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Abstract

Many areas of AI today use benchmarks and competitions with larger and wider sets of
tasks. This tries to deter AI systems (and research effort) from specialising to a single task,
and encourage them to be prepared to solve previously unseen tasks. It is unclear, however,
whether the methods with best performance are actually those that are most general and,
in perspective, whether the trend moves towards more general AI systems. This question
has a striking similarity with the analysis of the so-called positive manifold and general
factors in the area of human intelligence. In this paper, we first show how the existence
of a manifold (positive average pairwise task correlation) can also be analysed in AI, and
how this relates to the notion of agent generality, from the individual and the populational
points of view. From the populational perspective, we analyse the following question: is this
manifold correlation higher for the most or for the least able group of agents? We contrast
this analysis with one of the most controversial issues in human intelligence research, the
so-called Spearman’s Law of Diminishing Returns (SLODR), which basically states that
the relevance of a general factor diminishes for most able human groups. We perform two
empirical studies on these issues in AI. We analyse the results of the 2015 general video
game AI (GVGAI) competition, with games as tasks and “controllers” as agents, and the
results of a synthetic setting, with modified elementary cellular automata (ECA) rules as
tasks and simple interactive programs as agents. In both cases, we see that SLODR does
not appear. The data, and the use of just two scenarios, does not clearly support the reverse
either, a Universal Law of Augmenting Returns (ULOAR), but calls for more experiments
on this question.

1. Introduction

A good number of AI competitions and benchmarks are encouraging the development of
more general-purpose AI systems (Hernández-Orallo, 2016). Examples of this trend are
the general game playing AAAI Competition (Genesereth, Love, & Pell, 2005; Genesereth
& Thielscher, 2014), the reinforcement learning competition (Whiteson, Tanner, & White,
2010; Dimitrakakis, Li, & Tziortziotis, 2014) (including, e.g., the ‘polyathlon’, with several
domains), the genetic programming benchmarks (McDermott et al., 2012; White et al.,
2013), the general video game competition (Schaul, 2014; Perez et al., 2015), and the arcade
learning environment (ALE) (Bellemare, Naddaf, Veness, & Bowling, 2013), a collection of
Atari 26000 video games. For instance, “the ALE has incentivized the AI community to
build more generally competent agents” (Machado et al., 2017) and, as a result, techniques
such as deep reinforcement learning are recently achieving a remarkable overall performance
(Mnih et al., 2015). Although the systems have to relearn from scratch when the game
changes slightly, they are still based on a general-purpose technique (deep reinforcement
learning), which can be evaluated for a range of tasks.

c⃝2019 AI Access Foundation. All rights reserved.



Hernández-Orallo

Following the idea that a larger and wider variety of tasks prevents AI techniques
from specialising to a single task, some new platforms, such as OpenAI’s Gym, Microsoft’s
Malmo, OpenAI’s Universe or DeepMind’s Lab (Castelvecchi, 2016), allow AI researchers
to construct benchmarks with hundreds of different tasks. However, it is still possible that
some agents outperform the state-of-the-art techniques on average by specialising on a sub-
set (a bucket) of the tasks, without really featuring any improvement on the rest. This
would represent an overall performance gain as the aggregation of a series of particular
techniques (or tricks), only useful for specialised subgroups of tasks.

This discussion is especially controversial when one wants to consider all possible tasks.
On one hand, one can consider every possible problem’s output as equally likely. This is
technically known as “block uniformity” (Igel & Toussaint, 2005), with the uniform distri-
bution being a special case. Under this assumption, we have the conditions for the so-called
no-free-lunch theorems (Wolpert & Macready, 1995; Wolpert, 2012), leading to the con-
clusion that, on average, no method can be better than any other. According to this, a
general-purpose system and, indeed, the very concept of ‘general intelligence’ would be im-
possible (Edmonds, 2009). On the other hand, one can consider problems as programs.
In this case, a uniform distribution is not possible, but any universal distribution can be
assumed instead, which leads to the theory of universal prediction using algorithmic proba-
bility, developed by Solomonoff in the 1960s (Solomonoff, 1960, 1964). This has influenced
several approaches based on algorithmic information theory about how tasks can be gener-
ated —and weighted— in definitions of intelligence (Dowe & Hajek, 1997; Hernández-Orallo,
2000; Legg & Hutter, 2007; Hernández-Orallo & Dowe, 2010; Dowe, Hernández-Orallo, &
Das, 2011; Insa-Cabrera, Dowe, & Hernández-Orallo, 2011). Under this setting, theoreti-
cally general agents can be defined (Hutter, 2005) —only if weakly optimal or suboptimal in
general (Orseau, 2013; Leike & Hutter, 2015)— with some approximations working in prac-
tice (Veness, Ng, Hutter, & Silver, 2011). In this context, one particular way of reconciling
different views of generality is known as policy-general intelligence, which is based on the
assumption of a uniform distribution over solutions for each task difficulty, and aggregating
for a range of difficulties (Hernández-Orallo, 2017). Under this setting, the idea of general
intelligence makes sense theoretically: some agents can be better than others in general.

This debate replicates the controversy in psychometrics between the IQ scores (results
of the IQ tests, which depend on the task distribution used in a test) and the g scores (a
magnitude derived from the estimated value of a latent factor, the g factor, which is more
independent of the particular task distribution used in a test). The g factor derives from the
so-called positive manifold, one of the most replicated experimental findings in the analysis
of human intelligence. The positive manifold indicates that given any test composed of a
set of (abstract) cognitive tasks we will find a high correlation in the results produced by
a human population. In other words, those who perform well on some tasks will usually
perform well on any other. This supports the idea of general intelligence.

For artificial intelligence, this suggests the following question: if we aim at building
more general AI systems, and evaluate them on a really wide range of tasks, will it be the
case that those that are better for some tasks will also be better for other tasks? Is that
a necessary or a contingent property? Or can we have more and more powerful systems
without an increase in their generality?
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In order to analyse these questions, we need to clarify what generality is and how it can
be analysed. We can define a general agent as one that gets similar success (either usually
good or usually bad) for a wide range of tasks. Under this view, given a set of tasks, perfect
performance on all of them would imply generality. But this would also imply that systems
performing consistently poorly would be general. In other words, the two extreme cases,
the agent that is perfect for all tasks and the agent that is calamitous for all tasks, would be
both completely general, but very different in terms of ability. The interesting cases arise
for those agents that are neither perfect nor calamitous. In particular, we are interested in
agents that are not necessarily perfect for any task, but reasonably good for all. This, in
the context of intelligence, is sometimes referred to as being “second-best” at everything,
in contrast to the so-called “idiots savants”, which are the best at a very specific range of
things.

The notion of generality can be analysed individually for a particular system, or in
the context of a population or group of systems. The individual approach can be easily
translated into a view of the variation of results for a single agent, measured by the variance
of results or any other measure of dispersion. However, as we will discuss, this is problematic,
as it depends on the magnitude and distribution of results. In some special, but common,
cases, like when responses are binary, the variance would be a function of the mean, and
the concepts of ability and generality would be completely intertwined.

The issue of generality can also be analysed for a population of agents. A populational
analysis can give a different insight compared to an individual generality measure. Still, it
might be the case that, again, depending on the magnitude of the scores, less generality
would be found in the intermediate agents. This populational approach is common in
psychology, especially in psychometrics, where the positive manifold originated.

One question we want to study is whether we find a positive manifold in populations of
artificial agents in two situations: populations of AI systems originating from AI competi-
tions (so being built and selected by humans) and populations of synthetic agents created
automatically for a range of abstract tasks (without human intervention). A second, re-
lated, question we would like to study is whether the positive manifold may only start to be
observed for artificial agents when we have a population of minimally intelligent agents. A
new hypothesis would be that, as long as AI progresses towards more generally intelligent
agents, this positive manifold would start to appear and then become stronger. By studying
some existing competitions and synthetic scenarios, we can only partially analyse whether
this is the case or not, by analysing if the positive manifold is stronger for more able agents.

Surprisingly, regarding the second question in the realm of human intelligence, Spearman
found exactly the reverse observation. By taking subpopulations of more able humans,
the positive manifold was weaker, something that was later known as Spearman’s Law
of Diminishing Returns (SLODR). In other words, it looked as if humans could achieve
more overall performance by the integration of advanced specific skills rather than the
improvement of general skills. As this hypothesis has been strongly disputed and goes
against the rationale discussed above (generality growing for high ability), it would then be
extremely illuminating for AI —but also for human intelligence research— to see whether
SLODR holds for AI systems or not.

In this paper, we study two different settings to experimentally analyse these questions
for artificial agents. First, we take the results of the 2015 general video game AI (GVGAI)
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competition, one of the AI competition that most strongly encourages generality in AI.
For this setting, video games are the tasks whereas the “controllers” (AI algorithms) will
compose the agent population, so that mean task correlation will be analysed globally and
by agent ability bins. Second, we adapt a class of elementary cellular automata (ECA)
to create worlds (the ECA rules) with agents interacting inside these worlds (Hernández-
Orallo, 2015a). Using these simple worlds and an elementary agent language, we can analyse
all tasks and all possible policies (solutions) up to a certain size (determining the difficulty of
the policy), so really having a diversity of solutions in order to analyse whether some degree
of positive manifold appears. More interestingly, we can easily analyse different subsets
according to their average performance on all policies (or slices of appropriate difficulty)
and study whether the SLODR holds or not.

The rest of the paper is organised as follows. Section 2 introduces some formal definitions
about the indicators that will be used throughout the paper, reviews the notions of positive
manifold, explains the g factor, and discusses Spearman’s Law of Diminishing Returns
(SLODR) in the context of the related literature supporting or rejecting the law. Section 3
considers the 2015 general video game AI (GVGAI) competition and studies the existence
of a positive manifold and whether this generality becomes stronger or not for the most able
subgroups, in agreement (or not) with SLODR. Section 4 introduces the environments and
agents used in a second, synthetic setting. We also explore whether generality (the positive
manifold) takes place and whether SLODR holds or not. Finally, section 5 closes the paper
with a discussion of the results, its applicability, new questions and future work.

2. The Positive Manifold and Spearman’s Law of Diminishing Returns

Let us introduce some notation first. Consider the evaluation of a set of M agents on a set
of N tasks, with results or responses Ri,j , for each agent πi and task µj , as represented in
Table 1. From this matrix, several statistics derive easily. Looking at the rows, for each
agent we have its response mean R̄i � MeanjrRi,js, also referred to as agent average perfor-
mance, and its response variance σ2

i � VarjrRi,js, also referred to as agent variance. These
two indicators (agent performance and variance) can be understood as a proxy for ability
and generality respectively (the higher the variance the lower the generality). However,
both are dependent on the magnitude of results. For instance, if tasks have a different
result magnitude, the mean R̄i will average non-commensurate measurements. One option
is to scale the columns, such that their scores follow a standard distribution.

Things are still especially complicated for the agent variance, if we want to consider it as
a measure of generality. For instance, given two agents a and b scoring 3, 3, 2, 3 and 6, 6, 4, 6
respectively, we see that b has a higher variance, just because the magnitude of the responses
is higher, although we do not see more variability than for the first agent (actually, the scores
for agent b are just the double of those for agent a). The variance can be normalised through
the coefficient of variation σi

R̄i
. However, this coefficient is also problematic. First, if the

values are not in a ratio scale, and there are negative scores, the measure still depends on
the scale (and normalising per rows does not make sense). Second, the kinds of values of the
response are critical. For instance, if responses are binary, we have a Bernoulli distribution,
and the variance is R̄ip1�R̄iq. In this case, both the variance and the coefficient of variation
would be determined by the mean, so we would have that performance and generality could
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Table 1: Usual configuration of the response matrix Ri,j with columns representing the
tasks (also referred to as tests, rules or games) and the rows representing the
agents (also referred to as individuals or controllers). Correlations will always be
between tasks (columnwise).

µ1 � � � µN

π1 R1,1 � � � R1,N
...

...
. . .

...
πM RM,1 � � � RM,N

not be disentangled. When responses are non-binary (either originally or on expectation),
the connection can also be tight, depending on the distribution for real-valued responses
and the number of possible values for ordinal responses. We will explore this graphically in
the following sections. Finally, an indicator that has an important effect on the populational
analysis is the variance of all agent performances, i.e., V arirR̄is. Actually, this is at the
core of whether there are actual differences in the population.

If we now look at the columns, we can calculate the linear (Pearson) correlation between
tasks, denoted by ρa,b (for tasks µa and µb). A high pairwise correlation between two tasks
is understood as having many agents scoring similarly for both tasks; basically both tasks
measure the same thing for that agent population. From here, we can derive an N � N
correlation matrix ρa,b. The average correlation is simply defined as follows:

ρ̄ �
¸

a¡b

2ρa,b
NpN � 1q

All these indicators were already examined more than a century ago by Charles Spearman.
He became one of the pioneers of a numerical analysis of human intelligence, by compiling
the results of several tests on human populations. He found one important phenomenon;
when he analysed a set of different tests taken by the same population, he found a positive
average correlation in their results (ρ̄ " 0). In other words, the individuals that obtained
good results for some tests usually obtained good results for the rest. This correlation was
stronger the more culture-fair and abstract the tests were. This phenomenon was known as
the ‘positive manifold’ (Spearman, 1904, 1927), meaning that most of the tests measure the
same thing for the agents in the population. It is important to clarify that this phenomenon
is not a property of the tests (tasks) alone nor a property of the population (agents) alone.
A correlation is clearly an effect that takes place for two tests for a set of subjects, but the
average correlation is calculated from the correlation matrix, thereby involving both the
tests and the population. Nevertheless, the positive manifold appeared again and again for
different human populations and different sets of tests, provided they were not too linked
to particular cultural or educational backgrounds (e.g., a chess-playing test or a Korean
vocabulary test). Spearman tried to understand the findings through the invention of a
rudimentary factor analysis. He identified a dominant latent factor that explained much of
the subjects’ variance, and called it the g factor. Since then, this factor has been one of the
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most relevant (and replicated) findings in psychometrics (Jensen, 1998; Sternberg, 2000)
and has been found to predict many facets of life, from academic performance to (lack of)
religiosity in humans. The dominance of g and its explanatory character for the positive
manifold led to the association of g with general intelligence, a latent factor that was said to
pervade all other factors and facets of intelligence. Of course, this interpretation has been
challenged many times, even if g appears again and again.

More controversial than the interpretation of the g factor is another finding that Spear-
man discovered. He calculated the strength of g on subpopulations of different abilities.
In particular, in one of the analysis, he separated the results of several tests on a human
population into two groups, group A with normal abilities and B with low abilities. After
the split, he analysed the correlation matrices separately. The result was that the mean
correlation for group A was 0.47 but the mean correlation for group B was 0.78. Note
that this does not mean that group A had worse results (in fact, it was precisely the group
with highest average results), but rather that the proportion of the variance explained by
g for the low-ability group was much higher than for the normal-ability group. This result
was striking, especially if g is understood as general intelligence. It looked as if the more
intelligent a population is, the less important g would be, in relative terms, to explain its
variability. This observation turned to be known as Spearman’s Law of Diminishing Returns
(SLODR). The finding was replicated many times since then with different experimental
settings (Detterman & Daniel, 1989; Deary et al., 1996; Tucker-Drob, 2009).

Spearman looked for an explanation and found it in the law of diminishing returns in
economics. Many processes that are affected by many factors do not grow continuously as
the result of the increase of one factor, so the influence of a single, albeit dominant, factor
can become less relevant at a given point, being saturated. Spearman expressed it in this
way: “the more ‘energy’ a person has available already, the less advantage accrues to his
ability from further increments of it” (Spearman, 1927, p. 219).

But this simile was not an explanation. Spearman postulated the “ability level differ-
entiation”, which considered that challenging items (those that can only be solved by the
most able individuals) require the combination of many skills, and the prevalence of g would
be smaller. Basically, for the easy items, the general intelligence or some general resources
would be the only available skills for low-ability subpopulations. Detterman and Daniel
(1989) argued similarly that if “central processes are deficient, they limit the efficiency of
all other processes in the system. So all processes in subjects with deficits tend to operate
at the same uniform level. However, subjects without deficits show much more variability
across processes because they do not have deficits in important central processes”. Other
explanations were introduced, such as that the “genetic contribution is higher at low-ability
levels” (Deary et al., 1996).

Not only have the above explanations been put into question but the experimental
evidence itself has been contested. One common counter-explanation of the phenomenon
argues that it is not that g is less important for able subjects, but that they find many
of the problems in the tests less challenging than the normal population so they are not
forced to use general intelligence. They can solve the problems without (deep) thinking,
i.e., more mechanically. In other words, the use of the same tests for both groups would be
creating the effect. In fact, Fogarty and Stankov (1995) performed an experiment where the
more able group had to solve problems of higher difficulty whereas the less able group had
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to solve problems of lower difficulty. Under these conditions not only did SLODR vanish
but even the more able group showed higher correlations. This seems to agree with the
idea that general intelligence is used when the individual finds a problem challenging. It
is important, however, to check that the difficult problems are created without the use of
spurious complications, in order to prevent that more difficult items are more specialised
than the simple items. For instance, in number series problems, one can create a complex
series by using the Fibonacci series. This, however, will just assess whether the subject has
some particular mathematical knowledge, not really expecting that the subject is going to
discover the Fibonacci series from scratch by combining the basic arithmetic operators. This
was already warned by Jensen, pointing out “that it is the highly g-loaded tests that differ
the least in their loadings across different levels of ability, whereas the less g-loaded tests
differ the most” (Jensen, 2003). Usually, problems featuring abstract thinking (inductive
inference, analogies, etc.) are those with higher g loadings.

One of the most relevant criticisms (or explanations), which will reappear later on in this
paper, had a more statistical character. Jensen (1998, p. 587) argued that the subgroups
with higher abilities had lower variance than the subgroups with lower abilities. This may
be caused by the way the tests are designed to cover a wide range of subjects or the way the
two groups are split, but the different variances were generally the case. As a consequence,
the relative relevance of g would be lower for more able groups as there is less variance to
explain.

All of the above suggests that there are several methodological problems about the
analysis of SLODR in human intelligence. This starts with putting into question all the
results for which both groups do not have the same variance and also those that include
spurious problems or sample the populations in ways to get the same variance by introducing
some other confounding factors. In the end, Murray et al. (2013) argue that SLODR could
just be “a statistical artifact”.

In what follows we take a different perspective of the debate by using non-human sub-
jects, namely AI systems. This can help us to rule out some of the confounding factors by
focusing on a popular AI competition first and a controlled experiment second, where we
can play with the population of agents and the choice of tasks more freely. Nevertheless, our
interest is to analyse whether SLODR happens or not for artificial agents, and see whether
the results can tell us something about the construction and evaluation of general-purpose
AI agents.

3. Analysing Generality in a General Video Game AI Competition

In the introduction we discussed that many AI evaluation platforms and competitions are
now comprising a diversity of tasks, and many new platforms are including hundreds, when
not thousands, of different tasks (Castelvecchi, 2016). If success is measured by aggregating
or averaging over the range of tasks, an AI algorithm may get a decent result overall
by excelling at some subsets (or pockets) of the tasks whereas another can be similarly
successful overall by being just relatively good at a larger subset. In other words, generality
is of course linked to overall success on a range of tasks but also on whether this success is
well distributed.
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3.1 General Video Game AI

The name of some competitions seem to explicitly encourage more general AI systems, such
as the general game playing (GGP) AAAI Competition (Genesereth et al., 2005; Gene-
sereth & Thielscher, 2014), or the more recent general video game AI (GVGAI) competi-
tion (Schaul, 2014; Perez et al., 2015). But are the sets of systems that take part in these
competitions really general? And are the best agents more general? In order to analyse
these questions, we are going to focus on the latter competition. There are several reasons
for this choice. The GVGAI competitions consist of a collection of games over a video game
description language. Games in this language can be created at will (even automatically)
to cover any kind of task. Also, the GVGAI competition does not give the agents any
previous information —before the game starts— about the task. This is different from
GGP, which provides the rules of the game in a logical language (Schiffel & Thielscher,
2014). Consequently, in GVGAI, the agents can improve from interaction, a setting that
has now become common in many AI evaluation platforms (Castelvecchi, 2016), using a
very general reinforcement learning setting. In this regard, GVGAI is closer to the arcade
learning environment (Bellemare et al., 2013) mentioned in the introduction, which only
gives access to regular screenshots and rewards. The GVGAI setting does not use screen-
shots as interface but an abstract description of the state, so complex perception is not
needed. Also, the setting provides a look-ahead access to the game, so that it can explore
different sequences of actions with a perfect forward model of the game —albeit black-box
and stochastic. As a result, planning approaches might be more successful than pure RL
solutions. More precisely, the video game AI competition provides each algorithm with “a
structured representation of the game state as well as a simulator that allows the use of
tree search algorithms to play the games” (Bontrager, Khalifa, Mendes, & Togelius, 2016).
Because of this access to the simulator, some of the best algorithms so far are based on
Monte Carlo Tree Search methods and variants. Figure 1 shows some screenshots of four
games created for the platform.

GVGAI is an interesting setting also because there is an ongoing discussion about the
need for generality to get good results in the competition. Nielsen et al. have found
that “performance is non-transitive”, meaning that “different algorithms perform best on
different games” of the GVGAI competition (Nielsen, Barros, Togelius, & Nelson, 2015;
Bontrager et al., 2016). This conclusion emerges from the observation of results, seeing
that no algorithm dominates all the others. However, this is not drawn for looking into
whether the correlations between games are positive, even slightly. Indeed, it is important
to highlight that the purpose of raising this ‘non-transitivity’ is not motivated by the in-
terest in finding generality. On the contrary, the motivation of the analysis is to “predict
the performance of an algorithm on a task” (Bontrager et al., 2016) so that metalearning
through hyper-heuristics and algorithm portfolios is effective (Mendes, Nealen, & Togelius,
2016).

Another important characteristic of the GVGAI competition is that the games are new
for the competition, i.e., they are unseen for the participating AI algorithms, also to prevent
agents from specialisation to previous games. This is in contrast to other benchmarks and
many other competitions, where the teams can tune their techniques and parameters to
particular games.
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Figure 1: Several games created for the general video game AI (GVGAI) competition. [Im-
ages courtesy of Julian Togelius.]

Table 2: The 23 controllers used in the GVGAI experiments.

AIJim MH2015 Rooot TeamTopbug
sampleGA simulatedAnnealing adrienctx jaydee
NovTea SJA862 sampleMCTS depthFirstSearch

hillClimber MnMCTS mrtndwrd roskvist
SJA86 breadthFirstSearch evolutionStrategies sampleRandom

sampleonesteplookahead aStar iterativeDeepening

We will work with a dataset composed of 49 games and the 23 controllers (agents) that
were submitted to the 2015 GVGAI competition, as described by Bontrager et al. (2016).
Each game has 5 levels, and each level was attempted 5 times. This makes a total of
23� 49� 5� 5 � 28175 trials. Although there are several metrics of performance, for each
trial the data includes a “win/loss” attribute (1:win, 0:loss), which describes whether the
agent was successful (“beat” the game). Tables 2 and 3 show the controllers and games
respectively.

As there are five repetitions for each game (49) and level (5) (between which the agents
and games are reinitialised), we average the win/loss values to get 49� 5 � 245 tasks. The
different levels for task may be considered clusters, although some of the modifications to
get different levels may force different approaches and lead to different required behaviours
and responses. Since some tasks have the same (0) result for all agents (which would be
problematic for the calculation of correlations) we add a very small random value to all
results. Also, we scale the results for each game to have standardised values with zero mean
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Table 3: The 49 games used in the GVGAI experiments.

aliens bait boloadventures boulderchase boulderdash
brainman butterflies camelRace catapults chase

chipschallenge crossfire defem digdug eggomania
escape factorymanager firecaster firestorms frogs

iceandfire infection jaws labyrinth lemmings
missilecommand modality overload pacman painter

plants plaqueattack portals racebet2 realportals
realsokoban roguelike seaquest sokoban solarfox
superman surround survivezombies tercio thecitadel

waitforbreakfast whackamole zelda zenpuzzle

and unit standard deviation. As we will work with Pearson (linear) correlations, this scaling
does not affect the correlations, but allows a more commensurate aggregation to determine
the abilities of each agent and the comparison with the overall variance as well.

Figure 2 (left) gives a first impression of the results. We see that responses show quite an
irregular distribution. A first view at how agents behave can be seen on the plot on the right.
It shows the average responses per agent (R̄i, what we denote by “Agent performance” on
the x-axis) against the variance of responses per agent (σ2

i , denoted by “Agent variance”).
What we see is that the most able agents seem to have higher variance. But does this mean
that they are less general? Were not we expecting low variance for the worst agents, scoring
poorly on all tasks, and also for the best agents, scoring well on all tasks? We see this
phenomenon on the left, but not on the right. Nevertheless, it is important to look at both
the left and right figures to understand what this really means. If we have two agents with
roughly the same performance (e.g., 2 and 7, on the right figure), we can compare their
generality by looking at their variances. However, it is misleading to compare the variances
of two agents with very different performance, because the magnitude of the responses will
have a very important effect, especially for the agents with high performance. This has
much to do with the asymmetric distribution of responses on the left. These are some of
the reasons that motivate us (and Spearman) to look at the correlations instead.

3.2 Analysis of Subpopulations Binned by Abilities

Using these 245 tasks as columns and the 23 controllers as rows, we calculated the 245 �
245 correlation matrix ρi,j . Removing the reflexive and symmetric correlations, we have
(245�244

2 � 29890) correlations, from which 17464 are positive. The distribution of these
correlations can be seen in Figure 3 (left). The average correlation of these 29840 values
is 0.106. This is just slightly positive, which means that a hypothetical general factor
would have a limited effect on the population of techniques. Basically, we see the “non-
transitivity” effect, i.e., a high degree of specialisation in these algorithms. Figure 3 (right)
shows the agent performance (R̄i), its average score for all tasks, as a proxy for ability.
Using this ability, we now sort the agents and split the agent population according to it.
Instead of simply separating the agents in two groups (most able and least able), we get a
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Figure 2: GVGAI results for 23 agents (controllers) and 245 tasks (49 games with 5 levels
each). Left: histogram of the 23 � 245 = 5635 responses. Right: agent per-
formance versus agent response variance, showing the regions of low/high ability
and low/high generality. We see that agents 2 and 7 have similar performance,
but agent 7 has smaller variance and seems therefore more general.
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Figure 3: GVGAI results for 23 agents (controllers) and 245 tasks (49 games with 5 levels
each). Left: histogram of the 29890 correlations. Right: histogram of agent
performances.

more detailed analysis if we analyse different quantiles (from worst to best). This is shown
in Figure 4 (left).

The top black cross uses all tasks (245) and all agents (23) together, with 0.106 corre-
lation (as mentioned above). The second decomposition (orange triangles) shows 4 bins,
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Figure 4: GVGAI results for 23 agents (controllers) and 245 tasks (49 games with 5 levels
each). Note that the x-axis goes from lower to higher abilities. Linear regressions
in six different colours are shown for the six series having more than one bin.
The slopes of these regression models and the 95% confidence intervals for the
slopes are also shown in six different colours at the top of the plots. Left: average
correlation per quantiles using several bin sizes where agents are sorted by overall
performance. Right: the variance of agent performance of the bins.

using agents 1..20, 2..21, 3..22 and 4..23 respectively, sorted by increasing ability (most able
on the right). The plot shows that as the bins become smaller, the average correlation
also becomes smaller. This is natural as a result of having smaller samples. If we look
at all the decompositions, from triangles to asterisks, none of them is clearly decreasing
or increasing, according to the slopes and the 95% confidence intervals of the linear fits.
This means that the correlation is usually the same for all bins. According to this, we do
not observe the diminishing returns here (the decompositions should be decreasing as the
x-axis goes from lower abilities to higher abilities). In any case, recalling Jensen’s criticism
in Section 2 that the variance could explain part of it, Figure 4 (right) shows the variance
of agent performance for each bin. We see that it explains most of what happens on the left
plot. Actually, the overall variance is 0.11 (note that the magnitudes are commensurate as
we normalised the scores per column).

3.3 Analysis of Subpopulations Binned by Abilities and Difficulties

We can further investigate the behaviour of these correlations by ability bins if we consider
that we might get higher diversity of abilities (performance variance) for groups of tasks
with a difficulty that is more centred around the agent ability, ensuring more diversity than
a collection of very easy tasks or a collection of very hard tasks. In other words, it seems
reasonable to expect that many of the most able agents will succeed for the easy tasks and
many of the least able agents will fail for the difficult tasks. Interestingly, the data from the
GVGAI competition incorporates the “level” of each task. These levels “differ from each
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other through variations on the locations of sprites, resources available and variations on
non-player character (NPC) behavior” (Bontrager et al., 2016). Using this level as difficulty,
Figure 5 (left) shows the same analysis of the correlation by different bin decompositions.

As mentioned above, the top black cross uses all tasks (245) and all agents (23) together,
again with 0.106 correlation, and the second decomposition (orange triangles) again shows
4 bins, using agents 1..20, 2..21, 3..22 and 4..23, sorted by increasing ability (most able on
the right). But now, for each of the bins, we also slice the games (tasks) according to their
difficulty. For instance, for the leftmost bin of the orange triangles, the least able agents
1..20, we calculate the correlation with only the least difficult tasks 1..213.
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Figure 5: Left: Average correlations for 23 agents (controllers) and 245 tasks (49 games with
5 levels each). Note that the x-axis goes from lower to higher abilities. Linear
regressions in six different colours are shown for the six series having more than
one bin. The slopes of these regression models and the 95% confidence interval
for the slopes are also shown in six different colours at the top of the plots. Left:
average correlation per quantiles using several bin sizes, where results are sorted
by agent performance, and each bin is only evaluated with the tasks of that
quantile of difficulty (“level”). Right: Variance of agent performances.

Basically, we see the same picture as Figure 4 (left), just a little bit more bumpy (because
the bins have fewer instances and are hence more subject to random effects). With this
correction, we do not see that the most able agents have a higher correlation, so there are no
diminishing returns but neither do we find any augmenting returns here (the subpopulation
of more able agents is not more general either). The slopes and 95% confidence intervals of
the linear fits are now even less conclusive. Again, Figure 5 (right) shows the variances of
agent performance for each bin, which do not change much with respect to Figure 4 (right)
either.

Before making the interpretation that using difficulty in the bins changes (almost) noth-
ing, we have to really see whether the “level” is actually a good metric of difficulty. Un-
fortunately, if we calculate the correlation between the level value (0..4) and average task
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performance (before normalisation) we get a surprising -0.03 correlation. Basically, the level
is not a good metric of difficulty and the slicing by difficulty has no significant effect, exactly
what we see on Figure 5 with respect to Figure 4.

Consequently, to complete the analysis, we are going to derive an empirical metric of
difficulty and repeat the plot. The empirical difficulty of each of the 245 tasks is derived as 1
minus the average performance of all agents for that task (before normalisation). This gives
a value between 0 (easiest) and 1 (most difficult) for each task (note that each pair of game
and level is still considered a task since “level” is actually a variation of the game). Using
this new empirical metric of difficulty, we get the decompositions of Figure 6 (left). Now we
see a much more bumpy picture, especially for small bin decompositions (red squares and
blue stars), but the shapes look slightly increasing now. The slopes and 95% confidence
intervals of the linear fits are only significant for the 4-bin decomposition (yellow triangles)
and the 12-bin decomposition (blue triangles). Were this trend confirmed, this would be
the reverse to Spearman’s Law of Diminishing Returns and would indicate that the bins
with more able agents would have higher correlation. In fact, the bin with the best 5 agents
applied to the most difficult 53 tasks has a correlation of about 0.13 (shown as a blue star
on the right of Figure 6, left), one of the highest found for any bin so far.
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Figure 6: Same as Figure 5, but difficulty is now derived empirically from performance
instead of using the “level”.

Finally, once again, Figure 6 (right) shows the variances of agent performance for each
bin. In this case, the association between left and right plots is even more complicated, but
the increasing trend for the variance is significant for all decompositions.

The previous analysis is performed with a small population of tasks (245) and a very
small population of agents (23). Also, we do not have any control at all about the popula-
tion of agents and its distributional properties, as they just come from the participants of
one competition. The original “levels” did not represent an appropriate difficulty function,
so we had to infer an empirical difficulty metric from the data, which can include other con-
founding factors. Accordingly, we cannot extrapolate for other situations, but nevertheless
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the analysis is useful to see whether there is a general factor emerging and whether it is
stronger or not for most or least able agents. In this case, we do not see a significant level
of generality in the results, so the best agents are not really general-purpose game players.
Also, we do not see the appearance of Spearman’s Law of Diminishing Returns for these
artificial agents. Overall, despite the small sample, this correlation analysis is still insigh-
ful to understand whether a competition that aims at “general” game playing is actually
succeeding in this direction and whether the best agents are both good and general.

4. Analysing Generality in a Controlled Scenario of Tasks and Agents

In order to have a more controlled analysis with fewer extraneous factors, we are now going
to adapt the simple setting introduced by Hernández-Orallo (2015a) to have a population of
agents and tasks. The most important difference from the scenario in the previous section
is that we are going to exhaust all tasks, and sample the space of agents in a very even
way, without human intervention (the agents are not coded by humans as in the previous
section). This is an appropriate scenario for practical reasons. First, the use of minimalistic
environments where the number of observations and actions is extremely reduced avoids
many confounding factors, while still having some relatively rich phenomena. Second, we
are interested in policy languages where agents can be generated automatically, but still be
meaningful. Third, we want something simple that allows us to evaluate a large amount of
tasks and agents quickly.

4.1 Agent-populated Elementary Cellular Automata: Definition and Examples

The environments we will work with are composed of an elementary cellular automaton
(ECA) (Wolfram, 2002) with the addition of an agent that will be able to see and modify
part of the usual behaviour of the automaton. The following definition specifies the structure
of this kind of environment:

Definition 1 Framework: We define a single-agent elementary cellular automaton (SAECA)
as a tuple

@
S,σ0, p0, ν, π

D
. The state space S is represented by a one-dimensional array of

bits or cells σ � xσ1, σ2, . . . , σky, also known as configuration. We consider the array to be
finite (|σ| � k) but circular in terms of neighbourhood (σ0 � σk and σk�1 � σ1). There
is an initial array σ0, also known as seed, and an initial position of the agent, p0. The
behaviour of the environment transitions ν and agent π will be explained in subsequent def-
initions, but both interact over the configuration, which changes step by step. The order of
events for each step in the system is: observations are given to the agent, agent actions are
performed, the environment transition function is applied and finally, rewards to the agent
are produced.

Definition 2 Transition function: The environment transition function is determined
by a number ν, as any of the 22

3
� 256 rules that can be defined looking at each cell and its

two neighbours. Specifically, a triplet transition is denoted by XY Z Ñ B. As there are 8
possible triplets to be defined, there are 28 possibilities. The numbering scheme convention
introduced by Wolfram (2002) sorts the possibilities in the following order:

111 110 101 100 011 010 001 000
B1 B2 B3 B4 B5 B6 B7 B8
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so that B1B2B3B4B5B6B7B8 is mapped to an 8-bit number ν, the ECA rule. For every
(circular) substring XY Z in σ, we apply the matching rule XY Z Ñ B and the bit Y is
replaced by B.

For instance, the following transitions for each triplet define an ECA rule:

111 110 101 100 011 010 001 000
0 1 1 0 1 1 0 1

The digits of the second row represent the new state for the middle cell after each tran-
sition, depending on the triplet. In the above case, 01101101, in binary, corresponds to
decimal number 109, the ECA rule number with Wolfram’s convention. Given this rule, the
configuration array 01100 would evolve in the following way, looping at the end:

01100
01101
01111
11001
01001

è11001

Let us see a few examples of how these environments work. Figure 7 shows the evolution of
several environments, with several values of ν, all with seed “010101010101010101010”. We
do not include any agent in the environments for the trials in this first figure. As a result,
the space-time diagrams after 200 iterations are the same as a classical elementary cellular
automaton with each number ν (Wolfram, 2002).

Let us now explore what happens when we include agents in these environments.

Definition 3 Agent interface: Given the behaviour of the space, we consider just one
agent π. The agent is located at one cell (its position p) with 1 ¤ p ¤ k. Its initial position
is denoted by p0. The set of observations O is given by two bits xσp�1, σp�1y representing
the contents of the left and right neighbouring cells respectively, i.e., σp�1 and σp�1. The
actions A are given by a ‘move’ and an ‘upshot’, denoted by the pair xV,Uy. For each
timestep, the move is performed before the upshot. The ordered set of moves is given by
tleft=0, stay=1, right=2u, and the ordered set of upshots is tkeep=0, swap=1, set0=2,
set1=3u, which respectively mean that the content of the cell where the agent is does not
change, the content of the cell is complemented (0 Ñ 1, 1 Ñ 0), the content is set to 0 and
the content is set to 1 respectively. The rewards are calculated according to the number of
1s that are in the neighbourhood of the agent, weighted by their proximity. More precisely,
if the agent is at position p at time t, then the reward is given by:

rt Ð
¸

j�1..tk{2u

σt
p�j � σt

p�j

2j�1

It is easy to see that 0 ¤ rt ¤ 1.

Basically, the goal of the agent is to be surrounded by the highest number of 1s possible,
by creating them or by exploiting the changes performed by the ECA rule. Of course, some
ECA rules can undo the efforts of the agent to turn cells into 1s and others can be more
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Figure 7: Space-time diagram (evolution for t � 200 steps) of several elementary cellular au-
tomata without agent. The initial array (seed) is always 010101010101010101010,
whose length is 21 bits.

benevolent for the agent. This includes the extreme cases, rules 0 and rule 255, which set
everything to 0s and 1s respectively.

Now we define the syntax and semantics of the agent. There are a few agent languages
in the literature (Boutilier, Reiter, Soutchanski, & Thrun, 2000; Leonetti & Iocchi, 2010;
Andre & Russell, 2002), but they are too oriented towards the architecture, are too focused
on Markov Decision Processes or are not sufficiently minimalistic for bounding their size
and having some interesting programs. Instead, we present a very minimalist language, also
taking into account the minimalist environment.

Definition 4 APL syntax: The agent policy language APL is given by an ordered set
of instructions I = t back=0, fwd=1, Vaddm=2, Vadd1=3, Uaddm=4, Uadd1=5 u. The
numbers on the right will be used as shorthand for the instruction. A program or policy π
is a finite sequence of instructions ι1, ι2, ... in I.

For instance, the string 20242335 represents a program in APL.

Definition 5 APL instruction semantics: Instructions operate on a memory (or history)
binary array m (not circular), and two accumulators V and U . The execution of instruction
ι on the memory m with memory pointer at position b and accumulators V and U is given
by:
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1. ExecInst(ι, m, b, V , U)

2. case ι:

3. back : b Ð maxpb� 1, 1q

4. fwd : b Ð minpb� 1, |m|q

5. Vaddm : V Ð pV �mbqmod 3

6. Vadd1 : V Ð pV � 1qmod 3

7. Uaddm : U Ð pU �mbqmod 4

8. Uadd1 : U Ð pU � 1qmod 4

9. end case

The execution takes the instruction ι and m as inputs, while b, U and V are both inputs
and outputs.

Definition 6 APL program semantics: Given a program π and a memory m, the action
that the agent performs is given by the result of the accumulators at the end of a process,
defined as follows:

1. Read the observation xσp�1, σp�1y and append these two elements at the end of the
history array m.

2. Place the memory pointer b at the end of m (i.e., b � |m|).

3. V Ð stay

4. U Ð keep

5. forall ι P π

6. ExecInst(ι, m, b, V , U)

7. endfor

8. return xV,Uy

The memory array m is empty when a trial is started, but its content is preserved between
steps.

Let us see an example. Consider the policy 20242335. If the agent is located at the
fifth position of the configuration 000101111 and has a current history m � 111010 then
the observations 1 and 1 will be appended to m, leading to m � 11101011. We start the
process with b � 8, V � 0 � stay and U � 0 � keep, and we have the following execution:

1. ι1 � 2 � Vaddm, V Ð pV �m8qmod 3 � 1 � stay.

2. ι2 � 0 � back, b Ð maxp8� 1, 1q � 7.

3. ι3 � 2 � Vaddm, V Ð pV �m7qmod 3 � 2 � right.

4. ι4 � 4 � Uaddm, U Ð pU �m7qmod 4 � 1 � swap.

5. ι5 � 2 � Vaddm, V Ð pV �m7qmod 3 � 0 � left.

6. ι6 � 3 � Vadd1, V Ð pV � 1qmod 3 � 1 � stay.

7. ι7 � 3 � Vadd1, V Ð pV � 1qmod 3 � 2 � right.

8. ι8 � 5 � Uadd1, U Ð pU � 1qmod 4 � 2 � set0.
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After this program, which is run internally, we obtain the action that the agent will perform
on the environment, which is given by xV,Uy = x2, 2y = xright, set0y. This means that
the agent will move right and set the content of the cell to 0.

While the class of policies generated by this language is infinite, the language is still
not universal, and all (finite) programs end. The goal of this language is to be able to
express some simple policies that may be useful in the environment. The policies that
can be expressed in this language can represent reactive behaviours: moving in different
directions and/or changing cell contents, according to the perceived adjacent cells in the
current or previous steps (because of its perception memory). The policies do not have
working memory (although the environment can be considered as an external memory) and
do not include loops or recursion. As a result, the language just does simple processing of
the inputs. Longer programs usually allow for the combination of more cells in the agent
history.

Figure 8 shows how the environment with elementary cellular automaton number 110
varies for several agent policies. The resulting space-time diagram patterns are different.
Similar things (where differences are more visible with respect to the corresponding diagram
in Figure 7) happen with rule number 164 (Figure 9).

For this scenario, the result Rπ,µ is defined as the (expected) response of agent π in task
µ, which is calculated as an average of the rewards rt for the 200 steps t. For instance, in
Figure 9 policy 23555 for rule 164 seems to have higher R than policy 24 for the same rule.

4.2 Analysis of Subpopulations Binned by Abilities

Given the setting seen above, we are now going to analyse whether some agents display some
generality and whether this increases or decreases for more able subpopulations. Using the
agent policy language APL we generated 400 agents with their instructions chosen uniformly
from the instruction set and a program length also uniformly distributed between 1 and
20. We evaluated each agent with all the 256 possible ECA rules, with 21 cells, random
initialisation (seed), using 100 of iterations per trial. We scaled the 256 � 400 results,
task per task, so that for each task (ECA rule) we had mean 0 and standard deviation 1.
Similarly to the GVGAI competition case, this does not affect the correlation.

As we did for GVGAI, Figure 10 (left) gives a first impression of the results. We see
that responses show a very regular (Gaussian) distribution. The plot on the right shows
the average responses per agent (R̄i) against the variance of responses per agent (σ2

i ). We
do not see a clear pattern, but the agent variance is almost always above 0.5, especially for
the most able and least able agents. It seems there are less generality everywhere than for
the previous scenario, but, again, this variance depends on the magnitude of results. It is
better to look at the correlations.

In order to this analysis, we calculated the 256 � 256 correlation matrix for the 256
rules. From all the correlations (256�255

2 � 32640), 29612 were positive. The average
correlation is 0.125. The distribution of these correlations can be seen in Figure 11 (left).
It is interesting to see that we get a positive, albeit small, average correlation, even if we
are using randomly-generated agents for all possible tasks (all ECA rules). This is given
by the reward mechanism, which is the same for all tasks (having 1s in the surrounding
cells) and there are some agents that go well for this reward criterion disregarding the task.
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Figure 8: Space-time diagram (evolution for t � 200 steps) with different agent policies
for the elementary cellular automaton with rule 110. The initial array (seed) is
always 010101010101010101010, whose length is 21 bits. The agent is represented
by a red dot when the cell has a 0 (like the white ones) and by a green dot when
the cell has a 1 (like the black ones). The leftmost diagram is the empty policy
(xstay, keepy).

Then we averaged the results for each agent to get their average performance (ability).
Figure 11 (right) shows this agent performance (R̄i). It seems there is a peak around 0,
which, for this scenario, can be full of agents that do not manage to have any effect on the
environment and hence score 0 on average. Using these agent performances as ability, we
sorted the agents and split the agent population according to different quantiles, from worst
to best1. Different sizes of the bins (subpopulations) were used for the quantiles. The bin
decompositions are shown in Figure 12 (left).

The black cross on the top represents one bin with the whole population (400 agents),
with an average correlation of 0.125, as said above. The second shape (using orange trian-
gles) is formed by the 51 possible bins using agents 1..350, 2..351, . . . , 51..400. For smaller
bins underneath we see that the average correlation decreases (in other colours). If we look
at the concave shapes we clearly see that the average correlation is not the same for the

1. In some previous work (Mart́ınez-Plumed, Prudêncio, Mart́ınez-Usó, & Hernández-Orallo, 2016;
Hernández-Orallo, 2017), they were ordered from best to worst.
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Figure 9: Same as Figure 8, with rule 164 and other policies.
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Figure 10: Results for 400 agents (randomly-generated programs) and 256 tasks (all the
ECA rules). Left: histogram of the 400 � 256 = 102400 responses. Right: agent
performance versus agent response variance, showing the regions of low/high
ability and low/high generality.

whole range, with smaller values for middle quantiles (around 0.5 on the x-axis). In fact,
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Figure 11: Results for 400 agents (randomly-generated programs) and 256 tasks (all the
ECA rules). Left: histogram of the 32640 correlations. Right: histogram of
agent performances.
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Figure 12: Results for 400 agents (randomly-generated programs) and 256 tasks (all the
ECA rules). Note that the x-axis goes from lower to higher abilities. Linear
regressions in six different colours are shown for the six series having more than
one bin. The slopes of these regression models and the 95% confidence interval
for the slopes are also shown in six different colours at the top of the plots. Left:
average correlation per quantiles using several bin sizes where agents are sorted
by overall performance. Right: the variance of the agent performance per bin.

we see correlations are higher for the more able group (high performance) and the less able
group (low performance).
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Trying to interpret these first results, we first see that the trends are very timid. Looking
at the regression lines, we see some decrease, which is significant for some of the decompo-
sitions. Before seeing this as support for SLDR, we can look at the variances in Figure 12
(right), which are practically equal to the average correlations, as pointed by Jensen. This
might be related to the way the environments are defined, and suggest that we should
explore some variations.

In particular, the reward mechanism makes that those agents that commonly generate
1s will be usually good for many tasks, and those agents that commonly generate 0s will be
usually bad for many tasks. This thing alone could be behind the 0.125 task correlation. In
order to analyse the relevance of the reward criterion on the results, we perform a second
experiment where the reward mechanism is being mirrored for half of the tasks (so agents
cannot specialise to it). By mirroring we mean that the goal is now to be surrounded by as
many 0s as possible. This is introduced in order to have those policies that just create 1s to
be compensated by other dual environments, for which this strategy would not work. This
creates a balance and symmetry in the way programs deal with cells. However, with the
original agent policy language, this would also lead to every possible agent scoring equally
on average (a kind of no-free lunch result). In order to prevent this, we have to include a
second modification to the agent policy language: agents can now see the rewards. This
is achieved by modifying definition 6, in such a way that when the observation is read
xσp�1, σp�1y and these two elements are appended at the end of the history array m, an
extra bit is appended as follows: if the previous reward is greater than 0.25 then a 1 is
appended. Otherwise, a 0 is appended. Note that by making agents observe the rewards
we allow them to react to changing reward settings, but it is the mirroring mechanism that
benefits the agents that do so. These small modifications lead to very important changes
in the results, as we can see in Figures 13 and 14. First we see that the distribution of
responses is more multimodal now, and agent performance is much smaller now, as are the
correlations.

We can now look into the bins in Figure 15, where we now use 256 agents instead of
400. The top black cross uses all tasks (256) and all agents (256) together. The second
shape (orange triangles) shows 17 bins, using agents 1..240, 2..241, . . . , 17..256, and so on
for the other shapes, according to the sizes shown in the legend.

The average correlation almost disappears. It is now just 0.004, which is more consistent
with a population of agents that are generated randomly. This also matches the variances
on the right.

4.3 Analysis of Subpopulations Binned by Abilities and Difficulties

We now do an extra change in our analysis, as we did for the GVGAI competition data.
Figure 16 also slices the tasks by difficulty. We evaluate the more able agents with more
difficult tasks. In order to do this, we calculate difficulty of a task as the complexity of
the simplest policy that is successful for the task (Hernández-Orallo, 2015b). Complex-
ity/simplicity is measured as a combination of the size of the policy and its execution time.
We simplify the estimation of difficulty by only considering the length of the policies (and
not the execution time). This simplification is not very important for this agent language,
since all policies have a finite execution time that directly depends on the number of in-
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Figure 13: Same as Figure 10 but now the average correlations are for 256 agents (randomly-
generated programs) and 256 tasks (all the ECA rules), using mirrored rewards
for half of the trials.
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Figure 14: Same as Figure 11 but now the average correlations are for 256 agents (randomly-
generated programs) and 256 tasks (all the ECA rules), using mirrored rewards
for half of the trials.

structions (there are no loops or jump instructions). Consequently, given a tolerance ϵ, the
difficulty ~rϵspµq of a task µ is the length of shortest policy π that is acceptable for the task:

~rϵspµq � min
πPArϵspµq

Lpπq (1)
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Figure 15: Same as Figure 12 but now the average correlations are for 256 agents (randomly-
generated programs) and 256 tasks (all the ECA rules), using mirrored rewards
for half of the trials. Again, the x-axis goes from lower to higher abilities. Left:
average correlation per quantiles using several bin sizes, where results are sorted
by agent performance. Right: the variance of the agent performance of the bins.

Note that this is not the Kolmogorov complexity of the task (i.e., the shortest description
for the task) but rather the shortest description of any (acceptable) solution for the task.
Acceptability is defined using a tolerance ϵ:

Arϵspµq � tπ : Rπ,µ ¥ 1� ϵu (2)

i.e., the set of all acceptable policies for a task µ is given by those policies whose expected
response is above a threshold, given by the tolerance ϵ. Recall that we defined expected
response R as the average reward result of agent π in task µ. Instead of exploring all possible
policies, we implemented this approximation to difficulty exploring 400 random policies for
each task and finding the simplest ones in this set. This represents an upper bound to
difficulty. We chose tolerance to be the response that separates the 10% best agents for
each task.

Using this metric of difficulty, we sliced the set of tasks into bins (ties were broken
randomly). As we only use 256 agents in this experiment, the sizes of the bins were also
the same. As a result of all the changes, Figure 16 shows different shapes. As mentioned
above, the top black cross uses all tasks (256) and all agents (256) together, with 0.004
correlation, and the second shape (orange triangles) shows 17 bins, using agents 1..240,
2..241, . . . , 17..256, and so on. But now, for each of the bins, we also slice the problems
(tasks) according to their difficulty. For instance, for the first bin of the orange triangles
(the least able agents 1..204), we calculate the correlation with only the least difficult tasks
1..204.

The slicing by ability and corresponding difficulty for each group now shows a very
different picture. Figure 16 shows some very slight slopes in the descompositions, where we
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find higher correlations for higher abilities (the regressions have a very small, but significant
slope). In this case, the variance on the right does not explain the plot on the left, and
variance for small bins increase, somewhat surprisingly. Overall, this plot gives no evidence
in favour of Spearman’s Law of Diminishing Returns.
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Figure 16: Same as Figure 15, but each bin is only evaluated with the tasks of that quantile
of difficulty.

We have to keep in mind that we are generating agents with a very simple policy
language. Still, the agents can now access the rewards and compute actions with them so
that meaningful policies are generated. For instance, the policy that repeats the same action
if the reward is good and does another action otherwise can be coded with a relatively short
program in this language. Nevertheless, despite the flexibility of the language, we cannot
expect any especially good agent since programs are very small. But still, as they are
randomly generated, most agents are completely clueless in the environments. However,
after the GVGAI competition data, this was precisely the basic scenario we wanted to
explore, resembling some kind of minimal artificial life situation where we can consider all
agents up to a certain complexity and see if any correlation appears, however small it is.

5. Discussion

Looking at the scenarios of the two previous sections together (the GVGAI competition and
the synthetic setting) we find a consistent picture, and we can answer the questions that
were formulated in the introduction. The positive manifold is very small for the GVGAI
case and almost non-existent for the cellular automata scenario. In order to confirm this, we
also applied factor analysis to the data (using the R package “psych”), to both the GVGP
case and the cellular automata (non-symmetric rewards case and symmetric rewards case).
A one-factor model covered a proportion of the variance of 0.22, 0.16 and 0.01, respectively,
which is also consistent with the absence of a clear general factor in any of the three cases.
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Since the ability levels of the agents are small, as well as their generality (interpreted
as their manifold), the most interesting thing to look at is their trends, after binning by
both ability and difficulty. In these situations, the SLODR did not appear, although one
can argue that at this level of ability there is nothing yet to saturate, one of the rationales
behind the SLODR. For instance, if we focus on the most able agents in Figures 6 and 16,
we see that an incipient positive manifold may start appearing. The trend is extremely
small, and the slope barely significant in a few cases according to the confidence intervals.

If more experiments with more able agents brought positive slopes, we should consider
the possibility of postulating the reverse hypothesis, formulated as follows: given a popula-
tion of agents, the most able they are, the stronger the positive manifold will be, provided
they are evaluated at a difficulty level that suits and discriminates their ability range.
We can call this hypothesis the universal law of augmenting returns (ULOAR), opposing
SLODR. In fact, at a conceptual level, the ULOAR makes more sense for AI; there is no
reason to think that for artificial agents we may find some kind of saturation, once the
tendency is initially found at very low degrees of general ability. Indeed, the postulation
of this hypothesis comes more from the very notion of generality, especially if we assume
no limits on the difficulty scale. In this case the scores can range freely as well without
a possible saturation (in human intelligence, the limits to formulating extremely difficult
questions come from the fact that humans themselves formulate the questions).

Of course, solely on our experimental data, we cannot extrapolate from just two cases
that simply show a slightly higher (yet very small) correlation for the more able groups.
Still, this contributes to the intuition that, for artificial agents, SLODR may not hold in
general. Also, we cannot extrapolate this for human populations. Indeed it is still unclear
whether SLODR holds for humans or, more precisely, whether it holds for some human
populations with some distributions of tests.

The small statistical significance of the results is not the only limitation of this work.
There are also some issues about the way tasks are taken by each agent. We consider a
situation where agents are reinitialised after each task, and so the order of tasks is irrelevant.
In human evaluation, this is clearly not realistic, but also possibly not desirable, as we can
use adaptive testing to get a good evaluation by using tasks that are closer to the ability
of the individual that is being tested. Especially for machine learning in areas such as
gradual and incremental learning (Madden & Howley, 2004; Carroll & Seppi, 2005), we
can have transfer and graduation effects, in which a particular order of tasks (from easy
to more difficult, or from one domain to others) might be more beneficial for some agents
than others, or make some agents more or less general. For instance, humans are said to
be able to cope with any kind of task, but this could only be true when one considers the
necessary or convenient acquisition of some other skills first. Even seemingly unrelated tasks
can have effects on each other with an important effect on the development of some skills.
Correlations might appear when presented in different orders, such as chess for mathematics
or reading skills in humans (Sala & Gobet, 2016).

In a broader context, this paper has explored the notion of general intelligence as per-
formance for a range of tasks, following the recent theoretical and experimental analysis of
the problem of AI evaluation (Legg & Hutter, 2007; Hernández-Orallo & Dowe, 2010; Mnih
et al., 2015; Hernández-Orallo, 2016). Despite the indications, the ultimate goal has not
been to make any definitive claim about AI and generality, but to propose a novel method-
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ology (brought from a different area) of how generality can be analysed in AI. Also, this can
have implications in human and animal intelligence research, and areas such as artificial life
and multi-agent systems. However, some areas in AI can actually benefit from some of the
issues raised in this paper more immediately. The dilemma between SLODR, ULOAR or
neither of them can suggest new ways of empirically analysing AI systems, of devising new
benchmarks and competitions and, most especially, of analysing the experimental results.
Let us give some insight of how this could be done:

• A first important issue for the analysis of real competitions and benchmarks would be
the estimation of task difficulty, which is necessary to make the analysis properly, as
we have seen here with the bins per difficulty. We advocate for principled approaches
to difficulty, based on the policy descriptions (as done for the synthetic setting) instead
of deriving it from average performance (as done for the GVGAI competition). This is
closely related to the possibility of deriving tasks and their score magnitudes from first
principles, such that ratio scales are obtained, so that we are sure how all contribute
to the overall ability in a meaningful way. A particularly consistent combination
is the use of a tolerance of difficulty, which makes tasks binary, so converting the
aggregation of results of the same difficulty truly commensurate. Its variance would
be equal to that of a Bernoulli distribution, which is a function of the mean. In this
case, an increase in ability beyond random guess would necessarily entail an increase
in generality. Still, some other populational approaches such as Item Response Theory
(IRT) could be very appropriate (Embretson & Reise, 2000; De Ayala, 2009; Mart́ınez-
Plumed et al., 2016; Mart́ınez-Plumed & Hernández-Orallo, 2017). For instance, in
IRT models of ability, a better person-fit can represent that the agent is more general.

• A second, more controversial, issue is the possibility that generality can also be mea-
sured with fewer, yet more abstract, tasks, without the need of an empirical analysis.
This is perhaps possible, but it requires a strong theoretical understanding of what a
task really measures. It is important to highlight that this is one of the traditional
issues in behavioural evaluation (Hernández-Orallo, 2017). For instance, IQ tests can
be a proxy for general intelligence in humans, but it has been shown that, if applied
to AI systems, their scores become meaningless (Dowe & Hernández-Orallo, 2012).
Actually, AI systems can get good scores by specialising for them (Hernández-Orallo,
Mart́ınez-Plumed, Schmid, Siebers, & Dowe, 2016). This not only discourages the use
of human intelligence tests as a sufficient condition for generality (or intelligence), but
it also applies to the use (or overuse) of challenging tasks in AI. It is quite common
that when AI researchers attempt a previously unattainable problem (e.g., self-driving
cars or solving Go), they end up with very specialised systems (albeit the ideas can
be re-applied to other problems with human intervention). This suggests that fully
autonomous general-purpose AI is perhaps better evaluated and encouraged against
a wide range of simple tasks (instead of a few complex tasks), and that only when
the systems in these competitions and benchmarks start to show some general compe-
tence, the difficulty of the tasks can be increased. This contrasts with a tradition in
AI of seeking human or superhuman level for a particular (perhaps important) task,
while being calamitous for other tasks.
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• A third issue is that, in the context of a diversity of tasks, it is always important
to analyse the effect of agents based on a “big switch”, which, depending on some
detected features of the problem, can delegate the task to more specialised subproce-
dures. This is the approach taken by techniques such as meta-learning and algorithm
portfolios (Gerevini, Saetti, & Vallati, 2014), at least if features are detected and not
given, as done by Bontrager et al. (2016). The resulting systems are not specific any
more. For instance, algorithm selection “improves the performance and versatility of
those systems across a broad range of application domains” (Lindauer, Hoos, Hutter,
& Schaub, 2015). An important question is whether the results in future competi-
tions or benchmarks that use these “hyper-agents” (Mendes et al., 2016) will have a
higher general factor if these systems are included. This question is not straightfor-
ward since there is no strict line between modularity and generality in the way these
systems work. Being good at a range of tasks can entail some previous exploration
to decide which specific policy to use for the task. Also, the big switch can just work
at a higher level, with some subgroups of problems. Nevertheless, it is clear that an
exhaustive big switch approach with particular solutions for every single specific task
would be impractical for a really wide range of tasks (except for memory-oriented or
retrieval tasks).

• A fourth issue takes place when we analyse a population of agents that compete
against each other. This is a common situation in multiplayer games (such as most
table games), multi-agent systems and artificial life environments. For all these cases,
the individual analysis of generality cannot be done without the populational per-
spective. A general system here would be one that consistently scores against all the
other systems. This seems easier for the best and worst systems (they can win or lose
against all, respectively) than any middle-rank system. Should it get the same ex-
pected results independently of the ability of the opponent or should win/lose against
bad/good opponents, respectively? We see the connection of generality and the abil-
ity of performing well against a diversity of other agents, usually associated with the
term “social intelligence”, as relevant here. An interesting phenomenon to study in
a competitive scenario is whether correctly ranking the agents in terms of ability is
easier the more general the agents are. In competitions where there is more regularity,
and good agents usually beat bad agents, we can properly talk about the term “tran-
sitivity” (which we mentioned in the introduction), and generality is expected to be
high. On the contrary, if agents are less reliable and do not win or lose consistently
with agents of lower or higher rank respectively, the overall generality is expected to
be lower. Some of these issues are sometimes implicit in methods that derive rankings
from competitions, such as the Elo rating (1978) or more sophisticated schemes (Aziz
et al., 2015).

All these issues set some challenges, but also opportunities, that may require some extra
guidelines (Togelius, 2016) about how to organise and analyse the results of a competition
or a benchmark, especially if the aim is to encourage the construction of general-purpose
AI systems. It is also important to analyse how competitions evolve year after year by
comparing the indicators of generality. In this case, the competitions must preserve a sub-
set (sufficiently large but still small compared to the number of tasks in the competitions),
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kept for all the editions, such that results can be compared on this same set of data. Of
course, some areas in AI would be better suited than others to the concept of generality. For
instance, we can understand the notion of generality for a planner (Long & Fox, 2003) (i.e.,
a general planner would be the one that is good for a wide range of planning problems).
Nevertheless, it is still for learning systems where the notion of a general factor is more
intuitive and closer to the original notions in human intelligence. There are already several
‘experiment databases’ (Vanschoren, Blockeel, Pfahringer, & Holmes, 2012; Vanschoren,
van Rijn, Bischl, & Torgo, 2014) whose results can be used to analyse correlations, posi-
tive manifolds and whether SLODR (or ULOAR) is taking place there. Also, apart from
the general video game competition studied here, new platforms for AI evaluation, where
hundreds of tasks are integrated (Castelvecchi, 2016), can provide AI research with huge
amounts of experimental data.

The need for more abstract and powerful techniques to analyse the behaviour of AI
systems against a range of tasks, and the relation of these tasks with each other can be
done theoretically or empirically (Hernández-Orallo, Dowe, & Hernández-Lloreda, 2014;
Hernández-Orallo, 2017), but it is in increasing demand. For instance, the organisers and
community around the GVGAI competition seek to “categorize the games based on prop-
erties in the games and how various algorithms play them” (Bontrager et al., 2016). The
use of correlation matrices for AI competitions and benchmark results, and the use of bins
in terms of ability and difficulty is just a tip of an iceberg of possibilities.
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