
Journal of Artificial Intelligence Research 65 (2019) 487-518 Submitted 02/19; published 08/19

Unifying System Health Management and
Automated Decision Making

Edward Balaban edward.balaban@nasa.gov
NASA Ames Research Center
Intelligent Systems Division
Moffett Field, CA 94035 USA

Stephen B. Johnson stephen.b.johnson@nasa.gov
Dependable System Technologies, LLC,
Westminster, CO 80234, USA

Mykel J. Kochenderfer mykel@stanford.edu

Department of Aeronautics and Astronautics

Stanford University

Stanford, CA 94305 USA

Abstract

Health management of complex dynamic systems has evolved from simple automated
alarms into a subfield of artificial intelligence with techniques for analyzing off-nominal
conditions and generating responses. This evolution took place largely apart from the
development of automated system control, planning, and scheduling (generally referred to
in this work as decision making). While there have been efforts to establish an information
exchange between system health management and decision making, successful practical
implementations of integrated architectures remain limited. This article proposes that
rather than being treated as connected yet distinct entities, system health management and
decision making should be unified in their formulations. Enabled by advances in modeling
and algorithms, we believe that a unified approach will increase systems’ resilience to faults
and improve their effectiveness. We overview the prevalent system health management
methodology, illustrate its limitations through numerical examples, and describe a proposed
unified approach. We then show how typical system health management concepts are
accommodated in the proposed approach without loss of functionality or generality. A
computational complexity analysis of the unified approach is also provided.

1. Introduction

The field of system health management (SHM) progressed from simple red-line alarms and
human-initiated responses to a discipline that often includes sophisticated reasoning algo-
rithms and automated fault recovery recommendations (Aaseng, 2001). The main goal of
modern SHM has been defined as the preservation of a system’s ability to function as in-
tended (Johnson & Day, 2011; Rasmussen, 2008). While in this paper we apply the term
SHM to the operational phase of a system’s lifespan, the term may also encompass design-
time considerations (Johnson & Day). The actual achievement of a system’s operational
objectives, on the other hand, is under the purview of the fields of control, planning, and
scheduling. In this paper we will generally refer to all the processes aimed at accomplishing

c©2019 AI Access Foundation. All rights reserved.

Balaban, Johnson, & Kochenderfer

operational objectives as decision making (DM), while using more specialized terms where
necessary.

Historically, the field of SHM has developed separately from DM. Typical SHM functions
(monitoring, fault detection, diagnosis, mitigation, and recovery) were originally handled
by human operators, similar to DM (Aaseng, 2001; Ogata, 2010). As simple automated
control was being introduced for DM, automated fault monitors and alarms reduced opera-
tor workload for SHM. Gradually, more sophisticated control techniques were developed for
DM (Ogata), while automated emergency responses started handling some off-nominal sys-
tem health conditions (Rasmussen, 2008). Capable computerized planning and scheduling
tools eventually became available for performing higher-level, more strategic decision mak-
ing (Ghallab, Nau, & Traverso, 2016). On the SHM side, advanced methods were developed
to improve robustness of anomalous event detection and alerting (Chryssanthacopoulos &
Kochenderfer, 2012; Iverson, 2004). Computerized fault diagnosis was also added, eventu-
ally growing into a subfield of artificial intelligence in its own right (Feldman, Provan, &
Gemund, 2010; Korbicz, Koscielny, Kowalczuk, & Cholewa, 2012; Metodi, Stern, Kalech,
& Codish, 2014). In some cases diagnosis was coupled with failure prediction (prognostic)
algorithms (Lu & Saeks, 1979), as well as with recovery procedures (Avizienis, 1976). Still,
the two sides, SHM and DM, remained largely separated.

When the concept of integrated system health management (ISHM) became formalized,
most interpretations of integrated encompassed some interactions between SHM and DM,
although practical implementations of such interactions have been limited (Figueroa &
Walker, 2018). A notable early example of ISHM is the Deep Space 1 Remote Agent Exper-
iment, or RAX (Bernard et al., 1999). RAX integrated an automated planner/scheduler,
a command execution system, and a mode identification and reconfiguration module. The
latter performed state estimation and fault detection/diagnosis. If a fault was detected and
identified, a single recovery action was recommended to the execution module. The mode
identification and reconfiguration module was based on Livingstone (Williams & Pandurang,
1996), a reactive configuration management engine that reasons over declarative models.
Livingstone later evolved into Livingstone 2 (Kurien & Nayak, 2000), which served as the
diagnostic component of several other ISHM prototypes (Meyer et al., 2003; Nicewarner
& Dorais, 2006; Schwabacher, Samuels, & Brownston, 2002). In Livingstone 2 problems
were represented as partially observable Markov decision processes (Kaelbling, Littman, &
Cassandra, 1998), although that representation was only used for tracking the state of a
system, rather than for generating action recommendations. Benedettini, Baines, Light-
foot, and Greenough (2009) and Prajapati, Roy, and Prasad (2018) list additional ISHM
implementation examples, while also noting that they have been relatively rare.

This paper makes the following claims:

1. For systems with controllable degradation processes, performing prognostics is not
meaningful; for systems with uncontrolled degradation processes, prognostics may
only be meaningful under certain conditions.

2. SHM should be unified with DM for greater operational effectiveness and resilience to
system faults and there is a path for doing so.

3. Automated emergency response should be done separately from unified SHM/DM to
provide performance guarantees and dissimilar redundancy.

488

Unifying System Health Management and Automated Decision Making

For the second claim, we intend to show a path towards SHM/DM unification that
builds on the latest developments in state-space modeling, planning, and control. In the
past, limitations in computing hardware and algorithms would have made unified SHM/DM
challenging to implement, but we believe that recent advances make that attainable. We also
believe that this unified approach is applicable to a broad spectrum of DM, from traditional
deterministic planners to complex algorithms computing long-horizon action policies in the
presence of uncertainty. We use the term unification to emphasize the idea of SHM and
DM being performed within the same framework, rather than the two being integrated as
separate subsystems exchanging information.

Some initial progress towards SHM/DM unification can be found in prior work by Bal-
aban and Alonso (2013), Balaban, Arnon, Shirley, Brisson, and Gao (2018), and Johnson
and Day (2010, 2011). System health information was also incorporated into DM by others
(Agha-mohammadi, Ure, How, & Vian, 2014; Spaan, Gonçalves, & Sequeira, 2010; Ure,
Chowdhary, How, Vavrina, & Vian, 2013). This article aims to introduce a systematic view
on such unification, discuss its benefits, and illustrate how current SHM concepts map into
the proposed approach without loss of functionality or generality.

We first define the categories of systems that are of interest to this study (Section 2)
and then give an overview of the prevailing approach to SHM (Section 3). The first claim
(on prognostics) is discussed in Section 4. Section 5 discusses the second claim, concern-
ing SHM/DM integration and its benefits, as well as the rationale for the third claim,
that SHM/DM should be separate from automated emergency response. A computational
complexity analysis of the prevailing methodology versus the proposed unified approach is
presented in Section 6. Section 7 concludes.

2. Systems of Interest

We focus our attention on systems that have degradation processes affecting the system’s
performance within its expected useful life span. We consider both systems with uncon-
trolled degradation processes and those with controllable degradation processes. For our
purposes, the uncontrolled degradation category includes not only those system types for
which control over their degradation processes is not available or required, but also those
operating on predefined control sequences, such as industrial robots performing the same
sets of operations over extended periods of time. Also included are system types where
degradation is considered uncontrolled within some time interval of interest (decision hori-
zon). The rate of degradation is influenced by internal (e.g., chemical decomposition) and
external factors (e.g., temperature of the operating environment). In addition to industrial
robots, examples of system types with uncontrolled degradation processes include bridges,
buildings, electronic components, and certain types of rotating machinery, such as electri-
cal power generators. In systems within the controllable degradation category, degradation
processes are influenced not only by the same types of internal and external factors as for
the first category, but also by control actions, either directly or indirectly.

Most of our discussion is applicable to both categories, although systems with con-
trollable degradation processes would, naturally, benefit more from active SHM/DM. In
describing the systems, we adopt the notation from the field of decision making under
uncertainty (Kochenderfer, 2015).

489

Balaban, Johnson, & Kochenderfer

A system state s can be a scalar or a vector belonging to a state space S. For uncontrolled
processes, a transition model T (s, s′) describes the probability of transitioning to a particular
state s′ ∈ S from state s. For controllable processes, an action a initiates state transitions,
with A denoting the space of all available actions (A may be state-dependent). A transition
model for controllable processes takes the form T (s, a, s′), describing the probability of
transitioning to a particular state s′ ∈ S as a result of taking action a from state s. A
reward model R(s, a) for controllable processes describes a reward obtained as a result of
taking action a from state s. Terminal states form a subset ST ⊂ S. Terminal states ST

may include both failure and goal states. Transitions from a terminal state are only allowed
back to itself.

If there is state uncertainty (partial observability), belief states are used instead of
regular states (also referred to as beliefs). A belief b is a probability distribution over S,
with B denoting the space of all beliefs. Observations (e.g., sensor readings) can help with
belief estimation and belief updating. Like a state, an observation can be a vector quantity.
For uncontrolled processes, an observation model O(s′, o) describes the probability of an
observation o being generated upon transition to state s′. For controllable processes, an
observation model O(s′, a, o) does the same, but for a transition resulting from action a. In
a partially observable setting, a history is either a sequence of observations ht = {o1, . . . , ot}
for uncontrolled processes or a sequence of actions and observations ht = {a1, o1, . . . , at, ot}
for controllable processes.

The general function of decision making is to select actions. While in some systems we
are only concerned with selecting a single at at a given time t, decision-making problems
often involve selecting a sequence of actions. In a strictly deterministic system operating in
a deterministic environment, an entire sequence of actions (a plan) can be selected ahead
of time. In systems with action outcome uncertainty, however, a fixed plan can quickly
become obsolete. Instead, a policy π(s) : S → A needs to be selected that prescribes
which action should be taken in any state. In a partially observable setting, a policy maps
beliefs to actions, i.e., π(b) : B → A. A policy can be either offline (precomputed for all
states or beliefs of interest) or online (computed for the current state or belief only). An
optimal policy π∗ is a policy that, in expectation, optimizes a desired metric (e.g., maximizes
cumulative reward).

Throughout the paper, we use a robotic exploration rover operating on the surface of
the Moon as the main running example of a complex system with controllable degradation
processes. The rover is solar-powered and stores electrical energy in a rechargeable battery.
Where it benefits the discussion, we also introduce other examples of systems and system
components from the aerospace domain.

3. System Health Management

A typical contemporary SHM integration approach is shown in Figure 1. A DM subsystem
generates an action at,DM, aimed at achieving operational objectives. The plant executes
at,DM and an observation ot is generated and relayed to both DM and SHM. DM computes
at+1,DM on the basis of ot, while SHM analyzes ot for indications of faults (defined here as
system states considered to be off-nominal) and, if any are detected, issues a recommen-
dation on mitigation or recovery at+1,SHM to the DM subsystem or, in some cases, as a

490

Unifying System Health Management and Automated Decision Making

command directly to the plant (Valasek, 2012). SHM may select at+1,SHM from the general
system action space ADM or, if defined, from an additional ASHM space containing only
actions specific to system health.

PlantDM SHM

Figure 1: A typical system architecture with SHM

Figure 2 shows the SHM subsystem. The fault detection module corresponds to tradi-
tional red-line monitors detecting threshold-crossing events of sensor values, represented on
the diagram by a Boolean fault detection function F . If a fault is detected (F (ot) = true),
fault isolation and diagnosis (or identification) are performed, generating a vector of fault
descriptors ft (Daigle & Roychoudhury, 2010). Each fault descriptor typically identifies
a component, its fault mode, and its fault parameters (Daigle & Roychoudhury). There
are diagnostic systems that also include an estimated fault probability in the descriptor
(Narasimhan & Brownston, 2007). If the uncertainty of the diagnostic results is deemed
too high (e.g., ft consists of only low-probability elements), uncertainty management is
sometimes performed in order to obtain a better estimate of the current system condition
(Lopez & Sarigul-Klijn, 2010).

prognosis

fault notification

possible fault set

EOL estimates

observations

fault mitigation/recovery

fault isolation/diagnosis

fault detection

SHM actions

Figure 2: A typical contemporary SHM architecture

Some recent SHM implementations then pass ft to a prognostic module (Roychoudhury
& Daigle, 2011). In the SHM context, the intended goal of the prognostic module is to
predict, at time tp (here tp = t), whether and when faults will lead to system failure
(defined as inability to perform its assigned function) within the window [tp, tp + H] of
a prediction horizon H (the terms prediction horizon and decision horizon are equivalent

491

Balaban, Johnson, & Kochenderfer

for our purposes). In prognostics literature, time of failure is commonly synonymous with
the term end of [useful] life (EOL). Equivalently, the goal of prognostics can be defined as
predicting the system’s remaining useful life (RUL). In Figure 2, the prognostic prediction
is defined as a probability density of EOL given the set of system faults at time t, p(EOL|ft).
Uncertainty management is sometimes also prescribed following prognostic analysis, meant
to improve the prediction if the confidence in it is low (Wang, Youn, & Hu, 2012). If a
prognostic module is part of an SHM sequence, the term prognostics and health management
(PHM) is used by some instead of SHM in order to emphasize the role prognostics is playing
in managing the system’s lifecycle (e.g., Ferrell, 2000).

Finally, p(EOL|ft) and ft are passed to the fault mitigation and recovery component to
select an action at+1,SHM from the action set ASHM in order to mitigate or recover from
faults in ft. As part of this process, operational constraints may be set for those faulty
components that cannot be restored to nominal health. If functional redundancy exists for
such components, their further use may be avoided.

The overall limitations of the current SHM methodology are discussed in Section 5,
where an approach that unifies SHM and DM is then proposed. The next section, however,
focuses on the prognostic component and discusses why it is not meaningful for systems
with controllable degradation processes and is challenging to implement in a useful manner
for systems where degradation is uncontrolled.

4. Prognostics

A general definition of prognostics is that of a procedure that can predict the time of
occurrence of an event E (Daigle, Sankararaman, & Kulkarni, 2015). Using notation from
Section 2, if φE : S → B (where B , {0, 1}) is an event threshold function, then tE , inf{t ∈
[tp, tp +H] : φE(st) = 1} is the nearest predicted time of E (st is the state at time t). If the
state evolution trajectory is non-deterministic, then p(tE |s0:tp) is computed instead. Figure
3 illustrates prognostics on an example of a system’s EOL prediction, where the p(EOL)
probability distribution is estimated based on a set of stochastic state evolution trajectories.
If states cannot be directly observed, p(tE |o0:tp) is computed. As defined, prognostics is only
meaningful in a specific set of circumstances; we use two examples next to illustrate why
this is so.

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

time

h
ea

lt
h

0.0

0.1

0.2

p
(E

O
L

)

Figure 3: An EOL prediction illustration, with an overlay showing the p(EOL) distribution

492

Unifying System Health Management and Automated Decision Making

4.1 Systems with Uncontrolled Degradation Processes

There are two main desirable, interrelated attributes for a prognostic module: (1) low
uncertainty in EOL estimation, so that a decision about mitigation or recovery actions can
be made with confidence, and (2) the ability to make a prediction far enough in advance that
the actions can be successfully executed. In the case of uncontrolled degradation processes,
this means that prognostics is primarily useful for those systems that have long expected
lifetimes, low degradation process uncertainty, or both. To illustrate why this is the case,
we start with a simple uncontrolled degradation example, shown here in Figure 4:

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

time

h
ea

lt
h

deterministic

stochastic (in expectation)

Figure 4: Prognostics of an uncontrolled degradation process with deterministic and
stochastic models (Example 1)

Example 1. At time t = 0, the health state of a system is s0 = 1 (states are scalar).
According to a deterministic model, the nominal system health degradation rate
is constant at ṡn = 0.05/∆t, where ∆t is the prediction time step, selected as the
minimum time interval within which a change in the system’s health is expected to be
detectable. A stochastic model predicts the probability of the nominal degradation
rate ṡn within any time step as pn = 0.8 and the probability of a higher degradation
rate (ṡh = ṡn + ε/∆t) as ph = 0.2. Assume ε = 0.05.

The objective for both models is to predict EOL, i.e., the smallest t for which s ≤
0. For this example, the prediction uncertainty is defined as σ(tp) = |E[EOLd(tp)]−
E[EOLs(tp)]|, i.e., the absolute difference between the expected EOL values com-
puted by the two models at a prediction time tp. A requirement is set on the
maximum EOL prediction uncertainty as σmax = 1∆t.

For this example, let us assume that the health state is fully observable and define the
fraction of full health remaining at tp as ρp = sp/s0. In Figure 4, a prediction is shown to
be made at tp = t0, with sp = s0, ρp = 1, and the prediction horizon H = 20∆t. Since

E[EOLd(tp)] =
ρp

ṡn
(1)

and

E[EOLs(tp)] =
ρp

pnṡn + phṡh
=

ρp

(1− ph)ṡn + ph(ṡn + ε/∆t)
=

ρp

(ṡn + phε/∆t))
, (2)

then

σ =

∣∣∣∣ρp

ṡn
− ρp

(ṡn + phε/∆t)

∣∣∣∣ = ρp

∣∣∣∣20− 1

(0.05 + phε)

∣∣∣∣∆t. (3)

493

Balaban, Johnson, & Kochenderfer

In the last equation, we substitute the value for the nominal degradation rate ṡn in
order to focus on the effects of the degradation rate uncertainty. As can be seen in Figure
4, EOL is reached by both models within the prediction horizon. However, from Equation
3, σ = 3.33∆t > σmax.

For the requirement on σ to be satisfied, either ρp (health fraction remaining), ph (the
probability of deviations from the nominal degradation rate), ε (the magnitude of devia-
tions), or some combination of them needs to be reduced. If ph and ε are kept the same, with
ρp = 0.25 we can get σ = 0.83∆t. However, tp now needs to be ≈ 15∆t, with only 5∆t left
until failure (i.e., RUL, the remaining useful life). RUL corresponds to the time available
to either replace/repair the uncontrolled system or initiate an emergency response. For a
quickly degrading system with ∆t = 1 s, RUL would only be 5 s, which is likely enough time
for an emergency response, but not for repair or replacement. In practice, in systems where
responding to a fast-developing uncontrolled degradation process is important, estimating
p(EOL) is unlikely to bring tangible benefits. For instance, if pressure starts building quickly
in a fuel tank of an ascending crewed rocket, the launch abort system (emergency response)
is likely to be activated by the exceedance of a predefined pressure limit or pressure increase
rate (i.e., functions of fault detection). Computing whether the tank breach will occur in
10 or 12 seconds will not materially influence that response. It may also be difficult to
have high confidence in a prognostic prediction from a limited number of observations of a
fast-developing degradation process.

There are some processes, mostly chemical in nature, with mid-range degradation rates
(minutes, hours, days) that could be considered uncontrolled. One example of such a process
is the decomposition of hydrogen peroxide, which is used as propellant in the attitude control
thrusters of a Soyuz spacecraft descent module (Hall & Shayler, 2003). Over time, some of
the hydrogen peroxide breaks down into water and oxygen, decreasing the amount of usable
propellant. This limits the on-orbit life of the vehicle to about 200 days. For processes
like this, extrapolation of the degradation function could be part of a caution and warning
mechanism.

What follows from Example 1 is that if the degradation process uncertainty is relatively
high or varies significantly over time, a short prediction horizon (compared to the overall
system lifetime) may be necessary to limit the uncertainty propagation and result in a usable
σ. In this case, systems with longer lifetimes are more suitable for applying prognostics.
For example, if a bridge failure can be predicted three years in advance with an accuracy
of ±1 year, that can still be a useful prediction.

However, while many systems with uncontrolled degradation processes could be classified
as having long expected lifetimes, there exists a number of fundamental practical difficulties
in performing effective prognostics for them. One of the primary issues stems directly from
the typically long lifetimes (often decades). In order to establish trust in the degradation
models, they need to be adequately tested using long-term observations from “normal use”
or observations from properly formulated accelerated testing. Useful and valid (from the
statistical point of view) “normal use” degradation data sets are rare for most long-duration
degradation processes (Eker, Camci, & Jennions, 2012; Heng, Zhang, Tan, & Mathew,
2009). Run-to-failure data sets collected in “normal use” conditions are particularly rare
as, in practice, operating a system to complete failure (or even close to it) may have cost or
safety implications (Eker et al.). Accelerated degradation efforts in controlled settings are,

494

Unifying System Health Management and Automated Decision Making

therefore, quite common. If an accelerated degradation regime is proposed, however, what
needs to be clearly demonstrated is that:

1. The regime can be used as a substitute for real-life degradation processes.
For instance, while Rigamonti, Baraldi, Zio, Astigarraga, and Galarza (2016) and
Celaya, Kulkarni, Biswas, and Saha (2011) use thermal and electrical overstress to
quickly degrade electrical capacitors and predict their time of failure (by using em-
pirical equations), their work does not make a connection to real-life degradation,
which takes place at lower temperatures and voltage/current levels. Similar issues are
highlighted by Dao, Hodgkin, Krstina, Mardel, and Tian (2006a, 2006b) for compos-
ite materials, where mechanical, thermal, and chemical processes result in complex
interactions during aging.

2. There is a known mapping from the accelerated timeline to the unaccel-
erated timeline. To illustrate this requirement, we will again use electronic com-
ponents as an example. In an overview of condition monitoring and prognostics of
insulated gate bipolar transistors, Oh, Han, McCluskey, Han, and Youn (2015) note
that numerous specialized fatigue models have been constructed that aim to pre-
dict cycles-to-failure under repetitive cycle loading in accelerated aging experiments.
The application of various general fatigue analysis models, e.g., Coffin (1954), Miner
(1945), or Matsuishi and Endo (1968), have also been proposed for predicting failure
on the basis of usage cycles. As Oh et al. describe, however, there are significant prac-
tical challenges in using any of these methods to estimate a component’s lifetime under
realistic conditions and, as importantly, on realistic time scales. The first challenge
is with accurately converting environmental and operational loading conditions into
thermomechanical stresses. The second is with defining and extracting the number,
amplitude, and duration of stress cycles when a system is subjected to a potentially
complex usage profile. The third challenge is with properly accounting for damage
accumulation and distribution in the various components of the system. In regard to
the second challenge, Ciappa, Carbognani, Cova, and Fichtner (2003), for instance,
proposed a method to decompose a complex usage profile into elementary cycles and
compared it to the Coffin-Manson model (Coffin). The comparison was done on an ac-
celerated aging data set only. While the proposed model performed better on the data
set than the simpler Coffin-Manson model, the authors concluded that neither would
be able to fully represent all of the mechanisms governing degradation under realistic
use, including stress relaxation, anisotropic effects, and microstructural changes. The
authors also note that even though more complicated models may be able to account
for some of these additional mechanisms, the number of free parameters associated
with such models would make their calibration virtually impossible.

There are subfields of prognostics where accelerated aging regimes may be viable, such
as for metallic structures of aircraft or rotating machinery (where mechanical degradation
factors could be assumed dominant). However, the issue of high uncertainty of degradation
trajectories still arises, even for test articles made out of isotropic materials and aged under
uniform conditions (Meng, 1994; Virkler, Hillberry, & Goel, 1979). Finite element modeling
may help alleviate degradation trajectory uncertainty in specific cases, albeit at a significant

495

Balaban, Johnson, & Kochenderfer

computational cost (Heng et al., 2009). Some of the other challenges preventing effective
prognostics for systems with uncontrolled degradation include the accuracy of estimating the
actual state of health, the effects of fault interactions, and the effects of system maintenance
actions (Heng et al.).

If these challenges are successfully overcome and the failure mechanisms of a component
are understood well enough to develop useful degradation models, a different question then
arises: should the design or usage of the component be changed to mitigate these mech-
anisms? While in some cases this may not be feasible, in others it may be the simplest
and most reliable way of improving safety and reducing system maintenance requirements
(Bathias & Pineau, 2013). A redesign or change in usage would, on the other hand, make
the degradation models obsolete. The next tier of degradation modes would then need to
be analyzed and modeled, possibly followed by another redesign. Thus, analysis intended
for the development of degradation (prognostics) models instead becomes part of the design
improvement cycle.

In some instances, in addition to maintenance optimization, prognostics of long-lifespan
components have been proposed as a means of ensuring safety of the overall system, even
when the system’s periods of active operational usage are substantially shorter than the
expected lifetime of such components (e.g., Tang, Roemer, Bharadwaj, and Belcastro, 2008).
To see why relying on prognostics for this function may not be advisable, consider the
following example. A prognostic algorithm monitors the condition of an aircraft turbofan
engine fan disk using a degradation model M. A fan disk degradation ∆t (the minimum
time interval within which a change in component health is expected to be detectable) is
measured in months, while a typical flight lasts several hours. If an in-flight failure of the fan
disk is predicted to occur in, for example, 1±0.25 hours, canM be trusted for determining
a course of action, given that the impending failure was not forecast (and addressed) well
before the current flight?

An argument can be made that even a healthy long-lifespan component can be damaged
due to an unexpected (paroxysmal) event and projected to fail before the expected flight
completion. This case is similar to the one described earlier (crewed rocket launcher),
where a catastrophic short-duration degradation process takes place. Even assuming that
an appropriate process model is available and that its parameters can be determined quickly
and accurately, the optimal response will still likely be an emergency procedure (e.g., an
emergency landing), prompted by an off-nominal state estimate rather than the prognostic
prediction. If a coupling exists between emergency actions and the degradation process,
then the case becomes that of a controllable degradation process, discussed in Section 4.2.

For systems with uncontrolled degradation processes that are, in fact, suitable for health
management based on prognostics, the action space A is often limited to: (a) no action,
(b) replacement, or (c) repair to achieve a nominal operating condition. Even so, we still
propose that rather than following the sequence in Figure 2—i.e., computing p(EOL), then
deriving decisions using that information—any predictive analysis should instead be driven
by the requirements of a decision making procedure. This would allow for the formulation
of an appropriate problem, development of suitable models, and determination of the maxi-
mum prediction (decision) horizon needed. For instance, if domain knowledge informs that
variability in the system behavior past some health index hmin is too great for choosing
actions with sufficiently high confidence (e.g., beyond h = 0.8 for the degradation process

496

Unifying System Health Management and Automated Decision Making

depicted in Figure 3), then EOL can be redefined as hmin and system dynamics beyond
hmin need to be neither modeled nor computed, potentially freeing computing resources for
estimating system behavior up to hmin with more accuracy. In another scenario, assume
that for some slow-degrading system the maximum execution time of any action in A (e.g.,
arranging for and performing system replacement) is 2∆t. Then the question that needs to
be answered at every decision step is not “When will the system fail?”, but rather, “Will
the system fail within the next 2∆t?” The frequency of decision steps can then also be set
to 2∆t.

4.2 Systems with Controllable Degradation Processes

In a realistic controlled system, uncertainty is often present in state transitions. When the
system’s control actions can affect its degradation processes, prognostics, as defined at the
beginning of Section 4, and the PHM version of the sequence depicted in Figure 2 are no
longer meaningful—for two key reasons. First, not having the knowledge, at tp, of the future
system actions, a PHM algorithm will have to either (a) rely on some precomputed plan
to obtain atp+1:H for its predictive analysis (a plan that can quickly become obsolete due
to action outcome uncertainty) or (b) use a random policy (which can, for instance, result
in actions inappropriate for some system state being selected with the same probability
as the more appropriate ones). A random policy is also likely to result in greater state
uncertainty throughout the [tp, tp +H] interval. Second, rerunning prognostic analysis after
each action-initiated state transition to account for new information (e.g., Tang, Hettler,
Zhang, and Decastro, 2011) may not always be helpful. Once a suboptimal execution
branch has been committed to, it may remain suboptimal regardless of future decisions.
The following example illustrates these issues:

Example 2. Our lunar rover needs to traverse an area with no sunlight, going
around a large crater from waypoint wp0 to the closest suitable recharge location
at wp4 (Figure 5). For this example, we will consider the rover’s battery state of
charge to be its health indicator. At wp0 the battery state of charge is 1100 Wh.

200Wh (p = 1.0)

wp0

wp2

wp3

Detour region:

Right region:

wp1

wp4

600Wh (p = 0.4)
300Wh (p = 0.6)

Left region:
600Wh (p = 0.5)
300Wh (p = 0.5)

Figure 5: PHM vs. DM for a controlled system (Example 2)

There are three possible levels of terrain difficulty: difficult (requiring 600 Wh per
drive segment), moderate (300 Wh per segment), and easy (200 Wh per segment).
All drive segments are the same length. Probabilities of terrain types in different
regions are shown in Figure 5.

The rover can go to the left, wp0 → wp1 → wp4, or to the right, wp0 → wp2 →
wp4 (left and right are relative to the diagram). If going to the right, there is an

497

Balaban, Johnson, & Kochenderfer

option to detour around a smaller crater wp2 → wp3 → wp4 (easy terrain with
p = 1.0) instead of going directly wp2 → wp4.

A PHM algorithm used for decision support—running a sufficiently large number of
simulations—would consider two possible execution scenarios along the left route: (L1)
etotal = 1200 Wh, p = 0.4 and (L2) etotal = 600 Wh, p = 0.6 (etotal is the total energy
consumed in a scenario). The expected energy consumption along the left route is, therefore,
E[etotal, L] = 1200 Wh · 0.4 + 600 Wh · 0.6 = 840 Wh (Figure 6).

s0

s1 s2 s3 s4

s7 s8 s9 s10s5 s6

(p=0.6) (p=0.5) (p=0.5)(p=0.4)
−600

−600−300

−300 −600 −300

−400 −300 −400−600

−100 500 −100 100 500 400

1100
a1 a2

a1 a2 a2a1

Figure 6: Execution scenarios in Example 2

The algorithm would then consider four possible execution scenarios along the right
route (assuming uniform random choice of action at wp3): (R1) etotal = 1200 Wh, p = 0.25;
(R2) etotal = 600 Wh, p = 0.25; (R3) etotal = 1000 Wh, p = 0.25; and (R4) etotal =
700 Wh, p = 0.25. Then, E[etotal, R] = (1200 + 600 + 1000 + 700) · 0.25 Wh = 875 Wh.
With E[etotal, L] < E[etotal, R], the PHM algorithm commits to the left path. Note that
prognostics algorithms typically generate less information to support action selection than
what was presented here, computing an aggregate p(EOL) only and not retaining potentially
valuable performance data on individual execution trajectories (e.g., Daigle et al., 2015).

A DM algorithm capable of sequential reasoning under uncertainty (Kochenderfer, 2015)
would compute E[etotal, L] = 840 Wh in the same manner as the PHM algorithm, as there
are no actions needing to be selected along the left route after wp0. On the right side,
however, the DM algorithm can make an informed choice at wp2, based on observations
made along wp0 → wp2. This means having only two possible execution scenarios: (R1)
if the terrain is observed as difficult, the detour through wp3 is taken, and (R2) if the
terrain is observed as moderate, the rover goes directly to wp4. For R1, etotal = 1000 Wh,
p = 0.5. For R2, etotal = 600 Wh, p = 0.5. The expected energy use is thus E[etotal, R] =
(1000 + 600) · 0.5 Wh = 800 Wh. With E[etotal, L] > E[etotal, R], the algorithm chooses the
right path.

Now assume that the true terrain condition both on the left and right sides of the crater
is difficult. The left path (wp0 → wp1 → wp4) will require 1200 Wh to traverse, therefore a
rover relying on the PHM algorithm will fall 100 Wh short and will not reach wp4. A rover
relying on the DM algorithm will expend only 1000 Wh (scenario R1), arriving at wp4 with
100 Wh in reserve.

498

Unifying System Health Management and Automated Decision Making

It may be suggested that the issues with the PHM approach could be eliminated
if access to a precomputed operational policy πDM is provided (rather than relying on
some random policy). However, even if such a policy was accessible to PHM, that would
still be insufficient. If, at time t, p(EOL) is computed using πDM, then some at+1,SHM

is executed on the basis of p(EOL), p(EOL) would immediately become invalid unless
T (st, at+1,SHM, st+1) = T (st, at+1,DM, st+1). In order to properly take p(EOL) into account,
a new πDM would need to be computed, which PHM is not capable of doing on its own.

While in this section we outlined the reasons why the prognostic procedure is not useful
in most decision making situations, that does not mean that a model M of some relevant
degradation process cannot be of value. Quite the contrary, if such a model is successfully
developed—given the challenges described in Section 4.1—it can be an important part of
the overall system state transition model. However, rather than computing p(EOL) or the
probability distribution for time of occurrence of some other event E, M would need to be
of the form T (s, a, s′), describing the probability of transitioning to a particular state s′ as
a result of action a. Further, M would need to be defined for S × A× S, i.e., for all valid
combinations of system states (including environmental conditions, if so specified), actions,
and follow-on states.

5. Unifying Decision Making and System Health Management

In this section we use additional numerical examples to illustrate the two main limitations
of the current SHM approach: (1) the difficulty of balancing system health needs and oper-
ational objectives and (2) separated system models resulting in inferior solutions for both
SHM and DM. The examples also show how the proposed unified approach would help to
overcome these limitations. The key implementation details of the unified approach are then
described, including the rationale for the more deliberative SHM/DM to be implemented
separately from the more reactive emergency response capability (Section 5.3).

5.1 Separated vs. Unified SHM/DM

Our next example illustrates how unification can help balance frequently diverging system
health needs and operational objectives:

Example 3. The rover starts at wp0 in Zone 1 (Figure 7) with 500 Wh (out of the
overall 1500 Wh capacity). The solar panels can charge the battery at a rate of
250 W. Sunlight in Zone 1 will last for another 12 hours.

wp0
Zone 1 Zone 2

wp1 wp2drive (4 h) drive (4 h)

activities (2/4 h)recharge (0/4 h?)

Figure 7: Balancing SHM and DM objectives (Example 3)

Two actions are available in the initial state s0 at wp0 (Figure 8): skip charging
(a1 = +0 Wh) and charge to full capacity (a2 = +1000 Wh). In Figure 8, the unitless

499

Balaban, Johnson, & Kochenderfer

s0

(p=0.5)

s5 s6

s9 s10

−200

200

500
a1 a2

s1 s2

s3 s4

s7 s8

s11 s12
400

(p=0.5)

+0 +1000

−200 −200

+100 +200

0h 4h

8h

12h

16h14h12h

10h

4h

6h 8h

(p=0.5)
+200

(p=0.5)
+100

10h

−200 −1000 −1800

−300300

Figure 8: Execution scenarios in Example 3

numbers are Watt-hours of energy going in or out of the battery. Time (in hours)
at each state is denoted as ‘[t] h’.

The rover needs to perform a two-hour stationary science activity at wp1 and be
able to arrive at wp2, the next recharging point. The prior probability of the activity
at wp1 needing to be redone (a two-hour delay) is 0.5. The science payload power
consumption is 100 W, resulting in a net-positive power flow (250 W − 200 W =
+50 W).

Driving times from wp0 to wp1 and from wp1 to wp2 are 4 hours, with the
average drive train power consumption of 300 W, resulting in a net-negative power
flow (250 W−300 W = −50 W). If operating without sunlight, a 150 W heater needs
to be used to keep the batteries and electronics warm, thus resulting in a net-negative
power flow of −300 W−150 W = −450 W for driving and −200 W−150 W = −350 W
for stationary science activities.

According to the general SHM policy of restoring health (battery charge, in this case)
to nominal, the action chosen at wp0 is πSHM(s0) = a2 and so the battery is recharged to
its full capacity, 1500 Wh. After the science activity at w1 is completed, an assessment is
made that the activity needs to be repeated. The two-hour delay means that the entirety
of the wp1 → wp2 segment needs to be done without sunlight, resulting in complete battery
depletion before wp2 is reached (a deficit of 300 Wh).

In computing a unified policy, however, where SHM actions are considered in the context
of the overall mission, all four scenarios depicted in Figure 8 would play a role. If a1 is
chosen, the expected amount of battery charge remaining would be Q1 = 0.5 · 200 Wh +
0.5 · 300 Wh = 250 Wh. For a2: Q2 = 0.5 · 400 Wh + 0.5 · (−300) Wh = 50 Wh. Action a1

(no recharge) would be selected and, with the two-hour delay at wp1, the rover would arrive
at wp2 with 300 Wh still remaining.

500

Unifying System Health Management and Automated Decision Making

This example illustrates the first benefit of unifying SHM and DM: the ability to natu-
rally take operational objectives and constraints into account when making a system health
recovery decision. The next example illustrates how DM, on the other hand, can benefit
from a unified action space and access to health-related models:

Example 4. The rover is traveling from wp0 to wp1 (flat terrain) when a decision
is made at point A to make a detour and attempt data collection at a scientifically
valuable wp2, requiring a six-hour climb up a steep hill (Figure 9). The one-hour
data collection activity at wp2 must be completed before the loss of illumination in
10 hours.

After completing the two-hour climb up to point B (1/3 of the way up), it
is observed that the internal temperature of one of the drive motors has risen to
Tm = 60 ◦C from the nominal 20 ◦C. At Tm = 80 ◦C, there is a significant risk of
permanent damage and failure of the motor.

wp0 wp1

wp2

1-hour delay

A

B 10
020
030
0

Figure 9: Separated versus unified SHM/DM models (Example 4)

If SHM on the rover consists of traditional fault detection, diagnosis, and mitiga-
tion/recovery components only, it may diagnose the fault to be increased friction, mark
the component (motor) as faulty, and set a constraint on the acceptable terrain types to
either flat or downhill. It would then invoke the recommended action for this fault from
ASHM: stop and cool down (until the motor temperature reaches 20 ◦C).

If a prognostic component is present, it may predict that, at the current temperature
increase rate, the RUL of the motor is one hour (with four hours of climb remaining to
reach wp2). The same mitigation action (stop and cool down) would be initiated and the
same constraint on the current to the motor (and, thus, on the incline angle) may be set.
After Tm returns to nominal (which happens to take one hour), control is returned to DM.
Given the new terrain type constraints and that the motor is classified as faulty, DM would
command the rover to abort the detour, return to point A, and resume the drive to wp2.

If, however, DM had stop and cool down as part of its action space and updated the
state variables for the affected motor with the newly computed heat-up and cool down
rates, an operational policy could be computed that optimizes the duration of driving and
cool down intervals and allows the rover to reach wp2 in time. For instance, if the rover
drives for two hours, then stops for an hour to cool down the motor, it can still reach wp2

in 2 + 1 + 2 + 1 + 2 = 8 hours. With the science activity taking one hour, there would still
be an hour in reserve before the loss of sunlight at wp2.

The preceding example illustrates that if a system has an SHM-specific action set ASHM,
unifying it with ADM (and doing the same with the state transition models) may allow
for computation of operational policies infeasible in a separated SHM/DM architecture.
In some cases of degraded system performance, this could mean the difference between

501

Balaban, Johnson, & Kochenderfer

abandoning the remaining operational objectives and accomplishing at least some subset
of them. The next subsection formalizes the unification approach and shows how the SHM
concepts described in Section 3 are accommodated.

5.2 Unification Approach

In proposing the unified SHM/DM approach, we rely heavily on utility theory (Fishburn,
1970). We believe that the following are the key ingredients for a successful unification:
(1) a state-based system modeling framework and (2) a utility (value) function describing
operational preferences for the system. A utility function U captures, numerically, the pref-
erences over the space of possible outcomes. For a strictly deterministic system operating
in a deterministic environment, where a plan a0:H up to a horizon H can be provided ahead
of time, the utility of state s relative to the plan is:

Ua0:H (s) =

H∑
i=0

R(si, ai). (4)

For systems with action outcome uncertainty, the expected utility associated with executing
a policy π for t steps from state s can be computed recursively as

Uπt (s) = R (s, π(s)) + γ
∑
s′

T (s, π(s), s′)Uπt−1(s′), (5)

where γ ∈ [0, 1] is the discount factor that is sometimes used to bias towards earlier rewards,
particularly in infinite horizon problems (t→∞). The optimal utility for a state can then
also be computed recursively using

U∗t (s) = max
a∈A

(
R(s, a) + γ

∑
s′

T (s, a, s′)U∗t−1(s′)

)
, (6)

which for t → ∞ becomes the Bellman equation (Bellman, 1957). Knowing the optimal
utility function, we can derive an optimal policy:

π∗(s) = arg max
a∈A

(
R(s, a) + γ

∑
s′

T (s, a, s′)U∗(s′)

)
. (7)

In problems with state uncertainty, beliefs b ∈ B can take the place of states in equations
5–7 (Kaelbling et al., 1998). The Markov property is assumed, meaning that T (s, a, s′) does
not depend on the sequence of transitions that led to s (Kemeny & Snell, 1983).

Now that the foundational concepts have been reviewed, we will focus on those most
essential to the proposed unification: states and the reward function R(s, a). States can be
vector quantities (Section 2). For real-world problems, relevant elements of the operating
environment are sometimes included in the state vector, either explicitly or implicitly (Ragi
& Chong, 2014). For instance, the lunar rover state vector would certainly need to include
the rover’s x and y coordinates, but may also include time t. These three elements allow
us to indirectly access other information about the environment, e.g., solar illumination,
ambient temperature, communications coverage, and terrain properties.

502

Unifying System Health Management and Automated Decision Making

Similarly, health-related elements can be included in the same state vector. For the rover,
the battery charge would likely be in the state vector already for operational purposes.
Adding battery temperature, however, would allow for better reasoning about the state
of battery health when combined with information on ambient temperature, terrain, and
recharge current. Thus, including even a few health-related elements in the state vector
(already containing information about the environment and the general state of the system)
can have a multiplicative effect on the amount of information available. The resulting size
of the state vector may also end up being smaller than the union of separately maintained
SHM and DM state vectors, as redundant elements are eliminated.

The reward function R(s, a) encodes the costs and the rewards of being in a particular
state (or taking a particular action in a state) and can be used, through the utility function,
to induce the desired behavior. For many realistic problems, the reward function needs to
combine costs or rewards associated with different state components. Several approaches
have been proposed (Keeney & Raiffa, 1993), with additive decomposition being an effective
option in many cases. The key property of the function is that by mapping multiple variables
to a single number it allows us to compute U(s) or U(s, a) and translate a potentially
complex DM formulation into an abstract utility maximization problem.

One notable consequence of health-related components being integrated into a common
state vector is that, from the computational point of view, the concepts of fault and failure
become somewhat superfluous. If subsets Sfault ⊂ S or Sfailure ⊂ S are defined for the
system, the framework described above will not do anything differently for them. The only
essential subset of S is ST (the terminal states). Failure states may be part of ST if they
result in termination of system operations; however, goal (success states) are members of
ST also. The only difference between them is in their U(s) values. As long as a component
fault or a failure does not lead to a transition to a terminal state, actions that maximize
the expected value of that state will be selected—which, as it happens, implements the “fail
operational” philosophy (National Aeronautics and Space Administration, 2012).

We will refer to this unified approach as health-aware decision making (HADM). The
rest of the major SHM concepts are incorporated into the new approach as follows. Fault
detection and diagnostics are subsumed in belief estimation and updating, although these
operations are, of course, used for nominal belief states as well. Uncertainty management
can now be purposefully incorporated into the decision-making process by augmenting A
with information gathering actions (Bonet & Geffner, 2000; Levesque, 1996; Spaan, Veiga, &
Lima, 2015; Weld, Anderson, & Smith, 1998), evaluated and selected in the same context as
other types of actions. For actively controlled systems, predictive simulations are simply an
integral part of U(s) calculation, where T (s, a, s′) serves as a one-step “prognostic” function
(with degradation models, if any). Whereas prognostic algorithms applied to systems with
controllable degradation are limited in their predictive ability due to the lack of knowledge
about future actions, here the U(s) calculation process is an exploration of possible execution
scenarios. It thus combines s′ or b′ estimation with sequential action selection.

Figure 10 shows the overall HADM operational loop (assuming state and action outcome
uncertainty). Once the initial belief b0 is estimated at time t0, either an offline π∗ is
referenced or an online π∗ is computed to determine a∗0 (best action). The action is executed
by the plant, transitioning to a new (hidden) state, and generating an observation o0. The

503

Balaban, Johnson, & Kochenderfer

observation is then used to update b0 (typically through some form of Bayesian updating)
and the process repeats until a terminal state is believed to be reached.

Plant

Figure 10: The main loop of health-aware decision making

A variety of algorithms capable of handling state or outcome uncertainty can be used
to implement the proposed approach (Browne & Powley, 2012; Kochenderfer, 2015). In
systems where both state and outcome uncertainty are not a factor, traditional state space
planning algorithms (Ghallab et al., 2016) would not need any modifications to produce
plans for spaces of state vectors that include health-related components.

In our discussion up to this point, we assumed that optimization of solutions is desired.
If that is not the case, HADM can also be formulated from the satisficing perspective,
e.g., as a constraint satisfaction problem (CSP). CSP formulation could be done using
the same mathematical framework, with the problem solved by applying existing CSP
algorithms (Frank, Jónsson, & Morris, 2000; Ghallab et al., 2016). In a CSP formulation,
hard constraints could be defined by assigning a reward of −∞ to undesirable states and
soft (weighted) constraints could be defined using finite negative rewards, with all the other
rewards set to zero.

5.3 Emergency Response versus Health-Aware Decision Making

For realistic complex systems operating in the presence of state and outcome uncertainty,
S, B, O, and A are often high-dimensional and continuously valued. The problem of finding
exact optimal policies in such cases is PSPACE-complete (Papadimitriou & Tsitsiklis, 1987).
Approximate solution methods typically work online, constructing π for the current belief
b (or a fully observable state s) based on beliefs/states reachable from b within the decision
horizon (Browne & Powley, 2012). They also typically perform targeted sampling from
S/B, A, and O, thus guarantees of true optimality can be harder to provide. We, therefore,
propose

• That system emergency response (SER) be defined as an automated or semi-automated
process that is invoked to maximize the likelihood of preserving the system’s integrity,
regardless of the effect on operational goals.

• That emergency response policy πSER be computed separately from πHADM.

In the space domain, an example of SER is commanding a spacecraft into safe mode until
the emergency is resolved (Rasmussen, 2008). In aviation, it could be executing recommen-
dations of a collision avoidance system (Kochenderfer, Holland, & Chryssanthacopoulos,
2013) or performing an emergency landing. Introduction of a separate SER system would
likely require the introduction of SSER, an additional subset of S that defines the states
where πSER is invoked versus πHADM. Once again, however, SSER will not necessarily only
contain system fault and failure states. For instance, states where environmental conditions
warrant emergency response (e.g., solar activity interrupting teleoperation of the rover)

504

Unifying System Health Management and Automated Decision Making

would be included as well. While from a system architecture point of view SER may bear
some resemblance to the SHM module in Figure 1, there are two important distinctions.
First, SER would not operate in parallel with primary decision making, avoiding the poten-
tial for conflicting actions. Second, rather than being tasked with returning the system to a
“healthy” state, SER is meant to merely transition the system to a state not in SSER, then
return control to HADM. Since the scope of the SER problem is likely to be much narrower
than that of HADM, it opens the possibility of computing, verifying, and validating πSER

offline (Kochenderfer, 2015).

As sensors, computing capabilities, and DM algorithms improve, the fraction of the
system’s state space that is under the purview of SER will decrease. Still, we foresee the
need for an independent, “safety net” SER to be there for safety-critical functions. SER
would cover situations where the primary HADM system may not be able to produce a
suitable solution in a desired amount of time, serving as an equivalent of human reflexive
responses triggered by important stimuli versus the more deliberative cognitive functionality
of the brain. It could also provide dissimilar redundancy for critical regions of S, essentially
implementing the Swiss Cheese Model (Reason, 1990). In the model, multiple different
layers of protection for important system functions are proposed, illustrated as slices of
cheese. The holes in the slices, representing weaknesses in individual layers, vary in size
and position from slice to slice (and, also, often vary in time). A system failure may occur
if holes in all the protective layers happen to momentarily align. A greater number of
dissimilar protective layers can, consequently, reduce the probability of failure.

6. Computational Complexity of Health-Aware Decision Making

A potential implementation issue for the proposed unified approach is that it may result
in an increased computational complexity by operating on state, belief, observation, and
action spaces that are higher-dimensional or larger (i.e., contain an increased number of
elements in the same dimensions) compared with a separated SHM/DM formulation. In
this section we examine the implications of S/B, O, and A dimensionality or size increase
for problems with different types of uncertainties present. We will generally analyze the
worst-case scenario (from a computational complexity point of view) by assuming that all
spaces are continuously valued and, therefore, contain an infinite number of elements per
dimension. We further assume that optimality (or near-optimality) is desired for both
SHM and DM, therefore formulating both separated and unified SHM/DM cases as search
problems. The last assumption also implies that computed decisions are not limited to
being single-step reactive, but can be sequential.

We assume that the number of independent dimensions may increase for unified state,
belief, and observation spaces, but will remain the same for unified action spaces. To see
why, let us first consider a lunar rover example. Assume that in a separated SHM/DM
implementation, a single action, originating either from SHM or DM, is chosen at each
decision interval. The DM action space may contain a drive command, parameterized with
real-valued heading and speed, thus forming its own class of actions with an infinite number
of elements. The SHM action space may contain a cool down command, parameterized
with real-valued duration, forming another infinitely large class of actions. Merging the two
action spaces will not introduce additional dimensions, as at each time step only a single

505

Balaban, Johnson, & Kochenderfer

action would still be selected (one of the drive options, for instance, or a cool down of a
particular duration). Multi-dimensional action spaces are typically associated with multi-
agent scenarios formulated as a single problem or, perhaps, with scenarios where multiple
distinct components of a complex system need to be commanded simultaneously (e.g., a
robotic manipulator with multiple independently commanded joints). Including health-
related actions would not increase the number of dimensions in most of these cases either,
as health-related action classes would be added to already existing dimensions.

6.1 Fully Deterministic Problems

If all sources of uncertainty can be neglected, classical search algorithms, such as Depth
First Search, Breadth First Search, or A∗ (Ghallab et al., 2016), can be applied to com-
pute exact plans in problems of suitable size. The worst-case computational complex-
ity will be O(|ASHM|D + |ADM|D) for the separated formulation and O(|ASHM ∪ ADM|D)
for the unified one, with an overall worst-case computational complexity increase fac-
tor O

(
(|ASHM ∪ADM|D)/(|ASHM|D + |ADM|D)

)
. Approximate algorithms, including those

with the anytime property, can be used to trade optimality guarantees for performance in
larger problems (Boddy, 1991; Burfoot, Pineau, & Dudek, 2006; Hansen & Zhou, 2007).
If a problem formulation includes a continuously valued action space, it may need to be
sampled; in that case, |A| is the number of samples.

6.2 Problems with Action Outcome Uncertainty

Problems that incorporate action outcome uncertainty are often modeled as Markov de-
cision processes (MDPs) (Bellman, 1957). Exact algorithms for generating optimal MDP
policies include value iteration (Bellman) and policy iteration (Howard, 1960). Value iter-
ation has complexity O(|A||S|2) per iteration; however, the number of iterations may grow
exponentially in the MDP discount factor (Condon, 1992; Kaelbling, Littman, & Moore,
1996). Policy iteration has a significantly higher per iteration cost, O(|A||S|2 + |S|3), al-
though in practice may converge in fewer iterations than value iteration (Kaelbling et al.,
1996; Littman, Dean, & Kaelbling, 1995). Methods for computing approximately optimal
policies for larger problems include sparse sampling (Kearns, Mansour, & Ng, 2002), LAO∗

(Hansen & Zilberstein, 2001), and Monte Carlo Tree Search (Browne & Powley, 2012). The
latter has become widely used in recent years for MDP applications due to its scalability
to large state spaces and its anytime property (a valid solution is returned even if the al-
gorithm is interrupted, with solution quality improving as more iterations of the algorithm
are executed). We will use Monte Carlo Tree Search (MCTS) in our analysis.

Section 4.2 showed that for an actively controlled system operating in the presence of
uncertainty, informing SHM mitigation or recovery action selection with prognostic predic-
tions can be ineffective. Therefore, rather than estimating the computational complexity of
SHM implemented as the sequence in Figure 2, we assume that both SHM and DM prob-
lems are formulated as MDPs. The computational budget of forward simulations used by
prognostics to construct a p(RUL) distribution can instead be allocated towards building
an online MCTS policy, for instance.

In MCTS, as described by Browne and Powley (2012), Monte Carlo simulations from an
initial state s0 are used to build a partial search tree and, ultimately, estimate the expected

506

Unifying System Health Management and Automated Decision Making

utility of each action available in s0 (as MCTS is tree-based, continuously valued action
spaces would need to be sampled). Action selection during tree traversal is typically done
with one of the Upper Confidence Bound (UCB) algorithm variants (Auer, Cesa-Bianchi,
& Fischer, 2002). The error in approximating the optimal policy depends on how many
simulations passed through each node of the tree. For simplicity, we assume that the action
space size |A| is the same for all states and that each valid action is being invoked exactly
N times on every level of the tree, up to a depth D. Given these assumptions, ND|ASHM ∪
ADM|D simulations would be required for a tree of depth D in the unified case versus
ND(|ASHM|D + |ADM|D) in the separated case. Thus, we can estimate the computational
complexity increase for the unified case to be O

(
(|ASHM ∪ADM|D)/(|ASHM|D + |ADM|D)

)
.

6.3 Problems with State and Outcome Uncertainty

A generalization of an MDP, a partially observable Markov decision process (POMDP) is
currently the prevalent mathematical framework for acting under both action outcome and
state estimation uncertainty (partial observability). We will use POMDPs for our analysis of
this final (and most complex) case. As mentioned in Section 5.3, computing optimal policies
exactly under action outcome and state estimation uncertainty is generally considered a
PSPACE-complete problem. For small discrete POMDPs, exact optimal policies can be
computed (Kochenderfer, 2015). In most cases, however, approximately optimal policies
are derived using either offline or online algorithms (Kurniawati, Hsu, & Lee, 2008; Pineau,
Gordon, & Thrun, 2006; Ross, Pineau, & Paquet, 2008).

Analogously to the MDP case, we assume that both SHM and DM problems are formu-
lated as POMDPs. In our analysis we will use two popular online POMDP solvers based
on Monte Carlo sampling: Partially Observable Monte Carlo Planning (Silver & Veness,
2010) and Determinized Sparse Partially Observable Tree (Bai, Cai, Ye, Hsu, & Lee, 2015;
Ye, Somani, Hsu, & Lee, 2017). We first examine the effects of unified A and O spaces on
the accuracy of approximating an optimal policy, then discuss the implications of a unified,
potentially higher-dimensional S on belief approximation and updating.

The Partially Observable Monte Carlo Planning (POMCP) algorithm is a straightfor-
ward extension of MCTS for partially observable domains. Instead of a partial search tree
of states, POMCP builds a partial search tree of histories. Each node in the tree (corre-
sponding to a unique history h) contains a set of unweighted particles (Del Moral, 1996),
forming an approximate belief b̂h. Similarly to MCTS, the error in approximating the op-
timal policy will depend on the number of simulations that passed through each history
(belief) node of the tree. Unlike MCTS trees, however, levels of history nodes in POMCP
trees are interleaved with levels of observation nodes, resulting in O(|A|D|O|D) history
nodes for a planning horizon of length D. For continuously valued action spaces, |A| is
the number of sampled actions and for simplicity we assume, again, that enough simula-
tions are executed to generate |A| branches out of every history node. We also assume
that |O| is the number of branches under each observation node. For continuously valued
multidimensional observation spaces a strategy to add branches that results in a sufficient
representation of the entire observation space may be required. Each simulation executed
on a partially constructed tree adds exactly one new history node (Silver & Veness, 2010),
therefore O(|A|D|O|D) simulations are required to construct the tree.

507

Balaban, Johnson, & Kochenderfer

In a unified formulation, we may need O(|ADM ∪ ASHM|) actions to represent the com-
bined action space. The size of OHADM, however, may need to be larger than |ODM∪OSHM|
in order to adequately represent a higher-dimensional combined observation space. Thus
we can estimate the POMCP computational complexity increase factor for the unified for-
mulation as O

(
|OHADM|D|ASHM ∪ADM|D/(|OSHM|D|ASHM|D + |ODM|D|ADM|D)

)
.

Due to the properties of UCB-style action selection, the worst-case running time of
POMCP is rather poor: Ω(exp(exp(. . . exp(1) . . .))), nested D−1 times (Coquelin & Munos,
2007). The Determinized Sparse Partially Observable Tree (DESPOT) algorithm avoids this
issue by relying on a set of K scenarios sampled a priori to construct policies for the current
belief state. A DESPOT scenario for a belief b is an infinite abstract random sequence:

φ = (s0, φ1, φ2, . . .), (8)

where s0 is a scenario starting state sampled according to b and φi is a real number sam-
pled independently and uniformly from [0, 1]. The K start states of the scenarios form
the approximate belief b̂0 (in the Anytime Regularized implementation of DESPOT, vec-
tors of weighted particles are used to form the belief nodes of the tree). Numbers φi are
used in a generative deterministic model g(s, a, φ) to produce next state-observation pairs
(s′, o′). When the model is simulated for an action sequence (a1, a2, . . .) under a scenario
(s0, φ1, φ2, . . .), it generates a simulation trajectory (s0, a1, s1, o1, a2, s2, o2, . . .). The simu-
lation trajectory traces out a path (a1, o1, a2, o2, . . .) from the root of the tree. All of the
nodes and edges on this path are added to the tree. Each belief node b in the tree contains a
set Φb of all scenarios it encounters. Repeating this process for every action sequence under
every sampled scenario completes the construction of the tree. A standard belief tree of
height D would have O(|A|D|O|D) nodes, while a corresponding DESPOT has O(|A|DK)
nodes for |A| > 2 because of the reduced observation branching.

Formally, a DESPOT policy π is a policy tree derived from a DESPOT D. A policy tree
has the same root as D, but only retains one action branch at each internal belief node (all
of the observation branches are retained, however). The set Πb0,D,K consists of all policies
derived from DESPOTs of height D, constructed with all possible K sampled scenarios for
a belief b0.

Ye et al. (2017) provide two useful theoretical results for the DESPOT algorithm. The
first result bounds the error of estimating the value of any policy in Πb0,D,K , with the
implication that a DESPOT constructed with a small number of scenarios is sufficient for
approximate policy evaluation. The second shows that by optimizing this bound, a policy
can be obtained that is competitive with the best small policy. The size |π| of a DESPOT
policy π is the number of belief nodes in its policy tree. Constraining policy size is important
to prevent overfitting, as a policy optimized for a finite number of sampled scenarios may
not perform well in general.

In proving the first result, Ye et al. (2017) show that for any given constants τ, α ∈ (0, 1),
any belief b0, and any positive integers D (tree depth) and K, every DESPOT policy tree
π ∈ Πb0,D,K satisfies

Vπ(b0) ≥ 1− α
1 + α

V̂π(b0)− Rmax

(1 + α)(1− γ)
· ln(4/τ) + |π| ln(KD|A||O|)

αK
(9)

508

Unifying System Health Management and Automated Decision Making

with probability of at least 1 − τ , where V̂π(b0) is the estimated value of π under a set of
K scenarios randomly sampled according to b0, Rmax is the maximum reward, and γ is
the POMDP discount factor. This implies that all DESPOT policies in Πb0,D,K satisfy the
bound given in (9) with high probability. The policy estimation error (second term on the
RHS) can be made arbitrarily small by choosing an appropriate K.

The second result shows that a near-optimal policy π̂ can be obtained by maximizing
the RHS of (9). Let ΠD be the set of all policies derived from a DESPOT D with height D,
constructed with K scenarios sampled randomly according to belief b0. For any arbitrary
policy π ∈ ΠD and any given constants τ, α ∈ (0, 1), if

π̂ = arg max
π′∈ΠD

{
1− α
1 + α

V̂π′(b0)− Rmax

(1 + α)(1− γ)
· |π
′| ln(KD|A||O|)

αK

}
, (10)

then

Vπ̂(b0) ≥1− α
1 + α

Vπ(b0)− Rmax

(1 + α)(1− γ)
×

×

(
ln(8/τ) + |π| ln(KD|A||O|)

αK
+ (1− α)

(√
2 ln(2/τ)

K
+ γD

)) (11)

with probability of at least 1− τ .
In expression (11), performance of π̂—a policy maximizing (10)—is bounded relative to

the performance of another policy, π. Since π can be any policy in ΠD, we can choose it to
be an optimal policy π∗. If |π∗| is small, the approximation error of π̂ is also small. If π∗ is
large, but is approximated well by some small policy π of size |π|, then π̂ can be obtained
with a small approximation error by choosing K to be O(|π|ln(KD|A||O|).

Let us consider how the RHS of (11) may change in a unified HADM formulation. Since
we expect an optimal HADM policy to perform at least as well as either SHM or DM policy,
Vπ(b0)—i.e., Vπ∗(b0)—will increase or remain the same. Rewriting the additive error on the
RHS of (11) as

ε =
Rmax

(1 + α)(1− γ)

(
ln(8/τ) + |π∗| ln(KD|A||O|)

αK
+ (1− α)

(√
2 ln(2/τ)

K
+ γD

))
, (12)

we will now estimate the ratio KHADM/(KSHM + KDM), assuming that approximately the
same ε is to be maintained for the unified HADM policy as for the separated SHM/DM
policies. We assume that α, γ, τ , D, and Rmax are the same for HADM as for SHM/DM.
The Rmax/

(
(1 +α)(1− γ)

)
multiplier will, consequently, also remain the same. The second

term inside the parentheses is small for realistic values of K (i.e., hundreds). The numerator
of the first term is dominated by |π∗| (the size of an optimal policy). We can, therefore, esti-
mate KHADM/(KSHM+KDM) to be O

(
|π∗HADM| /(|π∗SHM|+|π∗DM|)

)
. Just as for POMCP, the

scenarios would have to be executed for a potentially larger number of actions on every level
of the tree, thus the overall increase in DESPOT computational complexity due to unified
O and A spaces will be O

(
|π∗HADM| |ASHM ∪ADM|D /(|π∗SHM| |ASHM|D + |π∗DM| |ADM|D)

)
.

An interesting implication of this result is that if a more compact optimal policy exists for
HADM than for the separated SHM and DM (which may well be the case), the overall

509

Balaban, Johnson, & Kochenderfer

DESPOT computational complexity may actually decrease (at least the complexity at-
tributable to the effects of unified A and O spaces).

Next we focus on the potential effects of a higher-dimensional state space, which in some
cases may present the greatest computational challenge. Both POMCP and DESPOT use
particle-based belief representations and are typically coupled with a particle filtering algo-
rithm (Gordon, Salmond, & Smith, 1993) to perform belief updating. Snyder, Bengtsson,
Bickel, and Anderson (2008) and Bengtsson, Bickel, and Li (2008) point out the main issue
with using particle filters in high-dimensional spaces: particle filters that use an insuffi-
ciently large set of particles in such spaces tend to collapse, with a single particle ending
up with a weight close to unity. In order to maintain representational quality and prevent
filter collapse, the number of particles in the set must grow exponentially with the number
of space dimensions—or, more precisely, with the variance of the observation log likelihood,
as Snyder et al. demonstrate. For use with an online POMDP solver, such as POMCP
or DESPOT, particles at the root of a partial belief tree form both the current belief ap-
proximation and the start states of simulations/scenarios used to construct the tree. The
number of POMCP simulations or DESPOT scenarios needed will then be the greater of
the two: the number required to maintain the quality of the optimal policy approximation
or the number required for an effective state space coverage.

Several approaches have been proposed for handling high-dimensional state spaces in
belief representation and updating. Roy, Gordon, and Thrun (2005) observe that in real-
world POMDP problems, computing an optimal policy for the entire belief space is often
unnecessary and that the beliefs relevant for decision making often lie near a structured,
low-dimensional subspace embedded in the high-dimensional belief space. They, therefore,
propose reducing the dimensionality of the belief space (prior to policy computation) by
using the exponential family principal components analysis. Bengtsson, Snyder, and Ny-
chka (2003) describe a nonlinear ensemble filter that can handle non-Gaussian probability
densities as an alternative to particle filters for high-dimensional systems. Importance
sampling has also been suggested as a way to design particle filters that are scalable to
high-dimensional problems (Daum & Huang, 2003). Luo, Bai, Hsu, and Lee (2019) imple-
ment a version of DESPOT that uses importance sampling in scenario selection, which, in
particular, can be helpful for ensuring that the computed policy addresses rare events that
otherwise would be difficult to sample. For HADM, this could mean the ability to capture
policy responses to fault modes, especially those for which degradation models are not part
of the overall state transition function T (s, a, s′). With all importance sampling approaches,
constructing a good proposal distribution is key. In most applications this has been done
manually, relying on domain knowledge. Luo et al. suggest a method for automatically
constructing proposal distributions, specifically geared for POMDP policy computation.

Rebeschini and Van Handel (2015) provide a mathematical foundation for another ap-
proach to dealing with high-dimensional state spaces. The central idea of the approach is
that the decay of correlations property, which could be viewed as a spatial counterpart of
the stability property of nonlinear filters, can be exploited to develop local particle filters
that scale well to high-dimensional settings. The authors also present an example algorithm,
Block Particle Filtering, for which they prove an approximation error bound that is uniform
in both time and dimension. Beskos, Crisan, Jasra, Kamatani, and Zhou (2017) extend a
related idea into the Space-Time Particle Filter that combines local filtering along the space

510

Unifying System Health Management and Automated Decision Making

dimensions with global filtering in the time dimension to provide sub-exponential computa-
tional complexity in the number of space dimensions. The authors provide theoretical and
numerical results showing consistency of the filter and its stability in high dimensions for
certain model classes.

6.4 Discussion

The analysis presented above is not exhaustive across all possible types of DM methods. Its
objective, however, is to illustrate that practical methods for implementing unified HADM
exist, and while there may be increases in computational complexity relative to separated
implementations, such increases are not insurmountable even in the most complex cases.

Fully deterministic HADM problems and problems with action outcome uncertainty can
be solved optimally or near-optimally with a computational complexity factor increase of,
at worst, O

(
|ADM ∪ASHM|D/(|ADM|D + |ASHM|D)

)
over a separated formulation (here D

is equivalent to H, i.e., the planning horizon). While not negligible, such an increase should
be manageable for the application domain being considered since |ASHM| is typically much
smaller than |ADM|, with most of the mitigation/recovery control accomplished through
|ADM| (for many systems ASHM = ∅, with ADM used both for controlling the system and
managing its health). Figure 11 shows how the computational complexity may increase
for different decision horizon lengths if SHM-specific actions (ASHM) constitute 5% and
10% of the unified action space AHADM, respectively. One way to potentially alleviate an
increase in the action space size is by using state-dependent action spaces, thus reducing
the average action branching factor. Partially observable HADM problems could present a
more challenging case from the computational complexity point of view. In addition to the
complexity increase resulting from a larger action space, increases due to higher-dimensional
state and observation spaces may play a role. We anticipate, however, that dimensionality
increases for unified S and O will be moderated by elimination of redundant dimensions.
Additionally, algorithms like DESPOT exist for this class of problems, with computational
complexity depending primarily on the problem structure (size of the optimal policy) rather
than on the dimensionality of S and O. It is quite possible that some HADM problems
will have more compact optimal policies than their separated formulations by the virtue of
having access to the unified model spaces.

5 10 15 20 25

2
4
6
8

10
12

decision horizon, steps

co
m

p
le

x
it

y
in

cr
ea

se
fa

ct
or |ASHM| = 0.05 |AHADM|

|ASHM| = 0.10 |AHADM|

Figure 11: Examples of computational complexity increase for different decision horizons
in fully deterministic problems and problems with action outcome uncertainty

511

Balaban, Johnson, & Kochenderfer

Finally, many modern DM algorithms lend themselves well to parallelization. For in-
stance, HyP-DESPOT (Cai, Luo, Hsu, & Lee, 2018) leverages massive parallelization on
both CPUs and GPUs to demonstrate a speed-up factor of a few hundred times relative to
the original DESPOT algorithm on several benchmark problems. We expect the emerging
high-dimensional belief update methods referenced in the previous subsection to benefit
from parallelization as well.

7. Concluding Remarks

This paper reexamines the prevalent approach to performing system health management
and makes the case for why keeping system health management functions separate from
decision making (planning, scheduling, and control) can be inefficient and ineffective. We
also show why prognostic analysis of system health is only meaningful in a limited set of
circumstances and, even then, needs to be driven by decision-making requirements.

We then explain the rationale for unifying—not just integrating—system health man-
agement with decision making, outline an approach for accomplishing unification, and show
how traditional system health management concepts map into the new approach. We also
propose keeping emergency response functionality separate to guarantee timely reactions,
provide dissimilar redundancy, and allow for offline computation, validation, and verification
of emergency response policies.

With the unified approach being suitable for systems of various complexity and types of
uncertainties present, a wide range of existing and emerging computational methods can be
used to implement it. While there may be an overall increase in computational cost under
the proposed approach (as compared to a separated formulation), we believe that advances
in algorithms and computing hardware generally make that a surmountable challenge.

In return, the approach is expected to improve a system’s resilience to faults and its
capacity to accomplish operational objectives, while potentially simplifying its informational
architecture, reducing the sensor suite size, and combining modeling efforts. It also enables
methodical exploration of design choices that affect both decision making and system health
during operation. In that, the proposed approach advances towards the vision long held by
the model-based AI community: to leverage the same set of models for different functions
throughout a system’s lifetime.

Acknowledgments

The authors gratefully acknowledge funding from NASA Ames Research Center in support
of this work. They are thankful for the productive discussions with their colleagues at
NASA Ames and Stanford University (particularly to Zachary Sunberg, Zongzhang Zhang,
and Ritchie Lee), as well as for the valuable comments on the earlier version of the pa-
per (presented at the 2018 AAAI Fall Symposium on Integrating Planning, Diagnosis, and
Causal Reasoning) by Liljana Spirkovska, Indranil Roychoudhury, Gregory Dorais, and
Mark “Mak” Roberts. The authors also express their appreciation for the thoughtful feed-
back by the anonymous AAAI and JAIR reviewers, as the paper has undoubtedly benefited
from it. Finally, they would like to thank Greg Orzech (NASA Ames) for taking the time
to proofread the manuscript.

512

Unifying System Health Management and Automated Decision Making

References

Aaseng, G. B. (2001). Blueprint for an integrated vehicle health management system. In
IEEE Digital Avionics Systems Conference.

Agha-mohammadi, A., Ure, N. K., How, J. P., & Vian, J. (2014). Health aware stochas-
tic planning for persistent package delivery missions using quadrotors. In IEEE/RSJ
International Conference on Intelligent Robots and Systems.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47 (2-3), 235–256.

Avizienis, A. (1976). Fault-tolerant systems. IEEE Transactions on Computers, 25 (12).

Bai, H., Cai, S., Ye, N., Hsu, D., & Lee, W. S. (2015). Intention-aware online POMDP
planning for autonomous driving in a crowd. In 2015 IEEE International Conference
on Robotics and Automation.

Balaban, E., & Alonso, J. J. (2013). A modeling framework for prognostic decision making
and its application to UAV mission planning. In Annual Conference of the Prognostics
and Health Management Society, New Orleans, LA.

Balaban, E., Arnon, T., Shirley, M. H., Brisson, S. F., & Gao, A. (2018). A system health
aware POMDP framework for planetary rover traverse evaluation and refinement. In
AIAA SciTech Forum.

Bathias, C., & Pineau, A. (2013). Fatigue of materials and structures: fundamentals. Wiley.

Bellman, R. (1957). A Markovian decision process. Journal of Mathematics and Mechanics,
(6), 679–684.

Benedettini, O., Baines, T., Lightfoot, H., & Greenough, R. (2009). State-of-the-art in in-
tegrated vehicle health management. Journal of Aerospace Engineering, 223 (2), 157–
170.

Bengtsson, T., Bickel, P., & Li, B. (2008). Curse-of-dimensionality revisited: collapse of the
particle filter in very large scale systems. Probability and Statistics: Essays in Honor
of David A. Freedman, 2, 316–334.

Bengtsson, T., Snyder, C., & Nychka, D. (2003). Toward a nonlinear ensemble filter for
high-dimensional systems. Journal of Geophysical Research, 108 (D24), 8775–8785.

Bernard, D., Dorais, G., Gamble, E., Kanefsky, B., Kurien, J., Man, G., Millar, W., Muscet-
tola, N., Nayak, P., Rajan, K., Rouquette, N., Smith, B., Taylor, W., & Tung, Y.-W.
(1999). Spacecraft autonomy flight experience: the DS1 remote agent experiment. In
AIAA Space Technology Conference and Exposition.

Beskos, A., Crisan, D., Jasra, A., Kamatani, K., & Zhou, Y. (2017). A stable particle filter
for a class of high-dimensional state-space models. Advances in Applied Probability,
49 (1), 24–48.

513

Balaban, Johnson, & Kochenderfer

Boddy, M. (1991). Anytime problem solving using dynamic programming. In AAAI Con-
ference on Artificial Inteligence.

Bonet, B., & Geffner, H. (2000). Planning with incomplete information as heuristic search in
belief space. In International Conference on Artificial Intelligence Planning Systems.

Browne, C., & Powley, E. (2012). A survey of Monte Carlo Tree Search methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4 (1), 1–49.

Burfoot, D., Pineau, J., & Dudek, G. (2006). RRT-Plan: a randomized algorithm for STRIPS
planning. In International Conference on Automated Planning and Scheduling.

Cai, P., Luo, Y., Hsu, D., & Lee, W. S. (2018). HyP-DESPOT: a hybrid parallel algorithm
for online planning under uncertainty. In Robotics: Science and Systems Conference.

Celaya, J., Kulkarni, C. S., Biswas, G., & Saha, S. (2011). A model-based prognostics
methodology for electrolytic capacitors based on electrical overstress accelerated aging.
In Annual Conference of the Prognostics and Health Management Society.

Chryssanthacopoulos, J. P., & Kochenderfer, M. J. (2012). Hazard alerting based on prob-
abilistic models. Journal of Guidance, Control, and Dynamics, 35 (2), 442–450.

Ciappa, M., Carbognani, F., Cova, P., & Fichtner, W. (2003). Lifetime prediction and
design of reliability tests for high-power devices in automotive applications. IEEE
International Reliability Physics Symposium Proceedings, 3 (4), 523–528.

Coffin, L. (1954). A study of the effects of cyclic thermal stresses on a ductile metal. Trans-
actions of the American Society of Mechanical Engineers, 76, 931–950.

Condon, A. (1992). The complexity of stochastic games. Information and Computation,
96 (2), 203–224.

Coquelin, P.-A., & Munos, R. (2007). Bandit algorithms for tree search. In Uncertainty in
Artificial Intelligence Conference.

Daigle, M. J., & Roychoudhury, I. (2010). Qualitative event-based diagnosis: case study on
the Second International Diagnostic Competition. In International Workshop on the
Principles of Diagnosis.

Daigle, M. J., Sankararaman, S., & Kulkarni, C. S. (2015). Stochastic prediction of remaining
driving time and distance for a planetary rover. In IEEE Aerospace Conference.

Dao, B., Hodgkin, J., Krstina, J., Mardel, J., & Tian, W. (2006a). Accelerated aging versus
realistic aging in aerospace composite materials. I. The chemistry of thermal aging in
a low-temperature-cure epoxy composite. Journal of Applied Polymer Science, 102,
4291–4303.

Dao, B., Hodgkin, J., Krstina, J., Mardel, J., & Tian, W. (2006b). Accelerated aging versus
realistic aging in aerospace composite materials. II. Chemistry of thermal aging in a
structural composite. Journal of Applied Polymer Science, 102, 3221–3232.

514

Unifying System Health Management and Automated Decision Making

Daum, F., & Huang, J. (2003). Curse of dimensionality and particle filters. In IEEE Aerospace
Conference.

Del Moral, P. (1996). Nonlinear filtering: interacting particle resolution. Markov Processes
and Related Fields, 2 (4), 555–581.

Eker, O. F., Camci, F., & Jennions, I. K. (2012). Major challenges in prognostics: study on
benchmarking prognostics datasets. In European Conference of the Prognostics and
Health Management Society.

Feldman, A., Provan, G., & Gemund, A. V. (2010). A model-based active testing approach
to sequential diagnosis. Journal of Artificial Intelligence Research, 39, 301–334.

Ferrell, B. (2000). Air vehicle prognostics and health management. In IEEE Aerospace
Conference.

Figueroa, F., & Walker, M. G. (2018). Integrated system health management (ISHM) and
autonomy. In AIAA SciTech Forum.

Fishburn, P. C. (1970). Utility theory for decision making. Research Analysis Corporation.

Frank, J., Jónsson, A., & Morris, P. (2000). On reformulating planning as dynamic con-
straint satisfaction. In International Symposium on Abstraction, Reformulation, and
Approximation.

Ghallab, M., Nau, D., & Traverso, P. (2016). Automated planning and acting. Cambridge
University Press.

Gordon, N., Salmond, D., & Smith, A. (1993). Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140 (2),
107–113.

Hall, R., & Shayler, D. (2003). Soyuz: a universal spacecraft. Springer.

Hansen, E. A., & Zhou, R. (2007). Anytime heuristic search. Journal of Artificial Intelligence
Research, (28), 267–297.

Hansen, E. A., & Zilberstein, S. (2001). LAO*: a heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129, 35–62.

Heng, A., Zhang, S., Tan, A. C. C., & Mathew, J. (2009). Rotating machinery prognos-
tics: state of the art, challenges and opportunities. Mechanical Systems and Signal
Processing, 23 (3), 724–739.

Howard, R. A. (1960). Dynamic programming and Markov processes. MIT Press.

Iverson, D. L. (2004). Inductive system health monitoring. In International Conference on
Artificial Intelligence.

Johnson, S. B., & Day, J. C. (2010). Conceptual framework for a fault management design
methodology. In AIAA Infotech@Aerospace Conference.

515

Balaban, Johnson, & Kochenderfer

Johnson, S. B., & Day, J. C. (2011). System health management theory and design strategies.
In AIAA Infotech@Aerospace Conference.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101 (1-2), 99–134.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, 4, 237–285.

Kearns, M., Mansour, Y., & Ng, A. Y. (2002). A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Machine Learning, 49, 193–208.

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value
tradeoffs. Cambridge University Press.

Kemeny, J., & Snell, J. (1983). Finite Markov chains. Springer.

Kochenderfer, M. J. (2015). Decision making under uncertainty: theory and application.
MIT Press.

Kochenderfer, M. J., Holland, J. E., & Chryssanthacopoulos, J. P. (2013). Next-generation
airborne collision avoidance system. Lincoln Laboratory Journal, 19 (1), 17–33.

Korbicz, J., Koscielny, J. M., Kowalczuk, Z., & Cholewa, W. (2012). Fault diagnosis: models,
artificial intelligence, applications. Springer.

Kurien, J., & Nayak, P. P. (2000). Back to the future for consistency-based trajectory
tracking. In AAAI National Conference on Artificial Intelligence.

Kurniawati, H., Hsu, D., & Lee, W. (2008). SARSOP: efficient point-based POMDP plan-
ning by approximating optimally reachable belief spaces. In Robotics: Science and
Systems Conference.

Levesque, H. J. (1996). What is planning in the presence of sensing? In National Conference
on Artificial Intelligence.

Littman, M. L., Dean, T. L., & Kaelbling, L. P. (1995). On the complexity of solving Markov
decision problems. In Uncertainty in Artificial Intelligence Conference.

Lopez, I., & Sarigul-Klijn, N. (2010). A review of uncertainty in flight vehicle structural
damage monitoring, diagnosis and control: challenges and opportunities. Progress in
Aerospace Sciences, 46 (7), 247–273.

Lu, K., & Saeks, R. (1979). Failure prediction for an on-line maintenance system in a
Poisson shock environment. IEEE Transactions on Systems, Man, and Cybernetics,
9 (6), 356–362.

Luo, Y., Bai, H., Hsu, D., & Lee, W. S. (2019). Importance sampling for online planning
under uncertainty. The International Journal of Robotics Research, 38 (2-3), 162–181.

Matsuishi, M., & Endo, T. (1968). Fatigue of metals subjected to varying stress. Japan
Society of Mechanical Engineers, 68 (2), 37–40.

516

Unifying System Health Management and Automated Decision Making

Meng, H.-C. (1994). Wear modeling: evaluation and categorization of wear models (Doctoral
dissertation, University of Michigan).

Metodi, A., Stern, R., Kalech, M., & Codish, M. (2014). A novel SAT-based approach to
model based diagnosis. Journal of Artificial Intelligence Research, 51, 377–411.

Meyer, C. M., Fulton, C., Maul, W., Chicatelli, A., Cannon, H., Bajwa, A., Balaban, E.,
& Wong, E. (2003). Propulsion IVHM technology experiment overview. In IEEE
Aerospace Conference.

Miner, M. (1945). Cumulative damage in fatigue. Journal of Applied Mechanics, 12 (3),
A159–A164.

Narasimhan, S., & Brownston, L. (2007). HyDE – a general framework for stochastic and
hybrid model-based diagnosis. In International Workshop on the Principles of Diag-
nosis.

National Aeronautics and Space Administration. (2012). Fault management handbook.

Nicewarner, K., & Dorais, G. (2006). Designing and validating an adjustably-autonomous
free-flying intraspacecraft robot. In AIAA Space Conference.

Ogata, K. (2010). Modern control engineering. Pearson.

Oh, H., Han, B., McCluskey, P., Han, C., & Youn, B. D. (2015). Physics-of-failure, condition
monitoring, and prognostics of insulated gate bipolar transistor modules: a review.
IEEE Transactions on Power Electronics, 30 (5), 2413–2426.

Papadimitriou, C., & Tsitsiklis, J. (1987). The complexity of Markov decision processes.
Mathematics of Operations Research, 12 (3), 441–450.

Pineau, J., Gordon, G. J., & Thrun, S. (2006). Anytime point-based approximations for
large POMDPs. Journal of Artificial Intelligence Research, 27, 335–380.

Prajapati, A. K., Roy, B. K., & Prasad, R. (2018). A state of the art review of integrated ve-
hicle health management systems. In IEEE International Conference for Convergence
in Technology.

Ragi, S., & Chong, E. K. P. (2014). UAV path planning in a dynamic environment via
partially observable Markov decision process. IEEE Transactions on Aerospace and
Electronic Systems, 49 (4), 2397–2412.

Rasmussen, R. D. (2008). GN&C fault protection fundamentals. In AAS Guidance and
Control Conference.

Reason, J. (1990). Human error. Cambridge University Press.

Rebeschini, P., & Van Handel, R. (2015). Can local particle filters beat the curse of dimen-
sionality? Annals of Applied Probability, 25 (5), 2809–2866.

Rigamonti, M., Baraldi, P., Zio, E., Astigarraga, D., & Galarza, A. (2016). Particle filter-
based prognostics for an electrolytic capacitor working in variable operating condi-
tions. IEEE Transactions on Power Electronics, 31 (2), 1567–1575.

517

Balaban, Johnson, & Kochenderfer

Ross, S., Pineau, J., & Paquet, S. (2008). Online planning algorithms for POMDPs. Journal
of Artificial Intelligence Research, 32, 663–704.

Roy, N., Gordon, G. J., & Thrun, S. (2005). Finding approximate POMDP solutions through
belief compression. Journal of Artificial Intelligence Research, 23, 1–40.

Roychoudhury, I., & Daigle, M. J. (2011). An integrated model-based diagnostic and prog-
nostic framework. In International Workshop on the Principles of Diagnosis.

Schwabacher, M., Samuels, J., & Brownston, L. (2002). NASA integrated vehicle health
management technology experiment for X-37. In SPIE AeroSense Conference.

Silver, D., & Veness, J. (2010). Monte-Carlo planning in large POMDPs. In Advances In
Neural Information Processing Systems.

Snyder, C., Bengtsson, T., Bickel, P., & Anderson, J. (2008). Obstacles to high-dimensional
particle filtering. Monthly Weather Review, 136 (12), 4629–4640.

Spaan, M. T., Gonçalves, N., & Sequeira, J. (2010). Multirobot coordination by auctioning
POMDPs. In IEEE International Conference on Robotics and Automation.

Spaan, M. T., Veiga, T. S., & Lima, P. U. (2015). Decision-theoretic planning under un-
certainty with information rewards for active cooperative perception. Autonomous
Agents and Multi-Agent Systems, 29, 1157–1185.

Tang, L., Hettler, E., Zhang, B., & Decastro, J. (2011). A testbed for real-time autonomous
vehicle PHM and contingency management applications. In Annual Conference of the
Prognostics and Health Management Society.

Tang, L., Roemer, M., Bharadwaj, S., & Belcastro, C. (2008). An integrated health assess-
ment and fault contingency. In AIAA GN&C Conference.

Ure, N. K., Chowdhary, G., How, J. P., Vavrina, M. A., & Vian, J. (2013). Health aware
planning under uncertainty for UAV missions with heterogeneous teams. In European
Control Conference.

Valasek, J. (2012). Advances in intelligent and autonomous aerospace systems. AIAA.

Virkler, D. A., Hillberry, B., & Goel, P. K. (1979). The statistical nature of fatigue crack
propagation. Journal of Engineering Materials and Technology, 101 (2), 148–153.

Wang, P., Youn, B. D., & Hu, C. (2012). A generic probabilistic framework for structural
health prognostics and uncertainty management. Mechanical Systems and Signal Pro-
cessing, 28, 622–637.

Weld, D., Anderson, C., & Smith, D. (1998). Extending Graphplan to handle uncertainty
& sensing actions. AAAI/IAAI Conference.

Williams, B. C., & Pandurang, P. (1996). A model-based approach to reactive self-configuring
systems. In AAAI National Conference on Artificial Intelligence.

Ye, N., Somani, A., Hsu, D., & Lee, W. S. (2017). DESPOT: online POMDP planning with
regularization. Journal of Artificial Intelligence Research, 58, 231–266.

518

	Introduction
	Systems of Interest
	System Health Management
	Prognostics
	Systems with Uncontrolled Degradation Processes
	Systems with Controllable Degradation Processes

	Unifying Decision Making and System Health Management
	Separated vs. Unified SHM/DM
	Unification Approach
	Emergency Response versus Health-Aware Decision Making

	Computational Complexity of Health-Aware Decision Making
	Fully Deterministic Problems
	Problems with Action Outcome Uncertainty
	Problems with State and Outcome Uncertainty
	Discussion

	Concluding Remarks

