Journal of Artificial Intelligence Research 66 (2019) 411-441 Submitted 01/2019; published 10/2019

Revisiting Counting Solutions
for the Global Cardinality Constraint

Giovanni Lo Bianco GIOVANNI.LO-BIANCO@IMT-ATLANTIQUE.FR
IMT Atlantique,
4 Rue Alfred Kastler, 44300 Nantes, France

Xavier Lorca XAVIER.LORCA@MINES-ALBI.FR
IMT Mines Albi,
Allée des Sciences, 81000 Albi, France

Charlotte Truchet CHARLOTTE.TRUCHET@QUNIV-NANTES.FR
UFR de Sciences et Techniques,

2, rue de la Houssiniére, BP 92208,

44322 NANTES CEDEX 3, France

Gilles Pesant GILLES.PESANT@QPOLYMTL.CA
Polytechnique Montréal,

2900 Boulevard Edouard-Montpetit,

Montréal, QC H3T 1J4, Canada

Abstract

Counting solutions for a combinatorial problem has been identified as an important
concern within the Artificial Intelligence field. It is indeed very helpful when exploring the
structure of the solution space. In this context, this paper revisits the computation process
to count solutions for the global cardinality constraint in the context of counting-based
search. It first highlights an error and then presents a way to correct the upper bound on
the number of solutions for this constraint.

1. Introduction

Model counting is a fundamental problem in artificial intelligence. It consists in counting
the number of solutions of a given problem without solving the problem and it has numer-
ous applications such as probabilistic reasoning and machine learning (Gomes, Hoffmann,
Sabharwal, & Selman, 2007; Meel et al., 2015). Counting solutions of a problem can also
be helpful when exploring the solution space (Russell & Norvig, 2010).

In the field of Constraint Programming (CP), we aim at solving hard combinatorial
problems called Constraint Satisfaction Problems (CSP). We are given a set of variables,
which are the unknowns of the problem, a set of domains, which describe the possible value
assignments for each variable, and a set of constraints, which are mathematical relations
between the variables. A constraint can simply be an arithmetic constraint such as x > y+1
or have a more complex structure, called global constraints, such as alldifferent. CP is
based on the propagation-search paradigm. Each constraint has a propagator that filters
inconsistent values from domains. Once all information has been propagated, a fixed point
is reached and a variable/value assignment has to be chosen. And again, this assignment

(©2019 AI Access Foundation. All rights reserved.

Lo Bianco, LorcA, TRUCHET, & PESANT

is propagated in the constraints network. If every variable has been instantiated, then a
solution is found. If a propagator empties a domain, then the last assignment choice is
reconsidered—we call it a backtrack. The propagator ”intelligence” can be parametrized—
it is called the propagator consistency. Generally the higher level of consistency of the
propagator, the more costly it is to filter the domains. It is sometimes worthwhile to have
less consistency and let the search strategy operates. The search strategy, also called search
heuristic, defines how the variable/value assignment is chosen when a fixed point is reached.

Search heuristics have been intensively studied during the last decades within constraint
programming (Boussemart, Hemery, Lecoutre, & Sais, 2004; Refalo, 2004; Michel & Hen-
tenryck, 2012). While most of these approaches have used generic and/or problem-specific
search strategies, the counting-based search heuristics (Pesant, Quimper, & Zanarini, 2012)
work directly with the combinatorial structure of the problem. The key idea is to guide
the resolution process toward the most promising part of the search space according to the
number of remaining solutions. Obviously, evaluating the number of solutions of a search
space is at least as hard as the problem itself. By relaxing the problem, Pesant et al. (2012)
consider the counting problem for each constraint separately, guiding the exploration toward
areas that contain a high number of solutions in individual constraints. In other words, such
a strategy bets on the future of the search space exploration.

This paper focuses on the global cardinality constraint (gcc) (Régin, 1996). Such a
constraint restricts the number of times a value is assigned to a variable to be in a given
integer interval. It has been known to be very useful in many real-life problems derived
from the generalized assignment problems (Ford & Fulkerson, 1962), such as scheduling,
timetabling and resource allocation (Nuijten, 1994). Pesant et al. (2012) state an upper
bound on the number of solutions for an instance of gcc, as well as exact evaluations for
other constraints like regular or knapsack. This paper shows that the upper bound for gcc
is actually not correct and presents a correction formulated as a non-linear minimization
problem. We give a detailed algorithm and a complexity study for the computation of
the new bound. The corrected bound is then adapted for counting-based search and its
behavior is compared to the former result (Pesant et al., 2012). This paper concludes with
an experimental analysis of the efficiency of both estimators within the search heuristic
maxSD, that aims at exploring first the area where there are likely more solutions.

Outline. Section 2 introduces the required constraint programming (CP) background as
well as the required material in graph and matching theory. Section 3 recalls the method
proposed by Pesant et al. (2012) to compute an upper bound on the number of solutions for
an instance of gcc before presenting a counter-example of it. Section 4.1 presents a direct
calculation method based on a non-linear minimization problem and Section 4.2 gives a
time complexity study of the computation of this corrected upper bound. Finally Section 5
presents an experimental evaluation of the new upper bound within Counting-Based Search
strategies.

2. Background

This section first defines the global cardinality constraint and illustrates its connection to
network flow theory. Then, some necessary background related to the graph and matching
theory is introduced.

412

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

Figure 1: Flow model of the instance of gcc presented in Example 2.2.

2.1 Global Cardinality Constraint

In the following, we will consider the classical constraint programming framework, where
the variables are X = {xi, ..., x,}, taking their values in finite domains {Ds, ..., D,}. We
write D the Cartesian product of the domains and Dx the union of all the domains: Dx =

U D,-:{yl,...ym}.

In this work, we focus on the global cardinality constraint, written gcc, which constrains
the number of times a value is assigned to a variable to be in a given integer interval. Given
a gcc constraint on X over domains {Dj, ..., D,}, we note T(gcc), the set of n-uples that
satisfy gcc (or its solutions) and #gcc = | T(gcc)|, the number of solutions.

Definition 2.1 (Global Cardinality Constraint (gcc), Régin, 1996). Let I, u € N™ be two
m-dimensional vectors. We define gcc(X, 1, u), the constraint, which searches for an assign-
ment of each variable of X such that each value y; € Dx must be taken at least |; times and
at most u; times. More formally:

T(gCC(X, /, U)) = {(dl, ey dn)’d,' e D ly < ’{d,"d,' = d}‘ < wug,Vd € Dx} (1)

The state of the art (Régin, 1996) shows that a global cardinality constraint can be
represented as a flow-based model on a bipartite graph. Let us take an example:

Example 2.2. Suppose we have a gcc defined on X = {x1, ..., X6} with domains Dy = Dy =
{1,2,3}, D» = {2}, D3 = Ds = {1,2} and Ds = {1, 3}; lower and upper bounds for the values
are respectively h = 1,b =3, =0 and up = 2,ur = 3,u3 = 2. We can model this gcc as
the flow problem depicted by Figure 1.

The labels I; — u; between each value node y; and the sink t represent the lower bound
and upper bound for the flow between y; and t. In order to make Figure 1 easier to read, we
did not represent the labels for edges between variables and values and between the source
s and the variables. The flow between a variable and a value must be 0 or 1 and the flow
between the source s and each variable is 1.

Then (1,2,1,2,2,3) and (3,2,1,2,2,3) are solutions but (1,2,1,1,2,3) is not because
the value 2 is only taken twice and it must be taken at least three times.

413

Lo Bianco, LorcA, TRUCHET, & PESANT

2.2 Matching Theory

We will see in subsection 3.2 that the global cardinality constraint can also be modeled as a
maximum matching problem. The next definitions recall some graph and matching theory
definitions that will be used afterwards. In the following, we will consider an undirected
bipartite graph written G = (V, E) for a graph, and V = Vj U V,, where V; and V; are
the two subsets of nodes corresponding to the parts of G. The graph G is balanced iff
|Vi| = |V2|. Unless specified, we take the same framework and notations as in Lovasz and
Plummer (2009) and we refer the reader to this book for more details.

Definition 2.3 (Biadjacency matrix of a bipartite graph). Let G(Vi U V5, E) be an undi-
rected bipartite graph. We call the biadjacency matriz of G, the matriz Bg = (bj) such
that

(2)

0, otherwise

, {1,if(v,-, vj) € E with v; € Vi and v; € Vs
ij =

Definition 2.4 (Matching). Let G(V,E) and M C E. M is a matching on G iff no two
edges of M have a node in common.

Definition 2.5 (Maximum matching). Let G(V, E) and M C E. M is a mazimum matching
on G iff M is a matching on G and |M| is mazimum.

Definition 2.6 (Perfect matching). Let G(V1U V5, E) and M C E. M is a perfect matching
on G if and only iff M is a matching on G and |[M| = |Vi| = |Va]|.

Note that a perfect matching can only exist in a balanced graph. Also, a perfect matching
is a maximum matching. We note #PM(G), the number of perfect matchings in G.

The next definition and proposition are the main results that (Pesant et al., 2012) have
shown to be relevant to count solutions on a global cardinality constraint. In the following,
we write M, , the set of square matrices of size n and S,, the symmetry group over {1, ..., n},
that is the group of permutations over {1, ..., n}.

Definition 2.7 (Permanent of a matrix). Let A = (aj) € My, be a square matriz, we
define the permanent of A a follow:

Perm(A) = Z H 3j (i) (3)
o€S,i=1

The permanent of a matrix looks similar to the determinant of a matrix. However, it is
much harder to compute. It is actually a #P—complete problem, as explained by Valiant
(1979).

Proposition 2.8. Let G(V1U Vs, E) be a balanced bipartite graph and Bg be its biadjacency
matriz, then the number of perfect matchings in G is equal to the permanent of Bg:

Perm(Bg) = #PM(G) (4)

414

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

This result is given in Lovasz and Plummer (2009) and we will not detail its proof.
Actually, a perfect matching in G corresponds to a permutation o € S, such that, Vi €
{1, ..., n}, bjg(jy = 1, where B = (bj;) is the biadjacency matrix of G. This result is central
in this study, as it gives a mathematical way to compute the number of perfect matchings
in a balanced bipartite graph. Since the exact computation of Perm(Bg) is #P-complete,
we will use two upper bounds that can be computed in polynomial time.

The first one is the Brégman-Minc upper bound conjectured by Minc (1963) and proven
by Brégman (1973).

Proposition 2.9 (Brégman-Minc upper bound). Let A € M, , and Vi € {1, ..., n}, r;i be the
sum of the it row of A, then
Perm(A) < UBBM(A) = T](ri")
i=1

3|

" ()

The second one is the Liang-Bai upper bound established by Liang and Bai (2004). An
independent proof of this bound has been published by Friedland (2008) .

Proposition 2.10 (Liang-Bai upper bound). Let A € M, and Vi € {1, ..., n}, r; the sum
of the ith row of A and q; = min((”—;“1} [51), then

Perm(A) < UB'B(A) =[] Vai(ri — ai + 1) (6)
i=1

None of these bounds strictly dominates the other. In the following, UBBM(Bg) can
also be noted as UBBM(G) (same for UB'B(Bg)), where Bg is biadjacency matrix of G.

3. Counting the Solutions to a Global Cardinality Constraint

In this section, we present the method proposed by Pesant et al. (2012) to compute an upper
bound on the number of solutions of a gcc instance. This method requires to compute
the number of maximum matchings covering one part of an unbalanced bipartite graph.
Subsection 3.1 presents how Pesant et al. (2012) suggest to enumerate those maximum
matchings. The method is then described in Subsection 3.2 before we develop a counter-
example to prove it wrong in Subsection 3.3. Subsection 3.4 introduces a new model that
will help us in fixing the error.

3.1 Number of Maximum Matchings of an Unbalanced Bipartite Graph

We have seen how to count the number of perfect matchings on a balanced bipartite graph.
For unbalanced bipartite graph, we are interested in counting the number of maximum
matchings that cover every node of the smaller part. In the following, if G is not balanced,
then #PM(G) refers to the number of maximum matchings that cover the smaller part.

We present here the method Pesant et al. (2012) use to deal with unbalanced graphs.
Let us consider G(V4 U V3, E), such that |V;i| < |V2|. We are interested in computing the
number of matchings covering every node in Vj. In order to retrieve a balanced graph, first,
ns fake nodes are added to part Vj.

415

Lo Bianco, LorcA, TRUCHET, & PESANT

Notation. If G is an unbalanced bipartite graph, we note G® the corresponding balanced
bipartite graph, after adding the fake nodes.

After balancing the graph, the number of perfect matchings on G?? can be computed,
as seen in subsection 2.2. Since there are fake nodes, the computed permanent (or upper
bound) is an overestimation of the true number of matching covering V4 on G. Pesant
et al. (2012) propose to divide the permanent of the balanced graph by the number of
permutations among the fake nodes. Indeed, for each matching covering V4 on G, there
are ng! corresponding perfect matchings on G/, each fake node being linked to every node

in V5. In the following, if G is not balanced, #PM(G) refers to the number of maximum
_ #PM(GbaI)

- Also, we will
£!

matchings covering the smaller part and we can write #PM(G)
consider that UBBM(G) is an upper bound over the number of maximum matchings and
UBBM(G) = uBZr(G™) (same thing for UBLB(G)).

ng!
A practical cage of this method is developed in Example 3.3.

3.2 Upper Bounding the Number of Solutions to a gcc

We present here the method proposed by Pesant et al. (2012) to compute an upper bound
of the number of solutions of a gcc instance. The authors first count partial instantiations
that satisfy the lower bound restriction. Then, for each of these partial instantiations, they
count how many possibilities there are to complete it to a full instantiation satisfying the
upper bound restriction.

Pesant et al. (2012) only considers instances in which every fixed variable (that can be
instantiated to only one value) has been removed and the lower and upper bound have been
adjusted accordingly. Let X’ = {x; € X| x is not fixed} be the set of unfixed variables and
lower bounds are I where I, = Iy — |{xj|x; is fixed and d € D;}| and upper bounds v are
defined similarly. We assume that, Vd € Dx, /[, > 0 and v/, > 0.

The first stage of the method counts the partial instantiations satisfying the lower bound
restriction. For this purpose, the notion of Lower Bound Graph is introduced:

Definition 3.1 (Lower Bound Graph, Pesant et al., 2012). Let G(X' U Dy, E;) be an undi-
rected bipartite graph where X' is the set of unfixed variables and Dy, the extended value set,
that is for each d € Dx the graph has I, vertices dl, d?, ... representing d (I, possibly equal
to zero). There is an edge (x;, d*) € E; if and only if d € D;.

Figure 2a represents the Lower Bound Graph for the instance described in Example 2.2
and its computation is detailed in Example 3.3.

By construction, a matching covering every vertex of D; corresponds to a partial instan-
tiation of the variables satisfying the lower bound restriction. The matching {(xi, 2), (xa, 2'),
(x5, 1)} corresponds to the partial assignment (2,2, _, 2,1,) (x2 is already instantiated) and
this partial instantiation satisfies the lower bound restriction. Note that the matching
{(x1,2'), (x4, 2), (x5,1)} leads to the same partial instantiation. Switching two duplicated
values does not change the resulting partial instantiation. Actually, every combination of

. . . #PM(G,
permutations among duplicates of a same value must be considered. There are Moo 71
partial instantiations satisfying the lower bound restriction. *

The authors are now interested in counting every possibility to complete a partial instan-

tiation to a full instantiation. Similarly, the Upper Bound Residual Graph is introduced:

416

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

(a) (b)

Figure 2: Lower Bound Graph (a) and Upper Bound Residual Graph (b) of the gcc instance
described in Example 2.2.

Definition 3.2 (Upper Bound Residual Graph, Pesant et al., 2012). Let G,(X' U D,, E,)
be an undirected bipartite graph where X' is the set of unfized variables and D, the extended
value set, that is for each d € Dx, the graph has ul, — I, vertices d!, d?, ... representing d (if
ul,— 1" is equal to zero then there is no vertex representing d). There is an edge (x;, d) € E,
if and only if d € D; and ul, — I, > 0.

Figure 2b represents the Upper Bound Residual Upper Graph for the instance described

in Example 2.2. At this point, K =) /) variables are already instantiated (without
deDyx
counting fixed variables). They are removed from the Upper Bound Residual Graph and,

by construction, a matching covering the remaining variables corresponds to a completion
of the partial assignment. On the partial instantiation (2,2, _,2,1,_), x3 and x remain to
instantiate. The matching {(x3, 1), (x6,3’)} leads to the full instantiation (2,2,1,2,1,3),
which satisfies both the lower bound and upper bound restrictions.

However, in general, there is an exponential number of partial assignments satisfying the
lower bound restriction. It is not reasonable to compute the number of maximum matchings
on G, for each of them. Pesant et al. (2012) suggest an over-approximation of the number
of possibilities to complete each partial assignment: the K variables already instantiated
are the variables that contribute the less to the combinatorial complexity of the problem.
They remove the K variables such that the number of maximum matchings in G, covering
the remaining variables is maximized. The resulting graph is noted G, (see Figure 3). Like
in the Lower Bound Graph, there are symmetries among duplicated values in D,. There are

% ways to complete a partial instantiation satisfying the lower bound
€Dy \Ug=1q)"

restriction to a full instantiation also satisfying the upper bound restriction.
(Pesant et al., 2012) concludes on the following upper bound:

at most

PM(G)) - #PM(G,

dgcc(X. 1 u) < #PM(//)I #, (/u?
[acpy o' - (ug = 13)!
In practice, we do not compute directly the number of perfect matchings, but we use
the Bregman-Minc or Liang-Bai upper bound (Subsection 2.2). Also we do not compute

(7)

417

Lo Bianco, LorcA, TRUCHET, & PESANT

Figure 3: Upper Bound Residual Graph after removing x3, x5 and x6 : G,,.

exactly G,, because it would require to consider (l);(/|) graphs and to compute the number
of perfect matchings for each of them. Instead, we remove the K variables that contribute
the less to the computation of the Bregman-Minc or Liang-Bai upper bound (i.e. the ones
having the smaller factors in the product). Example 3.3 details this method:

Example 3.3. We consider the same gcc(X, I, u) instance as in Example 2.2: X = {x1, ..., X6 }
with domains Dy = Dy = {1,2,3}, Dy = {2}, D3 = Ds = {1,2} and D¢ = {1,3}; lower and
upper bounds for the values are respectively h = 1, = 3,3 =0 and u; = 2,up = 3 and
su3z = 2.

Considering that xo = 2, the lower and upper bounds for the value 2 are respectively
I, =2 and vy = 2. The Lower Bound Graph is shown in Figure 2a: variable xp is fized
and thus does not appear in the graph, value vertex 2 is represented by two vertices because
Iy =2 ; finally value vertex 3 does not appear because l5 = 0. We construct similarly the
Upper Bound Residual Graph (Figure 2b).

We already have instantiated 3 variables at this stage (4, if we count xa, which is fixed).
To construct G,, we remove x3, x5 and Xg from G,, which contribute the less in the combi-
natorial complexity of the problem (we actually could have chosen x1 or x4 instead of X).
G, is such as in Figure 3.

First, we compute #PM(G;). We add two fake vertices on the value part, v and V', in
order to balance Gy (Figure 4a) and we compute the permanent of its biadjacency matric
(Figure 4b). The permanent of BGIbal is 72. Then we divide by 2! to deal with the combi-
natorial complexity induced by the fake vertices, there are then #PM(G)) = 36 matchings
covering the value part in Gj.

Similarly, we can compute #PM(G,) = 6. Then, we can conclude that:

36-6
#gce(X, 1, u) < Tl

The true number of solutions of this problem is 19. Scaling and also fake vertices used
with the permanent bounds are factors that degrade the quality of the upper bound.

=54

3.3 Counterexample

The method described in Subsection 3.2 does not work in general. We develop here a
counter-example that proves it wrong and we analyze the error.

418

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

11111

11111

11111

11111

10011
(a) Lower Bound Graph after adding (b Biadjacency
fake vertices, G,ba’ . matrix of G,ba’ .

Figure 4: Lower Bound Graph after adding fake vertices and its biadjacency matrix.

Instantiation | x1 x» X3
L1 1 2 1
Lo 1 2 2
L3 1 3 1
L4 1 3 2
L5 2 2 1
L6 2 3 1
L7 3 2 1
Lg 3 3 1

Figure 5: Array of every instantiation.

419

Lo Bianco, LorcA, TRUCHET, & PESANT

(a)

Figure 7: G, (a) and ?ubal (b).

Let X = {x1,x,x3}, D1 = {1,2,3} , Do = {2,3}, D3 = {1,2} and / = {1,0,0} and
u=1{2,3,2}. A list of every instantiation is given by Figure 5.

The Lower Bound Graph and Upper Bound Residual Graph are presented in Figure 6.
Only value node ”1” is in the Lower Bound Graph because 1 =1, b =0 and 5 = 0. Also
variable xo cannot take value 1, this is why it is not in the Lower Bound Graph. There is only
one value in the Lower Bound Graph, which means that only one variable is instantiated
at this stage, then we need to delete one variable from G,. We choose to delete x3, as this
is the variable which has less impact on the combinatorial complexity. It ensures that we
are computing an upper bound. After deleting one variable from G,, we have G, presented
in Figure 7.

If we apply directly the upper bound of Equation (7) (see subsection 3.2), we have:

sgce(X, 1, u) < FPM(G) - #PM(Gy) _ 2:25 25, qq
T Haeny lat - (g = 1)t 24-31 6 ’

420

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

el =
=
N el e
e
i

. .. . ——bal .
Figure 8: Biadjacency matrix of G, - (in counter-example).

Perfect Matching | x1 x» x4 x5 X¢ X7
L1 1 31 2t 22 23 32
12 1 3t 2t 23 22 32
U3 1 31 22 21 23 32
24 1 3t 32 23 22 2t
125 1 32 2t 22 23 3l
126 1 32 21 23 22 31
127 1 32 22 21 23 3l
148 1 32 3t 23 22 2l

. . ——bal
Figure 9: Array of every perfect matchings on Guba .

It is obvious that #PM(G)) = 2, as for #PM(G,), we compute the permanent of the

biadjacency matrix of GT,bal (Figure 8) , Perm(B(?ubal)) = 600, and, as we added 4 fake

variables, we divide by 4!. Thus, we get #PM(G,) = % = 25. But, we know that
#gce(X, I, u) = 8, as we enumerated every instantiation in Figure 5. There is an error
when computing the number of matchings covering x; and x; in ?ubal. Figure 9 lists every
perfect matching of G, corresponding to {x; = 1, x» = 3}.

We can notice, for example, that 1 and pp are symmetric by transposition of x5 and xg
and also by transposition of 22 and 23. In the method proposed, we first deal with the fake
variables symmetry and then with the duplicated values symmetry. The symmetry between
w1 and po is thus counted twice instead of once. Fake variables symmetry and duplicated
values symmetry may actually offset each other and should not be treated separately.

However, the problem does not appear for the Lower Bound Graph, as the number of
variables is greater than or equal to the number of values (including the duplicates). In
that case, the fake vertices symmetry comes from the same part than the duplicated values
symmetry. It is then impossible to have two perfect matchings being symmetric in both
ways. In Section 3.4, we modify the model to fit the case where the duplicated values
symmetry and fake variables symmetry are conflictual.

421

Lo Bianco, LorcA, TRUCHET, & PESANT

3.4 A Model that Fits our Specific Problem

In the previous subsection, we saw that the method does not work when there are fewer
variables than duplicated values. In this subsection, we formally present and refine the
problem to fit this case. This model and notations will be retained in the next sections.

As before, let X = {xi,...,x,} be the set of variables. For i € {1,...,n}, D; is the
domain of x; and we note Dx = J!_; Di = {y1,...,¥m}. Let w € N™ be the vector of
occurrences, such that ijzl wj > n. In order to satisfy the global cardinality constraint,
the variables of X must be instantiated in such a way that each value y; € Dx is taken at
most w; times. As in previous works (Pesant et al., 2012) and in Section 3.2, in order to
work with balanced bipartite graph, we add fake variables that can take any value from
Dx. Let X = {Xp11, ... Xty } be the set of fake variables, such that n+ n’ = ij:l wj and
Vx; € X, Dj = Dx. We introduce now the w-multiplied value graph, which is the value graph
in which each value node y; has been duplicated w; times:

Definition 3.4 (w-multiplied value graph). Let G(X,w) = ((X U X) U D, E,) be the
w—multiplied value graph with E,, = {(X,-,yjk)b/j € Di} and Dy, = {yi, ...y{t, o yh, yem)

Figure 10a represents the w-multiplied value graph for the instance described in Example
3.8. We will prove that, by construction, a perfect matching in the w-multiplied value graph,
corresponds to an instantiation over X satisfying the restriction on the occurrences. We
first define formally the set of perfect matchings in G(X,w) and the set of instantiations
over X satisfying the restriction on the occurrences:

Definition 3.5 (Set of perfect matchings). We note PM(X,w), the set of perfect matchings
in G(X,w):

PM(X,w) ={{e1, ... ensw} C Eu|Va, b if a# b, &5 = (x;,,y%) and ey, = (x;,, y;?),
then xj, # xj, and y;* # yj’;b}
Definition 3.6 (Set of instantiations over X). We note Z(X,w), the set of instantiations
over X that satisfy the restriction on the occurrences wj:
I(X,w) ={(d1, ..., dn)|di € Di and |{di|d; = y;}| < w;j}
To simplify the notations, PM(X,w) and Z(X, w) will be referred to as PM and Z, when

there is no ambiguity on the considered instances. By construction of the w-multiplied value
graph, a perfect matching of PM corresponds to an instantiation of Z:

ey k kn n’ k kny .
Proposition 3.7. Let p = {(x1,y;). .., (X,,+,,/,yjn:n/)} € PM, then v = (y;},....y;") is an
instantiation from T.
Proof. Let u = (e1,...,en1w) € PM. For i € {1,...,n+ n'}, we write the edge ¢ as
e = (x,-,yj’f’). Let ¢« = (d1, ..., dn), such that Vi € {1,...,n}, d; = yj’;".

We have Vi € {1,...,n}, e = (x,-,yjl:") € PM C E,, thus d; = yjlf" e D;.

Also, for j € {1,..., m}, we have [{e; € u!yjlf{" = y;j}| = wj, since every value node is cov-
ered once in y and there are w; duplicated nodes for each value. Then V' C p, [{e; € 1| yj’i"' =
¥i}| € wj and, in particular, [{e; € {e1, ...e,,}|yjlf’ =y} <wj. AsVie{l, ... n} d = yjlf",
we can conclude Vj € {1,..., m}, |{dj|di = yj}| <wj. Then€Z

422

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

instantiations x3 Xx»

1 1 2

L 1 3

3 2 3
(a) w—multiplied Value (b) List of every elements of Z
Graph of the instance for the Example 3.8.

described in Example 3.8.

Figure 10: w-multiplied value graph and list of every instantiation for Example 3.8.

Notation. Let p € PM, we note w(pu) = ¢ the corresponding instantiation as introduced
above.

Several perfect matchings can lead to a same instantiation. Therefore, the size of Z and
the size of PM are correlated. In the next section, we present how to compute an upper
bound of |Z|. Example 3.8 illustrates these new definitions and properties:

Example 3.8. Let X = {x1,x2}, D1 = {1,2}, D, = {2,3}, w = {2,1,2} and X = {x3, x4, x5}
Then we obtain the w—multiplied value graph in Figure 10a. We also list every instantiation
of T in Figure 10b.

{(x1,1), (x2,2), (x3,3), (xa,1), (x5, 3)} is a perfect matching that leads to the instantia-
tion 11 = (1,2). v1 is also reached by {(x1,1), (x2,2), (x3,3), (xa, 1), (x5,3")} and
{6, 1), (x2,2), (53, 3), (6, 3), (36, 1)}

4. Upper-Bound Evaluation as a Non-Linear Minimization Problem

This section introduces a correction for the bound proposed in Pesant et al. (2012) and
recalled in Section 3.2. Then we propose an algorithmic analysis of this correction.

4.1 A New Upper Bound

Our approach is to count how many perfect matchings in G(X,w) lead to a specific in-
stantiation, over the true variables, + € Z. However there is an exponential number of
such instantiations, so we will find a lower bound of the number of such perfect match-
ings, by solving a non-linear minimization problem, in order to upper bound the number of
instantiations in 7.

Proposition 4.1. Let v = (yj, ..., yj,) be an instantiation of (x1, ..., x») and ¥j € {1, ..., m},
ci(t) = {ily; = yj}l, which are the number of occurrences of each value in v. There are
o TI A:f(L) perfect matchings on G(X,w) that lead to the instantiation v, where A:f(L) is
the number of possible arrangements of cj(t) objects among wj.

423

Lo Bianco, LorcA, TRUCHET, & PESANT

X1 X2 X3 X4 X5

la 2 1b 3a 3b

la 2 1b 3b 3a

la 2 3a 1b 3b

la 2 3a 3b 1b

la 2 3b 1b 3a

la 2 3b 3a 1b

1b 2 1la 3a 3b

1b 2 1la 3b 3a

1b 2 3a 1la 3b

1b 2 3a 3b 1a

1b 2 3b 1la 3a

0 1b 2 3b 3a 1a
(a) w—multiplied (b) List of perfect matchings
Value Graph. corresponding to the solution

{x1=1,x =2}

Figure 11: w-multiplied graph and list of perfect matchings for Example 4.2.

Proof. For each value y; € (Ji_; Dj, there are (Cf?b) ways to pick up nodes in G to have
J
as many occurrences of y; as in ¢ and there are ¢j(¢)! ways to order these nodes. Then,
there are (C;‘ZJ'L)) () = Ab:j(L) ways to assign variables of X that are equal to y; in the
instantiation ¢.
Each of these choices are independent, thus this result can be extended to every value

yj: there are ' {11_[}A:_J'(L) ways to assign the variables in X to get the instantiation ¢.
Je,..., m
We need now to consider fake variables assignment. For each assignment of X leading

to the instantiation ¢, there are n’! ways to assign every variable of X, thus, there are n’l-

II AL:f(L) perfect matchings in G(X,w), that lead to the instantiation ¢. O
je{t.my 7

The following example illustrates Proposition 4.1.

Example 4.2. Let X = {x1,x}, D1 = {1,2}, D = {2,3}, and w = {2,1,2}, then we
must add 3 fake variables, X = {x3,x4,x5}. We obtain the w—multiplied value graph in
Figure 10a. Let us now consider this instantiation of the variables x1 and x> of this problem:
{x1 = 1,x2 = 2}, and let us call it v, we want to count how many perfect matching there
are in G(X,w) that lead to this instantiation. The array in Figure 11b lists those perfect
matchings.

Note that we can remove every symmetric perfect matching by permutation of the vari-
ables of X. There are 3! = 6 such permutations. After deleting these perfect matchings,
there remain 2 possibilities: either {x1 = 1la,xo = 2} or {x1 = 1b, xo0 = 2}. In general, we
need to count every possibility there is to instantiate variables in X. In i, we choose one
value 717 among two, one value ”2” among one and zero value ”8” among two. Also the
order in which we pick these values is important, then there are 3! 'A% . A% - A2 = 12 perfect
matchings leading to the instantiation .

424

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

We can directly deduce the following corollary, when extending Proposition 4.1 to every
instantiation of Z:

Corollary 4.3.

#PM(G(x,) = - ST A%, ®

eZ j=1

The following proposition gives an upper bound for |Z|:

Proposition 4.4.

PM(G(X,
<t jl?) o
€T =1 (+)
Proof. The proof follows directly from Corollary 4.3. OJ

Remark. What suggested the bound used by Pesant et al. (2012) is that

#PM(G(X, w))

7| <
Izl < W TIT w)!

We can check that we have, Vi € T,

HACJ (v) = ij

and then,
_#PMISX) #PMIC(X)

L min([T724 Awf 9) T w)!

€T

Our new objective is to compute rLrélg(HJm:l A:'j(b))’ In the following, ¢;(¢) will be simply
denoted as ¢;. This problem can be modeled as minimization problem:
. |
min [121 @2 gn
IP=:{st.Y" ¢=n (10)
Vj € {1, e m}, S {0, ...,Wj}

Note that for a high w;, choosing a high ¢;, makes the objective function rise much more
than choosing a high ¢; for a small w;. Also choosing a small ¢; for a high w; makes the
objective function rise much more than choosing the same ¢; for a smaller w;.

Example 4.5. Let w1 =5 and wp = 2 and n = 4, then c1 6 [0,5] and ¢ € [0,2], then
taking c1 = 4 and ¢ = 1, for example, (') =120>2 =
And taking c1 =1 and ¢ = 1, we have (5 1), =5>2= (2 1),

As we must satisfy c1 + o = n = 4, it seems better to, first, assign the biggest value possible
for co and then assign the rest to c1. We would have ¢ =2 and co = 2 and A% * Ag = 40,
which is the minimum.

(2 2)‘

425

Lo Bianco, LorcA, TRUCHET, & PESANT

This reasoning is generalized in the next proposition.

Proposition 4.6. If w; < ... < wp, then ¢* = (w1, ..., wk-1,¢;,0,...,0) is a minimum of

IP, with ¢ = n— Y\ wj.

Proof. Let w = (w1, ..., wm) and let consider that w; < -+ < wp, and

N™ — N
f=: m w;! (11)
¢ =1 =gy

We want to minimize f(c) such that 3 7, ¢; = n. Then, w being in ascending order, we
want to prove that f reaches a global minimum for:

¢* = (Wi, ooy ko1, €1, 0, ..., 0) (12)

with ¢ € {0, ..., wk}.

Let ¢ = (c1, ..., cm) be a vector such that -, ¢; = n. We want to prove that f(c*) <
f(c). Let us rewrite ¢ as a modification of c¢*. We can only decrease (not strictly) ¢/ for
j €{1,...k =1} and increase (not strictly) ¢/ for j € {k+1,..., m}. As for ¢, there are
two possibilities. We first deal with the case where ¢, is increased. We rewrite c:

Cc = (wl — d1, ey We—1 — dk—l: CZ + Uy, Ug4+1,---, Um) (13)

with Vj € {1,..,m},d; > 0 and v; > 0 and 3 7", u; = >°"; dj. We consider that Vj €
{k,...m},di=0and Vj € {1,..., k — 1}, u; = 0. The last condition states that everything
that has been removed, has also been added. Thus, we still have ijzl ¢ =n.

Now, we will see a method to transform vector c¢* to ¢ in several steps such that, at
every step, the function f increases. Let ¢/ be the vector at step j.

For each j € {1, kK — 1}, we remove d; from cf, and we redistribute on the variables of
the end, that need to be increased, starting redistributing from index k to m. Let us take
an example:

Let us consider a vector w = (2,3,4,4,7) and n = 7. Then, let ¢* = (2,3,2,0,0) and
c=1(0,1,3,1,2). Here are the steps following the method to get ¢ from c*:

- Step 0: ¢® =c* =(2,3,2,0,0)

- Step 1: ¢! =(0,3,3,1,0), we remove 2 from ¢ and we add 1 to ¢§ and 1 to cf.
- Step 2: 2 =c= (0,1,3,1,2), we remove 2 from C21 and we add 2 to C%.

In a general way, we have:

- Step 0: = ¢* = (w1, ..., Wk_1, c;,0,...,0).

- Step j: d = (wl — dy, e Wi — dj,wj+1, e Wk—1, C; + Uk, Uky1, ..., Ug—1, rq,O, ,0)

426

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

- Step k-1 : Cki1 =C= (wl — d1, ey We—1 — dkfl, C; + Uy, Ukt1, - um).

with rq € {1, ..., uq} (or {x, ... x{ + ux}, if ¢ = k), which is the residue for a particular
index g. This index does not necessarily increase from one step j to the following one, as
d; may be smaller than ug — ry.

The objective, now, is to prove that f(c/) < f(¢/T1),Vj € {1, ..., k — 2}. We have:
= (w1 —di, ... wj — di,Wjt1, ., Wk_1, Ch + Uk, Uy 1, oy Ugo—1, Fqs, 0, ..., 0)
and
dtl = (w1 —d1, oy wjp1 — djg1, Wjg2..., Wk—1, Cf + Uk, Uk41, -, Ugy—1, Fq,, 0, ..., 0)

with gp > qa.
f(cf)

Now, we study HEOR

First case: g, < qgp

. Wy, !
f(CJ) _ wJ+1I . (WQairQa)! . 1
f‘(cj+1) T wjp! W, ! wgy!
j+1! (WQa_uqfa)! (qu_rqb)I
— diiq! - (wg, — ug,)! (g, — rq)!
! (wg, — rg,)! Wa,!
_ (dj41—rg)' - (djy1 —rg, +1)- .. 1
(wg, = rg.) - o+ (wg, — g, +1) - wg, + - - (wg, — rq, +1)
And, (djt1—rq, +1) - ... - dip1 and wg, - ... - (wg, — rq, + 1) are products of rg, consecutive

terms. Moreover, Wq, = Wjy1 = dj+1, then:

(djs1 — rgy + 1)+ - dios
Wap " oo (w% — Igp T 1)

<1

We can notice that, in the case where redistributing d;;; makes the index of the residue
grow, djt1 = (ug, — rq,) + rq,- In other words, what has been removed has been re-added.
Then (djy1 — rq,)! is the product of ug, — rq, consecutive terms, the same as (wq, —rq,) - ... -
(wq, — Ug, +1). We also know that wgq, > ug,, then djy1 — rq, = ug, — rq, < wq, — rq,, then:

(dj+1 - rCIb)!

<1
(Wg, = rqa) o (wg, — ug, +1)

Then,
flcd
RACGHR
f(ctl) —
Second case: g; = q, We consider here the case where the index of the residue remains
unchanged, but this does not mean that the residue is the same for ¢/ and ¢/*1. Then we

427

Lo Bianco, LorcA, TRUCHET, & PESANT

have g, = q, and rg, > rq,. But we have wq, = wq,.

. Wy, !
f(cj) — d |. (WQairQa)!
f(cit1) S+ W, !
(Uqu—fqb)!
—diq!- (wgy — rqp)!
! (an - rQa)!
_ dj+1!
(wg, — rg,) =+ (wg, — rg, +1)

What has been removed, has also been re-added: dj11 = rq, — rq, then d;j1! is a product
of rq, — rg, consecutive terms, like the product (wgq, — rg,) - ... - (wg, — rq, + 1). Moreover,
dif1=rq, — rq, < Wq, — rg,- Thus we have,

f(c))
T

We have proved that, Vj € {1, ..., k — 2}, f(¢/) < f(c/*1). Then,

f(c*) = () < f(ch) < ... < F(F N =F(c)

There remains one case to consider. We have proved that f(c*) < f(c), for every c such
that ¢, > ¢;. In the case where ¢, < ¢, we need to adapt the method described above. In
the previous case, we started removing d; for j going from 1 to k — 1 in that order. In this
case, we first remove dj and, only then, we remove d; for j going from 1 to k — 1, as before.
We will not detail the calculations for this case as they are very similar.

It follows that f(c*) < f(c) for every c such that >-7; ¢; = n and Vj € {1,..., m},

0 < ¢j <wj. Then c¢* is a minimum of our problem. O

From this proposition, we can deduce a method to get an upper bound of Z. We
first sort the occurrences vector w, then we can compute the vector ¢* and compute

CZ%'(HJm:l AUCJJ{(L)) =117 A:i Then we get an upper bound of |Z|.

Proposition 4.7. If w; < ... < wp, then

_ #PM(G(X,w))

/ m wj
- T1 ACJ.*

IZ| < UBP(X,w) (14)

We have now corrected the method presented in subsection 3.2. We can use this new re-
sult to upper bound correctly the Lower Bound Graphs and Upper Bound Residual Graphs.
This new upper bound requires sorting w and in practice, we will use the Bregman-Minc
or Liang-Bai upper bound instead of computing #PM(G(X,w)). We also consider that
we can compute the factorial function in constant time. This bound is then polynomially
computable. A time-complexity study is given in subsection 4.2.

428

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

Algorithm 1 Compute UB'P(X,w)
n jrll wj—n
Wsorted < w.sortAsc()
c* « zeros(m)
count < n
idx < 0
while count > 0 do
if count > worteq(idx) then
count < count — Wsorteq(idx)
C*(idX) A wsorted(idx)
else
c*(idx) < wsorted(fidx) — count
count < 0
end if
idx < idx +1
: end while
. nbPM <« UBBM(G(X,w))
: return nbPM/n'! - T[T, Aocji

e e o
LSO A T R ul

4.2 Computation and Complexity

In this subsection we present Algorithm 1, which details how to proceed to compute UB'P.
Then a time-complexity study is given.

At Line 1 we compute n’ the number of fake variables. At line 2 we sort the w vector
in ascending order. We have a function zeros(m) that builds a vector of size m filled with
0 in constant time. From line 4 to line 15 we simply fill ¢*, such as it is defined. At line 16
we compute an Bregman-Minc upper bound thanks to a function computing it in O(n+ n’)
operations. Finally at line 17 we return UB'F(X,w). We consider that we can compute the
number of arrangements and the factorial function in a constant time. We can conclude on
the time-complexity for the computation of UB'P:

Proposition 4.8. The computation of UB'P has a time-complezity in

O(n+n" + m-log(m))

Proof. Computing n" and [, Afji requires O(m) operations. Also filling c* requires O(m)
operations (the worst case being when we have to fill ¢* entirely). Sorting the w vector
requires O(m-log(m)). Computing nbPM requires to compute a product over n+ n’ factors,
one for each variable node in G(X,w), then it requires O(n+ n’) operations. Thus, we have
a time-complexity in O(n+ n’ + m - log(m)) O

Computing UB'P is linear in the number of variables and quasilinear in the number of

values. In Section 5, we test the efficiency of the corrected bound within maxSD counting-
based strategy (Pesant et al., 2012).

429

Lo Bianco, LorcA, TRUCHET, & PESANT

5. Experimental Analysis : Efficiency of the New Upper Bound within
Counting-Based Search

Even though the bound proposed in Pesant et al. (2012) is incorrect it still provides some
estimate of the number of solutions for a gcc instance and may therefore still be used in
a counting-based search heuristic. For instance, the maxSD heuristic may make the same
choices using the corrected upper bound and the previous wrong one. In this section, we first
compare the variable/value ordering given by these two estimators and, then, we compare
their efficiency within the maxSD heuristic.

5.1 Impact of the New Upper Bound on the Variable/Value Ordering

In this subsection, we compare the instantiations order given by the former bound (the
PQZ bound) and its correction. In Example 5.1, we compute, for a given instance of a gcc,
the density of solutions for each possible instantiation, for the PQZ bound, its correction
and the exact computation. We show that changing the way to estimate the number of
solutions has a big influence on the variable/value ordering.

Example 5.1. For this example, we randomly pick an instance of gcc, whose Value Graph
1s represented in Figure 12, with n = 10 variables, m = 10 values and an edge density
p = 0,3, which means that each edge between a wvaritable and a value has a probability
p = 0,3 to exist. For each value, we also pick uniformly randomly a possible interval I; — u;,
considering the number of neighbors of each value node in the Value Graph. These intervals
are represented on the right of each corresponding value node.

For each non-instantiated variable x;, and each value y; € Dj, we propagate the instan-
tiation x; — y; and we compute an estimation of the number of remaining solutions, with
the previous bound (PQZ bound) and the corrected one (we also compute the exact number
of remaining solutions). From these estimations, we can compute the solution density for
each instantiation.

The heuristic maxSD chooses first the instantiation associated with the highest solution
density. With any of the estimators, the maxSD heuristic would choose first the instantiation
x¢ — 0. We sort the instantiations by their solution density in descending order for the
three estimators. If two instantiations have the same solution density, then we sort it with
the lexicographic order.

- PQZ bound (Pesant et al., 2012) : (x¢ — 0, x3 — 0, x4 — 0, x30 = 2, x9 — 0, x3 — 8,
X2—>8,X7—>9,X2—>1,X3—>7,X9—>2,X7—>3,X7—>5,X10—>6,X10—>8,X10—>3,
X8—>9,X8—>8,X4—>4,X4—>9,X4—>6,X4—>5,X6—>8,X4—>8,X7—>7)

- Corrected bound : (x¢ — 0, x3 = 0, x10 = 2, x4 > 0, xg = 0, x3 = 8, xo0 = 8, x7 — 3,
x1—=5, x—=>1,x3=>7,xx—=9 xx—=7,x—2, x4 8, x10—=8, xa =4, x4 = 5,
x4 —>6,x4—9, x10 26, xg—>8,x—>8,x10—>3,x3—~9)

- Ezact computation : (x¢ — 0, x¢ = 0, x10 > 2, x¢ — 0, x3 = 8, x4 — 0, xo0 — 8,

xx=>1,x3 =7, x3—>9 x3 =5, x3—>3, x—>2,xx—7,x3g—>8, X6 =8, x4 — 8,
x10—>8, x4 =6, xs =9, xa—>5 xa—>4, x50 —>6,x4—9, x30—3)

430

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

Figure 12: A random instance of gcc.

We can see that the variable/value ordering is different depending on the estimator. The two
first instantiations are identical. The length of the common prefix of these three ordering is
2. In the following, we will formalize this measure of the (dis)similarity of variable/value
ordering, as a way to distinguish heuristics.

In order to measure how different is the behavior of these estimators within maxSD, we
will use two measures of the similarity between two variable/value orderings:

- myp(h, k) : the length of the common prefix between the variable/value ordering h
and k. The first instantiations are more important. We want to measure how many
choices will be common in a row at the beginning. This measure is then normalized,
dividing it by n.

- mws(h, k) : the weighted sum of common elements between the variable/value or-
dering /i and k. It measures the number of common elements and favor the common
elements that appear in the beginning . The weight of the k' element among p
instantiations is p — k + 1.

Let h = (¢f,....tp), b = (¢1,....13) and X, the function such that x(u,v) =1if u=v
and x(u, v) = 0 otherwise. Then:

fea(p— k1) - x(th 1)
3P (p+1)

mys(h, b) =

431

Lo Bianco, LorcA, TRUCHET, & PESANT

The denominator is here to normalize the measure, so we can make the comparison
between the two estimators on different instances of gcc.

These two coefficients are normalized, such that if it is equal to 1, then the two vari-
able/value orderings are equal and, if it is equal to 0, they are very different. In Example
5.2, we show how to compute these similarity coefficients.

Example 5.2. Taking the three variable/value orderings IpQz, Icor and lexact the orderings
given by the PQZ bound, the corrected bound and the exact computation in Example 5.1.

- The length of the common prefiz between the ordering given by the PQZ bound and
its correction is 2, then myp(lpgz, Icor) = % = 8%. Also, we have myp(lcor, lexact) =
3

5e = 12%, as only the first instantiation is identical and myp(lpQz, lexact) = 8%.

- The instantiations x¢ — 0, xg = 0, xg =+ 0, x3 =+ 8, x0 =+ 8, x4 — 9, x¢ — 8 are in
the same position in the ordering given by the PQZ bound and its correction. Their
respective weight are : 26, 25, 22, 21, 20, 6 and 3. Then the weighted sum is 123 and
we have mys(lpoz, Icor) = 21233 L= 37.8%. We also have mys(lpoz, lexact) = 25.2%

k=1
and mWS(ICorx Iexact) = 30.2%.

Now that we have seen how to compare variable/value orderings, we generate randomly
1000 instances of feasible gcc and we will compare the orderings given by the PQZ estimator,
its correction and the exact computation. To generate those instances, we will apply the
same method we used for the generation of the instance presented in Example 5.1 with the
same parameters, n = 10, m = 10 and p =0, 3.

Figure 13a shows the number of instances as a function of the percentage of similarity
between the resulting variable/value orderings given by the PQZ bound and its correction,
according to the length of common prefix measure. We can notice that almost 600 among
the 1000 generated instances, lead to less than 2% similarity. More than 90% of the instances
are less than 20% similar. The PQZ bound and its correction very often lead to different
orderings. Figure 13b shows the number of instances in function of the percentage of
similarity between the resulting orderings given by the exact computation and the two
other estimators, according to the length of common prefix measure. The corrected bound
is similar at less than 2% to the exact bound for 58.9% of all instances, and the PQZ bound
for only 51.6%. In general, the corrected bound gives more accurate variable/value ordering.

In Figure 14a, we represent the number of instances as a function of the percentage
of similarity according to the weighted sum of common elements measure. With the mys
measure, only about 100 instances have more than 50% similarity between the PQZ bound
and its correction. The variable/value orderings remain quite different.

In Figure 14b is represented the similarity between the exact computation and the two
estimators according to the weighted sum of common elements measure. Though the mys
is a much more flexible measure, there are still more than 100 instances that remain below
50% of similarity for both estimators. The correction seems to give closer variable/value
orderings than the PQZ estimator, as there are about 100 instances more that are less than
2% similar for the PQZ estimator and about 150 instances more that are between 20% and
50% similar for its correction.

432

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

600 o PQZ-Corr. 600 locorr.-Exact HDPQZ—EX:\(‘,T

400 400

Nb Instances
Nb Instances

200 200

0
20%-50% 50%-80% 80%-100% 0%-2% 2%-5% 5%-10% 10%-20% 20%-50% 50%-80% 80%-100%
b. Similarity (%) between the exact computation and both estimators

0%2% 2%-5% 5%10% 10%-20%

a. Similarity (%) between PQZ bound and its correction

Figure 13: Proportion of instances per percentage of similarity according to mp.

500

400
HDPQZ—COH. locorr.-Exact HDPQZ—EX:L(:T

300

=~
S
S

Nb Instances
o
S
S
Nb Instances
o w
S S
S S

100
100

0
0%2% 2%-5% 5%-10% 10%-20% 20%-50% 50%-80% 80%-100% 0%2% 2%-5% 5%-10% 10%-20% 20%-50% 50%-80% 80%-100%

Similarity (%) Similarity (%)

Figure 14: Proportion of instances per percentage of similarity according to myys.

Also, maxSD is a strategy that chooses the assignment with the highest density. We
notice that, for 42.5% of these 1000 instances the PQZ estimator and its correction would
choose the same first decision. For 59.3% of the instances, the exact computation and
the corrected estimator would choose the same first decision against 47.0% for the exact
computation and the PQZ estimator. And for 32.6% of the instances, the three estimators
would choose the same first decision.

In this subsection, we have shown how to compare the influence of different number
of solutions estimators within maxSD on the ordering, and we have shown that the PQZ
bound and its correction behave in a different way.

5.2 Performance Analysis on Generated Instances

In this subsection we analyze the performance of each estimator within the maxSD strategy.
We generate random instances of varying degree of difficulty, on which we run the two
variants of the maxSD strategy. We first explain the generation process of such random
instances and then we analyze the results obtained.

433

Lo Bianco, LorcA, TRUCHET, & PESANT

5.2.1 GENERATION OF RANDOM CSPs

Let n be the number of variables, m the number of values and p, the edge density of the
Value Graph. Each value y; € Y have a probability p to be in D;, for each variable x;.
Then, we add n¢ global cardinality constraints to this CSP. The scope of each gcc is chosen
randomly : each variable has a 50% chance to be picked. We are also given a tightness 7,
which defines the length of every occurrence interval of each value. Let {x,-l, ,X,'q} be the
scope of one gcc, then the length of every occurrence interval of this gcc is 7 - g, rounded
to the nearest integer. Once the lenght is set, the interval is chosen randomly among every
possible interval with such a length. The generated gcc are not trivially unsatisfiable, as
we also ensure that the generated occurrence intervals, [/;, uj], are such that:

m m
d<a<d y
j=1 j=1

We also ensure that any scope of a gcc is not included in another gcc. Indeed, two such
gcc can be considered as one gcc, in which each occurrence interval is the intersection of two
occurrence interval. We have thus exactly n¢ disjoint global cardinality constraints in the
generated CSP. This is an important point as we want the number of gcc and the tightness
to be the two parameters that will directly affect the difficulty of the random instance.

5.2.2 RESULTS ANALYSIS

We generated several random CSP, with the method described above with the following
parameters : n = 20, m = 20, an edge density p € {0.33,0.66,1.0}, 7 € [0.1,1] by steps
of 0.1 and n¢ € [2,10] by steps of 1. For each couple (7, nc), we generate 50 random
instances for a total of 4500 instances. We solve each instance with two different strategies:
maxSD with the PQZ bound and maxSD with the corrected bound. The instances and the
strategies are implemented in CHOCO solver (Prud’homme, Fages, & Lorca, 2017) and we
set, for each resolution, the time limit to 1 min and run on a 2.2GHz Intel Core i7 with
2.048GB.

The maxSD heuristic proposes to compute an estimator of the solution density, for each
possible remaining instantiation, each time a fixed point is reached. This is a very costly
strategy. Here, we will only compute and store the solution densities in the beginning of
the search and each time we reach a fixed point, we will refer to them and choose the
instantiation that led to the highest solution density at the beginning of the search and
that is still available. We also thought about updating the solution densities each time the
size of the domains have decreased enough (have reached a certain threshold), as proposed
in Gagnon and Pesant (2018). This strategy is not effective on our generated problem, so
we have preferred not to run it to gain more time.

p\T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p=10 | 436/435 | 394/393 | 387/381 | 393/365 | 386/364 | 365/353 | 374/369 | 380/364 | 377/368 | 378/356
p=066 | 450/450 | 446/447 | 442/442 | 440/439 | 436/438 | 427/434 | 433/434 | 416/420 | 364/400 | 450/450
p=033 | 450/450 | 450/450 | 450/450 | 450/450 | 450/450 | 450/450 | 450/450 | 447/450 | 450/450 | 450/450

Table 1: Number of solved instances for both estimators (PQZ/Corr.) as a function of 7
for p € {0.33,0.66, 1.0}.

434

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

1 PQz
15 < tor <15

5011872 60 1 LAY

10 1 € g e P
229087 4 catiel

10472 ¢

479 0.1 BEesH ot o0 ee® o .

Resolution time for the corrected estimator
.
20

I
H
3
.
0%’
.
.
e

:
» 0.01 A SR on . .

Nb. of backtracks for the corrected estimator

M unsat
M sat

10472 229087 5011872 0 0.01 0.1 1 10 60

a. Nb. of backtracks for PQZ estimator b. Resolution time for PQZ estimator

Figure 15: Comparison of the required number of backtracks and resolution time with
p=1.0.

p\nc 2 3 4 5 6 7 8 9 10
p=10 | 492/493 | 481/482 | 455/446 | 433/408 | 424/414 | 389/369 | 383/362 | 400/380 | 413/394
p=066 | 500/500 | 495/495 | 491/489 | 487/489 | 475/477 | 468/474 | 460/472 | 466/479 | 462/479
p=033 | 500/500 | 500/500 | 500/500 | 499/500 | 499/500 | 500/500 | 500/500 | 500/500 | 499/500

Table 2: Number of solved instances for both estimators (PQZ/Corr.) as a function of nc¢
for p € {0.33,0.66,1.0}.

Table 1 (resp. Table 2) shows the number of solved instances for both estimators for
7 € {0.1,...,1.0} (resp. nc € {2...,10}) and p € {0.33,0.66,1.0}. The hardest instances
seems to be for nc =8 and 7 = 0.9. For p = 1.0, the PQZ estimator solved more instances:
3870, against 3748 for its correction. For p = 0.66, the corrected bound get better results:
4354, against 4304 for PQZ. As for the edge density p = 0.33, the corrected bound solved
every instance, while the PQZ estimator missed 3 of them. When the edge density is very
low (p < 0.33), the domains are sparser, so there are much fewer instantiations to test during
the computation of the estimators. This is why almost all these instances are solved in less
than 1min. One estimator does not perform better than the other in general. To conclude
on these tables, when the Value Graph is complete, PQZ estimator gives slightly better
results, and when the domains are not uniform, the corrected bound solves more instances.
It seems that the correction is able to catch more the difference among the domains than
its previous version.

We now focus only on the instances that have been solved by both estimators. In Figure
15, Figure 16 and 17, we compare the required number of backtracks and the resolution
time for each instance that have been solved (proved satisfiable or unsatisfiable) with both
estimators for the edge density p = 1.0, p = 0.66 and p = 0.33. Blue dots represent the
satisfiable instances and red ones represent the unsatisfiable instances. The area delimited
by the black dotted lines represent the instances for which the ratio between the required

435

Lo Bianco, LorcA, TRUCHET, & PESANT

PQZ PQZ
Ts< <15 < <15
2951209 1

2 5
T 149968 g
= E
8 kel
- 3
I3 o
£ 76211 g
o [=}
o 8
2 o
T =
2 3
»
Jg 387 1 .E
E 5
2 3
o [+

. 20 2
é o

v
0 oo T » T
0 20 387 7621 149968 2951209
a. Nb. of backtracks for PQZ estimator b. Resolution time for PQZ estimator

Figure 16: Comparison of the required number of backtracks and resolution time with
p=0.66.

1 _ PQZ 1 _ PQZ
s < GE <15 s < G <15
1621810 o 28.8 s
L4
o
LIPS/
<} (A4 .
= . R . 8
£ 92897 DS/ZC SN B 3.6
i :o o o 2
o ® LAY) i
£ “ o‘:"" M ° i
4 . o
£ 5321 ‘e LY 7O . g 054
S . ° e.? " & e S
g ° e, o ® . o
ks . ™ eee . . 2
5 . .' LAY e, % . =
% °« o e 0 e o te]
3 305 S e bl s v 0061
I - Ce T ® =
_E % ° s oo o . c
o .° o S
5 LRI £
° i .. RIS T SN g 0.008 1
3 o M. a0t 2
3% - AP .
@9 000 woomem o0 o o . . M unsat
5'o'° wo o Y . . M sat
0 J - T 0 T T T T
0 17 305 5321 92897 1621810 0.06 0.5 3.6 28.8
a. Nb. of backtracks for PQZ estimator b. Resolution time for PQZ estimator

Figure 17: Comparison of the required number of backtracks and resolution time with
p=0.33.

436

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

number of backtracks (or resolution time) for PQZ and its correction is between % and 1.5.
In other words, we consider that, for the instances inside this area, both estimators have
very comparable performances. If a point is below this area, it means that the corrected
estimator has better performance, and on the opposite, if a point is above the area, the
PQZ estimator has better performance.

For p = 1.0, 80.2% of the instances have been solved by both estimator. On Figure 15a,
60.1% of solved instances by both estimators are inside the dotted area. The performance,
in terms of number of backtracks, of both estimators on theses instances are very similar.
There are 16.1% points below the area and 23.8% points above. The PQZ estimator seems
slightly better on these instances. More precisely, 67.6% of unsatisfiable instances are
inside the dotted area, 15.4% below and 17.1% above. As for satisfied instances, there are
54.1% blue points inside the dotted area, 16.8% below and 29.2% above. For unsatisfiable
instances, the two estimators have equivalent performance, but the PQZ estimator seems to
have better performance on these satisfiable instances. If we observe Figure 15b, 70.6% of
red points and 70.4% of blue points are inside the dotted area. Also, 10.1% of blue points
are below the area and 19.3% are above and 14.2% of red points are below and 15.4% are
above. In terms of resolution time, both estimators have almost equivalent performance,
but again, the PQZ estimator is slightly better on satisfiable instances.

For p = 0.66, 94.9% of the instances have been solved by both estimator. On Figure 16a,
71.2% of solved instances by both estimators are inside the dotted area. The performance,
in terms of number of backtracks, of both estimators on theses instances are again very
similar, even more for the edge density. There 16.1% points below the area and 12.7%
points above. Here, the corrected estimator seems to have slightly better performance.
There is no clear difference here in the behaviour of unsatisfiable and satisfiable instances:
17.0% of blue points and 15.2% of red points below the dotted area and 13.3% of blue points
and 12.0% of red points above. On Figure 16b, 77.7% of red points and 78.1% of blue points
are inside the dotted area. Also, 10.1% of the instances are above the area and 11.8% are
below. In terms of resolution time, both estimators have very similar performance.

For p = 0.33, 99.9% of the instances have been solved by both estimators. On Figure
17a, 86.7% of solved instances by both estimators are inside the dotted area. For most
instances, the performance of both estimators is more similar as the density gets higher.
There are 9.7% of the instances below the area and 3.5% above. The correction performs
a little better on this density too. On Figure 17b, we observe that there are a little more
points in the bottom part of the plot. It seems like the lower the edge density, the better
are the performance of the correction over PQZ estimator.

Our conclusions on this benchmark are the following. As a preliminary remark, both
heuristics are meant to tune the search toward areas with many solutions (or a high solution
density for the gcc constraints). In practice, we observe on the benchmark that both heuris-
tics roughly behave the same on unsatisfiable instances, with both a number of backtracks
and a resolution time with a similar ratio. In general, we observe that the PQZ heuristic
is slightly better than the corrected heuristic for the edge density p = 1.0, and for lower
density, the corrected heuristic performs a bit better. Our assumption is that the corrected
estimator is a little more able to catch the heterogeneity of the domains. As proved in
the previous sections, the PQZ is not based on a bound, but our experiments show that in

437

Lo Bianco, LorcA, TRUCHET, & PESANT

practice it can be considered as an estimator of the solution density. In practice, on our
benchmark, this estimator seems to be useful to guide the search.

In conclusion, on all these experiments, there is no clear dominance of the PQZ esti-
mator over our upper bound, when they are used inside a maxSD heuristic, in terms of
solving efficiency. The number of solved instances are quite distributed around the bisector.
Nevertheless, we observe that there is a clear difference between them, when they are used
to find an variable/value ordering. In addition, we also observed that the bug in the PQZ
bound indeed happens, in which case the presumed upper bound gives a value below the
exact number of solutions. In the end, the benchmark is conclusive on this precise matter:
the PQZ estimator and our Corrected bound are not equivalent, although using them in
maxSD does not reveal this on the solving time.

6. Conclusion

This paper revisited the solution-counting strategies for the well-known global cardi-
nality constraint. It first highlights that in the computation of the initial result provided
by (Pesant et al., 2012), a solution can be counted several times and, thus, the alleged
upper bound is not an upper bound. We then provide a correct calculation of an upper
bound of the number of solutions for a global cardinality constraint. Finally, we build a
benchmark for the gcc constraint with an original method, which had not been done in the
previous work, and we compare heuristics based on both quantities (the previous calcula-
tion by Pesant et al. (2012) and our upper bound) on this benchmark. We show that the
two estimators lead to different choices within counting-based strategies. Finally, we solve
a number of instances with both heuristics and compare the results. In practice, neither
heuristic dominates the other: the counting-based heuristics used with the estimator from
Pesant et al. (2012) performs slightly better on instances with a high density of edges, i.e.
instances where the domains are rather large and of comparable sizes. Our bound per-
forms slightly better on instances with a lower density of edges, i.e. instances with more
heterogeneous domains.

Though the former result is not an upper bound, it can now be seen as an estimator
that can be used to guide the search, as an alternative way. That is probably why the
error was difficult to spot. Our assumption is the following: when an estimator/bound is
used inside a counting-based heuristic, the correlation between the estimator and the actual
number of solutions is much more important that the estimator accuracy. Now that we do
have an upper-bound of the number of solutions, new questions can be investigated: how
do different estimators compare to this upper bound? Is it possible to use our methodology
(both on the calculation techniques and the benchmark generation) to introduce average-
case estimators, or estimators based on probabilistic approaches? All these questions will
be investigated as future works.

As further research, it would be interesting to extend our counting methods to other
constraints of the same family, i.e. cardinality constraints such as alldifferent, atmost
and atleast, which can all be seen as special cases of the global _cardinality constraint
and feature the same data structure, a bipartite graph. An extension of these counting
constraint is the nvalue constraint, whose generalized arc-consistency is NP-hard: having

438

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

either a bound or an estimator for this constraint would be very valuable inside a solver. The
natural question which then arises is the following: assume that all cardinality constraints
come with either upper bounds of their number of solutions, or estimators. Given a problem
featuring several such constraints, how to combine these bounds to efficiently guide the
search?

Finally, bound or estimations of solutions can be useful in other contexts than search
heuristics. In particular, one of the current challenges in CP is to produce solutions which
widely cover the set of solutions. On practical applications, solvers may be used by people
who are not CP experts, and even not computer scientists. There are many examples in
medicine (Betts et al., 2015; Dickerson et al., 2016), computer graphics (Tao, Christie, & Li,
2008), disaster management (Hentenryck, 2013), computer music (Hooker, 2016; Truchet
& Assayag, 2011). In this context, users may have to rate the solutions produced by the
solver or choose one. Yet, due to the systematic search process, a solver often provides
solutions in a given order. In practice, two solutions in a row are often very similar in terms
of values of the variables. This is unsatisfactory to the user and may drive him/her away
from the technology. A better approach would be to provide solutions uniformly sampled
in the solution space. Doing this implies to choose randomly the instantiation at each
node of the search space, so that the random draw is uniform within the set of solutions of
the subtree of this node (and not of the domains of the variables). Counting solutions, or
estimating/bounding their number, has thus promising applications to the design of better
solvers for non-expert users.

References

Betts, J. M., Mears, C., Reynolds, H. M., Tack, G., Leo, K., Ebert, M. A., & Haworth, A.
(2015). Optimised robust treatment plans for prostate cancer focal brachytherapy. In
Proceedings of the International Conference on Computational Science, ICCS 2015,
Computational Science at the Gates of Nature, Reykjavik, Iceland, 1-8 June, 2015,
2014, pp. 914-923.

Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search by
weighting constraints. In Proceedings of the 16th Eureopean Conference on Artificial
Intelligence, ECAI’2004, Valencia, Spain, August 22-27, 2004, pp. 146-150. IOS Press.

Brégman, L. M. (1973). Some properties of nonnegative matrices and their permanents..
Soviet Mathematics Doklady, 14(4), 945-949.

Dickerson, J. P., Manlove, D. F., Plaut, B., Sandholm, T., & Trimble, J. (2016). Position-
indexed formulations for kidney exchange. In Proceedings of the 2016 ACM Conference
on FEconomics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28,
2016, pp. 25-42.

Ford, D. R., & Fulkerson, D. R. (1962). Flows in Networks. Princeton University Press,
Princeton, NJ, USA.

Friedland, S. (2008). An upper bound for the number of perfect matchings in graphs.
http://arziv.org/abs/0803.0864.

439

Lo Bianco, LorcA, TRUCHET, & PESANT

Gagnon, S., & Pesant, G. (2018). Accelerating counting-based search. In van Hoeve, W. J.
(Ed.), Integration of Constraint Programming, Artificial Intelligence, and Operations
Research - 15th International Conference, CPAIOR 2018, Delft, The Netherlands,
June 26-29, 2018, Proceedings, Vol. 10848 of Lecture Notes in Computer Science, pp.
245-253. Springer.

Gomes, C. P., Hoffmann, J., Sabharwal, A., & Selman, B. (2007). From sampling to model
counting. In IJCAI 2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pp. 2293-2299.

Hentenryck, P. V. (2013). Computational disaster management. In IJCAI 2013, Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, pp. 12-19.

Hooker, J. N. (2016). Finding alternative musical scales. In CP 2016 Proceedings, pp.
753-768.

Liang, H., & Bai, F. (2004). An upper bound for the permanent of (0,1)-matrices. Linear
Algebra and its Applications, 877, 291 — 295.

Lovasz, L., & Plummer, M. D. (2009). Matching Theory. American Mathematical Society.

Meel, K. S., Vardi, M. Y., Chakraborty, S., Fremont, D. J., Seshia, S. A., Fried, D., Ivrii,
A., & Malik, S. (2015). Constrained sampling and counting: Universal hashing meets
SAT solving. CoRR, abs/1512.06633.

Michel, L., & Hentenryck, P. V. (2012). Activity-based search for black-box constraint
programming solvers. In Integration of AI and OR Techniques in Contraint Pro-
gramming for Combinatorial Optimzation Problems - 9th International Conference,
CPAIOR 2012, Nantes, France, May 28 - Junel, 2012, Vol. 7298 of Lecture Notes in
Computer Science, pp. 228-243. Springer.

Minc, H. (1963). Upper bounds for permanents of (0, 1)-matrices. Bull. Amer. Math. Soc.,
69, 789-791.

Nuijten, W. (1994). Time and resource constrained scheduling : a constraint satisfaction
approach. Ph.D. thesis, TUE : Department of Mathematics and Computer Science.

Pesant, G., Quimper, C., & Zanarini, A. (2012). Counting-based search: Branching heuris-
tics for constraint satisfaction problems. J. Artif. Intell. Res., 43, 173-210.

Prud’homme, C., Fages, J.-G., & Lorca, X. (2017). Choco Documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S.

Refalo, P. (2004). Impact-based search strategies for constraint programming. In Principles
and Practice of Constraint Programming - CP 2004, 10th International Conference,
CP 2004, Toronto, Canada, September 27 - October 1, 2004, Vol. 3258 of Lecture
Notes in Computer Science, pp. 557-571. Springer.

Régin, J. (1996). Generalized arc consistency for global cardinality constraint. In Proceedings
of the Thirteenth National Conference on Artificial Intelligence and Eighth Innova-
tive Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland,
Oregon, August 4-8, 1996, Volume 1., pp. 209-215.

440

REVISITING COUNTING SOLUTIONS FOR THE GLOBAL CARDINALITY CONSTRAINT

Russell, S. J., & Norvig, P. (2010). Artificial Intelligence - A Modern Approach (3. internat.
ed.). Pearson Education.

Tao, Y., Christie, M., & Li, X. (2008). Through-the-lens scene design. In Smart Graphics, 8th
International Symposium, SG 2008, Rennes, France, August 27-29, 2008. Proceedings,
pp. 142-153.

Truchet, C., & Assayag, G. (Eds.). (2011). Constraint Programming in Music. ISTE.

Valiant, L. G. (1979). The complexity of computing the permanent. Theor. Comput. Sci.,
8, 189-201.

441

