
Journal of Artificial Intelligence Research 64 (2019) 645-703 Submitted 11/18; published 03/19

A Survey on Transfer Learning for Multiagent
Reinforcement Learning Systems

Felipe Leno Da Silva f.leno@usp.br

Anna Helena Reali Costa anna.reali@usp.br

Computer Engineering Department

Universidade de São Paulo

São Paulo, SP, Brazil.

Abstract

Multiagent Reinforcement Learning (RL) solves complex tasks that require coordina-
tion with other agents through autonomous exploration of the environment. However,
learning a complex task from scratch is impractical due to the huge sample complexity of
RL algorithms. For this reason, reusing knowledge that can come from previous experience
or other agents is indispensable to scale up multiagent RL algorithms. This survey pro-
vides a unifying view of the literature on knowledge reuse in multiagent RL. We define a
taxonomy of solutions for the general knowledge reuse problem, providing a comprehensive
discussion of recent progress on knowledge reuse in Multiagent Systems (MAS) and of tech-
niques for knowledge reuse across agents (that may be actuating in a shared environment
or not). We aim at encouraging the community to work towards reusing all the knowledge
sources available in a MAS. For that, we provide an in-depth discussion of current lines of
research and open questions.

1. Introduction

Reinforcement Learning (RL) (Sutton & Barto, 1998; Littman, 2015) has been employed
to train autonomous agents for increasingly difficult tasks such as board and video game
playing (Tesauro, 1995; Mnih et al., 2015), optimization of treatment policies for chronic
illnesses (Shortreed et al., 2011), robotics (Kober, Bagnell, & Peters, 2013), and DRAM
memory control (Barto, Thomas, & Sutton, 2017). As these agents gain space in the real
world, learning how to interact and adapt to other (possibly learning) agents is fundamental
to build a robust and reliable system. So far, the multiagent RL community presented
perhaps the most expressive progress towards autonomous learning in Multiagent Systems
(MAS) (Bazzan, 2014). However, the huge sample complexity of traditional RL methods
is a well-known hindrance to apply both single- and multiagent RL in complex problems,
and the RL community has devoted much effort on additional techniques to overcome
the limitations of RL methods. Transfer Learning (TL) (Taylor & Stone, 2009) methods
propose to alleviate the burden of learning through the reuse of knowledge. The most
intuitive way to apply TL to RL is to reuse the solution of previous tasks that have already
been presented to the agent (Taylor, Stone, & Liu, 2007), but many methods also focused
on reusing knowledge from external sources, such as demonstrations from humans or advice
from other learning agents (Silva, Glatt, & Costa, 2017).

c©2019 AI Access Foundation. All rights reserved.

Silva & Costa

The literature has shown that the reuse of knowledge might significantly accelerate the
learning process. However, unprincipled reuse of knowledge might cause negative transfer,
i.e., when reusing knowledge hurt the learning process instead of accelerating it. The key
remaining question is how to develop flexible and robust methods to autonomously reuse
knowledge for varied applications. TL for single-agent RL has already evolved enough
to consistently reuse solutions from different domains (Taylor et al., 2007), autonomously
identify and reuse previous solutions (Isele, Rostami, & Eaton, 2016; Sinapov, Narvekar,
Leonetti, & Stone, 2015), and be usable in complex applications. However, multiagent RL is
still struggling to find real-world applications, and many multiagent TL approaches are still
validated in simulations of toy problems or require strong human intervention. Nevertheless,
the field has been maturing in the past years, pushing the boundaries of knowledge closer
to the development of an autonomous agent that can learn faster by reusing its knowledge,
observing other agents’ actuation, and receiving advice from more experienced agents.

This survey aims at categorizing and discussing the main lines of current research within
the Transfer Learning for Multiagent RL area. Our main purpose is to highlight the sim-
ilarity between those different lines, making it easier to identify crossing points and open
problems for which sub-communities could merge their expertise to work on, bridging the
gap between the current literature and real-world complex applications.

1.1 Contribution and Scope

This survey focuses on Transfer Learning approaches that are explicitly developed to mul-
tiagent RL systems or that can be easily applicable to MAS. While we also discuss some
methods that have been primarily developed for single-agent TL, the focus of the discussion
is on the benefits and/or difficulties in applying these methods to MAS. By multiagent RL
we mean domains in which more than one autonomous agent is present and at least one
of them (the one reusing knowledge) is applying RL. If one agent is solving a single-agent
RL task but interference from other agents during learning is possible (such as providing
suggestions when the agent is unsure of what to do), we also consider this as a multiagent
task. We contribute a new taxonomy to divide the literature in the area into two main
categories (detailed in Section 3). We also categorize the main recent proposals and discuss
the particularities of each of them, outlining their contribution to the MAS community and
prospects of further developments when possible.

Whether or not a transfer procedure should be considered as multiagent might prompt
debates in some situations. We consider that an agent is composed of its own set of sensors,
actuators, and a policy optimizer. Therefore, we included here procedures that: (i) are
specialized for reusing the agent’s own knowledge across tasks that include multiple agents
in the environment; or (ii) transfer knowledge from one agent to another during the learning
process. Notice that a human providing demonstrations or guidance during learning is
considered a multiagent transfer method, but a designer devising a reward function is not,
because the information is defined and made available to the agent before learning.

To the best of our knowledge, this is the first survey focused on TL for multiagent
RL. Taylor and Stone (2009) provide a comprehensive survey on TL techniques (primarily
focused on single-agent RL), but many new approaches have arisen since that survey was
published. Lazaric (2012) surveys TL approaches in less depth, proposing a taxonomy to

646

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

divide the field (also focused on single-agent RL). A handful of surveys focus on multiagent
RL without emphasis on TL. Two major examples are the surveys by Busoniu et al. (2008)
and Stone and Veloso (2000). While most of the Learning from Demonstration and Inverse
Reinforcement Learning techniques fall within the scope of this survey, Argall et al. (2009)
and Zhifei and Joo (2012) already provided comprehensive surveys on those topics. There-
fore, we here restrict our analysis to more recent and relevant publications on those areas
for avoiding repetitions in discussions already provided by these previous surveys. In this
paper, we also contribute in-depth discussions of the publications, relating them to other
paradigms in Multiagent Learning. A small portion of this survey was already presented at
a conference in the form of a mini-survey (Silva, Taylor, & Costa, 2018).

Figure 1 further illustrates the scope of this survey, which lies at the intersection of RL,
TL and multiagent learning.

Reinforcement
Learning

Transfer
Learning

Multiagent
Learning

This
survey

Figure 1: Illustration of the scope of this survey. TL for multiagent RL lies at the intersec-
tion of RL, TL, and multiagent learning.

1.2 Overview

This section explains the structure of this survey. In Section 2 we present the foundations of
single- and multiagent RL, showing how TL improves RL algorithms and presenting some
established metrics to evaluate transfer. In Section 3, we present our proposed taxonomy,
explaining how we group and categorize proposals. In Sections 4 and 5, we list, explain,
and discuss the surveyed published literature, where each of the sections is devoted to
one category. Section 6 depicts simulated and real-world domains that have been used for
evaluating methods. In Section 7, we present our view on the promising open questions
in the area that need further investigation. Section 8 presents pointers for conferences,
journals, and code libraries that might be of interest to readers. Finally, Section 9 concludes
the survey.

647

Silva & Costa

2. Background

In this section, we review the necessary background on single-agent and multiagent RL, to-
gether with the main concepts of TL. We first present the single-agent case, then proceeding
to MAS and representative solutions. Finally, we present the basics on TL.

2.1 Single-Agent RL

RL is a possible solution for Markov Decision Processes (MDP) (Puterman, 2005), which
is a popular model for sequential decision-making problems.

An MDP is a tuple hS;A; T;R; i, where:

� S is the (possibly infinite) set of environment states. A common and convenient way
to describe states is using a factored description, defining state variables and building
states according to their values. An initial state distribution function S0 : S ! [0; 1]
defines the probability of starting in each state when the task restarts (i.e., a new
episode begins);

� A is the set of available actions to the agent;

� T : S � A � S ! [0; 1] is a stochastic state transition function, where the state is
transitioned to state s’ with a probability 0 � p � 1 when applying action a in state
s. We denote as s′ T (s; a) drawing a sample of next state from T ;

� R : S �A� S ! R is the reward function; and

� 2 [0; 1), is the discount factor, which represents the relative importance of future
and present rewards.

At each step, the reasoning agent observes the current state s 2 S. Then, it chooses an
action a among the applicable ones in s, causing a state transition s′ T (s; a). After each
action, the agent receives a reward signal r R(s; a; s′), that represents the quality of the
executed action towards the task solution. In learning problems, the functions T and R are
unknown to the agent, hence a proper actuation must be induced through the observation
of hs; a; s′; ri tuples, gathered through interactions with the environment. The goal of the
learning agent is to induce a policy � : S ! A, that maps an action to be applied in each
possible state.

A possible way to learn a good policy is by iteratively updating an estimate of action
qualities Q : S � A ! R after each interaction with the environment. Several algorithms
(e.g., Q-Learning) are proved to eventually learn the true Q function under non-restrictive
assumptions1:

Q∗(s; a) = E
s;a

[∞∑
k=0

krk

]
; (1)

1. The full proof for Q-Learning is available at (Watkins & Dayan, 1992). The main conditions are that:
(i) all state-action pairs are in�nitely visited; (ii) the rewards are bounded; (iii) a proper learning rate is
chosen.

648

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

where rk is the reward received after k steps from using action a in state s and following
the optimal policy on all subsequent steps, and is a discount factor that codifies the horizon
in which the rewards matter. Therefore, an optimal policy �∗ is one that maximizes the
expected sum of discounted rewards in every possible state. For the Q-Learning algorithm,
Q is updated after each applied action by:

Qk+1(sk; ak) (1� �)Qk(sk; ak) + �(rk + max
a

Qk(sk+1; a)); (2)

where rk = R(sk; ak; sk+1), 0 < � � 1 is the learning rate and is the discount factor.
After learning Q∗, the agent can use it to define an optimal policy:

�∗(s) = argmaxaQ
∗(s; a): (3)

Notice that MDPs take into account only one agent in the environment. Although it is
possible to ignore other agents to learn in a MAS as if it was a single-agent problem (Tan,
1993), the actions of one agent often have influence in the local state and/or reward of the
others. Thus, for most cases, coordination is desired.

2.2 Multiagent RL

MDPs are extended to MAS as Stochastic Games (SG) (Busoniu et al., 2008; Bowling
& Veloso, 2000). As more than one agent is now present in the environment, an SG is
composed of hS;U; T;R1:::n; i, where:

� n is the number of agents;

� S is the state space. Each state is composed of local states from each agent plus
a local state S0 for the environment (not related to any agent in particular): S =
S0 � S1 � � � � � Sn, hence full observability is usually assumed in this formulation;

� U is the joint action space, composed of local actions for all the agents in the MAS:
U = A1 � � � � � An. Depending on the problem to be solved, the actions of other
agents might be visible or not;

� T : S�U �S ! [0; 1] is the state transition function, which in MAS depends on joint
actions instead of local individual actions;

� Ri : S �U � S ! R is the reward function of agent i, which is now dependent on the
state and joint actions; and

� is the discount factor.

Since each agent has its own reward function, that is dependent on the other agents,
there is not a clear concept defining an optimal policy as in single-agent problems. Simply
applying the actions that maximize the local reward may be ineffective if the agents have
different reward functions, as one agent might (consciously or not) hamper the performance
of another.

Depending on the problem to be solved, the agents can learn as in an MDP ignoring
the others (Tan, 1993), try to learn an equilibrium joint policy (Hu, Gao, & An, 2015b,

649

Silva & Costa

2015a), or maximize a single common reward (Panait & Luke, 2005). If all agents share
a single reward R1 = � � � = Rn, it is possible to build a central controller that designates
actions to each agent by learning through samples of hs;u; s′; ri. However, this solution is
unfeasible for most domains because of the requirements in communication and the huge
state-action space for the learning problem. The Distributed Q-Learning algorithm (Lauer
& Riedmiller, 2000) was proposed to solve such problems in a more scalable way. Each
agent learns without observing the actions of the others. However, this algorithm is only
applicable in tasks with deterministic transition functions, which is rarely the case for
complex tasks.

Equilibrium-based approaches aim at solving the learning problem when agents might
have different rewards. For those algorithms, Q-table updates rely on the computation of
an equilibrium metric (Hu, Gao, & An, 2015c):

Qi
k+1(sk;uk) (1� �)Qi

k(sk;uk) + �(ri
k + Φi(sk+1)); (4)

where Qi
k+1 is a Q-table related to agent i, � is the learning rate, and Φi is the expected

equilibrium value in state sk+1 for agent i. Equation (4) requires the definition of an
equilibrium metric, such as the Nash Equilibrium (Hu & Wellman, 2003). Therefore, such
algorithms are closely related to the Game Theory area, from which efficient equilibrium
metrics can be extracted (Sodomka et al., 2013). The Learning with Opponent-Learning
Awareness (LOLA) (Foerster et al., 2018) algorithm follows a similar procedure. Assuming
that the other agents in the system are also learning, local policy updates are performed
already predicting the policy update of other agents.

Another popular setting is adversarial learning, where the agent has an opponent with
diametrically opposed goals. In this case, the optimal policy consists of selecting the action
that maximizes the reward supposing that the opponent selected the best action for itself
(that is, maximizing the minimum possible return of the actions). For that, the MinMax
Q-Learning algorithm (Littman, 1994) can be used, which updates the Q-table as:

Qk+1(sk; ak; ok) (1� �)Qk(sk; ak; ok) + �(rk + max
a

min
o

Qk(sk+1; a; o)); (5)

where ok is the action selected by the opponent at step k and o is an action that might be
selected by the opponent.

More recently, Lowe et al. (2017) proposed a method especially focused on coordination
of multiagent Deep RL problems. In their method, the agents are trained in a centralized
setting, where they learn value function estimates taking into account the actuation of
other agents. After the training phase, the agents are able to execute the learned policy
in a decentralized manner (i.e., using only local observations). Their method was able to
handle the non-stationarity of other agents in some problems and achieved convergence
where classical solutions failed.

In many MAS applications, each agent might be required to cooperate with a group of
agents, while competing against an opposing group. Equilibrium-based solutions are able
to generalize to this setting, but it is also possible to treat the opposing team as part of the
environment and learn only how to cooperate with teammates.

650

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

Although those solutions achieved successes, they all require a huge amount of inter-
actions with the environment for achieving a good performance, rendering them hard to
scale. Other recent approaches to learn in multiagent RL usually build upon the algorithms
discussed in this section to better deal with specific problems, such as non-stationarity
(Hernandez-Leal et al., 2017a), still maintaining their scalability problems.

Some models and strategies have been specifically proposed to improve in this direc-
tion. Dec-SIMDPs (Melo & Veloso, 2011) assume that agent interactions only matter in
specific parts of the state space, which means that agents must coordinate in a few states
contained in S. Agents act as in a single-agent MDP in the remaining states. CQ-Learning
(De Hauwere, Vrancx, & Nowé, 2010) uses the same idea, finding the states in which coordi-
nation is needed through a statistical test. Modeling the task with relational representations
is also possible to find commonalities and accelerate learning through abstraction of knowl-
edge (Croonenborghs et al., 2005; Silva et al., 2019).

However, one of the most successful strategies for accelerating learning is reusing pre-
vious knowledge. In the next section, we formalize and discuss how knowledge reuse is
applicable to RL agents.

2.3 Transfer Learning

Although learning a task from scratch using RL takes a very long time, reusing existent
knowledge may drastically accelerate learning and render complex tasks learnable. As
explained in Section 2.2, the learning problem consists of mapping a knowledge space K
to a policy � 2 H , where H is the space of possible policies that can be learned by
the agent algorithm A , A : K ! H (Lazaric, 2012). When learning from scratch, K
consists of samples of interactions with the environment. However, additional knowledge
sources might be available. One or more agents2 may be willing to provide further guidance
to the learning agent, such as providing demonstrations of how to solve the problem or
explicitly communicating models of the problem or environment. Therefore, the knowledge
space is often not only composed of samples from the current (target) task K target, but
also of knowledge derived from the solution of previous (source) tasks K source and from
communicating with or observing other agents K agents. Hence, in the general case K =
K target [K source [K agents.

In order to reuse knowledge, it is necessary to decide when, what, and how to store
knowledge into K and reuse it (Pan & Yang, 2010). Those three questions are hard
and long-studied research problems themselves, and there is no single solution valid for all
domains. Unprincipled transfer might cause the agent to reuse completely unrelated knowl-
edge, often hampering the learning process instead of accelerating it (known as negative
transfer). Therefore, the literature considered many ways to store and reuse (hopefully
only) useful information, following varied representations and assumptions.

In general, the main goal of reusing knowledge is to accelerate learning. Whether or not
a single-agent transfer algorithm learns faster than another is commonly evaluated through
several of the following performance metrics, summarized by Taylor and Stone (2009) and
illustrated in Figure 2.

2. Humans or automated agents (actuating or not in the environment) might be involved in knowledge
reuse relations.

651

Silva & Costa

Training time

P
er

fo
rm

a
n

ce

Time to threshold

Asymptotic
Performance

Jump Start

Figure 2: Illustration of transfer performance metrics.

� Jumpstart : Measures the improvement in the initial performance of the agent. Since
a transfer algorithm might reuse knowledge in K source, successful transfer procedures
might initiate learning in a higher performance than when learning from scratch.

� Asymptotic Performance: Agents might be unable to reach the optimal performance
in complex tasks, converging to a suboptimal policy. TL might help the agents to
reach a higher performance, improving their asymptotic performance.

� Total Reward : In most transfer settings (either when reusing K source, K agents, or
both of them), the transfer algorithm is expected to improve the total reward received
during training (i.e., the area under the curve of rewards received during the training
process).

� Transfer Ratio: The ratio between the total rewards received by the two algorithms
under comparison (e.g., with and without transfer).

� Time to Threshold : For domains in which the agents are expected to achieve a fixed
or minimal performance level, the learning time taken for achieving it might be used
as a performance metric.

While all those metrics are also generally applicable to MAS, other specific issues must
also be taken into account. Communication is a scarce resource in most multiagent applica-
tions. Therefore, the overhead in communication demanded by the transfer method cannot
be ignored, as well as the computational complexity and more subjective issues such as the
restrictions imposed by the assumptions of the transfer method. For example, if a transfer
learning method results in a small improvement in performance by the cost of requiring
a much higher communication complexity, could this method be considered as effective?
The trade-off of all those metrics is usually carefully analyzed in a domain-specific man-
ner. The development of better and more comprehensive transfer metrics, both single- and
multiagent, is currently an open subject for research (further discussed in Section 7.2).

652

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

We here categorize the main lines of research on Transfer Learning for MAS, discussing
representative proposals and their contributions to the area. In the next section, we describe
our proposed taxonomy and the dimensions of classification used in this survey.

3. Proposed Taxonomy

As explained in Section 2.3, TL relies on the reuse of previous knowledge, that can come
from various sources. Even though an agent could reuse knowledge from multiple sources
simultaneously, in practice the current methods usually focus on a single knowledge source.
Hence, we here propose to divide the current literature into two main groups in which we
can fit all the TL for MAS publications so far. The methods differ mainly in terms of the
knowledge source, availability, and required domain knowledge. We consider the following
types of transfer:

� Intra-Agent Transfer - Reuse of knowledge generated by the agent in new tasks or
domains. An Intra-Agent Transfer algorithm has to deal with: (i) Which task among
the solved ones is appropriate?; (ii) How are the source and target tasks related?; and
(iii) What to transfer from one task to another? The optimal answer for those three
questions is still undefined. Hence, in practice, usually only one of those aspects is
investigated at each time, which means that a real-world application would need to
consistently combine methods from several publications. We here characterize Intra-
Agent methods as the ones that do not require explicit communication for accessing
internal knowledge of the agents. For example, the procedure of transferring all data
from one robot to another similar physical body can be considered as an Intra-Agent
method. However, if this same information is shared with another agent with an
identical body, and this agent tries to merge the transferred knowledge with its own
experience, then this method qualifies as an Inter-Agent Transfer. The papers of
interest for this survey are the ones that are specialized to multiagent RL (that is,
assume that there is at least one opponent/teammate in the environment), or that
could be easily adapted for this purpose.

� Inter-Agent Transfer - Even though the literature on TL for single-agent RL is
more closely related to multiagent Intra-Agent Transfer methods, a growing body of
methods focuses on investigating how to best reuse knowledge received from com-
munication with another agent, which has different sensors and (possibly) internal
representations. The motivation for this type of transfer is clear: if some knowledge
is already available in another agent, why waste time relearning from scratch? How-
ever, defining when and how to transfer knowledge is not a trivial task, especially
if the agents follow different representations. Some methods focus on how to effec-
tively insert human knowledge in automated agents, while others on how to transfer
between automated agents. Nevertheless, comprehensive methods would treat any
agent equally regardless of their particularities. Some examples of algorithms within
this group are the ones derived from Imitation Learning, Learning from Demonstra-
tions, and Inverse Reinforcement Learning.

In addition to categorizing the papers, we also classify them in several dimensions,
according to their applicability, autonomy, and purpose.

653

Silva & Costa

The current literature does not offer a method capable of automatically performing all
the necessary steps to transfer knowledge in a MAS (both for intra- and inter-transfer). For
this reason, most methods focus on a specific subset of problems. Figure 3 illustrates how
we divide the literature. We use these groupings when discussing the published proposals,
and each of them will be explained in more detail in Sections 4 and 5.

TL for
Multiagent

RL

Intra-Agent
Transfer

Inter-Agent
Transfer

Adapting to Other Agents

Sparse Interactions

Relational Descriptions

Source Task Selection

Biases and Heuristics

Curriculum Learning

Action Advising

Human-focused

Reward Shaping and Biases

Imitation Learning

Learning from Demonstrations

Inverse RL

Figure 3: Illustration of our classification of the current literature on TL for multiagent RL.
Groups to the left are more general and contain the groups to the right.

Notice that the classification given here is not rigid, as many methods share properties
with more than one of the categories. Rather than giving a definitive categorization, we
here focus on grouping similar approaches to facilitate the analysis of the literature. We list
representative papers from recent years in all the surveyed research lines. We also include
older papers proposing ideas that are distinct from the recent lines on the literature and,
we believe, are not fully exhausted yet.

In the following subsections, we first discuss the nomenclatures used in this survey and
then explain all the considered dimensions for paper classification.

3.1 Nomenclatures

The literature on knowledge reuse has a myriad of terminologies for closely related concepts.
Sometimes, multiple terms have the same meaning or the same term is used inconsistently in
different publications. In order to avoid confusion, we here discuss our adopted terminology.
We do not aim at creating a standard jargon to be followed by the whole community, but
rather to make clear the distinctions and similarities between the discussed methods.

654

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

The literature refers to slightly different settings of the knowledge reuse problem under
different names. Transfer Learning (Taylor & Stone, 2009) is sometimes used to refer to
the problem of reusing knowledge across two or more predefined tasks (the target task has
as K source the knowledge gathered in previous tasks). Multi-task Learning (Fernández &
Veloso, 2006) consists of learning multiple tasks at the same time while exploiting similar-
ities between them to reduce the total learning time (K source is constantly refined with
knowledge from the other tasks). Lifelong Learning (Thrun & Mitchell, 1995) aims at con-
sistently reusing knowledge across several tasks that might be presented to the agent during
its lifespan (K source grows over time). Zero-Shot Learning (Isele et al., 2016) tries to reuse
knowledge across tasks without training in the target task (i.e., K target = ;). Learning
from Demonstrations (Argall et al., 2009) focuses on the transfer of knowledge between
agents through explicit communications (K agents contains demonstrations given by other
agents). Inverse Reinforcement Learning (Zhifei & Joo, 2012) consists of an agent trying
to learn a task without access to reward samples, and for that, it tries to estimate a reward
function, usually by one agent providing samples of a good policy to another agent. We
here use Transfer Learning referring to the general challenge of reusing, combining, and
adapting knowledge from different sources (agents and tasks).

Regarding the transfer of knowledge between agents, we here adopt the following nomen-
clatures (first the agent communicating knowledge then the agent receiving it):

� Advisor/Advisee: We use this terminology when one agent provides advice to another.
Here, the knowledge is transferred through explicit communication, but no assumption
is made regarding the internal representation or algorithm of other agents. Usually
the advisor observes the advisee’s state and provides information that is expected
to be useful in the current situation (e.g., action suggestions). The advising relation
might be initiated either by the advisee through a help request or by the advisor when
the advice is expected to be most useful. Optionally, advising might be initiated only
when both advisor and advisee agree on initiating the knowledge exchange.

� Teacher/Student : A teacher agent also transfers knowledge to a student through
explicit communication. However, here assumptions about the representation or al-
gorithm might be available. Therefore, more information might be possibly commu-
nicated, such as value function estimates, models, rules, or demonstrations of some
steps following the optimal policy. The received information might refer to the entire
state-action space, and not necessarily only to the current situation.

� Mentor/Observer : Here, an observer agent tries to imitate successful actuation per-
formed by a mentor agent. The mentor might be aware or not of the observer, but
no explicit communication happens. Therefore, the observer must use its own sensors
to implicitly extract knowledge by observing the mentor.

3.2 Learning Algorithm (LA)

As explained in Section 2, many MAS algorithms are specialized to a subset of problems
(for example, being applicable only to adversarial settings). As some TL methods are
associated with the base RL algorithm, they are susceptible to limitations determined by
the RL algorithm. We classify LA in one of the following categories:

655

Silva & Costa

� Self-Interested (S): Those agents apply single-agent RL algorithms taking into
account the local state and actions sets. The other agents and their influence are
considered as part of the environment dynamics.

� Equilibrium (E): Equilibrium-based RL algorithms seek for an equilibrium in the
reward functions, usually using game-theoretic approaches to solve the problem. Some
TL approaches are based on strategies to reduce the computation of equilibrium met-
rics, and thus are usable only with these base RL algorithms.

� Adversarial (A): Many RL algorithms are specialized to adversarial domains (com-
monly in a form of zero-sum games). Because of that, some methods have focused on
accelerating learning for such adversarial problems.

� Cooperative (C): Fully cooperative algorithms assume that all involved agents are
benevolent (that is, will never purposely hamper the performance of the system).
Therefore, all agents have a common goal. Although not valid for all applications,
cooperative algorithms have been broadly used for many problems, especially when
the MAS is built by a single owner.

3.3 Source Task Selection (ST)

When the agent already has a library of previous solutions and intends to reuse the gathered
knowledge in new tasks, a source task selection procedure must be carried out. Since
selecting unrelated source tasks may lead to negative transfer, choosing the correct source
task(s) is important to successfully reuse knowledge. The source task selection procedure
can be trivially carried out by relying on human intuition to manually select it. However,
autonomy is desired for many applications, and human intuition may be deceitful as human
“sensors” are different from the agent’s. We classify Intra-agent Transfer methods in one
of the following categories:

� Implicit (X) - The approach is only usable inside the same domain (e.g., same ac-
tion and state spaces with possibly varying goals). Therefore, the source task(s) are
commonly reused without concerns in regard to negative transfer.

� Human-Specified (Hs) - The agent considers that the source task is manually se-
lected and given as an input to the transfer method, hence a human user/designer is
required to perform source task selection.

� Human-Assisted (Ha) - A human provides some information to help estimate task
similarity (e.g. task parameters). The source task selection is then performed auto-
matically based on this information.

� Autonomous (A) - The agent estimates task similarity without additional informa-
tion, and autonomously select the most promising source task(s).

3.4 Mapping Autonomy (MA)

After the source task has been selected, the agent must estimate in which aspects one task
is similar to the other. For most applications, applying the entire policy from the source

656

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

task is either impossible (if the target task has a different state-action space) or will result
in a suboptimal actuation. In practice, it is usually more effective to reuse portions of
previous solutions but identifying in which aspects the two tasks differ is not a trivial task.
We classify the methods in regard to MA in:

� Implicit (X) - The approach is only usable for transfer in the same domain, hence
the mapping is straightforward.

� Human-Specified (Hs) - A human gives an explicit and detailed mapping relating
the two tasks.

� Human-Assisted (Ha) - A human provides some information to help with the map-
ping. Some examples of such information are relational descriptions or task parame-
terizations that might help to relate the tasks.

� Learned (L) - The agent creates an automatically generated mapping. This mapping
is usually created by estimating a model for each source task and comparing them to
a similar one in the target task.

3.5 Transferred Knowledge (TK)

Defining what to transfer from one task to another is not trivial. As the best transferable
information depends on the setting, there is not a single transfer method which is valid for
all situations. For example, if one agent transfers information to another and they have
different representations, transferring internal structures may be ineffective or impossible,
but if the system is composed of homogeneous agents, this same transfer method may be
effective. Due to the myriad of settings in which TL has been applied, several possible types
of knowledge transfer have been proposed. We classify surveyed proposals in the following
categories:

� Action Advice (Aa) - If a group of agents has a common understanding of ob-
servations and actions, it is possible for them to communicate action suggestions.
Usually, one advisee agent communicates its observations to an advisor, which can
communicate one action to be applied by the advisee in the environment.

� Value Functions (Vf) - If the agent applies a learning algorithm that uses estimates
of value functions to derive policies, it is possible to reuse these estimates across tasks
or communicate them to another agent. However, value functions are very specialized
for the current task and hard to adapt to similar (yet different) tasks.

� Reward Shaping (Rs) - Reward Shaping consists of modifying the reward signal
received from the environment using additional information to make it more informa-
tive to the agent. This information can be originated in a previous task or received
from another agent (e.g., another signal received from a human supervisor).

� Policy (�) - Task solutions might be transferred across tasks if they are similar
enough. Another alternative is to transfer portions of the policy (often called as
options, partial policies, or macroactions) to benefit from similarities on parts of the
tasks.

657

Silva & Costa

� Abstract Policy (�a) - If a relational description is available, an abstracted version
of the task solution might be transferred across tasks or between agents. Abstract
policies are more general and easier to adapt to possible differences between tasks.

� Rules (R) - In addition to being human-readable, rules are easily derived from expe-
rience by humans. For that reason, rules have been used to transfer knowledge from
humans to automated agents. However, autonomously adapting rules to new tasks is
not easy.

� Experiences (E) - As explained in Section 2.1, RL agents learn through samples of
hs; a; s′; ri tuples. Those samples can be directly transferred between agents or across
tasks. The agent might have to adapt those highly-specialized samples to another
task and/or set of sensors though.

� Models (M) - During learning, the agent can build models to predict the behavior
of other agents or characteristics of the task (such as transition and reward functions).
Those models can be reused in new tasks or transferred to other agents if they are
able to understand it.

� Heuristics (H) - Random exploration (e.g., �-greedy) is very common for RL agents.
However, if a heuristic is available, the agent can make use of it to perform a smarter
exploration. Heuristics have been extracted from other agents (most commonly hu-
mans) and from previous tasks.

� Action Set (A) - For problems in which a large number of actions is available,
learning the subset of relevant actions for a problem and transferring it to another
might be an interesting way to accelerate learning.

� Function Approximators (Fa) - Building an explicit table listing all possible qual-
ity values for the entire state-action state is often infeasible (and impossible if contin-
uous state variables exist). In this case, a function approximator is usually iteratively
refined after each interaction with the environment. They can also be later reused for
new tasks or communicated to other agents, but again they are highly-specialized for
the task at hand.

� Bias (B) - Instead of reusing the whole policy, the agent might bias the exploration
of actions selected by the optimal policy in a previous task. Biases are easier to forget
because they quickly lose influence if a bad action is selected.

� Curriculum (C) - For many complex tasks, it might be more efficient to divide the
complex task into several simpler ones. If appropriate task decomposition and order
are available, the agent might be able to learn faster by applying TL from the simpler
to the target task.

3.6 Allowed Differences (AD)

Assumptions must be made in regard to in which aspects one task may differ from the other.
While the simpler TL algorithms assume that the target task is a version of the source task

658

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

with a bigger state space, ideally the TL method should allow differences in any element of
the MDP/SG description and be able to identify in which aspects the two tasks are similar.
In practice, how to identify task similarities is still an open problem, hence we classify the
proposals in the following categories:

� Same Domain (S) - Assumes that the target and source tasks have roughly the same
difficulty and are in the same domain (for example, a navigation domain in which only
the goal destination can change).

� Progressive Difficulty (P) - Assumes that the target task is a harder version of
the source task in the same domain, usually with a bigger state-action space due to
the inclusion of new objects in the environment, but without significant changes in
the transition and reward functions.

� Similar Reward Function (Rf) - Assumes that the reward function remains con-
stant or that the optimal policy in the source task still achieves a reasonable perfor-
mance in the target task. Unlike in same domain, here the target task might have
a bigger state-action space, as well as different state variables or actions (possibly
requiring mappings).

� Any (A) - Any aspect of the task might possibly change. The agent must au-
tonomously assess the similarities and discard the source tasks that would result in a
negative transfer.

Table 1 summarizes all the abbreviations to be used hereafter.

Table 1: Quick-Reference legend for abbreviations used in Tables 2, 3, and 4.

Learning Algorithm (LA) Source Task Selection (ST) Mapping Autonomy (MA)
S: Self-Interested X : Implicit X : Implicit
E : Equilibrium Hs: Human-Specified Hs: Human-Specified
A: Adversarial Ha: Human-Assisted Ha: Human-Assisted
C: Cooperative A: Autonomous L: Learned

Transferred Knowledge (TK) Allowed Differences (AD)
Aa: Action Advice Vf : Value Functions S: Same Domain
Rs: Reward Shaping �: Policies P: Progressive Difficulty
�a: Abstract Policies R: Rules Rf : Sim. Reward Func.
E : Experiences M: Models A: Any
H: Heuristics A: Action Sets
B: Biases Fa Function Approximators
C: Curricula

4. Intra-Agent Transfer Methods

In this section we survey Intra-Agent transfer methods. Table 2 summarizes the main
discussed publications. As discussed in Section 1.1, our definition of MAS included systems

659

Silva & Costa

in which an agent (possibly human) is communicating with the learner and influencing
its learning process, even if this agent is not directly actuating in the environment. For
readers interested only in the case where multiple agents are simultaneously applying actions
in the environment, we mark with � the publications that have only one agent directly
changing the environment in their experimental evaluation. Notice though that many of
their proposals are directly applicable in MAS or would need straightforward adaptations.
In the next subsections, we group proposals by their main contributions and, for all the
groups discussed, we provide an overview of the current literature followed by a detailed
description of the representative proposals.

4.1 Adapting to Other Agents

Learning in MAS requires acquiring the ability to coordinate with (or adapt against) other
agents. Depending on the task to be solved, agents might have to collaborate with team-
mates following unknown (and possibly adaptable) strategies, or the environment might
allow additions or substitutions of agents at any time (Stone et al., 2010). Nonetheless,
the agent still has to cope with the diversity of strategies assumed by other agents and
learn how to coordinate with each of them. Therefore, some TL methods focus on reusing
experience for learning how to coordinate with new agents faster. In this section, we dis-
cuss representative methods on how previous knowledge can be leveraged for accelerating
coordination with other agents.

As shown in Table 2, this group of methods usually assumes that the source task selection
is implicit. Very rarely (as in the case of (Kelly & Heywood, 2015)), the agent is able to
adapt to new tasks, but they are still assumed to be very similar to previous tasks. The
main reason for that is the difficulty of the current literature on identifying when and how
the strategy of other agents changed, which makes unfeasible to simultaneously account
for significant changes in the task. All types of learning algorithms have been explored by
this group of methods, and the most common transfer procedure is the reuse of policies for
adapting to new agents in the MAS.

Banerjee et al. (2007) propose a TL method to reuse knowledge between similar General
Game Playing tasks. The agent builds trees relating game-independent features to possible
game outcomes. Those trees can then be used to match portions of the state space in the
source and target tasks, enabling the reuse of value functions. Their procedure achieved
good results when reusing knowledge between crossing-board games, but it is applicable in
quite restrictive situations, as the method is only employable when the opponent follows a
non-adaptive and fixed policy for all games. In addition, the human designer is responsible
for ensuring that the game’s features are applicable and have the same semantic meaning
in all games.

Barrett and Stone (2015) deal with the challenge of adapting the actuation of a learning
agent to different configurations of teams (Stone et al., 2010). Their method assumes that a
set of good policies is available to the agent, which must choose the most appropriate one to
cooperate with an (initially) unknown team. For that, a set of beliefs is stored and iteratively
updated to predict the expected loss of applying each of the policies according to the profile
of the current team. Those beliefs are then used to select the most appropriate policy, and

660

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

Table 2: Summary of main recent trends of Intra-Agent Transfer methods. We follow
the symbols introduced in Section 3 and compiled in Table 1 for quick reference. The
publications are presented in chronological order within their group. Papers denoted with
∗ consider settings where only one agent is directly affecting the environment.

Reference LA ST MA TK AD

Adapting to Other Agents (Section 4.1)

(Banerjee & Stone, 2007) A X Hh Vf Rf

(Barrett & Stone, 2015) C;A X L � S
(Kelly & Heywood, 2015) S Hs Hs � Rf

(Hernandez-Leal & Kaisers, 2017) all X Hs � S
Sparse Interaction Algorithms (Section 4.2)

(Vrancx, Hauwere, & Nowé, 2011) E ;A; C X X R P
(Hu et al., 2015b) E X L Vf S
(Zhou et al., 2016) E X Hs Vf P

Relational Descriptions (Section 4.3)

(Proper & Tadepalli, 2009) C X Ha Fa P
(Koga et al., 2013)∗ S X Ha �a S
(Freire & Costa, 2015)∗ S Hs Ha �a S
(Koga, da Silva, & Costa, 2015)∗ S X Ha �a S
(Silva & Costa, 2017b)∗ S Hs Ha Vf Rf

Source Task Selection (Section 4.4)

(Sinapov et al., 2015)∗ all Ha Ha all S
(Isele et al., 2016)∗ S Ha Ha � S
(Braylan & Miikkulainen, 2016) N/A A Ha N/A A

Curriculum Learning (Section 4.5)

(Madden & Howley, 2004) all Hs Ha R P
(Narvekar et al., 2016) all Hs Hs Vf P
(Svetlik et al., 2017)∗ all Hs Hs Rs P
(Narvekar, Sinapov, & Stone, 2017)∗ all Hs Hs Vf P
(Florensa et al., 2017)∗ S X Hs M P
(Silva & Costa, 2018) all Ha Ha Vf P

Biases and Heuristics (Section 4.6)

(Bianchi, Ros, & de Mantaras, 2009) S;A; C Ha Ha H S
(Boutsioukis, Partalas, & Vlahavas, 2011) C Hs Hs B Rf

(Didi & Nitschke, 2016) all Hs Hs � S
Others (Section 4.7)

(Sherstov & Stone, 2005)∗ S;A; C Hs Hs A Rf

(Konidaris & Barto, 2006)∗ all Hs Ha Rs Rf

(de Cote, Garcia, & Morales, 2016)∗ S Hs Hs M S
(Chalmers et al., 2017)∗ S Hs Ha M S

661

Silva & Costa

they may change over time if a bad policy is selected. In this paper, the possibility of still
improving the initial policy to adapt to the new team is not considered.

Hernandez-Leal et al. (2017b) propose the DriftER method to detect autonomously
when an opponent changes its strategy in an adversarial setting. For that, a model of
the opponent is learned and used for computing the optimal policy against it. Then, the
agent keeps track of the quality of predictions. In case the prediction quality is degraded
suddenly, it means that the opponent changed its strategy, that is, the agent must recom-
pute the models. A clear way for integrating TL in their method would be reusing past
policies for new opponents with similar profiles, which they do not perform in this paper.
For that, Leal’s later work could be used (Hernandez-Leal & Kaisers, 2017). They reuse
past knowledge by first learning a policy when collaborating or competing with one agent,
and then reuse this knowledge when interacting with other agents. Although they refer
to “opponents” in the paper, the idea can also be used in cooperative or self-interested
scenarios, as the optimal policy depends on the actuation of other agents in most of MAS.
Their framework assumes that the other agents in the system follow a fixed policy, hence
learning how to quickly adapt to learning agents with unknown strategy/learning algorithm
can be a fertile ground for future work. Moreover, different ways of modeling other agents
could be explored (Albrecht & Stone, 2018).

Kelly and Heywood (2015) propose a different approach to adapt previously learned
policies to a new task. Several policies are learned by a genetic programming algorithm,
and each policy is represented by a network of value estimators which individually predict
the quality of each action for the current state. Then, those learned policies are transferred
to a new task, forming a hierarchical structure that will learn when to “trigger” one of
the past policies. Although their proposal is originally intended to self-interested agents,
their idea could be merged with DriftER, building a hierarchical tree of strategies and
identifying when each of the strategies should be used against the current opponent/team.
However, their proposal still relies on a hand-coded mapping of state variables and seems
to be ineffective to deal with negative transfer.

4.2 Sparse Interactions Algorithms

For some tasks, the actuation of other agents affects the local agent only in a portion of
the state space. Thus, it is safe to learn as in a single-agent problem when the actions of
other agents do not matter, considerably pruning the joint action space. In this section, we
discuss TL techniques specially tailored for this setting.

As seen in Table 2, this type of TL has been popular for accelerating equilibrium al-
gorithms, which are especially benefited from reducing the size of the space in which the
equilibrium metric has to be computed. Most of the literature so far has been using these
algorithms with the assumption of an implicit source task selection, but we believe that it
would be possible to transfer information about sparse interactions if those algorithms are
integrated with source task selectors. The most commonly transferred information is value
functions, but some of the methods transfer rules defining when the actions of other agents
are expected to be irrelevant for defining the optimal policy.

Vrancx et al. (2011) propose to learn when the actions of other agents in the environ-
ment can affect the reward of the local agent in an easy version of the target task, so as

662

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

to transfer rules defining “dangerous” states in which other agents should be taken into
account. Some dangerous states are found through statistical tests, and a rule classifier is
trained to generalize the identification of those states. Then, the rules are transferred to
the target task. No information regarding the policy or value function is transferred.

Hu et al. (2015b) learn a single-agent task and introduce new agents that can potentially
have influence in the local reward. Then, a model of the transition function in the single-
agent task is compared to the multiagent one, and the value function is reused in the states
in which the local reward function is not dependent on the other agents’ actions.

Zhou et al. (2016) propose a similar approach that learns an equilibrium policy only
in the dangerous states, following a single-agent policy in the rest of the state space. The
convergence to the equilibrium is accelerated by combining the Q-values from a similar
situation in the learned single-agent Q-table with Q-values from a simpler version of the
multiagent task, manually selected by the designer.

4.3 Relational Descriptions

The use of relational descriptions in RL is known to accelerate and simplify learning by
generalizing commonalities between states (Kersting, van Otterlo, & Raedt, 2004; Diuk,
Cohen, & Littman, 2008). For that reason, relations between objects might also help to
find similarities or to perform mappings between tasks. In this section, we discuss methods
that made use of relational descriptions to transfer knowledge.

Table 2 clearly reflects that the main reason for using relational descriptions is for being
able to apply human-assisted mapping autonomy. The use of relational descriptions also
enables the construction of abstract policies, which generalize the knowledge obtained and
might help to avoid negative transfer. Most of the surveyed methods use self-interested
learning algorithms, but multiagent relational descriptions could be used for compatibility
with other learning algorithms.

Koga et al. (2013) propose to simultaneously learn a concrete and an abstract policy
using a relational task description. At first, the abstract policy is used to achieve a rea-
sonable actuation faster, and after a good concrete policy is learned the agent switches to
the concrete reasoning. Their proposal could be useful to MAS, especially for abstracting
interactions between agents, first dealing with a new agent using a general abstract policy
and later building a specialized strategy for cooperating with that agent in the concrete
level. Freire and Costa (2015) later showed that the learned abstract policies could also be
successfully reused through tasks with promising results for TL.

Koga et al’s later work (2015) proposes to combine multiple concrete policies learned in
source tasks into a single abstract one. They show that using a single combined abstract
policy is better than building a library of policies. Although their proposal is evaluated
in single-agent scenarios, it could be applied to MAS if a multiagent relational task de-
scription is used such as Multiagent OO-MDP (Silva et al., 2019) or Multiagent RMDP
(Croonenborghs et al., 2005).

Silva and Costa (2017b) propose a method for autonomously computing a mapping for
transferring value functions across tasks based on an object-oriented task description. The
required description is intuitive to give and could be easily adaptable to cope with the
multiagent case (each type of agent could be a class as in Multiagent OO-MDPs).

663

Silva & Costa

Proper and Tadepalli (2009) also make use of a relational representation to transfer
knowledge between tasks. In their proposal (specialized for MAS), a group of agents is
assigned to solve collaboratively a subtask, while ignoring all agents assigned to different
subtasks. After learning small tasks composed of small groups of agents, this knowledge
can be reused to solve assignments of harder tasks containing more agents. The knowledge
transfer is performed by copying the weights of function approximators based on relational
descriptions to bootstrap the learning process for new assignments.

4.4 Source Task Selection

Before transferring knowledge between tasks, the first step is to select which of the previous
solutions will be reused. The selection of source tasks is a very challenging problem, as
the agent does not have information on the dynamics of the environment beforehand for
computing task similarities. In this section, we discuss approaches for source task selection.

Table 2 shows that source task selection has been largely relying on human-assisted
mappings so far. The tasks are also expected to have common state-action spaces or to
share manually defined task features. Source task selectors are commonly not integrated
with knowledge transfer procedures.

Sinapov et al. (2015) propose to train a regression algorithm to predict the quality of
transfer between tasks within the same domain. The regression is made possible by designer-
specified task features, which indicate what changes from one task to another. When a new
task is given to the agent, a transfer quality is predicted according to the previously defined
task features, and a ranking of source tasks is built, which can be used for transfer through
any Intra-Agent method. This approach allowed an appropriate autonomous source task
selection without samples of interactions in the target task. However, a human must define
appropriate and observable task features. This approach could be directly applied to MAS.

Isele et al. (2016) also rely on similar task features to reuse previously learned tasks
in the same domain. When the agent must solve a new task, an initial policy is estimated
according to the current value of the task features, and then the initial policy can be itera-
tively refined. Unlike Sinapov’s proposal, their algorithm takes into account the advantages
of transferring from consecutive tasks and has constant computational complexity in regard
to the number of source policies.

Without assuming that the parameterization of the current task is known, Braylan and
Mikkulainen (2016) evaluate the policies in the library to select the top performers in the
new task and then build an ensemble of source tasks to be used and refined in the target
tasks. Although their method was applied only to state transition function estimation,
similar ideas could also be used for reusing additional knowledge.

The proposal by Fitzgerald et al. (2016) can also collaborate with insights for estimating
a mapping across two tasks (even though they did not directly apply their method to
RL). Their method consists of observing demonstrations from a human teacher, and those
observations are used for refining a mapping function that relates objects in the source and
target tasks. Therefore, their method could inspire mapping procedures based on relational
descriptions of MDPs.

664

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

4.5 Curriculum Learning

Table 2 shows that the main characteristic of this group of methods is transferring knowledge
across progressively harder tasks. The main focus is usually on how to define task sequences,
rather than on how to reuse the knowledge.

Narvekar et al. (2016) borrowed the idea of building a Curriculum from the Supervised
Learning area (Bengio et al., 2009). Their main idea is to learn a complex task faster by
building a sequence of easier tasks within the same domain and reusing the gathered knowl-
edge across tasks. For that, the designer provides to the agent an environment simulator,
that can be freely modified by varying some feature values, and heuristics to guide the
agent on how the simulator parameters should be changed to simplify the task. The au-
thors showed that the use of a curriculum can expressively accelerate the learning process.
However, in complex tasks, we would have only imprecise simulators to build a curriculum
from, especially for MAS in which the policies of the other agents in the system are un-
known. Even though it is not clear if the proposal could cope with imprecise simulators,
this is nonetheless a very interesting topic for further investigations.

Svetlik et al. (2017) extend the initial approaches by building a directed acyclic graph
and pruning some source tasks that are not expected to help the learning agent according
to a transfer potential heuristic. Moreover, such a graph allows the identification of cur-
riculum source tasks that can be learned in parallel, which in theory could enable dividing
the learning process of the curriculum among several agents (that can combine gathered
knowledge using any Inter-Agent transfer method). Silva and Costa (2018) later extended
Svetlik’s proposal by generating the Curriculum based on an object-oriented description,
which could represent a further step towards multiagent Curricula.

Narvekar et al. (2017) extended their initial work to autonomously generate a Cur-
riculum. Their idea is to build a Curriculum MDP to infer an appropriate task sequence
in a customized manner (i.e., taking into account differences in regard to agent sensors or
actuators).

Florensa et al. (2017) propose to change the initial state distribution to move the task
initialization closer to the goal, which causes the agent to receive rewards more quickly, and
then progressively start the task farther to the goal to explore the whole environment more
efficiently. Although their proposal works in a restrictive setting, this idea could be used
for building Curricula in cooperative MAS, as the agents could, for example, coordinate for
starting learning in an initial formation for which the agents do not have much information
about.

Madden and Howley (2004) had an earlier idea very similar to Curriculum Learning,
where knowledge is progressively transferred from simple to more complex tasks. After
learning a task, the agent builds a training set composed of abstracted states (computed
through a relational task description defined by the designer) to predict the action suggested
by the learned policies. This dataset is then used to train a supervised learning algorithm
that learns rules for defining actions for each state. When starting the learning process in
a new task, the rules are used for estimating actions in unexplored states. Their method
considers the possibility of aggregating rules estimated from several tasks and given by
humans. However, their procedure does not cope with inconsistent rules.

665

Silva & Costa

4.6 Biases and Heuristics

When learning from scratch, agents must rely on random exploration for gathering knowl-
edge about the environment and task. However, previous knowledge can be used for guiding
the exploration of a new task, hopefully increasing the effectiveness of exploration. Biases
and Heuristics (Bianchi et al., 2015) are two successful ways for guiding exploration. In this
section, we discuss multiagent variants of those approaches.

Bianchi et al. (2009) propose to build heuristics for supporting the exploration of the
environment from a case base built from previously solved tasks. Cases similar to the target
task are selected through a similarity function, then the value functions of the previous tasks
are transformed into heuristics for exploration. Their proposal accelerates learning and is
applicable to multiagent tasks, but the similarity functions required for comparing the
tasks demand significant domain knowledge. Therefore, one option for future work could
be defining better ways for retrieving tasks from the knowledge base.

Boutsioukis et al. (2011) use a human-specified inter-task mapping to relate the state-
action space between tasks. This mapping can then be used to initialize the new policy by
biasing it towards the best actions in the source task. This strategy was implemented by
introducing a small bias value in the Q-values of the action with the highest value function
in the source task, prioritizing those actions during the learning process. The advantage of
using the bias value is that, in case an incorrect mapping is given, bias values are easy to
forget. However, their proposal requires a very detailed human-coded mapping, which is
often unavailable for complex tasks.

Didi and Nitschke (2016) propose to adapt a policy from a previous task to improve
the optimization of the NEAT (Stanley & Miikkulainen, 2002) algorithm in the target task.
This algorithm codifies the agent policy through a neural network, that has its topology
and weights optimized through interactions with the environment. Their method achieved
good results in the challenging Keepaway domain but is very reliant on a human to define
parameters and mappings between the tasks. Therefore, defining a more autonomous way
to transfer NEAT-learned policies could be a promising line for further work.

4.7 Others

We here discuss additional methods and ideas that could be potentially useful for MAS but
have not been fully explored yet.

Sherstov and Stone (2005) propose a method for identifying a subset of relevant actions
in a source task and transferring it to a similar target task. In domains in which the number
of available actions is large, properly reducing the number of actions that are considered
for exploration presents a huge speed up in the learning process. Although their proposal
is intended to single-agent problems, it could be easily adapted to work in MAS problems.
Reducing the number of actions to be explored could be especially interesting for proposals
that learn over joint action spaces, which are exponential in function of the number of
agents.

Konidaris and Barto (2006) propose to learn a value function in the problem-space (the
regular MDP) while also learning an estimate of the value function in the agent-space3.
The learned function in the agent-space is then reused to define a reward shaping, showed

3. a portion of the state variables that is always present in any task.

666

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

to accelerate learning in their paper. Although specialized for single-agent problems, their
proposal could inspire the transfer of learned reward shaping functions between agents, for
which the main challenge would be to adapt the function to another agent with a possibly
different agent-space.

Chalmers et al. (2017) also take advantage of the separation of the agent-space for
transferring models that predict consequences of actions. Based on sensors that do not
change across tasks, a prediction based on agent-centric information is generated and used
for bootstrapping learning if it is estimated to be reliable. The authors report significant
speed up in simple tasks, and their idea could be reused for transferring models across tasks
for predicting the consequences of joint actions.

de Cote et al. (2016) propose a TL method especially tailored for continuous domains.
The state transition function is approximated in the source task through a Gaussian process.
This model is then transferred to the target task, in which some preliminary episodes are
executed and a similar model is estimated. Those two models are compared and a new model
is generated for regressing the difference between the two tasks. Finally, samples from the
source tasks are transformed by using this model, and they are used for bootstrapping
learning in the new task. Even though not specialized for MAS in the original proposal,
their idea could be reused to quickly adapt to new teammates/opponents by transforming
previously observed instances.

5. Inter-Agent Transfer Methods

In this section, we discuss the main lines of research for Inter-Agent methods, which repre-
sent the majority of TL techniques for MAS. Tan (1993) presented a comprehensive investi-
gation of simple transfer methods applied to cooperative tasks before the Transfer Learning
term became widely used. His investigation concluded that agents sharing: (i) sensations;
(ii) successful episodes; and (iii) learned policies; learn faster than agents individually try-
ing to solve a task. However, all those methods have a very high cost of communication to
achieve a speed up. Therefore, more recent transfer procedures try to solve problems with
limited communication.

Tables 3 and 4 depict proposals that represent current research lines. Notice that those
proposals assume that all tasks are in the same domain. As the focus in those methods is
to extract knowledge from communication with other agents, assuming that this knowledge
is specific for a single domain is reasonable for most purposes. For this same reason, most
of the literature of Inter-Agent Transfer does not perform source task selection and assume
that a trivial mapping of the communicated knowledge is enough. We discuss each group
in the next sections.

5.1 Action Advising

Action Advising is one of the most flexible TL methods. Assuming that the agents have a
common understanding of the action set and a protocol for communicating information, one
agent might provide action suggestions for another even when the internal implementation
of other agents is unknown. In this section, we discuss the main current lines of research
on Action Advising.

667

Silva & Costa

Table 3: Summary of main recent trends of Inter-Agent Transfer methods. We follow the
symbols introduced in Section 3 and compiled in Table 1 for quick reference. Publications
are presented in chronological order within their group. Papers denoted with ∗ consider
settings where only one agent is directly affecting the environment. For all papers AD= S.

Reference LA ST MA TK

Action Advising (Section 5.1)

(Griffith et al., 2013)∗ S;A; C X X Aa

(Torrey & Taylor, 2013)∗ C X X Aa

(Zhan, Bou-Ammar, & Taylor, 2016)∗ C X X Aa

(Amir et al., 2016) C X X Aa

(Silva et al., 2017) S; E ; C X X Aa

(Fachantidis, Taylor, & Vlahavas, 2018)∗ C X X Aa

(Omidshafiei et al., 2018) C X X Aa

Human-focused Transfer (Section 5.2)

(Maclin, Shavlik, & Kaelbling, 1996) S;A; C X X R
(Knox & Stone, 2009)∗ all X X Rs

(Judah et al., 2010) S;A; C X X Aa

(Peng et al., 2016a)∗ S X X Rs

(Abel et al., 2016)∗ all X X Aa

(MacGlashan et al., 2017)∗ S X X Rs

(Krening et al., 2017)∗ all X X R
(Rosenfeld, Taylor, & Kraus, 2017) all X Hs Fa

(Mandel et al., 2017)∗ all X X Aa

Reward Shaping and Heuristics (Section 5.3)

(Wiewiora, Cottrell, & Elkan, 2003)∗ all X X Rs

(Perico & Bianchi, 2013)∗ all X X H
(Devlin et al., 2014) C X X Rs

(Bianchi et al., 2014) A X X H
(Suay et al., 2016)∗ S X X Rs

(Gupta et al., 2017a)∗ S X L Rs

Learning from Demonstrations (Section 5.4)

(Schaal, 1997)∗ S X X E
(Kolter, Abbeel, & Ng, 2008)∗ all X X E
(Chernova & Veloso, 2009)∗ S;A; C X X Aa

(Walsh, Hewlett, & Morrison, 2011)∗ all Hs Hs �

(Judah et al., 2014) S;A; C X X Aa

(Brys et al., 2015)∗ S X X E
(Wang et al., 2016)∗ S Hs Hs E
(Subramanian, Isbell Jr, & Thomaz, 2016)∗ S;A; C X X E
(Wang & Taylor, 2017) all X X E
(Tamassia et al., 2017) S;A; C X X E
(Banerjee & Taylor, 2018) C X X E

668

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

Table 4: Summary of main recent trends of Inter-Agent Transfer methods. Second part of
Table 3.

Reference LA ST MA TK

Imitation (Section 5.5)

(Price & Boutilier, 2003) S X X M
(Shon, Verma, & Rao, 2007) S X X M
(Sakato, Ozeki, & Oka, 2014) S X X �

(Le, Yue, & Carr, 2017) C X X E
Curriculum Learning (Section 5.6)

(Peng et al., 2016b)∗ all X Hs C
(Mattisen et al., 2017)∗ S A X C
(Sukhbaatar et al., 2018) S A X C

Inverse Reinforcement Learning (Section 5.7)

(Lopes, Melo, & Montesano, 2009)∗ S X X A
(Natarajan et al., 2010) C X X E
(Reddy et al., 2012) E X X E
(Lin, Beling, & Cogill, 2018) A X X R
(Cui & Niekum, 2018)∗ S X X E

Transfer in Deep Reinforcement Learning (Section 5.8)

(Foerster et al., 2016) C X X M
(Sukhbaatar et al., 2016) C X X M
(Devin et al., 2017)∗ S Hs Hs Fa

(de la Cruz et al., 2017)∗ S X X E
(Omidshafiei et al., 2017) S; C X X E

Scaling Learning to Complex Problems (Section 5.9)

(Taylor et al., 2014a) C X X Vf

(Kono et al., 2014) all X Ha Vf

(Xiong et al., 2018) S X X R

Griffith et al. (2013) propose to receive feedback from a human advisor indicating if
the advisee selected a good action or not. This feedback is not assumed to be perfect, and
thus the communicated information is combined with exploration for accelerating learning
without preventing learning in case of inconsistent feedback. The authors showed good
performance by evaluating the method with a “simulated human”. Cederborg et al. (2015)
further evaluated Griffith’s proposal with human laypeople, and concluded that not only
human feedback is useful for learning, but the silence of the advisor when observing the
advisee might be interpreted to extract additional training information.

Torrey and Taylor (2013) propose the Teacher-Student framework4 aiming at accelerat-
ing the learning process by receiving advice constrained by limited communication. Their
framework also takes into account that the agents may use different internal representations
(Taylor et al., 2014b), which means that this framework is usable both for transfer from/to

4. Note that, despite the original nomenclature, their method �ts better in our advisor-advisee category.

669

Silva & Costa

humans and automated agents. Assuming that an advisor is willing to provide action sug-
gestions to an advisee, they show that it is possible to significantly accelerate learning while
constraining communication.

Zhan et al. (2016) extend the Teacher-Student framework by receiving action sugges-
tions from multiple advisors, instead of a single one. Combining multiple advice allowed the
advisee to avoid bad advice in some situations. Moreover, they also modeled the possibility
of refusing to follow advice if the advisee’s performance surpasses the advisor ’s. All teachers
are still assumed to perform the task at a moderate level of expertise and to follow fixed
policies, though.

Amir et al. (2016) focused on making this same framework more human-friendly and
proposed the jointly-initiated Teacher-Student framework, which accelerates learning while
requiring less time observing the advisee to provide action suggestions. In their proposal,
the advisee asks for help when unsure of what to do, and then the human advisor provides
suggestions only if he/she judges that the current state is an important one to provide
advice.

Silva et al. (2017) further extended the Teacher-Student framework by relaxing the
need of expert advisors. In their proposal (termed Ad Hoc Advising), agents can advise
each other in a MAS composed of simultaneously learning agents. When unsure of what
to do, a prospective advisee might broadcast an advice requirement, which is answered by
advisors that have a better policy for the current state. All agents in the environment might
assume both roles.

Fachantidis et al. (2018) noticed that the value function of the advisor (used in pre-
vious versions of this framework) is not always a good guide for selecting the action to be
suggested, since the advisee will not follow the advisor ’s policy for a long time, and thus the
horizon (i.e., the discount factor) used to compute the policy might not be valid anymore.
They showed that only the performance on solving the task is not enough to choose the
best advised action, and proposed a method to learn how to give advice, solving an MDP
which aims to make the advisee learn as fast as possible. Zimmer et al.’s (2014) proposal
can be considered as a precursor of their method, as they had proposed to build an MDP
for learning how to advise before.

Recently, Omidshafiei et al. (2018) proposed a more sophisticated method to learn when
and how to give advice by combining the ideas of those methods and Ad Hoc Advising. In
their formulation, all agents learn three policies. The first one learns normally how to
solve the task, while the other two learn when to ask for advice and when to give advice.
The rewards for improving the advising policies are extracted from metrics estimating the
acceleration in the learning process induced by the given advice, and their approach is able
to learn how to provide advice even when the actions have different semantic meanings
across agents. Despite the promising initial results, it is still an open question whether
their method also accelerate learning in complex learning problems.

5.2 Human-focused Transfer

Although RL algorithms are somewhat based on how autonomous learning is carried out
by animals (including humans), actual RL implementations are still very different from
the reasoning process of an adult human. Differences on internal representations and how

670

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

humans and automated agents perceive and interact with the environment impose some
obstacles for “transferring” human expertise to an RL agent. Nevertheless, properly receiv-
ing guidance and instructions from humans will be required in a world in which machines
are integrated into our professional or domestic environments. Moreover, different transfer
procedures are usable according to the human technical background. For example, AI ex-
perts might be able to design informative reward shapings or rules, while a layperson would
probably only be able to give simple instructions, often in a language hard to translate to
a machine. Therefore, properly leveraging knowledge from a human is not trivial, and in
this subsection, we discuss the main current approaches on this line. Notice in Table 3 that
diverse information might be transferred from a human to an automated agent, and each
method tries to make better use of the costly feedback that a human can give to the agent.

Maclin et al. (1996) proposed an early approach to receive human advice in RL. The
teacher provides advice about actions to take and not to take in certain situations by using
a domain-specific language. Then, the instructions are transformed into rules that are
later integrated into a neural network that represents the student policy. However, their
approach requires significant domain knowledge and that the human learns the domain-
specific language.

Knox et al. (2009) propose the TAMER method to train autonomous agents through
human guidance instead of following the environment reward. The human observes the
agent actuation and may provide real-time qualitative feedback such as pressing buttons that
mean good and bad. The agent then learns how to optimize the human shaping reinforcement
instead of the reward function. In the authors’ experiments, TAMER achieved a good-
quality policy with a minimal number of training episodes. However, as the student ignores
the environment reward, the learned policy does not improve after the human stops giving
feedback.

Judah et al. (2010) divide the learning process into critique and practice stages. While
in the former the teacher provides demonstrations by scrolling back the last explored states
and labeling actions as good or bad, in the latter the student explores the environment
and learns a policy like in regular RL. The final policy is then defined by maximizing the
probability of executing good actions while minimizing the probability of executing bad
actions. Their approach was validated with real humans and presented promising results.

Peng et al. (2016a) propose adjusting the velocity of actuation to better guide a human
observer over when his or her assistance is most needed (i.e., in what portions of the state-
action space there is more uncertainty). When the agent has greater confidence in its policy,
the time interval between actions is lower than when confidence is low. The authors have
shown that this procedure helps to make better use of limited human feedback, but it is
only applicable in environments in which the speed of actuation can be controlled (and in
which this does not affect the optimal policy).

Abel et al. (2016) study how to include a human without knowledge about the student
reasoning process into the learning loop. This is done by observing its actuation at every
step. When the student is about to perform a dangerous action, the human teacher per-
forms a halt operation and introduces a negative reward. The student is then expected to
avoid executing undesired actions if it is able to generalize this knowledge to future similar
situations.

671

Silva & Costa

MacGlashan et al. (2017) propose another method that relies on human feedback to
accelerate learning. In their method, the human provides policy-dependent human feedback
(i.e., the feedback informs how much an action improves the performance of the current
policy). As human feedback is often unconsciously based on the observer’s performance
rather than just on the current selected action, they have shown improvements in a simulated
discrete gridworld task and in a real-time robotic task.

Krening et al. (2017) try to facilitate human participation in the learning process of
an RL agent. They propose to receive advice through natural language explanations and
translate it to object-oriented advice through sentiment analysis. The result of this proce-
dure is a set of advice that induces the student to interact with objects in the environment
in a given way and can be used together with object-oriented RL algorithms (Cobo, Isbell,
& Thomaz, 2013; Silva et al., 2019). They show that natural language advice can present
a better performance than regular learning while facilitating the inclusion of laypeople in
the agent training process.

Rosenfeld et al. (2017) propose a method for reusing knowledge from humans with
technical knowledge on programming and general AI, but without expertise on RL. The
human defines a metric that estimates similarities between state-action pairs in the problem
space. Although working towards an important challenge of reusing knowledge of non-
expert humans, their proposal still requires manual definitions that require expertise in
programming, and are probably hard to estimate through simple outputs that could be
given by laypeople.

Mandel et al. (2017) propose a different setting for action advising (mainly discussed in
Section 5.1). Instead of receiving suggestions of actions to be applied in the environment,
the advisee starts with a minimal set of actions that can be chosen for each state. Then,
the advisee selects a state for which the available action set is expected to be insufficient,
and the advisor selects an action to be added to the action set. Mandel focuses on having
humans as advisors (in spite of evaluating the method with automated agents) and his main
goal is reducing the required human attention during the learning process. In their method,
the action chosen by the human is assumed to be optimal, which is not always true in real
life.

5.3 Reward Shaping and Heuristics

Exploring the environment is vital for RL agents, as they need to find the best actions in
the long-term, which is only possible to compute if all actions have been tried in all states
many times. However, the time taken for randomly exploring the environment is usually
prohibitive, and a smart exploration procedure is required. For that, it is possible to receive
heuristics or reward shapings from teachers to improve exploration, hence studying how to
build principled heuristics is a very important line of research to make good use of another
agent’s expertise. Since agents using Potential-Based Reward Shaping (PBRS) are proved to
eventually converge to the optimal policy5 regardless of the shaping quality, those heuristics
are some of the few methods that are guaranteed to overcome negative transfer. We discuss
the representative methods depicted in Table 3 in this section.

5. More speci�cally, to an optimal policy in an MDP (Ng, Harada, & Russell, 1999) or the set of Nash
Equilibria in a Stochastic Game (Devlin & Kudenko, 2011).

672

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

Wiewiora et al. (2003) propose to use look-ahead and look-back reward shaping pro-
cedures to incorporate advice in the learning process. Their main insight in this paper is
that look-back reward shaping performs better when the advice incorporates preferences
over actions, while look-ahead reward shaping has a better performance with state-based
preferences.

Devlin et al. (2014) propose a reward shaping procedure specifically tailored for MAS.
The received reward is modified by both a human-given heuristic function and the difference
between the system performance with and without each agent, which guides the system to
a good joint policy much faster than regular learning. Methods transforming previously
learned policies to reward shaping have also been proposed in the single-agent case (Brys
et al., 2015b) and could be extended easily to MAS.

Suay et al. (2016) propose to use Inverse Reinforcement Learning methods (see Section
5.7) to derive a reward shaping function used to accelerate learning. Firstly, a set of
demonstrations is provided and a reward function is estimated from it. Then, this reward
function is used as a potential reward shaping function, which has been shown to accelerate
learning in challenging tasks such as playing Mario.

Gupta et al. (2017a) use a reward shaping function based on how much the agent
actuation is corresponding to a behavior demonstrated by an agent with (possibly) different
sensors and actuators. For defining those rewards, the first step is to learn an abstraction
function that maps the agent concrete state to an abstract space shared with the other agent
that will demonstrate the behavior. A Neural Network is trained to learn a transformation
function that can be used to match trajectories generated by the two agents. Finally, the
reward shaping value is defined according to how similar the trajectory being followed by
the agent is to the demonstrated behavior.

Perico and Bianchi (2013) propose to use demonstrations to build a heuristic to be later
used in the exploration procedure. They also apply a spreading procedure to generalize the
usually scarce number of samples, directing the exploration to states spatially close to the
ones visited in demonstrations.

Bianchi et al. (2014) proposed to accelerate the learning process of RL agents in multia-
gent adversarial domains by the use of a heuristic function that guides the student towards
a more effective exploration. They have shown that even simple and intuitive heuristics are
enough to significantly accelerate learning in simulated robotic soccer.

5.4 Learning from Demonstrations

Learning from Demonstrations is a well-studied category of TL methods in which an expe-
rienced teacher provides demonstrations to a student agent. Demonstrations can be given
in many ways, such as teleoperating the student or providing some samples of interactions
by following the teacher policy. The student might try to directly learn the teacher pol-
icy or to use the demonstrations for bootstrapping a RL algorithm. The former achieves
good results if the teacher policy is close to optimal, but for the general case, the latter is
preferred for enabling the agent to learn a better policy than the one used to generate the
demonstrations. The main challenge of this category of TL is to leverage the knowledge
contained in a limited number of demonstrations, and we here discuss the main current

673

Silva & Costa

lines of methods. Notice from Table 3 that the majority of the discussed methods reuse
experiences, and that the literature explored all types of learning algorithms.

Schaal (1997) investigated the use of demonstrations for both model-free and model-
based learning methods. The reuse of demonstrations consisted in simply using the expe-
riences as if the student was exploring the environment either by updating value function
estimates or refining the model of the task. In his experiments, the model-free experiments
achieved only a modest speed up, mostly because the state-action space to explore were
much bigger than what was present in a few demonstrations. Model-based algorithms, on
the other hand, achieved a relevant speed-up, as the samples from the demonstrations were
enough to build a good model of a simple robotic task.

Kolter et al. (2008) propose a method for solving complex RL problems in which the
reward signal cannot be observed. For that, the agent receives a hierarchical decomposition
of the task from the designer, defining a high-level and a low-level MDP. Then, a teacher
agent provides demonstrations of an optimal policy, which are used to refine a hierarchical
model to estimate the value functions. The parameters for this model are obtained through
an optimization formulation that considers the demonstrations in both high- and low-level.

Chernova and Veloso (2007) propose to build a model based on gaussian mixture models
to predict which action would be chosen by the advisor in the current state. In each
decision step, the advisee estimates its confidence in the prediction for the current state. If
the confidence is low, a new demonstration is requested. Even though the authors showed
good performance for learning how to solve tasks, their method is not able to improve
the advisor ’s policy through training, which means that the human must be an expert in
solving the task. Their later publications improved the confidence estimation procedure
(Chernova & Veloso, 2008) by autonomously learning multiple confidence thresholds to ask
for advice and added a revision mechanism that allows the advisor to correct wrong decisions
(Chernova & Veloso, 2009). However, the same limitations hold.

Walsh et al. (2011) aim at reusing demonstrations without preventing the student to
learn from exploration. Models from the reward and transition functions are learned from
interactions with the environment, and whenever the student has a high uncertainty in its
predictions a request for a trajectory of demonstrations is sent to the teacher. The authors
base their method in the Knows What It Knows (KWIK) framework (Li et al., 2011)
for presenting theoretical guarantees of minimizing the required number of demonstrations
while bounding the “mistakes” in exploration.

Judah et al. (2012) propose a method for learning an advisor ’s policy (later extended
in (Judah et al., 2014)). The advisee asks for action advice in a sequence of states to learn
a classifier that estimates the advisor ’s policy. The advisee alternates between querying
the advisor and actuating in the environment without asking for help. However, again, the
learning agent cannot improve the advisor ’s policy. Although the authors showed results
indicating that their approach uses fewer demonstrations than Chernova’s, they do not focus
on reducing the number of interactions with the environment. Therefore, both methods
should be evaluated depending on the task to be solved.

Capobianco (2014) proposes to cluster demonstrations given by several different teach-
ers, and then use the defined clusters to refine or induce the policy of the student.

Brys et al. (2015a) propose a method to transform demonstrations into reward shapings.
The student translates the current state-action tuples in the target task into shaping values

674

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

by finding the most similar demonstrated states. Then, those values are both used for
biasing the initial estimate of value functions and for accelerating value function updates.

Wang et al. (2016) propose to receive demonstrations from a human teacher in a source
task and then reuse those demonstrations in the target task. A simple distance metric is
used to translate source samples to the target task, hence both tasks have to share the same
state-action space. The proposed method achieved a substantial speed up when combined
with a reward shaping approach to incentivize returning to frequently visited states.

Wang’s method (Wang et al., 2016) was later specialized to MAS by Banerjee and
Taylor (2018). In their proposal, a human teacher with a global view of the task provides
demonstrations containing all local states and actions for all student agents. The students
then use the global information in the demonstrations to estimate the probability of miss-
coordinating by following their local observations. This probability is used to define whether
to follow a model learned from the demonstrations or to perform the usual exploration in
the task.

Subramanian et al. (2016) propose a demonstration method for performing a smarter
exploration strategy. When exploring the environment, the student estimates its confidence
in actuating in a given state. In case the confidence is low, the student requests demonstra-
tions until a known state is reached. Although efficient, their confidence metric works only
when using linear function approximator for value functions. Proposing a more adaptable
version of their algorithm could be a promising direction for further work.

Wang and Taylor (2017) reuse the available demonstrations following a procedure similar
to the one applied by Madden and Howley (2004) for transferring knowledge through tasks.
First, the demonstrations are used to train a classifier that models the teacher policy, which
is then reused by the student during the learning process. A distinguished feature of Wang
and Taylor’s proposal is that the classifier algorithm also estimates the uncertainty of the
prediction, hence predictions with high uncertainty are quickly dominated by the new policy
that is being updated. After some time learning in the task, the classifier is entirely switched
to the new policy and not used anymore.

Tamassia et al. (2017) propose to discover subgoals from demonstrations given by a
teacher. Those subgoals are then used for autonomously learn options, which accelerate
learning. However, their method requires a model of the state transition function of the
task, which is often unavailable and hard to learn. Nevertheless, estimating partial policies
from demonstrations could be an interesting idea for further investigation.

5.5 Imitation

When explicit communication is not available (or other agents are not willing to share
knowledge), it is still possible to observe other agents (mentors) and imitate their actuation
in the environment for acquiring new behaviors quickly. Imitating a mentor involves several
challenging problems. It might be hard to estimate the performance of another agent online,
or maybe even to define which action was applied by the mentor (possibly, agents might
have different action sets). Finally, imitating another agent might be fruitless if the mentor
and observer have different sensors or learning algorithms in a way that the observer is not
able to represent that policy. Partly because of those challenges, the literature presents few
imitation methods. Table 4 shows that those methods extract either models or policies from

675

Silva & Costa

observing the mentor. The literature on this group has so far been exploring only domains
with self-interested agents.

In Price and Boutilier’s proposal (1999) (later extended in (Price & Boutilier, 2003)),
the observer keeps track of the state transitions of a mentor. Without any explicit commu-
nication and with no knowledge about the applied actions, the observer is able to estimate
a transition function model, which can be used to update its value function. Although pro-
viding a significant speed up in the Gridworld domain, the method works in quite restrictive
settings. All the agents must have the same state spaces, the action set of the mentor must
be a subset of the observer ’s action set, the transition function must be equivalent for all
agents, and the local state of each agent cannot be affected by actions of another one (i.e.,
agents depend only on their local action set, rather than on joint actions).

Sakato et al. (2014) propose another imitation procedure when an optimal mentor is
available. The observer is divided in two components: the imitation and RL modules. The
former observes the mentor and stores the observed state transition and reward received.
Then, the imitation module suggests an action according to the action applied by the mentor
in a state as similar as possible when compared to the agent’s current state. The RL module
learns with plain RL. The observer selects one of the suggested actions with probability
proportional to the similarity between previously observed states and the current one. In
their proposal, the agents must have the same action and state sets, and the mentor ’s
actions must be observable.

Shon et al. (2007) propose a procedure for negotiation of imitations, in which agents
may “trade” demonstrations of skills useful for them in a game-theoretical way.

Le et al. (2017) explores an imitation scenario where multiple observer agents try to
mimic a team of mentors. Assuming that the mentors execute a coordinated behavior
corresponding to a certain role at each time step, a team of observer agents try to learn at
the same time a role assignment function that will define a role for each agent and a policy
for each possible role for the task. Their algorithm iteratively improves a policy for each
role given a fixed assignment function, then improves the assignment function given fixed
policies for each role. However, their method only mimics observed mentor behaviors, and
it is not possible to improve the learned policies through exploration.

5.6 Curriculum Learning

As discussed in Section 4.5, a Curriculum is an ordered list of source tasks intended to
accelerate learning in a target task. A promising new research line is the Transfer of
Curriculum, where one agent builds a Curriculum and transfers it to another. Preferably,
this Curriculum should be tailored to the agent’s abilities and learning algorithm. In this
section, we discuss the first investigations on this line. Notice in Table 4 that all methods
in this groups transfer Curricula between agents.

Peng et al. (2016b) study how laypeople build curricula for RL agents and show that it
is hard for non-experts to manually specify a Curriculum that will be useful to the learning
agent. Since the inclusion of non-experts is fundamental for scaling the applicability of RL
agents in the real world, trying to understand and improve how humans instruct automated
agents is of utmost importance.

676

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

Mattisen et al. (2017) propose to iteratively build Curricula through using two agents.
The teacher solves a Partially Observable MDP in which actions represent tasks to present
to a student and observations are the student ’s difference in performance since the last time
that the same task was chosen. Their experiments report results comparable to a very
carefully hand-coded Curriculum while using much less domain knowledge.

Sukhbaatar et al. (2018) propose to divide the learning process into two components.
A supervisor agent tries to solve the target task for a given time, and then the control is
switched to another agent that tries to reverse what the supervisor did (or alternatively
reach the same final state) faster than the supervisor. The supervisor can choose when to
switch control through an action, which indirectly builds a task to the other agent (the
current state and number of steps previously taken by the supervisor affect the task to be
presented). When this procedure is repeated, a Curriculum is automatically built. Although
both components are controlled by a single agent in the original publication, implementing
each of them in different agents in a MAS could be promising to accelerate the learning
process of the system as a whole.

5.7 Inverse Reinforcement Learning

Although most of the RL techniques assume that rewards can be observed after each action
is applied in the environment, Inverse Reinforcement Learning (IRL) techniques assume
that there are no explicit rewards available, and try to predict a reward function through
other information made available by agents in the environment, such as demonstrations of
the optimal policy. However, estimating a reward through observed instances is an ill-posed
problem, as multiple reward functions might result in the same optimal policy. Classical
approaches for solving this difficult problem suffer from both a high number of required
instances and computational complexity (Ramachandran & Amir, 2007), and alleviating
those issues is still a topic of current research. As Zhifei and Joo (2012) provide a good
summary of those techniques, we avoid the repetition of discussions in their survey and
highlight some of the recent research trends of most interest to this survey.

Lopes et al. (2009) try to alleviate the burden of demonstrating the optimal policy for
IRL techniques by making better use of human feedback. For that purpose, the advisee
predicts its uncertainty in the current reward function to actively ask for an action sugges-
tion in states for which the uncertainty is high. Even though their method requires fewer
actions suggestions than simply receiving demonstrations in an arbitrary order, the agent
must be able to freely change the state of the task for asking for guidance in the correct
states, which is unfeasible for most domains.

Cui and Niekum (2018) use a very similar idea from (Lopes et al., 2009) to move IRL
closer to real applications. In their method, the advisee generates a trajectory that is
expected to maximize the gain of knowledge, according to an uncertainty function similar
to Lopes’. Then, a human advisor segments the generated trajectory in “good” and “bad”
portions, and both feedbacks can be used to improve the current reward model. Although
the computational effort to choose an appropriate trajectory is still prohibitive to solve
complex tasks, their method requires less human effort and might inspire researchers in the
field.

677

Silva & Costa

Despite the fact that most of the classical IRL techniques focus on learning reward
functions for single-agent problems, recent proposals have begun to adapt IRL to learn
multiagent reward functions. Supposing that the agents follow a Nash Equilibrium, Reddy
et al. (2012) propose a method for approximating the reward functions for all agents by
computing them in a distributed manner.

Natarajan et al. (2010) apply IRL with a different purpose. Their proposal deals with
problems in which a centralizer agent has to coordinate the actuation of several autonomous
agents. IRL is used for estimating the internal reward function of the autonomous agents,
and this information is used for improving the policy of the centralizer.

Lin et al. (2018) propose a Bayesian procedure specialized for two-player zero-sum
games. Through a reward prior and an estimated covariance matrix, their algorithm is
able to refine an estimated reward function to adversarial tasks. However, their method
requires the complete joint policy to be observable, and that the state transition function
is completely known, and this information is usually not available for real-world complex
tasks.

In general, current IRL techniques are dependent on the full observability of the envi-
ronment and require high-complexity calculations, which is not realistic for many complex
tasks. Yet, IRL is a promising line of research, as training autonomous agents without
explicit reward functions might be required for the development of general-purpose robots
that receive instructions from laypeople. Despite these two issues, the recent trend on
multiagent IRL might inspire new methods for influencing a group of agents to assume a
collaborative behavior (Natarajan et al., 2010; Reddy et al., 2012; Lin et al., 2018).

5.8 Transfer in Deep Reinforcement Learning

Most of the recent successes achieved by RL in applications rely on function approximators
to estimate the quality of actions, where Deep Neural Networks are perhaps the most
popular ones due to their recent successes in many areas of Machine Learning. Naturally,
using Deep RL introduces additional challenges to train the Deep Networks used for function
approximation. Especially, their sample complexity requires the use of additional techniques
for scaling up learning (e.g., experience replay). Therefore, transfer methods especially
focused on Deep RL scenario might help to scale it to complex MAS applications, since the
adaptation of this technique to MAS is still in its first steps (Castaneda, 2016; Gupta et al.,
2017b). Two similar investigations concurrently carried out by different groups evaluated
the potential of reusing networks in Deep RL tasks (Glatt et al., 2016; Du et al., 2016).
Their results are consistent and show that knowledge reuse can greatly benefit the learning
process, but recovering from negative transfer when using Deep RL might be even harder.
In this section we discuss other recent Inter-Agent methods especially focused on Deep RL.

Foerster et al. (2016) and Sukhbaatar et al. (2016) concurrently proposed to not
only estimate which is the best action with a Neural Network, but also to learn how and
when to communicate. While the former considers discrete communication steps where
the gradients can be transferred through agents to accelerate learning, the latter proposes
continuous communication cycles and deals with systems with a dynamic number of agents.

Devin et al. (2017) decompose the learning problem into two components: a task -specific
and a robot-specific one. They assume that the observations (for practical purposes, the

678

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

state) can be divided into two sets of state features, which are related to one of the afore-
mentioned components. Furthermore, the cost function can be also decomposed into those
two components. For this reason, it is possible to build a modular Neural Network architec-
ture, where the task and robot modules might be reused across similar tasks and/or robots.
The authors were able to successfully reuse modules in simulated robotic manipulation
tasks. However, the tasks and robots were very similar and the network architecture was
carefully built for their experiments. Additional investigations would reveal if the method
works for reusing knowledge across less similar tasks and robots, as well as how to reduce
domain-specific parameterizations.

De la Cruz et al. (2017) propose another approach where the agent uses demonstrations
for pre-training a Deep Network. At first the student will try to imitate the demonstrations
and later the policy can be refined.

Omidshafiei et al. (2017) propose an experience replay mechanism focused on multi-task
learning in multiagent partially observable tasks. In order to reduce the miss-coordination
induced by multiple agents performing experience replay independently, their method de-
fines a unified sampling for building mini-batches by selecting samples corresponding to the
same time steps for all agents in the system. Although presenting interesting results, the
approach is only applicable if all agents are using similar experience replay and learning
mechanisms.

5.9 Scaling Learning to Complex Problems

In this section, we discuss papers that focused on solving the learning task in high-complexity
domains or had promising ideas that can be implemented in the future. Although not
presenting novel transfer approaches, the engineering effort to apply techniques already
discussed in this paper for challenging domains might help in the development of new TL
techniques.

Taylor et al. (2014a) use a TL solution to deliver a good performance in a very complex
and real-life problem. Using a value function transfer procedure coupled with the Distributed
W-Learning (Dusparic & Cahill, 2009) multiagent RL algorithm, they accelerate the learn-
ing process of a Smart Grid problem in which multiple Electric Vehicles aim at recharging
their battery without causing disturbances in a transformer. Their transfer procedure relies
on sharing value function estimates between agents in a neighborhood, accelerating learning
speed at the cost of additional communication.

Kono et al. (2014) propose to build an ontology to transfer knowledge between hetero-
geneous agents. In their conception, robots produced by any manufacturer could be linked
to a common cloud server giving access to a human-defined ontology tailored for a task.
Then, the robot’s sensors and actuators would be mapped to an abstract state-action space
that would be common to any robot trying to solve that task, regardless of particularities of
its physical body. Such mapping would allow different agents to communicate and transfer
knowledge. Effectively, any agent could be a teacher or student, and knowledge would be
transferred through the internet. However, in their proposal, an ontology comprehensive
enough to cope with any type of robot must be hand-coded and would work only for a single
task, which would be unfeasible or very hard to maintain in the real world. Moreover, they
only consider transferring value functions, hence further investigations could explore how to

679

Silva & Costa

facilitate the ontology construction or how to transfer knowledge between agents following
different learning algorithms (e.g., how to transfer knowledge between a teacher learning
through Q-learning and a student applying policy search?).

Xiong et al. (2018) build a tree specifying rules for initiating the student ’s Q-table.
Those rules are manually defined by a human and are used for providing a reasonable
initial policy when starting learning. Although their proposal requires extensive domain
knowledge, their method reports an impressive performance in a challenging video game
task in which interactions with the environment take a very long time (each episode takes
several seconds). Therefore, their paper represents a valuable effort towards adapting TL
procedures to more complex and realistic tasks.

6. Experiment Domains and Applications

Prospective domains for multiagent RL are the ones in which multiple agents are present
in the environment and one or more of them are trying to solve a task that can be codified
through a reward function. For all of those domains, one or more categories of TL might
be applied. Therefore, a myriad of real-world and simulated domains could be used for
validation and performance comparisons. In practice, some domains are preferred in the
literature, where the following characteristics are desired:

1. Humans can learn to perform the task and estimate relative performances;

2. An interface is available (or could be developed) for human understanding and inter-
action;

3. The interval between interactions with the environment is adjustable or compatible
with human reaction-times, so as to enable human participation;

4. Agents have the ability to observe each other and to communicate;

5. Taking into account the other agents in the environment might improve the perfor-
mance of one agent, either by coordinating with teammates or by adapting against
the strategy of opponents;

6. Multiple (or at least non-obvious) optimal policies exist for solving the task;

7. Multiple scenarios with varying degrees of difficulty and similarity exist or might be
built for posteriorly reusing knowledge.

In the next subsections, we discuss the most prominent domains for evaluation of multiagent
transfer methods. Table 5 depicts which publication used each of those domains.

6.1 Gridworld and Variations

The Gridworld domain has been extensively used for evaluations of both single and multi-
agent TL algorithms. This domain is easy to implement, customize, and to analyze results.
Moreover, it is easy to develop simple interfaces that make the task to be solved very in-
tuitive even for laypeople. For this reason, Gridworld has become a first trial domain for
MAS, where methods are validated and tuned before applied in more complex problems.

680

A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems

Table 5: List of papers per domain, in chronological order.

Domain Papers

Gridworld (Tan, 1993), (Maclin et al., 1996), (Wiewiora et al., 2003), (Price & Boutilier,

2003), (Madden & Howley, 2004), (Sherstov & Stone, 2005), (Kolter et al.,

2008), (Vrancx et al., 2011), (Boutsioukis et al., 2011), (Koga et al., 2013),

(Kono et al., 2014), (Devlin et al., 2014), (Koga et al., 2015), (Hu et al., 2015a),

(Freire & Costa, 2015), (Zhou et al., 2016), (Zhan et al., 2016), (Subramanian

et al., 2016), (Silva & Costa, 2017b), (Rosenfeld et al., 2017), (Svetlik et al.,

2017), (Narvekar et al., 2017), (Hernandez-Leal & Kaisers, 2017), (Chalmers

et al., 2017), (Mandel et al., 2017).

Robot Soccer (Torrey & Taylor, 2013), (Perico & Bianchi, 2013), (Bianchi et al., 2014), (Bar-

rett & Stone, 2015), (Kelly & Heywood, 2015), (Bianchi et al., 2015), (Narvekar

et al., 2016), (Didi & Nitschke, 2016), (Silva et al., 2017), (Wang & Taylor,

2017).

Video Games (Banerjee & Stone, 2007), (Knox & Stone, 2009), (Torrey & Taylor, 2013),

(Griffith et al., 2013), (Taylor et al., 2014b), (Sinapov et al., 2015), (Brys et al.,

2015a), (Narvekar et al., 2016), (Amir et al., 2016), (Zhan et al., 2016), (Sub-

ramanian et al., 2016), (Svetlik et al., 2017), (Tamassia et al., 2017), (Krening

et al., 2017), (Wang & Taylor, 2017), (Matiisen et al., 2017), (Fachantidis et al.,

2018), (Sukhbaatar et al., 2018), (Xiong et al., 2018).

Robotics (Schaal, 1997), (Kolter et al., 2008), (Chernova & Veloso, 2009), (Sakato et al.,

2014), (Isele et al., 2016), (de Cote et al., 2016), (MacGlashan et al., 2017).

Smart Grid (Taylor et al., 2014a)

Basically, any Gridworld domain has a group of agents that can navigate in an envi-
ronment for solving a task. While the most classic implementation is a simple navigation
task in which the agents aim at reaching a desired destination, popular variations include
Predator-Prey, where a group of “predator” agents aims at capturing “prey” agents, and
Goldmine, in which a group of miners aims at collecting gold pieces spread in the environ-
ment. Figure 4 shows the diversity of settings that can be easily built with small variations
in the Gridworld domain.

Despite being simple, results observed in this domain allow the evaluation of perfor-
mance in terms of collaboration and adaptation (e.g., avoiding collisions or collaboratively
capturing prey), robustness to noisy sensors and actuators (e.g., including noise in observa-
tions or a probability of incorrectly executing chosen actions), and scalability (e.g., how big
can be the Gridworld that the technique solves?). It is also easy to create more complex
versions of a task by trivially increasing the size of the grid or the number of objects in
the environment. Moreover, Gridworld tasks are very intuitive for humans and can be used
for receiving knowledge from laypeople without much effort for explaining the task (Peng
et al., 2016a). Therefore this domain will always be an important asset for the development
of TL algorithms.

681

