
Journal of Artificial Intelligence Research 64 (2019) 253-314 Submitted 07/18; published 02/19

Logical Foundations of Linked Data Anonymisation

Bernardo Cuenca Grau bernardo.cuenca.grau@cs.ox.ac.uk
Egor V. Kostylev egor.kostylev@cs.ox.ac.uk
Department of Computer Science
University of Oxford
Oxford, United Kingdom.

Abstract
The widespread adoption of the Linked Data paradigm has been driven by the increas-

ing demand for information exchange between organisations, as well as by regulations in
domains such as health care and governance that require certain data to be published. In
this setting, sensitive information is at high risk of disclosure since published data can be
often seamlessly linked with arbitrary external data sources.

In this paper we lay the logical foundations of anonymisation in the context of Linked
Data. We consider anonymisations of RDF graphs (and, more generally, relational datasets
with labelled nulls) and define notions of policy-compliant and linkage-safe anonymisations.
Policy compliance ensures that an anonymised dataset does not reveal any sensitive infor-
mation as specified by a policy query. Linkage safety ensures that an anonymised dataset
remains compliant even if it is linked to (possibly unknown) external datasets available on
the Web, thus providing provable protection guarantees against data linkage attacks. We
establish the computational complexity of the underpinning decision problems both under
the open-world semantics inherent to RDF and under the assumption that an attacker has
complete, closed-world knowledge over some parts of the original data.

1. Introduction

One of the key advantages of the Linked Data paradigm (Bizer, Heath, & Berners-Lee,
2009) is the ability to seamlessly publish and connect uniquely identified data objects on
the Web, thus facilitating information sharing and large-scale data analysis. Linked Data is
based on the Resource Description Framework (RDF) data model (Manola & Miller, 2004)
and the standard RDF query language SPARQL (Harris & Seaborne, 2013).

The widespread adoption of Linked Data has been driven by the increasing demand for
information exchange between organisations, as well as by regulations in domains such as
health care and governance that require certain data to be made available. Data publishing,
however, can lead to the disclosure of sensitive information and hence to the violation of
individual privacy—a risk that is exacerbated whenever published data can be linked with
external data sources.

Privacy-preserving data publishing (PPDP) refers to the problem of protecting individual
privacy while at the same time ensuring that published data remains practically useful
(Fung, Wang, Chen, & Yu, 2010). In PPDP there is an emphasis in the publication of
actual data. This is in contrast to the less stringent requirements of certain applications
where it suffices to publish the results of data analysis (e.g., statistics about groups of
individuals, or association rules) instead of the data itself; in such cases, methods such as
differential privacy (Dwork, 2008) become extremely useful.

c©2019 AI Access Foundation. All rights reserved.

Cuenca Grau & Kostylev

The most prominent form of PPDP is anonymisation, where explicit individual iden-
tifiers and the values of certain sensitive attributes are obfuscated. Early approaches
to database anonymisation involved the removal of just the identifiers of record owners.
Sweeney (2002), however, demonstrated the threats posed by information linkage when
they disclosed confidential medical records by linking a medical database where patient
names and Social Security Numbers had been anonymised with a public voter list contain-
ing postcode, gender, and age information. As a result, PPDP has become an increasingly
important problem in recent years and several anonymisation techniques have been proposed
in the context of relational databases (Fung et al., 2010).

Our goal in this paper is to lay the theoretical foundations for PPDP in the context of
Linked Data, with a focus on the semantic requirements that an anonymised RDF graph
should satisfy before being released to Web, as well as on the computational complexity
of checking whether such requirements are fulfilled. Clearly, these are fundamental steps
towards the development of optimised anonymisation algorithms suitable for applications.

In Section 3 we introduce our anonymisation framework, where we assume that an
anonymised RDF graph G (or, more generally, a relational dataset with labelled null values)
is obtained from the original graph (or relational dataset) G0 by replacing some occurrences
of IRIs (constants) in triples with blank nodes (null values). The sensitive information in
G0 that we aim to protect against disclosure is represented by a conjunctive SPARQL query
p, which we refer to as a policy. An essential requirement in this setting is that none of the
sensitive answers to p hold in the anonymised graph G, in which case we say, in Section
3.2, that G is policy-compliant. Although policy compliance ensures that the sensitive in-
formation is protected when G is considered in isolation, it provides no guarantee against
disclosure once G is released to the Web and can be freely linked with arbitrary external
data. To address this limitation we formulate in Section 3.3 an additional linkage safety
requirement, which ensures that G can be released with provable protection guarantees
against linkage attacks. In Section 3.4 we consider the natural situation where an attacker
may have complete, closed-world information about certain parts of the original graph G0
and use that information to disclose answers to the policy query; to address such potential
vulnerability, we propose general variants of policy compliance and linkage safety that lead
to more stringent requirements. In addition to satisfying suitable compliance and safety
requirements, we would also like the anonymised graph G to preserve as much information
from the original graph G0 as possible, thus ensuring that the published data remains prac-
tically useful. To this end, we introduce in Section 3.5 a notion of cost of an anonymisation
and argue that anonymisations with higher cost are those that are semantically “less in-
formative”; as a result, we suggest that one should aim at computing anonymisations with
minimal cost. Finally, in Section 3.6 we formulate the decision problems underpinning our
notions of policy compliance, linkage safety, and cost minimality in both their open-world
and general, closed-world, variants. On the one hand, we introduce a policy compliance
(respectively, linkage safety) checking problem, where the goal is to verify whether a given
anonymisation satisfies the relevant requirements; on the other hand, we also introduce a
cost minimisation problems for compliance and safety, where the goal is to check whether
there exists an anonymisation satisfying the relevant privacy requirements and having at
most a given maximum associated cost.

254

Logical Foundations of Linked Data Anonymisation

In Section 4 we study the computational complexity of the decision problems associated
to policy compliance checking and cost minimisation, and establish tight bounds for all
variants of these problems. In particular, we establish completeness for various levels of
polynomial hierarchy, as well as NP-completeness in data complexity for all the studied
variants with the exception of two tractable cases.

In Section 5 we turn our attention to linkage safety and study the complexity of the
associated checking and cost minimisation problems. We show that, under the open-world
assumption, all these problems can be solved within the second and third levels of the poly-
nomial hierarchy; furthermore, concerning data complexity, safety checking is a tractable
problem (solvable in AC0), whereas cost minimisation is NP-complete and hence computa-
tionally more demanding. In contrast, if we allow the input graph to contain closed-world
information, all the aforementioned problems become coNExpTime-complete in combined
complexity and complete for the second level of the polynomial hierarchy (safety checking)
or the third level (cost minimisation) in data complexity.

To the best of our knowledge, ours is the first approach to Linked Data anonymisation
providing provable logic-based guarantees against disclosure of declaratively-specified sensi-
tive information. Our results in this paper constitute fundamental initial steps towards the
development and implementation of algorithms suitable for applications. Indeed, although
most of the decision problems that we study here are inherently intractable, anonymisation
in data publishing constitutes in most cases as “offline” process that is only performed once
for each data release. Finally, our technical results also establish interesting connections
between anonymisation and existing problems in database and graph theory, such as the
critical tuple problem in relational databases (Miklau & Suciu, 2007) and the node and edge
deletion problems in graphs (Lewis & Yannakakis, 1980; Yannakakis, 1978).

This paper is an extension of a prior conference publication (Cuenca Grau & Kostylev,
2016). The most significant addition is the definition (in Section 3.6) and comprehensive
study (in Sections 4.2 and 5.2) of the decision problems associated to cost minimisation.
Another significant addition to our conference paper is the study of strict suppressors, which
capture a very natural class of anonymisations where all occurrences of the same constant
are mapped to the same null. Finally, we have also corrected some erroneous technical
claims in the conference paper and strengthened a number of complexity bounds; each of
these contributions are indicated at the appropriate places in the relevant sections. We refer
the reader to Section 6 for a more detailed general discussion.

2. Preliminaries

We adopt standard notions in function-free first-order logic with equality. We also adopt the
unique name assumption (UNA), which precludes different constants in formulae from being
mapped to the same domain element in an interpretation. Although most of our technical
results hold (with the same proof) if the UNA is dropped, there are a few exceptions where
our proofs critically depend on the adoption of the UNA; these are discussed later on.

2.1 Datasets with Labelled Nulls

Let Const and Null be pairwise disjoint, countably infinite, sets of constants and (labelled)
nulls, respectively. Assuming a relational vocabulary (i.e., a set of predicates with their

255

Cuenca Grau & Kostylev

respective arities), a dataset is a finite set of atoms with predicates from this vocabulary
and arguments from Const ∪ Null. A dataset D is ground if it contains no nulls.

When talking about logical entailment we view a dataset D as a sentence ∃b̄.
∧
α∈D α,

where b̄ are the nulls occurring in D; in particular, a ground dataset corresponds to a
conjunction of ground atoms. According to this interpretation, renamings of nulls preserve
logical equivalence; hence, we consider datasets modulo such renamings and assume that
datasets D1 and D2 have disjoint sets of nulls in use when taking the union D1 ∪ D2.

As usual, given datasets D1 and D2, a homomorphism from D1 to D2 is a mapping
h : Const ∪ Null → Const ∪ Null such that h(c) = c for each c ∈ Const and h(D1) ⊆ D2,
where h(D1) is the result of applying h to the nulls and constants in all the atoms in D1.

Logical entailment of datasets can be characterised in terms of existence of a homomor-
phism: D1 |= D2 if and only if there is a homomorphism from D2 to D1.

2.2 Queries and Query Answering

A conjunctive query (CQ) with answer variables x̄ and existential variables ȳ is a formula of
the form ∃ȳ. ϕ(x̄, ȳ), where the body ϕ(x̄, ȳ) is a conjunction of atoms with each argument
either a constant from Const or a variable from x̄ ∪ ȳ. A CQ is quantifier-free if it has no
existential variables; it is Boolean if it has no answer variables; and it is atomic if it consists
of a single atom. The size |q| of a CQ q is the number of atoms it contains.

Analogously to datasets, a homomorphism from the body ϕ(x̄, ȳ) of a CQ to a dataset
D is a mapping g : Const ∪ x̄ ∪ ȳ → Const ∪ Null such that g(c) = c for each c ∈ Const
and g(ϕ(x̄, ȳ)) ⊆ D. A tuple of constants c̄ from Const is an answer to a CQ q(x̄) over a
dataset D if D |= q(c̄), where q(c̄) is the Boolean CQ obtained from q(x̄) by replacing x̄
with the corresponding constants in c̄. Equivalently, c̄ is an answer to q(x̄) if there exists a
homomorphism g from the body ϕ(x̄, ȳ) of q(x̄) to D such that g(x̄) = c̄.

2.3 RDF and SPARQL

All our technical results are stated for general datasets with nulls; however, our work is
motivated by RDF and Linked Data, so we next define RDF graphs and describe their
correspondence to datasets with nulls.

Let I, L, and B be countably infinite pairwise disjoint sets of IRIs, literals, and blank
nodes, respectively. An (RDF) triple is an element (s, p, o) of the set (I∪B)×I×(I∪L∪B),
where s is referred to as the subject, p as the predicate, and o as the object. An RDF graph
is a finite set of triples.

RDF comes with a Tarski-style model theory (Hayes, 2004), according to which every
RDF graph G can be seen as a dataset DG over one ternary predicate Triple that consists
of atoms Triple(s, p, o) for each triple (s, p, o) in G, where IRIs I and literals L play role of
constants, and blank nodes B play role of nulls that are local to the graph in which they
occur (Hogan, Arenas, Mallea, & Polleres, 2014). RDF is equipped with a merge operation
G1 + G2 that first renames apart blank nodes in G1 and G2 and then constructs the set-
theoretic union of their triples; this corresponds precisely to the union of their associated
datasets DG1 and DG2 (under the assumption in the previous section).

CQs correspond to the core of the W3C standard query language SPARQL as follows.
Given variables X, a basic SPARQL query q is of the form SELECT x̄ WHERE P ,

256

Logical Foundations of Linked Data Anonymisation

Alice Bob

Mary

Oncology

seenBy seenBy

dept

Figure 1: Example RDF graph G0

where x̄ is a tuple of distinct variables in X and P is a set of triple patterns (s, p, o) with
s, o ∈ I ∪ L ∪X and p ∈ I ∪X such that all variables in x̄ appear in P . Each such query
directly corresponds to a CQ q(x̄) = ∃ȳ.

∧
(s,p,o)∈P Triple(s, p, o), with ȳ the variables in P

that are not in x̄.

2.4 Complexity Classes

We use standard definitions of the basic time complexity classes such as P, NP, coNP,
NExpTime and coNExpTime. We also consider the class AC0 used in circuit complexity,
which encompasses all families of circuits of constant depth and polynomial size with un-
limited fan-in AND and OR gates (Papadimitriou, 1994). For complexity classes C and C′,
we denote by CC′

the class of decision problems that can be solved by a Turing machine
running in C and using an oracle for decision problems in C′. The polynomial hierarchy is
then defined inductively as follows:

Σp
0 = Πp

0 = P, Σp
k+1 = NPΣp

k , and Πp
k+1 = coNPΣp

k .

Finally, we also consider the class DP, which contains each language that is the intersection
of a language in NP and a language in coNP. Class DP contains the union of NP and
coNP, and is contained in both Σp

2 and Πp
2.

3. Logical Framework for PPDP

In this section we present our framework for PPDP and anonymisation in the context of
Linked Data. For the sake of generality, our definitions are formulated in terms of datasets
with nulls; their application to RDF graphs is immediate by their first-order representation.
We follow the same convention in the following sections, where complexity results for the
decision problems introduced in this section are presented; all our complexity lower bounds
can be adapted to hold for a vocabulary with a single ternary predicate and hence apply to
the RDF case. Our motivating examples will be given for RDF graphs.

257

Cuenca Grau & Kostylev

3.1 Anonymising Linked Data

To illustrate the intuitions behind our approach, let us consider as a simple running example
the RDF graph G0 consisting of the following triples, which represent patient data:

τ1 = (Alice, seenBy,Mary), τ2 = (Bob, seenBy,Mary), τ3 = (Mary, dept,Oncology),

where all elements of the triples are IRIs (i.e., constants). Graph G0 is depicted in Fig-
ure 1, where, for illustrative purposes, subjects and objects are depicted as black dots and
predicates are represented as labelled edges.

We would like to publish an anonymised version of G0 while ensuring that the names of
patients who have seen an oncologist will not be disclosed, in which case we will say that
the anonymisation is policy-compliant (or simply compliant). Additionally, we would like
the anonymisation to remain compliant even if linked with external RDF graphs available
on the Web and which cannot be assumed to be known in advance; in this case, we will say
that the anonymisation is linkage-safe (or simply safe) and will be able to ensure that it
can be published on the Web with provable protection guarantees against linkage attacks.
Finally, in both cases, we would want the anonymisation to be minimal in the sense that it
preserves as much information from G0 as possible while remaining compliant or safe, thus
ensuring that the data stays useful in practice to the extent possible.

We assume that the anonymised graph G is obtained from G0 by replacing specific
occurrences of IRIs in triples with blank nodes (i.e., nulls). For instance, such graph could
be obtained by replacing Alice in triple τ1, Bob in triple τ2 and Mary in all three triples
with distinct blank nodes b1, b2 and b3, respectively, thus obtaining the graph G1 depicted
in Figure 2a (where blank nodes are shown as white dots). Semantically, this implies that
the anonymised graph G is a weakening of the original graph G0, in the sense that DG is
homomorphically embeddable into DG0 and hence DG0 |= DG.

Following the mainstream approach in PPDP for databases (e.g., see (Meyerson &
Williams, 2004)) we formalise anonymisation in terms of suppressor functions, which map
occurrences of terms in datasets to null values. In contrast to the standard definition,
however, we use labelled nulls rather than unlabelled ones.

Definition 1. A position s in a dataset D is a pair 〈α, j〉 for α an n-ary atom in D and j a
number satisfying 1 ≤ j ≤ n. The value val(s) of position s is the j-th argument (constant
or null) of α. Given a dataset D0, a D0-suppressor is a function f that maps all positions
in D0 to Const ∪ Null such that, for all positions s and s′ in D0,

1. if f(s) ∈ Const, then val(s) = f(s); and

2. if f(s) = f(s′), then val(s) = val(s′).

Suppressor f determines the dataset

f(D0) = {R(f(〈α, 1〉), . . . , f(〈α, n〉)) | α an atom in D0 over n-ary predicate R},

which we refer to as an anonymisation of D0. Finally, suppressor f is strict if it additionally
satisfies the converse of the aforementioned condition 2: for all positions s and s′ in D0, if
val(s) = val(s′) then f(s) = f(s′).

258

Logical Foundations of Linked Data Anonymisation

b1 b2

b3

Oncology

seenBy seenBy

dept

(a) Anonymisation G1

Alice Bob

b

Oncology

seenBy seenBy

dept

(b) Anonymisation G2

b Bob

Mary

seenBy seenBy
dept

(c) Not an anonymisation

Figure 2: Anonymisations of example graph G0

Intuitively, a suppressor function f either replaces the value in a position of D0 by a null
or keeps is as it is, while the same null can only replace the same value. In the context of
RDF graphs, a suppressor f can be seen as a function anonymising a subset of individual
occurrences of elements in triples by blank nodes. Condition 1 in Definition 1 ensures that
a constant occurring in a position of D0 cannot be mapped by f to a different constant; in
turn, condition 2 ensures that no two positions in D0 involving different values are mapped
into the same null. These two properties are essential to guarantee that an anonymisations
of D0 is a logical weakening of (and hence entailed by) D0. Next, suppressor f is strict if
it treats uniformly all positions with the same value, by either sending them to the same
null, or by leaving them unanonymised. In the context of RDF graphs, strict suppressors
can be seen as those anonymising nodes in the graph.

For instance, graphs G1 and G2 in Figures 2a and 2b, respectively, are anonymisations
of our example graph G0, where the corresponding suppressors are strict. In contrast, the
graph in Figure 2c is not an anonymisation since its corresponding suppressor function maps
the (only) occurrences of IRIs Alice and Oncology in G0 to the same blank node, b, thus
violating condition 2 in Definition 1. Note also that, intuitively, anonymisation G2 seems
to be “better” than G1, in the sense that it preserves more information; we will formalise
this intuition in Section 3.5.

3.2 Formalising Sensitive Information: Policies and Compliance

The sensitive information that we aim to protect against disclosure can be naturally rep-
resented as a conjunctive query, which we call a policy. For instance, the requirement
to protect the list of patients seen by an oncologist can be represented by the following
SPARQL query, which has Alice and Bob as answers over G0:

SELECT x WHERE {(x, seenBy, y), (y, dept,Oncology)}.

A suppressor function for a dataset together with a policy constitute a PPDP instance, as
defined next.

Definition 2. A PPDP instance is a triple (D0, f, p), with D0 a dataset, f a D0-suppressor,
and p a CQ, called the policy. An instance (D0, f, p) is ground if D0 is ground. It is an

259

Cuenca Grau & Kostylev

Alice Bob

Mary

b

Mary

Oncology

seenBy seenBy

dept dept+

(a) Anonymisation G3 and external graph

b1 b2

Mary

Oncology

Alice Bob

Mary

seenBy seenBy

dept seenBy seenBy+

(b) Anonymisation G4 and external graph

Figure 3: Unsafe anonymisations of graph G0

RDF PPDP instance, if D0 = DG0 for some RDF graph G0 and the policy p corresponds to
a SPARQL query (i.e., the vocabulary of D0 and p has a single ternary predicate Triple).

To protect the sensitive information in our example graph G0, an essential requirement
is that the evaluation of the policy over the anonymised graph does not reveal any of the
sensitive answers Alice and Bob. For instance, a strict suppressor that replaces all occur-
rences of Mary in G0 by a single blank node, thus generating graph G2 in Figure 2b, would
violate the policy since both sensitive answers follow from the resulting anonymisation. In
contrast, by replacing Alice, Bob and Mary with blank nodes, as in graph G1 in Figure 2a,
we can ensure that no sensitive answer is disclosed.

Definition 3. A dataset D complies with a policy p if D 6|= p(c̄) for each tuple c̄ of con-
stants. A PPDP instance (D0, f, p) is policy-compliant (or, just compliant) if f(D0) com-
plies with p.

3.3 Protecting Anonymised Data Against Linkage Attacks

Compliance ensures that sensitive information remains protected when the anonymised data
is considered in isolation. It provides, however, no guarantee against disclosure once the
anonymised data is released to the Web and can be linked with arbitrary external datasets.

For example, consider a strict suppressor that replaces Oncology in our example graph
G0 with a blank node, thus generating graph G3 on the left-hand side of Figure 3a. Although
the anonymised graph G3 is compliant, the sensitive information can be recovered by linking
the anonymised graph with one representing the relationship between doctors and their
departments (but saying nothing about patients), as depicted also in Figure 3a. We would
equally run into trouble if we followed the natural approach of replacing Alice and Bob
with blank nodes since, as depicted in Figure 3b, the resulting anonymisation G4 could be
linked with a graph capturing the relationship between patients and the doctors they saw
(but saying nothing about departments).

Therefore, to provide a sensible level of protection against linking attacks we should
ensure that the policy is not compromised even if the anonymisation can be freely linked with
other graphs. Obviously, anonymising a graph only makes sense under the assumption that
the sensitive information cannot be obtained from external sources only (otherwise, even

260

Logical Foundations of Linked Data Anonymisation

John Linda

Alice Bob

Mary

Oncology

spouse spouse

seenBy seenBy

dept

(a) Extended graph G1

John Linda

b1 b2

b3

Oncology

spouse spouse

seenBy seenBy

dept John Linda

Alice Bob

spouse spouse

+

(b) Anonymisation of G1 and spouse closure

Figure 4: Safety with closed-word information

publishing the empty graph would be problematic); hence, only external graphs complying
with the policy are of interest.

Definition 4. A PPDP instance (D0, f, p) is linkage-safe (or just safe) if, for every dataset
D′ complying with p, the union dataset f(D0) ∪ D′ also complies with p.

We can ensure safety by replacing all occurrences of Alice, Bob and Mary in G0 with
blank nodes b1, b2 and b3, respectively, thus obtaining G1 in Figure 2a. Intuitively, graph
G1 is safe because its blank nodes cannot be “accessed” by any external graph G′; indeed,
Definition 4 considers the merge of graphs where blank nodes are first renamed apart before
constructing the set-theoretic union. As a result, if the merged graph violates the policy,
then the external graph G′ alone must introduce Alice (or Bob) and their connection with
the oncology department and hence also violate the policy.

3.4 Policy Compliance and Linkage Safety with Closed-World Information

Definition 4 fits well with the first-order logic semantics of RDF, which is inherently open-
world. There are situations, however, when a dataset contains relations for which a smart
attacker could easily gather complete information about. Consider graph G1 depicted in
Figure 4a extending G0 with the following triples:

τ4 = (John, spouse,Alice), τ5 = (Linda, spouse,Bob).

We can satisfy the requirements of Definition 4 by replacing Alice, Bob and Mary with
blank nodes, as depicted in Figure 4b. However, an attacker having access to a marriage
registry database may have complete information about the spouse relation, in which case
they can exploit τ4 and τ5 to re-identify b1 with Alice and b2 with Bob.

Such re-identification, however, is only possible under the additional assumption that
the marriage registry is complete—that is, no unrecorded marriage can exist. This is in
contrast to the open-world setting, where linking the anonymised graph with one having

261

Cuenca Grau & Kostylev

triples τ4 and τ5 provides no certain information about the identities of blank nodes b1
and b2.1

We can formally represent such closed-world information by means of a CQ correspond-
ing to the SPARQL query SELECT x, y WHERE (x, spouse, y) together with its answers
(John,Alice) and (Linda,Bob) over the original graph G1. To ensure that these answers
capture all possible triples over the spouse predicate, thus “closing” the spouse property,
we adapt the standard approach pioneered by Reiter (1992), where a database is seen as a
first-order theory with equality axiomatising predicate closure.
Definition 5. A closure [q, Ans] is pair of a CQ q(x̄) = ∃ȳ. ϕ(x̄, ȳ) and a set Ans of tuples
of constants with the same size as x̄. In the context of logic, we see [q, Ans] as the set of
the following logical sentences:

– q(c̄) for each c̄ ∈ Ans; and

– ∀x̄. ∀ȳ. (ϕ(x̄, ȳ)→
∨
c̄∈Ans x̄ = c̄), where x̄ = c̄ stands for

∧
1≤i≤|x̄| xi = ci with xi and

ci being the i-th components of x̄ and c̄, respectively.
In our example, the closure fixes the triples involving the spouse predicate and hence,

together with the anonymisation, the attacker can derive that b1 is Alice and b2 is Bob.
We can incorporate the notion of closure in our framework by generalising policy com-

pliance and linkage safety as given next. We will allow for sets of closures, rather than
individual closures as in our prior conference publication (Cuenca Grau & Kostylev, 2016);
this is a natural generalisation since the information considered to be complete is likely to
involve rather distinct parts of the published graph.
Definition 6. A dataset D complies with a policy p with respect to a set of closures C if
D ∪ C 6|= p(c̄) for each tuple c̄ of constants. A PPDP instance (D0, f, p) is compliant with
respect to C if the anonymisation f(D0) complies with p with respect to C.

Note that, since we adopt the UNA, a dataset can contradict a closure, in which case
this dataset does not comply with any policy with respect to the closure.

By this definition, the anonymisation of G1 in Figure 4b is not compliant with our
running example policy with respect to the closure of the spouse property.
Definition 7. A PPDP instance (D0, f, p) is safe with respect to a set of closures C if, for
each D′ complying with p with respect to C, the union f(D0) ∪D′ also complies with p with
respect to C.

These notions generalise their open-world counterparts: to capture Definitions 3 and 4
it suffices to consider the empty set of closures.

3.5 Maximising Data Availability

There is an intrinsic trade-off between privacy preservation and availability of information.
Thus, a key challenge is to ensure that the published linked datasets are protected against
disclosure of sensitive information while remaining practically useful.

We next introduce an order on anonymisations, which corresponds to different levels of
information availability.
1. Note that the spouse relation is not axiomatised as functional, in which case the identity of the blank

nodes would be revealed even in the open-world case.

262

Logical Foundations of Linked Data Anonymisation

b1 b2

b3
b′3

Oncology

seenBy seenBy

dept

(a) Anonymisation G5

b1 b2

b3

Oncology

seenBy seenBy

dept

(b) Anonymisation G6

Figure 5: Anonymisations of G0 with different levels of information availability

Consider our example G0 and the (safe) anonymisation G5 depicted in Figure 5a. This
is, however, not the most informative safe anonymisation derivable from G0. For instance,
we could identify b3 with b′3 to obtain G6, depicted in Figure 5b, without putting the policy
at risk; this yields additional information since we can now conclude that some patient saw
an oncologist. To determine which anonymisations are more informative, we introduce an
order between suppressor functions. Intuitively, a suppressor f1 is at most as informative
as a suppressor f2 if f2 can be obtained from f1 by replacing some nulls by constants and,
as we did in our example, by identifying some pairs of nulls.

Definition 8. Given a dataset D0 and D0-suppressors f1 and f2, we say that f1 is at most
as informative as f2 (and that f2 is at least as informative as f1), written f1 � f2, if the
following conditions hold for all positions s and s′ in D0:

1. if f1(s) ∈ Const then f2(s) = f1(s), and

2. if f1(s) = f1(s′) then f2(s) = f2(s′).

We write f1 ≺ f2 if f1 � f2, but f2 � f1 does not hold.

For strict suppressors, condition 2 in the aforementioned definition is redundant.
It is immediate to see that the relation � is a preorder—that is, it is reflexive and

transitive. However, suppressors f1 and f2 are equivalent according to this preorder—that
is, both f1 � f2 and f2 � f1 hold—only if f1 and f2 are the same up to renaming of nulls.
This is not a meaningful distinction in our formalism, and hence in what follows we consider
such equivalent f1 and f2 the same; then, the preorder � induces a partial order on (the
equivalence classes of) suppressors, which we also denote by �.

Order � reflects our understanding of when one suppressor is more informative than
another in a simple syntactic way. However, sometimes even if two suppressors are incom-
parable by �, we may prefer one to another: this happens, for example, when the second
suppressor anonymises two constants c1 and c2, while the first suppressor anonymises just
one constant that is different from both c1 and c2. To this end, we should define an integer
cost of suppressors such that more informative ones have lower cost—that is, f1 ≺ f2 should
imply that the cost of f1 is greater than the cost of f2. Looking at Figure 5, a first idea
would be to define the cost as the number of different nulls in the range of the suppressor.

263

Cuenca Grau & Kostylev

Alas, this definition does not satisfy the required property: the suppressor corresponding
to G5 in Figure 5a is strictly less informative than the suppressor corresponding to the
dataset obtained from G6 by replacing one of the occurrences of b3 by Mary, but both of
them have 4 different nulls in the image. In this case, it seems that counting the number of
occurrences of nulls in the images is more appropriate. This, however, undesirably makes
G5 and G6 to have the same cost. Therefore, to deal with both cases, we define the cost as
the sum of the numbers of different nulls and null occurrences.

Definition 9. Given a dataset D0 and a D0-suppressor f , the cost of f is the sum of the
number of different nulls in the image of f and the number of positions s of D0 such that
f(s) is a null.

It is trivial to check that, under this definition, the cost satisfies the intended property.

Proposition 1. Given a dataset D0 and two D0-suppressors f1 and f2 with costs `1 and
`2, respectively, if f1 ≺ f2 then `1 > `2.

The cost is thus a natural measure which we should aim to minimise when looking for
a policy-compliant or linkage-safe anonymisation.

3.6 Reasoning Problems

We are now ready to formulate the decision problems underpinning our notions of policy
compliance, linkage safety, and cost minimality.

Definition 10. Given as input a PPDP instance (D0, f, p) and a set of closures C, we
define the following decision problems, corresponding to Definitions 6 and 7:

– Compliance: Is (D0, f, p) compliant with respect to C?

– Safety: Is (D0, f, p) safe with respect to C?

Given as input a dataset D0, a policy p, a set of closures C, and a positive integer ` ≥ 0,
we also define the following decision problems, extending the previous ones with the cost
from Definition 9:

– Min-Compliance: Does there exist a D0-suppressor f of cost at most ` such that the
PPDP instance (D0, f, p) is compliant with respect to C?

– Min-Safety: Does there exist a D0-suppressor f of cost at most ` such that the
PPDP instance (D0, f, p) is safe with respect to C?

The strict versions Min-Compliances and Min-Safetys of problems Min-Compliance
and Min-Safety, respectively, are obtained by additionally requiring the suppressor f to be
strict. The open-world versions Xow of any of the aforementioned problems X are obtained
by setting the closure C as empty.

In addition to the combined complexity of these problems, their data complexity is the
complexity when the policy and each of the queries qi in the input closure C =

⋃
i[qi, Ansi]

are considered to be fixed.

264

Logical Foundations of Linked Data Anonymisation

Note that, in the case of Compliance and Safety, the suppressor is given an input;
thus, the problem is to check whether the resulting anonymisation satisfies the compli-
ance or safety requirements, respectively. In practice, however, our goal would often be to
compute a suppressor of minimal cost satisfying the aforementioned semantic requirements;
the problems Min-Compliance and Min-Safety constitute the decision counterparts to
these natural minimisation problems. Note also that we have not specified whether number
` is encoded in unary or in binary; this is immaterial to our complexity bounds in this
paper, because the maximal cost of a D0-suppressor is linearly bounded by the number of
positions in D0. Finally, note that in our prior conference publication (Cuenca Grau &
Kostylev, 2016), the data complexity of reasoning problems involving a closure was defined
in a slightly different way: in the conference version the whole closure was considered to be
fixed, while now we consider fixed only the query part (but not the answers); we believe
that this is a more natural definition since the answers clearly depend on the input data.

Our goal in the following sections will be to establish tight bounds on the computational
complexity of the decision problems introduced in Definition 10. We achieve this goal, with
only a couple of exceptions where our bounds are not tight. All our results are summarised
for the reader’s convenience in Tables 1 and 2, with references to the corresponding propo-
sitions and theorems. All our lower bounds hold even for RDF PPDP instances, so all the
results are applicable to Linked Data as well. Most of our complexity bounds are the same
for arbitrary and Boolean polices; however, in several cases they differ, and the bounds
for Boolean policies are shown in parentheses. Many of the lower bounds also hold under
additional restrictions, which we discuss explicitly in each particular case.

4. Policy Compliance

In this section, we establish tight complexity bounds for the decision problems associated
to policy compliance. These results, summarised in Table 1, will be relevant to the study
of linkage safety later on. Policy compliance is also an interesting problem in its own right
as, in its most general form, it is strongly connected to the problem of query evaluation
under open and closed predicates, which has drawn much recent attention in the knowledge
representation community (Lutz, Seylan, & Wolter, 2015; Ahmetaj, Ortiz, & Simkus, 2016).

In Section 4.1 we consider the compliance checking problem Compliance in both its
open-world and general variants. Subsequently, in Section 4.2, we study the minimisation
problem Min-Compliance across the two dimensions specified in Definition 10: on the
one hand, we consider open-world vs. general semantics and, on the other hand, whether
suppressors are required to be strict or not.

4.1 Checking Policy Compliance

In this section we show that in the open-world case compliance checking is coNP-complete
and in AC0 in data complexity, while in general the problem is Πp

3-complete (Πp
2-complete if

the policies are Boolean or have a bounded number of answer variables), and NP-complete
in data complexity.

It is immediate to observe that the open-world version of compliance is essentially the
complement of the standard Boolean CQ evaluation problem in databases, which is known
to be NP-complete and in AC0 in data complexity (Abiteboul, Hull, & Vianu, 1995). The

265

Cuenca Grau & Kostylev

Open-world General
Combined Data Combined Data
complexity complexity complexity complexity

Compliance coNP-c. [Pr. 2] in AC0 [Pr. 2] Πp
3-c. (Σp

2-c.)
[Th. 1]

NP-c. [Th. 1]

Min-Compliance Σp
2-c. [Th. 2] NP-c. [Th. 2] Σp

4-c. (Σp
2-c.)

[Th. 2]
NP-c. [Th. 2]

Min-Compliances
Σp

2-c. (coNP-c.)
[Th. 2]

NP-c. (in AC0)
[Th. 2]

Σp
4-c. (Σp

2-c.)
[Th. 2]

NP-c. [Th. 2]

Table 1: Complexity of policy compliance problems with references to the relevant propo-
sitions and theorems (‘c.’ stands for ‘complete’, bounds in parentheses apply for settings
with Boolean policies when different from the general case)

Open-world General
Combined Data Combined Data
complexity complexity complexity complexity

Safety DP-hard,
in Πp

2 [Th. 3]
in AC0 [Th. 3] coNExpTime-c. [Th. 3] Πp

2-c. [Th. 3]

Min-Safety Σp
2-hard,

in Σp
3 [Th. 4]

NP-c. [Th. 4] coNExpTime-c. [Th. 4] Σp
3-c. [Th. 4]

Min-Safetys
Σp

2-hard,
in Σp

3 [Th. 4]
NP-c. [Th. 4] coNExpTime-c. [Th. 4] Σp

3-c. [Th. 4]

Table 2: Complexity of linkage safety problems with references to corresponding proposi-
tions and theorems (‘c.’ stands for ‘complete’)

lower bound in the following proposition slightly strengthens that in our prior work (Cuenca
Grau & Kostylev, 2016), where no additional restrictions were imposed.

Proposition 2. Complianceow is coNP-complete and in AC0 in data complexity. The
coNP lower bound holds already for ground RDF PPDP instances, strict suppressors, and
Boolean policies.

Proof. For the coNP lower bound, consider an input dataset D and Boolean CQ query q to
the CQ evaluation problem over the vocabulary with a single ternary predicate Triple. Let
also D0 = D, let p = q, and let f be the identity suppressor—that is, the strict D0-suppressor
such that f(D0) = D0. By definition, (D0, f, p) is compliant if and only if D 6|= p.

For membership in coNP and AC0, observe that (D0, f, p) is compliant if and only if
there is no homomorphism from p(x̄) to f(D0) mapping x̄ to constants.

In contrast to the open-world case, we next show that Compliance in its general form
is Πp

3-complete and Σp
2-complete if we restrict ourselves to Boolean policies (or policies with

a bounded number of answer variables); moreover, the problem is NP-complete in data

266

Logical Foundations of Linked Data Anonymisation

complexity in both cases. In fact, we will show that all three lower bounds hold even for
ground RDF PPDP instances, strict suppressors, and atomic closure CQs. In particular,
the data complexity lower bound implies that checking compliance of an anonymised RDF
graph containing both open and closed predicates is an intractable problem with respect to
the size of the input graph and closed relations.

To obtain the upper bounds in the general case, it suffices to observe that a PPDP
instance (D0, f, p) is compliant with respect to a set of closures C if and only if for each
tuple of constants c̄ there exists a model of the logical theory f(D0) ∪ C over which p(c̄)
evaluates to false; furthermore, if such a model exists, then there is one of polynomial size.

Lemma 1. A PPDP instance (D0, f, p) with Boolean p is compliant with respect to a set of
closures C if and only if there exists an interpretation I of size (i.e., the number of tuples
in the interpretations of all predicates) at most

|D0|+
∑

[q,Ans]∈C
|Ans| × |q|,

such that I |= f(D0) ∪ C but I 6|= p.

Proof. Assume that an interpretation I satisfying the conditions in the lemma exists. Then,
f(D0) ∪ C 6|= p and, by Definition 6, we have that (D0, f, p) is compliant with respect to C.

Conversely, if the instance (D0, f, p) is compliant, then there must exist a model I ′ of
f(D0)∪C such that p does not hold in I ′. We now observe that f(D0)∪C is the conjunction
of the following sentences:

1. Boolean CQ ∃b̄.
∧
α∈f(D0) α, where b̄ are all the nulls in f(D0);

2. Boolean CQs
∧
c̄∈Ans ∃ȳ. ϕ(c̄, ȳ) for each [q, Ans] ∈ C with q(x̄) = ∃ȳ. ϕ(x̄, ȳ); and

3. ∀x̄. ∀ȳ. (ϕ(x̄, ȳ)→
∨
c̄∈Ans x̄ = c̄) also for each [q, Ans] ∈ C with q(x̄) = ∃ȳ. ϕ(x̄, ȳ).

Let I be any sub-interpretation of I ′ containing a homomorphic image of each of the CQs
in groups 1 and 2 into I. In addition to satisfying all these CQs, I also satisfies sentences
in group 3, since so does I ′; furthermore, since it is a sub-interpretation of I ′, p does not
hold in I as well. Finally, I also satisfies the required size bounds.

As a consequence of Lemma 1, we can decide Compliance by guessing, for each candi-
date tuple of constants, a polynomial-size interpretation and then calling an NP oracle to
check whether the interpretation satisfies all the sentences in groups 1–3 in the proof of the
Lemma, while at the same time not satisfying the policy. In the general case, the number
of candidate tuples is exponential, so we need to go through them non-deterministically.
However, if the policy has bounded number of answer variables (e.g., it is Boolean), then
we can check them one by one in polynomial time. The given Πp

3 bound (which we will
prove to be tight in Lemma 3) corrects the Σp

2 bound in our prior work (Cuenca Grau &
Kostylev, 2016), which is applicable only if the number of answer variables in the policy is
considered fixed.

Lemma 2. Compliance is in Πp
3 and in Σp

2 if the policy has a bounded number of answer
variables. The problem is in NP in data complexity.

267

Cuenca Grau & Kostylev

Proof. Consider the algorithm that guesses a tuple of constants mentioned in the dataset
of size equal to the number of answer variables of the policy, then guesses, for this tuple,
an interpretation satisfying the size bounds in Lemma 1, and then checks whether this
interpretation satisfies the sentences in all three groups in the lemma as well as the negation
of the policy with answer variables substituted by the constants. This algorithm correctly
decides Compliance in Πp

3, because checking the sentences in groups 1 and 2 in can be
done in NP, while checking sentences in group 3 and checking the negation of the policy can
be done in coNP. If the number of answer variables in the policy is bounded, then the first
guess is not necessary, because we can go through all tuples of constants deterministically
one by one; therefore, the algorithm has Σp

2 complexity. Finally, if the CQs in the policy
and the closures are fixed, then a homomorphism witnessing the sentence in group 1 can
be also guessed together with the interpretation and then checked in polynomial time along
with all the other sentences including the negation p, so the overall algorithm gives us an
NP upper bound for data complexity.

We start our study of complexity lower bounds for Compliance in its most general
form by providing matching lower bounds to the Πp

3 and Σp
2 upper bounds in Lemma 2.

The lower bounds hold already in the context of RDF, and even under the assumption that
the closure CQs are fixed, quantifier-free, and atomic.

Lemma 3. Compliance is Πp
3-hard for ground RDF PPDP instances, strict suppressors,

and fixed, quantifier-free and atomic CQs in closures. It is Σp
2-hard if additionally policies

are restricted to be Boolean.

Proof. We first justify the Πp
3 lower bound by means of a reduction of ∀∃∀3SAT—a canonical

Πp
3-complete problem. Consider a quantified Boolean formula φ = ∀s̄. ∃ū.∀v̄.¬ψ(s̄, ū, v̄)

where ψ(s̄, ū, v̄) is a propositional formula in 3CNF over tuples s̄, ū and v̄ of distinct
variables. Here, ψ is a conjunction of clauses, and each clause is a disjunction of three
literals—that is, variables in s̄ ∪ ū ∪ v̄ or their negations. Then, each clause has at most 7
satisfying Boolean assignments of its three variables, and the overall formula φ is valid if and
only if for all assignments of the universally quantified variables s̄ there exists an assignment
of the existentially quantified variables ū such that for all assignments of variables v̄ there
exists a clause such that the projection of the resulting assignment to the three variables of
this clause is not among the 7 satisfying assignments of the clause.

We construct a PPDP instance (D0, f, p) and a set of closures C, both restricted as
required, such that the instance is compliant with respect to the closures if and only if
φ is valid. The construction uses a vocabulary containing a unary predicate U, a unary
predicate Clγ for each clause γ in ψ, and binary predicates Arg1, Arg2, Arg3 and UValues.
Later on, we describe how our construction can be easily adapted to the RDF case, where
the vocabulary consists of a single Triple predicate. We will also see that if we set s̄ to be
empty then the reduction naturally works as a proof of Σp

2-hardness of the problem with
Boolean policies.

We first define dataset D0 and D0-suppressor f . To this end, consider first the anonymi-
sation f(D0) consisting of the following facts, where we use constants cπγ for every clause γ
in ψ and each (of at most 7) assignment π of the variables of γ that satisfies γ, constants
cfalse
w and ctrue

w for each w ∈ s̄ ∪ v̄, and nulls bfalse
u and btrue

u for each u ∈ ū:

268

Logical Foundations of Linked Data Anonymisation

– Clγ(cπγ), Arg1(cπγ , t
π(w1)
w1), . . . ,Arg3(cπγ , t

π(w3)
w3) for each clause γ over variables w1, . . . , w3

and and each assignment π of w1, . . . , w3 satisfying γ, where tπ(w)
w is bπ(w)

w if w ∈ ū
and c

π(w)
w if w ∈ s̄ ∪ v̄;

– UValues(bfalse
u , btrue

u) for every u ∈ ū.

We assume an arbitrary, but fixed enumeration of the (occurrences of the) literals in each
clause, which imposes an enumeration of the (occurrences of the) variables in the clause.

Let dataset D0 be the same as anonymisation f(D0) except that, for each u ∈ ū, nulls
bfalse
u and btrue

u are replaced with constants cu and c′u, respectively. Then, f is the strict
D0-suppressor that sends all positions with these constants to the corresponding nulls.

The policy p is the CQ with the following atoms, where the xs, for s ∈ s̄, are answer
variables and all other arguments are existential variables:

– Clγ(xγ),Arg1(xγ , xw1), . . . ,Arg3(xγ , xw3) for each γ in ψ over variables w1, . . . , w3;

– U(xu) for each u ∈ ū.

Finally, let C consist of the following two closures with atomic quantifier-free CQs:

– [UValues(x, y), {(cu, c′u), (c′u, cu) | u ∈ ū}], and

– [U(x), {cu | u ∈ ū}].

We now show that formula φ is valid if and only if the anonymisation f(D0) complies
with p with respect to C. Intuitively, compliance holds when for each c̄ consisting of cfalse

s

or ctrue
s for every s ∈ s̄ there is a model of f(D0)∪ C in which p(c̄) does not hold. In search

for such a model we need to go through all possible identifications of each pair of nulls
(bfalse
u , btrue

u) with u ∈ ū to either (cu′ , c′u′) or (c′u′ , cu′) for some u′ (same as or different
from u), and this corresponds to the assignment of u to true of false. A homomorphism
from p(c̄) to such a model corresponds to a completion of this assignment to v̄ that turns
ψ to true, because each xu must be sent to the corresponding cu′ , which is in U contrary
to c′u′ . Next we formally prove this intuition correct.

Assume that φ holds—that is, for every truth assignment σ of variables s̄ there exists
an extension of σ to variables ū such that for any further extension of σ to variables v̄ the
resulting overall assignment turns ψ to false. We need to prove that for every tuple of
constants c̄ there is a model I of f(D0)∪C that is not a model of p(c̄). Consider an arbitrary
tuple c̄ of the same size as s̄. If there exists s ∈ s̄ such the constant cs in c̄ corresponding to
xs is neither cfalse

s nor ctrue
s , then the claim is trivial. Indeed, we can take as I the Herbrand

interpretation of D0 extended by the atoms enforced by C—that is, atoms UValues(cu, c′u),
UValues(c′u, cu), and U(cu) for each u ∈ ū (the Herbrand interpretation of a ground dataset
is the interpretation that interprets all constants by themselves and all predicates exactly
according to the atoms in this dataset). Then, I 6|= p(c̄) because cs is not connected by
Argi in I to an element in Clγ for a clause γ with s in the i-th literal. Consider now the
case when c̄ has cfalse

s or ctrue
s in the position corresponding to each xs with s ∈ s̄. Let σ

be the assignment of s̄ corresponding to c̄—that is, such that σ(s) = false if and only if c̄
has cfalse

s in the corresponding position. By our assumption, there exists an extension of σ

269

Cuenca Grau & Kostylev

to ū such that for any further extension of σ to variables v̄ the resulting overall assignment
turns ψ to false. Consider such an extension to ū and the Herbrand interpretation I of
the ground dataset obtained from the anonymisation f(D0) by

– adding all the atoms enforced by C as above, and

– replacing, for each u ∈ ū, the pair bfalse
u , btrue

u by the pair cu, c′u if σ(u) is false and
by the pair c′u, cu otherwise.

Interpretation I is a model of f(D0) ∪ C by construction. We claim that it is not a model
of p(c̄). Indeed, if I |= p(c̄), then there exists a homomorphism from p(c̄) to I, and the only
possibility is that each xγ is sent to one of cπγ with π agreeing with σ on the used variables,
each xu to cu, and each xv to either cfalse

v and ctrue
v , and the combination of all these π

extends σ to v̄ in such a way that ψ evaluates to true, which is not possible by assumption.
Therefore, I is a model of f(D0) ∪ C and not a model of p(c̄). Since the choice of c̄ was
arbitrary, we conclude that anonymisation f(D0) complies with p with respect to C.

Assume now that anonymisation f(D0) complies with p with respect to C—that is, for
each c̄ there exists a model of f(D0) ∪ C that does not satisfy p(c̄). Consider an arbitrary
assignment σ of s̄ and the corresponding tuple of constants c̄—that is, the tuple that has
cfalse
s in the position corresponding to each xs with σ(s) = false and ctrue

s in the position
corresponding to each xs with σ(s) = true. Let I be a model of f(D0) ∪ C that does
not satisfy p(c̄), which exists by the assumption. Since I is a model of f(D0), there is a
homomorphism h from f(D0) to I, and, since I is a model of C, the pair h(bfalse

u), h(btrue
u),

for every u ∈ ū, is either the interpretations of cu′ , c′u′ or of c′u′ , cu′ , for some u′ ∈ ū. Consider
an extension of assignment σ to ū that sends each u to false, if h(bfalse

u), h(btrue
u) are the

interpretations of cu′ , c′u′ , and to true otherwise. We claim that there is no further extension
of σ to v̄ turning ψ to true—that is, we claim that φ is valid. Indeed, if it is not the case,
then we can construct a homomorphism from p(c̄) to I contradicting the fact that I is not
a model of p(c̄): such a homomorphism would send

– for each clause γ, variable xγ to the interpretation of cπγ , where π is the restriction of
σ to the variables of γ,

– for each u ∈ ū, variable xu to h(bσ(u)
u) (which is either the interpretation of cu′ or of

c′u′ , as described above), and

– for each v ∈ v̄, variable xv to the interpretation of cσ(v)
v .

Consequently, φ is valid, as required.
To conclude the Πp

3 hardness proof, we adapt our reduction to RDF, where the vocabu-
lary contains a single ternary predicate Triple. Since only unary and binary predicates are
involved in the construction, the adaptation is trivial: unary atoms A(t) translate to atoms
Triple(t, type,A), where type is a fresh constant global for the translation, and binary atoms
P(t1, t2) translate to Triple(t1,P, t2). Here predicates A and P are seen as constants.

Finally, note that if s̄ is empty, then we reduce a canonical Σp
2-complete problem ∃∀3SAT.

Moreover, in this case the constructed policy p becomes Boolean, and hence we obtain a
proof for the second claim of the theorem.

270

Logical Foundations of Linked Data Anonymisation

Next, we establish NP-hardness of Compliance in data complexity by providing a
reduction of 3-Colourability, a well-known NP-complete graph problem. Our NP lower
bound strengthens that in our prior work, where we do not impose any restrictions on
instances, suppressors, policies, and closures.

Lemma 4. Compliance is NP-hard in data complexity for ground RDF PPDP instances,
strict suppressors, Boolean policies, and quantifier-free and atomic CQs in closures.

Proof. We provide a reduction of 3-Colourability. As in the proof of the Lemma 3, our
reduction uses only unary and binary predicates, and can thus be adapted to the RDF case
in the same way as we did in that proof.

Let G be an input undirected graph to 3-Colourability with nodes V and edges E .
Without loss of generality, we assume that G is connected. We construct a PPDP instance
(D0, f, p) and a set of closures C satisfying the requirements such that neither p nor the
queries in C depend on G, and (D0, f, p) is compliant with respect to C if and only if G
is 3-colourable. In the construction, we use two unary predicates U and V, and a binary
predicate Edge.

Dataset D0 uses constants cv for all v ∈ V and consists of

– atoms Edge(cv1 , cv2) and Edge(cv2 , cv1) for each edge {v1, v2} in E , and

– atom V(cv) for each v ∈ V.

Suppressor f is a strict D0-suppressor that, for each v ∈ V, sends each position involving
constant cv to a null bv that is uniquely associated with v. Policy p is defined as the Boolean
CQ ∃x.U(x)∧V(x); clearly, p does not depend on G, as required. Finally, the set C consists
of the following closures with existential-free atomic CQs that do not depend on G:

– [Edge(x, y), Ans], where Ans consists of

- the pairs (cv1 , cv2) and (cv2 , cv1) for each edge {v1, v2} in E , and
- the pairs (dr, dg), (dg, dr), (dg, db), (db, dg), (db, dr), and (dr, db), where dr, dg,

and db are constants representing the three colours; and

– [U(x), {cv | v ∈ V}].

We next argue that G is 3-colourable if and only if (D0, f, p) is compliant with respect to C.
Assume that G is 3-colourable. Consider an interpretation I that interprets Edge by all

pairs in Ans, U by all cv, and V by dr, dg and db. Interpretation I is a model of f(D0),
because the function h sending each bv to one of dr, dg and db according to a colouring of
G is a homomorphism from f(D0) to I. It is also a model of C by construction. Finally, it
is not a model of p. Therefore, (D0, f, p) is compliant with respect to C.

Assume now that (D0, f, p) is compliant with respect to C—that is, there is a model
I of f(D0) ∪ C that is not a model of p. Since I is a model of the anonymisation f(D0),
there is a homomorphism h from f(D0) to I. Since G is connected, and I is a model of C
and not a model of p, the image of each bv under h is the interpretation of one of dr, dg

and db. Therefore, we can construct a 3-colouring of G by colouring each v to red if h(bv)
is the interpretation of dr, to green if it is the interpretation of dg, and to blue if it is the
interpretation of db.

271

Cuenca Grau & Kostylev

The following theorem summarises the results of Lemmas 2, 3, and 4.

Theorem 1. Compliance is Πp
3-complete and Σp

2-complete for Boolean policies; it is NP-
complete in data complexity. The lower bounds hold already for ground RDF PPDP in-
stances, strict suppressors, and fixed, quantifier-free and atomic CQs in closures. The data
complexity lower bound holds additionally for Boolean policies.

To conclude this section, we recall that the conference version of this paper (Cuenca
Grau & Kostylev, 2016) considered only policies with bounded number of answer variables.
That version also made slightly different assumptions when establishing the Σp

2 and NP
lower bounds for Compliance. On the one hand, it was assumed that the closure set C
was a singleton but involved a query with existential variables, whereas we assumed C to
consist of two quantifier-free and atomic closures. On the other hand, the lower bounds
in our prior work were established for non-strict suppressors f (Cuenca Grau & Kostylev,
2016), whereas we now additionally require the suppressor to be strict. Our new bounds thus
tighten those in our conference publication by assuming strict suppressors and quantifier-
free atomic closure queries, but at the slight cost of requiring two closures in C instead of
just one.

4.2 Cost Minimisation for Policy Compliance

In this section we establish tight complexity bounds for the two cost minimisation prob-
lems Min-Compliance and Min-Compliances associated to policy compliance. We show
that in the open-world case both problems are Σp

2-complete in general; however, if we re-
strict ourselves to Boolean policies, then Min-Compliance has the same complexity, while
Min-Compliances is coNP-complete. In the case with closed-word information the prob-
lems become Σp

4-complete; for Boolean policies they are Σp
2-complete. In data complexity,

all versions of both problems are NP-complete, except Min-Complianceow
s for Boolean

policies, which is in AC0. Therefore, in most of the cases the cost minimisation problems
for compliance are one level higher in the polynomial hierarchy than the usual compliance
checking problems.

The upper bounds are easily obtained by means of simple guess-and-check algorithms,
which are straightforward variants of those described in Section 4.1 for compliance checking.

Lemma 5. Min-Compliance and Min-Compliances are in Σp
4 and in Σp

2 if the policy is
Boolean. The problems are in NP in data complexity. Additionally, if the policy is Boolean
then Min-Complianceow

s is in coNP and in AC0 in data complexity.

Proof. For the first three bounds, we can use the same algorithms as in the proof of Lemma 2,
with the exception that in the first step we additionally need to guess a suppressor (arbitrary
in case of Min-Compliance and strict in case of Min-Compliances) within the required
cost. This suffices because, as we already discussed in Section 3.6, the sizes of all the
suppressors are linearly bounded by the size of their corresponding datasets.

For the last two bounds, note that if the policy is Boolean and constant-free, then no
strict suppressor can change the answer to the policy—that is, the answers to the policy
on the original dataset and on the resulting anonymisation are the same. So, in this case
Min-Complianceow

s can be done by checking whether the policy has the positive answer

272

Logical Foundations of Linked Data Anonymisation

on the original dataset and complementing the result, which is possible to do in coNP and
in AC0 in data complexity by standard database techniques (Abiteboul et al., 1995). If the
Boolean policy mentions constants, then we first need to check that there are no constants
in the policy such that the strict suppressor anonymising this constant alone has the cost
within the limit; if such a constant exists, then Min-Complianceow

s holds, otherwise we
perform the same procedure as for the constant-free case. This preprocessing step can be
done in polynomial time and in AC0 in data complexity.

Next, we provide matching Σp
4 and Σp

2 lower bounds for the combined complexity of
the non-strict version of the problem. The Σp

2 lower bound holds already under the open-
world assumption; furthermore, it also applies already to ground RDF PPDP instances and
Boolean policies. Recall that, under those assumptions, the compliance checking problem
Compliance is of lower complexity (coNP-complete as established in Proposition 2). Note
also that the Σp

4 bound is claimed only for non-ground PPDP instances; in this paper, we
leave open the exact complexity of the problem for the settings where instances are ground,
which we believe is an interesting problem for future work.

Lemma 6. The following holds:

1. Min-Complianceow is Σp
2-hard for ground RDF PPDP instances and Boolean poli-

cies; and

2. Min-Compliance is Σp
4-hard for RDF PPDP instances, and fixed, quantifier-free and

atomic CQs in closures.

Proof. We start with statement 1 and show Σp
2-hardness of Min-Complianceow by means

of a reduction of the canonical Σp
2-complete problem ∃∀3Sat. Again, we use only unary

and binary predicates in the reduction, and the adaptation to the case of RDF is as usual.
After this, we will generalise the reduction by using the ideas in the proof of Lemma 3 to
show statement 2 on Σp

4-hardness of Min-Compliance.
Let φ = ∃r̄.∀v̄.¬ψ(r̄, v̄), where r̄ and v̄ are tuples of distinct variables, and ψ is a

conjunction of clauses, where each clause is a disjunction of three literals over r̄ ∪ v̄. We
construct a dataset D0, a Boolean policy p and an integer ` such that there exists a D0-
suppressor f of cost at most ` with (D0, f, p) compliant if and only if φ is valid.

Let us first set ` = 2 · |r̄|.
Our construction of D0 and p relies on unary predicates R and U, binary predicates

Clγ for each clause γ in ψ, and binary predicates Arg1, Arg2, Arg3, Backfalse
1 , Backtrue

1 and
Back2. We construct D0 in two steps: in the first one we construct an intermediate dataset
D′0 from which D0 is obtained in the second one. Let D′0 consist of the following atoms,
where we use constants cfalse, ctrue, cy, cz, constants cπγ for every clause γ and each (of at
most 7) assignment π of the variables of γ that satisfies γ, constants cfalse

w and ctrue
w for

each w ∈ r̄ ∪ v̄, constants dy
r for every r ∈ r̄, and constants dz, dcl, and dvar:

– R(cfalse) and R(ctrue);

– Backfalse
1 (cfalse, cy), Backtrue

1 (ctrue, cy), and Back2(cy, cz);

273

Cuenca Grau & Kostylev

– Clγ(cz, cπγ), Arg1(cπγ , c
π(w1)
w1), . . . ,Arg3(cπγ , c

π(w3)
w3) for each clause γ in ψ over variables

w1, . . . , w3 and each assignment π of w1, . . . , w3 satisfying γ;

– R(cfalse
r) and R(ctrue

r) for each r ∈ r̄;

– Backfalse
1 (cfalse

r , dy
r), Backtrue

1 (ctrue
r , dy

r), and Back2(dy
r, d

z), for each r ∈ r̄;

– Clγ(dz, dcl), for each clause γ in ψ; and

– Arg1(dcl, dvar), . . . ,Arg3(dcl, dvar), and U(dvar).

Next, we obtain D0 from D′0 by making 2 · |r̄|+ 1 copies of all constants of D′0 except cfalse
r

and ctrue
r for all r ∈ r̄, and all atoms involving these constants—that is, D0 uses constants

– c1, . . . , c2·|r̄|+1 for each constant c in D′0 different from all cfalse
r and ctrue

r , and

– cfalse
r and ctrue

r for each r ∈ r̄,

and consists of atoms P(c̄1), . . . ,P(c̄2·|r̄|+1) for each atom P(c̄) in D′0, where each c̄i is
obtained from c̄ by replacing each c different from all cfalse

r and ctrue
r by ci (therefore, the

only atoms that stay intact are R(cfalse
r) and R(ctrue

r)).
Next, the policy p is the Boolean CQ with the following atoms, where all other arguments

are existential variables:

– R(xfalse) and R(xtrue),

– Backfalse
1 (xfalse, y), Backtrue

1 (xtrue, y), and Back2(y, z),

– Clγ(z, xγ), Arg1(xγ , xw1), . . . ,Arg3(xγ , xw3), for each clause γ in ψ over propositional
variables w1, . . . , w3, and

– R(xr), for each r ∈ r̄.

We claim that φ is valid if and only if there exists a D0-suppressor f of cost at most ` such
that (D0, f, p) is compliant. The intuition is as follows. First, note that if a suppressor f does
not anonymise at least one of the positions of R(cfalse

r) and R(ctrue
r) for every existentially

quantified variable r, then the resulting anonymisation is not compliant; indeed, in such case
there exists homomorphism from p sending xfalse and xtrue to cfalse

r and ctrue
r , respectively,

for this r, and all other variables to the d constants. Therefore, at least one of these positions
should be anonymised for each r, and at most one of them is possible because of the maximal
cost `. Hence, each of these anonymisations corresponds to an assignment of variables r̄.
Then, a possible homomorphism from p corresponds to an extension of the assignment to
v̄ satisfying ψ. The correctness of this intuition follows from the correctness of the more
general Σp

4 reduction for statement 2, so we postpone it until the end of this proof.

Next we prove statement 2 of the theorem. In particular, we show Σp
4-hardness of

Min-Compliance by means of a reduction of the canonical Σp
4-complete ∃∀∃∀3Sat prob-

lem. Again, we use only unary and binary predicates in the reduction, and the adaptation
to the case of RDF is as usual.

274

Logical Foundations of Linked Data Anonymisation

Let φ = ∃r̄.∀s̄. ∃ū.∀v̄.¬ψ(r̄, s̄, ū, v̄), where r̄, s̄, ū and v̄ are tuples of distinct propo-
sitional variables, and ψ is a conjunction of clauses, where each clause is a disjunction of
three literals over r̄ ∪ s̄ ∪ ū ∪ v̄. We need to construct a dataset D0, a policy p, an integer
`, and a set of quantifier-free and atomic closures C with queries not dependent on φ such
that there exists a D0-suppressor f of cost at most ` with (D0, f, p) compliant with respect
to C if and only if φ is valid. Instead of giving the construction from scratch, we build upon
the Σp

2-hardness proof for statement 1 of this theorem and concentrate on the additions
required for the construction. In fact, these additions are very similar to the construction
in the proof of Lemma 3 on Πp

3-hardness of Compliance in its general form: propositional
variables s̄ correspond to answer variables of the policy, while each propositional variable
in ū is encoded by a pair of nulls as in the anonymisation in the proof of Lemma 3.

In comparison to the Σp
2-hardness proof of statement 1, the cost should take into account

the nulls corresponding to ū variables. We set ` = 2 · |r̄| + (2 · |r̄| + 1) · (6 · |ū| + N(ψ, ū)),
where N(ψ, ū) is the number of (occurrences of) literals in ψ with variables in ū.

Additionally to the predicates introduced in the reduction for statement 1, in the con-
struction of D0 and p we will use a binary predicate UValues. We construct D0 again in two
steps. Let D′0 be the same as before except that

– D′0 additionally uses constants cfalse
s and ctrue

s for each s ∈ s̄ and nulls bfalse
u and

btrue
u for each u ∈ ū,

– instead of the Argi atoms in the construction for statement 1, dataset D′0 has atoms
Arg1(cπγ , t

π(w1)
w1), . . . ,Arg3(cπγ , t

π(w3)
w3) for each clause γ in ψ over variables w1, . . . , w3

and each assignment π of w1, . . . , w3 satisfying γ, where tπ(w)
w is bπ(w)

w if w ∈ ū and
c
π(w)
w if w ∈ r̄ ∪ s̄ ∪ v̄, and

– D′0 additionally has atoms UValues(bfalse
u , btrue

u) for every u ∈ ū.

Then, D0 is obtained from D′0 in the same way as before, by making 2 · |r̄|+ 1 copies of all
constants and nulls of D′0 except cfalse

r and ctrue
r for r ∈ r̄, and all atoms involving these

constants and nulls.
Next, the policy p is the same CQ as before except that it has answer variables xs, for

s ∈ s̄ (and all other arguments are existential variables) and additionally has atoms U(xu),
for each u ∈ ū.

Finally, let C consist of the following two closures with atomic quantifier-free CQs, where
c and c′ are two fresh constants:

– [UValues(x, y), {(c, c′), (c′, c)}], and

– [U(x), {c}].

Having the construction completed, we note that, in contrast to the Πp
3 reduction in

the proof of Lemma 3, we have the (copies of the) bfalse
u and btrue

u already anonymised
in D0. This allows us to use only one pair of constants c and c′ in the closures C instead
of a separate pair for each u ∈ ū in the Πp

3 reduction. Intuitively, this construction is a
combination of constructions in the proofs of Lemma 3 and statement 1 of this theorem:
for each variable r one and only one of R(cfalse

r) and R(ctrue
r) should be anonymised in

275

Cuenca Grau & Kostylev

such a way that compliance holds for each answer tuple consisting of the cfalse
s and ctrue

s to
the policy, which means that there should exist a re-identification of each pair bfalse

u , btrue
u

to c, c′ or c′, c, such that the variables xv cannot be sent to the cfalse
v and ctrue

v with an
appropriate homomorphism from the policy. Next we formally proof this intuition correct.

Assume first that φ is valid—that is, there exists a truth assignment σ of r̄ such that
for any of its extensions to s̄ there is a further extension to ū such that for any further
extension to v̄ the resulting assignment turns ψ to false. Consider the D0-suppressor f
that anonymises, for each r such that σ(r) = false, the only position in atom R(ctrue

r) to a
fresh null br and, for each r such that σ(r) = true, the only position in atom R(cfalse

r) to a
fresh null br. Since ` = 2 · |r̄|+(2 · |r̄|+1) · (6 · |ū|+N(ψ, ū)) and D0 contains 2 · |r̄|+1 copies
of nulls bfalse

u and btrue
u for every u ∈ ū with each copy contributing with 6 · |ū|+N(ψ, ū)

to f , the cost of f is `. We claim that the anonymisation f(D0) complies with p with
respect to C. The proof of this fact goes along the same lines as the forward direction of
the correctness proof in Lemma 3 with four small exceptions: first, when constructing the
Herbrand interpretations I (in two places), we assume that each br is represented by a fresh
constant, and so each r ∈ r̄ has to be sent to cσ(r)

r by a homomorphism from p(c̄) to f(D0);
second, we first argue that if c̄ does not consist of the cfalse

s or ctrue
s from the same copy of

the construction then the claim on existence of a model I is trivial; third, instead of cu and
c′u we use c and c′ for each u ∈ ū; finally, all copies of every bfalse

u and btrue
u are sent to c

or c′ is the same way, according to the extension of σ.
For the converse direction, let f be a D0-suppressor of cost at most ` that complies

with p. Consider the D0-suppressor f ′ that agrees with f on all positions involving atoms
R(cfalse

r) and R(ctrue
r), but keeps all other positions as they are in D0. The cost of f ′ is not

higher than the cost of f by construction, and f ′ also complies with p: indeed, dataset D0
has 2 · |r̄|+ 1 “copies” of the rest of the construction and the copies of the nulls bfalse

u , btrue
u

contribute to the cost with at least (2 · |r̄| + 1) · (6 · |ū| + N(ψ, ū)), so “breaking” at most
2 · |r̄| copies cannot change the presence of a homomorphism from p(c̄) for any c̄. Next,
suppressor f ′ anonymises (the only position of) at least one of R(cfalse

r) and R(ctrue
r) for

each r ∈ r̄, because otherwise there is a homomorphism from p(d̄var), for d̄var the tuple
consisting of several dvar of the same size as s̄, to the anonymisation f ′(D0) sending

– xfalse and xtrue to cfalse
r and ctrue

r , respectively, where r is a variable with both
R(cfalse

r) and R(ctrue
r) not anonymised by f ′,

– y and z to (the first copies of) dy
r and dz,

– all xγ and all xw, for w ∈ r̄ ∪ ū ∪ v̄ to (the first copies of) dcl and dvar, respectively.

Since ` = 2 · |r̄|+ (2 · |r̄|+ 1) · (6 · |ū|+N(ψ, ū)), the only possibility is that f ′ is f and it
anonymises exactly one of R(cfalse

r) and R(ctrue
r) for each r ∈ r̄. Consider the assignment

σ of r̄ that sends each r to true if and only R(cfalse
r) is anonymised by f . We claim that

for any extension of σ to s̄ there exists a further extension to ū such that for any further
extension to v̄ the resulting assignment turns ψ to false—that is, that φ is valid. The
proof of this fact goes along the same lines as the backward direction of the correctness
proof in Lemma 3 with two small exceptions: first, we consider the first copies of constants
and nulls in all relevant cases; second, as in the forward direction proof, we take c and c′

instead of all cu′ and c′u′ , respectively.

276

Logical Foundations of Linked Data Anonymisation

We now provide the matching Σp
4 and Σp

2 lower bounds for the combined complexity
of the strict version of the problem. The Σp

2 bound holds already under the open-world
assumption and for ground RDF PPDP instances. Note that, in contrast to Lemma 6, we
do not restrict ourselves to Boolean policies even in the Σp

2 case. This is justified by the
fact that strict suppressors cannot change the value of constant-free Boolean queries—that
is, if a Boolean constant-free policy p holds for a ground dataset D0 and f is a strict D0-
suppressor, then p also holds in the corresponding anonymisation f(D0). In fact, there is
a very simple polynomial algorithm that decides Min-Compliances for Boolean policies,
which is based on the following trivial fact: there is a witnessing D0-suppressor within the
cost limit ` if and only if there is a constant c mentioned in the policy with anonymisation
cost impact at most `.

Lemma 7. The following holds:

1. Min-Complianceow
s is Σp

2-hard for ground RDF PPDP instances, and it is coNP-
hard if, additionally, the policies are Boolean; and

2. Min-Compliances is Σp
4-hard for RDF PPDP instances, fixed, quantifier-free and

atomic CQs in closures, and it is Σp
2-hard if, additionally, the policies are Boolean.

Proof. We first concentrate on the first parts of both statements. The proof relies on the
same idea as the proof of Lemma 6, so we concentrate only on the differences between the
constructions.

Strict suppressors differ from non-strict ones by the fact that they anonymise not posi-
tions, but constants. This has the following consequences for the reduction in Lemma 6:

1. as already mentioned, applying a strict suppressor to a dataset cannot change the
answer to any constant-free Boolean query, including the policy in the proof of state-
ment 1 of Lemma 6;

2. making several copies of atoms over Argj increases the cost impact of an anonymisation
of participating cfalse

r and ctrue
r ; and

3. anonymisations of cfalse
r and ctrue

r may have different impact on the cost, because
they participate in possibly a different number of satisfying assignments of clauses.

To take into account these differences, we make the following modifications to the con-
struction in the proof of Lemma 6.

1. We make variables xr, r ∈ r̄, of policy p answer variables; as a result, nulls introduced
by the anonymisation do not participate in any answer to the policy.

2. Instead of multiplying 2 · |r̄|+ 1 times all the constants different from cfalse
r and ctrue

r

with all the atoms over these constants, we increase the cost impact of each such
constant c to make the impact over 2 · |r̄| alone by adding to D0 new atoms of the
form P1(c, d), where P1 is a fresh binary predicate and d is a fresh constant for each
such atom. In particular, if c originally participates in k atoms (i.e., its original strict
anonymisation would have cost impact k+ 1), then we add 2 · |r̄| − k new atoms with
c. Note that we do not need to do the same with these new d by themselves, because

277

Cuenca Grau & Kostylev

P1 does not appear in policy p, and therefore the anonymisation of a d does change
the answers to p.

3. To make the cost impact of anonymisations of cfalse
r and ctrue

r equal, we add to D0
the necessary number of new atoms of the form P2(ctr, d) for each r ∈ r̄ and each
t ∈ {false, true}, where P2 is again a fresh binary predicate and d is a fresh constant
for each such atom. In particular, if ctr originally participates in k atoms, then we
add 3n + 2 − k new atoms with ctr, where n is the number of clauses in ψ (3n + 2 is
the maximal number of positions for any of these constants in the original dataset).
Again, we do not need to do the previous step with these new d. Finally, we set
` = |r̄|+ (3n+ 2) · |r̄|+ (6 · |ū|+N(ψ, ū)), which is the cost of a strict anonymisation
that sends to a null exactly one of cfalse

u and ctrue
u for each u and keeps everything

else intact.

With these modifications, the rest of the proof is completely analogous to the proof of
Lemma 6 for both statements, so we omit it for brevity.

To complete the proof, we note that the bounds for the cases with Boolean policies
follow immediately from Proposition 2 and the second part of Lemma 3: it is enough to
take ` = 0 and, in the second case, f(D0) as the dataset.

We now proceed to the study of data complexity, and provide matching NP lower
bounds to the upper bounds in Lemma 5. These lower bounds hold already under the
open-world assumption, and hence transfer immediately to the general setting. We start
with the non-strict version of the problem.

Lemma 8. Min-Complianceow is NP-hard in data complexity for ground RDF PPDP
instances and Boolean policies.

Proof. The proof is by reduction of the node deletion problem Node-DeletionΠ for Π
the property of a graph not having cycles of length 3. The input to this problem is a
directed graph G and an integer k, and the question is whether we can obtain a graph
G′ by deleting at most k nodes from G such that G′ satisfies Π. This is an NP-complete
problem (Yannakakis, 1978).

In the reduction, we use a unary predicate U and two binary predicates Edge1 and Edge2.
The adaptation to RDF case is again straightforward. First, let p be the following Boolean
policy, which we consider fixed:

∃x1, x2, x3, y1, y2, y3.U(x1) ∧ U(x2) ∧ U(x3) ∧
Edge1(x1, y1) ∧ Edge2(y1, x2) ∧ Edge1(x2, y2) ∧ Edge2(y2, x3) ∧

Edge1(x3, y3) ∧ Edge2(y3, x1).

Let G, k constitute an instance of Node-DeletionΠ. We construct a ground dataset
D0 and an integer ` such that it is possible to obtain G′ by deleting at most k nodes from
G such that G′ has no cycles of length 3 if and only if there exists a D0-suppressor f of cost
at most ` such that f(D0) complies with p.

Let ` = 2k. Dataset D0 contains the following:

278

Logical Foundations of Linked Data Anonymisation

– for each node v of G, an atom U(cv) with cv a constant uniquely associated with v,

– for each edge e = (u, v), the atoms

Edge1(cu, d1
e), . . . , Edge1(cu, d`+1

e),
Edge2(d1

e, cv), . . . , Edge2(d`+1
e , cv),

where d1
e, . . . , d

`+1
e are constants uniquely associated with e.

Next we prove the correctness of the reduction.
Let G′ be a graph obtained from G by deleting k′ ≤ k nodes and that does not have a

cycle of length 3. Consider a D0-suppressor f that sends the only position in each atom
U(cv) with v not in G′ to a fresh null and keeps all other positions as in D0. On the one
hand, the cost of f is 2k′ ≤ `. On the other hand, by construction, p evaluates over f(D0)
to false—that is, f(D0) complies with p.

Let f be a D0-suppressor of cost at most ` that complies with p. Consider the D0-
suppressor f ′ that agrees with f on all positions involving atoms in U, but does not
anonymise positions in Edge1 and Edge2 atoms. The cost `′ of f ′ is not higher than the
cost ` of f by construction, and f ′ also complies with p: indeed, D0 has ` + 1 “copies” of
each edge, so modifying at most ` copies cannot change the presence of a homomorphism
from p. Consider now a graph G′ obtained from G by deleting all nodes v such that the
only position in U(cv) is anonymised by f ′. The number of deleted nodes is `′/2 ≤ k, as
required. Also, by construction, G′ does not have a cycle of length 3, witnessing a positive
answer to Node-DeletionΠ.

We now provide a matching data complexity lower bound for the strict version of the
cost minimisation problem for compliance. Our bound applies already under the open-world
assumption, and hence extends trivially to the general setting. By the same reason as in
Lemma 7, our bound applies only to non-Boolean policies.

Lemma 9. The following holds:

1. Min-Complianceow
s is NP-hard in data complexity for ground RDF PPDP instances;

2. Min-Compliances is NP-hard in data complexity for RDF PPDP instances, Boolean
policies, and quantifier-free and atomic CQs in closures.

Proof. The proof of statement 1 can be obtained as a modification of the proof for Lemma 8.
However, it is more convenient in this case to provide the whole construction from the scratch
rather than simply pointing out the required modifications.

The proof is again by reduction of Node-DeletionΠ for Π the property of a graph
not having cycles of length 3. In the reduction, we use two binary predicates Edge and
P (so, the adaptation to RDF case is again straightforward). First, consider the following
existential-free policy p, which we consider fixed:

Edge(x1, x2) ∧ Edge(x2, x3) ∧ Edge(x3, x1).

Given an instance G, k of Node-DeletionΠ problem, we construct a ground dataset
D0 and an integer ` as follows. First, we let ` = (2n+ 1)k, where n is the number of nodes

279

Cuenca Grau & Kostylev

in G. Then, for each edge e = (u, v) of G, dataset D0 contains the atom Edge(cu, cv), where
cu and cv are constants associated with nodes u and v. Also, for each node v of G with
mv the number of incoming to and outgoing edges from v, D0 contains atoms P(cv, di), for
i = mv + 1, . . . , 2n and di a fresh constant.

The proof of correctness of the reduction is analogous to the proof of Lemma 8, so we
omit it for brevity. We simply point out that, for every node v, the aforementioned number
mv is at most 2n, so atoms over the relation P make the cost impact of anonymisation of
any cv equal to 2n + 1. This also defines the value of ` above, which allows to anonymise
at most k constants cv, which corresponds to deleting at most k nodes from G.

Statement 2 follows immediately from Lemma 4: same as in the data complexity case
in Lemma 7, it is enough to take ` = 0 and f(D0) as the dataset.

The following theorem summarises the results of Lemmas 5, 6, 7, 8, and 9 and settles
the complexity of the cost minimisation problems associated to policy compliance.

Theorem 2. The following holds:

1. Min-Complianceow is Σp
2-complete and NP-complete in data complexity; the lower

bounds hold already for ground RDF PPDP instances and for Boolean policies;

2. Min-Complianceow
s is Σp

2-complete and NP-complete in data complexity; the problem
is coNP-complete and in AC0 in data complexity for Boolean policies; all the lower
bounds hold already for ground RDF PPDP instances;

3. Min-Compliance is Σp
4-complete and NP-complete in data complexity; the Σp

4 lower
bound holds already for RDF PPDP instances and fixed, quantifier-free and atomic
CQs in closures; the NP lower bound holds already for ground RDF PPDP instances
and Boolean policies; the problem is Σp

2-complete for Boolean policies; the lower bound
holds already for ground RDF PPDP instances;

4. Min-Compliances is Σp
4-complete and NP-complete in data complexity; the Σp

4 lower
bound holds already for RDF PPDP instances and fixed, quantifier-free and atomic
CQs in closures; the NP lower bound holds already for RDF PPDP instances and
Boolean policies; the problem is Σp

2-complete for Boolean policies; the lower bound
holds already for RDF PPDP instances.

5. Linkage Safety

In this section, we establish complexity bounds for the decision problems associated to
linkage safety. Our results are summarised in Table 2 in Section 3.5.

In Section 5.1 we consider the safety checking problem in both its open-world and general
variants. Subsequently, in Section 5.2 we study the cost minimisation problem associated
to linkage safety across the two dimensions specified in Definition 10: on the one hand, we
consider open-world vs. general semantics and, on the other hand, whether suppressors are
required to be strict or not.

The reader may have already observed in Table 2 that our combined complexity bounds
for all problems associated to linkage safety under the open-world assumption are not

280

Logical Foundations of Linked Data Anonymisation

tight, and we leave their precise complexity open; these open-world problems are intimately
related to the critical tuple problem in database theory (Miklau & Suciu, 2007), the precise
complexity of which has proved elusive. In contrast, all our data complexity bounds as well
as all our combined complexity bounds for general, closed-world, settings are tight.

5.1 Checking Linkage Safety

In this section, we focus our attention to the safety checking problem in both its open-world
and general variants. We show the following results:

– the open-world variant of the problem is solvable in Πp
2 and in AC0 in data complexity;

concerning lower bounds in combined complexity, the problem is DP-hard and also
at least as hard as the complement of the critical tuple problem;

– the general variant (i.e., with closed-world information) is coNExpTime-complete in
combined complexity and Πp

2-complete in data complexity.

The lower bounds hold also under various restrictions on datasets, suppressors, policies,
and closures, which we discuss independently in each particular case.

We first discuss the upper bounds and start by considering the open-world setting.
Recall that the safety condition involves a universal quantification over all possible datasets
(infinitely many, and of unbounded size) that could be linked with the anonymised data
that we wish to publish (see Definition 4). The crucial observation is that, under the
open-world assumption, we can restrict ourselves to consider only external datasets that
are polynomially bounded in the size of the input policy query.

Lemma 10. Safetyow is in Πp
2 and in AC0 in data complexity.

Proof. Recall that an input PPDP setting (D0, f, p) is safe if, for every external dataset
D′ such that p has empty answers over D′, it holds that p also has empty answers over
f(D0) ∪ D′. We argue that, to check the aforementioned condition, it suffices to consider
only external datasets D′ of size bounded by the number of atoms in p—that is, if there is
an external dataset D′ witnessing the violation of the safety requirement, then there exists
one such witness having size at most the size of p. To prove this fact, assume that there
exists a dataset D′′ such that D′′ 6|= p(c̄) for any tuple of constants c̄, but f(D0)∪D′′ |= p(c̄)
for some c̄. The latter implies that there must exist a homomorphism g form p(c̄) into
f(D0) ∪ D′′, so let D′ ⊆ D′′ be the homomorphic image of p(c̄) over g. Clearly, D′ satisfies
all the requirements by construction.

Consequently, we can decide Safetyow in Πp
2 by universally checking all D′ of size at

most |p| and then check that either D′ does not comply with p or f(D0)∪D′ complies with
p, both of which can be done using a call to an NP oracle by Proposition 2.

Moreover, if the policy is fixed, then we can rewrite all relevant possibilities ofD′ together
with the policy into a fixed first-order logic sentence; checking whether this sentence holds
in f(D0) is possible in AC0 (Immerman, 1987; Abiteboul et al., 1995).

Lifting the open-world assumption has a significant impact on the complexity of safety
checking. In contrast to the open-world case, where we could restrict ourselves to consider
external datasets of polynomial size, in the general case we will be forced to consider datasets

281

Cuenca Grau & Kostylev

of exponential size. We can then obtain a coNExpTime upper bound by providing an
algorithm for the complement of safety that non-deterministically guesses a witness dataset
of exponential size and then checks (in exponential time in the size of the original input)
that it satisfies the required properties for safety violation.

Towards providing the aforementioned upper bound it will be convenient to use the fol-
lowing simple lemma, which shows that in case of Boolean policies we can restrict ourselves
to null-free witnesses.

Lemma 11. Let (D0, f, p) be a PPDP instance with Boolean p and let C be a set of closures.
If there exists a dataset D′ such that D′ ∪ C 6|= p but f(D0)∪D′ ∪ C |= p, then there exists a
ground dataset with the same properties as D′ and containing at most as many atoms as D′.

Proof. Consider a model I of D′ ∪ C such that I 6|= p. Since I is a model of D′, there is
a homomorphism from D′ to I, and we can take as D′′ the ground dataset corresponding
to the image of this homomorphism. By construction, D′′ ∪ C 6|= p and D′′ ∪ C |= D′ ∪ C,
and the latter together with f(D0) ∪D′ ∪ C |= p implies that f(D0) ∪D′′ ∪ C |= p. In other
words, D′′ is a witness for non-safety of (D0, f, p) with respect to C.

We are now ready to establish a coNExpTime upper bound for Safety. We show
that, in search for a counterexample dataset D′ for safety over a Boolean policy, we can
restrict ourselves to datasets of exponential size. Intuitively, all we need from D′ is, on
the one hand, that it does not witness the policy by itself and, on the other hand, that it
witnesses the policy once it is merged with any minimal model of the anonymisation and
the closures. Since there are exponentially many such minimal models, corresponding to
all possible mergings of the nulls of the anonymisation with constants in the answers of the
closures, the maximal required size for D′ is exponential.

Lemma 12. Safety is in coNExpTime.

Proof. We first note that, by definition, if a PPDP instance (D0, f, p) with non-Boolean p is
not safe, then there is a tuple of constants c̄ such that (D0, f, p(c̄)) is not safe. Therefore, if
we have a coNExpTime algorithm for Safety restricted to inputs with Boolean policies,
then we can easily design a coNExpTime algorithm for the general case: such an algorithm
runs the restricted procedure for each Boolean policy obtained by replacing the answer
variables with a tuple of constants of the size equal to the number of these variables.
Therefore, in the rest of the proof we concentrate on the Boolean policies.

We prove the claim in two steps: first, we show that if there exists a counterexample
dataset for safety of a PPDP instance with respect to a set of closures, then there exists a
ground counterexample of exponential size; second, we show that a ground counterexample
of exponential size can be verified in exponential time.

For the first step, consider a PPDP instance (D0, f, p) and a set of closures C. Let a
dataset D′ be a counterexample for the safety of (D0, f, p) with respect to closures C—that
is, D′ ∪ C 6|= p but f(D0) ∪ D′ ∪ C |= p. By Lemma 11 we may assume that D′ is ground.
On the base of (D0, f, p), C, and D′, we build a ground dataset D′′ of exponential size and
then show that it also constitutes a counterexample.

For q a Boolean query, let Dq the dataset obtained from the atoms in q by replacing
each variable with a fresh null. Then, let DC be the dataset defined as the union of all

282

Logical Foundations of Linked Data Anonymisation

the datasets Dq(c̄) where [q, Ans] ∈ C and c̄ ∈ Ans. Let D be the collection of all ground
datasets D obtained from f(D0) ∪ DC by identifying some nulls with constants mentioned
in the answers Ans in C and replacing all other nulls by fresh constants. Note that the
number of datasets in D is exponential in the number of nulls in f(D0)∪DC and polynomial
in the number of constants in C. Furthermore, by construction, for any D ∈ D we have that
D ∪D′ ∪ C |= f(D0) ∪ D′ ∪ C. Since f(D0) ∪ D′ ∪ C |= p, there are two options:

– either D∪D′ ∪C is inconsistent, in which case there exists [q, Ans] ∈ C and a tuple of
constants c̄ /∈ Ans with a homomorphism g from q(c̄) to D ∪D′;

– or D ∪D′ ∪ C is consistent, and there is a homomorphism g from p to D ∪D′.

In any case, for each D ∈ D, let us pick an arbitrary homomorphism g with the relevant
properties and denote with Dg the dataset D′ ∩ g(q(c̄)) (in the first case) and the dataset
D′ ∩ g(p) (in the second case). Finally, we let D′′ =

⋃
D∈DDg.

Next we show that D′′ is indeed a required counterexample for safety. First, note that D′′
is at most of exponential size in the size of (D0, f, p) and C: indeed, there are exponentially
many datasets in D and each of them captures at most linearly many atoms from D′ to D′′.
Next, since D′′ ⊆ D′ and D′ ∪C 6|= p, we have that D′′ ∪C 6|= p. So, we are left to show that
f(D0) ∪ D′′ ∪ C |= p.

To this end, assume for the sake of contradiction that f(D0)∪D′′ ∪ C 6|= p and consider
a model I of f(D0) ∪ D′′ ∪ C not satisfying p. Since I is a model of f(D0) ∪ C, there is
a homomorphism h from f(D0) ∪ DC to I. Consider the dataset D ∈ D obtained from
f(D0)∪DC by identifying a null b with h(b) if h(b) is a constant mentioned in the answers
Ans in C or by replacing b with the constant cb otherwise. On the one hand, D∪D′′∪C 6|= p,
because I 6|= p and all the new constants in D are not mentioned in p. On the other hand,
D ∪ D′′ ∪ C |= p, because D ∪ D′ ∪ C |= p and the required part of the witness for this in
D′ (either for inconsistency in D ∪ D′ ∪ C or for p itself) is in D′′ by construction. So, we
arrived to a contradiction, and hence f(D0) ∪ D′′ ∪ C |= p, as required.

To complete the proof, it remains to be argued that a ground counterexample D′ for
safety of exponential size can be verified in exponential time in the size of the original
input. However, this is straightforward: first, checking D′∪C 6|= p amounts to checking that
D′ ∪DC implies neither an extra answer to a CQ in C nor p, and both checks are doable in
exponential time; second, to check that f(D0)∪D′ ∪ C |= p we need to consider each of the
exponentially many D ∈ D and perform analogous checks for D ∪D′ ∪ C.

Note that the data complexity of the algorithm suggested in the proof of Lemma 12
coincides with its combined complexity, namely coNExpTime. This is because the number
of datasets in D is exponential in the number of nulls in both DC and f(D0). We next show
that the algorithm suggested in the proof of Lemma 12 can be optimised to yield a Πp

2 upper
bound on data complexity.

Lemma 13. Safety is in Πp
2 in data complexity.

Proof. First, note that in this case the policy is fixed, so the number of tuples to check for
non-Boolean policies is polynomial. Therefore, in the rest of the proof we concentrate on
Boolean policies as in Lemma 12.

283

Cuenca Grau & Kostylev

Recall the proof of Lemma 12. We next argue that, although D contains exponentially
many datasets D in the size of D0, it is enough to consider only polynomially many different
subsets of D′ that can be obtained by intersecting D′ with a homomorphic image of p or
q(c̄) over D ∪ D′ as detailed in the proof of Lemma 12. As a result, the constructed
counterexample dataset D′′ is of size only polynomial in D0. This is enough to establish
Πp

2-membership: the algorithm first guesses such a D′′ as a counterexample for safety, and
then verifies this by checking that, first, D′′ ∪ C 6|= p and, second, f(D0) ∪ D′′ ∪ C |= p; the
first condition is verifiable in polynomial time, while checking the second can be done with
the help of an NP oracle by nondeterministically trying all D ∈ D and verifying that each
of them implies p together with D′′ (the latter can be done in polynomial time, since all the
CQs are fixed).

The key observation is that, for any D ∈ D, the homomorphism from q(c̄) with c̄ /∈ Ans,
for [q, Ans] ∈ C, or from p into D ∪D′ depends only on a part of D of size bounded by the
size of the CQ q or p, respectively, and the rest of D can be arbitrary. Therefore, the subset
of D′ obtained by intersecting D′ with the corresponding homomorphic image contains a
witness not only for D, but also for all other datasets in D that map the nulls relevant to the
homomorphism in the same way as D. Moreover, the number of relevant nulls is bounded
by the size of the largest CQ in the input, which we consider fixed in this lemma.

Formally, let us denote by n the number of nulls in f(D0) ∪ DC , by m the number
of constants in the answers Ans in C, and by s the product of the maximal arity in the
predicates of the schema and maximal number of atoms in a CQ in (D0, f, p) and C (assuming
that this maximal size is not greater than n, otherwise we can take s = n). Consider a
dataset D ∈ D, the identifying homomorphism h from f(D0)∪DC to D, and the witnessing
homomorphism g from a CQ to D ∪D′ as in the proof of Lemma 12. Denote by Cover(D)
a set of nulls required by g—that is, a minimal set of nulls in f(D0) ∪ DC such that g is
a homomorphism to h(D̄), where D̄ is a dataset obtained from f(D0) ∪ DC by removing
all nulls not in the set and all atoms involving these nulls. Since Cover(D) is minimal, it
contains at most s nulls. If, for any two datasets D1 and D2 in D, Cover(D1) = Cover(D2)
and the nulls in this set are sent in the same way by the associated homomorphisms, then
the subset of D′ needed for witnessing CQ q(c̄) or p in D1 ∪ D′ can play the same role for
witnessing the CQ in D2 ∪ D′. So, if we go through all the datasets D of D in an arbitrary
order picking an arbitrary homomorphism g satisfying the required properties each time
and add the corresponding subset of D′ to D′′ only if there has not been any previously
considered dataset with the same covering set as Cover(D), then D′′ is still a required
counterexample for safety.

Therefore, we are left to prove that such D′′ is of polynomial size, assuming s fixed.
To this end, note that there are only polynomial number of elements D in D with different
cover: indeed, there are at most

(n+1
s

)
possibilities for Cover(D), and each of them has

(m+ 1)s possibilities for the nulls (m constants in answers Ans and the fresh constant for
each null)—that is, overall, the number is bounded by (n+1)s(m+1)s, which is a polynomial
for a fixed s. So, in the search for D′′, we can restrict ourselves to ground datasets with the
number of atoms bounded by s(n+ 1)s(m+ 1)s.

We next turn our attention to the lower bounds, and start with the combined complexity
for the open-world version of Safety. In the conference version of this paper it was claimed

284

Logical Foundations of Linked Data Anonymisation

that Safetyow is Πp
2-hard (Cuenca Grau & Kostylev, 2016), thus providing a matching lower

bound to the upper bound in Lemma 10. The proof was based on a simple reduction of
the complement of CriticalTuple—a well-known problem in database theory, which was
claimed to be Σp

2-hard (Miklau & Suciu, 2007). Alas, the hardness proof of CriticalTuple
by Miklau and Suciu (2007) has a subtle problem, which does not seem to have an easy fix;
for now, the best known lower bound for CriticalTuple is NP, and its precise complexity
remains open (Kostylev & Suciu, 2018). The following lemma shows that Safetyow is as
hard as the complement of CriticalTuple. Before stating the lemma, we provide a
definition of CriticalTuple (Miklau & Suciu, 2007).

A ground atom τ is critical for a Boolean CQ q if and only if there exists a ground
dataset D with a homomorphism from q to D such that there is no homomorphism from q
to D \ {τ}. Critical-Tuple is the problem of checking whether a ground atom is critical
for a Boolean CQ.2

Lemma 14. Safetyow is as hard as the complement of CriticalTuple for ground PPDP
instances, strict suppressors, and Boolean policies.

Proof. Let τ , q be an input to CriticalTuple. For the reduction, we take {τ} as dataset
D0, suppressor f that trivially maps each position to its value, and q as policy p. It is
immediate to see that (D0, f, p) is safe if and only if τ is not critical for q.

As we mentioned, the best known lower bound for CriticalTuple is NP, so Lemma 14
gives us a coNP lower bound for Safetyow. However, the reduction in the proof of
Lemma 14 relies on datasets consisting of single facts and trivial suppressors that do not
introduce any nulls. The next lemma exploits the fact that the input to safety checking may
involve datasets with many facts and non-trivial suppressors to provide a better DP lower
bound for Safetyow based on a native reduction of a standard homomorphism problem.
This bound, however, still does not match the Πp

2 upper bound from Lemma 10, so we leave
the precise complexity of Safetyow open.

Lemma 15. Safetyow is DP-hard for ground RDF PPDP instances, strict suppressors,
and Boolean policies.

Proof. The proof is by reduction of the standard Homomorphism–NoHomomorphism
problem, which is DP-complete. The input to this problem consists of four connected
directed graphs, G1, G2, G′1 and G′2, and the answer is yes if and only if there exists a
homomorphism from G1 to G2 and there is no homomorphism from G′1 to G′2.

Let G1, G2, G′1, and G′2 be an input to Homomorphism–NoHomomorphism. We
construct a PPDP instance (D0, f, p) with a ground dataset D0, a strict D0-suppressor f ,
and a Boolean policy p, and then prove that the instance is safe if and only if the answer
to Homomorphism–NoHomomorphism on G1, G2, G′1, and G′2 is yes. The reduction uses
a unary predicate U and two binary predicates Edge and Edge′ (so the adaptation to the
RDF case is as usual).

We start with the definition of D0. Let it consist of an atom Edge(c, c), for a constant c,
and atoms Edge′(cu, cv), for each edge (u, v) of G′2, where cu and cv are constants associated

2. In (Miklau & Suciu, 2007) critical tuples are defined for arbitrary CQs and Σp
2-hardness is claimed for

the general case; however, the CQ in the proof is Boolean.

285

Cuenca Grau & Kostylev

with nodes u and v of G2, respectively. Then, let f be the strict D0-suppressor that sends
each position over constant cv of D0, for each node v of G2, to a null bv uniquely associated
with v.

Next we define the policy p. Let it be the Boolean CQ that consists of the direct
representations of

1. graph G1 over predicate Edge and fresh (existential) variables for all nodes of G1,

2. graph G2 over predicate Edge and fresh variables for all nodes of G2, with each such
variable x additionally in the atom U(x), and

3. graph G′1 over predicate Edge′ and fresh variables for all nodes of G′1.

We next show correctness of this reduction.
Assume first that (D0, f, p) is safe—that is, for every dataset D′ either there is a homo-

morphism from p to D′ or there is no homomorphism from p to f(D0) ∪ D′. We need to
prove that there is a homomorphism from G1 to G2 and there is no homomorphism from
G′1 to G′2. Consider first a dataset D′ that is the same as parts 2 and 3 of p as defined
above, except that it has fresh constants instead of variables. By construction, there is a
homomorphism from p to f(D0) ∪D′, which sends all variables in part 1 of p to constant c
and all other variables to their counter-parts in D′. Therefore, since (D0, f, p) is safe, there
is a homomorphism from p to D′, which immediately implies that there is a homomorphism
from G1 to G2, as required. Second, consider D′ that is the same as parts 1 and 2 of p,
again over fresh constants instead of variables. There is no homomorphism from p to D′
simply because D′ has no atoms over Edge′. Therefore, there is no homomorphism from
p to f(D0) ∪ D′. In particular, since we can send parts 1 and 2 to their copies, there is
no homomorphism from part 3 to the part of f(D0) ∪ D′ over Edge—that is, there is no
homomorphism from G′1 to G′2, as required.

For the converse direction, assume that there is a homomorphism from G1 to G2 but no
homomorphism from G′1 to G′2. We need to prove that (D0, f, p) is safe. For the sake of
contradiction, suppose that this is not the case—that is, there is a dataset D′ without a ho-
momorphism from p to D′, but with a homomorphism from p to f(D0)∪D′. Anonymisation
f(D0) has no U atoms, so there exists a homomorphism from part 2 of p to D′. Therefore,
since there is a homomorphism from G1 to G2, there is a homomorphism from part 1 of p to
D′ as well. Finally, since there is no homomorphism from G′1 to G′2, anonymisation f(D0)
has only nulls in the Edge′ atoms, and G′1 is connected, there is a homomorphism from part 3
to D′. To summarise, there is a homomorphism from all parts of p to D′, which contradicts
the fact that D′ is a witness for the instance (D0, f, p) being unsafe. So our assumption was
wrong, and (D0, f, p) is safe, as required.

We next focus on linkage safety in the presence of closed-world information. We can
prove a coNExpTime lower bound in combined complexity, which matches the upper bound
in Lemma 12. For the intuition behind this lower bound, recall that in Lemma 12 we showed
that any external dataset that is a counterexample for safety contains a part to witness a
homomorphism from a CQ (either the policy or from a closure) for each minimal model
of the anonymisation and the closures, each of which corresponds to a possible merging of
the nulls of the anonymisation with constants in the answers of the closures. There are

286

Logical Foundations of Linked Data Anonymisation

exponentially many such minimal models, and our hardness proof shows that, in the worst
case, the witnessing part in the external dataset must be unique for each such model.
Lemma 16. Safety is coNExpTime-hard for ground RDF PPDP instances, strict sup-
pressors, and Boolean policies.
Proof. We show the NExpTime-hardness of the complement of Safety by a reduction of
the exponential tiling problem ExpTiling. The input of ExpTiling is a tiling instance
(T , Cx, Cy), with a finite set of tile types T , horizontal compatibility relation Cx ⊆ T × T ,
and vertical compatibility relation Cy ⊆ T × T , while the answer is true—that is, the
instance has a solution—if and only if it is possible to tile a 2n × 2n square, for n = |T |,
according to Cx and Cy.

Let (T , Cx, Cy) be a tiling instance with T of size n. We construct a PPDP instance
(D0, f, p) with a ground dataset D0, a strict D0-suppressor f and a Boolean policy p, and a
set of closures C such that the PPDP instance is safe with respect to the closures if and only
if the tiling instance has a solution. In fact, it will be convenient to give first a reduction
for the relaxed case when suppressors may not be strict, and discuss how to avoid this
relaxation in the end of the proof. As usual, we use only unary and binary predicates in
the reduction, so the adaptation to the RDF case is standard.

We start with the definition of the vocabulary: let it contain a unary predicate Elem, two
binary predicates Bitx

i and Bity
i for each i = n, . . . , 1, and two other binary predicates TConst

and TTile. In the construction, it will be convenient to use the following abbreviations, for
variables or constants w, wc, ws, ū = un, . . . , u1, and v̄ = vn, . . . , v1:

Coords(w, ū, v̄) = Elem(w) ∧
Bitx

n(w, un) ∧ · · · ∧ Bitx
1(w, u1) ∧ Bity

n(w, vn) ∧ · · · ∧ Bity
1(w, v1),

Tiled(w,wc, ws, ū, v̄) = TConst(w,wc) ∧ TTile(w,ws) ∧
Bitx

n(w, un) ∧ · · · ∧ Bitx
1(w, u1) ∧ Bity

n(w, vn) ∧ · · · ∧ Bity
1(w, v1);

as usual, if all the arguments are constants, we may look at these abbreviations as datasets
rather than conjunctions.

Let D0 be Coords(e, 0, . . . , 0), where e and 0 are constants. Consider also the D0-
suppressor f that sends each position of Coords(e, 0, . . . , 0) (seen as a single atom) to a
fresh null; we denote these nulls by be, bx

n, . . . , b
x
1, b

y
n, . . . , b

y
1 (i.e., be is the argument of the

Elem atom of f(D0) and the first argument of all the Bit binary atoms, while the other nulls
are the second arguments of the Bit atoms).

Next we define the policy p. Let it be the following Boolean CQ, where c is a fresh
constant, and x̄ and ȳ are tuples of variables of size n:

∃ze, zt, s, x̄, ȳ.Coords(ze, x̄, ȳ) ∧ Tiled(zt, c, s, x̄, ȳ).

In the definition of the closures we use the following abbreviations, for tuples of variables
ū = un, . . . , u1 and v̄ = vn, . . . , v1, where 0 is the constant from D0 and 1 is a fresh constant:

Next1(ū, v̄) = (un = vn) ∧ · · · ∧ (u2 = v2) ∧ (u1 = 0) ∧ (v1 = 1),
· · ·

Nexti(ū, v̄) = (un = vn) ∧ · · · ∧ (ui+1 = vi+1) ∧ (ui = 0) ∧ (vi = 1) ∧
(ui−1 = 1) ∧ (vi−1 = 0) ∧ · · · ∧ (u1 = 1) ∧ (v1 = 0),

· · ·
Nextn(ū, v̄) = (un = 0) ∧ (vn = 1) ∧ (un−1 = 1) ∧ (vn−1 = 0) ∧ · · · ∧ (u1 = 1) ∧ (v1 = 0).

287

Cuenca Grau & Kostylev

Intuitively, Nexti(ū, v̄) is true whenever ū and v̄ represent consecutive numbers in binary
representations of the form bn . . . bi+101 . . . 1 and of the form bn . . . bi+110 . . . 0, respectively,
with bj ∈ {0, 1} for n ≤ j < i.

Next, we define the set of closures C. Let it consist of the following closures, for each
i = n, . . . , 1, where the tile types in T are used also as constants:

– [qx,Bit
i , {0, 1}], where qx,Bit

i (x) = ∃z.Bitx
i (z, x);

– [qy,Bit
i , {0, 1}], where qy,Bit

i (y) = ∃z.Bity
i (z, y);

– [qx,Next
i , Cx], where

qx,Next
i (s1, s2) =
∃z1, z2, wc, x̄1, x̄2, ȳ.Nexti(x̄1, x̄2) ∧ Tiled(z1, wc, s1, x̄1, ȳ) ∧ Tiled(z2, wc, s2, x̄2, ȳ);

– [qy,Next
i , Cy], where

qy,Next
i (s1, s2) =
∃z1, z2, wc, x̄, ȳ1, ȳ2.Nexti(ȳ1, ȳ2) ∧ Tiled(z1, wc, s1, x̄, ȳ1) ∧ Tiled(z2, wc, s2, x̄, ȳ2).

Note that some of the queries in this definition use equality atoms in the Next abbreviations;
this is done just for convenience, and this atoms can be easily eliminated in the usual way,
so the resulting queries are usual CQs, as required by the definitions.

Having the construction completed, next we show the correctness of the reduction—
that is, we prove that (T , Cx, Cy) has a solution if and only if (D0, f, p) is not safe with
respect to closures C. Intuitively, the minimal models of f(D0)∪C correspond to all possible
re-identifications of nulls bx

n, . . . , b
x
1, b

y
n, . . . , b

y
1 in D0 to 0 and 1, and any external dataset

D′ witnessing non-safety should have Tiled atoms with the last 2n arguments being the
values of each of these re-identifications. Then, we can see these 2n arguments as binary
representations of the coordinates in the tiling square, and, by the last two parts of C, the
third arguments of Tiled should be tile types that agree with the compatibility relations.
Note that the first argument of Tiled is used as a representative for the cell in the square
with the coordinates, while the second argument plays a technical role: to witness each pair
in the answers of the last two parts of C without affecting the tiling solution, this argument
may be any constant different from c, which appears in the policy.

We formally prove this intuition correct by means of the following two claims.

Claim 1. If (T , Cx, Cy) has a solution, then (D0, f, p) is not safe with respect to C.

Proof. Assume that (T , Cx, Cy) has a solution—that is, it is possible to tile a 2n×2n square
according to Cx and Cy. We need to show that (D0, f, p) is not safe with respect to C—that
is, there exists a dataset D′ such that D′∪C 6|= p but f(D0)∪D′∪C |= p. We next construct
such a dataset. In particular, let D′ be the ground dataset consisting of the sets of atoms

– Tiled(d, c, t, b̄x, b̄y), for each pair of bit vectors b̄x and b̄y both of size n, for a fresh
constant d uniquely associated with this pair of vectors, for constant c from policy p,
and for the tile type t in the position with coordinates b̄x, b̄y in the tiling solution;

288

Logical Foundations of Linked Data Anonymisation

– Tiled(dx, c
′
x, t1, b̄2i−1, 0̄) and Tiled(d′x, c′x, t2, b̄2i , 0̄) for each pair (t1, t2) ∈ Cx, for each

i = 1, . . . , n, for fresh constants dx, d′x, and c′x, uniquely associated with (t1, t2) and i,
for the bit vectors b2i−1 and b2i of length n each, representing numbers 2i − 1 and 2i,
respectively, in binary, and for the vector 0̄ of 0’s also of length n; and

– Tiled(dy, c
′
y, t1, 0̄, b̄2i−1) and Tiled(d′y, c′y, t2, 0̄, b̄2i) for each pair (t1, t2) ∈ Cy, for each

i = 1, . . . , n, for fresh constants dy, d′y, and c′y, uniquely associated with (t1, t2) and i,
and for the bit vectors b2i−1, b2i and 0̄ as before.

We first note that D′∪C 6|= p. Indeed, the Herbrand model of D′—that is the model that
interprets all constants by themselves and all predicates exactly according to the atoms in
D′—is a model of D′ ∪ C, but has no Elem atom, so it is not a model of p. Note also that
the two last items in the construction of D′ are needed to satisfy the last two items in the
construction of C; this is not guaranteed by the first item of D′, because some pairs in Cx

and Cy may not appear in the tiling solution in each row and column, respectively. This is
why the third argument of Tiled is introduced.

To complete the proof of the claim, we need to show that f(D0) ∪ D′ ∪ C |= p. To this
end, consider any model I of f(D0) ∪ D′ ∪ C. Since I is a model of f(D0) ∪ C, there are an
element e′ and bit vectors b̄x and b̄y such that I is a model of Coords(e′, b̄x, b̄y). Then, the
mapping that sends ze to e′, zt to d associated with b̄x and b̄y, x̄ to b̄x, ȳ to b̄y, and s to
the tile type in the tiling solution at coordinates b̄x, b̄y is a homomorphism from p to I. So,
I |= p, as required.

Claim 2. If (D0, f, p) is not safe with respect to C, then (T , Cx, Cy) has a solution.

Proof. Assume that (D0, f, p) is not safe with respect to C—that is, there exists a dataset
D′ such that D′ ∪ C 6|= p but f(D0) ∪ D′ ∪ C |= p. We need to show that (T , Cx, Cy) has a
solution—that is, it is possible to tile a 2n × 2n square according to Cx and Cy.

First, note that by Lemma 11 we can assume that D′ is ground.
Next we prove that, for any pair b̄x, b̄y of bit vectors of size n each, there exist constants

d and t such that dataset D′ contains atoms Tiled(d, c, t, b̄x, b̄y). To this end, consider any
such pair b̄x, b̄y and the dataset D′′ extending D′ with Coords(e′, b̄x, b̄y), for a fresh constant
e′, and, as in the proof of Claim 1, with

– Tiled(dx, c
′
x, t1, b̄2i−1, 0̄) and Tiled(d′x, c′x, t2, b̄2i , 0̄) for each pair (t1, t2) ∈ Cx, for each

i = 1, . . . , n, for fresh constants dx, d′x, and c′x, uniquely associated with (t1, t2) and i,
and for the bit vectors b2i−1, b2i and 0̄ as in the proof of Claim 1; and

– Tiled(dy, c
′
y, t1, 0̄, b̄2i−1) and Tiled(d′y, c′y, t2, 0̄, b̄2i) for each pair (t1, t2) ∈ Cy, for each

i = 1, . . . , n, for fresh constants dy, d′y, and c′y, uniquely associated with (t1, t2) and i,
and for the bit vectors b2i−1, b2i and 0̄ as in the proof of Claim 1.

By construction, the Herbrand model I of D′′ is a model of f(D0)∪D′ ∪ C: it is a model of
f(D0) by the presence of Coords(e′, b̄x, b̄y), it is a model of D′ because D′′ includes D′, and
it is a model of C because D′ ∪ C does not model p and hence is satisfiable. Therefore, D′′
is also a model of p by assumption—that is, there is a homomorphism from p to I. This
homomorphism sends conjunction Tiled(zt, c, s, x̄, ȳ) of p to (the interpretations of) atoms in
D′, because the rest of D′′ does not contain any TTile atoms with c as the second argument

289

Cuenca Grau & Kostylev

and all TTile atoms not in D′ have fresh constants as the first argument. By construction,
there are two options for conjunction Coords(ze, x̄, ȳ): either Coords(e′, b̄x, b̄y) or atoms in
D′ (a mixture of these two options are not possible, because all atoms in Coords(ze, x̄, ȳ)
mention ze, and e′ is a fresh constant). However, the second option is not possible, because
this would imply that D′ |= p and hence D′ ∪ C |= p, which is not allowed by assumption.
Therefore, the homomorphism sends x̄ to b̄x and ȳ to b̄y, and, since I is a model of p, there
exists t such that D′ contains atom Tiled(d, c, t, b̄x, b̄y), as required.

Since for any b̄x, b̄y there exist d and t with Tiled(d, c, t, b̄x, b̄y) in D′, we can consider
an assignment of the 2n × 2n square with constants defined by these atoms: position with
coordinates b̄x, b̄y is assigned with t means that D′ contains Tiled(d, c, t, b̄x, b̄y) (if for some
b̄x, b̄y there are more than one such t, we pick any of them). Moreover, since D′ ∪ C is
consistent (due to the fact that D′ ∪ C 6|= p), the assignment is a tiling solution—that is,
each t belongs to T and adjacent pairs of tiles agree with Cx and Cy, as required.

These two claims imply the statement of the theorem for suppressors that are not
necessarily strict. Indeed, suppressor f in the construction anonymises the last 2n positions
in Coords(e, 0, . . . , 0) to different nulls. However, it is not difficult to adapt the reduction
to the case when only strict suppressors are allowed: we just need to use not a single pair
of constants 0 and 1, but 2n copies of this pair, one for each bit position in the coordinates;
this would work because every time 0 or 1 is used in the construction, we know precisely
which position it corresponds to.

It is worth mentioning at this point that in the conference version of this paper it was
claimed that Safety is Πp

3-complete in combined complexity (Cuenca Grau & Kostylev,
2016). Please note that this does not contradict the coNExpTime lower bound from
Lemma 16: in the conference version we only allowed singleton closure sets, whereas the
reduction in Lemma 16 uses several closures. The Πp

3 algorithm in (Cuenca Grau & Kostylev,
2016) is, however, not correct, so we leave open the precise complexity of Safety in the
particular case where the input closure set is a singleton. It will be also interesting to
understand the complexity of Safety when the closures are fixed, atomic or existential-
free, or any combination of these.

We now turn our attention to to the data complexity of Safety and provide a matching
lower bound to the Πp

2 upper bound from Lemma 13.

Lemma 17. Safety is Πp
2-hard in data complexity for ground RDF PPDP instances, strict

suppressors, Boolean policies, and existential-free CQs in closures.

Proof. We show Πp
2-hardness by reduction of the ∀∃3SAT problem, whose input is a formula

φ = ∀ū.∃v̄. ψ with ψ a formula in 3CNF over propositional variables ū and v̄, and the
answer is yes if and only if φ is valid. Similarly to ∃∀3SAT problem, which is complete for
Σp

2, ∀∃3SAT is the canonical complete problem for Πp
2.

Let φ = ∀ū.∃v̄. ψ. We construct a PPDP instance (D0, f, p) with a ground dataset D0,
a strict D0-suppressor f and a Boolean policy p, and a set of closures C with existential-free
CQs such that p and the CQs in C do not depend on φ, and such that the PPDP instance
is safe with respect to C if and only if φ is valid. As usual, the arities of the predicates
involved in the reduction are bounded by 2, so the adaptation to RDF is straightforward.

290

Logical Foundations of Linked Data Anonymisation

In the first step of the reduction, we transform φ to an equivalent φ′ = ∀ū′.∃v̄′. ψ′, where
ψ′ is a formula in 6CNF such that its each clause has precisely 3 literals over variables in
ū′ and 3 literals over variables in v̄′. We do it by rewriting each clause γ in ψ as follows:

– if all literals in γ are over variables in ū, then rewrite γ to the two clauses γ ∨ v∨ v∨ v
and γ ∨ ¬v ∨ ¬v ∨ ¬v, for a fresh propositional variable v added to v̄;

– if all literals in γ are over variables in v̄, then rewrite γ to the clause γ ∨u∨u∨u, for
a fresh propositional variable u added to ū;

– otherwise, we archive the required number of literals over ū and v̄ by duplicating the
existing literals in the straightforward way.

In the result we assume that ū′ and v̄′ are the extended ū and v̄, respectively.
We start the description of the reduction with the definition of the vocabulary: let it

contain a unary predicate U and binary predicates V, UValues, VValues, CFu
1, . . . , CFu

3,
CFbv

1 , CFcv
1 , . . . , CFbv

3 , CFcv
3 (as required, the predicates in the vocabulary do not depend

on φ and are at most binary). Similar to the proof of Lemma 16, we will use the following
abbreviation, for variables and constants t, tu1, . . . , tu3, tbv

1 , tcv
1 , . . . , tbv

3 , tcv
3 :

ClauseFalsification(t, tu1, . . . , tu3, tbv
1 , t

cv
1 , . . . , t

bv
3 , t

cv
3) = CFu

1(t, tu1) ∧ · · · ∧ CFu
3(t, tu3) ∧

CFbv
1 (t, tbv

1) ∧ CFcv
1 (t, tcv

1) ∧ · · · ∧ CFbv
3 (t, tbv

3) ∧ CFcv
3 (t, tcv

3).

Next we define the dataset D0 and the D0-suppressor f . Let D0 be the ground dataset
that uses constants cγ for each clause γ in ψ′, constants cfalse

w and ctrue
w for each w ∈ ū′∪ v̄′,

and constants cv and dfalse
v for each v ∈ v̄′ (we will see that in closures C constants dtrue

v

are also used). Then, let D0 consist of

– the atom VValues(dfalse
v , cv) for each v ∈ v̄′; and

– the atoms ClauseFalsification(cγ , au1 , . . . , au3 , d
false
v1 , av1 , . . . , d

false
v3 , av3) for each clause

γ in ψ′ with the literals over variables u1, . . . , u3 ∈ ū′ and v1, . . . , v3 ∈ v̄′, where, for
each of these variables w, aw is constant cfalse

w if the literal with w is positive in
γ and constant ctrue

w otherwise (essentially, this conjunction represents the falsifying
assignment of the clause).

Let also f be the strict D0-suppressor that anonymises, for each clause γ in ψ′, constant
cγ to a null bγ uniquely associated with γ, and, for each variable v ∈ v̄′, constant dfalse

v to
a null bv uniquely associated with v (note that the choice of dfalse

v in the atoms of D0 is
arbitrary, and it could be dtrue

v).
Let then the policy p be the Boolean CQ

∃z, x1, . . . , x3, y
bv
1 , y

cv
1 , . . . , y

bv
3 , y

cv
3 .ClauseFalsification(z, x1, . . . , x3, y

bv
1 , y

cv
1 , . . . , y

bv
3 , y

cv
3) ∧

U(x1) ∧ · · · ∧ U(x3) ∧ V(ybv
1 , y

cv
1) ∧ · · · ∧ V(ybv

3 , y
cv
3),

which also does not depend on φ.
To complete the construction, we next define the set of closures C. Let it consist of the

following pairs, where all CQs are existential-free and do not depend on φ:

291

Cuenca Grau & Kostylev

– [UValues(x1, x2), {(cfalse
u , ctrue

u) | u ∈ ū′}];

– [UValues(x1, x2) ∧ U(x1) ∧ U(x2), ∅];

– [VValues(x, y), {(dfalse
v , cv), (dtrue

v , cv) | v ∈ v̄′}]; and

– [V(x, y), {(dfalse
v , cfalse

v), (dtrue
v , ctrue

v) | v ∈ v̄′}].

Having the construction completed, next we prove its correctness—that is, show that φ′
is not valid if and only if the PPDP instance is unsafe with respect the closures. Intuitively,
each assignment to ū′ corresponds to a candidate external dataset D′ witnessing non-safety
with one of U(cfalse

u) and U(ctrue
u) for each u ∈ ū′, while the gadget on the constants and

nulls corresponding to the v̄′ variables guarantees that p matches a model of f(D0)∪D′ ∪C
if and only if there is a falsified clause in ψ′. Next we prove this intuition correct formally.

Assume that φ′ is not valid—that is, there exists an assignment σ of ū′ such that for
every extension of σ to v̄′ there is a clause in ψ′ that evaluates to false under the overall
assignment. We show that (D0, f, p) is not safe with respect to C. To this end, consider the
ground dataset D′ that consists of atoms U(cfalse

u) for each u ∈ ū′ such that σ(u) = false
and atoms U(ctrue

u) for each u ∈ ū′ such that σ(u) = true. We have that D′∪C 6|= p, because
D′ ∪C is satisfiable and does not mention atoms over the CF predicates, which are required
by p. We also claim that f(D0)∪D′∪C |= p. Indeed, any model I of f(D0)∪D′∪C witnesses
each bv by either dfalse

v or dtrue
v , which corresponds to an extension of assignment σ to v̄′.

Therefore, by assumption, there is a clause in ψ′ that evaluates to false under the extended
σ. By construction, this precisely means that the interpretation of ClauseFalsification in I
contains a tuple with the second, third and fourth arguments in the interpretation of U and
the fifth, seventh and ninth arguments connected by V predicate to the sixth, eighth and
tenth, respectively—that is, p holds in I, as required.

Assume now that (D0, f, p) is not safe with respect to C—that is, there exists a dataset
D′ such that D′ ∪ C 6|= p but f(D0)∪D′ ∪ C |= p. We need to prove that φ′ is not valid. By
Lemma 11 we may assume that D′ is ground. Since D′ ∪ C 6|= p, D′ ∪ C is satisfiable, and,
therefore, there is no u ∈ ū′ such that both U(cfalse

u) and U(ctrue
u) are in D′. Consider the

assignment σ of ū′ such that, for each u, σ(u) is false if U(cfalse
u) ∈ D′ and true otherwise

(including the case when none of U(cfalse
u) and U(ctrue

u) are in D′). We claim that ψ′
evaluates to false under any extension of σ to v̄′. To this end, consider any such extension
and the Herbrand model I of D′ extended by all the V, UValues and VValues atoms enforced
by C, and by all ClauseFalsification atoms in f(D0) with each bγ replaced by a fresh constant
c′γ and each bv replaced by either dfalse

v , if σ(v) = false, or by dtrue
v , if σ(v) = true. By

construction, I |= f(D0) ∪ D′ ∪ C. Therefore, by assumption, I |= p—that is, there is a
homomorphism from p to I. The images of the U atoms of p under this homomorphism
correspond to atoms in D′ by construction. Therefore, since the c′γ were fresh and are
not mentioned in D′, the images of all the CF atoms in the ClauseFalsification conjunction,
which all have a common variable z, cannot correspond to atoms in D′, because otherwise
we have D′ ∪ C |= p, which is not allowed by assumption. So, the ClauseFalsification atoms
are sent to the interpretations of atoms in f(D0) with nulls replaced as described above,
which means that there exists a clause in ψ′ falsified under the extended σ. Since the choice
of the extension of σ to v̄′ was arbitrary, the original σ assigning ū′ is a witness for the fact
that φ′ is not valid.

292

Logical Foundations of Linked Data Anonymisation

In the conference version of this paper it was claimed that Safety is NP-complete in
data complexity (Cuenca Grau & Kostylev, 2016). Although this result does not contradict
the Πp

2 lower bound from Lemma 17 (as it requires singleton closure sets), the NP algorithm
provided in our conference paper is incorrect, and we leave open the precise data complexity
of Safety for singleton closure sets. It would also be interesting to understand the data
complexity of Safety when the closures are atomic.

The following theorem summarises our results of Lemmas 10, 12, 13, 14, 15, 16, and 17.

Theorem 3. The following results hold:

1. Safetyow is in Πp
2, as hard as the complement of CriticalTuple, and DP-hard in

combined complexity. It is in AC0 in data complexity; both of the combined complexity
lower bounds hold already for ground PPDP instances, strict suppressors, and Boolean
policies, while the DP lower bound holds already if the instances are additionally
required to be RDF; and

2. Safety is coNExpTime-complete in combined complexity and Πp
2-complete in data

complexity. Both of the lower bounds hold already for ground RDF PPDP instances,
strict suppressors, and Boolean policies, while the Πp

2 lower bound holds already if the
closure CQs are additionally required to be existential-free.

5.2 Cost Minimisation for Linkage Safety

In this section we study the cost minimisation problems Min-Safety and Min-Safetys
associated to linkage safety. In particular, we show that

– the open-world versions of the problems are both in Σp
3 and Σp

2-hard in combined
complexity, and NP-complete in data complexity; and

– the general versions of the problems are both coNExpTime-complete in combined
complexity and Σp

3-complete in data complexity.

As for the previous problems, the lower bounds hold also under various restrictions on the
datasets, suppressors, policies, and closures, which we discuss in each particular case.

We start with the upper bounds. In all cases, the algorithm just tries all possible sup-
pressors within the cost limit and uses the corresponding algorithm designed in Section 5.1
to check each of these suppressors for safety. Hence, the upper bounds are obtained by
simple guess-and-check algorithms using the algorithms for Safety as “black boxes”.

Lemma 18. The following results hold:

1. Min-Safetyow and Min-Safetyow
s are in Σp

3 and in NP in data complexity;

2. Min-Safety and Min-Safetys are in coNExpTime and in Σp
3 in data complexity.

Proof. As discussed in Section 3.6 and Lemma 5, the sizes of all possible D0-suppressors
are linearly bounded by the size of D0. So, on input D0, p, C (when relevant) and `, our
algorithms (except for the one used to establish the coNExpTime bound) work by first
guessing a D0-suppressor f with cost at most ` and then calling for the corresponding oracle

293

Cuenca Grau & Kostylev

to check safety of the resulting PPDP instance (D0, f, p) with respect to C, the complexity
of which is devised either in Lemma 10 or in Lemma 13. In the most general, coNExpTime
case, we do not need to guess a suppressor, because we can just check all of them one by
one in coNExpTime for safety using the algorithm from Lemma 12.

The lower bounds, which we establish next, are generally much more difficult to prove.
We start with the combined complexity of the open-world versions of the problems. As dis-
cussed in the previous section, we do not have a matching lower bound for Safetyow. As a
result, it is not surprising that our Σp

2 lower bounds for Min-Safetyow and Min-Safetyow
s ,

obtained in the next two lemmas, also do not match our Σp
3 upper bounds from Lemma 18.

However, we anticipate that, on the one hand, if CriticalTuple turns out to be Σp
2-

hard, then it should be possible to use the ideas in our proof to show Σp
3-hardness of

Min-Safetyow and Min-Safetyow
s , and, on the other hand, if it were to be in NP, we

should be able to use the corresponding NP algorithm for CriticalTuple to obtain a Σp
2

algorithm for our problems.
To establish the Σp

2 lower bound of Min-Safetyow in the following lemma we reuse once
again the construction from the proof of statement 1 of Lemma 6. Note that it is essential
here that the PPDP instances are not required to be ground. We leave open the question
whether the problem is still Σp

2-hard for ground instances.

Lemma 19. Min-Safetyow is Σp
2-hard for RDF PPDP instances and Boolean policies.

Proof. As in case of statement 1 of Lemma 7, the proof of this lemma is based on that of
statement 1 of Lemma 6. In fact, the only difference in the construction is that this time we
use only nulls in the dataset D0 instead of constants. As the result, any external dataset D′
that does not imply the policy does not influence the answer to the policy on f(D0) ∪ D′,
whatever is a suppressor f , because D′ cannot mention the nulls of D0, and D0 is connected.
So, in this case, safety boils down to compliance, which is Σp

2-hard by reduction in the proof
of Lemma 6.

As established by the following lemma, the strict version of the problem, Min-Safetyow
s ,

is also Σp
2-hard. Unfortunately, we cannot reuse the proof of Lemma 6 as we just did for

Min-Safetyow: as mentioned before Lemma 7, strict suppressors cannot change the value
of constant-free Boolean queries. As a result, we had to devise a direct reduction of ∃∀3Sat.
Such reduction works for ground instances, so the result is somewhat stronger than that
in Lemma 19 for Min-Safetyow. Also, the reduction uses only Boolean policies, which is
interesting when comparing it with the reduction we used in the proof of statement 1 of
Lemma 7 to show Σp

2-hardness of Min-Complianceow
s .

Lemma 20. Min-Safetyow
s is Σp

2-hard for ground RDF PPDP instances and Boolean
policies.

Proof. We show Σp
2-hardness of Min-Safetyow by reduction of ∃∀3Sat. The reduction is

very similar to the ones in the proofs of statements 1 of Lemmas 6 and 7.
Let φ = ∃r̄.∀v̄.¬ψ be a formula with ψ in 3CNF over propositional variables r̄ and v̄.

We construct a ground dataset D0, a Boolean policy p, and an integer ` such that there
exists a strict D0-suppressor f of cost at most ` for which the instance (D0, f, p) is safe if

294

Logical Foundations of Linked Data Anonymisation

and only if φ is valid. As usual, we use only unary and binary predicates in the reduction,
so the adaptation to the RDF case is straightforward.

First, let the predicates in the vocabulary be the same as in the proof of statement 1 of
Lemma 6—that is, a unary predicate R and binary predicates Arg1, Arg2, Arg3, Backfalse

1 ,
Backtrue

1 , and Back2—plus a unary predicate Anon and a binary predicate P.
Next we define dataset D0 in a similar way as we defined D′0 in Lemma 6: the only

difference is that it has no atoms R(cfalse
r) and R(ctrue

r), for r ∈ r̄, but has several atoms
P(cfalse

r , d) and P(ctrue
r , d) as in the proof of Lemma 7, which are necessary to make the

costs of the anonymisation of all ctr the same, and has atoms Anon(c) for each constant c
different from all cfalse

r , all ctrue
r and all d in the P atoms. In particular, let D0 consist of

the following facts, where we use constants cfalse, ctrue, cy, cz, constants cπγ for every clause
γ and each (of at most 7) assignment π of the variables of γ that satisfies γ, constants
cfalse
w and ctrue

w for each w ∈ r̄ ∪ v̄, constants dy
r for every r ∈ r̄, constants dz, dcl, dvar, and

constants di, for i = 1, . . . 3n+ 1, where n is the number of clauses in ψ:

– R(cfalse) and R(ctrue);

– Backfalse
1 (cfalse, cy), Backtrue

1 (ctrue, cy), and Back2(cy, cz);

– Anon(cfalse), Anon(ctrue), Anon(cy), and Anon(cz);

– Clγ(cz, cπγ), Arg1(cπγ , c
π(w1)
w1), . . . ,Arg3(cπγ , c

π(w3)
w3), and Anon(cπγ), for each clause γ in ψ

over variables w1, . . . , w3 and each assignment π of w1, . . . , w3 satisfying γ;

– Anon(cfalse
v) and Anon(ctrue

v), for each v ∈ v̄;

– Backfalse
1 (cfalse

r , dy
r), Backtrue

1 (ctrue
r , dy

r), Back2(dy
r, d

z), and Anon(dy
r), for each r ∈ r̄;

– P(ctr, di), for each r ∈ r̄, each t ∈ {false, true}, and each i = m+1, . . . , 3n+1, where
m is the number of atoms with ctr above;

– Clγ(dz, dcl), for each clause γ in ψ; and

– Arg1(dcl, dvar) . . .Arg3(dcl, dvar), R(dvar), Anon(dz), Anon(dcl), and Anon(dvar).

Next, let ` be the cost of the strict D0-suppressor that anonymises all constants of D0
except for all cfalse

r , for r ∈ r̄, and all di, for i = 1, . . . , 3n+ 1.
Finally, the policy p is the same as the one in Lemma 6, except that it additionally

contains an atom Anon(x) for each variable x different from all xu, for u ∈ ū. In particular,
it is the Boolean CQ consisting of the following atoms, where all arguments are existential
variables:

– R(xfalse) and R(xtrue),

– Backfalse
1 (xfalse, y), Backtrue

1 (xtrue, y), and Back2(y, z),

– Anon(xfalse), Anon(xtrue), Anon(y), and Anon(z),

– Clγ(z, xγ), Arg1(xγ , xw1), . . . ,Arg3(xγ , xw3), and Anon(xγ), for each clause γ in ψ over
propositional variables w1, . . . , w3,

295

Cuenca Grau & Kostylev

– R(xr), for each r ∈ r̄, and

– Anon(xv), for each v ∈ v̄.

We next show that φ is valid if and only if there exists a strict D0-suppressor f of cost
at most ` such that (D0, f, p) is safe. The intuition is as follows. A strict suppressor f that
does not anonymise a constant different from cfalse

r , ctrue
r and di cannot be safe, because

these constants are in Anon, and a witnessing external dataset may consist of a copy of
p without the corresponding Anon atom. Also, same as in the proof of Lemma 6, a safe
f should anonymise at least one of cfalse

u and ctrue
u for each u, but it cannot anonymise

both, because of the cost limit `. So, the external dataset D′ can contain one and only
one of R(cfalse

r) and R(ctrue
r), which defines an assignment to r̄ variables. Then, same as

Lemma 6, a homomorphism from p to f(D0) ∪ D′ corresponds precisely to an extension of
the assignment that satisfies ψ. Next we formally prove this intuition correct.

For the forward direction, let φ be valid—that is, there exists a truth assignment σ of r̄
such that for its any extension to v̄ the resulting assignment turns ψ to false. Consider the
strict D0-suppressor f that anonymises all constants c in D0 except for all cσ(r)

r , for r ∈ r̄,
and all di, for i = 1, . . . , 3n + 1. By definition, the cost of f is precisely `. We claim that
(D0, f, p) is safe—that is, there is no external dataset D′ without a homomorphism from p
to D′ but with a homomorphism from p to f(D0) ∪ D′. Indeed, if such a dataset D′ exists,
it contains R(cσ(r)

r) for each r, and the homomorphism from p to f(D0) ∪D′, in particular,
the images of v̄, identifies the extension of σ to v̄ that satisfies ψ, which is not possible by
assumption. Therefore, (D0, f, p) is safe, as required.

Now we show the backward direction of the correctness claim. Let f be a strict D0-
suppressor of cost at most ` such that (D0, f, p) is safe—that is, for any external dataset
D′ either there is a homomorphism from p to D′ or there is no homomorphism from p to
f(D0)∪D′. We need to prove that φ is valid. First, we claim that f anonymises all constants
in D0 different from all cfalse

r and ctrue
r , for r ∈ r̄ and all di, for i = 1, . . . , 3n+ 1. Indeed,

if this is not the case, and there is such a constant c, then the dataset that consists of the
atoms S(c, c), for each binary predicate S, and the atoms A(c) for each unary predicate A
different from Anon, would be witnessing D′ for unsafety. Next, note that f anonymises
at least one of cfalse

r and ctrue
r , for each r ∈ r̄, because otherwise the dataset consisting

of two atoms R(cfalse
r) and R(ctrue

r) would be witnessing D′ for unsafety. However, since
the cost of suppressor f is at most `, f cannot anonymise both cfalse

r and ctrue
r for any r

by construction. Consider the assignment σ of r̄ such that, for each r ∈ r̄, σ(r) = false
if and only if f anonymises ctrue

r . We claim that for any extension of σ to v̄ the resulting
assignment turns ψ to false—that is, that φ is valid. Indeed, if this is not the case, then, on
the base of such an extension to v̄, we can construct a homomorphism from p to f(D0)∪D′,
where D′ consists of atoms R(cσ(r)

r) for all r: such a homomorphism sends

– xfalse and xtrue to the nulls anonymising cfalse and ctrue, respectively,

– y and z to the nulls anonymising cy and cz, respectively,

– each xγ to the null anonymising cπγ , where π is the restriction of σ to the variables of
γ, for γ a clause in ψ,

296

Logical Foundations of Linked Data Anonymisation

– each xr to cσ(r)
r , for r ∈ r̄, and

– each xv to the null anonymising cσ(v)
v , for v ∈ v̄.

Therefore, φ is indeed valid, as required.

Having established the combined complexity of the open-world versions of the cost min-
imisation problems associated to safety, we next turn our attention to their data complexity.
We will prove NP-hardness for both Min-Safetyow and Min-Safetyow

s , which matches
the upper bounds from Lemma 18. In the case of Min-Safetyow, we will be able to reuse
the reduction in the proof of Lemma 8.

Lemma 21. Min-Safetyow is NP-hard in data complexity for RDF PPDP instances and
Boolean policies.

Proof. The proof of this lemma is based on the proof of Lemma 8 of the NP-hardness of
Min-Complianceow in data complexity in the same way as the proof of Lemma 19 of
hardness of Min-Safetyow in combined complexity is based on the proof of statement 1 of
Lemma 6 of hardness of Min-Complianceow in combined complexity for Boolean policies.
Again, the only difference in the construction is that this time we use only nulls in the
dataset D0 instead of constants. As a result, any external dataset D′ that does not imply
the policy does not influence the answer to the policy on f(D0) ∪ D′, regardless of what f
is, and hence safety boils down to compliance, which is NP-hard by Lemma 8.

The case of data complexity of Min-Safetyow
s is similar to its combined complexity.

First, we cannot reuse any existing reduction and have to develop a direct NP-hardness
proof. Second, it works already for ground instances, but cannot be easily adapted to
Min-Safetyow. Finally, it also works for Boolean policies, which is in contrast to the lower
bound for Min-Complianceow

s in Lemma 9.

Lemma 22. Min-Safetyow
s is NP-hard in data complexity, even for ground RDF PPDP

instances and Boolean policies.

Proof. The proof is an adaptation of the proofs of Lemmas 8 and 9 of NP-hardness of
Min-Complianceow and Min-Complianceow

s in data complexity, in a similar way as in
the case of combined complexity where the proof of Lemma 20 is a modification of the
proofs of Lemmas 6 and 7.

The proof is again by reduction of Node-DeletionΠ for Π the property of a graph not
having cycles of length 3.

In the reduction, we will use a vocabulary consisting of two unary predicates U and
Anon, as well as four binary predicates Edge1, Edge2, Edgec, and P (so, the adaptation to
the case of RDF is again straightforward).

Consider first the policy p, which is the following Boolean CQ:

∃x1, x2, x3, y1, y2, y3, z.U(x1)∧U(x2)∧U(x3)∧Anon(y1)∧Anon(y2)∧Anon(y3)∧Anon(z)∧
Edge1(x1, y1)∧Edge2(y1, x2)∧Edge1(x2, y2)∧Edge2(y2, x3)∧Edge1(x3, y3)∧Edge2(y3, x1)∧

Edgec(y1, z) ∧ Edgec(y2, z) ∧ Edgec(y3, z).

297

Cuenca Grau & Kostylev

Given a directed graph G and an integer k as an input to the Node-DeletionΠ problem,
we next construct a ground dataset D0 and an integer ` such that there exists a strict D0-
suppressor f with cost at most ` and such that (D0, f, p) is safe if and only if it is possible
to delete at most k nodes from G and obtain a graph without a cycle of length 3.

Let dataset D0 use a constant c, a constant cv for each node v in G, a constant de for
each edge e in G, and a constant di for each i = 1, . . . , 2n with n the number of nodes in G.
Let also D0 consist of

– the atom Anon(c);

– the atoms Edge1(cu, de), Edge2(de, cv), Edgec(de, c) and Anon(de) for each edge e =
(u, v) of G; and

– the atoms P(cv, di), for each node v of G with mv the total number of incoming to v
and outgoing from v edges and for each i = mv + 1, . . . , 2n.

Let ` = (2n+1)k+5m+1 for n andm the numbers of nodes and edges in G, respectively—
that is, ` is precisely the cost of the strict anonymisation of k constants cv, all constants de,
and constant c.

Next we prove that Node-DeletionΠ holds for a graph G and an integer k if and only
if there exists a strict D0-suppressor f of cost at most ` such that (D0, f, p) is safe. The
first intuitive idea is similar to the one in Lemma 20: a safe suppressor should anonymise
c and all de, because all these constants are in Anon and if any of them is not anonymised
then we can construct an external dataset witnessing non-safety. So, a safe suppressor can
anonymise cv for at most k nodes v, which corresponds to deleting these v from the graph,
because an external dataset can contain an U atom, required by the policy, only for v with
cv not anonymised. Note also that constant c and atoms Edgec are needed to keep the
anonymised part of D0 connected, so D′ cannot have just a part of it. Next we formally
prove this intuition correct.

We start with the forward direction. Let a directed graph G and a number k be such that
it is possible to delete at most k nodes from G with the resulting graph not having a cycle of
length 3. We need to prove that there exists a strict D0-suppressor f of cost at most ` such
that (D0, f, p) is safe—that is, for any external dataset D′ either there is a homomorphism
from p to D′ or there is no homomorphism from p to f(D0) ∪ D′. To this end, consider
a subgraph G′ of G with the required properties. Consider also the strict D0-suppressor f
that anonymises all constants cv for v deleted from G, all constants de for edges e of G,
and constant c. The cost of f is at most `, as required. We claim that (D0, f, p) is safe.
Indeed, assume, for the sake of contradiction, that this is not the case and there exists an
external dataset D′ without a homomorphism from p to D′ and with a homomorphism g
from p to f(D0) ∪ D′. If g(z) is mapped to something other than the anonymisation of c
under f , then, by construction, g is also a homomorphism to D′ alone, which is not allowed
by the assumption on D′. So, g(z) is the anonymisation of c, and therefore each g(yi) is the
anonymisation of dei , for ei an edge of G. However, each g(xi) must be ci, for some node ci
that is not anonymised, because D0 does not have any U atoms, while p has U(xi). In other
words, these ci are in G′, and these nodes form a cycle of length 3 in G′. This contradicts
the construction of G′. Hence, our assumption was wrong and (D0, f, p) is safe, as required.

298

Logical Foundations of Linked Data Anonymisation

For the backward direction of the claim, assume that there exists a strict D0-suppressor
f of cost at most ` such that (D0, f, p) is safe. We need to prove that it is possible to delete
at most k nodes from G such that the resulting graph does not have a cycle of length 3.
To this end, consider such a suppressor f . First, note that f anonymises constant c and
all constants de by the same reason as in Lemma 20: otherwise the external dataset D′
consisting of the atoms that mention this constant in all positions over all predicates in the
vocabulary except for Anon is a counterexample for safety of (D0, f, p). Consider now the
subgraph G′ of G that is obtained by removing all nodes v such that cv is anonymised by
f . First, the number of removed nodes is at most k, because the cost of f is at most `.
Second, G′ does not have a cycle of length 3, because otherwise D′ that consists of U(cv)
for all nodes v of G′ would be a counterexample for safety. So, Node-DeletionΠ holds for
G and k, as required.

We now study the combined complexity of the general Min-Safety and Min-Safetys
problems. In both cases we can show coNExpTime-hardness by reusing the reduction in
the proof of Lemma 16, where we showed coNExpTime-hardness of Safety by reduction
of the ExpTiling problem. These bounds match the upper bounds for the problems in
Lemma 18. Same as in Lemma 16, we do not require the closures to be fixed, singleton,
atomic or existential-free, and it is an interesting problem for future work to establish
the precise complexity of Min-Safety and Min-Safetys when any combination of these
restrictions is enforced. Additionally, as in Lemmas 19 and 21, we do not restrict instances
to be ground for the non-strict version of the problem (but we do for the strict version).

Lemma 23. The following holds:

1. Min-Safety is coNExpTime-hard for RDF PPDP instances and Boolean policies;

2. Min-Safetys is coNExpTime-hard for ground RDF PPDP instances and Boolean
policies.

Proof. In both cases, we can essentially reuse the reduction of ExpTiling to Safety in the
proof of Lemma 16. In the case of Min-Safety, the only modification in the construction
is that we take f(D0) from Lemma 16 as the dataset D0 in the input to Min-Safety, and
set ` = 0 (note here that we do not require instances to be ground in the first statement
of this lemma). In the case of Min-Safetys, the only modification is that we do not fix
the strict suppressor as in Lemma 16, but allow it to be arbitrary—that is, set ` = 6n+ 4,
which is the cost of f in the proof of Lemma 16 (note that it is important to use 2n copies
of 0 and 1 here, as described in the end of the proof of Lemma 16, so that f is the strict
suppressor with the maximal possible cost). In both cases, the rest of the proof goes along
the same lines as the proof of Lemma 16.

To conclude this section we provide Σp
3 lower bounds in data complexity for Min-Safety

and Min-Safetys, thus matching the upper bounds from Lemma 12. The proof for
Min-Safety in the following lemma uses the same ideas as the proof of Lemma 17, where
we proved the Πp

2-lower bound of Safety in data complexity, extended with a gadget to
deal with the third level of the polynomial hierarchy. Again, we do not require the instances
to be ground and closures to be singleton or atomic, and it would be interesting in future

299

Cuenca Grau & Kostylev

work to establish the complexity with any of these restrictions. However, note that CQs in
the closures are restricted to be existential-free.

Lemma 24. Min-Safety is Σp
3-hard in data complexity for RDF PPDP instances, Boolean

policies, and existential-free CQs in closures.

Proof. We show Σp
3-hardness by reduction of the ∃∀∃3SAT problem, whose input is a for-

mula φ = ∃s̄. ∀ū.∃v̄. ψ with ψ a formula in 3CNF over variables s̄ ∪ ū ∪ v̄, and the answer
is yes if and only if φ is valid. Problem ∃∀∃3SAT is a canonical Σp

3-complete problem.
Let φ = ∃s̄. ∀ū.∃v̄. ψ be a formula with ψ in 3CNF. We construct a dataset D0, an

integer `, a Boolean policy p and a set of closures C with existential-free CQs such that p
and queries in C do not depend on φ, and such that there exists a D0-suppressor f of cost
at most ` with the PPDP instance (D0, f, p) being safe with respect to C if and only if φ is
valid. As usual, the arities of the used predicates are bounded by 2, so the adaptation to
the RDF case is straightforward.

As we did in the proof of Lemma 17, in the first step of the reduction we transform φ
to an equivalent formula φ′ = ∃s̄′.∀ū′. ∃v̄′. ψ′, where ψ′ is a propositional formula in 9CNF
such that its each clause has precisely 3 literals over variables in each of s̄′, ū′, and v̄′. We
can do it in the same way as in the proof of Lemma 17, so we omit this step here for brevity.

We then continue the description of the reduction with the definition of predicates in the
vocabulary: let it contain unary predicates S and U, and binary predicates V, SValuesfalse,
SValuestrue, UValues, VValues, CFs

1, . . . , CFs
3, CFu

1, . . . , CFu
3, CFbv

1 , CFcv
1 , . . . , CFbv

3 , CFcv
3

(as required, the vocabulary does not depend on φ). Similar to the proofs of Lemmas 16
and 17, we will use the following abbreviation, for variables and constants t, ts1, . . . , ts3,
tu1, . . . , tu3, tbv

1 , tcv
1 , . . . , tbv

3 , tcv
3 :

ClauseFalsification(t, ts1, . . . , ts3, tu1, . . . , tu3, tbv
1 , t

cv
1 , . . . , t

bv
3 , t

cv
3) =

CFs
1(t, ts1) ∧ · · · ∧ CFs

3(t, ts3) ∧ CFu
1(t, tu1) ∧ · · · ∧ CFu

3(t, tu3) ∧
CFbv

1 (t, tbv
1) ∧ CFcv

1 (t, tcv
1) ∧ · · · ∧ CFbv

3 (t, tbv
3) ∧ CFcv

3 (t, tcv
3).

We also set ` = 2|s̄′|.
Next we define the dataset D0. Let it consist of,

– for each s ∈ s̄′, the atoms

SValuesfalse(bis, bfalse
s), SValuestrue(bis, btrue

s), for each i = 1, . . . , `+ 1,
S(bfalse

s , bfalse
s), and S(btrue

s , btrue
s),

where bis, bfalse
s , and btrue

s are fresh nulls associated with s;

– for each v ∈ v̄′, the atom VValues(bv, cv), where bv and cv are a fresh null and constant
associated with v;

– for each clause γ in ψ′ with the literals over variables s1, . . . , s3 ∈ s̄′, u1, . . . , u3 ∈ ū′,
and v1, . . . , v3 ∈ v̄′, the atoms

ClauseFalsification(bγ , ts1 , . . . , ts3 , au1 , . . . , au3 , bv1 , av1 , . . . , bv3 , av3),

where

300

Logical Foundations of Linked Data Anonymisation

- bγ is a fresh null associated with γ,
- for each s = s1, . . . , s3, parameter ts is null bfalse

s if the literal with s is positive
in γ and null btrue

s otherwise, and,
- for each w = u1, . . . , u3, v1, . . . , v3, parameter aw is constant cfalse

w if the literal
with w is positive in γ and constant ctrue

w otherwise,

(essentially, these atoms represent the falsifying assignment of the clause).

Next, let the policy p be the conjunction of the Boolean CQ pcf defined as

∃z, ys
1, . . . , y

s
3, x1, . . . , x3, y

bv
1 , y

cv
1 , . . . , y

bv
3 , y

cv
3 .

ClauseFalsification(z, ys
1, . . . , y

s
3, x1, . . . , x3, y

bv
1 , y

cv
1 , . . . , y

bv
3 , y

cv
3) ∧

S(ys
1, y

s
1) ∧ · · · ∧ S(ys

3, y
s
3) ∧ U(x1) ∧ · · · ∧ U(x3) ∧ V(ybv

1 , y
cv
1) ∧ · · · ∧ V(ybv

3 , y
cv
3)

and the Boolean CQ ps defined as

∃x, xfalse, xtrue.

SValuesfalse(x, xfalse) ∧ SValuestrue(x, xtrue) ∧ S(xfalse, xfalse) ∧ S(xtrue, xtrue);

note that p does not depend on φ, as required.
To complete the construction, we need to define the set of closures C. Let it be precisely

as in the proof of Lemma 17—that is, it consist of the following pairs, where all CQs are
existential-free and do not depend on φ:

– [UValues(x1, x2), {(cfalse
u , ctrue

u) | u ∈ ū′}];

– [UValues(x1, x2) ∧ U(x1) ∧ U(x2), ∅];

– [VValues(x, y), {(dfalse
v , cv), (dtrue

v , cv) | v ∈ v̄′}]; and

– [V(x, y), {(dfalse
v , cfalse

v), (dtrue
v , ctrue

v) | v ∈ v̄′}].

We next establish the correctness of the reduction—that is, we show that φ′ is valid if
and only if there exists a D0-suppressor of cost at most ` such that the resulting PPDP
instance is safe with respect to the closures.

For the forward direction, let φ′ be valid—that is, there exists an assignment σ of s̄′
such that for every extension of σ to ū′ there is its further extension to v̄′ such that all
clauses in ψ′ evaluate to true under the overall assignment. We show that there exists a
D0-suppressor f such that the PPDP instance (D0, f, p) is safe with respect to C—that is,
for every external dataset D′, either D′∪C |= p or f(D0)∪D′∪C 6|= p. To this end, consider
the D0-suppressor f that anonymises to a fresh null, for each s ∈ s̄′, the first position of
the atom S(btrue

s , btrue
s) in D0, if σ(s) = false, and the first position of S(bfalse

s , bfalse
s)

otherwise. Note that the cost of f is ` = 2|s̄′|, as required.
We need to show that the PPDP instance (D0, f, p) is safe with respect to C. Let, for

the sake of contradiction, this not be the case—that is, there exist a dataset D′ such that
D′ ∪C 6|= p but f(D0)∪D′ ∪C |= p. By Lemma 11 we may assume that D′ is ground. Since
D′ ∪ C 6|= p, D′ ∪ C is satisfiable, and, therefore, there is no u ∈ ū′ such that both U(cfalse

u)

301

Cuenca Grau & Kostylev

and U(ctrue
u) are in D′. Consider the extension of σ to ū′ such that, for each u ∈ ū′, σ(u) is

false if U(cfalse
u) ∈ D′ and true otherwise (including the case when none of U(cfalse

u) and
U(ctrue

u) are in D′). To falsify our assumption, we claim that ψ′ evaluates to false under
any further extension of σ to v̄′. To this end, consider any such extension and the Herbrand
model I of D′ extended by

– all the V, UValues and VValues atoms enforced by C, and

– all SValuesfalse, SValuestrue, S, and ClauseFalsification atoms in f(D0) with each null
bv replaced either by cfalse

v if σ(v) = false or by ctrue
v if σ(v) = true, and each other

null by a fresh constant.

By construction, I |= f(D0) ∪ D′ ∪ C. Therefore, by assumption, I |= p—that is, there is a
homomorphism from p to I. The images of atoms in the ps part of p under this homomor-
phism correspond to atoms in D′, because either S(bfalse

s , bfalse
s) or S(btrue

s , btrue
s) is not in

f(D0) for any s ∈ s̄′ by construction, and because all the SValuesfalse, SValuestrue and S
atoms in D0 use only nulls. The images of the U atoms of the pcf part of p also correspond
to atoms in D′, because D0 does not mention U. The images of V atoms correspond to the
atoms enforced by C. The images of the CF atoms in the ClauseFalsification conjunction of
pcf , which all have a common variable z, and the S atoms of pcf should correspond either all
to atoms in D′ or all to atoms in f(D0) with nulls replaced as described, because all nulls
bγ , bfalse

s and btrue
s are replaced by fresh constants, and ClauseFalsification and S are not

mentioned in C. However, they cannot correspond to atoms in D′, because otherwise we
would have D′∪C |= p, which is not allowed by assumption. So, the ClauseFalsification atoms
are sent to the interpretations of atoms in f(D0) with the replaced nulls, which means that
there exists a clause in ψ′ falsified under the extended σ, same as in the proof of Lemma 17.
Therefore, the extension of σ to ū′ is such that ψ′ is not valid for any further extension to
v̄′. Hence, our assumption was wrong, and (D0, f, p) is safe with respect to C, as required.

For the backward direction, let there exist a D0-suppressor f such that the PPDP
instance (D0, f, p) is safe with respect to C—that is, for every external dataset D′, either
D′ ∪ C |= p or f(D0) ∪ D′ ∪ C 6|= p. We need to show that φ′ be valid.

First, we show that f anonymises at least one of the four positions in the atoms
S(bfalse

s , bfalse
s) and S(btrue

s , btrue
s) in D0 for each s ∈ s̄′. Indeed, if this is not the case

and there is s with both of these atoms in f(D0), then (D0, f, p) is not safe, because f(D0)
has a homomorphism from part ps of policy p and we can take as a witnessing counterex-
ample for safety of the external dataset D′ that is obtained from pcf by replacing all the
variables by fresh nulls (or by constants in a way that D′ ∪ C is consistent). In particular,
a homomorphism from ps to f(D0) exists because f cannot anonymise, within the given
cost `, a position in the pair of atoms SValuesfalse(bis, bfalse

s),SValuestrue(bis, btrue
s) in D0

for every i. Also, D′ ∪ C 6|= p holds for such D′, which is required for witnessing non-safety,
because D′ does not have any SValues atoms needed for part ps of p.

On the one hand, we proved that f anonymises a position in S(bfalse
s , bfalse

s) and
S(btrue

s , btrue
s) for each s ∈ s̄′. On the other, the cost of f is bounded by ` = 2|s̄′|. There-

fore, f anonymises exactly one of these positions for each s. Consider the assignment σ of
s̄′ defined, for each s, as σ(s) = true if a position in S(bfalse

s , bfalse
s) is anonymised and

σ(s) = false otherwise.

302

Logical Foundations of Linked Data Anonymisation

We next claim that for any extension of σ to ū′ there exists a further extension to v̄′ such
that ψ′ evaluates to true under the overall assignment. Let, for the sake of contradiction,
this not be the case, and consider a witnessing extension of σ to ū′. We next show that
(D0, f, p) is not safe, which contradicts our original assumption. To this end, consider the
external dataset D′ that consists of

– atoms U(cfalse
u) for each u ∈ ū′ such that σ(u) = false and atoms U(ctrue

u) for each
u ∈ ū′ such that σ(u) = true; and

– all the atoms obtained from atoms in ps by replacing all the variables by fresh con-
stants.

We have that D′ ∪ C 6|= p, because D′ ∪ C is satisfiable and does not mention any atoms
over CF predicates, which are required by p. We also claim that f(D0) ∪ D′ ∪ C |= p.
Indeed, any model I of f(D0) ∪ D′ ∪ C witnesses each bv by either dfalse

v or dtrue
v , which

corresponds to an extension of assignment σ to v̄′. Therefore, by assumption, there is a
clause in ψ′ that evaluates to false under the extended σ. By construction, this precisely
means that the interpretation of ClauseFalsification in I contains a tuple that is required
for a homomorphism from pcf to I. Since a copy of ps is in D′, overall p holds in I, and
(D0, f, p) is not safe, as required.

Finally, we prove that Min-Safetys is Σp
3-hard in data complexity, again same as

Min-Safety. The proof is similar to the proof of Lemma 24, but also uses the ideas from
the proofs of Lemmas 20 and 22 of Σp

2- and NP-hardness of Min-Safetyow
s in combined

and data complexity, respectively. We do not give here the full reduction in this case, but
rather describe in detail the differences with the reduction in Lemma 24. Note that it could
be again an interesting problem for future work to determine the precise complexity of the
problem in the case when the closures are restricted to be singleton or atomic, or both.

Lemma 25. Min-Safetys is Σp
3-hard in data complexity for ground RDF PPDP instances,

Boolean policies, and existential-free CQs in closures.

Proof. This proof is again by reduction of ∃∀∃3SAT. As we just mentioned, it is very
similar to the proof of the previous Lemma 24. The first conceptual difference is that strict
suppressors require another (in fact, simpler) gadget to deal with the third level of the
polynomial hierarchy. The second difference is that to deal with ground PPDP instances
we use the same ideas as in proofs of Lemmas 20 and 22.

Let φ = ∃s̄. ∀ū.∃v̄. ψ be a formula with ψ in 3CNF. We construct a ground dataset D0,
an integer `, a Boolean policy p and a set of closures C with existential-free CQs such that p
and queries in C do not depend on φ, and such that there exists a strict D0-suppressor f of
cost at most ` with the PPDP instance (D0, f, p) being safe with respect to C if and only if
φ is valid. As usual, the arities of the used predicates are bounded by 2, so the adaptation
to the RDF case is straightforward.

As in the proof of Lemma 24, we first transform φ to an equivalent φ′ = ∃s̄′. ∀ū′. ∃v̄′. ψ′
with ψ′ in 9CNF such that each clause has precisely 3 literals over variables in each of s̄′,
ū′, and v̄′.

The vocabulary used in this reduction is almost the same as in the proof of Lemma 24:
the only differences are that S is unary instead of binary, there is only one SValues binary

303

Cuenca Grau & Kostylev

predicate instead of two SValuesfalse and SValuestrue, and that a unary Anon and a binary
P predicates are additionally used (their roles are very similar to the ones in the proof of
Lemma 20). We will also use the abbreviation ClauseFalsification, which is the same as in
the proof of Lemma 24.

The dataset D0 is also similar to the one in the proof of Lemma 24. The only differences
are that

– instead of all SValuesfalse, SValuestrue and S atoms, dataset D0 contains the atom
SValues(cfalse

s , ctrue
s), for each s ∈ s̄′, where cfalse

s and ctrue
s are fresh constants asso-

ciated with s;

– in the VValues and ClauseFalsification atoms instead of nulls bv for each v ∈ v̄′, nulls
bγ for each clause γ in ψ′, and nulls bfalse

s and btrue
s for each s ∈ s̄′, D0 uses constants

dfalse
v , constants cγ , and constants cfalse

s and ctrue
s , respectively; and

– additionally, dataset D0 contains the atom Anon(cγ) for each clause γ, the atoms
Anon(dfalse

v) for each v ∈ v̄′, and the atoms of the form R(dfalse
v , di) that make the

cost of the strict anonymisations of all dfalse
v to be equal (in exactly the same way as

done with constants cfalse
u and ctrue

u in the proof of Lemma 20).

We next set ` to be the cost of the strict anonymising all cγ , all dfalse
v and all cfalse

s .
Next, let the policy p be again the conjunction of the Boolean CQs pcf and ps, both of

which are very similar to the ones in the proof of Lemma 24: the only differences are that

– pcf has atoms S(ys
1) ∧ · · · ∧ S(ys

3) instead of their binary versions;

– pcf additionally has atoms Anon(ybv
1), . . . ,Anon(ybv

3) and Anon(z); and

– ps has the form ∃xfalse, xtrue.SValues(xfalse, xtrue) ∧ S(xfalse) ∧ S(xtrue).

Finally, the set of closures C is precisely the same as in the proof of Lemma 24.
We next argue the correctness of the reduction—that is, we show that φ′ is valid if and

only if there exists a strict D0-suppressor of cost at most ` such that the resulting PPDP
instance is safe with respect to the closures.

For the forward direction, let φ′ be valid—that is, there exists an assignment σ of s̄′ such
that for every extension of σ to ū′ there is a further extension to v̄′ such that all clauses
in ψ′ evaluate to true under the overall assignment. We show that there exists a strict
D0-suppressor f such that the PPDP instance (D0, f, p) is safe with respect to C—that is,
for every external dataset D′, either D′∪C |= p or f(D0)∪D′∪C 6|= p. To this end, consider
the strict D0-suppressor f that anonymises to fresh nulls

– constant cγ for each clause γ,

– constant dfalse
v for each v ∈ v̄′,

– constant ctrue
s for each s ∈ s̄′ such that σ(s) = false and cfalse

s for each s such that
σ(s) = true.

304

Logical Foundations of Linked Data Anonymisation

The cost of f is precisely ` by construction. Moreover, the proof that the PPDP instance
(D0, f, p) is safe with respect to C goes along the same lines as the proof of the same fact
in Lemma 24, except for two minor differences. First, the images of atoms in the ps part
of p under the homomorphism from p to I correspond to atoms in D′ by another reason,
in particular, because ps requires both of its variables to be in S, and predicate S is not
mentioned in D0 and C. Second, the images of the S atoms of part pcf correspond to atoms
in D′ by the same reason, so only the CF atoms correspond to atoms in f(D0).

For the backward direction, assume that there exists a strict D0-suppressor f such that
the PPDP instance (D0, f, p) is safe with respect to C—that is, for every external dataset
D′, either D′ ∪ C |= p or f(D0) ∪ D′ ∪ C 6|= p. We need to show that φ′ be valid.

First, we claim that f anonymises all cγ and all dfalse
v . Indeed, if it is not the case for

such a constant c, then f(D0) contains the atom Anon(c), and we can construct an external
dataset D′ witnessing non-safety. In particular, if c is cγ for some γ, then D′ consists of all
the atoms of p except for Anon(z) with z replaced by c, all ybv

i by dfalse
v1 where v1 is the first

variable of v̄′, all ycv
i by cfalse

v1 , and all other variables by fresh constants. Also, if c is dfalse
v

for some v ∈ v̄′, then D′ consists of all the atoms of p except for Anon(ybv
1), . . . ,Anon(ybv

3)
with all ybv

i replaced by dfalse
v , all ycv

i by cfalse
v , and all other variables by fresh constants.

We also claim that f anonymises at least one of cfalse
s and ctrue

s for each s ∈ s̄′. Indeed,
if this is not the case and there is s with the atom SValues(cfalse

s , ctrue
s) in f(D0), then

(D0, f, p) is not safe, with a witnessing D′ consisting of atoms S(cfalse
s) and S(ctrue

s), as well
as all the atoms obtained from pcf by replacing all the variables by fresh nulls (same as in
the proof of Lemma 24).

So, we proved that f anonymises each cγ , each dfalse
v and at least one of each pair cfalse

s

and ctrue
s . Therefore, the cost bound ` allows to anonymise exactly one of cfalse

s and ctrue
s

for each s. So we can consider the assignment σ of s̄′ defined, for each s, as σ(s) = true if
cfalse
s is anonymised and σ(s) = false otherwise.

Finally, we argue that for any extension of σ to ū′ there exists a further extension to
v̄′ such that ψ′ evaluates to true under the overall assignment. The proof of this fact goes
along the same lines as the proof of the same fact in Lemma 24 with one minor modification:
the external dataset contains additionally atoms S(cfalse

s) and S(ctrue
s) for every s ∈ s̄′.

The following theorem summarises our results on the cost minimisation problems asso-
ciated to linkage safety, established in Lemmas 18–25.

Theorem 4. The following results hold:

1. Min-Safetyow and Min-Safetyow
s are both in Σp

3 and Σp
2-hard in combined com-

plexity, and NP-complete in data complexity; all lower bounds hold already for RDF
PPDP instances and Boolean policies, while the Min-Safetyow

s lower bounds hold
already if PPDP instances are additionally required to be ground; and

2. Min-Safety and Min-Safetys are both coNExpTime-complete in combined com-
plexity and Σp

3-complete in data complexity; all lower bounds hold already for RDF
PPDP instances and Boolean policies, the Min-Safetyow

s lower bounds hold already if
PPDP instances are additionally required to be ground, and the data complexity lower
bounds hold already if the closure CQs are additionally required to be existential-free.

305

Cuenca Grau & Kostylev

6. Related Work

The problem of preventing disclosure of sensitive data in information systems while ensuring
that the data remains maximally accessible to users has received significant attention in the
literature. Existing approaches can be roughly categorised as follows.

1. Perturbation models, where (typically numeric) data is modified by the introduction
of noise (e.g., in the form of a random variable with suitable properties). The aim is for
the data to remain useful for statistical analysis, rather than to preserve its integrity. This
includes, for instance, work on differential privacy (Chawla, Dwork, McSherry, Smith, &
Wee, 2005; Dwork, 2006, 2008; Dwork, Naor, Reingold, Rothblum, & Vadhan, 2009).

2. View-based models, where the data that is made accessible (or inaccessible) to users
is declaratively defined by means of views expressed in a logic-based language. In contrast
to anonymisation approaches, data in view-based models is not modified; instead, access to
it is controlled by means of a declaratively specified layer. These approaches have been so
far the main focus of research in the context of RDF and ontologies (Abel, De Coi, Henze,
Koesling, Krause, & Olmedilla, 2007; Bonatti & Sauro, 2013; Calvanese, De Giacomo,
Lenzerini, & Rosati, 2012; Cuenca Grau, Kharlamov, Kostylev, & Zheleznyakov, 2015;
Flouris, Fundulaki, Michou, & Antoniou, 2010; Kagal & Pato, 2010; Kirrane, Abdelrahman,
Mileo, & Decker, 2013; Benedikt, Cuenca Grau, & Kostylev, 2017; Benedikt, Bourhis, ten
Cate, & Puppis, 2016).

3. Anonymisation models, where some data is suppressed, by, for example, replacing
constants with generated identifiers, or generalised, by, for example, replacing a numeric
value with a value range, in a way that preserves data integrity. This includes work on
k-anonymity and related notions in databases (Samarati, 2001; Sweeney, 2002; Bayardo
& Agrawal, 2005; Machanavajjhala, Kifer, Gehrke, & Venkitasubramaniam, 2007), graph
anonymisation (Backstrom, Dwork, & Kleinberg, 2007; Hay, Miklau, Jensen, Towsley, &
Li, 2010; Liu & Terzi, 2008; Zhou & Pei, 2008), as well as our prior work on anonymisation
in linked data (Cuenca Grau & Kostylev, 2016).

We next discuss each of these approaches in more detail.

6.1 Perturbation Models

Differential privacy (Chawla et al., 2005; Dwork, 2006, 2008; Dwork et al., 2009) is a
prominent approach for publishing quantitative facts about a population in a way that the
personal details of each individual in the population remain protected.

To understand the kinds of scenarios in which differential privacy can be applied and
the guarantees provided, consider the case of a researcher who is running a survey and
asks a number of people to submit their answers anonymously. The researcher collects in
a dataset D the data from all participants, performs some analysis on the data, and finally
releases the results R of the analysis (not D itself in any form) to the public. The released
results R are typically conceptualised as the answers to a collection of aggregate queries;
for instance, if the study is about the prevalence of diabetes in the UK, the released results
R could include the number of people participating in the survey, the number of people
with diabetes by age group and gender, the number of overweight participants, and so
on. Differential privacy is a guarantee from the researcher to each individual who took the
survey; it ensures that the removal or addition of any individual to D will not “substantially”

306

Logical Foundations of Linked Data Anonymisation

(as per a parameter of the framework set by the researcher) change the released results R.
Thus, for each individual i, an attacker would not be able to reliably tell by looking at R
whether the results were obtained from D or from the dataset D′ in which the information
about i has been removed. Differential privacy thus hides the differences between datasets
that differ in one individual. It does not, however, provide absolute privacy guarantees,
and hence makes no assumption about the background knowledge an attacker may have;
for instance, regardless of whether Bob took the survey or not, the fact that he is over 60
and overweight would tell an attacker that he has higher chances than average of suffering
from diabetes. In practice, differential privacy is achieved by introducing noise in each of
the numeric quantities released in the results R. The amount of noise that is needed in
order to provide the guarantee is dependent on the parameters set by the researcher, as well
as on the data D and the queries generating the results. Differential privacy methods have
been mostly developed in the context of databases, and there has also been some interest
in extending them to Linked Data as well (Aron, 2013).

Differential privacy is a very useful approach in scenarios where the information released
to the public consists of results from a numerical analysis. There are situations, however,
where there is a need for publishing or exchanging actual data, and not just statistical infor-
mation. In such cases, view-based or anonymisation approaches are more readily applicable.

6.2 View-Based Models

Miklau and Suciu (2007) study the problem of whether a given set of views logically discloses
information about a secret, where both the views and the secret are expressed as conjunctive
queries. They introduce and study the perfect privacy guarantee, which requires that the
views and the secret do not have a common critical tuple—a notion that we also exploit in
our paper to obtain complexity lower bounds.3

Benedikt et al. (2016) consider the scenario in which the relations in a database are
partitioned into visible (where the contents are fully available to users) and hidden. A
background logical theory provides semantic information (e.g., integrity constraints) about
both types of relations. Analogously to our privacy model, sensitive information is specified
by means of a query, and the problem is to determine whether any answer to such query can
be logically derived from the contents of the visible relations and the background theory.

In the Controlled Query Evaluation (CQE) framework, the data is assumed to be hidden
and users interact with the system by means of a query interface. Analogously to our
anonymisation framework, as well as most view-based approaches, the sensitive information
is also represented as a policy query. A key component of the framework is the censor, which
ensures that answers to user queries that may compromise the policy are either distorted,
or not returned to users. CQE was introduced in the context of databases (Sicherman,
de Jonge, & van de Riet, 1983) and has received significant attention since (Biskup &
Bonatti, 2004; Biskup & Weibert, 2008; Bonatti, Kraus, & Subrahmanian, 1995). CQE
has also been recently extended to RDF and ontologies (Bonatti & Sauro, 2013; Cuenca
Grau et al., 2015; Studer & Werner, 2014). Censors can be realised in different ways, and
the possibility studied in the literature that is closest to our work is to consider censors
that construct an anonymisation of the underpinning data (Cuenca Grau et al., 2015).

3. We refer the reader back to Section 5 for additional details on the critical tuple problem.

307

Cuenca Grau & Kostylev

Furthermore, censors provide privacy guarantees comparable with our policy compliance
notion: a malicious user should not be able to find out any answer to the policy by posing
any number of queries to the system. The focus on CQE, however, is not on deciding
whether the privacy guarantee is satisfied, but rather on constructing censors that satisfy
it; hence, their technical results are incomparable to ours. Furthermore, although CQE
allows for the formalisation of external background knowledge, the CQE literature does not
consider guarantees akin to linkage safety.

A number of recent works focus on information disclosure in the context of ontology-
based data access (OBDA)—a popular approach to data integration where various data
sources are linked by means of declaratively specified mappings to an ontology, which pro-
vides both relevant domain background knowledge and the vocabulary for users to formulate
queries. In the context of OBDA, users do not have direct access to data sources, and can
only retrieve information by querying the ontology; thus, their knowledge about the data is
inherently incomplete. In our recent work (Benedikt et al., 2017; Benedikt, Cuenca Grau,
& Kostylev, 2018), we considered the setting where a conjunctive policy query over the
source schema is used to specify sensitive information, and a privacy breach occurs when-
ever there is an answer to the policy query that holds in all the possible instantiations of
the source schema compatible with the information visible to users. Similar settings are
considered by Nash and Deutsch (2007), where they require that not only positive, but
also negative information should not be disclosed, and by Chirkova and Yu (2017), where
they assume that mappings are restricted to conjunctive views, there is no ontology, and
the source schema comes equipped with a set of integrity constraints. Calvanese et al.
(2012) extend the database authorisation framework by Zhang and Mendelzon (Zhang &
Mendelzon, 2005) to the context of OBDA. In their framework, users are assigned a set
of conjunctive authorisation views and each user query is then answered by the system
using only the information that follows from the ontology and their respective views; in this
setting, sensitive information is not explicitly represented—answers to user queries that do
not follow from the ontology and the materialisation of the views over the data source are
assumed to be sensitive by default.

6.3 Anonymisation Models

We finally discuss anonymisation models, which are the closest to our work.
We start by discussing our results as an extension of our prior conference publication

(Cuenca Grau & Kostylev, 2016). The most significant addition is the study of the decision
problems associated to cost minimisation. These problems are relevant for practice since
the main goal of an anonymisation algorithm is to compute (rather than check) a most
informative anonymisation satisfying the required properties. Another significant addition
to our conference paper is the study of strict suppressors, which capture a very natural class
of anonymisations where all occurrences of the same constant are mapped to the same null.
In addition to considering new decision problems and types of suppressors, we also corrected
certain mistakes concerning the complexity of Safety (see discussion of Lemmas 16 and 17)
and strengthened a number of complexity bounds; in particular, several lower bounds are
now proved under additional requirements (for instance, the requirement that datasets are
ground, suppressors are strict, or closures are quantifier-free). We also generalised the

308

Logical Foundations of Linked Data Anonymisation

notions surrounding anonymisation with closed-world information. On the one hand, we
now allow for several closures as opposed to just a single one as in our conference paper;
this is a natural generalisation since the information considered to be complete is likely to
involve rather distinct parts of a published graph. On the other hand, data complexity of
the problems involving closures is also defined slightly differently: in the conference version
both the query q and the known answers Ans of the closure [q, Ans] were considered to
be fixed for data complexity analysis, while we now consider only the query to be fixed
(but not the answers); we believe that this is a more natural definition of data complexity
and does not change our results with the only exception that certain lower bounds can be
strengthened by considering only quantifier-free closures (e.g., see Lemma 4).

We now turn our attention to discussing k-anonymity: a popular technique for anonymis-
ing databases while providing protection against linkage attacks (Samarati & Sweeney, 1998;
Sweeney, 2002). The input to the k-anonymity approach is a relational table T; then, some
of the entries (i.e., positions) in T are replaced with unlabelled nulls so that each tuple
in the anonymised table has at least k − 1 corresponding tuples in T. In this setting, the
cost is given by the number of entries in T replaced by nulls, and the goal is to find a
k-anonymisation of minimal cost. The underpinning decision problem was shown NP-hard
for k ≥ 3 by Meyerson and Williams (2004) and tractable for k = 2 by Blocki and Williams
(2010). Practical algorithms were proposed by Bayardo and Agrawal (2005). k-Anonymity
has been generalised to handle multiple relations in a database (Nergiz, Clifton, & Nergiz,
2009), and to apply only to given sets of attributes in a relation (Wang & Fung, 2006).
Finally, k-anonymity has also been refined to take into account probabilistic bounds on the
attacker’s confidence on inferring a sensitive value (Machanavajjhala et al., 2007; Wang &
Fung, 2006; Wong, Li, Fu, & Wang, 2006). The direct application of k-anonymity to RDF,
where a graph corresponds to a single table with three attributes, is however of rather lim-
ited use in practice. For instance, the only 2-anonymisation of our example graph G0 in
Section 3 is the trivial one where all IRIs are replaced by fresh nulls. Consequently, our no-
tions of compliance and safety, which utilise named nulls, provide a much more fine-grained
control over the information to be anonymised than k-anonymity since both policies and
closed-world requirements can be described by CQs.

We conclude this section by mentioning that there has also been a considerable recent
interest in graph anonymisation techniques for social networks, where the goal is to ensure
privacy while preserving the global network properties for analysis. Backstrom et al. (2007),
however, showed that the graph’s structure can reveal individual identities, even if all node
identifiers have been anonymised. To address this problem, Hay et al. (2010) propose the
notion of k-candidate anonymity where the requirement is to modify the original anonymised
graph via edge additions or deletions until all nodes have the same degree of at least k − 1
other nodes. Similar notions were studied by Liu and Terzi (2008) and Zhou and Pei
(2008). Note, however, that the application of these techniques to publishing RDF graphs
is of limited use as they involve anonymising all node identifiers in a graph as a first step.

7. Conclusion and Future Work

We have proposed and studied reasoning problems designed to ensure that anonymised RDF
graphs can be published on the Semantic Web with provable privacy guarantees.

309

Cuenca Grau & Kostylev

The problem of RDF anonymisation remains rather unexplored and we see many avenues
for future work.

1. As mentioned in the relevant places throughout the paper, our complexity lower
bounds could be tightened in a number of ways. For instance, it would be interesting
to study whether our lower bounds for the cost minimisation problems associated to
policy compliance and linkage safety still hold if we additionally assume the closures
to be singleton, quantifier-free, or atomic.

2. Our current combined complexity bounds for the problems associated to linkage safety
under the open-world assumption are not tight. Closing the existing gaps may require
as a first step determining the precise complexity of the critical tuple problem in
databases—a very interesting and challenging problem for future work.

3. The adoption of the UNA has no influence on the proofs for all our open-world results
as well as all our results on policy compliance. However, all our lower and upper
bounds for Safety, Min-Safety, and Min-Safetys (i.e., Lemmas 12, 13, 16, 17,
18 (part 2), 23, 24, and 25) critically rely on the UNA; the precise complexity of these
problems in the case when the UNA is not adopted remains open.

4. Our framework does not yet capture OWL 2 ontologies, which are used in many appli-
cations to describe the meaning of RDF graphs. We anticipate that the introduction
of ontologies into the picture will lead to significant technical challenges, especially in
combination with closed-world information; an interesting starting point to address
these challenges is the recent work by Ngo, Ortiz, and Simkus (2016) and Seylan,
Franconi, and de Bruijn (2009).

5. Our decidability results open the door to the future design of practical anonymisation
algorithms. Although most of the problems we considered are intractable in both
combined and data complexity, anonymisation in data publishing often constitutes an
offline process that is only performed once for each data release.

Acknowledgements

This work was funded by the EPSRC projects DBOnto and ED3, as well as by the Royal
Society under a University Research Fellowship.

References

Abel, F., De Coi, J. L., Henze, N., Koesling, A., Krause, D., & Olmedilla, D. (2007). Enabling
advanced and context-dependent access control in RDF stores. In Proceedings of
the 6th International Semantic Web Conference and the 2nd Asian Semantic Web
Conference (ISWC/ASWC 2007), Vol. 4825 of Lecture Notes in Computer Science,
pp. 1–14. Springer.

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of databases. Addison-Wesley.
Ahmetaj, S., Ortiz, M., & Simkus, M. (2016). Polynomial Datalog rewritings for expressive

description logics with closed predicates. In Proceedings of the 25th International

310

Logical Foundations of Linked Data Anonymisation

Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 878–885. IJCAI/AAAI
Press.

Aron, Y. (2013). Information privacy for linked data. MSc Thesis.

Backstrom, L., Dwork, C., & Kleinberg, J. M. (2007). Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganography. In Pro-
ceedings of the 16th International Conference on World Wide Web (WWW 2007), pp.
181–190. ACM.

Bayardo, R. J., & Agrawal, R. (2005). Data privacy through optimal k-anonymization. In
Proceedings of the 21st International Conference on Data Engineering, (ICDE 2005),
pp. 217–228. IEEE Computer Society.

Benedikt, M., Bourhis, P., ten Cate, B., & Puppis, G. (2016). Querying visible and invisible
information. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2016), pp. 297–306.

Benedikt, M., Cuenca Grau, B., & Kostylev, E. V. (2017). Source information disclosure
in ontology-based data integration. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI 2017), pp. 1056–1062. AAAI Press.

Benedikt, M., Cuenca Grau, B., & Kostylev, E. V. (2018). Logical foundations of information
disclosure in ontology-based data integration. Artificial Intelligence Journal (AIJ),
262, 52–95.

Biskup, J., & Bonatti, P. (2004). Controlled query evaluation for enforcing confidentiality in
complete information systems. International Journal of Information Security (IJIS),
3 (1), 14–27.

Biskup, J., & Weibert, T. (2008). Keeping secrets in incomplete databases. International
Journal of Information Security (IJIS), 7 (3), 199–217.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS), 5 (3), 1–22.

Blocki, J., & Williams, R. (2010). Resolving the complexity of some data privacy problems.
In Proceedings of the 37th International Colloquium on Automata, Languages and
Programming (ICALP 2010), Part II, Vol. 6199 of Lecture Notes in Computer Science,
pp. 393–404. Springer.

Bonatti, P., Kraus, S., & Subrahmanian, V. S. (1995). Foundations of secure deductive
databases. IEEE Transactions on Data and Knowledge Engineering (TKDE), 7 (3),
406–422.

Bonatti, P. A., & Sauro, L. (2013). A confidentiality model for ontologies. In Proceedings of
the 12th International Semantic Web Conference (ISWC 2013), Vol. 8218 of Lecture
Notes in Computer Science, pp. 17–32. Springer.

Calvanese, D., De Giacomo, G., Lenzerini, M., & Rosati, R. (2012). View-based query
answering in description logics: Semantics and complexity. Journal of Computer and
System Sciences (JCSS), 78 (1), 26–46.

311

Cuenca Grau & Kostylev

Chawla, S., Dwork, C., McSherry, F., Smith, A. D., & Wee, H. (2005). Toward privacy in
public databases. In Proceedings of the 2nd Theory of Cryptography Conference (TCC
2005), Vol. 3378 of Lecture Notes in Computer Science, pp. 363–385. Springer.

Chirkova, R., & Yu, T. (2017). Exact detection of information leakage: Decidability and
complexity. LNCS Theory Large-Scale Data- and Knowledge-Centered Systems (T-
LSD-KCS), 32, 1–23.

Cuenca Grau, B., Kharlamov, E., Kostylev, E. V., & Zheleznyakov, D. (2015). Controlled
query evaluation for Datalog and OWL 2 profile ontologies. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 2883–2889.
AAAI Press.

Cuenca Grau, B., & Kostylev, E. V. (2016). Logical foundations of privacy-preserving
publishing of Linked Data. In Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI 2016), pp. 943–949. AAAI Press.

Dwork, C. (2006). Differential privacy. In Proceedings of the 33rd International Collo-
quium on Automata, Languages and Programming (ICALP 2006), Part II, Vol. 4052
of Lecture Notes in Computer Science, pp. 1–12. Springer.

Dwork, C. (2008). Differential privacy: A survey of results. In Proceedings of the 5th
International Conference Theory and Applications of Models of Computation (TAMC
2008), pp. 1–19.

Dwork, C., Naor, M., Reingold, O., Rothblum, G. N., & Vadhan, S. P. (2009). On the com-
plexity of differentially private data release: efficient algorithms and hardness results.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC
2009), pp. 381–390.

Flouris, G., Fundulaki, I., Michou, M., & Antoniou, G. (2010). Controlling access to RDF
graphs. In Proceedings of the 3rd Future Internet Symposium (FIS 2010), Vol. 6369
of Lecture Notes in Computer Science, pp. 107–117. Springer.

Fung, B. C. M., Wang, K., Chen, R., & Yu, P. S. (2010). Privacy-preserving data publishing:
A survey of recent developments. ACM Computing Surveys, 42 (4), 14:1–14:53.

Harris, S., & Seaborne, A. (2013). SPARQL 1.1 query language. W3C Recommendation.
Hay, M., Miklau, G., Jensen, D. D., Towsley, D. F., & Li, C. (2010). Resisting structural

re-identification in anonymized social networks. The International Journal on Very
Large Data Bases (VLDBJ), 19 (6), 797–823.

Hayes, P. (2004). RDF Semantics. W3C Recommendation.
Hogan, A., Arenas, M., Mallea, A., & Polleres, A. (2014). Everything you always wanted to

know about blank nodes. Web Semantics: Science, Services and Agents on the World
Wide Web (JWS), 27–28, 42–69.

Immerman, N. (1987). Expressibility as a complexity measure: results and directions. In Pro-
ceedings of the Second Annual Conference on Structure in Complexity Theory (CoCo
1987), pp. 797–823. IEEE Computer Society.

Kagal, L., & Pato, J. (2010). Preserving privacy based on semantic policy tools. IEEE
Security & Privacy, 8 (4), 25–30.

312

Logical Foundations of Linked Data Anonymisation

Kirrane, S., Abdelrahman, A., Mileo, A., & Decker, S. (2013). Secure manipulation of
Linked Data. In Proceedings of the 12th International Semantic Web Conference
(ISWC 2013), Part I, Vol. 8218 of Lecture Notes in Computer Science, pp. 248–263.
Springer.

Kostylev, E. V., & Suciu, D. (2018). A note on the hardness of the critical tuple problem.
arXiv:1804.00443 [cs.DB].

Lewis, J. M., & Yannakakis, M. (1980). The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences (JCSS), 20 (2), 219–230.

Liu, K., & Terzi, E. (2008). Towards identity anonymization on graphs. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD
2008), pp. 93–106. ACM.

Lutz, C., Seylan, I., & Wolter, F. (2015). Ontology-mediated queries with closed predicates.
In Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI 2015), pp. 3120–3126. AAAI Press.

Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). L-diversity:
Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1 (1).

Manola, F., & Miller, E. (2004). RDF Primer. W3C Recommendation.

Meyerson, A., & Williams, R. (2004). On the complexity of optimal k-anonymity. In
Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS 2004), pp. 223–228. ACM.

Miklau, G., & Suciu, D. (2007). A formal analysis of information disclosure in data exchange.
Journal of Computer and System Sciences (JCSS), 73 (3), 507–534.

Nash, A., & Deutsch, A. (2007). Privacy in GLAV information integration. In Proceedings
of the 11th International Conference on Database Theory (ICDT 2007), pp. 89–103.

Nergiz, M. E., Clifton, C., & Nergiz, A. E. (2009). Multirelational k-anonymity. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 21 (8), 1104–1117.

Ngo, N., Ortiz, M., & Simkus, M. (2016). Closed predicates in description logics: Results on
combined complexity. In Proceedings of the 15th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2016), pp. 237–246. AAAI
Press.

Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.

Reiter, R. (1992). What should a database know?. The Journal of Logic Programming
(JLP), 14 (1–2), 127–153.

Samarati, P. (2001). Protecting respondents’ identities in microdata release. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), 13 (6), 1010–1027.

Samarati, P., & Sweeney, L. (1998). Generalizing data to provide anonymity when disclosing
information (abstract). In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS 1998), p. 188. ACM.

313

Cuenca Grau & Kostylev

Seylan, I., Franconi, E., & de Bruijn, J. (2009). Effective query rewriting with ontologies
over DBoxes. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI 2009), pp. 923–929.

Sicherman, G. L., de Jonge, W., & van de Riet, R. P. (1983). Answering queries without
revealing secrets. ACM Transactions on Database Systems (TODS), 8 (1), 41–59.

Studer, T., & Werner, J. (2014). Censors for Boolean description logic. Transactions on
Data Privacy (TDP), 7 (3), 223–252.

Sweeney, L. (2002). k-Anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10 (5), 557–570.

Wang, K., & Fung, B. C. M. (2006). Anonymizing sequential releases. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2006), pp. 414–423. ACM.

Wong, R. C., Li, J., Fu, A. W., & Wang, K. (2006). (α, k)-Anonymity: an enhanced k-
anonymity model for privacy preserving data publishing. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2006), pp. 754–759. ACM.

Yannakakis, M. (1978). Node- and edge-deletion NP-complete problems. In Proceedings
of the 10th Annual ACM Symposium on Theory of Computing (STOC 1978), pp.
253–264.

Zhang, Z., & Mendelzon, A. O. (2005). Authorization views and conditional query con-
tainment. In Proceedings of the 10th International Conference on Database Theory
(ICDT 2005), pp. 259–273.

Zhou, B., & Pei, J. (2008). Preserving privacy in social networks against neighborhood
attacks. In Proceedings of the 24th International Conference on Data Engineering
(ICDE 2008), pp. 506–515.

314

