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Abstract

The distributed constraint optimization problem (DCOP) has emerged as one of the
most promising coordination techniques in multiagent systems. However, because DCOP
is known to be NP-hard, the existing DCOP techniques are often unsuitable for large-
scale applications, which require distributed and scalable algorithms to deal with severely
limited computing and communication. In this paper, we present a novel approach to
provide approximate solutions for large-scale, complex DCOPs. This approach introduces
concepts of synchronization of coupled oscillators for speeding up the convergence process
towards high-quality solutions. We propose a new anytime local search DCOP algorithm,
called Coupled Oscillator OPTimization (COOPT), which amounts to iteratively solving
a DCOP by agents exchanging local information that brings them to a consensus. We
empirically evaluate COOPT on constraint networks involving hundreds of variables with
different topologies, domains, and densities. Our experimental results demonstrate that
COOPT outperforms other incomplete state-of-the-art DCOP algorithms, especially in
terms of the agents’ communication cost and solution quality.

1. Introduction

The distributed constraint optimization problem (DCOP) provides a powerful formalism for
modeling many decentralized coordination tasks in multiagent systems, and is widely used
in realistic applications, such as sensor networks (Farinelli, Rogers, & Jennings, 2014; Rust,
Picard, & Ramparany, 2016), task scheduling (Maheswaran, Tambe, Bowring, Pearce, &
Varakantham, 2004b; Leite, Giacomet, & Enembreck, 2009), resource allocation (Carpenter
et al., 2007; Amigoni, Castelletti, & Giuliani, 2015), among others. However, because DCOP
has been shown to be an NP-Hard problem (Modi, Shen, Tambe, & Yokoo, 2005), some
applications are unsuitable for applying this formalism, owing to a lack of efficient DCOP
algorithms especially on hard instances of DCOP involving large-scale, complex domains.

Synchronization is a natural physical phenomenon that characterizes the spontaneous
emergence of collective behavior in many complex dynamical systems (Strogatz, 1997).
Mathematical models of synchronization in coupled oscillator networks have been intensely
studied in recent decades because of the robustness and applicability of such models in
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large-scale and real-world domains (Buck & Buck, 1976; Sherman, Rinzel, & Keizer, 1988;
Strogatz, 2003; Dörfler, M., & F., 2013). Moreover, such models are commonly flexible
enough to be adapted to different contexts and also are able to support a wide variety of
synchronization patterns, including optimization techniques as well as complex interaction
dynamics (Acebrón, Bonilla, Pérez-Vicente, Ritort, & Spigler, 2005).

The contributions of this study are twofold. First, we investigate synchronization models
as a new foundation to propel the evolution of DCOP research. Second, we introduce a
new anytime local search algorithm designed to handle large-scale DCOPs, called Coupled
Oscillator OPTimization (COOPT). Our algorithm is inspired by the collective behavior
of coupled phase oscillators described by the Kuramoto model (Kuramoto, 1975). The
Kuramoto model displays the synchronization dynamics in coupled oscillator networks from
sinusoidal couplings in which each oscillator gradually adjusts its frequency to a mean-field
by updating its phase after receiving new pulses from its neighborhood.

The remainder of this paper is organized as follows. Section 2 gives a brief overview of
DCOP background. In Section 3, related works are considered. Section 4 reviews concepts
of dynamical systems and mathematical models of synchronization in coupled oscillators.
In Section 5, we introduce COOPT, a new anytime local search DCOP algorithm based on
the synchronization dynamics of coupled oscillators. We present an empirical evaluation
of COOPT by comparing it with other incomplete state-of-the-art DCOP algorithms in
Section 6. Finally, in Section 7 we draw conclusions about the COOPT algorithm and
discuss future works.

2. DCOP Background

By definition, a DCOP is a tuple < A,X ,D,R, α >, where R is a set of constraints and
X is a set of variables distributed among a set A of agents. Each variable xi ∈ X is held
by a single agent in A and has a finite and discrete domain Di ∈ D. Such mapping from
variables to agents determines the control α(xi) of each variable xi ∈ X to an agent. Thus,
each value d ∈ Di represents one of possible states of a given agent. The constraints are
defined by a set R of cost or reward relations between a pair of variable assignments.

Typically, binary cost functions are considered in DCOP formulations. A binary cost
function for a pair of variables xi and xj is defined by fij : Di × Dj → Z+ ∪ {0}. Two
agents are neighbors if there exists a constraint between them. Therefore, DCOP aims to
find a complete set of A∗ assignments, where A∗ = {d1, ..., dn | d1 ∈ D1, ..., dn ∈ Dn}, such
that the global objective function F (A) is minimized according to:

F (A) =
∑

xi,xj∈X
fij(di, dj) (1)

A∗ = argmin
A∈S

F (A), (2)

when xi ← di and xj ← dj in A (Fioretto, Pontelli, & Yeoh, 2018). Equation 1 represents
fij ∈ R as a factor of the global objective function. Equation 2 refers to S as the state
space for a given problem.

A DCOP structure is usually represented as a graph, where the variables correspond
to vertexes and the constraints between pairs of variables are represented by the edges.
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Representing a DCOP as a graph allows algorithms to perform searches or inferences from
a local context taking into account constraints with neighboring agents. Therefore, such
local computations enable agents to explore independent graph regions simultaneously by
using a distributed problem-solving method (Lesser, Ortiz, & Tambe, 2003).

In recent years, there has been increasing interest in developing new DCOP algorithms
(Leite, Enembreck, & Barthès, 2014; Fioretto et al., 2018). Complete algorithms are able
to find optimal solutions, however they require exponentially increasing computational or
communication resources with respect to the number of agents and variables, domain size
of the variables, or constraints. On the other hand, incomplete algorithms can provide
suboptimal solutions faster than complete algorithms. Nevertheless, large-scale, complex
applications remain a challenge even for incomplete algorithms, especially those involving
hundreds of variables or thousands of constraints.

3. Related Work

The Distributed Breakout Algorithm (DBA) and Distributed Stochastic Algorithm (DSA)
(Zhang, Wang, Xing, & Wittenburg, 2005) are the two most popular incomplete methods
for solving DCOP. Both algorithms perform local searches, in which agents make iteratively
decisions on whether to change the assignments of their variables. Each agent begins the
search by selecting a value for its variable randomly. Next, agents propagate the selected
values and gather the values chosen by neighboring agents. For DSA, agents select values
that improves its local cost, considering a probability p. In contrast, DBA manipulates the
weights of the DCOP constraints in an attempt to avoid local optima.

Another popular incomplete DCOP algorithm is the Maximum Gain Message (MGM),
which is an extension of DBA (Maheswaran, Pearce, & Tambe, 2004a). Each agent begins
the search by selecting a value for its variable randomly. Agents propagate the selected
values and gather the values chosen by neighboring agents. Next, each agent selects a value
that results in a better unilateral gain and notifies neighboring agents about such gain.
Then the agent replaces its current value if the gain is greater than the maximum gain of
all neighboring agents.

In fact, DBA, DSA, and MGM explore only local optimization; that is, no unilateral
change can improve the solution quality. Pearce, Tambe, and Maheswaran (2008) proposed
an extension of MGM based on the k-optimality concept, called the Maximum Gain Message
(MGM-2). The k-optimality concept refers to the formation of groups of agents such that
no group with k or fewer agents are able to improve the current solution. Thus, MGM-2 is
able to guarantee sub-optimal solutions within a distance k = 2.

Other relevant extension of local search algorithm is the Distributed Asynchronous Local
Optimization (DALO) (Kiekintveld, Yin, Kumar, & Tambe, 2010). DALO uses k-optimality
and t-distance concepts for providing a mechanism to coordinate the decisions of local
groups of agents, rather than each agent performing individual choices. The t-distance
considers a predefined distance from the central agent in the group. In contrast, DBA, DSA,
and MGM are considered essentially 1-optimal and 0-distance. An alternative approach
which combines both k-optimality and t-distance concepts, called C-optimality, was recently
introduced (Vinyals et al., 2011).
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Most incomplete DCOP algorithms are in fact search-based or inference-based methods.
Ottens, Dimitrakakis, and Faltings (2017) proposed a notable approach for solving DCOP
using sampling techniques. The Distributed Upper Confidence Tree (DUCT) introduced
confidence bounds in order to explore the solution search. DUCT constructs a confidence
bound B, such that the best value for any context is at least B, and sample the choice with
the lowest bound. In addition, Nguyen, Yeoh, and Lau (2013) proposed a memory-bounded
sampling-based algorithm, called Distributed Gibbs (D-Gibbs).

Zivan, Okamoto, and Peled (2014) designed a generic framework that ensures an anytime
property on local search algorithms; that is, the algorithm always return the best global
solution explored when it ends up. This framework, called Anytime Local Search DCOP
(ALS DCOP), provides a communication model for anytime local search from a spanning
tree on the constraint graph. Authors also demonstrated the effectiveness of this general
framework in a new algorithm, named DSA Slope Dependent Probability (DSA-SDP), which
employs a new heuristic for calculating the probability of replacing the assignment.

Other recent contribution about local search algorithms is an extension of DBA, called
Generalized DBA (GDBA) (Okamoto, Zivan, & Nahon, 2016). DBA originally increases the
weights of constraints whenever breakouts are detected. GDBA suggests three design choices
of replacing the variable assignments. First, modifying weights of constraints as in original
DBA, but in different manners (multiplicative or additive). Second, using definitions of
constraint violation (non-zero, non-minimum and maximum constraint violation). Third,
the scope of changes specifies which weights increase when breakouts are performed for a
violated constraint.

4. Synchronization in Coupled Oscillators

Models of dynamical systems aim to describe components that evolve over time following
a certain function or rule. This evolution occurs in an iterative way from the current state
of the components, successively producing new states. Synchronization is one of the most
important research areas of nonlinear dynamical systems, which aims to understand the
trends of synchronously operating systems (Pikovsky, Rosenblum, & Kurths, 2001).

4.1 Kuramoto Model

One of the most successful attempts to understand and reproduce the synchronization
phenomenon is known as the Kuramoto model (Kuramoto, 1975). The Kuramoto model
exhibits the emergence of collective behavior in a coupled phase oscillator network. An
oscillator is a device that autonomously produces repeated signals. In particular, phase
oscillators have constant amplitudes, in which each phase value represents the state of an
oscillator at a given time. The space-state of an oscillator can be defined by a circular
interval [0, 2π], where 0 = 2π. Each oscillator emits a pulse to its neighboring oscillators
whenever its phase reaches a certain threshold (Acebrón et al., 2005).

Formally, the Kuramoto model consists of a population of N globally coupled phase
oscillators. Each oscillator i has an individual phase θi and a natural frequency ωi. The
Kuramoto model captures the emergence of the collective behavior in coupled oscillator
network by gradual adjustments of the rhythms (frequencies) of the oscillators toward a
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Figure 1: Synchronization dynamics of a globally coupled oscillator network. Generated
from Mathematica Software (Wolfram, 2003).

mean-field represented by Ω (Kuramoto, 1975). These adjustments occur iteratively when
oscillators receive new pulses from neighboring oscillators through sinusoidal couplings.

In this sense, such collective dynamics of the oscillator network make the phases become
more similar over time, governed by Equation 3 (Kuramoto, 1984):

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi), (3)

where K is the global coupling strength and N is the number of oscillators in the network.
The frequencies ωi are usually represented by some distribution function g(ω). When the
frequency distribution is too dissimilar with respect to the coupling strength, the oscillators
are unable to synchronize their phases and hence the system behaves incoherently over time.
Therefore, a coupled oscillator network is able to reach a phase-synchronized state if there
exists a coupling strength K enough regarding the heterogeneity of the natural frequencies
of the oscillators.

Synchronization can also be represented in a more convenient way from the following
complex-valued order parameter, according to Equation 4 (Kuramoto, 1984):

reiψ =
1

N

N∑
j=1

eiθj , (4)

where 0 ≤ r(t) ≤ 1 measures the coherence level among all oscillators and ψ(t) is the average
phase of the system. The values r(t) ≈ 0 and r(t) ≈ 1 indicate absence of synchronization
and the system being in a phase-synchronized state, respectively.

Figure 1 shows the synchronization dynamics in a coupled oscillator network, focusing
on the coupling strength dominance over the natural frequencies. This example has five
globally coupled oscillators with different natural frequencies. In Figure 1.a, the coupling
K is null, and thus the oscillators preserve their natural frequencies ωi over time. In Figure
1.b, there is a coupling K = 0.8, but this coupling strength is insufficient to reach a phase-
synchronized equilibrium. In this case, the phases evolve incoherently. Finally, Figure
1.c shows a coupling strength K = 1.56, which is sufficient to reach a phase-synchronized
equilibrium; that is, all the phases will be aligned after a certain time.
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4.2 Synchronization in Complex Networks

A coupled oscillator network can be represented by a graph G(V, E) composed by vertexes
V = {1, ..., N} and edges E ⊂ V × V, where the vertexes represent oscillators and edges
represent couplings between pairs of oscillators. The edges {i, j} ∈ E can be represented
by an adjacency matrix a, where K is distributed among weighted edges aij > 0. In
a typical globally coupled oscillator network, all edges share the same coupling strength,
∀{i, j} ∈ E | aij = K

N . Nevertheless, complex networks usually do not have a coupling
pattern; that is, ∃{i, j} ∈ E | aij = 0. Moreover, complex networks often do not have
homogeneous coupling strength.

3

2

1
a2,3

a1,2

a1,3

ω3

ω2

ω1

Figure 2: Example of a complex coupled oscillator network.

Figure 2 depicts an example of a complex oscillator network with heterogeneous coupling
strength, in which the oscillators rotate around the same path without colliding. Each
oscillator has a phase angle θi and a preferred natural rotation frequency ωi representing
the rotation speed. Pairs of coupled oscillators {i, j} are connected by elastic springs with
different strengths aij . Hence, the movements of a given oscillator i are influenced by the
couplings aij with neighboring oscillators, because these connections have sufficient coupling
strength to interfere in the frequency ωi.

Originally the Kuramoto model displays the synchronization dynamics in a globally
connected network; that is, a particular case of regular networks. However, several real-
world application and complex systems can exhibit different connection patterns or network
topologies. So a flexible synchronization model should be able to handle different connection
patterns in order to be applicable to many classes of real-world applications.

Figure 3 illustrates four examples of different network topologies, whose vertexes can
have different degrees following certain connection patterns. In regular networks, all vertexes
have the same degree (Wasserman & Faust, 1994). On the contrary, random networks
(Erdös & Rényi, 1959) suggest the idea of disordered networks, in which the connections
between vertexes occur randomly. A random network may be represented as a graph in
which connections between each pair of vertexes occur with probability p.

Another popular model widely adopted for describing complex networks is known as
small-world effect (Watts & Strogatz, 1998). A small-world network can be represented by
a graph with a starting lattice of dimension d and probability p of rewiring the connections,
producing connected clusters. Thus, small-world and random networks have essentially
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Figure 3: Example of networks with different topologies.

random connections. In contrast, the scale-free model (Barabási & Albert, 1999), another
well-known complex network model, introduces connectivity distributions obeying a power
law. In this case, network connections evolve according to an exponential function γ of
preferential attachments.

Because the Kuramoto model can handle globally connected networks, it is necessary to
consider an adaptation of the original model in order to ensure synchronization ability in
complex networks as well (Arenas, Daz-Guilera, Kurths, Moreno, & Zhou, 2008), according
to Equation 5:

dθi
dt

= ωi +
N∑
j=1

aij sin(θj − θi), (5)

where aij represents the coupling strength ∀i 6= j. For each pair of noncoupled oscillators i
and j, the coupling strength is null; that is, aij = 0.

5. COOPT: Coupled Oscillator OPTimization Algorithm

In general, a typical DCOP formulation displays similar properties to those found in a
coupled oscillator network. In a DCOP, agents aim to coordinate their actions in order to
optimize the global objective function defined as a set of constraints (Lesser et al., 2003).
However, synchronization is related to frequency convergence and phase coherence in a
coupled oscillator network (Strogatz, 2003). Therefore, both formulations seek to reach a
consensus in a group of interacting units.

Mathematical models of synchronization in coupled oscillators presented in Section 4
have been demonstrated their potential to coordinate individual actions on complex, large
networks. Inspired by collective behavior of coupled oscillators, we propose COOPT, a
new anytime DCOP algorithm that introduces concepts of synchronization dynamics for
speeding up the convergence process towards high-quality solutions.
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5.1 Definitions

At the aim of providing a new anytime local search algorithm for large-scale DCOPs, firstly
we introduce a mapping between concepts of DCOP and coupling oscillators network. For
convenience, we assume that each agent ai holds a single variable xi and we use the terms
agent and variable interchangeably.

5.1.1 Variables as Oscillators

An intuitive analogy between a typical DCOP formulation and synchronization in coupled
oscillator network consists of representing variables as oscillators and constraints as coupling
strengths between oscillators, where an agent ai has an individual behavior similar to an
oscillator i. Values d ∈ Di represent the domain for the variable xi, where di refers to the
current state of xi.

Definition 1. Agent: each agent ai holds a local view which represents a partial set of
assignments of the form {(xj , dj), ...}. The local view contains the current assignments from
neighboring variables xj ∈ Ni, where Ni represents a set of variables that shares constraints
with xi.

Definition 2. Local cost: the local cost of a given partial assignment for the agent ai is
defined by δ(di) =

∑
xj∈view

fij(di, dj), when xi ← di and xj ← dj according to ai’s view. On

the other hand, δ represents the global cost of a complete solution and δ∗ is the best global
cost in a given problem.

In contrast, the Kuramoto model describes the influence of local interactions from the
frequency ωi of each oscillator. Therefore, the local cost δ(di) is analogous to the frequency
ωi, making each oscillator updates its individual frequency from the current states of the
neighboring oscillators.

Definition 3. Frequency: the local costs δ(d) for each d ∈ Di, considering all assignment
combinations of the neighboring variables xj ∈ Ni, represent the possible discrete frequencies
ωi for a given variable xi.

Nevertheless, a locally optimal solution at a given agent can result in conflicts of interest
in other agents due to the individual objectives and partial views on the problem, thus
possibly producing worse global solutions. The Kuramoto Model captures such conflicts
of interest from the phases difference between neighboring oscillators, as described by the
order parameter r(t) which measures the level of coherence of the system (Equation 4).
Therefore, reaching phase coherence ensures a global observation from individual actions
and partial solutions.

Definition 4. Phase: the phase θi represents the level of coherence between a variable
assignment and a given partial solution; that is, an error degree between the local cost δ(di)
of xi and its neighboring variables xj ∈ Ni. Thus, such observation represents a level of
global coherence (consensus) measured from the phases of all the agents at a given moment.
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5.1.2 Cost Functions as Couplings

Classical synchronization models maintain a static coupling strength among oscillators.
Nevertheless, some studies (Skardal & Restrepo, 2012; Meier, Haschke, & Ritter, 2014;
Gushchin, Mallada, & Tang, 2015) have addressed variations of the Kuramoto model by
introducing coupling strength as symmetric functions. Such models represent couplings
between pairs of oscillators in which coupling strengths can vary according to the current
state of the oscillators.

Such synchronization models are more appropriate for representing symmetric constraint
functions in a DCOP formulation. As a consequence, the static coupling strength aij needs
to be replaced by a function fij , according to Equation 6:

dθi
dt

= ωi +
K

N

N∑
j=1

fij(xi, xj) sin(θj − θi), (6)

where xi and xj represent the current states of each pair of coupled oscillators i and j.

5.1.3 Synchronization Dynamics

Updating the frequencies ωi is a key step of synchronization dynamics in an oscillator
network. The synchronization drives the oscillators toward a frequency mean-field Ω by
redefining iteratively their phases. Such iterative process results in a reduction of the
phases deviation among the oscillators. In a DCOP formulation, phase represent an error
degree between a variable assignment and its neighboring variables.

Therefore, the synchronization dynamics in a DCOP must lead the agents to a coherence
of their actions, even if there are conflicting local actions. In this sense, some studies on
clustering detection in oscillator networks (Arenas, Daz-Guilera, & Prez-Vicente, 2006;
Hong & Strogatz, 2011; Wu, Jiao, Li, & Chen, 2011; Meier et al., 2014) are candidates for
addressing such consensus problems, which naturally require coordination of the agents for
group formation.

Arenas et al. (2006) demonstrated that mean-field-based synchronization models are
inefficient for identifying the effects of the local dynamics of the oscillators. The authors
introduced a local order parameter for measuring the correlation between pairs of oscillators
instead of only considering a global observation, according to Equation 7:

ρij(t) = 〈cos(θj − θi)〉 , (7)

where the cosine of the phases difference is a similarity measure for detecting functional
groups or communities of oscillators at a given t time.

Meier et al. (2014) introduced an alternative synchronization model for perceptual
grouping in coupled oscillator networks. This model uses discrete frequencies ωα = αω0

from a discrete and finite N (α) = {1, ..., L} set of possible α states arranged in a L-layered
architecture, where α ∈ N (α) and ω0 is the initial frequency. The frequencies iteratively
evolve following Equations 8 and 9:

Si(α) =
∑

i∈N (α)

fij
1

2
(cos(θj − θi) + 1) (8)

ωi = ω0 argmax(Si(α)), (9)
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where every frequency ωi is updated using a cosine-based similarity measure for detecting
groups of oscillators with similar features.

Our DCOP formulation is inspired by aforementioned clustering detection techniques
in coupled oscillator networks. This formulation introduces an optimization mechanism
that seeks to reduce both the local costs and the error degree between individual actions in
groups of agents. So the synchronization dynamics in our formulation evolve according to
Equations 10, 11, and 12:

Si = δ(d) +
∑

xj∈view
fij(d, dj)

1

2
(ρij + 1) ∀d ∈ Di (10)

di = argmin(Si) (11)

ωi = δ(di), (12)

where the factor 1
2 maintains the similarity measure within the interval [0, 1]. When the

similarity measure ρij ≈ 0, xj does not present a tendency of conflict on the partial solution
and the synchronization process of xi considers exclusively the cost of fij . Otherwise, ρij ≈ 1
indicates a trend of conflict of xj in the partial solution and the synchronization process of
xi considers an additional factor on the cost of fij .

Definition 5. Synchronization process: Si represents a vector containing the sum of the
local costs and the phase similarities from local view of xi for each d ∈ Di (Equation 10).
Then a new value di is chosen from the smallest value in Si (Equation 11), where ωi refers
to the local cost δ(di) when xi ← di (Equation 12).

5.2 Communication Model

The communication model of COOPT requires a partial ordering among the agents. Such
ordering uses a spanning-tree structure in which all agents have a parent route to the root
agent and all parents are neighbors of their children in the constraint graph. The purpose
of generating a spanning-tree arrangement from the constraint graph is to provide a search
process that increases monotonically the global solution quality over time. To achieve this
goal, all agents must be able to know the best solution found so far during the search.

In a spanning-tree arrangement for a DCOP, each agent can have a single parent pi and
multiple children xj ∈ Ci, where pi = ∅ indicates that xi represents the root agent and
Ci = ∅ means that xi is a leaf of the spanning-tree. In COOPT, this ordering allows the
root agent to calculate the aggregated cost of a complete solution in a given moment. A
simple way to obtain a spanning-tree ordering consists of performing a breadth-first search
exploration from the constraint graph.

The algorithm works using three types of messages: assign, cost, and synchronize,
which determine the internal stage (either synchronization or cost propagation) of the agents
during the search. The assign messages aim to notify neighbors xj ∈ Ni about new values
chosen by xi. The cost messages inform higher priority agent pi about the aggregated cost
of the sub-tree rooted at xi during the cost propagation stage. The synchronize messages
inform lower priority agents xj ∈ Ci they must perform a new assignment during the
synchronization stage.
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synchronize message

cost message

assign message

fij di dj

2 0 0

1 0 1

1 1 0

3 1 1

X0

X2X1

X4X3

X0

X2X1

X4X3

Figure 4: Example of DCOP and COOPT’s communication model.

Figure 4 presents the communication model of COOPT from an example of DCOP
involving five variables with a binary domain and six constraints sharing a single cost
function. COOPT implements an anytime local search by an iterative search process, where
each iteration is composed by a communication round. A communication round is defined
as involving multiple broadcasts of messages between neighboring agents. Each agent has a
counter which increases by one after performing each synchronization stage. So the agents
terminate the search process when the n-th synchronization stage is performed.

5.3 Algorithm Description

Algorithm 1 shows the procedures of COOPT. According to definitions introduced in Section
5.1, each agent has a local view representing a partial solution of the form {(xj , [dj , θj ]), ...}
that, in addition to the assignments of neighboring variables, also holds their phases in
some round. Each agent also stores information about the best round, assignment, and
aggregated cost in bestRound, bestV alue and bestCost, respectively. These information
describe the best global solution found so far during the search.

The search starts concurrently by the Initialize procedure. Each agent xi assigns a
value that exclusively minimizes its local cost δ(d) and initializes its phase θi with a random
value following a Gaussian distribution (lines 2-3). Then assign messages are sent from xi
to its neighbors informing them about the new values of di and θi (lines 8-10). At the end
of this procedure, if xi is a leaf of the spanning-tree, a cost message is sent to the parent
informing it about the local cost of xi (lines 11-14).

Agents update their local view by the Assign procedure whenever new assign messages
are received (line 17). After an agent updates its local view with information collected
from some neighbor, the ComputeCost or PerformSynch procedures can be performed
according to the internal stage of the agent (lines 18-23). The ComputeCost procedure
aim to propagate the aggregated cost of the sub-tree rooted at xi. The PerformSynch
procedure performs a new synchronization stage.

The Cost procedure is performed after receiving a cost message. Subsequently, xi
stores the aggregated cost of a partial solution (line 26). When xi receives the aggregated
costs of all children (line 27) and its local view is up-to-date with information collected
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Algorithm 1 Procedures of COOPT

1: function Initialize

2: θi ∼ N (µ, σ2)

3: di, bestV alue← d ∈ Di | min(δ(d))

4: counter, bestRound← 1

5: bestCost←∞
6: view, costs← ∅
7: cost, sync← false

8: for each xj ∈ Ni do

9: Send Assign(xi, di, θi) to xj

10: end for

11: if Ci = ∅ then

12: cost← true

13: ComputeCost

14: end if

15: end function

16: function Assign(xj , dj , θj) . upon receiving assign

17: view ← view ∪ {(xj , dj , θj)}
18: if cost then

19: ComputeCost

20: end if

21: if sync then

22: PerformSynch

23: end if

24: end function

25: function Cost(xj , δj) . upon receiving cost

26: costs← costs ∪ {(xj , δj)}
27: if ∀xj ∈ Ci | ∃xj ∈ costs then

28: cost← true

29: ComputeCost

30: end if

31: end function

32: function Synch(t) . upon receiving synchronize

33: sync← true

34: if t 6= bestRound then

35: bestRound← t

36: bestV alue← di

37: end if

38: PerformSynch

39: end function

40: function PerformSynch

41: if ∀xj ∈ Ni | ∃xj ∈ view then

42: sync← false

43: counter ← counter + 1

44: if counter < n then

45: Si ← ∅
46: for each d ∈ Di do

47: ω ← δ(d) +
∑

xj∈Ni

fij(di, dj)
1
2

(ρij + 1)

48: Si ← Si ∪ {(d, ω)}
49: end for

50: di ← argmin
ω∈Si

(Si)

51: ωi ← δ(di)

52: θi ← ωi + K
N

∑
xj∈Ni

fij(di, dj) sin(θj − θi)

53: for each xj ∈ Ni do

54: Send Assign(xi, di, θi) to xj

55: end for

56: end if

57: if Ci = ∅ then

58: if counter < n then

59: ComputeCost

60: end if

61: else

62: for each xj ∈ Ci do

63: Send Synch(bestRound) to xj

64: end for

65: end if

66: end if

67: end function

68: function ComputeCost

69: if ∀xj ∈ Ni | ∃xj ∈ view then

70: cost← false

71: δi ← δ(di) +
∑

xj∈costs
δj

72: if Pi = ∅ then

73: if bestCost > δi then

74: bestV alue← di

75: bestCost← δi

76: bestRound← counter

77: end if

78: PerformSynch

79: else

80: Send Cost(xi, δi) to Pi

81: end if

82: end if

83: end function
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of all its neighbors in some round (line 69), the aggregated cost of the sub-tree rooted at
xi can be computed by the ComputeCost procedure (lines 71). If xi is the root of the
spanning-tree, this cost represents the global cost δ of a complete solution. So xi stores the
best cost, round and assignment (lines 73-77) and performs a new synchronization stage by
PerformSynch procedure (line 78).

The Synch procedure is performed whenever an agent receives a synchronize message.
Thus, xi updates its best round and assignment found so far (lines 34-37). If xi’s local view
is up-to-date with information collected of all its neighbors in some round (line 41), a new
synchronization stage can be performed. Upon starting the PerformSynch procedure,
xi increments its synchronization stage counter (line 43). If xi does not reach the n-th
synchronization stage (line 44), xi calculates ω for each value d ∈ Di and inserts it into Si
(lines 46-49). Next, xi chooses a new value di that reduces ω ∈ Si and updates ωi with the
new local cost δ(di), and θi from the new value of ωi (lines 50-52).

Also at the PerformSynch procedure, if xi is a leaf of the spanning-tree and the n-th
synchronization stage does not reach (i.e., no termination condition is met), xi performs
ComputeCost procedure (line 57-60). Otherwise, if xi is not a leaf of the spanning-tree,
xi sends synchronize messages to its children containing information about the best round
at the moment (lines 62-64).

5.4 Anytime Property

COOPT implements the Anytime Local Search DCOP framework (ALS DCOP) designed
for local search algorithms (Zivan et al., 2014). In ALS DCOP, agents perform variable
assignments using some local search method. Next the aggregated costs of each sub-tree
rooted at a given agent are propagated from the leaves towards the root of the spanning-
tree. At the end of each communication round, the root agent computes the aggregated
cost of the current complete solution and sends this information for all agents from the root
towards the leaves of the spanning-tree.

Lemma 1. For a given communication round t, all agents hold a up-to-date local view
about the neighboring assignments and the root of the spanning-tree is able to compute the
aggregated cost of the complete solution at the t round.

Proof. We prove by induction from the recursive definition of the sub-tree rooted at xi.
If xi is a leaf of the spanning-tree (Ci = ∅), the aggregated cost of the sub-tree rooted
at xi is equal to the local cost δ(di). If xi is not a leaf of the spanning-tree (Ci 6= ∅),
the aggregated cost of the sub-tree rooted at xi is equal to the local cost δ(di) plus the
aggregated cost reported from all xj ∈ Ci at the t round. Therefore, if xi is the root of the
spanning-tree (pi = ∅), xi is able to compute the aggregated cost of the complete solution
at the t round.

Lemma 2. All agents hold the best round and the best assignment found until the t-th
round. When the search is finished, all agents know the assignments of their variables that
produced the best global cost so far.

Proof. According to the Lemma 1, the root of the spanning-tree (pi = ∅) can compute the
aggregated cost for each round. Thus, the root agent holds the index of the round that has
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produced the best global cost. When finishing the t-th round, the root agent compares the
aggregated cost of the t round with the best round known in t − 1. Then the root agent
notifies all children (xj ∈ Ci) until reaching leaves of the spanning-tree about the best round
explored so far.

Theorem 1. COOPT is anytime from a monotonic local search that results in the best
complete solution found until the t-th round.

Proof. This is a direct consequence of Lemmas 1 and 2. At the end of each round, all agents
know their assignments that have resulted in the best complete solution so far. Therefore,
COOPT returns the best complete solution found within a predefined rounds limit.

5.5 Example Run

Figure 5 illustrates part of COOPT execution from the example of DCOP presented in
Figure 4. Because in COOPT the actions of all agents in a single round can be performed
concurrently; that is, a synchronous behavior, we demonstrate one possible sequence of
execution considering n = 2 synchronization stages for each agent. This demonstration
took into account a global coupling strength K = 1.

First, all agents concurrently choose values ∀d ∈ Di that exclusively minimizes their
local costs δ(di), initialize their phases randomly θi ∼ N (µ, σ2) by a Gaussian distribution
function with mean µ = 0 and standard deviation σ2 = 1 and create empty local views.
Then all agents send assign messages to their neighbors informing them about the new
values of di and θi (Figures 5.a, 5.b, 5.c, 5.d, and 5.e).

Next, x3 updates its local view from assign messages sent to it in the previous round.
After updating its local view, x3 calculates the aggregated cost δ3 = 4 and sends a cost
message to x1 containing such information (Figure 5.f). Since x3 is a leaf of the spanning-
tree, the aggregated cost δ3 is equal to its local cost δ(di). The same procedures of cost
propagation stage are performed by x4 and x2 because they are also leaves, therefore, they
must report to their parents the aggregated costs δ4 = 6 and δ2 = 4 respectively by cost
messages (Figures 5.g and 5.h).

After x1 has updated its local view with neighboring assignments from assign messages
and collected the aggregated cost of its children from cost messages sent to it in the previous
rounds, x1 can perform procedures of cost propagation stage. Thus, x1 calculates the
aggregated cost δ1 = 16 of the sub-tree rooted at itself and notifies x1 about this information
by a cost message (Figure 5.i). Because x1 is not a leaf of the spanning-tree, the aggregated
cost δ1 takes into account its local cost δ(di) plus the aggregated costs reported by its
children; that is, δ3 = 4 and δ4 = 6.

Similar to x1, x0 performs the procedures of cost propagation stage after receiving all
assign and cost messages sent to it in the previous rounds. However, x0 is the root of the
spanning-tree; that is, its aggregated cost δ0 = 24 represents the global cost of a complete
solution. Next, x0 starts a synchronization stage by choosing a new value x0 ← 1 and
updating its phase θ0 ← 2.2. Then x0 sends assignmessages to its neighbors informing them
about new values and sends synchronize messages to its children start a synchronization
stage (Figure 5.k).
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Figure 5: Example of COOPT execution from the DCOP showed in Figure 4.

After x1 and x2 have received all assign and synchronize messages sent to them in the
previous rounds, they perform the synchronization stage by choosing new values x1 ← 1
and x2 ← 0 and updating their phases θ1 ← 5.33 and θ2 ← 3.35. Then x1 and x2 send
assign messages to their neighbors, but in contrast to x2, x1 sends synchronize messages
its children start a synchronization stage (Figures 5.l and 5.m).

So x3 and x4 can start a synchronization stage after receiving assign messages from
neighbors and synchronize message from x1. Then x3 and x4 choose new values x3 ← 0
and x4 ← 0, update their phases θ3 ← 3.35 and θ4 ← 4.46, and send assign messages
to their neighbors (Figures 5.n and 5.o). At this moment, agents are able to propagate
the aggregated costs from the leaves towards the root of the spanning-tree, so that the
root calculates the global cost for the new complete solution. These intermediate steps
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for calculating the global cost were omitted for readability because are procedures of cost
propagation stage have already been discussed.

After x0 has calculated the aggregated cost δ0 = 20, the last synchronization stage is
started. So x0 chooses a new value x0 ← 0, updates its phase θ0 ← 3.37 and sends assign
messages to its neighbors and synchronize messages to its children (Figure 5.p). The
other variables also perform the last synchronization stage by choosing new values x1 ← 0,
x2 ← 1, x3 ← 0, and x4 ← 0, updating their phases θ1 ← 2.48, θ2 ← 2.18, θ3 ← 3.21, and
θ4 ← 3.31, and sending assign messages to their neighbors and synchronize messages to
their children (Figures 5.q, 5.r, 5.s, and 5.t).

Finally, after all agents have performed procedures of cost propagation stage, x0 is able
to compute the aggregated cost δ0 = 14 of the new complete solution. Thus, one of the best
possible solution was found, where A = {x0 ← 0;x1 ← 1;x2 ← 1;x3 ← 0;x4 ← 0} with a
optimum global cost δ∗ = 7 (Figure 5.u).

5.6 Phase Coherence

The emergent collective behavior of COOPT leads to the formation of groups of agents,
aiming at coherence among individual actions. In other words, the trend of synchronization
of COOPT causes agents to be attracted by groups so as to minimize the error degree in
a given partial solution. Therefore, the collective behavior tries to converge gradually the
system towards phase coherence.
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Figure 6: Trend of synchronization of COOPT from the DCOP showed in Figure 4.

Figure 6 illustrates the trend of synchronization and phase coherence in a execution of
COOPT from the example of DCOP discussed in Section 5.5. In contrast, this running
example has considered a limit of n = 40 synchronization stages per agent. Figure 6.a
depicts the synchronization dynamics and gradual phase adjustments over time. In addition
to synchronization dynamics, Figure 6.b shows the phase coherence over time using the
order-parameter r described by Equation 4.
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5.7 Complexity Analysis

We provide the complexity analysis taking into account actions performed sequentially by
agents. For each iteration of the algorithm; that is, a single execution of synchronization and
cost propagation stage, agents run communication rounds in which each agent exchanges
assign, cost, and synchronize messages between neighbors. The number of synchronize
and cost messages sent is |V| − 1. In addition, assign messages are sent 2 |E| times. Thus,
the number of exchanged messages is linear according to O(2 |E|+ 2(|V| − 1)).

The assign message contains the assignment and phase of a neighbor variable in some
round. In contrast, the synchronize message propagates the index of the best round found
so far. Finally, the cost message contains the aggregated cost of a partial solution from
the sub-tree rooted at some child variable. Therefore, all messages have a constant size.
Regarding the local computation, the number of constraint checks is linear according to
O(2 |E|max(|D|)), where max(|D|) represents the largest domain D ∈ D.

In terms of space, each agent holds the assignments and phases of its neighbors and the
aggregated cost of its children reported in previous round. Agents also hold information
about the best round and the assignment found so far. This results in a O(max(|N |))
linear space, where max(|N |) represents the largest neighboring among all variables. Thus,
COOPT is a low-overhead anytime algorithm, because agents exchange a linear number of
messages and perform a linear number of operations.

With respect to the concurrent execution of COOPT, the overhead is determined by the
height of the spanning-tree. In other words, each path from the root to the leaves contains
individual actions that are performed sequentially. COOPT benefits when the spanning-tree
has a minimum height because of the independent paths that can be solved concurrently. So
we suggest generating the spanning-tree ordering from a breadth-first search because this
search tends to find trees that have only logarithmic height. Since a breadth-first search
results in a shortest path from the root to leaves, the height of the spanning-tree is expected
to be small even on dense constraint graphs (Zivan et al., 2014).

6. Experimental Evaluation

In order to evaluate the performance of the proposed algorithm on large instances of DCOP,
our experiments considered two types of problems: random problems and realistic meeting
scheduling problems. Random problems have wide generality and are useful to reflect the
real ability of solving DCOP. In contrast, meeting scheduling problems (MSP) capture
fundamental characteristics of real-world problems involving joint activities. Experiments
were performed in FRODO1 framework on a machine with an Intel(R) Core(TM) i7-7500U
CPU with 2.9 Ghz and 16GB of RAM.

6.1 Random Problems

Random problems represent minimization decision problems (Leite et al., 2014) in our
experiments, in which each agent ai ∈ A holds a single variable xi ∈ X . We considered
medium and large random problems involving 50, 100, and 200 variables with a single

1. FRODO is a popular framework for solving DCOP (Léauté, Ottens, & Szymanek, 2009)
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domain size |D| = 10. Constraints were binaries cost functions fij ∈ R and costs were
randomly chosen within the interval [0, 100].

The process of generating our random problems explored uniform and non-uniform
constraint networks by introducing different connection patterns. Several studies in MAS
research field have shown that the network topology has a significant impact on distributed
problem solving (Gaston & DesJardins, 2005; Le, Son, Pontelli, & Yeoh, 2015; Le, Fioretto,
Yeoh, Son, & Pontelli, 2016). Therefore, our random problems covered different levels of
complexity in terms of three dimensions: i) number of variables; ii) constraint density; and
iii) network topology.

Therefore, our random problems considered graph constraints with densities from the
range p ∈ {0.3, 0.5, 0.7, 0.9}. With respect to the network topologies, we considered the
following models: regular (Wasserman & Faust, 1994), random (ER) (Erdös & Rényi, 1959),
small-world (WS) (Watts & Strogatz, 1998), and scale-free (BA) (Barabási & Albert, 1999).
In addition, we set the parameters c = 0.2 for rewiring connections and γ = 1 for linear
preferential attachment in small-world and scale-free models, respectively. We generated 30
instances of random problems for each combination of variables, densities, and topologies.

6.2 Meeting Scheduling Problems

Meeting scheduling problems refer to agents that are trying to schedule events in certain
time slots (Modi & Veloso, 2004). Scheduling conflicts occurs if two or more events are
scheduled in overlapping time slots. A meeting scheduling problem in our experiments
involved a set A of agents, a number M of meetings with N agents intended to attend it
per meeting, and a number T of time slots.

Our experiments involving meeting scheduling problems used a DCOP formulation
known as private events as variables (PEAV) (Maheswaran et al., 2004b). In PEAV, agents
make decisions only about the events in which they participate. Such formulation describes
a variable xn(t) ∈ X representing the n-th event for a given agent at the t-th time slot.
Thus, we had M ×N variables per instance.

The setup for meeting scheduling problems in our experiments included: i) 220 agents,
80 meetings, and 5 agents per meeting; ii) 220 agents, 40 meetings, and 10 agents per
meeting; and iii) 220 agents, 20 meetings, and 20 agents per meeting. All setups had 20
available time-slots for each meeting. Scheduling conflicts incurred costs equals to 1000
and each agent also has preferences in each of the available time slots, in which costs were
randomly chosen within the interval [0, 100]. We generated 30 instances following these
setups, where each DCOP was composed by 220 agents and 400 variables with a single
domain size |D| = 20.

6.3 Evaluation Method

Our experimental evaluation benchmarks COOPT with state-of-the-art incomplete DCOP
algorithms, named DSA (Fitzpatrick & Meertens, 2003), DSA-SDP (Zivan et al., 2014),
DUCT (Ottens et al., 2017), GDBA (Okamoto et al., 2016), MGM (Zhang et al., 2005),
and MGM-2 (Pearce et al., 2008). Unfortunately we could not compare DUCT on large
problems involving 200 or more variables due to the computational effort needed. We also
assume n = 100 iterations for all local search algorithms.
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The results were averaged over 30 executions for each algorithm and problem instance.
We perform a performance evaluation using well-known computation and communication
metrics, such as number of messages, amount of exchanged information (Modi et al., 2005),
and non-concurrent constraint checks (NCCC) (Meisels, Kaplansky, Razgon, & Zivan, 2002).
Because all evaluated algorithms are incomplete methods, our performance analysis also
compares solution costs.

We applied the Friedman and Nemenyi nonparametric statistical tests for comparing the
performance of the algorithms from the average results. The Friedman test allows detection
of whether there is a statistical significance between the results, even on nonparametric
conditions (Friedman, 1940). Under the null hypothesis H0, Friedman test states that all
the algorithms have equivalent performance, whereas a rejection implies the existence of
differences among them.

The Friedman test begins by an ordinal ranking of the results for each metric. The
test is calculated by Q = 12

mk(k+1)

∑k
j=1R

2
j − 3m(k + 1), where m is the total number of

instances, k is the number of degrees of freedom, and R2
j is the square of the rank total

for each algorithm. The test rejects H0 depending on whether Q is greater than a given
α significance level. After this test, a post-hoc test, such as Nemenyi, can be used for
providing a performance ranking of the evaluated algorithms.

Therefore, the Nemenyi post-hoc test produces an ascending ranking by pair-wise tests
(Nemenyi, 1963). This ranking is generated by a critical distance (|Ri −Rj |) for each rank
pair on a given level of significance. The critical distance for the Nemenyi test is calculated

by CD = qα√
2

√
k(k+1)

6m , where m is the total number of instances, k is the number of degrees

of freedom, and qα represents the confidence level.

6.4 Algorithms and Parameters

All algorithms, except MGM and MGM-2, need some particular parameters during the
search, so we provide details on the selected values for such parameters in the experiments.
DSA uses an activation probability p before choosing new assignments, and we considered
p = 0.7 as reported by Zhang et al. (2005). We considered DSA version C because its
decision process is known to be more aggressive than other versions (Zhang et al., 2005),
being more appropriate for general valued DCOPs. DSA-SDP has four parameters pA, pB,
pC , and pD which represent the potential of improvement for calculating the probability of
choosing new assignments, so we use values pA = 0.6, pB = 0.15, pC = 0.4, and pD = 0.8
as suggested by authors (Zivan et al., 2014).

Regarding the DUCT, its termination condition occurs when the difference of the best
value and the minimal lower bound is smaller than the ε confidence bound, so we assumed
ε = 0.05 according to the authors (Ottens et al., 2017). Finally, GDBA provides three
different types of behavior for replacing variable assignments. Therefore, we setup GDBA
with multiplicative weight manner (M), non-minimum constraint violation (NM), and table
scope of cost increase (T), resulting in (M,NM,T ) combination for assignment replacement
according to the authors (Okamoto et al., 2016).

On the other hand, COOPT requires a parameter K that represents the global coupling
strength among connected variables. Nevertheless, the global coupling strength is known to
have a significant impact on the Kuramoto Model’s stability (Acebrón et al., 2005). In this

1005



Leite & Enembreck

sense, the threshold between drifting and stable state of oscillators occurs from a critical
coupling strength that depends on the topology and initial parameters of the network.
Determining the critical coupling strength for achieving a synchronized state on complex
networks becomes a well-known major challenge (Arenas et al., 2008).

Therefore, COOPT attempts to avoid the impact of such drifting oscillators state by
providing a stable and monotonic convergence process, as seen in Section 5.4. Thus, agents
run a local search that monotonically decreases the solution cost over time. We run the
Friedman test to observe the relevance of the parameter K on the solution costs. The
Friedman test was performed on results from random problems involving 10 and 50 variables,
and densities between 30% and 90%, with a interval 0.1 ≤ K ≤ 20, taking into account
95% of confidence level.

Table 1: Results of the Friedman test for each group of random problems.

(a) 10 variables

Constraints
p-value

(density)

30% 0.0501
50% 0.7797
60% 0.1604
70% 0.3998
90% 0.1363

(b) 20 variables

Constraints
p-value

(density)

30% 0.8040
50% 0.0981
60% 0.7272
70% 0.2197
90% 0.9010

(c) 30 variables

Constraints
p-value

(density)

30% 0.1138
50% 0.9736
60% 0.7014
70% 0.7485
90% 0.0611

(d) 40 variables

Constraints
p-value

(density)

30% 0.1289
50% 0.7066
60% 0.7891
70% 0.6273
90% 0.3436

(e) 50 variables

Constraints
p-value

(density)

30% 0.4973
50% 0.4563
60% 0.0668
70% 0.9061
90% 0.4447

Table 1 shows the results of the Friedman test for each group of random problems.
From the results, we observed that there was no statistically significant difference between
each tested value of K regarding the solution cost, producing p-values between 0.0501 and
0.9736. Therefore, we assumed a coupling strength K = 1 in our evaluation in order to
consider only natural weights from cost functions.

6.5 Results

Tables 2, 3, 4, and 5 show the results of random problems involving 200 variables in regular,
random, small-world, and scale-free networks, respectively. Table 6 shows the results of
meeting scheduling problems involving 5, 10, and 20 agents per meeting. Results of random
problems involving 50 and 100 variables were omitted for readability owing to their similar
performance, so we included all omitted results in appendix. We display the Nemenyi ranks
for each metric and highlight results by “•” or “◦” when observed a statistically significant
improvement or degradation, respectively, taking into account a significance level threshold
set at 95%. In addition, the mean values for each metric are displayed in parenthesis.

6.5.1 Random Problems

Regarding the solution cost, COOPT achieved better solutions than the other algorithms
in all cases. COOPT exhibited an efficient local computation achieving the highest quality
solutions particularly in dense and hard networks. In COOPT, each agent propagates an
error degree after taking an action and performing local searches that aims to minimize the
solution cost among groups of agents. On the other hand, DSA and DSA-SDP consider only
local gains before taking an action; that is, they employ a local optima stochastic strategy.
Nevertheless, DSA-SDP calculates the probability of replacing the assignment if there is an
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Table 2: Random problems involving 200 variables in regular networks (CD: 1.377)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (231967.90) • 6.00 (1179407.40) ◦ 3.00 (1207602.00) 3.00 (33163030.33)
DSA 2.80 (234638.02) 2.00 (131935.80) • 1.50 (1180000.00) • 1.00 (26362285.60) •

DSA-SDP 2.20 (234225.17) • 3.00 (362460.60) 1.50 (1180000.00) • 2.00 (32643759.60) •
GDBA 4.00 (235475.32) 5.00 (1148340.60) ◦ 5.00 (2387814.40) ◦ 4.00 (61088406.32)
MGM 5.60 (236697.04) ◦ 1.00 (71803.00) • 4.00 (2383600.00) 5.00 (76462659.52) ◦

MGM-2 5.40 (236783.78) ◦ 4.00 (870024.62) 6.00 (3510373.06) ◦ 6.00 (105848847.98) ◦

50%

COOPT 1.00 (411960.02) • 6.00 (1988711.10) ◦ 3.00 (1999602.00) 3.00 (55623903.40)
DSA 2.70 (415227.36) 2.00 (224171.64) • 1.50 (1980000.00) • 1.00 (44249766.66) •

DSA-SDP 2.30 (414919.53) • 3.00 (505721.70) 1.50 (1980000.00) • 2.00 (54256862.64) •
GDBA 4.70 (419594.96) ◦ 5.00 (1949418.90) ◦ 4.00 (3979800.00) 4.00 (101917612.56)
MGM 5.70 (419924.64) ◦ 1.00 (111632.40) • 5.00 (3999600.00) ◦ 5.00 (128286797.76) ◦

MGM-2 4.60 (419511.02) ◦ 4.00 (1613068.38) 6.00 (5888476.02) ◦ 6.00 (176905834.06) ◦

70%

COOPT 1.00 (595746.68) • 6.00 (2795442.30) ◦ 3.00 (2791602.00) 3.00 (78098782.33)
DSA 2.80 (599854.76) 2.00 (321473.64) • 1.50 (2780000.00) • 1.00 (62148178.80) •

DSA-SDP 2.20 (599276.90) • 3.00 (529784.60) 1.50 (2780000.00) • 2.00 (75856129.84) •
GDBA 5.00 (609943.56) ◦ 5.00 (2748071.70) ◦ 4.00 (5571782.70) 4.00 (142727014.40)
MGM 5.70 (610485.70) ◦ 1.00 (151676.80) • 5.00 (5615600.00) ◦ 5.00 (180074789.12) ◦

MGM-2 4.30 (609474.48) 4.00 (2353642.52) 6.00 (8266488.14) ◦ 6.00 (247900742.14) ◦

90%

COOPT 1.00 (781342.80) • 6.00 (3599600.00) ◦ 3.00 (3583602.00) 3.00 (100574895.93)
DSA 2.80 (785428.38) 2.00 (355937.92) • 1.50 (3580000.00) • 1.00 (80040179.36) •

DSA-SDP 2.20 (784514.10) • 3.00 (501420.77) 1.50 (3580000.00) • 2.00 (97472863.44) •
GDBA 4.60 (803309.90) ◦ 5.00 (3544200.00) ◦ 4.00 (7163781.00) 4.00 (183534999.76)
MGM 5.80 (804524.48) ◦ 1.00 (190957.20) • 5.00 (7231600.00) ◦ 5.00 (231852972.00) ◦

MGM-2 4.60 (803260.82) ◦ 4.00 (3149676.84) 6.00 (10644104.64) ◦ 6.00 (318833019.88) ◦

Table 3: Random problems involving 200 variables in random networks (CD: 1.377)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (235412.80) • 6.00 (1191576.90) ◦ 3.00 (1221462.00) 3.00 (33549175.20)
DSA 2.40 (238118.82) 2.00 (171816.58) • 1.50 (1194000.00) • 1.00 (26666884.72) •

DSA-SDP 3.00 (238589.40) 3.00 (256904.70) 1.50 (1194000.00) • 2.00 (33023970.28) •
GDBA 3.60 (238873.02) 5.00 (1157022.90) ◦ 5.00 (2415696.00) ◦ 4.00 (61802853.00)
MGM 5.60 (240493.74) ◦ 1.00 (93041.20) • 4.00 (2411880.00) 5.00 (77366215.28) ◦

MGM-2 5.40 (240296.16) ◦ 4.00 (971128.92) 6.00 (3551974.94) ◦ 6.00 (107023478.34) ◦

50%

COOPT 1.00 (414738.84) • 6.00 (1993199.60) ◦ 3.00 (2009502.00) 3.00 (55907192.70)
DSA 2.80 (418195.46) 2.00 (251950.46) • 1.50 (1990000.00) • 1.00 (44469367.58) •

DSA-SDP 2.20 (417614.83) • 3.00 (378683.20) 1.50 (1990000.00) • 2.00 (54530854.18) •
GDBA 4.70 (422110.90) ◦ 5.00 (1950230.70) ◦ 4.00 (3999753.20) 4.00 (102428830.98)
MGM 5.60 (422821.18) ◦ 1.00 (132121.40) • 5.00 (4019800.00) ◦ 5.00 (128934543.40) ◦

MGM-2 4.70 (421999.52) ◦ 4.00 (1713192.30) 6.00 (5918201.90) ◦ 6.00 (177785765.90) ◦

70%

COOPT 1.00 (596941.64) • 6.00 (2799291.40) ◦ 3.00 (2797542.00) 3.00 (78256749.73)
DSA 2.50 (600728.48) 2.00 (356877.30) • 1.50 (2786000.00) • 1.00 (62269396.32) •

DSA-SDP 2.50 (600886.63) 3.00 (410977.83) 1.50 (2786000.00) • 2.00 (76024866.68) •
GDBA 4.80 (610978.28) ◦ 5.00 (2748339.00) ◦ 4.00 (5583751.80) 4.00 (143035229.72)
MGM 5.70 (611312.50) ◦ 1.00 (172352.40) • 5.00 (5627720.00) ◦ 5.00 (180461420.24) ◦

MGM-2 4.50 (610438.90) ◦ 4.00 (2315252.58) 6.00 (8284296.32) ◦ 6.00 (248378823.18) ◦

90%

COOPT 1.00 (781606.48) • 6.00 (3598571.10) ◦ 3.00 (3585582.00) 3.00 (100602188.67)
DSA 2.60 (785787.56) 2.00 (371012.08) • 1.50 (3582000.00) • 1.00 (80113636.02) •

DSA-SDP 2.40 (785602.33) 3.00 (452966.67) 1.50 (3582000.00) • 2.00 (97523467.32) •
GDBA 4.90 (803961.66) ◦ 5.00 (3541180.50) ◦ 4.00 (7167800.00) 4.00 (183639181.40)
MGM 5.40 (804167.58) ◦ 1.00 (199838.60) • 5.00 (7235640.00) ◦ 5.00 (231982672.24) ◦

MGM-2 4.70 (803836.58) ◦ 4.00 (3076880.94) 6.00 (10649774.70) ◦ 6.00 (318681381.28) ◦
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Table 4: Random problems involving 200 variables in small-world networks (CD: 1.377)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (227804.00) • 6.00 (1160210.70) ◦ 3.00 (1187802.00) 3.00 (32599037.73)
DSA 2.90 (230606.60) 2.00 (143568.46) • 1.50 (1160000.00) • 1.00 (25911499.90) •

DSA-SDP 2.50 (230343.93) 3.00 (284770.40) 1.50 (1160000.00) • 2.00 (32107584.12) •
GDBA 3.70 (230965.02) 5.00 (1127065.50) ◦ 5.00 (2348008.20) ◦ 4.00 (60066947.64)
MGM 5.50 (232437.58) ◦ 1.00 (83212.80) • 4.00 (2343200.00) 5.00 (75165808.88) ◦

MGM-2 5.40 (232302.18) ◦ 4.00 (845465.26) 6.00 (3451035.58) ◦ 6.00 (104148238.34) ◦

50%

COOPT 1.00 (407831.32) • 6.00 (1964885.10) ◦ 3.00 (1979802.00) 3.00 (55060422.97)
DSA 2.60 (410939.64) 2.00 (237964.74) • 1.50 (1960000.00) • 1.00 (43795866.74) •

DSA-SDP 2.40 (410527.33) 3.00 (398974.57) 1.50 (1960000.00) • 2.00 (53706114.58) •
GDBA 5.00 (414976.88) ◦ 5.00 (1922471.10) ◦ 4.00 (3940033.30) 4.00 (100896257.38)
MGM 5.10 (415364.48) ◦ 1.00 (134583.40) • 5.00 (3959200.00) ◦ 5.00 (126991597.48) ◦

MGM-2 4.90 (415009.02) ◦ 4.00 (1507650.08) 6.00 (5829093.84) ◦ 6.00 (175187527.42) ◦

70%

COOPT 1.00 (591250.50) • 6.00 (2773032.30) ◦ 3.00 (2771802.00) 3.00 (77530062.40)
DSA 2.60 (595495.46) 2.00 (339088.52) • 1.50 (2760000.00) • 1.00 (61691125.68) •

DSA-SDP 2.40 (595191.03) 3.00 (511045.67) 1.50 (2760000.00) • 2.00 (75326266.92) •
GDBA 5.00 (604899.82) ◦ 5.00 (2722727.70) ◦ 4.00 (5532009.70) 4.00 (141708861.24)
MGM 5.30 (605480.18) ◦ 1.00 (167345.60) • 5.00 (5575200.00) ◦ 5.00 (178779010.96) ◦

MGM-2 4.70 (604940.22) ◦ 4.00 (2285119.00) 6.00 (8206987.64) ◦ 6.00 (246076714.32) ◦

90%

COOPT 1.00 (776224.84) • 6.00 (3577563.30) ◦ 3.00 (3563802.00) 3.00 (99995994.90)
DSA 2.70 (781444.96) 2.00 (373941.34) • 1.50 (3560000.00) • 1.00 (79596807.92) •

DSA-SDP 2.30 (780793.15) • 3.00 (474610.10) 1.50 (3560000.00) • 2.00 (96934165.02) •
GDBA 4.50 (798125.30) 5.00 (3519687.60) ◦ 4.00 (7124004.60) 4.00 (182516585.02)
MGM 5.90 (799881.96) ◦ 1.00 (199462.40) • 5.00 (7191200.00) ◦ 5.00 (230559610.84) ◦

MGM-2 4.60 (798328.98) ◦ 4.00 (3079767.92) 6.00 (10584596.70) ◦ 6.00 (316931798.52) ◦

Table 5: Random problems involving 200 variables in scale-free networks (CD: 1.377)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (212929.02) • 5.00 (835950.80) ◦ 3.00 (1101672.00) 3.00 (30109725.37)
DSA 3.30 (216276.72) 2.00 (267634.10) • 1.50 (1073000.00) • 1.00 (23893580.54) •

DSA-SDP 3.00 (216213.50) 3.00 (293636.70) 1.50 (1073000.00) • 2.00 (29707349.46) •
GDBA 3.00 (216085.40) 4.00 (789693.30) 5.00 (2176595.20) ◦ 4.00 (55647326.10)
MGM 5.50 (217996.86) ◦ 1.00 (219084.60) • 4.00 (2167460.00) 5.00 (69505166.68) ◦

MGM-2 5.20 (217240.08) ◦ 6.00 (2167972.44) ◦ 6.00 (3192989.32) ◦ 6.00 (96793307.62) ◦

50%

COOPT 1.00 (355924.16) • 5.00 (1382172.30) ◦ 3.00 (1737252.00) 3.00 (48126264.50)
DSA 2.90 (359372.18) 2.50 (302561.98) 1.50 (1715000.00) • 1.00 (38235964.72) •

DSA-SDP 2.40 (359382.37) 2.50 (301926.87) 1.50 (1715000.00) • 2.00 (47044460.06) •
GDBA 3.80 (360533.54) 4.00 (1331282.70) 4.00 (3454995.00) 4.00 (88466876.86)
MGM 5.90 (362435.02) ◦ 1.00 (215669.40) • 5.00 (3464300.00) ◦ 5.00 (111101155.56) ◦

MGM-2 5.00 (361729.88) ◦ 6.00 (2496582.82) ◦ 6.00 (5100692.10) ◦ 6.00 (153918964.00) ◦

70%

COOPT 1.00 (482440.28) • 5.00 (1864904.10) ◦ 3.00 (2293632.00) 3.00 (63925062.30)
DSA 2.60 (486501.90) 2.20 (300578.23) • 1.50 (2277000.00) • 1.00 (50799270.24) •

DSA-SDP 2.40 (486049.10) 2.80 (322163.66) 1.50 (2277000.00) • 2.00 (62232957.86) •
GDBA 4.90 (490116.74) ◦ 4.00 (1812115.80) 4.00 (4573774.30) 4.00 (117159910.42)
MGM 5.80 (491232.88) ◦ 1.00 (204502.40) • 5.00 (4599540.00) ◦ 5.00 (147515159.48) ◦

MGM-2 4.30 (489416.78) 6.00 (2722030.52) ◦ 6.00 (6771309.38) ◦ 6.00 (203995680.12) ◦

90%

COOPT 1.00 (591850.02) • 5.00 (2303279.10) ◦ 3.00 (2770812.00) 3.00 (77466128.70)
DSA 2.60 (596518.92) 2.00 (300176.00) • 1.50 (2759000.00) • 1.00 (61607930.96) •

DSA-SDP 2.40 (596155.00) 3.00 (338654.50) 1.50 (2759000.00) • 2.00 (75252357.54) •
GDBA 4.80 (604132.30) ◦ 4.00 (2249250.30) 4.00 (5533489.20) 4.00 (141757005.38)
MGM 5.40 (604680.72) ◦ 1.00 (206411.40) • 5.00 (5573180.00) ◦ 5.00 (178713348.92) ◦

MGM-2 4.80 (604091.44) ◦ 6.00 (2889677.40) ◦ 6.00 (8204144.74) ◦ 6.00 (246509509.84) ◦
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improving alternative (Zivan et al., 2014), whereas DSA assumes a constant probability of
replacing the assignment, since a local improvement is possible (Zhang et al., 2005).

MGM and MGM-2 also employ a local optima-based strategy, but they introduce a
monotonic optimization process (Maheswaran et al., 2004a; Pearce et al., 2008). But in
MGM-2, agents form groups of one or more until no group of two or fewer agents can improve
the solution (Pearce et al., 2008), generally resulting in better solutions in comparison to
MGM. GDBA found considerably worse solutions especially in dense networks because it
improves solutions more slowly than the other algorithms. Such relative slowness behavior
has already been discussed by authors (Okamoto et al., 2016).

Results demonstrated that COOPT, GDBA, and MGM-2 require more non-concurrent
constraint checks than the other algorithms in most cases. The reason is that COOPT
performs two sequential steps during the search; that is, when agents choose new values
and when agents report aggregated costs. Nevertheless, these sequential steps lead the
search faster toward high-quality solutions and guarantee a monotonic convergence process,
respectively. COOPT also showed slightly better NCCC in scale-free networks because of
the existence of hubs that help to reduce the depth of the spanning-tree.

No statistical difference of NCCC between MGM and DSA was observed. In fact,
procedures of MGM and DSA are simple and only consider unilateral actions by agents in a
given context. MGM-2 require more message cycles and constraint checks per iteration than
MGM (Pearce et al., 2008) and thus affecting the NCCC. Because the DSA’s communication
model does not include a synchronization mechanism (Zhang et al., 2005), the NCCC
grew more slowly than the other algorithms, except the MGM that does not always check
constraints in a communication round (Maheswaran et al., 2004a).

With respect to the number of exchanged messages, DSA and DSA-SDP require fewer
messages than the other algorithms because agents perform only one message cycle per
iteration for updating their assignments (Zhang et al., 2005) and providing an anytime
search (Zivan et al., 2014). COOPT needs additional messages due to the synchronization
stage of the algorithm. Although DSA and DSA-SDP send fewer messages than COOPT,
there was no statistically significant difference between them. On the other hand, MGM and
GDBA perform two message cycles per iteration for updating assignments and reporting
local gains (Maheswaran et al., 2004a; Okamoto et al., 2016). MGM-2 requires five message
cycles per iteration (Pearce et al., 2008), resulting in the highest number of exchanged
messages in random problems.

Except the MGM-2, all algorithms exchange very little information between agents in
each iteration, such as assignments, local gains, accumulated costs, and the index of the
best round so far. Nevertheless, agents in MGM-2 send messages containing the suggested
values for each agent and the local gain of each value pair, producing the largest messages
from experiments. As a consequence, the throughput becomes equivalent to the number of
exchanged messages in MGM-2.

6.5.2 Meeting Scheduling Problems

Regarding the meeting scheduling problems, COOPT also achieved better solutions than
the other algorithms in all cases. Although the difference between the results was smaller,
COOPT achieved the highest quality solutions in large but quite sparse problems. Such
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Table 6: Meeting scheduling problems involving 400 variables (CD: 1.377)

Agents per
Algorithm

Solution
NCCC Messages Throughput

meeting cost

5

COOPT 1.37 (26297.12) • 4.00 (242992.85) 3.00 (208162.14) 3.00 (5300663.04)
DSA 3.93 (28707.89) ◦ 1.10 (130628.80) • 1.50 (161600.00) • 1.00 (3599041.96) •

DSA-SDP 3.83 (28817.61) ◦ 2.97 (158790.45) 1.50 (161600.00) • 2.00 (4499621.29) •
GDBA 4.00 (29088.55) ◦ 5.00 (1167515.93) ◦ 5.00 (366686.40) ◦ 4.00 (9126851.18)
MGM 4.03 (29141.48) ◦ 1.93 (144262.20) • 4.00 (323200.00) 5.00 (10369410.24) ◦

MGM-2 3.83 (28549.98) ◦ 6.00 (1546115.09) ◦ 6.00 (476255.63) ◦ 6.00 (17367339.81) ◦

10

COOPT 2.00 (29707.66) • 4.00 (486070.87) 3.00 (413921.27) 3.00 (10836011.02)
DSA 4.03 (31893.31) ◦ 1.00 (208543.49) • 1.50 (363600.00) • 1.00 (8085171.04) •

DSA-SDP 3.23 (31143.91) • 3.00 (309099.70) 1.50 (363600.00) • 2.00 (10054462.30) •
GDBA 3.37 (31274.02) • 5.87 (2590044.40) ◦ 5.00 (770537.25) ◦ 4.00 (19448946.46)
MGM 3.80 (31897.45) ◦ 2.00 (231618.80) • 4.00 (727200.00) 5.00 (23321700.96) ◦

MGM-2 4.57 (32440.18) ◦ 5.13 (2364909.11) ◦ 6.00 (1071060.65) ◦ 6.00 (37381380.00) ◦

20

COOPT 2.10 (29526.99) • 4.00 (968812.26) 3.00 (820100.45) 3.00 (21780861.80)
DSA 3.70 (31794.64) ◦ 1.00 (356964.14) • 1.50 (767600.00) • 1.00 (17037329.18) •

DSA-SDP 3.23 (31064.55) • 3.00 (634049.03) 1.50 (767600.00) • 2.00 (21082288.82) •
GDBA 2.67 (30348.55) • 6.00 (5811894.04) ◦ 5.00 (1572754.20) ◦ 4.00 (39951080.08)
MGM 4.40 (32380.60) ◦ 2.00 (396283.00) • 4.00 (1535200.00) 5.00 (49194539.96) ◦

MGM-2 4.90 (34005.00) ◦ 5.00 (3638752.05) ◦ 6.00 (2261029.87) ◦ 6.00 (77011099.61) ◦

behavior was mainly observed from experiments involving 5 agents per meeting, where
only COOPT presented results statistically significant in terms of solution cost. Unlike
the results of random problems, GDBA showed better solutions than DSA in meeting
scheduling problems. In fact, sparse problems are favorable to GDBA because it is able to
achieve high-quality solutions in few iterations, even improving solutions more slowly than
the other algorithms.

As also observed in random problems, DSA and MGM required less NCCC than the
other algorithms in meeting scheduling problems. GDBA showed a slightly worse results
because in our meeting scheduling problems agents can hold more than one variable, whereas
in our random problems agents hold a single variable. Besides, the growth of NCCC in
GBDA is also related to the domain size, which was twice larger in meeting scheduling
problems than in random problems.

In terms of number of exchanged messages, COOPT also exhibited good results in
meeting scheduling problems. Nevertheless, we could observe a small difference between
GDBA and MGM. This difference was motivated by the number of variables held by a
single agent, as also observed in NCCC. Therefore, GDBA seems to be more sensitive to
the number of variables per agent in terms of NCCC and number of messages. Finally,
throughput in meeting scheduling problems are very close to random problems, in which
MGM-2 produced the highest throughput from experiments.

6.6 Convergence Analysis

One of most notable features of the Kuramoto model is its convergence ability, showing a
natural tendency to deal with complex and large networks. Thus, we provide a convergence
analysis comparing the solution improvement ability of the local search algorithms over 300
iterations. Figures 7 and 8 show the convergence dynamics of the algorithms on random
problems involving sparse (30% of density) and dense (90% of density) constraint networks,
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Figure 7: Convergence on sparse random problems.

respectively. Figure 9 shows the convergence dynamics of meeting scheduling problems with
10 and 20 agents per meeting.

6.6.1 Random Problems

From the convergence analysis involving random problems, COOPT exhibited a quick and
consistent convergence in relation to the other algorithms, requiring about 100 iterations
to achieve high-quality solutions in most cases. After the threshold of 100 iterations, no
solution improvements on sparse and dense random problems were observed in COOPT.
Moreover, the convergence ability of COOPT seems to be consistent in all the network
topologies. Despite the simple strategy of DSA, it found good solutions in few iterations
requiring less computational and communication effort. DSA-SDP also exhibited a quick
convergence and its anytime approach led the search towards better solutions than DSA.

In contrast, GDBA, MGM, and MGM-2 showed solution improvements significantly
slower than COOPT, DSA and DSA-SDP. Such algorithms need much more interations
for converging toward high-quality solutions, but we observed that GDBA achieved better
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Figure 8: Convergence on dense random problems.
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Figure 9: Convergence on meeting scheduling problems.

solutions than DSA-SDP in most of cases. GDBA benefits from extended runtime achieving
high-quality solutions on sparse and dense random problems close to 300 iterations. MGM-2
found better solutions than DSA, but requiring much more computational and communi-
cation effort, as seen from Tables 2, 3, 4, and 5. Finally, MGM exhibited a slow and poor
convergence in all cases, resulting in the worst solutions on random problems.

6.6.2 Meeting Scheduling Problems

Although our meeting scheduling problems have a state space grater than random problems,
the constraint density is significantly lower. Such aspect helped all algorithms for achieving
high-quality solutions faster. From the results of meeting scheduling problems, we observed
that COOPT converged to the highest quality solutions in less than 5 iterations in all
cases. DSA-SDP and GDBA exhibited close results, but GDBA required more iterations
for achieving high-quality solutions. DSA also showed a very fast convergence, but finding
worse solutions than COOPT, DSA-SDP, and GDBA. Finally, MGM-2 and MGM resulted
in the worst solutions in meeting scheduling problems.

6.7 Network Topology Analysis

From the results of random problems, we could observe that the degree distribution of
the network has a relevant effect on the performance of COOPT. Regular networks have
an unique degree for all vertexes (Wasserman & Faust, 1994). Random and small-world
networks produce vertexes with degree very similar because the probability of wiring or
rewiring is the same for all elements (Erdös & Rényi, 1959; Watts & Strogatz, 1998).
However, scale-free networks have a degree distribution following an exponential growth
(Barabási & Albert, 1999). Such aspect in scale-free networks contributed to COOPT to
achieve high-quality solutions faster by reducing the depth of the spanning-tree, as seen
from Figures 7 and 8.

On the other hand, COOPT needed more iterations for achieving high-quality solutions
on regular and random networks. Such behavior occurs because all agents have the almost
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the same amount of the neighbors (Pearce, Maheswaran, & Tambe, 2005); that is, the joint
actions are equally spread on the network. Moreover, COOPT was affected by the degree
distribution in terms of communication effort, showing a slightly better performance on
scale-free networks. Therefore, the degree distribution and depth of the spanning-tree are
key factors for COOPT in terms of computational and communication effort.

6.8 Network Density Analysis

Regarding the network density, we could conclude that COOPT is suitable to deal with
sparse or over-constrained large-scale problems. Experiments showed a stable convergence
ability of COOPT, achieving better results in terms of quality solution in few iterations, even
on sparse and dense problems. From the results of random problems, COOPT, DSA, and
DSA-SDP require almost the same amount of iterations for achieving high-quality solutions
in sparse and dense problems. In contrast, GBDA, MGM, and MGM-2 displayed a quite
slow converge towards high-quality solutions in dense problems.

In addition to meeting scheduling problems, which had a constraint density substantially
lower than random problems, there was no statistical difference between DSA, DSA-SDP,
GDBA, MGM and MGM-2 in relation to the solution quality; that is, only COOPT found
the highest quality solutions with statistical significance. In contrast, all the algorithms
required much more computational and communication effort in dense problems than in
sparse problems. But COOPT can have an advantage by reducing the amount of iterations
due to its stable and quick convergence process.

6.9 Discussion

Our experimental evaluation demonstrated that COOPT outperformed the other algorithms
in almost all cases. Specifically, COOPT achieved better results than the other algorithms
such as DUCT, GDBA, MGM, and MGM-2 in terms of communication load, displaying an
efficient communication model. Moreover, no statistical difference between COOPT, DSA
and DSA-SDP was observed in terms of number of messages and throughput. We could also
observe significant improvements of COOPT regarding the solution quality, particularly on
dense and hard problems.

Therefore, COOPT produced better solutions in comparison to the other algorithms,
requiring fewer iterations even on dense problems for converging to high-quality solutions.
Such behavior demonstrated the convergence ability of COOPT and its potential to handle
large-scale, complex applications. Our experimental evaluation also demonstrated that
the network topology has a relevant effect on the performance of COOPT, although it
has exhibited a stable convergence producing better solutions on several topologies with
different degrees distribution.

7. Conclusion

In this paper, we addressed a novel approach for solving DCOP inspired by synchronization
of coupled oscillator networks. This approach has introduced the concepts of the Kuramoto
model in order to improve the convergence ability and scalability on large-scale DCOPs.
We proposed a new incomplete DCOP algorithm, called COOPT, in which agents perform
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an anytime local search and use an error degree propagation technique to coordinate their
local actions.

We provided an empirical evaluation and results showed that COOPT outperformed
other state-of-the-art DCOP algorithms, particularly on hard and dense problems. From
the results, we observed the advantages of COOPT on the communication load needed
by agents. Moreover, COOPT also achieved better solutions than the other algorithms.
Such features and its anytime local search is able to improve the scalability on large-scale,
complex real applications.

Our experimental evaluation showed that the performance of COOPT can be affected by
different network topologies. Nevertheless, COOPT exhibited a stable convergence process
producing better solutions on several topologies. Such behavior is an important advantage
because it allows using COOPT on complex large-scale applications with different degrees
distribution. COOPT showed an efficient communication model, producing better solutions
than the other algorithms requiring low communication load.

As future work, we intend to explore multiple lines about COOPT. First, we suggest
a deeper analysis of the error degree propagation technique, as well as refinements of the
communication model to improve its performance. Still on performance, we suggest studies
aimed at improving the stability of the synchronization process and the impact of the K
coupling strength on the convergence ability. Studies involving non-binary constraints are
also recommended for increasing the applicability of COOPT. Finally, we aim to design a
version of COOPT that can adapt to changes, so that it can be applied in complex dynamic
environments.

Appendix A. Experiments Involving 50 and 100 Variables

Tables 7 through 14 display the results of random problems involving 50 and 100 variables
in regular, random, small-world, and scale-free networks, respectively. Tables show mean
values (in parenthesis) and Nemenyi ranks for each metric, highlighting results by “•” or “◦”
when observed a statistically significant improvement or degradation, respectively, taking
into account a significance level threshold set at 95%.
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Table 7: Random problems involving 50 variables in regular networks (CD: 1.645)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (10244.96) • 5.00 (73735.20) 3.00 (79002.00) • 3.00 (2081691.36)
DSA 3.10 (10745.08) 2.00 (19260.92) • 1.50 (70000.00) • 1.00 (1559831.28) •

DSA-SDP 2.70 (10703.78) 3.00 (37748.62) 1.50 (70000.00) • 2.00 (1970786.44) •
DUCT 7.00 (13633.76) ◦ 7.00 (150090275.84) ◦ 7.00 (15568691.96) ◦ 7.00 (2629970782.02) ◦
GDBA 3.20 (10733.48) 4.00 (66250.80) 5.00 (149037.00) 4.00 (3768203.04)
MGM 5.50 (10955.02) ◦ 1.00 (16300.20) • 4.00 (141400.00) 5.00 (4534317.76)

MGM-2 5.50 (10967.59) ◦ 6.00 (147017.64) ◦ 6.00 (209159.31) ◦ 6.00 (6463747.30) ◦

50%

COOPT 1.00 (20210.50) • 5.00 (125531.20) 3.00 (128502.00) • 3.00 (3430016.64)
DSA 3.10 (20770.76) 2.00 (35389.44) • 1.50 (120000.00) • 1.00 (2675332.32) •

DSA-SDP 2.60 (20781.67) • 3.00 (72053.76) 1.50 (120000.00) • 2.00 (3374392.84) •
DUCT 7.00 (24958.66) ◦ 7.00 (277280471.80) ◦ 7.00 (15801143.80) ◦ 7.00 (2848689374.80) ◦
GDBA 3.30 (20780.54) 4.00 (115948.80) 5.00 (248554.80) 4.00 (6324438.24)
MGM 5.70 (21232.40) ◦ 1.00 (26740.80) • 4.00 (242400.00) 5.00 (7773179.52)

MGM-2 5.30 (21150.77) 6.00 (250039.44) ◦ 6.00 (357535.87) ◦ 6.00 (10893161.71) ◦

70%

COOPT 1.00 (30707.16) • 5.00 (178960.80) 3.00 (178002.00) • 3.00 (4781903.84)
DSA 3.10 (31435.04) 2.00 (45953.72) • 1.50 (170000.00) • 1.00 (3790388.68) •

DSA-SDP 2.70 (31411.10) 3.00 (91424.64) 1.50 (170000.00) • 2.00 (4777054.28) •
DUCT 7.00 (36348.08) ◦ 7.00 (417001503.50) ◦ 7.00 (15923599.64) ◦ 7.00 (2927864043.82) ◦
GDBA 3.20 (31393.52) 4.00 (167290.20) 5.00 (348042.80) 4.00 (8879239.68)
MGM 5.60 (31885.10) ◦ 1.00 (36716.60) • 4.00 (343400.00) 5.00 (11012246.40)

MGM-2 5.40 (31831.26) ◦ 6.00 (356954.44) ◦ 6.00 (506047.62) ◦ 6.00 (15317580.55) ◦

90%

COOPT 1.00 (41433.16) • 5.00 (230609.20) 3.00 (227502.00) • 3.00 (6181110.92)
DSA 3.00 (42107.63) 2.00 (53966.44) • 1.50 (220000.00) • 1.00 (4906130.24) •

DSA-SDP 2.80 (42166.81) 3.00 (94486.92) 1.50 (220000.00) • 2.00 (6130776.64) •
DUCT 7.00 (47975.08) ◦ 7.00 (545471867.20) ◦ 7.00 (15984558.00) ◦ 7.00 (2958792917.14) ◦
GDBA 3.20 (42142.10) 4.00 (216928.80) 5.00 (447554.80) 4.00 (11435039.52)
MGM 6.00 (42846.60) ◦ 1.00 (46411.20) • 4.00 (444400.00) 5.00 (14250917.12)

MGM-2 5.00 (42621.80) 6.00 (473272.36) ◦ 6.00 (654610.93) ◦ 6.00 (19745400.82) ◦

Table 8: Random problems involving 50 variables in random networks (CD: 1.645)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (10847.44) • 5.00 (75047.20) 3.00 (82368.00) • 3.00 (2173549.60)
DSA 3.40 (11376.84) 2.00 (36504.80) • 1.50 (73400.00) • 1.00 (1634939.22) •

DSA-SDP 2.70 (11353.45) 3.00 (52750.00) 1.50 (73400.00) • 2.00 (2065900.09) •
DUCT 7.00 (14015.28) ◦ 7.00 (114433184.82) ◦ 7.00 (14975384.40) ◦ 7.00 (2351808921.42) ◦
GDBA 3.20 (11371.22) 4.00 (66250.80) 5.00 (155829.40) 4.00 (3942715.20)
MGM 5.40 (11602.97) ◦ 1.00 (26648.90) • 4.00 (148268.00) 5.00 (4754491.20)

MGM-2 5.30 (11619.65) 6.00 (210018.31) ◦ 6.00 (219275.06) ◦ 6.00 (6771894.96) ◦

50%

COOPT 1.00 (20831.14) • 5.00 (128468.20) 3.00 (130878.00) • 3.00 (3495662.12)
DSA 3.40 (21407.56) 2.00 (46478.51) • 1.50 (122400.00) • 1.00 (2727368.85) •

DSA-SDP 3.00 (21325.17) 3.00 (78581.41) 1.50 (122400.00) • 2.00 (3441073.85) •
DUCT 7.00 (25283.12) ◦ 7.00 (249083796.40) ◦ 7.00 (15713523.44) ◦ 7.00 (2772892700.64) ◦
GDBA 2.60 (21361.12) • 4.00 (117384.30) 5.00 (253331.90) 4.00 (6446239.32)
MGM 5.60 (21733.95) ◦ 1.00 (36486.00) • 4.00 (247248.00) 5.00 (7928498.16)

MGM-2 5.40 (21761.16) ◦ 6.00 (314091.41) ◦ 6.00 (364665.38) ◦ 6.00 (11106013.70) ◦

70%

COOPT 1.10 (31156.54) • 5.00 (178967.30) 3.00 (179388.00) • 2.80 (4818807.22)
DSA 3.40 (31722.29) 2.00 (60348.83) • 1.50 (171400.00) • 1.00 (3822048.74) •

DSA-SDP 2.80 (31675.39) 3.00 (91744.83) 1.50 (171400.00) • 2.20 (4816475.70) •
DUCT 7.00 (36443.60) ◦ 7.00 (373708990.96) ◦ 7.00 (15881446.68) ◦ 7.00 (2889563758.18) ◦
GDBA 2.90 (31668.84) 4.00 (166003.20) 5.00 (350847.10) 4.00 (8951282.98)
MGM 5.40 (32182.14) ◦ 1.00 (44620.70) • 4.00 (346228.00) 5.00 (11102750.84)

MGM-2 5.40 (32162.73) ◦ 6.00 (412446.06) ◦ 6.00 (510223.35) ◦ 6.00 (15455846.39) ◦

90%

COOPT 1.00 (41679.82) • 5.00 (229509.00) 3.00 (227898.00) • 3.00 (6192176.63)
DSA 3.10 (42293.91) 2.00 (56330.60) • 1.50 (220400.00) • 1.00 (4914473.41) •

DSA-SDP 2.90 (42323.62) 3.00 (96003.72) 1.50 (220400.00) • 2.00 (6141604.92) •
DUCT 7.00 (48034.54) ◦ 7.00 (509699568.52) ◦ 7.00 (15957773.76) ◦ 7.00 (2943782523.44) ◦
GDBA 3.30 (42389.34) 4.00 (215087.40) 5.00 (448368.40) 4.00 (11455390.84)
MGM 5.40 (42839.38) ◦ 1.00 (49778.80) • 4.00 (445208.00) 5.00 (14276702.40)

MGM-2 5.30 (42852.26) 6.00 (501457.80) ◦ 6.00 (655839.77) ◦ 6.00 (19804620.48) ◦

1016



Using Collective Behavior of Coupled Oscillators for Solving DCOP

Table 9: Random problems involving 50 variables in small-world networks (CD: 1.645)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (10219.60) • 5.00 (71102.60) 3.00 (79002.00) • 3.00 (2081377.74)
DSA 3.00 (10703.70) 2.00 (29064.41) • 1.50 (70000.00) • 1.00 (1559640.33) •

DSA-SDP 2.80 (10738.51) 3.00 (48696.67) 1.50 (70000.00) • 2.00 (1970181.05) •
DUCT 7.00 (13351.86) ◦ 7.00 (115800127.60) ◦ 7.00 (15105413.64) ◦ 7.00 (2376204156.64) ◦
GDBA 3.40 (10725.46) 4.00 (62983.80) 5.00 (149052.70) 4.00 (3768774.14)
MGM 5.50 (10959.58) ◦ 1.00 (21516.60) • 4.00 (141400.00) 5.00 (4534297.40)

MGM-2 5.30 (10938.47) 6.00 (179796.88) ◦ 6.00 (209182.30) ◦ 6.00 (6470311.30) ◦

50%

COOPT 1.10 (20262.08) • 5.00 (123579.80) 3.00 (128502.00) • 3.00 (3430822.30)
DSA 2.80 (20813.50) 2.00 (42825.55) • 1.50 (120000.00) • 1.00 (2674457.20) •

DSA-SDP 2.60 (20816.14) • 3.00 (77240.83) 1.50 (120000.00) • 2.00 (3373850.89) •
DUCT 7.00 (24611.60) ◦ 7.00 (236850256.06) ◦ 7.00 (15654531.64) ◦ 7.00 (2746035828.44) ◦
GDBA 3.70 (20919.58) 4.00 (112869.90) 5.00 (248561.60) 4.00 (6324148.70)
MGM 5.40 (21169.85) ◦ 1.00 (32776.60) • 4.00 (242400.00) 5.00 (7773379.96)

MGM-2 5.40 (21159.73) ◦ 6.00 (298119.93) ◦ 6.00 (357543.21) ◦ 6.00 (10903487.88) ◦

70%

COOPT 1.00 (30780.80) • 5.00 (178547.50) 3.00 (178002.00) • 2.90 (4781924.14)
DSA 2.80 (31445.25) 2.00 (49736.80) • 1.50 (170000.00) • 1.00 (3789473.02) •

DSA-SDP 3.30 (31465.25) 3.00 (92802.05) 1.50 (170000.00) • 2.10 (4778387.71) •
DUCT 7.00 (36279.52) ◦ 7.00 (381179667.42) ◦ 7.00 (15894345.40) ◦ 7.00 (2903896845.96) ◦
GDBA 3.20 (31492.08) 4.00 (165755.70) 5.00 (348053.90) 4.00 (8879643.58)
MGM 5.50 (31899.12) ◦ 1.00 (42998.40) • 4.00 (343400.00) 5.00 (11012228.20)

MGM-2 5.20 (31847.00) 6.00 (401984.50) ◦ 6.00 (506079.39) ◦ 6.00 (15331861.15) ◦

90%

COOPT 1.00 (41406.06) • 5.00 (230320.50) 3.00 (227502.00) • 3.00 (6181261.62)
DSA 3.20 (42191.80) 2.00 (55897.75) • 1.50 (220000.00) • 1.00 (4905995.59) •

DSA-SDP 2.60 (42159.66) • 3.00 (91734.92) 1.50 (220000.00) • 2.00 (6130160.92) •
DUCT 7.00 (47938.36) ◦ 7.00 (515744329.42) ◦ 7.00 (15970429.32) ◦ 7.00 (2950671838.16) ◦
GDBA 3.20 (42219.80) 4.00 (215869.50) 5.00 (447560.50) 4.00 (11435352.68)
MGM 5.70 (42846.80) ◦ 1.00 (50046.70) • 4.00 (444400.00) 5.00 (14250994.32)

MGM-2 5.30 (42710.45) 6.00 (497236.99) ◦ 6.00 (654646.04) ◦ 6.00 (19768350.50) ◦

Table 10: Random problems involving 50 variables in scale-free networks (CD: 1.645)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (9627.20) • 4.70 (57352.41) 3.00 (73458.00) • 3.00 (1927710.64)
DSA 2.70 (10038.20) 1.60 (47638.10) • 1.50 (64400.00) • 1.00 (1431748.78) •

DSA-SDP 2.70 (10024.76) 3.20 (53462.39) 1.50 (64400.00) • 2.00 (1811018.62) •
DUCT 6.90 (10771.40) ◦ 7.00 (27604112.94) ◦ 7.00 (8928024.56) ◦ 7.00 (867631973.32) ◦
GDBA 4.10 (10117.68) 4.10 (56999.40) 5.00 (137991.70) 4.00 (3483516.00)
MGM 5.00 (10234.10) 1.40 (46262.70) • 4.00 (130088.00) 5.00 (4170520.08)

MGM-2 5.60 (10328.01) ◦ 6.00 (372904.13) ◦ 6.00 (193248.04) ◦ 6.00 (6068586.63) ◦

50%

COOPT 1.00 (17381.26) • 5.00 (89320.60) 3.00 (113058.00) • 3.00 (3007419.22)
DSA 3.80 (18081.32) 2.00 (59268.56) • 1.50 (104400.00) • 1.00 (2323129.85) •

DSA-SDP 2.60 (17880.95) • 3.00 (67098.61) 1.50 (104400.00) • 2.00 (2933392.03) •
DUCT 7.00 (19489.28) ◦ 7.00 (63528101.28) ◦ 7.00 (11092286.68) ◦ 7.00 (1322404475.84) ◦
GDBA 3.00 (17973.26) 4.00 (77279.40) 5.00 (217664.60) 4.00 (5529724.34)
MGM 5.40 (18310.81) ◦ 1.00 (51885.50) • 4.00 (210888.00) 5.00 (6761491.88)

MGM-2 5.20 (18279.39) 6.00 (437583.72) ◦ 6.00 (311626.68) ◦ 6.00 (9585078.65) ◦

70%

COOPT 1.00 (24460.74) • 5.00 (123515.10) 3.00 (147708.00) • 3.00 (3952159.48)
DSA 3.10 (25125.32) 2.00 (59176.95) • 1.50 (139400.00) • 1.00 (3104514.19) •

DSA-SDP 3.00 (25084.91) 3.00 (69538.93) 1.50 (139400.00) • 2.00 (3916401.42) •
DUCT 7.00 (27608.82) ◦ 7.00 (123059581.88) ◦ 7.00 (12669431.32) ◦ 7.00 (1727555179.02) ◦
GDBA 3.00 (25079.18) 4.00 (110553.30) 5.00 (287332.80) 4.00 (7319282.68)
MGM 5.10 (25443.96) 1.00 (50605.20) • 4.00 (281588.00) 5.00 (9029166.80)

MGM-2 5.80 (25536.71) ◦ 6.00 (464475.79) ◦ 6.00 (415343.71) ◦ 6.00 (12650919.00) ◦

90%

COOPT 1.00 (30919.58) • 5.00 (149799.30) 3.00 (177408.00) • 3.00 (4764218.08)
DSA 2.90 (31527.75) 2.10 (57109.97) • 1.50 (169400.00) • 1.00 (3773885.13) •

DSA-SDP 3.10 (31521.91) 2.90 (65788.30) 1.50 (169400.00) • 2.00 (4758904.86) •
DUCT 7.00 (34594.46) ◦ 7.00 (174351723.32) ◦ 7.00 (13637144.08) ◦ 7.00 (2024122679.08) ◦
GDBA 3.00 (31551.90) 4.00 (136491.30) 5.00 (347066.00) 4.00 (8853264.16)
MGM 5.80 (32050.05) ◦ 1.00 (50558.20) • 4.00 (342188.00) 5.00 (10972197.76)

MGM-2 5.20 (31952.52) 6.00 (483447.10) ◦ 6.00 (504404.98) ◦ 6.00 (15316777.86) ◦
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Table 11: Random problems involving 100 variables in regular networks (CD: 1.377)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (50893.02) • 5.00 (293793.00) ◦ 3.00 (306702.00) 3.00 (8217007.60)
DSA 3.00 (52027.55) 2.00 (48367.07) • 1.50 (290000.00) • 1.00 (6466989.85) •

DSA-SDP 2.90 (51919.47) 3.00 (122471.83) 1.50 (290000.00) • 2.00 (8153347.13) •
GDBA 3.10 (51965.38) 4.00 (278487.00) 5.00 (596789.00) ◦ 4.00 (15209120.56)
MGM 5.60 (52862.91) ◦ 1.00 (33294.90) • 4.00 (585800.00) 5.00 (18787250.96) ◦

MGM-2 5.40 (52879.38) ◦ 6.00 (319794.02) ◦ 6.00 (863565.33) ◦ 6.00 (26240033.47) ◦

50%

COOPT 1.00 (93876.04) • 5.00 (496286.70) ◦ 3.00 (504702.00) 3.00 (13767342.87)
DSA 3.30 (95458.32) 2.00 (68232.50) • 1.50 (490000.00) • 1.00 (10931500.16) •

DSA-SDP 2.40 (95169.97) 3.00 (194358.50) 1.50 (490000.00) • 2.00 (13619675.76) •
GDBA 3.40 (95500.06) 4.00 (476853.30) 5.00 (994814.70) ◦ 4.00 (25431270.08)
MGM 5.50 (96387.56) ◦ 1.00 (52185.00) • 4.00 (989800.00) 5.00 (31743936.56) ◦

MGM-2 5.40 (96400.48) ◦ 6.00 (561438.08) ◦ 6.00 (1457870.44) ◦ 6.00 (43967694.05) ◦

70%

COOPT 1.00 (138592.68) • 5.00 (705314.20) ◦ 3.00 (702702.00) 3.00 (19382561.80)
DSA 2.80 (139978.40) 2.00 (99589.08) • 1.50 (690000.00) • 1.00 (15396769.71) •

DSA-SDP 2.30 (139694.23) • 3.00 (227237.70) 1.50 (690000.00) • 2.00 (19020464.40) •
GDBA 4.20 (140532.40) 4.00 (681733.80) 4.00 (1392784.80) 4.00 (35645767.92)
MGM 5.80 (141443.20) ◦ 1.00 (71773.80) • 5.00 (1393800.00) ◦ 5.00 (44698845.84) ◦

MGM-2 4.90 (141159.31) ◦ 6.00 (837697.95) ◦ 6.00 (2052375.83) ◦ 6.00 (61766261.14) ◦

90%

COOPT 1.00 (183634.26) • 5.00 (908700.00) ◦ 3.00 (900702.00) 3.00 (24996618.07)
DSA 2.80 (185322.63) 2.00 (107387.40) • 1.50 (890000.00) • 1.00 (19856912.82) •

DSA-SDP 2.20 (185075.53) • 3.00 (212793.07) 1.50 (890000.00) • 2.00 (24419001.84) •
GDBA 4.40 (186308.20) ◦ 4.00 (881100.00) 4.00 (1790791.00) 4.00 (45851607.60)
MGM 5.40 (186845.27) ◦ 1.00 (91687.80) • 5.00 (1797800.00) ◦ 5.00 (57655196.80) ◦

MGM-2 5.20 (186788.62) ◦ 6.00 (1138919.65) ◦ 6.00 (2646923.83) ◦ 6.00 (79560609.98) ◦

Table 12: Random problems involving 100 variables in random networks (CD: 1.377)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (52376.84) • 5.00 (295780.10) ◦ 3.00 (313632.00) 3.00 (8404608.40)
DSA 3.20 (53615.14) 2.00 (70745.13) • 1.50 (297000.00) • 1.00 (6621786.24) •

DSA-SDP 2.70 (53425.80) 3.00 (103831.73) 1.50 (297000.00) • 2.00 (8347699.40) •
GDBA 3.10 (53539.40) 4.00 (278477.10) 5.00 (610764.60) ◦ 4.00 (15567788.88)
MGM 5.50 (54394.01) ◦ 1.00 (45854.30) • 4.00 (599940.00) 5.00 (19240424.48) ◦

MGM-2 5.50 (54409.26) ◦ 6.00 (413262.68) ◦ 6.00 (884430.37) ◦ 6.00 (26875696.02) ◦

50%

COOPT 1.00 (94911.84) • 5.00 (500782.70) ◦ 3.00 (509652.00) 3.00 (13906394.40)
DSA 2.90 (96434.28) 2.00 (86021.74) • 1.50 (495000.00) • 1.00 (11039671.52) •

DSA-SDP 3.00 (96246.10) 3.00 (164997.83) 1.50 (495000.00) • 2.00 (13753921.48) •
GDBA 3.20 (96398.92) 4.00 (479031.30) 5.00 (1004778.80) ◦ 4.00 (25686341.00)
MGM 5.60 (97514.82) ◦ 1.00 (64848.70) • 4.00 (999900.00) 5.00 (32067332.80) ◦

MGM-2 5.30 (97383.01) ◦ 6.00 (648265.24) ◦ 6.00 (1472763.02) ◦ 6.00 (44422473.45) ◦

70%

COOPT 1.00 (139324.18) • 5.00 (703809.20) ◦ 3.00 (705672.00) 3.00 (19469578.13)
DSA 2.80 (140857.94) 2.00 (101049.87) • 1.50 (693000.00) • 1.00 (15457616.00) •

DSA-SDP 2.60 (140712.23) 3.00 (204505.70) 1.50 (693000.00) • 2.00 (19102121.80) •
GDBA 3.60 (141133.92) 4.00 (677932.20) 4.00 (1398808.90) 4.00 (35798917.08)
MGM 5.70 (142123.95) ◦ 1.00 (84142.50) • 5.00 (1399860.00) ◦ 5.00 (44893717.04) ◦

MGM-2 5.30 (141996.09) ◦ 6.00 (911382.89) ◦ 6.00 (2061337.67) ◦ 6.00 (62080034.90) ◦

90%

COOPT 1.00 (183722.64) • 5.00 (907011.10) ◦ 3.00 (901692.00) 3.00 (25024846.97)
DSA 2.60 (185376.61) 2.00 (111863.07) • 1.50 (891000.00) • 1.00 (19876373.01) •

DSA-SDP 2.40 (185308.13) 3.00 (205275.03) 1.50 (891000.00) • 2.00 (24445243.86) •
GDBA 4.80 (186858.60) ◦ 4.00 (878120.10) 4.00 (1792814.30) 4.00 (45904046.66)
MGM 5.30 (187133.38) ◦ 1.00 (98468.20) • 5.00 (1799820.00) ◦ 5.00 (57720698.60) ◦

MGM-2 4.90 (186962.69) ◦ 6.00 (1155421.09) ◦ 6.00 (2649859.53) ◦ 6.00 (79575324.51) ◦

1018



Using Collective Behavior of Coupled Oscillators for Solving DCOP

Table 13: Random problems involving 100 variables in small-world networks (CD: 1.377)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (48757.18) • 5.00 (281783.60) ◦ 3.00 (296802.00) 3.00 (7948277.92)
DSA 2.50 (49958.01) 2.00 (57962.20) • 1.50 (280000.00) • 1.00 (6241714.99) •

DSA-SDP 2.90 (49981.77) 3.00 (105706.50) 1.50 (280000.00) • 2.00 (7871193.67) •
GDBA 3.60 (50089.76) 4.00 (265221.00) 5.00 (576904.80) ◦ 4.00 (14696574.72)
MGM 5.60 (50758.98) ◦ 1.00 (45112.90) • 4.00 (565600.00) 5.00 (18139393.04) ◦

MGM-2 5.40 (50674.35) ◦ 6.00 (367754.49) ◦ 6.00 (833896.18) ◦ 6.00 (25343223.64) ◦

50%

COOPT 1.00 (92003.62) • 5.00 (487786.50) ◦ 3.00 (494802.00) 3.00 (13486841.80)
DSA 3.40 (93481.92) 2.00 (78667.86) • 1.50 (480000.00) • 1.00 (10703630.34) •

DSA-SDP 2.70 (93212.43) 3.00 (162223.47) 1.50 (480000.00) • 2.00 (13345867.76) •
GDBA 2.90 (93336.86) 4.00 (466735.50) 5.00 (974914.60) ◦ 4.00 (24920616.72)
MGM 5.50 (94305.21) ◦ 1.00 (64557.10) • 4.00 (969600.00) 5.00 (31096284.72) ◦

MGM-2 5.50 (94293.47) ◦ 6.00 (617940.69) ◦ 6.00 (1428201.02) ◦ 6.00 (43114321.33) ◦

70%

COOPT 1.00 (136095.84) • 5.00 (693208.30) ◦ 3.00 (692802.00) 3.00 (19103754.27)
DSA 2.80 (137799.35) 2.00 (93217.60) • 1.50 (680000.00) • 1.00 (15169753.68) •

DSA-SDP 2.30 (137571.77) • 3.00 (201389.83) 1.50 (680000.00) • 2.00 (18748200.28) •
GDBA 3.90 (138058.54) 4.00 (668042.10) 4.00 (1372906.30) 4.00 (35135420.52)
MGM 5.60 (138850.82) ◦ 1.00 (81992.90) • 5.00 (1373600.00) ◦ 5.00 (44052981.20) ◦

MGM-2 5.40 (138803.72) ◦ 6.00 (874258.53) ◦ 6.00 (2022637.21) ◦ 6.00 (60844798.89) ◦

90%

COOPT 1.00 (181038.62) • 5.00 (894675.30) ◦ 3.00 (890802.00) 3.00 (24716616.40)
DSA 2.80 (182988.25) 2.00 (110342.68) • 1.50 (880000.00) • 1.00 (19634676.79) •

DSA-SDP 2.20 (182695.27) • 3.00 (203026.83) 1.50 (880000.00) • 2.00 (24146499.48) •
GDBA 4.10 (183959.02) 4.00 (865863.90) 4.00 (1770932.30) 4.00 (45343205.80)
MGM 5.40 (184541.00) ◦ 1.00 (99321.80) • 5.00 (1777600.00) ◦ 5.00 (57007555.52) ◦

MGM-2 5.50 (184574.89) ◦ 6.00 (1148696.12) ◦ 6.00 (2617153.40) ◦ 6.00 (78606826.84) ◦

Table 14: Random problems involving 100 variables in scale-free networks (CD: 1.377)

Density Algorithm Solution cost NCCC Messages Throughput

30%

COOPT 1.00 (45901.88) • 5.00 (208663.10) ◦ 3.00 (276012.00) 3.00 (7368601.92)
DSA 3.00 (47086.52) 2.00 (113105.31) • 1.50 (259000.00) • 1.00 (5761026.92) •

DSA-SDP 2.80 (47011.33) 3.00 (127795.63) 1.50 (259000.00) • 2.00 (7272646.20) •
GDBA 3.60 (47283.28) 4.00 (186288.30) 5.00 (535519.20) ◦ 4.00 (13628175.36)
MGM 5.50 (47820.56) ◦ 1.00 (105318.70) • 4.00 (523180.00) 5.00 (16774233.20) ◦

MGM-2 5.10 (47712.23) ◦ 6.00 (882314.74) ◦ 6.00 (772457.32) ◦ 6.00 (23635110.34) ◦

50%

COOPT 1.00 (79780.12) • 5.00 (344134.60) ◦ 3.00 (435402.00) 3.00 (11790384.90)
DSA 3.40 (81476.87) 2.00 (122548.12) • 1.50 (420000.00) • 1.00 (9351414.88) •

DSA-SDP 2.80 (81198.23) 3.00 (137398.03) 1.50 (420000.00) • 2.00 (11713895.50) •
GDBA 3.20 (81426.42) 4.00 (319275.00) 5.00 (856120.00) ◦ 4.00 (21863250.38)
MGM 5.50 (82207.46) ◦ 1.00 (107646.20) • 4.00 (848400.00) 5.00 (27204320.68) ◦

MGM-2 5.10 (82090.72) ◦ 6.00 (996594.08) ◦ 6.00 (1250297.16) ◦ 6.00 (37908740.82) ◦

70%

COOPT 1.00 (110608.70) • 5.00 (471477.00) ◦ 3.00 (574992.00) 3.00 (15752126.33)
DSA 3.00 (111979.90) 2.00 (121982.30) • 1.50 (561000.00) • 1.00 (12498970.76) •

DSA-SDP 3.00 (111897.43) 3.00 (144226.63) 1.50 (561000.00) • 2.00 (15526493.84) •
GDBA 3.20 (112024.42) 4.00 (445262.40) 5.00 (1136878.50) ◦ 4.00 (29075187.52)
MGM 5.50 (113162.57) ◦ 1.00 (101671.50) • 4.00 (1133220.00) 5.00 (36339205.44) ◦

MGM-2 5.30 (113156.10) ◦ 6.00 (1071909.62) ◦ 6.00 (1669143.06) ◦ 6.00 (50445145.44) ◦

90%

COOPT 1.00 (137074.76) • 5.00 (580087.30) ◦ 3.00 (694782.00) 3.00 (19150377.70)
DSA 3.00 (138714.03) 2.00 (118601.79) • 1.50 (682000.00) • 1.00 (15206902.35) •

DSA-SDP 2.20 (138548.13) • 3.00 (146817.73) 1.50 (682000.00) • 2.00 (18793675.02) •
GDBA 3.80 (139003.50) 4.00 (553221.90) 4.90 (1377772.00) ◦ 4.00 (35259812.94)
MGM 5.80 (139966.06) ◦ 1.00 (101567.50) • 4.10 (1377640.00) 5.00 (44179324.04) ◦

MGM-2 5.20 (139901.48) ◦ 6.00 (1118718.22) ◦ 6.00 (2028691.92) ◦ 6.00 (61134031.00) ◦
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