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Abstract

Grid path planning is an important problem in AI. Its understanding has been key for
the development of autonomous navigation systems. An interesting and rather surprising
fact about the vast literature on this problem is that only a few neighborhoods have been
used when evaluating these algorithms. Indeed, only the 4- and 8-neighborhoods are usu-
ally considered, and rarely the 16-neighborhood. This paper describes three contributions
that enable the construction of effective grid path planners for extended 2k-neighborhoods;
that is, neighborhoods that admit 2k neighbors per state, where k is a parameter. First,
we provide a simple recursive definition of the 2k-neighborhood in terms of the 2k−1-
neighborhood. Second, we derive distance functions, for any k ≥ 2, which allow us to
propose admissible heuristics that are perfect for obstacle-free grids, which generalize the
well-known Manhattan and Octile distances. Third, we define the notion of canonical path
for the 2k-neighborhood; this allows us to incorporate our neighborhoods into two versions
of A*, namely Canonical A* and Jump Point Search (JPS), whose performance, we show,
scales well when increasing k. Our empirical evaluation shows that, when increasing k, the
cost of the solution found improves substantially. Used with the 2k-neighborhood, Canon-
ical A* and JPS, in many configurations, are also superior to the any-angle path planner
Theta∗ both in terms of solution quality and runtime. Our planner is competitive with one
implementation of the any-angle path planner, ANYA in some configurations. Our main
practical conclusion is that standard, well-understood grid path planning technology may
provide an effective approach to any-angle grid path planning.

1. Introduction

Grid path planning is one of the most well-known problems in AI. It arises naturally when
modeling the problem of goal-directed navigation over a two-dimensional space as a graph
search problem over a grid in which each cell of the grid can either be an obstacle or be
free.
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Grid path planning has a number of applications, ranging from robotics (Lee & Yu,
2009) and video games (Björnsson, Enzenberger, Holte, & Schaeffer, 2005). Furthermore,
it still captures significant attention from the AI community. Notably, three editions of
the Grid Path Planning Competition (GPPC) have recently been held (Sturtevant et al.,
2015), putting to test the latest advances in the area (Botea & Harabor, 2013; Harabor &
Grastien, 2011; Uras, Koenig, & Hernández, 2013).

Research on grid path planning has focused on simple 4-neighbor grids in which cardinal
moves are allowed, and 8-neighbor grids that extend 4-neighbor moves with diagonal moves.
Perhaps the main reason why this is so is that these neighborhoods are simple to implement
and that good heuristics are known for them. Indeed, the Manhattan and Octile distances
(Sturtevant & Buro, 2005) are perfect heuristics for, respectively, 4- and 8-neighbor obstacle-
free grids. Although distance functions for the 16-neighborhoods have been discovered and
studied by researchers of the Computer Vision community (Marchand-Maillet & Sharaiha,
1997), to our knowledge, evaluations of grid path planning over 16-neighborhoods (e.g.
Nash, 2012; Aine & Likhachev, 2016) have never considered these heuristics, using the
Euclidean distance (ED) instead.

Perfect heuristics for obstacle-free grids allow planners like A* to find solutions more
quickly. They frequently are a key enabler of other techniques for grid path planning. One
example is the approach by Uras et al. (2013), winner of the 2013 GPPC, optimal track,
which relies heavily on the Octile distance to compute subgoal graphs that are later exploited
for fast path planning. Another example is FRIT (Rivera, Illanes, Baier, & Hernández,
2014), a state-of-the-art real-time heuristic search path planning algorithm whose perfor-
mance relies on the construction of a so-called ideal tree for which the Octile/Manhattan
heuristic is used.

An important issue when finding paths with 4- and 8-neighbor grids is suboptimality
with respect to an any-angle path. This issue has also been referred to as digitization bias
(Tsitsiklis, 1995; Hew, 2017). Intuitively, because only a few moves are allowed to generate
successors, paths cannot bend with the angles needed to achieve optimality. Bailey, Tovey,
Uras, Koenig, and Nash (2011), indeed, studied problem of suboptimality of 4- and 8-
neighbor path planning in detail, and established that the cost of 4- and 8-neighbor optimal

solutions can be, at most, a factor of
√

2 ≈ 1.41 and
√

4− 4
√

2 ≈ 1.08 away from the cost
of any-angle optimal solutions, respectively.1

To find solutions of better quality while still applying graph search algorithms, re-
searchers have extended A* with the ability of finding moves with a greater angle diversity
(e.g., Daniel, Nash, Koenig, & Felner, 2010), and proposed algorithms that can directly con-
sider paths that can utilize arbitrary angles (e.g, Harabor, Grastien, Öz, & Aksakalli, 2016).
Another option, which has not been considered in depth in the literature, is increasing the
size of the neighborhood.

In this paper we study grid path planning on the 2k-neighborhoods, which are neigh-
borhoods which, given a parameter k, define 2k moves. Our first contribution is a definition
of such neighborhoods. A notable property we prove is that the radius of the smallest
square that contains the moves is given by the Fibonacci series. Furthermore, we derive
and prove the correctness of an algorithm that returns the distance between any two points

1. These results are obtained by Bailey et al. (2011) when the vertices of the search graph are placed at
the corners of the grid cells.

82



The 2k Neighborhoods for Grid Path Planning

of an obstacle-free grid over the 2k-neighborhood. Our proof and construction work for
any k, thus generalizing the Manhattan and Octile distances, and the distance function
of Marchand-Maillet and Sharaiha. Our proof, however, seems much shorter and simpler
than the proof by Marchand-Maillet and Sharaiha for the 16-neighborhood. Finally, we
define canonical orderings (Harabor & Grastien, 2011; Sturtevant & Rabin, 2016) for the
2k-neighborhood. Canonical ordering is a technique at the core of Jump Point Search (JPS)
(Harabor & Grastien, 2011), which is among the fastest search algorithms for 8-connected
grid path planning.

We implemented three 2k path planners: regular A*, A* with our canonical orderings,
and a 2k version of JPS. We evaluate them over standard benchmarks. We test different
values of k, and compared our 2k-tile heuristic with the ED. The runtime of Canonical
A* and JPS scales with k while this does not hold for regular A*. Our heuristics yield
faster search compared to the ED, for every neighborhood with regular A*, and up to the
8-neighborhood with Canonical A*. We compared also with the any-angle path planners
Theta* (Daniel et al., 2010) and two implementations of ANYA (Harabor & Grastien, 2013;
Harabor et al., 2016): a version by Uras and Koenig (2015) and the version reported by
Harabor et al. (2016). The optimized version of ANYA (Harabor et al., 2016) outperforms
our implementations in runtime, while we outperform Theta* in many of our configurations.

The research we report in this paper includes and extends a previously published AAAI-
17 paper (Rivera, Hernández, & Baier, 2017). The following items describe material not
included in the AAAI publication.

• We propose a new iterative heuristic function and prove its correctness. This func-
tion had been published before in another conference publication (Hormazábal, Dı́az,
Hernández, & Baier, 2017).

• We discuss and evaluate a 2k version of JPS.

• We consider the path planning problem when the agent stands on the corners of
the cells rather than in the middle. We adopt this different view because in 4- and
8-connected grids, this yields lower cost (optimal) solutions (Bailey et al., 2011).

• We extend the experimental results by showing the performance over different types
of benchmarks (game maps, rooms, and random).

• We extend the theoretical results with an additional theorem (Theorem 10) on the
consistency of our proposed heuristic, h2k . Furthermore, we provide complete proofs
for all theorems.

• We compare against the any-angle path planners Theta* and ANYA over all bench-
marks.

Next, we introduce background information and then define the 2k-neighborhood. Then
we derive our 2k-tile heuristic. We continue proposing our canonical orderings, and finish
with our empirical evaluation and conclusions.
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2. Background

In this section we review the basics of grid path planning and introduce the most commonly
used neighborhoods.

2.1 Grid Path Planning

An N ×M grid is a tuple (C,O), where C = {(i, j) ∈ N × N | 0 ≤ i < N, 0 ≤ j < M} is
a set of cells and O ⊆ C is the set of obstacle cells. The four corners of cell (i, j) are (i, j)
(the lower-left corner), (i + 1, j) (the lower-right corner), (i, j + 1) (the upper-left corner),
(i+ 1, j + 1) (the upper-right corner).

In the grid path planning literature, two assumptions have been made regarding where
the position the agent may be located at while moving through the grid. The first, more
traditional assumption, is that the agent is located in the center of the cell. In the second,
the agent is located at one of the corners of some cell. In the rest of the paper, we adopt
this second view, because (1) it simplifies the presentation when considering extended neigh-
borhoods, and (2) paths found with using this assumption are shorter and closer to truly
optimal paths (Bailey et al., 2011) in 4- and 8-connected grids. Another important reason
to take this view is that Kramm, Rivera, Hernández, and Baier (2018) recently showed that
when k increases and vertices are located at the corners of cells, the cost of optimal paths
provably get closer to the any-angle optimal path, while this is not the case when vertices
are located at the centers of cells. Of course, a consequence of this view is that the agent
moves very close to obstacle cells; indeed, it ‘touches’ obstacles. While this may be seen as
a drawback, it is consistent with the traditional any-angle literature (cf. Figure 2; Harabor
et al., 2016).

The search graph associated to a grid (C,O) has one vertex for each of the corners of a
cell in C. The edges of the search graph are determined by which moves can be performed by
the agent. Each move is an ordered pair of integers. The set of moves is called neighborhood.

In the rest of the paper, we use ordered pairs to denote both moves and points in
2D. We interpret these pairs as 2D vectors. As such we assume the following identities
hold: (x, y) + (x′′, y′) = (x + x′, y + y′), and c(x, y) = (cx, cy). We denote ordered pairs
using boldface. We use the notation [a, b] to refer to the real interval {x ∈ R | a ≤ x ≤
b}, and ]a, b[ to refer to {x ∈ R | a < x < b}. The interior of a cell c is the set of
points {c + µ(0, 1) + ν(1, 0) | µ, ν ∈ ]0, 1[}. The border of a cell c are those points in
{c + µ(0, 1) + ν(1, 0) | µ, ν ∈ [0, 1]} that are not in the interior of c. Finally, we say that
(x, y) is contained by two moves m and m′ iff there exist two non-negative numbers α and
β such that (x, y) = αm + βm′.

The set of points visited by applying a move m in p is {p + λm | λ ∈ ]0, 1[}. A move
m is applicable in a vertex u iff:

1. u + m is a vertex of the graph, and

2. points visited by m when applied in u do not contain:

(a) points in the interior of an obstacle cell

(b) points in the intersection of the borders of two cells2

2. Note that the intersection of the borders of two cells can be nonempty only if those cells are adjacent.
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Figure 1: A 3× 3 grid showing applicable moves (in blue) and inapplicable moves (in red).
Move (1, 3) is not applicable in vertex (0, 0) because it visits points in the interior
of cell (0, 1). Moreover, move (0, 1) is not applicable in vertex (1, 1) because it
visits points in the intersection of the borders of cells (0, 1) and (1, 1).

See Figure 1 for an illustration of moves that are applicable and not applicable.

The set of successors of a vertex u is defined as:

SuccN (u) = {m + u |m ∈ N and m is applicable in u}.

A path from u to v over N is a sequence of vertices v1v2 · · ·vn such that v1 = u, vn = v,
and for every i ∈ {1, . . . , n − 1} it holds that vi+1 ∈ SuccN (vi). Note that this defini-
tion implies that paths can squeeze through diagonally placed obstacles; in Figure 1, path
(1, 0)(2, 1)(2, 2) is legal. We say that a path v1v2 · · ·vn is generated by the sequence of
moves m1m2 · · ·mn−1 iff vi + mi = vi+1, for every i ∈ {1, . . . , n− 1}. Two vertices v1 and
v2 are reachable over N if there exists a path over N that starts with v1 and ends with v2.

The cost of a path σ = v1 · · ·vn is c(σ) =
∑n−1

i=1 ‖vi+1−vi‖. A path σ from u to v over
N is optimal if for every path σ′ from u to v over N it holds that c(σ) ≤ c(σ′).

A grid path planning problem is a tuple P = (C,O,N ,ustart ,ugoal ), where (C,O) is a
grid, N is a neighborhood, ustart ∈ G and ugoal ∈ G are, respectively, the start and goal
vertices of the search graph associated with (C,O) for neighborhood N . A solution (resp.
optimal solution) for P is a path (resp. optimal path) over N from ustart to ugoal containing
only moves in N .

A concept that is useful below is that of a convex corner of an obstacle. A pair (x, y) is
a convex corner of an obstacle if either:

1. (x, y) is the lower-left or upper-right corner of some obstacle cell and moves (1,−1)
and (−1, 1) are applicable in (x, y), or

2. (x, y) is the upper-left or lower-right corner of some obstacle cell and moves (1, 1) and
(−1,−1) are applicable in (x, y).

The definition above does not assume that the diagonal moves, such as (1,−1), are part of
the neighborhood. Thus this definition also applies to a 4-connected grid.
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2.2 The 4- and 8-Connected Neighborhoods and Their Heuristics

The 4- and 8-connected neighborhoods have been used traditionally to evaluate grid path
planning algorithms. The 4-connected neighborhood is defined as:

N4 = {(i, j) | i, j ∈ {−1, 0, 1}, |i|+ |j| = 1},

effectively only allowing vertical and horizontal moves. The 8-connected neighborhood, in
addition, extends the 4-connected neighborhoods with diagonal moves. It is defined as:

N8 = {(i, j) | i, j ∈ {−1, 0, 1}, |i|+ |j| > 0}.

The Manhattan distance between two grid cells u and v is the cost of an optimal path
over N4 between u and v′, assuming the grid is obstacle-free. It is defined as |∆x|+ |∆y|,
where ∆x and ∆y satisfy (∆x,∆y) = v − u. Likewise, the Octile distance, given two pairs
of cells u and v, returns the cost of an optimal path over N8 assuming the set of obstacles
is empty. It is defined as

max{|∆x|, |∆y|}+ (
√

2− 1) min{|∆x|, |∆y|},

where ∆x and ∆y are defined as above. We denote the Manhattan and Octile distance
between u and v, respectively, as h4(u,v) and h8(u,v).

2.3 The Any-Angle Neighborhood

Any-Angle grid path planning allows the agent to move to any point in the grid that is line-
of-sight. Therefore the any-angle neighborhood contains a move for reaching every vertex
in the search graph.

3. The 2k Neighborhoods

Below, we define the 2k-neighborhoods such that they generalize the 4-, 8-, and 16-connected
neighborhoods traditionally used in the grid path planning community. We define N2k , for
every k ≥ 2, in terms of a series Q0,Q1, . . ., which is such that Qi is a sequence that contains
the first-quadrant moves of N2i+2 . Its first element, Q0, contains the 4-neighborhood moves
on the first (i.e., positive) quadrant; thus, Q0 = 〈(1, 0), (0, 1)〉. Now if Qi = 〈a0, . . . ,an〉,
Qi+1 is constructed from Qi by inserting between each consecutive elements aj and aj+1

the sum aj + aj+1. Formally, Qi+1 = 〈b0,b1, . . . ,b2n〉, where

b2j = aj ,when 0 ≤ j ≤ n, and (1)

b2j+1 = aj + aj+1,when 0 ≤ j < n. (2)

The first three elements of the series are:

Q0 = 〈(1, 0), (0, 1)〉
Q1 = 〈(1, 0), (1, 1), (0, 1)〉
Q2 = 〈(1, 0), (2, 1), (1, 1), (1, 2), (0, 1)〉
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Q0,Q1, . . . ,Q5 are also illustrated as the first-quadrant elements of Figure 2.

Observe that elements in Qi are pairwise linearly independent. This is an important
property because it says that moves are unique in the sense that they cannot be simulated
by repeating other moves in the neighborhood. We can prove this fact by induction. Indeed,
Q0 is such that its two elements are linearly independent. Moreover, every new element
added to Qi+1 that was not in Qi is linearly independent from each element in Qi, because
it is the sum of two (linearly independent) elements of Qi. We formalize this as:

Proposition 1 If u,v ∈ Qi, and there exists a k such that u = kv, then u = v.

To define a neighborhood in terms of the first-quadrant moves, we simply map every
move to all four quadrants. As a result, for the orthogonal moves ((0, 1) and (1, 0)), we
generate two new moves ((0,−1) and (−1, 0)) while each non-orthogonal (x, y) generates
3 additional moves that correspond to changing the signs of x and y. In short, for every
natural i, we define:

N2i+2 = {(kx, k′y) | (x, y) is in Qi and k, k′ ∈ {−1, 1}} (3)

Henceforth we may abuse notation by interpretingN2k as a sequence of moves 〈v0,v1, . . . ,v|N
2k
|−1〉.

When we do so, we assume the first element of the sequence is (0, 1), and that vi and vi+1

are such that no u ∈ N2k different from vi and vi+1 is contained by vi and vi+1, for every
i ∈ {0, . . . , |N2k | − 2}; that is, moves in N2k are ordered clockwise. In addition, if m = vj ,
for some j, then m + 1 and m − 1 denote, respectively the move immediately clockwise
(that is, v(j+1) mod 2k) and immediately counter-clockwise (that is, v(j−1) mod 2k) from m.
Finally, if m = vj for some odd j, we say that m is an odd move, and when j is even, we
say m is an even move.

Proposition 2 The cardinality of N2k is 2k, for every k ≥ 2.

Proof: Observe that |Q0| = 2 and that |Qi+1| = 2|Qi| − 1, which is a recurrence equation
whose solution is |Qi| = 2i + 1. For every non-orthogonal move in Qi (of which there are
|Qi| − 2) there are four moves in N22+i . Additionally, N22+i contains 4 orthogonal moves,
yielding a total of 4(|Qi| − 2) + 4 moves. This yields |N22+i | = 2i+2, for every i ≥ 0. �

A property of our definition is that the size of the smallest square in which all moves
in Qi can be circumscribed—defined below as the radius of the neighborhood—grows ex-
ponentially (see Figure 2); more precisely, it grows with the Fibonacci numbers. Before
establishing the result, let us formally define the radius of a neighborhood.

Definition 3 The radius of a neighborhood N is defined as:

radius(N ) = max{max{|p|, |q|} | (p, q) ∈ N} (4)

Now, we define the Fibonacci series using the Fib function:

Fib(i) =

{
1 if i = 0 or i = 1

Fib(i− 1) + Fib(i− 2) if i > 1.
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k = 2 k = 3 k = 4 k = 5 k = 6

Figure 2: The 4-, 8-, 16-, 32-, and 64- neighborhoods.

Theorem 4 radius(N2k) = Fib(k − 2).

To simplify notation, below we use Qk to denote the element in position k of sequence
Q, where k may take values from 0 to |Q| − 1. To prove Theorem 4, first observe that

Qk
i = Q(k−1)/2

i−1 +Q(k+1)/2
i−1 holds true, when k is an odd number. In addition, observe that

(k+1)/2 and (k−1)/2 are consecutive and thus one of them is an even number. Therefore,
if (k + 1)/2 is even, then, via Equation (1):

Qk
i = Q(k−1)/2

i−1 +Q(k+1)/4
i−2 . (5)

Otherwise, if (k − 1)/2 is even:

Qk
i = Q(k−1)/4

i−2 +Q(k+1)/2
i−1 . (6)

The proof of Theorem 4 is straightforward from the following two lemmata.

Lemma 5 Each coordinate of any pair in Qi is lower than or equal to Fib(i).

Proof: By induction on i, we verify by inspection that this is true in the base case (i = 0).
Assume the property holds for every i ∈ {1, . . . , n − 1}. We slightly abuse notation below
by saying (x, y) ≤ k when both x ≤ k and y ≤ k hold. Now, we prove that for every
k, Qk

n ≤ Fib(n). We distinguish two cases: k is even, and k is odd. If k is even, then

Qk
n = Qk/2

n−1. By the inductive hypothesis, Qk
n ≤ Fib(n − 1) and therefore we conclude

Qk
n ≤ Fib(n), because Fib is non-decreasing.

Now assume k is odd. Then we have two cases (Equations (5) and (6)) which are proven
analogously. The proof follows in the same way for both cases so we simply assume:

Qk
n = Q(k−1)/2

n−1 +Q(k+1)/4
n−2 (7)

By the induction hypothesis and the definition of Fib,

Qk
n ≤ Fib(n− 1) + Fib(n− 2) = Fib(n),

which concludes the proof. �
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Lemma 6 Let Fi be the series defined by F0 = 0, and Fi = 2Fi−1 + (−1)i−1, for i > 0.
Then the first coordinate of QFi

i equals Fib(i), for every i.

Proof: The first observation is that Fi is formed by adding or subtracting 1 to an even
number (2Fi−1) and thus is odd, for every i > 0. Now the proof proceeds by induction on
i. Note that for the base case (i = 0) the property holds. Assume the property holds for
every i ∈ {1, . . . , n− 1}. Now we prove it also holds for n.

We now have two cases: n is even and n is odd. We focus only on the former case
because the proof for the latter is analogous. Because n is even,

Fn = 2Fn−1 − 1. (8)

Observe further, that from Equation (8) we obtain:

(Fn + 1)/2 = Fn−1 (9)

Also, observe this means that (Fn + 1)/2 is odd, and thus (Fn − 1)/2 is even.
Now, by Equation (8),

Fn − 1

4
=
Fn−1 − 1

2
, (10)

then we use the definition of Fi to write,

Fn − 1

4
=

2Fn−2 + 1− 1

2
= Fn−2. (11)

Substituting with Equations 9 and 10 in Equation (6) we can write:

QFn
n = Q(Fn+1)/2

n−1 +Q(Fn−1)/4
n−2

= QFn−1

n−1 +QFn−2

n−2 . (12)

Finally, we obtain the desired result by using the inductive hypothesis. �

Our definition for N2k is related to the Farey Series (Hardy & Wright, 2008), where the
Farey Series of order n, Fn, is the sequence of irreducible fractions between 0 and 1 whose
denominators do not exceed n. For example F3 is equal to 0

1 ,
1
3 ,

1
2 ,

2
3 ,

1
1 . A property of this

series is that if a/b, a′/b′, and a′′/b′′ are three consecutive Farey fractions, then a′ = a+ a′′

and b′ = b+ b′′ (Theorem 29; Hardy & Wright, 2008).

4. A Distance for the 2k-Neighborhood

In grid path planning it is essential to use informative heuristics. In 4- and 8- neighbor grids,
the Manhattan and the Octile Distance, respectively, outperform the Euclidean distance
in terms of the number of nodes expanded. Both the Manhattan and the Octile distance
correspond to the cost of a shortest path between an arbitrary location and the goal location,
ignoring any obstacles.

In this section we develop an analogue of the Manhattan and Octile distances for the
more general 2k-neighborhoods. We focus on answering the question: given an arbitrary
i, and two non-negative numbers, x and y, what is the cost of the shortest path between
(0, 0) and (x, y) when only moves in Qi can be applied?
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The problem can be formalized as an Integer Program (IP). Indeed, if Qi = 〈v0, . . . ,vn〉,
we want to solve the following IP, P i:

Minimize

n∑
i=0

αi‖vi‖ (13)

subject to:

n∑
i=0

αivi = (x, y), (14)

αi ≥ 0, (15)

for every i ∈ {0, . . . , n}, where each αi is an integer variable that intuitively represents how
many times move vi is applied.

Below we prove that the linear-programming (LP) relaxation of P i always has an integer
solution. Before proving such a result, we turn our attention to the LP relaxation of P i,
that we denote P i

LP, studying its properties and solution.

4.1 A Solution to P i
LP

Our first result establishes that we can focus on a simpler, two-variable problem instead of
the original n-variable problem.

Theorem 7 Assume Qi = 〈v0, . . . ,vn〉, and let j be such that (x, y) is contained by vj and
vj+1. Then P i

LP is equivalent to P̂ i
LP, defined as:

Minimize αj‖vj‖+ αj+1‖vj+1‖ (16)

subject to:

αjvj + αj+1vj+1 = (x, y), (17)

Proof: For the rest of the proof, given an assignment σ of values for every variable αi

in P i
LP we denote by D(σ) the value of

∑n
i=0 αi‖vi‖. Assume that the optimal solution

to P i
LP is an assignment σ, to all variables αi such that σ(αk) > 0, for some k such that

k < j. (The same proof below can be slightly modified to accommodate the case in which
k > j + 1, but we omit this for simplicity.) Now consider the curve formed by putting all
vectors vi one after the other, with vk put first. Because the curve ends in (x, y) and starts
in (0, 0), it must intersect the ray generated by vector vj . This curve can then be “split”
into two parts: the part that goes before such an intersection, and the part that goes after
the intersection.

Now we formalize the fact that the sum can be separated in two parts, one containing the
vectors before the intersection; the other, containing the vectors coming after. This means
(x, y) can be expressed as the sum of vectors whose indices are in two disjoint sets: A− and
A+, containing, respectively, the indices of the vectors before and after the intersection.
The index T , moreover, is used to denote the vector that actually intersects the ray. T does
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(x; y)

vj

vj+1
αk1

vk

(x; y)

vj

vj+1

(a) (b)

Figure 3: An illustration of the proof of Theorem 7. In this illustration we assume vj

and vj+1 are consecutive in Q and (x, y) is contained by vj and vj+1. (a) We
assume the optimal solution uses vectors vk1 , . . . ,vk4 . In the proof, this means
A− = {k1, k2}, T = k3, and A+ = {k4}. We observe that the portion of the
optimal solution curve to the left of vj in (a) can be “replaced” by αvj , for some
α, producing a better solution (b).

not belong to A− or A+. Note that A− is non-empty because it contains k. Finally, for
some positive value m and some non-negative value β ≤ αT we have that:∑

`∈A−

α`v` + βvT = mvj , for some m, and, (18)

mvj + (αT − β)vT +
∑
`∈A+

α`v` = (x, y). (19)

For an illustration of the previous two equations, see Figure 3.

Note that Equation 19 yields a different assignment, say σ′′, that satisfies all constraints
of P i

LP and which assigns to 0 every αi such that i ∈ A−. Furthermore D(σ′) < D(σ).
Indeed, this new assignment has replaced a curve of the original solution by a straight line.

The argument above can be used with any assignment that uses vectors whose index is
either lower than j or greater than j + 1. We conclude therefore that the optimal solution
must be such that αi = 0, for every i such that 0 ≤ i < j or such that j + 1 < i ≤ n.
Therefore, the solution to P i

LP is equivalent to that of P̂ i
LP.

Finally, observe that P̂ i
LP has only one feasible assignment yielded by the solution to

Equation (17), which must be such that both αj and αj+1 be positive. �

Given Theorem 7, a solution to P i
LP can be computed very easily since P̂ i

LP has only one
feasible point. Specifically, this is the assignment to αj and αj+1 that solves the system of
two linear equations of Equation (17). Observe also that the solution to P i

LP can therefore
be computed in constant time.

91



Rivera, Hernández, Hormazábal & Baier

The following result finally establishes that a solution to P̂ i
LP has an integer solution,

for every i ≥ 0, and therefore that it is a solution for P i.

Theorem 8 P̂ i
LP has a unique integer optimal solution, for every i ≥ 0.

Proof: We prove that the values for αj and αj+1 that satisfy Equation (17) are integer,
for every i. The proof is by induction on i. For the base case, observe that for i = 0 the
solution is αj = x and αj+1 = y, and thus integer.

Now we assume that the solution for P̂k
LP is integer. Let us assume that Equation (17)

for P̂k+1
LP is:

αjvj + αj+1vj+1 = (x, y), (20)

Because vj and vj+1 are consecutive pairs in Qk+1, one of them is in Qk whereas the other
is the sum of two elements in Qk. Without loss of generality, let us assume the former is
vj+1 and that the latter is vj . Then we can rewrite Equation (20) as αjvj−1 + αjvj+1 +
αj+1vj+1 = (x, y), or equivalently:

αjvj−1 + (αj + αj+1)vj+1 = (x, y), (21)

where vj−1,vj+1 ∈ Qk. Now we use the inductive hypothesis to conclude that the system
of equations given by Equation (21) has one integer solution; hence αj and αj + αj+1 are
integer, which ultimately implies αj+1 is integer too. �

The following result is straightforward from Theorem 8, and essentially says that, to find
an optimal path to (x, y), we just need to pick the “closest” moves in the neighborhood,
and combine both. We infer our heuristics and canonical orderings from there.

Corollary 9 Assume Qk−2 = 〈v0, . . . ,vm〉, and that cell (x, y) is in the positive quadrant.
Furthermore, let j be such that (x, y) is contained by vj and vj+1. Then (x, y) can be
reached optimally from (0, 0) over N2k using an integer combination of vj and vj+1.

4.2 A Heuristic for N2k

From Theorems 7 and 8, we obtain the following algorithm that computes the length of the
optimal path from (0, 0) to a point (x, y) over N2k , assuming N2k = 〈v0, . . . ,vm〉:

1. Determine a j such that (x, y) is contained by vj and vj+1. To search for such a j we
can do a sequential search or a binary search.

2. Solve the system of two linear equations given by Equation (20), and return αj‖vj‖+
αj+1‖vj+1‖.

If P is a path planning problem with goal vertex g, and c is a vertex in the search graph of
P , we denote by h2k(c) the value returned by the procedure above over g − c.

Theorem 10 h2k is a consistent heuristic for N2k .
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Proof: Let s′ be a successor of s then h2k(s) ≤ c(s, s′) +h2k(s′) is straightforward from the
fact that h2k is a distance function over an obstacle-free grid. �

Given k, it is not hard to generate pseudocode that will carry out the necessary computation
to complete steps 1 and 2. Algorithm 1 shows the resulting heuristics for different values of
k. In them, Step 1 is resolved using sequential search, and thus, in the worst case is needs
to perform O(2k−2) checks.

Algorithm 1: Heuristics for the 8-, 16-, 32-, and 64-neighborhoods

1 function h8(x, y)
2 if x > y then swap x and y

3 return (y − x) +
√

2x

4 function h16(x, y)
5 if x > y then swap x and y

6 if 2x < y then return (y − 2x) +
√

5x

7 else return
√

5(y − x) +
√

2(2x− y)

8 function h32(x, y)
9 if x > y then swap x and y

10 if 3x < y then return (y − 3x) +
√

10x

11 else if 2x < y then return
√

10(y − 2x) +
√

5(3x− y)

12 else if 3x < 2y then return
√

5(2y − 3x) +
√

13(2x− y)

13 else return
√

13(y − x) +
√

2(3x− 2y)

14 function h64(x, y)
15 if x > y then swap x and y

16 if 4x < y then return (y − 4x) +
√

17x

17 else if 3x < y then return
√

17(y − 3x) +
√

10(4x− y)

18 else if 5x < 2y then return
√

10(2y − 5x) +
√

29(3x− y)

19 else if 2x < y then return
√

29(y − 2x) +
√

5(5x− 2y)

20 else if 5x < 3y then return
√

5(3y − 5x) +
√

34(2x− y)

21 else if 3x < 2y then return
√

34(2y − 3x) +
√

13(5x− 3y)

22 else if 4x < 3y then return
√

13(3y − 4x) + 5(3x− 2y)

23 else return 5(y − x) +
√

2(4x− 3y)

4.2.1 A 2k Iterative Heuristic

Solving Step 1 using binary search is also possible. This means that, for a specific k we can
write a pseudo code that would need, during execution, O(k) “if” checks in the worst case.
Nevertheless, the pseudo-code itself would be exponential in k. Interestingly, it is possible
to construct a function that receives k as parameter, whose execution time is linear in k,
and whose size is constant.

The key observation is that to compute the heuristic it is not necessary to carry out a
two-step approach described above in Section 4.2. At an abstract level, the algorithm can
be viewed as carrying out the binary search and solving the systems of equations at the
same time. The pseudocode is shown in Algorithm 2.

Each loop of the algorithm can be understood as playing a “factorization round”. Each
factorization round uses two consecutive moves of N2k . To illustrate this, imagine we want
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Algorithm 2: A general distance function for N2k

1 function distance(x, y, k)
2 l← (1, 0)
3 r← (0, 1)
4 repeat k − 2 times
5 if x > y then
6 r← r + l
7 x← x− y
8 else
9 l← r + l

10 y ← y − x

11 return x‖l‖+ y‖r‖

to compute the 2k distance to (10, 8) from (0, 0). Initially, we start with the 4-connected
neighborhood, and because (10, 8) = 10(1, 0) + 8(0, 1), 10 is the factor associated with the
move l = (1, 0) while 8 is the factor associated with r = (0, 1). For the first factorization
round (i.e., the first iteration of the main loop) we want to express (10, 8) in terms of
the l + r = (1, 1), because we know such a move appears in the next neighborhood. To
do this, we take the minimum between the two factors (in this case, 8) and use it as the
factor for (1, 1). To get the factorization right, we observe that we still need to use move
(1, 0), and that its factor is 10 − 8 = 2. Thus at the end of the first factorization round,
we have expressed (10, 8) as 2(1, 0) + 8(1, 1). In the next round the move to introduce is
(1, 0) + (1, 1) = (2, 1), its factor is min{2, 8} = 2, and we still need to use move (1, 1) with
factor 8−2 = 6; thus, we have expressed (10, 8) as 2(2, 1)+6(1, 1). As we continue iterating,
we find new factorization of moves of N2k , for increasing values of k.

Theorem 11 Function distance(a, b, k) returns the cost of an optimal path on the N2k

neighborhood that reaches (a, b) from (0, 0).

To prove theorem, we first prove the following two lemmata.

Lemma 12 After p iterations of the loop of Algorithm 2, l and r are consecutive moves of
Qp.

Proof: We prove this by induction on the number of iterations of the loop of Line 4. The
base case is trivial since (0, 1) and (1, 0) are consecutive moves of Q0. Now we assume
that after n iterations l and r are two consecutive moves of Qn. Then there are two cases.
First, the condition of the if statement of Line 5 is true, then in iteration n + 1, r and
l are consecutive moves in Qn+1 by definition of Q. The proof for the remaining case is
analogous. �

Lemma 13 The relations (a, b) = xl + yr, x ≥ 0, and y ≥ 0 are invariants of the loop of
a call to distance(a, b, k).

Proof: We also prove it by induction. After zero iterations the three relations hold (recall
that the input is such that (x, y) is in the first quadrant). Now we assume that after n
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iterations (a, b) = xl + yr. Then,

(a, b) = (x− z)l + (y − z)r + z(l + r), (22)

for any z. In particular, the algorithm behaves as if z = min{x, y}. Indeed, if x > y,
then x is redefined as x −min{x, y}, while y is not changed. Otherwise, y is redefined as
y − min{x, y}. This guarantees that x ≥ 0 and that y ≥ 0. Furthermore, Equation (22)
plus the way l and r are updated guarantee that (a, b) = xl + yr holds in iteration n+ 1. �

Now we are ready to provide a complete proof for Theorem 11.
Proof (of Theorem 11) : From Lemma 13, it holds that (a, b) is contained by l and r.
In addition, at the end of the execution, (a, b) = xl + yr, where, by Lemma 12, r and l are
consecutive moves of Qk−2. We observe, thus, that x and y are a solution to the system
of equations of Theorem 8, which in turn implies that x‖l‖+ y‖r‖ is the distance to (x, y)
from (0, 0) over N2k , which implies that Algorithm 2 is correct. �

5. Practical Grid Path Planning with N2k

Above we have formally characterized N2k and given a consistent (and admissible) heuristic
which is perfect for obstacle-free grids. Yet, if we plan to use A* for path planning, an
important issue of N2k is the increase in branching factor, which is exponential with k.
By just observing this fact one might, at first sight, discard an A* implementation of 2k-
neighborhoods. Indeed, with each A* expansion we would need to generate 2k successors,
many of which potentially have to be added to the Open list, incurring in much overhead.

Nevertheless an opposing observation is that in obstacle-free 2k-grids, the number of
optimal paths between two vertices may decrease substantially as k increases. This is
because, in obstacle-free grids, any reordering of the moves of an optimal path is also an
optimal path. With 2k-neighborhoods, optimal paths may use longer moves, resulting in
paths with fewer moves. As an example, let us consider the number of paths between (0, 0)
and (4, 2). When k = 2 (4-neighborhood), we reach (4, 2) with any sequence of moves
that has 4 vertical moves and 2 horizontal moves, yielding 6!

4!2! = 15 paths. When k = 3

(8-neighborhood), we require 2 diagonal (1,1) moves plus 2 vertical moves, yielding 4!
2!2! = 6

optimal paths. Finally, when k ≥ 4 there is only one optimal path with two (2, 1) moves.
Thus even though the branching factor increases exponentially with k, the number of

optimal paths between two points may decrease substantially with k. Therefore, at least at
a theoretical level, it is not obvious that increasing k should degrade performance of grid
path planning.

In this section, we show how recent developments in 8-neighbor grid path planning can
be leveraged for 2k-neighborhoods. Specifically, we show how Jump Point Search (JPS) and
Canonical A* can be adapted to the N2k neighborhood. Both JPS and Canonical A* have
been shown to improve the performance of a regular A* on the 8- and 4-neighbor grids,
and thus understanding how to incorporate it into the 2k is important since we would also
expect to see performance improvements compared to a regular A* implementation.

We follow the view of JPS given by Sturtevant and Rabin (2016), who show that JPS
can be understood as the composition of two ideas: a canonical orderings over paths of the
grid, and a specific successor function.
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S

G

Figure 4: Left: An illustration of the canonical paths on the 16-neighborhood. Right: The
canonical path (in gray) and two non-canonical paths (in black) between S and
G.

5.1 Canonical Paths for N2k

Following the definitions by Sturtevant and Rabin (2016), a canonical path on an 8-connected
grid is one that is generated by using a sequence of moves of the form dncm, where d is a
diagonal move and c is a cardinal move adjacent to d. The two most important properties
of canonical paths are: (i) that there is at most one canonical path between each pair of
vertices, and (ii) that every canonical path is also an optimal path. Property (ii) follows
from our Corollary 9, and property (i) follows from the restriction on the order of the two
moves. (For an illustration of canonical paths on an 8-connected grid, see Figure 5a.)

Adapting this definition toN2k is not hard if we guarantee these two properties identified
above. From Corollary 9, we know that each vertex in the obstacle-free grid is reached
optimally by applying only two consecutive moves from N2k , for any k. Thus to satisfy
condition (ii) we need to focus only on paths with two consecutive moves. Finally, to
satisfy condition (i) we can do as with 8-connected grids preferring one of those moves to
occur before the other move. In the definition below, we choose odd moves first because
this generalizes the definition for canonical path given by Sturtevant and Rabin (2016) for
8-connected grids:

Definition 14 A path over N2k is a canonical path iff it is generated by the sequence of
moves vnum, where v is an odd move in N2k , v is either v − 1 or v + 1, and n,m ≥ 0.

As an illustration, Figure 4 shows the canonical paths that originate from one vertex on
a 16-connected grid. Note here that (2, 1), and its variants (1, 2), (1,−2), and so forth, are
the only odd moves.
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5.2 Canonical A* for N2k

Canonical A* is a version of A* which, intuitively focuses on building canonical paths to
the goal. The advantage that this has in practice is that a single vertex cannot of the search
space cannot be rediscovered via another (equally good) path. To this end, Canonical A*
uses Harabor and Grastien (2011)’s notion of natural and forced successors in order to
prune the set of successors of a node. Intuitively, by only considering natural successors, A*
naturally builds canonical paths only. Nevertheless, because not all pairs of reachable nodes
are reachable via a canonical path, it is necessary to define the notion of forced successors,
which may be needed when the search expands a vertex that is the convex corner of an
obstacle.

Now we provide formal definitions for these two types of successors. As these definitions
are used in the context of an execution of Canonical A*, we refer to the concept of expansion
within the definitions.

Definition 15 Given search node u be such that it is expanded from its parent via move
m. A successor v of u is natural over N2k iff:

1. If m is odd, then v is in {u + (m− 1),u + m,u + (m + 1)}.

2. Otherwise, then v = u + m.

The natural successors of u are denoted by natural(u).

Furthermore, if v is the root node of the search (and thus has not been expanded from any
node), then SuccN

2k
(v) are the natural successors of v.

As mentioned above, when focusing on natural successors, the search will generate
canonical paths only. For an illustration, see Figure 5(a). Now we define the notion of
forced successors following Harabor and Grastien (2011):

Definition 16 Given a search node u expanded from its parent t via a move m over neigh-
borhood N2k , a successor v of u is forced iff:

• v is not a natural successor of u over N2k , and

• path tuv is the only optimal path between t and v.

The forced successors of u are denoted by forced(u).

Forced successors appear only when expanding vertices which are the convex corner of an
obstacle cell.

Now we are ready to describe Canonical A* for N2k , which generalizes Sturtevant and
Rabin (2016)’s Canonical A* for 8-connected grids. Canonical A* can be viewed as an
algorithm that, when expanding a node, prunes away all nodes that are not among its
natural or forced successors. More specifically, when expanding the root node r, all nodes
in SuccN

2k
(r) are added to the open list.

Nodes that have forced successors can only correspond to vertices which are convex
corners of an obstacle. Enumerating such forced successors is simple to do. Upon expanding
a convex corner of an obstacle v via move m, the first step intuitive step is to decide where
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Figure 5: Assuming a search is rooted in node (1, 0), black arrows illustrate the natural
neighbor relation, while blue arrow illustrate the forced neighbor relation. Bidi-
mensional nodes, which are those nodes expanded via an odd move, are black-
filled. Unidimensional nodes, which are those nodes expanded via an even move,
are orange-filled. Observe that due to the obstacles, in grid (b) both (4, 1) and
(5, 1) are forced successors of (4, 2).

the search should “turn”. To determine this, observe that v has two successors which are
on the border of o, one generated by a horizontal move applied to o, and one generated y a
vertical move applied to o; let us denote those moves by mh and mv. Now only one among
mh and mv forms a minumum angle with m. Denote such a move by m′. Forced successors
are all those successors of v that are not natural and that are generated by moves between
m and m′. For an illustration, consider the expansion of node (4, 2) in Figure 5(b), which
is the convex corner of an obstacle. mh and mv are, respectively (−1, 0) and (0,−1). mv

is the move that forms the minimum angle with m, therefore forced successors of (4, 2) are
all successors contained within mv and the natural successors of (4, 2).

Theorem 17 Canonical A*, as described above, finds an optimal solution to any path
planning problem P over N2k , for every k.

The proof for Theorem 17 follows directly from lemmata 19 and 20, which we explain
below. The first result is that there always exists an optimal path that is a concatenation
of canonical paths. Henceforth we assume that if σ1 is a path that ends at vertex v and
that σ2 is a path that starts at vertex v, then σ1 ◦ σ2 denotes the concatenation of σ1 and
σ2 without repeating v.

Definition 18 Given a path planning problem P a concatenation of canonical paths over
P , σ1 ◦ σ2 ◦ . . . ◦ σn (n ≥ 1) is irreducible if σi ◦ σi+1 is not a canonical path, for every
i ∈ {1, . . . , n− 1}.

Lemma 19 For any solvable path planning problem P over N2k , there exists an optimal
solution which is either a canonical path or an irreducible concatenation of two or more
canonical paths.
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Proof: The main idea of the proof is that any optimal path can be transformed into a
concatenation of canonical paths. Intuitively, whenever possible, we can replace a portion
of any optimal path by a canonical path, until we can no longer do so. By applying this
repeatedly, we end up with a path that has the required form. The function of Algorithm 3
does such a transformation. Given an optimal path σ, MaximalCanonical(σ) returns a path
that can be expressed as an irreducible concatenation of canonical paths. �

Algorithm 3: Transforms an optimal path into a concatenation of maximal canon-
ical paths

1 function MaximalCanonical(σ)
2 if σ contains one or fewer vertices then
3 return 〈σ〉
4 Let σ = c1c2 . . . cn, and let i be the largest number in {2, . . . , n} such that there exists

a canonical path between c1 and ci
5 Let σ′ be the canonical path between c1 and ci
6 return 〈σ′〉 concatenated with MaximalCanonical(ci . . . cn)

Lemma 20 Let P be a path planning problem whose optimal solution is an irreducible
concatenation of canonical paths σ1 ◦σ2 ◦ . . .◦σn. Then the last vertex of σi (and first vertex
of σi+1), for every i ∈ {1, . . . , n− 1}, is a convex corner of an obstacle cell.

Proof: For a contradiction, let us assume that σJ and σJ+1 violate the condition of the
lemma. Let us denote the first vertex of σJ by a and the last vertex of σJ+1 by b.

Figure 6 illustrates, in a specific grid, all possible concatenations of two canonical paths
between two points that cannot be connected by a canonical path. Canonical paths that
originate in a are shown in green, whereas canonical paths that end in b are shown in red.
Observe that a polygon (shaded in gray) defined by the ‘last canonical path that is not
‘cut’ by the obstacle is defined.3 All concatenations of canonical paths between a and b
are formed by connecting a to a vertex in the shaded area via a canonical path, and then
connecting such a vertex with b.

We want to show that the shortest path between a and b is formed when the vertex
that connects both canonical paths is precisely the corner of the polygon (which indeed is
also the corner of an obstacle area preventing direct connection).

To see why this is true we adapt the proof for the any-angle neighborhood—which is
slightly easier to follow—to the 2k-neighborhood. In the anytime neighborhood, shortest
paths are also taut. Informally a path is taut when, “treated as a string, it cannot be made
‘tighter’ by pulling on its ends” (Oh & Leong, 2017); in other words, optimal paths ‘bend’
only at the corners of obstacles. Using the triangular inequality, it is easy to show that taut
paths are always shorter than non-taut paths. To see this, consider the example of Figure 7,
which shows a taut path between a and b, a taut path acb and a non-taut path adb. To
prove the taut path is shorter, let e be the point at which segment ad and the continuation
of cb to the left intersect. Now we write one of the triangle inequalities associated to the
triangle ebd,

3. In the general case, indeed, more than one polygon may be generated. This does not make the rest of
the proof less general.

99



Rivera, Hernández, Hormazábal & Baier

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

a

b

c

Figure 6: All canonical paths originating in a are shown in green while all canonical paths
ending in b are shown in red. Each vertex in the shaded area defines a concate-
nation of two canonical paths that reach b from a.
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Figure 7: Taut path πacb is shorter than non-taut path πadb for an any-angle neighborhood.
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Figure 8: Taut path πacb is shorter than non-taut path πadb on a 16-neighborhood.

‖e− c‖+ ‖b− c‖ ≤ ‖d− e‖+ ‖b− d‖ (23)

Now we write one of the triangular inequalities for triangle ace:

‖c− a‖ ≤ ‖e− a‖+ ‖e− c‖ (24)

Summing up (23) and (24), we obtain the desired result:

c(acb) = ‖b− c‖+ ‖c− a‖ ≤ ‖d− e‖+ ‖b− d‖+ ‖e− a‖ = c(adb) (25)

Note that because the two paths do not coincide completely (25) is actually a strict inequal-
ity in practice.

Now we show that the same relation holds in 2k neighborhoods, this time when we
compare a taut concatenation of canonical paths with a non taut one. To see this, observe
Figure 8 which shows two 16-neighborhood paths between a and b. Before we continue
with the analysis, we use the notation πxyz to refer to the path shown in the figure, that
goes from x to z, visiting y. Furthermore we denote by πec the segment that connects e
and c, where e is the intersection between πadb and the continuation of path πcfb to the
left. Note that e is a point that may or may not be a vertex (in Figure 8 it is actually not
a vertex).

We assume that both πacb and πadb are concatenations of canonical paths; however the
former is taut whereas the latter is not. The key to the rest of the proof is that we can
write triangular inequalities that are analogous to the any-angle case. Indeed, because of
Theorem 7, πecb is a shortest segment that connects e and b using 16-neighborhood moves,
since it is generated using consecutive moves of the 16-neighborhood. This allows us to
write:

c(πec) + c(πcfb) < c(πedb). (26)
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Observe this is a strict inequality since we assume that d 6= c.

Finally, note that, because the path πagc is optimal, we can write:

c(πagc) ≤ c(πec) + c(πage). (27)

Summing up (26) and (27) we obtain c(πacb) < c(πadb). Although we have exemplified this
proof using a 16-neighborhood, the same argument can be used for any 2k-neighborhood.

To complete the proof, we can use a contradiction argument: if σJ and σJ+1 are such
that the last element of σJ is not a corner, then there must be another path σ′J ◦ σ′J+1 that
does bend on a corner, and σ′i ◦ σ′i+1 should be shorter than σi ◦ σi+1 (and this is shown
using the argument above), which contradicts the fact that the original path is optimal.

�

Proof (of Theorem 17) : From the analysis above, we observe that if the problem has a
solution, then there is a concatenation of canonical paths that reaches the goal optimally.
Furthermore, from Lemma 20, we know that the vertex visited in between such canonical
paths then such a vertex is also a corner of an obstacle. Because Canonical A* fully expands
every convex corner of an obstacle, each of the canonical paths of the partition can be found
by Canonical A*. We conclude that Canonical A* is complete and optimal. �

5.3 Jump Point Search

Jump Point Search (JPS) (Harabor & Grastien, 2011) is a search strategy in which, like
in Canonical A*, upon expanding a node, we only compute the natural and forced suc-
cessors. However, instead of immediately adding these successors directly to an Open list,
we compute a so-called jump point for each of them, which we then may add to the Open
list. More precisely, the way we compute the successors to add to the open list, we bor-
row the successor generator described by Harabor and Grastien (2011), in Algorithm 4. In

Algorithm 4: JPS successor generator

Input: v, current node, g: goal node
1 successors← ∅
2 for each n ∈ natural(v) ∪ forced(v) do
3 n← jump(v, direction(v,n), g)
4 if n 6= null then
5 successors← successors ∪ {n}
6 return successors

the pseudo-code, the call jump(v, direction(v,n), g) computes the jump point from v in
direction direction(v,n). Finally, direction(v,n) denotes the move that generates n from
v.

The jump point of a node v in direction d intuitively corresponds to the node that is
found by trying by advancing in direction d and stoping when we have reached the goal
or a node with forced successors. In addition, if d is an odd move, we also stop when we
have found a node from which there is a jump point in any of the two directions that are
immediately adjacent to d. The precise definition is given below.
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Figure 9: Game Maps: Average solution cost and suboptimality per algorithm.

Definition 21 (2k Jump Point) A node j is the jump point of v in direction d in N2k if
j = v + kd and k is the minimum natural number greater than 0 such that:

1. j is the goal, or

2. j has forced successors, or

3. if d is an odd move then there exists a jump point of j in direction d + 1 or d− 1.

Computing jump points is quite simple and can be done by adapting the function of Harabor
and Grastien (2011), modified as in Algorithm 5.

Algorithm 5: jump function

Input: v, initial node, d: direction,g: goal node
1 n← v + d
2 if n is not a vertex then
3 return null

4 if n = g then
5 return n

6 if n has forced successors then
7 return n

8 if d is an odd move then
9 if jump(v,d + 1, g) 6= null or jump(v,d− 1, g) 6= null then

10 return n

6. Empirical Findings

The objective of our evaluation was twofold. First, we wanted to investigate the impact on
solution quality of using N2k with A*, the most standard heuristic search algorithm, and to
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Figure 10: Room Maps: Average solution cost and suboptimality per algorithm.
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Figure 11: Random Maps: Average solution cost and suboptimality per algorithm.
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compare the obtained solution with those generated by the any-angle path planners ANYA
and Theta*. Second, we wanted to investigate the impact that increasing k had on the
runtime performance of A*, Canonical A*, and JPS using h2k heuristic and the Euclidean
distance. In addition, we compare the runtime performance with ANYA and Theta*.

We implemented our algorithms on top of Uras and Koenig’s implementation of Subgoal
graphs (2015), which uses a standard binary heap for Open. The implementation includes
Theta* and a version of the any-angle planner described by Harabor and Grastien (2013),
which below we call ANYA. We also include the results of an optimized version of the
same any-angle planner, described by Harabor et al. (2016), which we call iANYA below
except for random maps.4 Implementation details can be found in Uras and Koenig. All
experiments were run on a 2.20GHz Intel(R) Xeon(R) CPU Linux machine with 128GB of
RAM.

Our implementation of JPS makes two modifications to the original proposal which
makes the implementation easier while preserving all properties of the original JPS. First,
jump points are either the goal or convex corners of obstacles; second, jump points, when
expanded are fully expanded, that is, all its successors are added to the open list.

In our comparison, we use three sets of game maps from the MovingAI repository
(Sturtevant, 2012). The first set, game maps, are from Baldurs Gate II —which contains
maps of size 512 × 512—, from Dragon Age: Origins of Size—which range from 22 × 28
to 1260 × 1104—, and from StarCraft—which range from 384 × 384 to 1024 × 1024. The
second set, are random maps of size 512× 512, where the percentage of blocked cells varies
from 10% to 40%. Finally, the third set are room maps of size 512× 512, where the room
size varies from 8× 8 to 64× 64.

Figures 9–11 show the average solution cost of Regular A* for different neighborhoods,
ANYA, iANYA, and Theta*. These figures also show the average percentage suboptimality,
omitting A*(k = 8) to obtain better plot scaling. We evaluated seven values for 2k: 8, 16,
32, 64, 128, 256, and 512. We make the following observations.

• Solution cost improves when k increases in all three benchmarks. Improvements are
marginal as k increases over 6 (64-neighborhood).

• Compared with ANYA (and iANYA), an optimal any-angle planner, we observe that
A* obtains almost optimal any-angle paths when k over 6 (64-neighborhood). Specif-
ically, over the 64-neighborhood, the suboptimality is only 0.19%, 0.19%, and 0.10%
on the Games, Rooms, and Random maps, respectively.

• Compared to Theta*, we observe that A* with k greater than 4 (16-neighborhood)
finds better solutions in Game Maps and Room Maps. In Random Maps, with k
greater than 3 (8-neighborhood) A* obtains a better average solution cost.

Now we turn our attention to our runtime evaluation. In our implementation, Canonical
A* and JPS did not use any pre-computation or other optimizations such as the ones
described by Rabin and Sturtevant (2016) or Harabor and Grastien (2014). We consider
the implementation of the optimization methods part of the future work.

4. It is important to note that in ANYA the agent is placed in the center of cells, thus we include it here
only as a reference.
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In order to understand the effects over runtime of the different algorithms, we present
Figure 12, which shows the average runtime of Regular A*, Canonical A* and JPS for dif-
ferent neighborhoods. We evaluated h2k heuristic and the Euclidean distance (ED) for each
algorithm. We evaluated the same seven values for k. We make the following observations.

• On Regular A*. Runtime increases with k on the Game and Room maps. This can
be explained by the larger branching factor, which increases exponentially with k. A*
runs faster using the h2k heuristic than using the Euclidean distance for small values
for k. For intermediate and higher values for k, A*, used with ED, is slightly faster
due to the overhead in computing our heuristic and because h2k , when k is large,
tends to be more similar to the Euclidean distance. In Random maps, A* with h2k

is faster than A* with the Euclidean distance for every k. In Random maps, h2k is a
good heuristic, especially when there is a small percentage of obstacles.

• On Canonical A*. The main observation is that Canonical A* with Euclidean
distance has better performance for most values of k in Game and Room maps. In
Random maps h2k is the best option for most values for k.

• On Jump Point Search. JPS with the Euclidean distance is the best option for
most values for k in Game maps (except for k = 3), though it is outperformed by
ANYA for k > 6, and by iANYA in all configurations except for Random maps. In
Room maps, the Euclidean distance obtains best performance for k = 3 and k = 4,
for other values, JPS with ED is slightly faster. In Random maps the h2k heuristic is
the best option.

• On all algorithms. JPS obtains the best performance in Game Maps and Room
Maps (except for k = 9 in Game Maps). On the other hand, JPS obtains the worst
performance in Random maps. This can be explained because JPS, when expanding a
state, generates all states on canonical paths that emerge from such a state Sturtevant
and Rabin (2016).

The optimized iANYA planner outperforms our algorithms even in the basic configuta-
tion (k = 2), except in Random Maps. The runtime of Theta* is 14.49 ms, 17.39 ms and
2.77 ms in Game, Room, and Random maps, respectively. Canonical A* and JPS using the
2k neighborhood are faster than Theta*, for every k in Game and Room maps. Furthermore,
better solution costs are obtained, as shown in Figures 9-11. In Random maps, Canonical
A* with the ED heuristic using k = 4 is faster than Theta* and obtains better cost, with
higher k the Theta* is faster, however is worse in solution cost. The runtime of ANYA is
4.16 ms, 7.20 ms and 35.03 ms in Game, Room, and Random maps, respectively. In Game
and Room maps, JPS is faster than ANYA until k is equal to 6 (64-neighborhood). With
k = 7 (128-neighborhood), runtimes are similar. For k > 7 JPS (without optimizations) can
be faster than ANYA and competitive in the solution quality. In Random maps, Regular
A*, Canonical A* and JPS using 2k-neighbor are faster than ANYA for all values of k that
we evaluated.

Additionally, we include four tables that show the number of expansions, heap percola-
tions and the time per expansion. Table 1 shows the results for Regular A*. We observe
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Table 1: Expansions, percolations and time per expansion in milliseconds for Regular A*.
Game Maps

h2k heuristic Euclidean heuristic

Neigh Exp Perc Time/Exp Exp Perc Time/Exp

8 18,397 186,688 0.23 23,382 192,285 0.22
16 18,638 195,007 0.32 20,461 194,805 0.30
32 18,731 203,152 0.45 19,537 202,358 0.44
64 18,761 214,690 0.66 19,179 213,933 0.64

128 18,770 227,334 1.00 19,015 226,644 0.98
256 18,772 241,090 1.66 18,929 240,603 1.63
512 18,773 255,490 2.76 18,879 255,212 2.73

Random Maps

8 7,152 96,647 0.26 21,879 200,275 0.24
16 8,131 108,067 0.37 13,600 146,221 0.34
32 8,796 116,263 0.50 11,024 130,960 0.48
64 9,121 122,119 0.67 10,142 128,500 0.66

128 9,273 126,752 0.87 9,810 130,078 0.86
256 9,355 130,513 1.20 9,669 132,429 1.20
512 9,402 133,396 1.67 9,600 134,590 1.66

Room Maps

8 34,611 396,221 0.25 43,253 398,015 0.24
16 35,219 408,918 0.35 37,409 394,920 0.33
32 35,204 419,189 0.49 35,920 408,311 0.48
64 35,172 436,346 0.69 35,467 429,116 0.68

128 35,155 454,675 0.99 35,301 449,673 0.96
256 35,150 473,379 1.51 35,232 469,872 1.48
512 35,147 490,075 2.32 35,198 487,452 2.29

that the search time per expansion increases when the neighborhood size increases. In ad-
dition, we observe a smooth increase of the search time per expansion when Canonical A*
is used, as Table 2 shows. Table 3 shows the results for JPS. The number of expansions cor-
respond to the number of canonical expansions performed in a breadth first search fashion
in order to identify the Jump Points that are inserted in the Open list. This explains the
large number of expansions and the small number of percolations. Here, the search time
per expansion is small, but it increases when the neighborhood increases.

Table 4 shows the results for Theta* and ANYA. The explanation of what is an expansion
in Theta* and ANYA can be found in the paper that explaining the implementation that
we use Uras and Koenig. Due to the way the algorithms work, Theta* and ANYA have
a small overhead per expansion compared to Regular A* with small k. For big k values,
Regular A* has a larger overhead. On the other hand, Canonical A* and JPS seem like
better options if time per search expansion and total search time are considered. A general
observation for results in Table 1, 2 and 3 is that the h2k heuristic allows to obtain better
results than the Euclidean heuristic for small k values.
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Table 2: Expansions, percolations and time per expansion in milliseconds for Canonical A*.

Game Maps

h2k heuristic Euclidean heuristic

Neigh Exp Perc Time/Exp Exp Perc Time/Exp

8 18,399 178,463 0.20 23,413 174,094 0.20
16 18,641 161,476 0.24 20,488 153,831 0.21
32 18,733 157,899 0.26 19,559 153,336 0.22
64 18,762 163,643 0.28 19,197 161,175 0.24

128 18,771 176,693 0.31 19,030 175,451 0.27
256 18,773 196,521 0.36 18,941 195,982 0.31
512 18,773 222,243 0.40 18,890 222,040 0.37

Random Maps

8 7,152 94,883 0.25 21,880 191,866 0.22
16 8,132 105,373 0.32 13,601 140,632 0.29
32 8,796 113,265 0.39 11,025 127,255 0.37
64 9,121 118,929 0.48 10,142 125,349 0.46

128 9,273 123,360 0.59 9,811 126,824 0.57
256 9,355 126,926 0.76 9,669 128,968 0.74
512 9,402 129,543 0.99 9,600 130,832 0.98

Room Maps

8 34,616 382,593 0.22 43,264 357,255 0.22
16 35,221 347,382 0.26 37,417 323,569 0.23
32 35,205 339,429 0.29 35,926 326,524 0.25
64 35,172 351,087 0.31 35,471 344,121 0.27

128 35,155 372,898 0.34 35,304 368,931 0.30
256 35,150 396,375 0.38 35,234 393,994 0.34
512 35,147 423,321 0.42 35,200 421,796 0.39
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Table 3: Expansions, percolations and time per expansion in milliseconds for JPS.
Game Maps

h2k heuristic Euclidean heuristic

Neigh Exp Perc Time/Exp Exp Perc Time/Exp

8 45,461 4,126 0.04 43,150 4,050 0.04
16 45,198 3,964 0.06 42,054 3,855 0.06
32 44,354 3,875 0.07 41,584 3,798 0.07
64 44,194 3,859 0.08 41,803 3,804 0.08

128 44,745 3,868 0.10 42,703 3,829 0.10
256 46,305 3,903 0.13 44,562 3,875 0.13
512 49,177 3,965 0.17 47,704 3,945 0.18

Random Maps

8 56,234 62,784 0.07 69,719 108,027 0.10
16 42,167 56,146 0.11 52,262 71,770 0.12
32 39,974 56,749 0.15 42,494 61,262 0.16
64 38,604 56,807 0.20 38,618 58,054 0.21

128 37,486 56,743 0.27 37,012 57,034 0.28
256 36,960 56,763 0.39 36,389 56,718 0.39
512 36,645 56,748 0.57 36,074 56,574 0.58

Room Maps

8 62,924 9,381 0.05 70,599 9,872 0.05
16 74,984 8,844 0.06 75,579 8,664 0.06
32 78,460 8,580 0.06 78,264 8,454 0.07
64 80,345 8,473 0.08 79,928 8,399 0.07

128 81,117 8,463 0.09 80,634 8,419 0.09
256 81,670 8,474 0.12 81,290 8,445 0.11
512 81,817 8,484 0.15 81,518 8,463 0.15

Table 4: Expansions, percolations and time per expansion in milliseconds for Theta* and
ANYA.

Game Maps

Exp Perc Time/Exp

Theta* 18,775 157,007 0.77
ANYA 8,381 78,411 0.50

Random Maps

Theta* 7,480 93,084 0.37
ANYA 46,193 647,767 0.76

Room Maps

Theta* 34,902 343,403 0.50
ANYA 15,145 157,316 0.48
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7. Summary and Conclusions

We presented three key contributions towards the construction of effective grid path plan-
ners on the 2k-neighborhoods. First, we formally define the 2k-neighborhood; second, we
define a 2k distance function which can be computed in time polynomial in k and can
be used as an admissible heuristic. Third, we define canonical orderings which ultimately
allows us to propose a jump point search implementation of the 2k neighborhood. Our
planners produce better solutions with an increase in runtime which is smaller when using
jump point search or canonical A*. Our planner produces better solutions than Theta*
for the 32-neighborhood and beyond and obtains a suboptimality below 0.2% for the 64-
neighborhood and beyond. Our planner, which is not particularly optimized, is faster than
an implementation of the any-angle planner ANYA on average for neighborhoods with up to
64 moves, but it is not faster than the optimized algorithm iANYA. As such, our approach
seems to be recommended for practitioners looking for good-quality solutions but at the
same time interested in using a standard or simple implementation.

This research opens the door to future work that could investigate the use of 2k-
neighborhoods in any-angle incremental search, a problem relevant in robotics. Also relevant
to robotics applications is a version of the 2k neighborhood for 3D grids. This is one of the
topics of our current research.
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