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Abstract

We provide the first polynomial-time algorithm for recognizing if a profile of (possibly
weak) preference orders is top-monotonic. Top-monotonicity is a generalization of the
notions of single-peakedness and single-crossingness, defined by Barberà and Moreno. Top-
monotonic profiles always have weak Condorcet winners and satisfy a variant of the median
voter theorem. Our algorithm proceeds by reducing the recognition problem to the SAT-
2CNF problem.

1. Introduction

The Condorcet paradox refers to situations where a group of individuals—such that each of
them ranks a set of objects from the best to the worst one—has cyclic collective preference
under majority voting. For example, consider objects a, b, and c (referred to as candidates)
and three individuals, v1, v2, and v3 (referred to as voters), with preference orders:

v1 : a � b � c, v2 : b � c � a, v3 : c � a � b.

A majority of the voters (v1 and v3) prefers a to b, a majority of the voters (v1 and v2)
prefers b to c, and a majority of the voters (v2 and v3) prefers c to a. The fact that a
Condorcet paradox can occur in preference aggregation is unfortunate. Indeed, if cyclic
collective preferences could be avoided, then it would often be quite clear how to aggregate
voters’ opinions. For example, in each election there would be a candidate (or, possibly, a
group of candidates, if ties could happen) preferred by a majority of the voters to all the
other ones, and equally preferred among themselves; such candidates are known as (weak)
Condorcet winners.

One of the standard ways to avoid the Condorcet paradox is to restrict the domain
of legal preference orders from all permutations of the candidates to some subset of such
permutations. Indeed, a Condorcet domain is a set of allowed preference orders such that
if one forms a preference profile by choosing orders only from this set, then there will
certainly be a (weak) Condorcet winner; see, e.g., the overviews of Gaertner (2001) and
Monjardet (2009), or the works of Clearwater, Puppe, and Slinko (2015) and Puppe and
Slinko (2017). Two best-known examples of domain restrictions are the notions of single-
peakedness (Black, 1958; Arrow, 1951) and single-crossingness (Mirrlees, 1971; Roberts,
1977) (formally, single-crossingness corresponds to a family of Condorcet domains). Under
single-peaked preferences, we assume that the candidates can be arranged on a line, known
as the societal axis (e.g., on the left-to-right political spectrum, or simply in the order of
increasing numbers if we consider such an issue as, e.g., choosing the most comfortable
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temperature in a room). Then, a voter has single-peaked preferences if as we go along the
societal axis, first this voter’s appreciation for the candidates increases and then decreases.

On the other hand, a preference profile is single-crossing if the voters can be ordered in
such a way that as we progress from one end of the voter spectrum to the other, then for
each pair of candidates their relative order can change at most once. (The left-right political
spectrum again provides an example: If the voters have views that can be arranged on the
left-to-right spectrum, and the candidates can also be associated with such views, then for
each two candidates a and b, such that a is more left-wing and b is more right-wing, the
extreme-left voters certainly prefer a to b, extreme-right voters certainly prefer b to a, and
as we progress from one extreme to the other, we expect only one swap.) Saporiti and
Tohmé (2006) discuss several settings where single-crossing preferences arise in practice;
the first motivating examples of Mirrlees (1971) and Roberts (1977) regarded taxation.

Not only is it known that the Condorcet paradox cannot occur if the voters have single-
peaked or single-crossing preferences, but also many other negative effects cannot happen
in these cases. For example, the famous impossibility theorems of Arrow (1951) and of
Gibbard (1973) and Satterthwaite (1975) do not hold under these restrictions.1

In this paper we consider a far more recent domain restriction than either single-
peakedness or single-crossingness, namely the notion of top-monotonic preferences of Bar-
berà and Moreno (2011). Top-monotonicity has many advantages as, for example, it gener-
alizes both the notions of single-peakedness and single-crossingness while still guaranteeing
existence of (weak) Condorcet winners, and it is applicable to the settings where voters have
weak preferences.2 However, it also has drawbacks. One is that top-monotonic preferences
are hard to define intuitively (and, indeed, this is why we refrain from describing them here
on the intuitive level and point the reader to the formal definition in Section 2). Another
one is that so far no polynomial-time algorithm for recognizing top-monotonic preferences
was known, even though there is a number of algorithms for recognizing single-peaked pref-
erences (Bartholdi & Trick, 1986; Escoffier, Lang, & Öztürk, 2008) and single-crossing pref-
erences (Elkind, Faliszewski, & Slinko, 2012; Bredereck, Chen, & Woeginger, 2013; Cornaz,
Galand, & Spanjaard, 2013). Our main contribution is providing the first polynomial-time
algorithm for recognizing top-monotonic preference profiles. As there are natural domain
restrictions for which the recognition problems are NP-hard (Peters, 2017), we believe that
this contribution is imporant.

The first algorithmic study of top-monotonicity is due to Aziz (2014). While he did
not give a recognition algorithm, he has shown that the problem of deciding if a profile of
partial preference orders can be extended to a top-monotonic one is NP-hard; similar results
were also obtained for single-peakedness (Lackner, 2014) and single-crossingness (Elkind
et al., 2015). He also related the problem of recognizing top-monotonic profiles to the non-
betweenness problem (Guttmann & Maucher, 2006). Our algorithm uses different ideas and
is based on a somewhat intricate reduction to the SAT-2CNF problem (i.e., the problem of

1. Results of Arrow and of Gibbard and Satterthwaite are often interpreted as saying that in general no
perfect voting rule exists. For single-peaked or single-crossing preferences, such a “perfect voting rule”
simply elects the (weak) Condorcet winners.

2. Lackner (2014) and Elkind, Faliszewski, Lackner, and Obraztsova (2015) also apply notions of single-
peakedness and single-crossingness to partial orders (including weak ones) and encounter some compu-
tational hardness results.
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testing if a logical formula in conjunctive normal form with at most two literals per clause
is satisfiable; SAT-2CNF is well known to be solvable in polynomial time; Krom, 1967).
This is interesting both technically—indeed, noting that our approach can produce SAT-
2CNF formulas requires some insight—and because many other methods for recognizing
elections in restricted domains rely on the consecutive-ones problem3; see, e.g., the works of
Peters and Lackner (2017) or Elkind and Lackner (2015). The SAT-2CNF problem might
have a similar impact on the design of further algorithms recognizing domain restrictions
and we recommend it as a useful tool for such tasks. As an example that our methodology
indeed goes beyond top-monotonicity, after presenting our main result we show an analogous
algorithm for recognizing single-peaked profiles.

We conclude by noting that there is yet another reason why having a polynomial time
algorithm for recognizing top-monotonic preferences is important. Indeed, many NP-hard
voting-related problems turn out to be polynomial-time solvable under various restricted
domains. This was noted, e.g., by Conitzer (2009) for the case of vote elicitation, by
Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe (2011), Faliszewski, Hemaspaandra,
and Hemaspaandra (2014) and by Magiera and Faliszewski (2017) for election control (i.e.,
for problems that model affecting the election result by changing its structure), by Brandt,
Brill, Hemaspaandra, and Hemaspaandra (2015) for election bribery (i.e., for problems
where we can change some number of votes to ensure a given candidate’s victory), and—
most importantly—by many researchers for the case of winner determination: As a few
examples, we mention the results of Brandt et al. (2015) for all the Condorcet consistent
rules, the results of Betzler, Slinko, and Uhlmann (2013), Cornaz, Galand, and Spanjaard
(2012), and Skowron, Yu, Faliszewski, and Elkind (2015) for the Chamberlin–Courant rule,
and the results of Peters (2018) for a number of multiwinner rules. Our work may inspire
researchers to seek positive algorithmic consequences for top-monotonic preference profiles.
Indeed, so far, the only such results are those that follow from the existence of a (weak)
Condorcet winner.

The paper is organized as follows. In Section 2, we present necessary background re-
garding single-peaked, single-crossing, and top-monotonic profiles. Then, in Section 3, we
show our algorithm for recognizing top-monotonic profiles and explain its workings. We
first provide a convenient reformulation of the conditions for a profile to be top-monotonic,
then show a variant of our algorithm for minimally rich profiles (where each alternative is
ranked on top by at least one agent), and finally show the full algorithm. We finish the
section by illustrating how our approach could be used for recognizing single-peaked profiles
(while our algorithm is slower than the best algorithms for this task, it shows our ideas in
a simpler setting). We conclude in Section 4.

2. Preliminaries

We mostly adopt the notation of Barberà and Moreno (2011). We let A be a (finite) set of
alternatives (also called candidates) and we let N = {1, . . . , n} be a set of n agents (also
called voters). We denote the preference order of agent i over the set of alternatives by <i

(note that we take them to be weak orders). For each pair of alternatives x, y ∈ A, we write

3. In this problem, we are given a binary matrix and we ask if we can permute its rows so that in each
column the entries with “ones” are consecutive (Booth & Lueker, 1976).
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x <i y if the i-th agent weakly prefers alternative x over y. We use the strict order (�i)
and equality (≈i) notations defined for each x, y ∈ A as follows:

1. x �i y holds if x <i y and it is not the case that y <i x;

2. x ≈i y holds if x <i y and y <i x.

A preference profile is a collection of preference orders of the agents from N ; we write
< = (<1, . . . ,<n) to denote a preference profile of weak orders, and � = (�1, . . . ,�n) for a
profile of strict orders (i.e., one where there is no agent i and distinct candidates x, y ∈ A
such that x ≈i y).

Before we define top-monotonic preferences, let us give formal definitions of single-
peaked and single-crossing ones.

Definition 1 (Black, 1958; Arrow, 1951). A preference profile � is single-peaked if there
exists a linear order > over the set of the alternatives (the societal axis), such that for each
three alternatives x, y, and z, if it holds that either x > y > z or z > y > x, then for each
agent i ∈ N we have that x �i y =⇒ y �i z.

Intuitively put, the definition says that each agent i can choose his or her most preferred
candidate arbitrarily, but then this agent must choose the following ones so that for each
j ∈ {1, . . . |A|}, the set of top j candidates according to i forms a consecutive block within
the societal axis. In consequence, for each agent the candidate ranked last is either the
maximum or the minimum element of >.

Definition 2 (Mirrlees, 1971; Roberts, 1977). A profile � = (�1, . . . ,�n) is single-crossing
with respect to an ordering of voters (�1, . . . ,�n) if for each two alternatives x and y such
that x �1 y, there is a number tx,y such that {i ∈ N | x �i y} = {1, . . . , tx,y}. Profile � is
single-crossing if it is single-crossing with respect to some ordering of the voters.

That is, a profile is single-crossing if it is possible to order the voters so that, as we move
along this order, the relative order of each two candidates changes at most once.

Example 1. Consider candidate set {a, b, c, d} and the profile of the following preference
orders:

a �1 b �1 c �1 d, b �2 a �2 d �2 c, d �3 c �3 b �3 a.

It is single-crossing (for the natural order of the voters) but not single-peaked for any axis
(it is well-known that in a single-peaked profile each candidate ranks one of the two extreme
candidates from the societal axis last, but in our profile each of the three agents ranks a
different candidate last).

For candidate set {a, b, c, d, e}, consider a profile with the following four preference or-
ders:

c �1 b �1 d �1 a �1 e, c �2 d �2 b �2 a �2 e,

c �3 b �3 d �3 e �3 a, c �4 d �4 b �4 e �4 a.

It is single-peaked with respect to the axis a > b > c > d > e (indeed, for each agent i and
each j ∈ {1, . . . , 5}, the top j candidates ranked by i form a consecutive block on this axis),
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but it is not single-crossing (due to candidates a and e, a single-crossing ordering would
have to put agent 1 next to agent 2 and agent 3 next to agent 4; due to candidates b and d,
it would also have to put agent 1 next to agent 3, and agent 2 next to agent 4; fulfilling all
these conditions simultaneously is impossible).

We now move on to the definition of top-monotonic preferences (Barberà & Moreno,
2011). For all i ∈ N and for each S ⊆ A, we denote by ti(S) the set of top choices of the i-th
agent among the alternatives from S. That is, ti(S) = {x ∈ S | x <i y for all y ∈ S} and
we call it the top of i in S according to <. Let T =

⋃
i∈N ti(A). For each preference profile

<, let A(<) be the family of sets containing A itself and all triples of distinct alternatives
where each alternative is top in A for some agent i ∈ N according to < (i.e., the triples in
A(<) consist of the candidates from T , but A(<) also contains A).

Definition 3 (Barberà & Moreno, 2011). A preference profile < is top-monotonic if there
exists a linear order > over the set of the alternatives, such that:

(1) ti(A) is a finite union of closed intervals for all i ∈ N .4

(2) For all S ∈ A(<), for all i, j ∈ N (including the case that i = j), all x ∈ ti(S), all
y ∈ tj(S), and all z ∈ S, we have that:

[x > y > z ∨ z > y > x] =⇒

{
y <i z if z ∈ ti(S) ∪ tj(S)

y �i z if z /∈ ti(S) ∪ tj(S)

Definition 4. A linear order > over the set of alternatives is a top-monotonic order of a
preference profile < if < is top-monotonic and > fulfills condition (2) from Definition 3.

Barberà and Moreno (2011) have shown that each single-peaked and each single-crossing
profile is top-monotonic. On the other hand, the following example—taken from their
work—shows that there is a profile of strict linear orders that is top-monotonic but neither
single-peaked nor single-crossing.

Example 2 (Barberà & Moreno, 2011). Consider candidate set {a, b, c, d} and profile � of
three preference orders:

a �1 b �1 c �1 d, c �2 d �2 b �2 a, d �3 c �3 a �3 b.

Note that c is preferred to each other candidate by a majority of the agents. The profile is
not single-peaked because there are three alternatives that are ranked last (a, b, and d). It
is not single-crossing because agents 1 and 3 would have to be next to each other (because
of the alternatives a and b), agents 2 and 3 would have to be next to each other (because of
alternatives b and c), and agents 1 and 2 would have to be next to each other (because of
alternatives c and d), which is impossible.

However, the profile is top-monotonic with respect to the order a > b > c > d. To see
that the profile is top-monotonic, note that A(�) = {{a, b, c, d}, {a, c, d}}. We have to check

4. Since we assumed A to be a finite set, this part of the definition is always trivially satisfied. Barberà
and Moreno consider also more general sets of alternatives and—to indicate the generality of their
definition—we decided to keep this requirement in the text.
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each S ∈ A(�) and each two agents i and j. Let us take S = {a, c, d}, i = 1 and, j = 2.
We have x ∈ t1(S) = {a}, y ∈ t2(S) = {c}, and we take z = d. It holds that a > c > d and
z = d /∈ t1(S)∪ t2(S) = {a, c}, so it is required that c �1 d, and this indeed holds. Checking
top-monotonicity of the profile using the definition would require checking all the remaining
combinations of S, i, j, and z.

We often need to refer to various definitions, lemmas, and conditions for particular
instantiations of the object that they refer to. In such cases, we write x→ y to mean that
y takes the role of x. For example, if we wanted to speak of the definition of top-monotonic
profiles for some specific agents k and ` taking the roles of agents i and j, we would indicate
this by writing i→ k and j → `.

3. Results

The problem of determining a top-monotonic order of a preference profile is as follows:
Given a finite set of alternatives A, a finite set of agents N , and a preference profile < (for
the agents in N) over A, find a top-monotonic order of < or decide that no such order
exists. In this section we provide an algorithm for this problem.

3.1 Interface to Top-Monotonicity

The following definition, and Lemma 1 a bit later, constitute an interface between the
notion of top-monotonicity and our main algorithm, which reconstructs the top-monotonic
order from allowed orders over triples of candidates. We follow the notation from Section 2;
specifically, recall that ti(S) refers to the set of alternatives that are top of i in S and that
T is the set of alternatives that are ever ranked on top by some agent.

Definition 5. For each triple of distinct alternatives S = {x, y, z} ⊆ A and each pair of
agents i, j ∈ N (including the case that i = j), we define the set of legal orderings, denoted
as Li,j

S , to be the set of ordered sequences of alternatives x, y, z, such that for each sequence
σ = (σ1, σ2, σ3), where {σ1, σ2, σ3} = S, all the following criteria are met:

(1)

[σ1 ∈ ti(S) and σ2 ∈ tj(S)] =⇒

{
σ2 <i σ3 if σ3 ∈ ti(S) ∪ tj(S)

σ2 �i σ3 if σ3 /∈ ti(S) ∪ tj(S)

(2)

[σ1 ∈ tj(S) and σ2 ∈ ti(S)] =⇒

{
σ2 <j σ3 if σ3 ∈ ti(S) ∪ tj(S)

σ2 �j σ3 if σ3 /∈ ti(S) ∪ tj(S)

(3)

[σ3 ∈ ti(S) and σ2 ∈ tj(S)] =⇒

{
σ2 <i σ1 if σ1 ∈ ti(S) ∪ tj(S)

σ2 �i σ1 if σ1 /∈ ti(S) ∪ tj(S)

(4)

[σ3 ∈ tj(S) and σ2 ∈ ti(S)] =⇒

{
σ2 <j σ1 if σ1 ∈ ti(S) ∪ tj(S)

σ2 �j σ1 if σ1 /∈ ti(S) ∪ tj(S)
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(5)

[σ1 ∈ ti(S) and σ3 �i σ2]

∨
[σ1 ∈ tj(S) and σ3 �j σ2]

∨
[σ3 ∈ ti(S) and σ1 �i σ2]

∨
[σ3 ∈ tj(S) and σ1 �j σ2]


=⇒ σ2 /∈ T

To illustrate how the set of legal orderings is constructed, let us consider the following
example. We take S = {x, y, z} and two agents i and j with preference orders:

x �i y �i z and z �j x �j y.

Now we need to consider six different orderings of candidates x, y, z. Let us consider ordering
σ = (x, z, y). We can see that it does not satisfy condition (1) as x ∈ ti(S), z ∈ tj(S) but
z �i y is not true. Similarly, if we consider ordering σ′ = (x, y, z), and if we assume
that x, y, z ∈ T , then we can see that it does not satisfy condition (5) as z ∈ tj(S) and
x �j y (so the left-hand side of the implication is true) but y ∈ T . On the other hand, if
we consider ordering σ′′ = (z, x, y) then we can see that it satisfies all five conditions and
therefore is going to be a part of the set of legal orderings Li,j

S . By analyzing the remaining
three possible orderings we get that the complete set of legal orderings for the setup under
consideration is Li,j

S = {(z, x, y), (y, x, z)}.
Let QT be a family of sets of legal orderings for every triple x, y, z such that x, y, z ∈ T

and for every i, j ∈ N . Let QNT be another family of sets of legal orderings, for every
triple x, y, z, where x, y ∈ T and z ∈ (A \ T ), and every i, j ∈ N such that x ∈ ti(A) and
y ∈ tj(A). Note that for both definitions we allow for agents i and j to be the same. In other
words, family QT regards sets of legal orderings for all agents and all triples of candidates
that appear on top of some preference orders, whereas QNT is defined analogously, but for
triples of candidates that contain two candidates from tops of some preference orders and
one candidate that never appears on top (of any preference order).

Lemma 1. Let A be a set of alternatives, N be a set of agents, and < be a preference
profile over A. Let Q = QT ∪ QNT . Preference profile < is top-monotonic with > as
the top-monotonic order if and only if for each set X ∈ Q, there exists an element σ =
(σ1, σ2, σ3) ∈ X such that σ1 > σ2 > σ3.

Proof. We first focus on proving that if top-monotonic order > exists for a given preference
profile <, then for each set X from Q there exists an element σ = (σ1, σ2, σ3) such that
σ1 > σ2 > σ3. Let us assume that preference profile < has a top-monotonic order >, but
for some set X ′ ∈ Q there is no such element σ′ = (σ′1, σ

′
2, σ
′
3) ∈ X ′ such that σ′1 > σ′2 > σ′3.

Set X ′ may be a part of QT or QNT . Let us first assume that X ′ ∈ QT and, so, each
element σ′ ∈ X ′ is a triple of elements x, y, z ∈ T . We also assume that X ′ corresponds
to a pair of agents k, ` ∈ N . Without loss of generality we assume that x > y > z. Now,
as per our assumption, sequence (x, y, z) is not a part of X ′, which means that one of the
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conditions from Definition 5 is not met for it. With set S = {x, y, z} we consider each of
the conditions from Definition 5:

(a) Since all x, y, z belong to T , condition (5) is not satisfied when the left-hand side of
the implication is true. When x ∈ tk(S) and z �k y, we get a contradiction with the
assumption that < is top-monotonic, because then condition (2) from Definition 3 is
violated for i → k and for some j such that y ∈ tj(S) (we know that such an agent
j exists as y ∈ T ). Since all the clauses from the left-hand side of condition (5) are
symmetric up to the exchange of i with j and σ1 with σ3, we see that condition (5) is
always satisfied for the sequence (x, y, z), assuming < is top-monotonic.

(b) If condition (1) is not met, then for S = {x, y, z} we have:

x ∈ tk(S) and z �k y

or

x ∈ tk(S) and y ∈ t`(S) and z /∈ tk(S) ∪ t`(S) and z <k y

However if that were true, > could not be a top-monotonic order of the profile <.
The reason is that it directly violates condition (2) from Definition 3 (for i ← k and
j ← `). We therefore get a contradiction and condition (1) has to be satisfied for the
selected sequence (x, y, z).

(c) Condition (2) is symmetric to the condition (1) with i and j swapped, and therefore
it can be shown in a similar way that it has to be satisfied for a selected sequence
(x, y, z). The same applies to condition (3) that is symmetric to condition (1) with σ1

and σ3 swapped. Lastly, we can apply the same methodology to condition (4), which
can be constructed by swapping both i with j and σ1 with σ3 from condition (1).

In consequence, we see that if X ′ ∈ QT , then (x, y, z) has to be a part of X ′, which
stands against our assumption that (x, y, z) is not to a part of X ′. We therefore get that
X ′ ∈ QNT . Let us assume that X ′ corresponds to agents k, ` ∈ N and a triple of alternatives
x, y, w such that x ∈ tk(A), y ∈ t`(A) and w ∈ A \ T . Now we need to consider six possible
cases for how agents x, y, w are ordered under >:

x > y > w, y > x > w, w > x > y, w > y > x, x > w > y, y > w > x.

These six options map to the following sequences:

(x, y, w), (y, x, w), (w, x, y), (w, y, x), (x,w, y), (y, w, x).

We set S = {x, y, w}. We note that w /∈ tk(S) which stands true because x is top of agent
k and we know that w is not top of any agent. Similarly, we note that w /∈ t`(S). We make
the following observations:

(I) If x > w > y or y > w > x, we note that sequence (x,w, y) ∈ X ′ or (y, w, x) ∈ X ′
respectively. This is so because since w /∈ T , condition (5) is satisfied. Also, all the
remaining conditions from (1) to (4) are satisfied because w /∈ tk(S) and w /∈ t`(S).
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(II) When x > y > w, we see that for the corresponding sequence (x, y, w) both conditions
(3) and (4) are satisfied, because w /∈ tk(S) and w /∈ t`(S). Clearly, condition (2) is also
satisfied because y �k w (which comes from the fact that y ∈ tk(A) and w /∈ tk(A)).
Additionally, condition (1) is not satisfied if and only if w <k y and condition (5)
cannot be satisfied if and only if w �k y. However, since > is a top-monotonic order of
the profile <, from condition (2) in Definition 3 given i→ k, j → ` and S → A (clearly
x ∈ ti(S) and y ∈ tj(S) and w ∈ S), we get that if x > y > w, then it has to be that
y �i w (because w is not a top for any agent). Therefore, we get a contradiction with
both the assumption that w �k y (corresponding to condition (1)) and the assumption
that w <k y (corresponding to condition (5)). It means that conditions (1) and (5)
are both satisfied, and therefore if x > y > w then (x, y, w) ∈ X ′.

(III) When y > x > w, we again use the fact that the rules from Definition 5 are symmetric
up to the exchange of i and j, which—based on the above—proves that if y > x > w
then (y, x, w) ∈ X ′. We follow the same methodology for the remaining orderings,
w > x > y and w > y > x, that are symmetric up to the exchange of σ1 and σ3.

We therefore see that it is impossible to find a set X ′ that would violate the assumption
from Lemma 1 when < is top-monotonic.

The final step of this proof is to show that Lemma 1 is also true in the opposite direction.
That is, when there exists a linear order >′ such that for each X ∈ Q there exists an element
σ = (σ1, σ2, σ3) ∈ X, such that σ1 >

′ σ2 >
′ σ3 then < is top-monotonic and that >′ is a

top-monotonic order over <. We assume that >′ exists and that < is not top-monotonic,
and we will reach a contradiction, showing that >′ satisfies all the requirements to be a
top-monotonic order over <. If, as per our assumption, < is not top-monotonic then there
exists a set S ∈ A(<), a pair of agents i, j ∈ N , and three (distinct) alternatives x, y, z,
x ∈ ti(S), y ∈ tj(S) and z ∈ S, such that:

(x >′ y >′ z ∨ z >′ y >′ x) and (z �i y ∨ (z ≈i y and z /∈ ti(S) ∪ tj(S))). (1)

Let S′ = {x, y, z}. We note that z ∈ ti(S) ⇐⇒ z ∈ ti(S′) because S′ ⊆ S. Similarly,
we see that z ∈ tj(S) ⇐⇒ z ∈ tj(S′). If Eq. (1) is satisfied then there exists a set X ′′ ∈ Q
that contains either sequence (x, y, z) or (z, y, x) (indeed, this follows from the fact that
either x >′ y >′ z or z >′ y >′ x holds). It is easy to note that when z ∈ T then X ′′ ∈ QT

and when z /∈ T then X ′′ ∈ QNT . We now consider two cases depending on whether (x, y, z)
or (z, y, x) is in X ′′.

(I) Let us first assume (x, y, z) ∈ X ′′. Now, from condition (1) of Definition 5, we see
that if z /∈ ti(S′) ∪ tj(S′), then y �i z, which makes it impossible to satisfy Eq. (1)
(the second segment of the equation requires that z <i y). On the other hand, when
z ∈ ti(S′) ∪ tj(S′), then from condition (1) we get that y <i z, which again makes it
impossible for Eq. (1) to be satisfied (here we refer to the fact that if z ∈ ti(S′)∪tj(S′)
then z ∈ ti(S) ∪ tj(S)).

(II) When (z, y, x) ∈ X ′′, then we follow the same methodology, leveraging the symmetry
of Definition 5 with respect to the exchange of σ1 with σ2 (instead of condition (1)
we use condition (3)).
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We see that it is impossible for Eq. (1) to be satisfied for each of the aforementioned
combinations of agents and alternatives, assuming that >′ exists. Therefore >′ is a top-
monotonic order for <.

The greatest advantage of using Lemma 1 and Definition 5 over directly applying Defi-
nition 3 is that it allows us to focus on sets of three candidates only (Definition 3 also uses
the whole set A, as A ∈ A(<)). This property is crucial for our technique.

3.2 The Case of Minimally Rich Profiles

Before we get to our main theorem, we present a proof for a simpler variant of it. The full
proof, presented in the next section, uses a very similar approach.

Preference profiles where each alternative is ranked first by at least one agent are known
as minimally rich. We extend this definition to the case of weak orders in a natural way: A
profile is minimally rich if every alternative is top of some agent. The notion of minimally
rich profiles is very similar to that of narcissistic ones, introduced by Bartholdi and Trick
(1986); the difference is that in the case of narcissistic profiles it is assumed that the sets
of alternatives and voters are equal and each voter ranks him or herself first.5

Below we show an algorithm for recognizing minimally rich top-monotonic profiles. The
main idea is to solve a 2CNF formula that encodes an order over the alternatives such
that for each triple of alternatives and each two agents this order contains at least one of
the legal orderings for these alternatives and voters. The case of minimally rich profiles
is simpler than the general one because the family of sets of legal orderings is limited to
QT (so one does not need to consider QNT ) and it is easier to argue that the satisfying
truth assignments encode orders over the alternatives (in particular, that these assignments
encode transitive relations).

Theorem 2. Let A be a set of alternatives, N be a set of agents, and < be a minimally
rich preference profile. The problem of determining if a top-monotonic order of < exists
(and computing it) is polynomial-time solvable.

Proof. Due to Lemma 1, it suffices to demonstrate that finding an order > over A, such
that for each X ∈ Q there exists σ = (σ1, σ2, σ3) ∈ X such that σ1 > σ2 > σ3, can be done
in polynomial time. From now on we focus on this task.

Since each of the alternatives is a top for some i ∈ N (with respect to A), we have T = A
and Q = QT . Let us now consider some set of orderings from QT . As they all correspond
to triples of alternatives from T , there are only a few possible cases of how they may relate
to each other in preference orders of pairs of agents. Let us take some three alternatives
x, y, z ∈ T ; there are 21 different combinations of pairs of preference orders that we need
to consider (see second column of Table 1). All these combinations have their entries in
Table 1, precomputed according to Definition 5. To obtain a set of legal orderings for some
triple of candidates S and some agents i and j, it suffices to assign these candidates to
variables x, y, z and choose an entry in Table 1 corresponding to the preference orders of
agents i and j.

5. In an early version of the paper we incorrectly referred to minimally rich profiles as narcissistic ones.
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Comb. of agents i, j ∈ N Set of legal orderings 2CNF ordering formula

1 x �i y �i z and x �j y �j z {(y, x, z), (x, y, z), (z, x, y), (z, y, x)} (xz ∨ zy)∧(yz ∨ zx)
2 x �i y �i z and x �j y ≈j z {(y, x, z), (x, y, z), (z, x, y), (z, y, x)} (xz ∨ zy)∧(yz ∨ zx)
3 x �i y �i z and x ≈j y �j z {(y, x, z), (x, y, z), (z, x, y), (z, y, x)} (xz ∨ zy)∧(yz ∨ zx)
4 x �i y �i z and x ≈j y ≈j z {(y, x, z), (x, y, z), (z, x, y), (z, y, x)} (xz ∨ zy)∧(yz ∨ zx)
5 x �i y �i z and x �j z �j y {(y, x, z), (z, x, y)} (xy ∨ xz)∧(yz ∨ zx)∧(yx ∨ zy)
6 x �i z �i y and x ≈j y �j z {(y, x, z), (z, x, y)} (xy ∨ xz)∧(yz ∨ zx)∧(yx ∨ zy)
7 x �i y �i z and y �j x �j z {(y, x, z), (x, y, z), (z, x, y), (z, y, x)} (xz ∨ zy)∧(yz ∨ zx)
8 y �i x �i z and x �j y ≈j z {(y, x, z), (z, x, y)} (xy ∨ xz)∧(yz ∨ zx)∧(yx ∨ zy)
9 x �i y �i z and y �j z �j x {(x, y, z), (z, y, x)} (xy ∨ zx)∧(xz ∨ zy)∧(yz ∨ yx)
10 z �i x �i y and x ≈j y �j z {(y, x, z), (z, x, y)} (xy ∨ xz)∧(yz ∨ zx)∧(yx ∨ zy)
11 y �i z �i x and x �j y ≈j z {(y, z, x), (x, z, y)} (xy ∨ yz)∧(xz ∨ yx)∧(zx ∨ zy)
12 x �i y �i z and z �j y �j x {(x, y, z), (z, y, x)} (xy ∨ zx)∧(xz ∨ zy)∧(yz ∨ yx)
13 x �i y ≈i z and x ≈j y �j z {(y, x, z), (z, x, y)} (xy ∨ xz)∧(yz ∨ zx)∧(yx ∨ zy)
14 x �i y ≈i z and y �j x ≈j z {(x, z, y), (y, z, x)} (xy ∨ yz)∧(xz ∨ yx)∧(zx ∨ zy)
15 z �i x ≈i y and x ≈j y �j z {(y, x, z), (x, y, z), (z, x, y), (z, y, x)} (xz ∨ zy)∧(yz ∨ zx)
16 x ≈i y �i z and x ≈j y �j z {(y, x, z), (x, y, z), (z, x, y), (z, y, x)} (xz ∨ zy)∧(yz ∨ zx)
17 x ≈i y �i z and x ≈j y ≈j z {(y, x, z), (x, y, z), (z, x, y), (z, y, x)} (xz ∨ zy)∧(yz ∨ zx)
18 x ≈i y �i z and x ≈j z �j y {(y, x, z), (z, x, y)} (xy ∨ xz)∧(yz ∨ zx)∧(yx ∨ zy)
19 x �i y ≈i z and x �j y ≈j z all permutations of {x, y, z} n/a
20 x ≈i y ≈i z and x �j y ≈j z all permutations of {x, y, z} n/a
21 x ≈i y ≈i z and x ≈j y ≈j z all permutations of {x, y, z} n/a

Table 1: All possible combinations of pairs of agents from QT , with corresponding sets of
legal orderings (third column). The last column shows a 2CNF representation of
each ordering formula (note that we write, e.g., yx instead of ¬xy). Note that for
rules 19–21 all permutations are allowed, but we do need to ensure that literals
xy, xz, and yz indeed encode a permutation (that is, only six out of their eight
possible truth assignments are legal; this requirement cannot be encoded using a
2CNF formula and we deal with it differently).

With Table 1 available, we can compute the set QT by looking up appropriate values.
We illustrate this process with the example below.

Example 3. Let the set of alternatives be A′ = {a, b, c, d} and let the preference profile <′

be as follows (N ′ = {1, 2}):

a ≈′1 b ≈′1 c �′1 d, c ≈′2 d �′2 a �′2 b.

We see that T = {a, b, c, d} = A′, as each of the alternatives is top for some agent. We
have four possible triples of alternatives and three possible pairs of agents (note that we can
make a pair that consists of two copies of the same agent). Let us start with triple {a, b, c}
and agents 1 and 2. We get the following relation between alternatives from this triple:
a ≈′1 b ≈′1 c and c �′2 a �′2 b, which matches rule no. 4 from Table 1 (where x ← c, y ← a
and z ← b) and generates the following set of legal orderings:

{(a, c, b), (c, a, b), (b, c, a), (b, a, c)}.

Similarly, if we now take triple {a, b, d} and agents 1 and 2, the relation looks as follows:
a ≈′1 b �′1 d and d �′2 a �′2 b, which matches rule no. 10 (with x ← a, y ← b and z ← d).
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Therefore it generates the set of legal orderings {(b, a, d), (d, a, b)}. If we follow similar steps
for triples {a, c, d} and {b, c, d}, we will match rule no. 14 for the former and rule no. 6 for
the latter, generating the two corresponding sets of legal orderings ({(a, c, d), (d, c, a)} and
{(b, c, d), (d, c, b)}). On top of that, we have to consider pairs that are made of two copies
of the same agent (that is 1 and 1; 2 and 2). As a result, family Q will have 12 elements
and will be:

Q = {{(a, c, b), (c, a, b), (b, c, a), (b, a, c)},
{(b, a, d), (d, a, b)},
{(a, c, d), (d, c, a)},
{(b, c, d), (d, c, b)},
{(b, a, c), (b, c, a), (c, a, b), (a, c, b), (c, b, a), (a, b, c)},
{(b, a, d), (a, b, d), (d, a, b), (d, b, a)},
{(c, a, d), (a, c, d), (d, a, c), (d, c, a)},
{(c, b, d), (b, c, d), (d, b, c), (d, b, a)},
{(c, b, a), (c, a, b), (a, b, c), (b, a, c)},
{(d, b, a), (d, a, b), (d, b, c), (b, a, d)},
{(d, c, a), (d, a, c), (a, c, d), (c, a, d), (a, d, c), (c, d, a)},
{(b, c, d), (c, b, d), (d, c, b), (d, b, c)}}.

Taking order b >′ a >′ c >′ d, we see that for each set X ∈ Q there is at least one
sequence σ = (σ1, σ2, σ3) ∈ X such that σ1 >

′ σ2 >
′ σ3 (corresponding items for each set

are underlined on the listing above). By Lemma 1, we conclude that <′ is top-monotonic
and >′ is its top-monotonic order.

Set Q consists of |N |2 ×
(|A|

3

)
elements, where each element is of the form of one of the

sets from the third column of Table 1. We want to find a linear order > over the set of
alternatives such that for each X ∈ Q we can find at least one sequence σ = (σ1, σ2, σ3) ∈ X
with σ1 > σ2 > σ3. It turns out that we can express this problem as an instance of the
SAT-2CNF problem.

To illustrate this approach, let us consider rule no. 5 from Table 1, with output {(y, x, z),
(z, x, y)}. If the desired order > exists, it has to satisfy condition:

(y > x > z) ∨ (z > x > y). (2)

We can create a similar formula for each set of legal orderings from Q, and then expect the
order > (if it exists) to satisfy the conjunction of these formulas.

The crucial observation is that Eq. (2) (as well as formulas corresponding to all the
other rules from Table 1) can be expressed in conjunctive normal form with two literals
per clause (2CNF). To this end, we take our logical variables to be xy, xz, and yz and we
interpret them as representing appropriate relations under order > (e.g., xy is true if x > y
holds; we also write, e.g., yx as an abbreviation for ¬xy). Then, Eq. (2) can be equivalently
expressed as:

(yx ∧ xz ∧ yz) ∨ (zx ∧ xy ∧ zy)
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or, equivalently, as:

(¬xy ∧ xz ∧ yz) ∨ (¬xz ∧ xy ∧ ¬yz).

This formula, on the other hand, is true if and only if the following one is (see comments
below):

(xz ∨ xy) ∧ (yz ∨ ¬xz) ∧ (¬xy ∨ ¬yz). (3)

To check that the two formulas above are indeed equivalent, one may try all possible truth
assignments for our variables (as there are three variables only, we need to consider eight
possible assignments). For example, if we take the following one:

xy ← True, xz ← True, and yz ← False

then both formulas evaluate to False, whereas if we take:

xy ← False, xz ← True, and yz ← True

then they both evaluate to True. Formula (3) is in the 2CNF form and, in fact, we can
represent each of the possible sets of legal orderings using 2CNF formulas, as presented in
Table 1 (the only exception is that rules 19, 20, and 21 do not impose any restrictions on
the orderings and, thus, do not generate formulas at all; yet, we do need to ensure that
relevant literals encode permutations, but we show how to deal with this issue later).6

To summarize, we proceed as follows. For each three alternatives x, y, and z and each
two agents i and j, we look-up the SAT-2CNF formula in Table 1 that corresponds to this
setting (for each pair of alternatives p and q, we arbitrarily choose which of the literals
pq or qp that arises is represented as a variable and which is represented as this variable’s
negation; note that if some literal does not arise ever in any of the rules, we do not create
its variable). We form the global ordering formula by taking the conjunction of all these
formulas. We now show that a top-monotonic order exists if and only if the global ordering
formula is satisfiable.

Observation 1. A top-monotonic order for < exists if and only if there is an assignment
for the variables that satisfies the global ordering formula.

To prove this result, we first show that if < has a top-monotonic order then the global
ordering formula is satisfiable. Let >′ be this top-monotonic order. Now consider a variable
assignment for the global ordering formula to be such that for each two candidates p and
q, we set the literal pq = 1 if p >′ q (note that it may, in fact, mean setting variable qp
to False, depending which one of pq and qp is used as a variable in the global ordering
formula and which one is represented as its negation). It is easy to see that such a variable
assignment is a valid solution for the global ordering formula.

6. The reader may wonder how we derived Formula (3) from Formula (2), or how we deduced that it can be
translated to an equivalent 2CNF form. One way to look at this is by noting that the clauses in 2CNF
formulas can be seen as implications (using the fact that for literals p and q we have that p∨q is equivalent
to ¬p =⇒ q). The formula (xz∨xy)∧(yz∨¬xz), which is a part of our example formula, can be expressed
as (¬xy =⇒ xz)∧(xz =⇒ yz). This, in turn, we interpret as (y > x =⇒ x > z)∧(x > z =⇒ y > z).
As a consequence, a satisfying truth assignment that encodes y > x must, in fact, encode y > x > z. All
the other cases can be analyzed similarly.
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Now it remains to show that if there is a satisfying assignment for the variables of the
global ordering formula, then the profile is top-monotonic. Let us assume that the global
ordering formula has a satisfying assignment and let relation >′ be defined for each pair of
alternatives p, q ∈ A as follows: We set p >′ q exactly if the literal pq evaluates to True.
By definition, relation >′ satisfies the global ordering formula and we only need to show
that it, indeed, is an order over A. We show that this is the case by considering the three
requirements that a strict order must satisfy:

(a) Relation >′ is irreflexive because we do not have literals of the form xx in our global
ordering formula.

(b) Relation >′ is asymmetric because for each x, y ∈ A, if x >′ y then it is not the case
that y >′ x because for each x, y ∈ A, xy ≡ ¬yx and, so, it cannot be that both xy
and yx are set to 1 at the same time.

(c) Relation >′ is transitive, that is, for every triple x, y, z ∈ A if x >′ y and y >′ z then
x >′ z. This follows from the fact that for every triple x, y, z ∈ A we need to satisfy a
formula that corresponds to a set of legal orderings. It is clear that any element from
the set of legal orderings has to satisfy the transitivity condition (as such an element
represents an order of alternatives). The only exception is when a triple x, y, z ∈ A
matches either of the rules 19, 20, or 21 from Table 1 for every possible pair of agents
i, j ∈ N . However, in such a case it is easy to see that it must be the case that
y ≈k z for every k ∈ N . Therefore we can ignore this case as alternatives y and z
are indistinguishable form each other for all the agents. We pick one of them to use
in the algorithm (and remove the other one from the profile); if it turns out that a
top-monotonic order exists, then we place these candidates next to each other in this
order (the algorithm computes the position of one of them in the top-monotonic order,
and the other one can be put on either of its sides).

So far, we have not argued that >′ is a total order and, indeed, it may be partial. We
let >∗ be a linear extension of >′; we know that such an extension exists due to the order-
extension principle. Since >∗ satisfies the global ordering formula (as it is an extension
of >′) and it is a linear order, >∗ is a top-monotonic order for <.

Finally, we note that, since the global ordering formula is in conjunctive normal form
with at most two variables per clause, there is a simple polynomial-time algorithm that
checks if it is satisfiable and, if so, produces a satisfying assignment. Further, the formula
itself is of length polynomially bounded in the number of candidates and agents (we need
O(N2 · |A|3) subformulas from Table 1, with at most O(|A|2) variables).

Example 4. Let us consider the same setting as in Example 3, that is, let A′ = {a, b, c, d}
be a set of alternatives and let <′ be a preference profile defined as follows: N ′ = {(a ≈′1
b ≈′1 c �′1 d), (c ≈′2 d �′2 a �′2 b)}. Based on the family Q obtained in Example 3, we
compute the conjunction of 2-CNF ordering formulas which looks as follows (we removed
duplicate clauses):

(ab ∨ bc) ∧ (ba ∨ cb) ∧ (ac ∨ da) ∧ (ad ∨ dc) ∧ (cd ∨ ca) ∧ (ab ∨ ad)∧
(bd ∨ da) ∧ (ba ∨ db) ∧ (bc ∨ db) ∧ (bd ∨ dc) ∧ (cd ∨ cb) ∧ (ad ∨ db)∧
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(cd ∨ da) ∧ (cd ∨ db) ∧ (ab ∨ bc) ∧ (ab ∨ bd) ∧ (cb ∨ bd)

Now we create an instance of SAT-2CNF problem with six variables, ab, ac, ad, bc, bd,
and cd:

(ab ∨ bc) ∧ (¬ab ∨ ¬bc) ∧ (ac ∨ ¬ad) ∧ (ad ∨ ¬cd) ∧ (cd ∨ ¬ac) ∧ (ab ∨ ad)∧
(bd ∨ ¬ad) ∧ (¬ab ∨ ¬bd) ∧ (bc ∨ ¬bd) ∧ (bd ∨ ¬cd) ∧ (cd ∨ ¬bc) ∧ (ad ∨ ¬bd)∧

(cd ∨ ¬ad) ∧ (cd ∨ ¬bd) ∧ (ab ∨ bc) ∧ (ab ∨ bd) ∧ (¬bc ∨ bd)

We note that the above SAT-2CNF instance is satisfiable and one of the possible as-
signments is ab ← False, ac ← True, ad ← True, bc ← True, bd ← True, cd ← True.
Literals that are true according to this assignment are underlined. We see that each clause
has at least one literal that is true. Based on the assignment we now get a strict partial
order >′ defined as follows: >′= {(b >′ a), (a >′ c), (a >′ d), (b >′ c), (b >′ d), (c >′ d)},
which happens to also be a linear order over A′. Thus the computed order is b >′ a >′ c >′ d.
As >′ satisfies our global ordering formula, we conclude that it is a top-monotonic order
for <′.

3.3 Main Proof

Our main result holds without the assumption that the profile is minimally rich. The full
proof is more complicated due to the fact that there are more rules to be considered, with
more cases where it is not clear if the rules indeed lead to a strict linear order. Fortunately,
all these obstacles can be dealt with using arguments that, in principle, are similar to those
presented already. The proof follows exactly the same path as that of Theorem 2, but takes
into account that the set QNT may be non-empty. Thus, in addition to creating 2CNF
formulas out of the sets of legal orderings from QT (see Table 1), we also do the same with
the sets from QNT (using Table 2). As in the proof of Theorem 2, we show that the global
formula has a satisfiable assignment if and only if a top-monotonic order exists.

Theorem 3. Let A be a set of alternatives, N be a set of agents, and < be a preference
profile over A. The problem of determining whether a top-monotonic order of < exists (and
computing it) is polynomial-time solvable.

Proof. We extend the proof of Theorem 2 by considering that QNT may be non-empty (if
QNT = ∅ we can use Theorem 2 directly). This will be reflected in the number of additional
combinations of alternatives that we have to consider. This will lead to an extended list of
rules for the sets of legal orderings that, as we will show later on, can also be represented in
the 2CNF form. This will allow us to use the same argument as in the proof of Theorem 2
to reduce the problem of determining a top-monotonic order to the SAT-2CNF problem.

Let us consider some element X from a non-empty set QNT . By the definition of QNT ,
X is a set of legal orderings for a pair of agents i, j ∈ N and a triple of distinct alternatives
x, y, ω, such that x ∈ ti(A), y ∈ tj(A), and ω ∈ A \ T . There are exactly nine different
possible combinations of preferences for the pair of agents i, j over the alternatives x, y, ω.
We list all these combinations along with their corresponding sets of legal orderings in
Table 2. Note that there are much fewer combinations than in Table 1 and this is because
set QNT has a more strict definition than QT . Specifically, it is required that x is among
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Comb. of agents i, j ∈ N Set of legal orderings 2CNF ordering formula

1 x �i ω �i y and y ≈j x �j ω {(ω, x, y), (y, x, ω), (x, ω, y), (y, ω, x)} (xy ∨ yω) ∧ (ωy ∨ yx)
2 x �i y ≈i ω and y �j x �j ω {(ω, x, y), (y, ω, x), (x, ω, y), (y, x, ω)} (xy ∨ yω) ∧ (ωy ∨ yx)
3 x �i y �i ω and y �j ω �j x {(y, ω, x), (ω, y, x), (x, ω, y), (x, y, ω)} (yx ∨ xω) ∧ (ωx ∨ xy)
4 x �i y ≈i ω and y �j ω �j x {(x, ω, y), (y, ω, x)} (xy ∨ yω) ∧ (xω ∨ yx) ∧ (ωx ∨ ωy)
5 x �i y ≈i ω and y ≈j x �j ω {(ω, x, y), (y, x, ω), (x, ω, y), (y, ω, x)} (xy ∨ yω) ∧ (ωy ∨ yx)
6 x �i y ≈i ω and y �j x ≈j ω {(y, ω, x), (x, ω, y)} (xy ∨ yω) ∧ (xω ∨ yx) ∧ (ωx ∨ ωy)
7 x �i y �i ω and y �j x �j ω all permutations of {x, y, ω} n/a
8 x �i y �i ω and y ≈j x �j ω all permutations of {x, y, ω} n/a
9 x ≈i y �i ω and y ≈j x �j ω all permutations of {x, y, ω} n/a

Table 2: All possible settings of preferences for pairs of agents i, j ∈ N over the set of alter-
natives x, y, ω, where x ∈ ti(A), y ∈ tj(A) and ω ∈ A \ T , with corresponding sets
of legal orderings (third column). The last column shows 2CNF representations
of each ordering formula (note that we write, e.g., yx instead of ¬xy). Rules 7–9
have the same interpretation as rules 19–21 in Table 1.

the most preferred alternatives for agent i, y is among the most preferred alternatives for
agent j, and ω can never be the most preferred alternative.

Similarly to how we proceeded in the proof of Theorem 2, we can represent each of the
sets of legal orderings from Table 2 as a 2CNF ordering formula. This time rules 7–9 do
not introduce any constraints on the top-monotonic order.

We see now that we can make an instance I of a SAT-2CNF problem by taking the
conjunction of the 2CNF formulas for the matching sets of legal orderings for all the elements
from both QT and QNT by using the rules from Table 1 and 2 correspondingly, and by
following the methodology from the proof of Theorem 2. We make similar claim as in that
proof that a top-monotonic order exists for < if and only if I has a solution, and, if so, that
the top-monotonic order is a linear extension of the order >′ induced by the assignment of
the variables for the solution of I (in the same way as in the proof of Theorem 2). We can
use almost all the same arguments as in the proof of Theorem 2 to prove that our reduction
to SAT-2CNF is correct. The only exception regards showing that the transitivity property
is fulfilled for the relation >′. We see that the transitivity property is fulfilled for all the
triples x, y, z ∈ T (by the argument from the proof of Theorem 2). We also see that it is
fulfilled for all the triples x, y, ω, such that there are agents i and j such that x ∈ ti(A),
y ∈ tj(A), ω ∈ A \ T and the preferences of these agents map to one of the rules 1–6 from
Table 2 (the rules are “enforcing” transitivity, in the same way as in Theorem 2). The only
situation that remains to be handled occurs if there exist x′, y′ ∈ T , ω′ ∈ A \ T , such that
for each pair of agents i, j ∈ N , such that x′ ∈ ti(A) and y′ ∈ tj(A), the preferences of
agents i and j over alternatives x′, y′, ω′ map to the rules 7–9 from Table 2. In this case
there is no 2CNF formula we can add to instance I that would “enforce” the transitivity
between x′, y′ and ω′, yet I may contain variables that correspond to the relations between
each pair of these alternatives. We address this issue in the following lemma.

Lemma 4. Let A be a set of alternatives, N be a set of agents, and < be a preference
profile over A. Let T be a subset of A that contains exactly those alternatives that are top
in A of some agent from N . If there exists a triple of alternatives x, y, ω, where x, y ∈ T
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and ω ∈ A \ T , such that for every possible pair of candidates i, j ∈ N , with x ∈ ti(A) and
y ∈ tj(A), the agents i and j’s preferences over alternatives x, y, ω always match one of the
rules 7–9 from Table 2, then SAT-2CNF instance I obtained for the set of agents N and
the set of alternatives A will either not contain (some of) the variables that correspond to
the relations between alternatives (x, y), (x, ω) and (y, ω) or each order > that is obtained
from each solution of I will fulfill transitivity property for the alternatives x, y, ω.

Proof. It is sufficient to show that if instance I is satisfiable and contains variables that
correspond to at least one of (x, y), (x, ω) or (y, ω), then for all satisfying truth assignments
for I the transitivity property is fulfilled for x, y and ω.7 To the contrary, let us assume
that instance I is satisfiable and for some solution of I the transitivity is not fulfilled for
x, y, ω. For that to be true, I has to contain all three literals that map to (x, y), (x, ω) and
(y, ω) as otherwise it would be impossible to encode the loss of transitivity. Without loss
of generality, let us assume that the variables are xy, xω and yω. Now, for the transitivity
not to be satisfied they can have one of the two following assignments in the solution of I:

xy ← True, xω ← False, yω ← True,

or

xy ← False, xω ← True, yω ← False.

(4)

We have assumed in the lemma statement that for all possible pairs of agents when
considering triple {x, y, ω}, we always get rules 7–9 from Table 2, which do not output
any clauses. Yet, we need literals xy, xω and yω to be a part of the 2CNF formula that
we built. Therefore there have to be additional alternatives in our election that, when
considered jointly with x, y and ω, match rules that output these literals. So, let us assume
that there is an alternative a such that when considering {a, x, ω}, the triple matches one
of the rules 1–6 from Table 2 and, therefore, generates clauses for our formula that include
literal xω. Let us also assume that there exists an alternative b such that when considering
triple {b, y, ω}, we match rules that generate literal yω. It might be the case that a = b
but this is irrelevant for the rest of the proof, so we will not consider it as a separate case.
We note that triples {a, x, ω} and {b, y, ω} can only match rules from Table 2 (because ω
is never top in A), and hence both a and b must be in T . Finally, we also need literal xy
to be generated. We will show later that for that to happen we do not need any additional
alternatives in our election, and that either for {x, y, a} or {x, y, b} we will always get a rule
that uses xy (note that a, b, x, and y are in T , so for the rules generated by aforementioned
triples we use Table 1).

Based on the above discussion, we claim that if for a set of alternatives A that includes
x, y, ω, a and b, set of agents N , and preference profile <, there exists an instance I that
includes literals xy, xω, and yω and that can be satisfied with one of the assignments from
Eq. 4, then we can find N ′ ⊆ N , ‖N ′‖ ≤ 4, such that instance I ′ computed for agents N ′,
alternatives A′ = {x, y, ω, a, b}, and preference profile < is satisfiable, the set of literals in I ′

is a subset of literals from I, and the matching assignment for the solution of I is a solution
for I ′. In other words, we are going to show that if our lemma were false, then there would
be an election with four agents and five candidates that would form a counterexample.

7. Note that the existence of x, y and ω in the set of alternatives alone does not imply the listed variables
will be a part of I because we only add variables when needed by at least one of the rules we generate
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Let us first consider a pair of agents i, j from N that, when considered, would output
a rule that includes literal xω (if there are many such pairs, we pick one arbitrarily). It
means that both agents i and j have at least one of x and a as top in A, and that ω is not
top in A of neither i nor j (in fact, it is not top of any agent from A). Formally, we have:

ti(A) ∩ {x, a} 6= ∅, tj(A) ∩ {x, a} 6= ∅, and ω /∈ ti(A) ∪ tj(A).

We note that the same holds true for A′. This follows from the fact that if x were top in A
of some agent, it would also be top in all subsets of A that include x. Also ω cannot be top
in A′ of neither i nor j. This is true because if x is top in A of i, then since ω is not top in
A of i, agent i has to prefer x over ω, and therefore ω is not top in A′ for i too. Otherwise,
if x is not top in A of i, then a is for sure and the same reasoning can be used to show that
ω is not top in A′ of i. Finally, we can show the same for j, that is, that ω is not top in A′

of j.
We select the second pair k, l of agents from N that are responsible for generating literal

yω in I in a similar way. We now see that the rules generated for agents N ′ = {i, j, k, l} and
alternatives A′ = {x, y, ω, a, b} are the same under both I ′ and I. This is true because the
preferences of the agents in N ′ with respect to the alternatives from A′ remain unchanged
in I ′. Therefore, given our assumption that there is a solution of I where transitivity is not
fulfilled for x, y, ω we see there exists a matching solution for I ′ with the same characteristic.

As a result of the above, we can see that assuming I exists we can find an instance I ′

that only has five alternatives and no more than four agents for which a satisfying truth
assignment breaks transitivity. If we could show that no such instance I ′ exists, then we
would prove our lemma by showing our assumption on the existence of I is not true.

So far we have not been able to find an easy-to-follow proof for showing that a coun-
terexample for our lemma cannot be found in an election with up to four agents and five
candidates. But since the number of possible problem instances is bounded by an accept-
ably small constant, we were able to perform a computer-assisted proof by exhaustive search
where we tried all possible instances I ′. The computer program we used works as follows:

. For a set of alternatives A = {x, y, ω, a, b}, each possible set of agents N of size no
bigger than four, and each possible preference profile < such that ω is not top on A
for any agent from N and the profile leads to the literals xω and yω being generated,
do:

. Verify that literal xy is generated for <.8

. If < is top-monotonic (we use Definition 3 and test every possible order of alter-
natives) then check if instance I can be satisfied for one of the initial assignments
of literals from Eq. 4; if it can, then we have found a profile that fails our criteria.

Below we describe the methodology that our program follows for scanning through all
the possible combinations in the steps described above. Along the way we also provide an
upper bound on the number of cases the program needs to consider.

For the initial step, it suffices to consider orderings that do not satisfy transitivity for x,
y and ω, that is, orderings which for pairs (x, y), (x, ω) and (y, ω) match one of the options

8. For every profile where literals xω and yω were generated, literal xy was generated as well.
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from Eq. (4). This brings the number of orderings that we need to consider from 210 = 1024
(for each of the 10 pairs of alternatives we need to choose in which of two ways it is ordered)
down to 2 ·27 = 256 (we have two versions for arranging the three crucial pairs and we need
to consider all possible arrangements for the remaining 7 pairs).

To get a sense for how many possible preference profiles we need to consider, let us
start with an upper bound on the number of possible votes over five alternatives that we
need to consider. For that we take any possible arrangement of five alternatives (in one of
5! ways) and in four places in between agents we place � or ≈ symbol in 24 ways. This
yields 5! 24 = 1920 possible combinations. This number is pretty large, given that we need
to consider four agents. This would lead to 19204 ≈ 1013 possible profiles.

To reduce this number, we take advantage of the fact that we do not want to consider
votes that place ω among top choices. Furthermore, we note that we only want to consider
profiles in which no rules are being generated for triple (x, y, ω), so for each pair of agents
we always expect that triple to fall under rules 7–9 from Table 2. For that to happen, if x
or y is among top choices in a vote we also require that x � ω and y � ω. This follows from
the fact that a unique feature of rules 7–9 is that for both agents considered for generating
the rule we always have x � ω and y � ω.

To illustrate what votes are worth considering for our cases, let us look at the following
examples. Vote x ≈ b � y ≈ a � ω is fine, as even though x is top of that agent, we also
have y � ω. Vote a � ω ≈ b � x � y is also fine because neither x nor y is top of that
agent. On the other hand, vote y ≈ a � x ≈ b ≈ ω is not fine, because y is top while x ≈ ω.

To count the number of possible votes given all the constraints described above, we list
four possible shapes of a valid vote:

Shape A: x � y � ω – each group (marked with an underline) represents a part of
a vote where remaining alternatives can be added. Alternatives within a group can
be reordered and separated with either ≈ or �. The only exception is the first group,
where we can only use ≈ and hence the order of alternatives does not matter.

Shape B: y � x � ω – a symmetric case to the previous one, where x and y are
swapped.

Shape C: x ≈ y � ω – similarly here groups can be extended by adding remaining
alternatives (a and b); in the first group only equality (≈) can be used between the
alternatives.

Shape D: � x ? y ? ω – in this case we require that the first group contains at least
one alternative. We use ? in the second group to indicate the alternatives there can
be reordered and either � or ≈ can be used in place of ?.

We want to count the number of possible votes for each of the cases defined above. But
first let us consider some simplified cases that will help with further calculations. If we
have a group that contains two alternatives (say a and b), and in the group we can use
either ≈ or � to separate the alternatives, then there are three possible ways to order the
alternatives in such a group, a � b, b � a and a ≈ b. Now let us consider a group of three
alternatives. In such a case, there are 6 ways in which only � is used, 6 ways with one �
and one ≈ (we have 3 unique ways when ≈ is between the first pair and 3 ways when it is
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between the second pair), and a single way with two ≈ symbols. In total, a group of three
alternatives yields 13 unique ordering combinations. In a similar way, we can calculate the
result for a group of four alternatives, which has 85 unique orderings.

Using the above we can count the number of possible orderings for each shape of a valid
vote presented above:

Shape A: We first consider that we choose two different groups to add a and b. This can
be done in 6 different ways. In that case, alternatives in these two groups (of two
elements each) can be ordered in 3 unique ways (see above). This gives 6 · 3 · 3 = 54
combinations in total. Another option is to select one group in 3 possible ways and
add both a and b to it. Groups will have three alternatives so that gives 3 · 13 = 39
possible orderings. We sum up both cases to get 54 + 39 = 93 possible combinations.

Shape B: This case is symmetric to Case 1 and similarly yields 93 possible combinations.

Shape C: In this case we can put both a and b in the first group in only one way (we
need to use equality). If we decided to place both a and b in the second group we can
do that in 13 ways (a group of three alternatives). Finally, if we put one alternative
in the first and one in the second group, we get 2 · 3 = 6 ways. This sums up to
1 + 13 + 6 = 20 possible votes.

Shape D: Similarly, for the last shape we consider placing both a and b in the first group.
Since there are three alternatives in the second group, we can have 13 ordering com-
binations in that case. As we always need to place one alternative in the first group
the only other way to create a valid ordering is by placing one alternative in the
first group and the other one in the second. This can be done in 2 ways and the
group will contain four alternatives so it can be ordered in 85 ways. In total we get
13 + 2 · 85 = 183 possible votes.

Now, let us get an upper bound for the number of possible profiles of four agents we want
to consider. Given the above, we have 93 + 93 + 20 + 183 = 389 different votes that we need
to consider. Among these, we only have 93+20 = 113 possible votes that rank x on top. We
want to enforce that x and y are both top on A for some agents from N , so we can pick first
agent’s vote from this selection of 113 votes, and then the remaining ones from the full list of
389 possibilities. Note that, while following this methodology, we still may get combinations
in which y is not on top for any of the agents. If we eliminated this possibility too, the
upper bound would go down even further, but it would complicate the way of generating
profiles. Instead, we filter out profiles that do not match our requirements. With that taken
into account, we have 113 · 3893 < 7 · 109 possible profiles we should consider, which puts
it in a reasonable range for a middle-end desktop hardware to process within a matter of
seconds. As mentioned earlier, the profiles we can generate this way may not meet all the
constraints required by the algorithm. Also, the generated profile may not lead to all the
required literals being generated. We can therefore rule out even more profiles at the early
step and avoid further calculations.

Our program has verified all possible combinations of instances with five alternatives
and four or fewer agents and have not encountered an instance that would satisfy the
algorithm.
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By Lemma 4, we see that the case in which the transitivity property cannot be fulfilled
even though a solution for I exists is not possible. We therefore see that the transitivity
property is satisfied for >′. Similarly to the proof of Theorem 2, we state now that I has a
solution if and only if < is top-monotonic, and if the solution exists, then a linear extension
of the order >′ induced by the solution is a top-monotonic order of <. We also see that
I can be computed and solved in polynomial-time with respect to the numbers of agents
and alternatives. The only difference comparing to the proof of Theorem 2 is that in the
rules lookup phase we also consider some triples made of candidates that are not top in A
for any agent. The upper bound for the number of literals and variables in I are the same,
3 ·N2 · ‖A‖3 and ‖A3‖ correspondingly, as each combination of agents and alternatives will
match at most one rule (either from Table 1 or from Table 2).

Below we summarize the main steps of our algorithm and establish O(m4n2) as a simple
upper bound on its running time. We note that the algorithm could be implemented more
effectively using various tricks and more effective data structures—what we describe here
is the most basic implementation. The algorithm consists of the following five steps:

1. We first compute the set T . This can be done in time O(nm) as we simply need to
iterate over all the preference orders and mark the alternatives that are ranked on
top; there are n agents and each of them ranks m candidates.

2. We elliminate indistinguishable alternatives: For each pair of alternatives we check if
there is some agent that strictly prefers one alternative from the pair over the other.
If such an agent does not exist, then we remove one of these alternatives from the
preference profile. A naive implementation of this step requires time O(m3n); for each
pair of alternatives we look at the whole profile of size O(nm).

3. We generate our SAT-2CNF formula. This is the most computationally intensive part
of the algorithm and it requires time O(m4n2). We consider all triples of candidates
(such that either all three candidates belong to T or two of them belong to T and
one does not) and all pairs of agents; there are O(m3n2) combinations to consider.
We extract the preferences regarding each combination of alternatives and agents in
time O(m) and we form respective clauses by looking up our tables (each combination
leads to at most a few added clauses).

4. We solve the formed SAT-2CNF formula using a standard linear-time algorithm. Since
the formula has at most O(m3n2) clauses, solving it takes at most O(m3n2) time.

5. In the final step we prepare the top-monotonic order based on the partial order implied
by the truth assignment for the SAT-2CNF formula. This can be done in time O(m2)
using the standard topological sorting algorithm. In this step we also reinsert the
indistinguishable alternatives that were removed in the second step (we place them
right next to the candidates that they are indistinguishable from).

As our algorithm is relatively slow, it is natural to ask if there is a faster one, or if, e.g.,
there is a natural formulation of the problem as an integer linear program, which can be
solved more efficiently in practice.
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3.4 SAT-2CNF Algorithm for Recognizing Single-Peaked Profiles

The definition of top-monotonicity is not very intuitive and, by necessity, the algorithm
presented in the preceding sections is somewhat involved. One exercise that may help with
understanding our core ideas is to adapt our methodology to a more intuitive domain.
Below we use our approach to derive an algorithm for recognizing single-peaked profiles
(analogous technique, focused on ordering voters, also works for recognizing single-crossing
profiles). While more efficient algorithms for solving this problem exist (Bartholdi & Trick,
1986; Escoffier et al., 2008), our point is to illustrate the approach.

As per Definition 1, a preference profile � is single-peaked if there exists a linear order >
over the set of alternatives such that for each three alternatives x, y, and z it holds that:

(x > y > z) ∨ (z > y > x) =⇒ ∀i∈N (x �i y =⇒ y �i z).

We follow the notation from this definition. For each triple of alternatives S = {x, y, z} we
define the set LS of legal orderings to be the set of ordered sequences σ = (σ1, σ2, σ3), such
that:

1. {σ1, σ2, σ3} = S, and

2. for each i ∈ N we have σ1 �i σ2 =⇒ σ2 �i σ3.

We see that the set of legal orderings for a given triple tells us what are the possible ways
in which the alternatives from the triple can be ordered on the societal axis, assuming it
exists, in order to fulfill the requirements of single-peakedness. Therefore, if for some triple
of alternatives S the set of legal orderings LS is empty, we know that the profile is not
single-peaked as that would mean there is no way these alternatives can be placed on the
axis without violating the definition’s requirements. From now on we assume that for every
triple S, LS is non-empty.

We note that if for some set S = {σ1, σ2, σ3} a triple (σ1, σ2, σ3) belongs to LS , then
triple (σ3, σ2, σ1) also belongs to LS . This follows because the condition for including
triple (σ1, σ2, σ3) simply says that if we restrict the preference orders of all the agents to
alternatives σ1, σ2, σ3, then σ2 is never ranked last (so, in terms of Fishburn, 1997, we have
a never last restriction). The same condition is satisfied by triple (σ3, σ2, σ1).

Let us consider a set S = {x, y, z} of three alternatives and agent i ∈ N . There are six
possible permutations on how alternatives from S can be ordered according to preference
�i of agent i. Let us first assume that x �i y �i z. In such a case, we see that neither
(y, z, x) nor (x, z, y) is a part of LS . This follows from the fact that the least favorable
alternative cannot be placed in between the more favorable ones on the societal axis, so
such a setup clearly violates the definition of single-peakedness. Thus, regardless of how
alternatives from S are ordered according to �i, we can always find at least one pair of
sequences of alternatives from S that are not included in LS . Therefore what we are left
with are either two or four possible sequences in LS for each given S (we already assumed
that LS is never empty and we argued that if a sequence belongs to LS then so does its
reverse).

Below we consider two possible sizes of the set LS for a selected triple S = {x, y, z}:

1. If LS contains exactly two elements, then—up to renaming the alternatives—it is of
the form LS = {(x, y, z), (z, y, x)}.
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2. If LS contains four elements, then—up to renaming the alternatives—it is of the
form LS = {(x, y, z), (z, y, x), (y, x, z), (z, x, y)}. Indeed, for each sequence in LS

its reverse must be included as well, and one can verify that—up to renaming of the
candidates—this is the only possible form of LS .

Following the methodology from the algorithm for recognizing top-monotonic profiles,
we now want to express the sets of legal orderings in the form of 2CNF formulas. As in the
algorithm for the case of top-monotonicity, the literals in the formula will correspond to the
ordered pairs of alternatives. For example, if we take alternatives x and y, then we create
two complementary literals xy and yx, where literal xy is a negation of the literal yx (we
choose arbitrarily which one is represented as a variable and which one is this variable’s
negation). For the first variant of the set LS (with two elements) we get a 2CNF formula
(xy ∨ zx)∧(xz ∨ zy)∧(yz ∨ yx), while for the second variant (with four elements) we get
(xz ∨ zy)∧(yz ∨ zx). We can use Table 1 to lookup rules based on the shape of the set of
legal orderings. The listed formulas are respectively from the rule no. 12 and rule no. 1.

To summarize the process, for each triple of alternatives S = {a, b, c} we compute the
set of legal orderings LS that will have one of the following shapes:

1. If LS has two elements, then we can find a mapping between S and the set {x, y, z},
such that when we map elements from LS we will get {(x, y, z), (z, y, x)}. In this case
we generate a 2CNF formula following rule no. 12 from Table 1, (xy ∨ zx) ∧ (xz ∨
zy) ∧ (yz ∨ yx), by applying an inverse mapping function to the alternatives from S.

2. If LS has four elements, then we can find a mapping between S and the set {x, y, z},
such that after mapping all the elements from LS we get a set {(x, y, z), (z, y, x),
(y, x, z), (z, x, y)}. We generate a 2CNF formula based on rule no. 1 from Table 1,
(xz ∨ zy) ∧ (yz ∨ zx), and translate it back into the domain of alternatives from S
using inverse mapping.

Finally, we form the global ordering formula by taking a conjunction of all the generated
2CNF formulas. We claim that if the global ordering formula is satisfiable, then the profile
is single-peaked, and otherwise it is not.

To prove the above statement, we first assume that the global ordering formula is satis-
fiable. In this case, for each pair of alternatives x, y, we define a relation > such that x > y
if literal xy evaluates to True in the global ordering formula solution, and y > x if literal
xy evaluates to False. We see that > is a strict order over the set of alternatives because:

(a) It is defined for all possible distinct pairs of alternatives.

(b) It is irreflexive as we do not define the relation between two identical alternatives.

(c) It is asymmetric, as otherwise for some two candidates x and y we would have literal
xy which would evaluate to both True and False.

(d) It is transitive, because transitivity is enforced by the order of triples of alternatives
S in the set LS .

We note that > (assuming it exists) is a single-peaked axis for the preference profile.
We see that for each set of three alternatives S = {x, y, z}, if x > y > z or z > y > x
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then both (x, y, z) and (z, y, x) are included in LS . This follows from the fact that the
rule generated based on the set LS enforces the relation such that x, y, and z are always
placed in one of the orders from LS . This in turn means that for each agent i ∈ N we have
x �i y =⇒ y �i z, as we require this for both (x, y, z) and (z, y, x) to be included in LS .

To show the right to left part, it is sufficient to note that if single-peaked order exists
then the global ordering formula is satisfiable. We assume > exists and is the single-peaked
order of our profile. We now take the global ordering formula and we assign True to each
literal xy such that x and y are two distinct alternatives such that x > y. To the contrary,
let us assume that the above assignment of literals does not satisfy the global ordering
formula. It means that there is a clause in the formula that has two literals both evaluating
to False. We know that every clause in the formula corresponds to a set of legal orderings
for some triple of alternatives. We let S = {x, y, z} be a triple of alternatives and LS be
a set of legal orderings the failing clause corresponds to. As LS contains all orderings of
alternatives x,y and z that can legally appear on the societal axis, we see that the fact
that the clause is not satisfied means that > does not order x, y and z in one of these
possible ways. This contradicts the fact that > is a single-peaked axis and therefore shows
the right-to-left part of our statement.

Example 5. Consider candidate set {a, b, c, d} and profile � of three preference orders:

b �1 c �1 d �1 a, c �2 b �2 d �2 a, a �3 b �3 c �3 d.

To run our algorithm we start by defining the sets of legal orderings for each set of three
alternatives:

1. For the set S1 = {a, b, c}, we have LS1 = {(a, b, c), (c, b, a)}. Clearly, (b, a, c) and its
reverse cannot be a part of LS1 because b �2 a holds while a 6�2 c which makes it not
fulfill the definition as we would expect that b �2 a =⇒ a �2 c is true. Similarly,
sequence (a, c, b) and its reverse are not included as we have that a �3 c but also
c 6�3 b.

2. For the set S2 = {a, b, d}, we have LS2 = {(a, b, d), (d, b, a)}.

3. For the set S3 = {a, c, d}, we have LS3 = {(a, c, d), (d, c, a)}.

4. Finally, for the set S4 = {b, c, d}, we have LS4 = {(b, c, d), (d, c, b), (c, b, d), (d, b, c)}.
Here we only eliminated sequence (c, d, b) and its reverse, which do not satisfy the
single-peakedness condition for any i ∈ {1, 2, 3}.

As we see, there are no empty sets of legal orderings and, so, we can move on to the next
step.

For each of Si, 1 ≤ i ≤ 4, we output the 2CNF formula that corresponds to LSi and
we take the conjunction of these formulas as the global ordering formula. We present this
formula below (the following lines represent the clauses generated from LS1, LS2, LS3, and
LS4, respectively):

(ab ∨ ca) ∧ (ac ∨ cb) ∧ (bc ∨ ba)

∧(ab ∨ da) ∧ (ad ∨ db) ∧ (bd ∨ ba)
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∧(ac ∨ da) ∧ (ad ∨ dc) ∧ (cd ∨ ca)

∧(cd ∨ db) ∧ (bd ∨ dc).

For each pair of alternatives x and y from {a, b, c, d} we choose one of xy and yx to be a
variable and the other to be its negation, to obtain the following global ordering formula:

(ab ∨ ¬ac) ∧ (ac ∨ ¬bc) ∧ (bc ∨ ¬ab)
∧(ab ∨ ¬ad) ∧ (ad ∨ ¬bd) ∧ (bd ∨ ¬ab)
∧(ac ∨ ¬ad) ∧ (ad ∨ ¬cd) ∧ (cd ∨ ¬ac)

∧(cd ∨ ¬bd) ∧ (bd ∨ ¬cd).

We seek a satisfying truth assignment for this formula. This can be done using one of the
polynomial-time solvers for SAT-2CNF problem, but in our case it suffices to notice that
every clause contains a non-negated variable and, so, we simply set all the variables to be
true. In the formula above we underlined the literals that are set to be true.

The fact that the global ordering formula has a solution indicates that the profile is
single-peaked. From the solution of the formula we also get single-peaked order R> =
{(a, b), (a, c), (a, d), (b, c), (b, d), (c, d)} that yields societal axis a > b > c > d.

4. Conclusion

We have given the first polynomial-time algorithm for recognizing if a profile of (possibly
weak) preference orders is top-monotonic. Top-monotonic preferences are in principle very
attractive. For example, they subsume single-peaked and single-crossing ones, while en-
suring that a (weak) Condorcet winner always exists. However, they are not easy to work
with.

Our proof relies on a novel way of modeling restricted domain problems by reducing them
to boolean satisfiability problems. This methodology makes the top-monotonic definition
easier to reason about and far more approachable to consider with respect to computational
social choice problems. We also show that our approach is more general and can be used,
e.g., for the single-peaked domain (and possibly other restricted domains too).

We therefore hope that our work will enable further researchers to show positive algo-
rithmic consequences of the top-monotonicity assumption. For example, it is natural to
ask if the Chamberlin–Courant rule is polynomial-time solvable under top-monotonic pref-
erences; it is under single-peaked (Betzler et al., 2013) and single-crossing ones (Skowron
et al., 2015). It is also interesting to compare the notion of top-monotonicity to that of
value-restricted profiles (Sen, 1966). We also hope that the method presented in this paper
can be successfully applied to other problems from the restricted domains area.
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Barberà, S., & Moreno, B. (2011). Top monotonicity: A common root for single peakedness,
single crossing and the median voter result. Games and Economic Behavior, 73 (2),
345–359.

Bartholdi, III, J., & Trick, M. (1986). Stable matching with preferences derived from a
psychological model. Operations Research Letters, 5 (4), 165–169.

Betzler, N., Slinko, A., & Uhlmann, J. (2013). On the computation of fully proportional
representation. Journal of Artificial Intelligence Research, 47 (1), 475–519.

Black, D. (1958). The Theory of Committees and Elections. Cambridge University Press.

Booth, K., & Lueker, G. (1976). Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System
Sciences, 13 (3), 335–379.

Brandt, F., Brill, M., Hemaspaandra, E., & Hemaspaandra, L. (2015). Bypassing combina-
torial protections: Polynomial-time algorithms for single-peaked electorates. Journal
of Artificial Intelligence Research, 53, 439–496.

Bredereck, R., Chen, J., & Woeginger, G. (2013). A characterization of the single-crossing
domain. Social Choice and Welfare, 41 (4), 989–998.

Clearwater, A., Puppe, C., & Slinko, A. (2015). Generalizing the single-crossing property
on lines and trees to intermediate preferences on median graphs. In Proceedings of
the 24th International Joint Conference on Artificial Intelligence, pp. 32–38.

Conitzer, V. (2009). Eliciting single-peaked preferences using comparison queries. Journal
of Artificial Intelligence Research, 35, 161–191.

Cornaz, D., Galand, L., & Spanjaard, O. (2012). Bounded single-peaked width and propor-
tional representation. In Proceedings of the 20th European Conference on Artificial
Intelligence, pp. 270–275.

Cornaz, D., Galand, L., & Spanjaard, O. (2013). Kemeny elections with bounded single-
peaked or single-crossing width. In Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, pp. 76–82.

Elkind, E., Faliszewski, P., Lackner, M., & Obraztsova, S. (2015). The complexity of rec-
ognizing incomplete single-crossing preferences. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence, pp. 865–871.

Elkind, E., Faliszewski, P., & Slinko, A. (2012). Clone structures in voters’ preferences. In
Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 496–513.

Elkind, E., & Lackner, M. (2015). Structure in dichotomous preferences. In Proceedings of
the 24th International Joint Conference on Artificial Intelligence, pp. 2019–2025.
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