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Abstract

Recent research on dense captioning based on the recurrent neural network and the convolu-
tional neural network has made a great progress. However, mapping from an image feature space
to a description space is a nonlinear and multimodel task, which makes it difficult for the current
methods to get accurate results. In this paper, we put forward a novel approach for dense captioning
based on hourglass-structured residual learning. Discriminant feature maps are obtained by incor-
porating dense connected networks and residual learning in our model. Finally, the performance
of the approach on the Visual Genome V1.0 dataset and the region labelled MS-COCO (Microsoft
Common Objects in Context) dataset are demonstrated. The experimental results have shown that
our approach outperforms most current methods.

1. Introduction

Image captioning is a task of automatically generating a sentence to describe an image, while dense
captioning replaces a constant number of object categories with a broader set of visual concepts by
using phrases to describe object(s) in an image, which is foundational to many important applica-
tions, like semantic image search, visual intelligence in chatting robots, photo and video sharing on
social media, and aid for people perceiving the world around them. Recently, dense captioning has
received much interests from the research community.

Previous approaches predict region captions from image feature maps by combining the Convo-
lution Neural Network (CNN) (LeCun, Bottou, Bengio, & Haffner, 1998) and the Recurrent Neural
Network (RNN) (Werbos, 1988). However, the performance is difficult to improve because of some
bottlenecks including: 1) object detection is still an open issue in computer vision; 2) mapping from
an image feature space to a description space is nonlinear and multimodel. Deep networks have
the potential to learn the nonlinear mapping well, but they are hindered by the vanishing/exploding
gradients problems (He, Zhang, Ren, & Sun, 2016a).

Recently, the residual learning network (He et al., 2016a) and its extensions have shown com-
petitive capability in nonlinear and multimodel classification because they alleviate the vanishing
gradients by adding shortcut layers (residual layers), which strengthen the gradient to propagate
through a network with considerable depth.

However, despite the exploration of residual learning in classification, there have been few work-
s to introduce residual learning into sequential prediction tasks such as dense captioning. In this pa-
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per, we focus on finding the optimal way to combine residual learning and recurrent neural networks
in the sequential prediction task.

We propose a new method based upon hourglass-structured (Newell, Yang, & Deng, 2016)
residual learning for dense captioning. First, multi-scale feature maps are obtained by an hourglass
network, then extra fully connected layers are employed to obtain a fixed dimension feature, and
lastly time-series word prediction is made by residual long-short-term memory (residual LSTM).
The novelty of this paper is illustrated by the following.

e A new dense captioning approach is proposed that captures multi-scale object information by
using an hourglass network. Dense connected networks are introduced into residual learning
to increase network capacity, and discriminant feature maps are obtained by using residual
learning.

e A new residual LSTM is proposed to decrease the vanishing/exploding gradients.

e The experimental results indicate that our approach is competitive when compared to some
state-of-the-art approaches regarding dense captioning.

2. Related Work

In this section, we briefly review the work on image captioning and analysis the advantage and
drawback of each approach, and then introduce the development of the deep residual learning.

2.1 Image Captioning

At present, the image captioning approaches are divided into the following categories.
Search-based Approaches. Search-based approaches refer to extracting the image feature and
comparing it with all the image features in the dataset to select the most semantically similar sen-
tences. The similarities between the sentence and the image are evaluated by utilizing an inter-
mediate space in terms of the interaction between the scene and the object (Farhadi et al., 2010),
where the sentences corresponding to the image features with high visual similarities were chosen
as the generated sentences for the test image. An approach searches images in a dataset by utilizing
the combination of the object, human, and background information, and associating the related sen-
tences to the query image (Ordonez, Kulkarni, & Berg, 2011). An alignment model that aligned two
modalities (i.e., the feature space and word space) through a multimodal embedding, and then, each
word was independently predicted by a matching method (Karpathy & Li, 2015). Many annotation
sentences are required in these approaches, which costs abundant human resources and makes it
hard to scale up the sentence set. Besides, these approaches cannot create novel descriptions.
Sequence Learning-based Approaches. Sequence learning-based approaches are inspired by
the success of sequence-to-sequence encoder-decoder frameworks in machine translation. Motivat-
ed by the human visual system, an attention model (Xu et al., 2015) was introduced into image
captioning, which allowed for salient features to dynamically come to the forefront whenever need-
ed. Later, this work was extended and an adaptive attention model with a visual sentinel (Lu, Xiong,
Parikh, & Socher, 2017) was proposed that could decide whether to attend to the image or to the
visual sentinel at each time step. While the attention model was becoming popular, it was found that
attributes play a key role in image captioning. Therefore, the top-down and bottom-up approach-
es were combined with a semantic attention model (Xu et al., 2015). Later, high-level semantic

182



MULTI-SCALE HIERARCHICAL RESIDUAL NETWORK FOR DENSE CAPTIONING

information was extended and an image captioning framework LSTM-A (long-short-term memory
with attributes) was presented by training it under an end-to-end manner (Yao, Pan, Li, Qiu, & Mei,
2017).

Template-based Approaches. Although sequence learning-based approaches can achieve en-
couraging accuracy in image captioning, they often omit details in the image, which can be solved
in template-based approaches. Template-based approaches involve objects in the image first being
detected, and then a language model is combined to provide a proper image description. Multiple
instance learning based detectors and the maximum-entropy language model were used (Fang et al.,
2015), and global semantics were captured by re-ranking caption candidates. To address the descrip-
tion and the detection issues together, fully convolutional localization network (FCLN) (Johnson,
Karpathy, & Li, 2016) was developed to deal with the dense captioning task. Then, joint inference
and context fusion were corporated to realize the accurate detection of each visual concept (Yang,
Tang, Yang, & Li, 2017). All these approaches have considered the development in object detection,
but the hard samples still cannot be detected. As a result, the multimodel mapping from the image
space to the captioning space was not well modeled due to the hard sample scarcity.

2.2 Deep Residual Learning

When deeper networks started to converge, a degradation problem would arise: accuracy became
saturated (which is unsurprising) and then degraded rapidly as the depth of network increasing.

Deep residual learning (He et al., 2016a) was introduced to address the degradation problem.
They explicitly let each few stacked layers fit a residual map rather than a desired underlying map.
Experiments showed that it is easier to optimize residual networks, and the accuracy could be gained
due to a considerably increased depth.

Later, this work was extended and identity mappings was used as the after-addition activation
and the skip connection so that one unit is able to propagate signal to any other unit directly in both
the forward and the backward path (He, Zhang, Ren, & Sun, 2016b).

However, it was argued that training a very deep residual network had a problem of diminishing
feature reuse (Zagoruyko & Komodakis, 2016), which made it very slow to train these networks
that have either only a few blocks are able to learn valuable representations or most blocks sharing
very little information with a limited contribution to the result. Hence, they increased the width
and decreased the depth of residual networks, thus making network structures with wide residual
networks (WRNs).

The optimization ability of residual networks was mined and RoR (residual networks of residual
networks) was proposed (Zhang et al., 2017). RoR promoted learning capability of the residual
network by adding level-wise shortcut paths to the original residual networks.

Recently, an hourglass-structured residual learning network was employed in object detec-
tion (Fu, Liu, Ranga, Tyagi, & Berg, 2017) and human pose estimation (Newell et al., 2016), but
there was little evidence indicating that residual learning could be utilized on sequence prediction
issues, such as dense captioning. Therefore, we proposed a new approach based on hourglass-
structured residual learning for dense captioning during which both the CNN and RNN were ex-
plored to obtain accurate object descriptions.
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3. Model Architecture

The design of our architecture is inspired by the need to capture multi-scale object information
and then to describe each object by using natural language. Our architecture draws on the the
developments in recent work on residual learning networks, object detection, and image captioning.

The framework is shown in Fig. 1. It is based on the hourglass model and starts with a 7 x 7
convolution layer Conv1 with stride 2 before a residual block and a max pooling layer brings the
resolution down to 4 x 4 smaller than the input image. Subsequent residual blocks are utilized
to acquire the discriminant feature, and an hourglass module is employed to analyze proposals in
different receptive fields.

Hourglass
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Figure 1: Illustration of the Framework. The numbers between volumes are the size of the tensor.
K is the number of proposals that are obtained from an hourglass network, D is the
hidden unit dimension, C' is the object class number (including the background), and B
objects with the highest confidence scores are selected and fed into LSTMs.

A convolution layer Conv2 is added before the region-of-interest (ROI) pooling which brings
three advantages: 1) the number of feature channels is considerably reduced (from 512 to 64); 2)
the sliding window classifier becomes simpler; 3) the modification of the kernel size in conv2 is
reduced from 3 x 3 to 1 x 1 in order to restrict the receptive field of the convolution layer.

Information integration and cross-channel interaction are realized by adding two additional fully
connected layers FC1 and FC2. Then, the region feature is used to generate detection scores and
bounding box offsets by using 1 x 1 convolution layers Conv3 and Conv4.

The objects with the highest confidence scores are selected, and their region feature maps are
concatenated and fed into LSTMs to generate region descriptions. Each LSTM unit predicts a word
and this prediction is used as the input to the next LSTM unit. The first LSTM unit receives the
object region feature maps as the input and produces the first word prediction.

3.1 Detection Model

In this part, we introduce the detection model in the block level and the hourglass structure.

3.1.1 BLOCK STRUCTURE

The original structure of a residual block is shown in Fig. 2(a). The basic convolution layer has 3 x 3
filters because a sequence of small convolution layers can replace a large convolution layer, and the
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order of residual blocks is Conv-BN-ReLLU (Convolution - Batch Normalization - Rectified Linear
Units). Another 1 x 1 convolution layer is added as a projection short-cut to match dimensions. C'
is an output dimension.

The original residual block has too many parameters (i.e. weights and biases) to be tuned. We
propose a carefully crafted architecture that allows the increasing of the depth and width of the
network while keeping the computational budget constant.

Firstly, inspired by ResNeXt (Xie, Girshick, Dollr, Tu, & He, 2017), we revise the original
residual block by combining an inception model (Szegedy et al., 2015) which achieves compelling
accuracy while keeping low theoretical complexity. The input is split into several lower-dimensional
space (by convolutions), processed by a set of specialized filters, and merged by concatenation in-
stead of summing up all the branches which is employed in ResNeXt. The split-transform-merge
structure is expected to be close to the representational power of large and dense block while keeping
a lower computational complexity. This new block is named as the aggregated residual block (AR-
B), which is shown in Fig. 2(b). The order of the convolutional layer is BN-ReLLU-Conv (Batch Nor-
malization - Rectified Linear Units - Convolution). There are two contributions of pre-activation.
First, the optimization is further eased (compared with the baseline ResNeXt) since the activation
function after the concatenation is an identity mapping, and the signal can propagate directly from
one unit to another. Second, using the Batch Normalization layer as pre-activation contributes to
the regularization of the models. Although the Batch Normalization layer normalizes the signal in
the original residual unit, it is soon merged to the shortcut; therefore the combined signal is not nor-
malized. Then the unnormalized signal becomes the input of the next weight layer. In contrast, in
our pre-activation version, we normalize the inputs to all weight layers. The final 1 x 1 convolution
layer is also used as a projection short-cut.

BN+ BN+ DD
B "

L

IxIxC

s

1x1x64 3x3x64 1x1xC 1IxIxC 1x1x4 3x3x4 IxIxC

(a) The framework of residual block (b) The framework of aggregated residual block (¢) The frami rk of dense aggregated residual block

Figure 2: Architecture of the residual block and its extensions. (a) refers to the original residual
block, and (b) the aggregated residual block, and (c) the dense connected aggregated
residual block.)

Now that a shortcut in the network makes sense in dealing with the vanishing gradients, short-
cuts are added between unconnected layers, which is similar to DenseNets (Huang, Liu, van der
Maaten, & Weinberger, 2017). This revision alleviates the vanishing gradients, strengthens feature
propagation, encourages reusage of features, and considerably reduces the number of parameters, to
name a few. This new block is named as the dense connected aggregated residual block (DCARB),
which is shown in Fig. 2(c). The feature maps of all preceding layers are used as inputs for the last
convolutional layer in each branch, and the outputs of that are concatenated as the input into the
subsequent layer. However, this block is different from DenseNets, where a fixed dimension output
is necessary for the hourglass structure being constructed. Therefore, another 1 x 1 convolution
layer is also employed as a projection shortcut.
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3.1.2 HOURGLASS STRUCTURE

The hourglass structure in our framework is illustrated in Fig. 3 which is set up as below. Con-
volution layers with stride 2 are employed to transform features down to a lower resolution. At
each down-sampling step, the network is divided into two parts and applies another DCARB at the
original scale. After reaching the lowest scale, the network begins the processes of up-sampling
and the combination of features across different resolutions. The up-sampling of the lower resolu-
tion is performed before an element-wise addition of the two sets of features, and the feature maps
are outputted to obtain multi-scale proposals. The structure of the hourglass network is symmet-
ric. Therefore, for each layer of decreasing resolution, there is a corresponding layer of increasing
resolution.
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Figure 3: Architecture of the hourglass structure.

We make r the up-scaling ratio. In general, both the input feature maps and the output feature
maps can have C' channels; thus, they are represented as real-valued tensors of size H x W x C'
and rH x rW x C, respectively.

The deconvolution layer (Zeiler, Taylor, & Fergus, 2011) multiplies each input pixel with a stride
r filter, and accumulates the output windows. Nevertheless, reduction (summing) after convolution
is computationally expensive. Hence, we substitute the deconvolution layer in the origin hourglass
with the sub-pixel convolution layer (Shi et al., 2016) to improve efficiency. The shuffle operation
is used in both ShuffleNet (Zhang, Zhou, Lin, & Sun, 2018) and our approach. The channel shuffle
is employed to solve the side effects in ShuffleNet, while sub-pixeled convolution with 4 upscaling
filters for each feature map is used to implement a fast deconvolution in our approach. The kernels
are convolved with the input directly, and then low resolution feature maps X with r? channels are
obtained with periodic shuffling to recreate a high one Y.

Y =PS(W,*X+by), ey

where the convolution weights are Wy, and thus, it has the shape n;_; x r2C x kr, x kr. PS
is the simple periodic shuffling that rearranges the elements of a tensor of shape H x W x Cr?
to shape rH x rW x (. Periodic shuffling, as a type of a bit operation, can be implemented with
extremely high efficiency, which makes this approach faster than up-pooling and deconvolution.

3.2 RNN Prediction Model

In this section, an approach to generate descriptions from region feature maps by directly maximiz-
ing the probability of the correct translation in an end-to-end fashion is proposed. Given that region
feature maps are extracted from an image, the RNN transforms the variable length input into a fixed
dimensional vector and utilizes this representation to decode it to a desired output sentence.

The probability of the correct description is maximized as below:
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0 = argmax » logp(S|I;0), 2

gz IZS: gp(S|1:6) )

where 6 is a parameter in our model, [ is the region feature maps extracted from an frame, and

S is the correct transcription. The length of .S is unbounded for the reason that it can represent

any sentence. Thus, usually, the chain rule is applied in order to model the joint probability over
S0, ---, SN, where N is the length of the examples as

N
logp(S|1;:0) = "logp(SelI, So, ..., Si-1,0), 3)
t=0
where (.S, I) represents a pair of training example during training. We optimize the sum of
the log probabilities mentioned in Eq. (3) over the whole training set by using stochastic gradient
descent (SGD).
It is natural to use RNN to model p(S;|1, Sp, ..., St—1, ), where the variable number of words
dependent on up to ¢t — 1 is expressed by a fixed length hidden state h;.
After receiving a new input x, this memory is updated through a non-linear function f:

hey1 = f(he, ze), “4)

For f, we use an LSTM network incorporating memory units that allow for the network to
learn when to update hidden states and when to forget previous hidden states, which has shown
considerable effectiveness on temporal prediction tasks.

The LSTM memory is created and copied for the image region feature maps and each sentence
word, so that all LSTMs share a same set of parameters and the hidden variable h;_; of the LSTM
at time ¢t — 1 is transferred to the LSTM at time ¢:

r—y = 1, &)
r, = WeS;, te{0,..,N—1} (6)
py1 = LSTM(x), te€{0,..,N—1} (7)

where each word is represent by a one-hot vector .S; with its dimension equal to the size of the
dictionary. Notice that we use Sy for a the start word and Sy for the stop word, which represents
the beginning and the end of the sentence, respectively. The words are mapped to the space of the
region feature maps by utilizing the word embedding matrix W,. The region feature maps I are
used at £ = —1 only in order to tell the LSTM about the image information.

In the inference stage, we just sample the first word according to p;, then provide the corre-
sponding embedding as the input and sample p2. We continue this approach until we reach some
maximum length or the special end-of-sentence token.

3.2.1 RESIDUAL LSTM

Training a deep recurrent neural network is difficult because of gradients vanishing gradients, but the
residual network is successfully in training more than 100 convolution layers for image classification
and detection. The principle insight of the residual network is to offer an extra path of gradient by
adding a shortcut path between layers.
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The initial design of the residual LSTM, called ResLSTM block (Zhang, Chan, & Jaitly, 2017),
is to simply insert an input path to the LSTM output without scaling. However, as the number
of layers increases, highway paths keep accumulating, which results in a significant performance
loss. Without a proper scaling method, the variance of the residual LSTM output would continue to
increase.

In this section, we put forward a novel approach for a residual LSTM. Our residual LSTM is
inspired by the fact that the separation of the temporal-domain cell update with the spatial-domain
shortcut path could provide more flexibility to address the vanishing/exploding gradients. Different
from the highway LSTM (Zhang et al., 2016), our residual LSTM does not gather a highway path
on the internal memory cell ¢;. Instead, we add a shortcut path to the LSTM output layer h; to make
more shortcut gradients address the vanishing/exploding gradients.

output
gate
< | () cu
hes \_/ 7 )
input
modulation
gate
forget
gate
shortcut
g

Figure 4: Architecture of LSTM and Residual LSTM. LSTM has no shortcut, while Residual LST-
M has a shortcut.

Fig. 4 describes a structure of a residual LSTM layer. Our residual LSTM has a shortcut path
from input z; (or hidden in the last time step h;_1) to a projection output h;. In this paper, we use a
preceding output layer as the shortcut path, although it can be any lower output layer. Equation for
residual LSTM is updated as follows:

hy = o1 © [p(cr) + Wz, (3)

where W, is a projection matrix to scale the LSTM output.

Instead of an internal memory cell, we use an output layer for the spatial shortcut path of our
residual LSTM network, which can be less interfered with the temporal gradient flow. Each output
layer at the residual LSTM network learns residual mapping that is not learnable from a highway
path. As a result, there is no need for each new layer to waste time or resources to generate outputs
which is similar to the output of prior layers. The LSTM projection matrix is reused by our residual
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LSTM as a gate network. For a normal LSTM network size, we can save more than 10% of the
learnable parameters from a residual LSTM over a highway LSTM.

3.3 Loss Function

Our dense captioning network can be trained by minimizing the belowing loss function:

L= Ldet + aLbbox + /BLcapv (9)

where Lget, Lypor, and L,y represent the detection loss, bounding box localization loss, and
caption prediction loss, respectively; o and § are the influence factors chosen by parameter tuning;
Ly is the cross-entropy loss for object classification; Ly, is a regularized loss (Tian, Wang, &
Wang, 2017); and L., is a cross-entropy term for the word prediction at each time step of the
sequential model.

There is little knowledge about how to find the optimal results of these influence factors. There-
fore, we tune these parameters using training data with engineering experience. We only fix other
parameters and modify the influence factors. Each time, we change one of the influencing factors
and evaluate whether the loss in Eq. (9) is decreased. If the loss is decreased, we will fix this new pa-
rameter value, and vice versa. Although this method is biased, we find its performance is satisfying
in our approach, and we set « = 0.1 and 8 = 0.05 during experiments.

4. Results

In this section, we compare the efficiency and the performance of the proposed approach with others.

4.1 Hardware and Software Environment

We conduct experiments on a workstation with an Intel i7-4790 3.6 GHz CPU, 32GB memory, and
an NVIDIA GTX Titan X graphics. We build our algorithm upon Torch 7 (Collobert, Kavukcuoglu,
& Farabet, 2011) to test the performance and computational efficiency.

4.2 Implementation Details

In the training stage, we adjust the hyperparameters according to the cross-validation on the Visual
Genome dataset. The min-batch size is 1, and each input image is first resized to a longer side of
720 pixels. We initialize Conv1 and Blocks 1-4 with weights that are pretrained on ImageNet (Deng
et al., 2009) and all other weights from a Gaussian with a standard deviation of 0.01. Stochastic
gradient descent is used. We set the momentum to 0.9, and the initial rate to 0.001 which is halved
every 100k iterations. Weight decay is not employed in training. Fully connected layers (FC1 and
FC2) have rectified linear units and are regularized with Dropout. This produces a code of dimension
4096 that encode its visual appearance compactly for each region. We only utilize descriptions with
less than 10 words for efficiency and 10000 words with the highest frequency as the vocabulary. We
replace other words with a default tag. An LSTM with 256 hidden nodes is employed for sequential
modeling.

In the validation stage, we get B = 300 region proposals with the highest predicted confidences,
and the NMS (non-maximum suppression) is employed.
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4.3 Datasets

We verified our proposed approach on the Visual Genome dataset(Krishna et al., 2017) and partial
Microsoft Common Objects in Context (MS-COCO) dataset (Lin et al., 2014). Visual Genome has
three versions: V1.0, V1.2 and V1.4. For the purpose of comparison, our experiments are mainly
based on the Visual Genome V1.0 dataset. We use 77398 images for training and 5000 images for
validation and testing which is same to the train/val/test splits in (Johnson et al., 2016). MS-COCO
is the largest dataset regarding image captioning, with 82,783 images for training, 40,504 images
for validation and 40,775 images for testing. MS-COCO is a challenging dataset because most of
its images contain multi-objects under complex scenes. To evaluate the dense captioning task, part
of the MS-COCO dataset is labeled by the third party (Krishna et al., 2017) for obtaining the rich
local region annotations.

4.4 Evaluation Criterion

The mAP (mean average precision) is employed as the evaluation criterion to measure the descrip-
tion and detection accuracy jointly. We compute the average precision for different intersection
over union (IoU) thresholds (.3, .4, .5, .6, and .7) for detection accuracy, and different Meteor (Yao
et al., 2017) score thresholds (0, .05, .1, .15, .2, and .25) for language similarity. Meteor is adopted
because this metric is thought to be the most highly closed to human judgements in settings with a
small amount of references.

4.5 Ablation Study

We conduct extensive ablation experiments and demonstrate the effects of several important com-
ponents in our framework. All experiments in this subsection are performed on the Visual Genome
V1.0 dataset.

Detection plays a key role in dense captioning. We compare our approach to residual block
and ResNeXt to assess the effectiveness of the image feature extraction model, which is illustrated
in Table 1. For a fair comparison, all the approaches use a detection confidence threshold of 0.6.
According to the statistical results, the ARB has a weak performance improvement when compared
to the ResNeXt because the only difference between them is the manner of merger, and the DCARB
improves the detection accuracy in terms of mAP by approximately 1.0, and the detected hard
sample further improve the description by a margin of approximately 0.5.

Table 1: Experimental results of the feature extraction on the Visual Genome V1.0 dataset.

Approach Language Detection
(Meteor) (mAP)
Residual Block (He et al., 2016a) 29.81 £0.03 7.25 £0.02
ResNeXt (Xie et al., 2017) 30.24 + 0.04 8.03 + 0.04
ARB 30.23 +0.03 8.17 £ 0.02
DCARB 30.77 + 0.05 9.13 £0.04

Hourglass-structured network can be stacked, and we then consider the question that how many
hourglass-structured network should be used to find the optimal result in the dense captioning? The
stack number should balance the effectiveness and the efficiency. The detection accuracy can be
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improved as the stack number increases, which can be seen in Table 2. However, the performance
improvement is limited when the stack number is greater than 1, while the computational complexity
continues to increase according to the stack number. Therefore, in the next experiments, the stack
number is fixed to 1 to obtain the satisfactory performance without unnecessary computational load.

Table 2: Detection performance of the stacked hourglass on the Visual Genome V1.0 dataset. The
results are measured by mAP.

Stack Number 0 1 2 3
Stacked Hourglass 6.81 9.13 9.15 9.16

We then evaluate the effectiveness of the captioning prediction model. The accuracy comparison
can be seen in Table 3. The detection accuracy is not affected because the detection part is a
preceding module, and Residual LSTM improves the description accuracy by approximately 0.7
when compared to the corresponding ResLSTM approach.

Table 3: Experimental results of the captioning prediction on the Visual Genome V1.0 dataset.

Approach Language Detection
(Meteor) (mAP)
LSTM 29.35 £0.05 9.13 £0.04

Highway LSTM(Zhang, Chen, Yu, | 29.83 £ 0.06 9.13 £0.04
Yaco, Khudanpur, & Glass, 2016)
ResLSTM (Zhang et al., 2017) 30.04 + 0.05 9.13 + 0.04
Residual LSTM 30.77 £+ 0.06 9.13 £0.04

4.6 Experimental Results on the Visual Genome Dataset

Fig. 5 shows some example predictions of bounding boxes and captions on the Visual Genome V1.0
dataset. We represent the top few most possible predictions. Our model gives abundant snippet
descriptions of regions and precisely grounds the captions in the images. In addition, our model can
not only detect and localize the whole body but also provide partial information, such as the nose
of a zebra, the window of a car, the leg of a human, and so on. The partial information may provide
attributes or geometric knowledge for details in image captioning.

Table 4 depicts the evaluation results in the Visual Genome V1.0 dataset. We compare our
approach with other state-of-the-art dense captioning methods, such as the full-image RNN, fully
convolutional localization network (FCLN), and T-LSTM. The full-image RNN model is trained
using full images and captions. For comparison purposes, in the FCLN approach, different region
proposal methods, such as the EdgeBoxes (EB) (Zitnick & Dollar, 2014), and the Region Proposal
Network (RPN) (Ren, He, Girshick, & Sun, 2015), are employed to extract 300 boxes for each
image during test. T-LSTM incorporates the joint inference and context fusion in order to realize
the accurate detection of each visual concept.

The template-based dense captioning approaches trained on the same images can obtain similar
results. Our residual LSTM can improve the language accuracy by almost 1.0% because it is less
interfered with a temporal gradient flow.
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Figure 5: Example captions generated and localized by our model on the test images in the Visual
Genome V1.0 dataset. We render the top few most confident predictions.

From Table 4, we can see that the proposed approach influences the final performance. For
example, the performance is improved by 0.15% when using the RPN network than EB regions.
The T-LSTM joint infers the object detection and the description, which greatly improves the object
detection accuracy, and a ROI pooling is utilized to obtain the global information to help the dense
captioning. With these two modifications, the T-LSTM obtains a mAP of 9.31 which is the best
performance in the Visual Genome V1.0 dataset. We introduce the residual learning and dense
connected networks into the object detection and the dense captioning. The experiments show that
when compared with the FCLN approach, our approach can improve the performance with a margin
of 4.55% if the dense connected network (DCARB) is employed in detection.

In efficiency comparisons, FCLN is the fastest which uses about 240 milli-seconds to process
a frame and utilizes the VGG16 (Simonyan & Zisserman, 2014) network with only 16 layers to
detect and localize objects. The T-LSTM is the most effective, which costs approximately 450
milli-seconds to process a frame because it has to rectify object location using caption information.
Our approach updates the basic block and costs approximately 334 milli-seconds to process a frame,
which has a comparable efficiency compared with the FCLN.
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Table 4: Dense captioning evaluation on the Visual Genome V1.0 dataset. The results of all ap-
proaches are obtained from the original papers.

Approach Language Performance | Runtime
(Meteor) (AP) (ms)

Full Image RNN (Karpathy & Li, 2015) | 19.70 4.27 3170

FCLN on EB (Johnson et al., 2016) 26.40 5.24 360

FCLN on RPN (Johnson et al., 2016) 27.30 5.39 240

T-LSTM (Yang et al., 2017) 29.80 9.31 450

Our 30.77 9.94 334

4.7 Experimental Results on the MS-COCO Region Captions Dataset

The origin MS-COCO dataset does not contain region captions. Luckily, the Visual Genome dataset
has images taken from the intersection of the MS-COCO and YFCC100M datasets (Thomee et al.,
2016). Therefore, we make a comparison of the language and object detection results with those of
other state-of-the-art dense captioning methods in these MS-COCO frames with region annotations.
We apply the model trained in the Visual Genome dataset to test frames in the MS-COCO Region
Captions dataset. To compare with other approaches, parameters in our approach are set according
to descriptions in other approach (Karpathy & Li, 2015). In the evaluation, K = 300 boxes are
generated after Rol pooling , and B boxes are generated with the highest predicted confidence after
non-maximum suppression (NMS). Then, the corresponding region features are fed into the residual
LSTM network. We apply a beam-1 search to generate region descriptions efficiently, where the
word with the highest probability is chose at each time step.

Table 5 depicts the evaluation results on the MS-COCO Region Captions dataset. We compare
our approach with other state-of-the-art dense captioning approaches, like the full-image RNN,
Region RNN, and FCLN.

Table 5: Language and Object detection Results in the MS-COCO dataset.

Approach Language Object Detection (mAP)
Meteor IoU@0.1 IoU@0.3 IoU@0.5
EB+ImgRNN(Karpathy & Li, 2015) | 23.3+0.03 | 384 +£0.04 156 £0.03 5.3 £0.02
Region RNN (Karpathy & Li, 2015) | 23.44+0.04 | 46.0 £ 0.05 27.3+£0.03 10.8£0.02
FCLN (Johnson et al., 2016) 23.6£0.03 | 56.0£0.04 345+£0.04 153+0.03
Our 249+0.02 | 60.6 £0.05 384 +0.04 18.0+0.03

"ImgRNN’ obtains language accuracy with a mAP of 23.3, and "region RNN’ and ’FCLN’ have
tiny effects on the language accuracy improvement, only increasing the mAP by 0.1% and 0.3%,
respectively. Our residual LSTM can improve the language accuracy by 1.3% on account of the
discriminant representation in the LSTM block.

Region RNN uses local feature maps as objects’ contextual information to infer the objects’
locations, while full-image RNN uses global information. Therefore, region RNN obtains a better
result than full-image RNN. The FCLN develops a feature extraction network (VGG16 network),
removes the ROI pooing layer and localizes the object with a fully convolution network. Hence, it
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obtains even better accuracy. Assuming that the transformation from image feature spaces to object
location parameters is nonlinear and multimodel, we use a deeper network to model this complex
mapping, and develop a new residual learning on the hourglass CNN network. Experiments show
that our approach can increase the mean average precision by 4.6% when the IoU threshold is 0.1
and dense connected network is introduced. Similar results can be obtained when the IoU threshold
is changed to 0.3 and 0.5, respectively.

5. Conclusion

In this paper, we proposed a new dense captioning approach to capture multi-scale object infor-
mation with an improved hourglass network. First, a dense connected aggregated residual block is
presented to construct an hourglass-structured network, and then, a new residual LSTM is presented
to decrease the vanishing gradients further. Experiments on the Visual Genome V1.0 database and
the MS-COCO Region Captions dataset have shown that our approach can effectively and efficiently
improve dense captioning accuracy.
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