addition, learning agents achieve partially correct translations while learning, which
means that they can start interacting successfully earlier, even when they still have not
discovered the complete translation.

Another important advantage of probabilistic learning techniques is that they can incor-
porate possibly erroneous previous data. As we discussed in earlier sections, our methods
allow to consider external alignments even when not all their mappings are correct, and
are able to repair those wrong correspondences. A logical approach, on the other side, has
no way of considering possibly wrong mappings. For similar reasons, the agents that we
described in previous sections are able to deal with some errors in the transmission. To this
end, it is only necessary that agents do not assign 0 to the confidence on any mapping, or
that they normalize using a method that leaves all the values in the open interval (0, 1).
‘Logical’, instead, cannot handle this possible erroneous evidence in a simple way.

Finally, ‘logical’ cannot deal with non-bijective translations as easily as the agents that
use our techniques. Consider a situation in which an interpretation violates, for example, a
constraint !response(v1, v ′1), and the agent has mapped both v2 and v ′2 with v1. The logical
agent does not know which of these mappings was incorrect, if any, and therefore it cannot
learn anything from this situation. As we mentioned before, ‘reasoner’ can easily incorporate
this uncertainty by considering the product of the confidences of both mappings.

9. Conclusions and Future Work

The techniques we propose allow agents to learn alignments between their vocabularies only
by interacting, assuming that their protocols share the same set of models, without requiring
any common meta-language or procedure. Importantly, we only assume agents to share the
knowledge of how to perform tasks, which is necessary to interact even for partners who
use the same vocabulary. Our technique can be applied by agents autonomously, without
requiring prior coordination with their interlocutors. Although our methods converge slowly,
they use only very general information, and can be easily combined with other methods that
provide more information about possible mappings, as we show by integrating our techniques
with external alignments. With our methods, agents learn dynamically while interacting
and they rapidly achieve a reasonable level of knowledge about the alignment, while the last
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mappings are difficult to find. Therefore, a possible way of using our techniques would be
to go first through a training phase in which agents learn many mappings, and then to start
performing real interactions. While interacting, agents could keep discovering the remaining
mappings. We required agents to share the same models for each task and considering the
existence of a bijective alignment. These assumptions can be relaxed, but at the cost of
obtaining a slower learning process, since an extra component of uncertainty is added.

This research open many venues for future exploration. First, we could relax the as-
sumption that agents do not share any meta-language, considering agents that can in some
way exchange information about the interaction. For example, considering only that agents
can communicate whether they finished a task successfully would make it possible to reason
about p-necessary constraints when an interaction ends. An approach like this would relate
our work to the one by Santos et al. (2016) about dialogues for meaning negotiation.

An aspect that should be improved in future work is the performance in terms of runtime
per interaction, since it was very slow for larger vocabularies. In this direction, it is also
important to investigate ways of scaling the methods. When using very large vocabularies, it
would be prohibitively expensive to maintain a dictionary of confidence values for mappings
between all words. A possible approach would be to develop pruning techniques that remove
mappings with low confidence. Another method could focus on learning first mappings for
a subset of common words, using them later to infer the meaning of the rest. These ideas
need to be investigated before our methods can be applied in a real scenario.

Finally, it would be interesting to investigate how the assumption of protocol compatibil-
ity can be relaxed. Since our technique uses a probabilistic update, it admits non-compatible
protocols if they are not frequent, considering them as noise in the learning process. How-
ever, a more explicit investigation of how differences between protocols affect the method
needs to be performed. One possibility is the one in our previous work (Chocron & Schor-
lemmer, 2017a), where we propose a new type of flexible protocol where each constraint
has a weight. In that situation, a good translation is one that makes agents pay less while
interacting. In future world, we plan to further develop this direction.
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