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Abstract 

     We present improvements in maximum a-posteriori inference for Markov Logic, a widely used 

SRL formalism. Inferring the most probable world for Markov Logic is NP-hard in general. Several 

approaches, including Cutting Plane Aggregation (CPA), perform inference through translation to In-

teger Linear Programs. Aggregation exploits context-specific symmetries independently of evidence 

and reduces the size of the program. We illustrate much more symmetries occurring in long ground 

clauses that are ignored by CPA and can be exploited by higher-order aggregations. We propose Full-

Constraint-Aggregation, a superior algorithm to CPA which exploits the ignored symmetries via a 

lifted translation method and some constraint relaxations. RDBMS and heuristic techniques are in-

volved to improve the overall performance. We introduce Xeggora as an evolutionary extension of 

RockIt, the query engine that uses CPA. Xeggora evaluation on real-world benchmarks shows 

progress in efficiency compared to RockIt especially for models with long formulas. 

1. Introduction 

Recently, there has been a growing interest in learning and inference in Statistical Relational Learning 

(SRL) models. In these models, especially in Markov Logic Networks (MLN), one of the most widely 

used SRL formalisms, we are concerned with Maximum A-Posteriori (MAP) inference, i.e., inferring 

the most likely explanation (world) that maximizes the sum of the weights of the satisfied clauses. 

Raised from First-Order Logic by attaching weights to the first-order formulas, MLN offers a com-

pact representation of Markov Networks with repetitive structures. An MLN can be grounded to pro-

duce the Markov Network to which propositional inference algorithms are applicable. This procedure 

results in potentially large amounts of repetitive computations. Lifted inference is introduced to avoid 

this undesired blow-up. Both marginal and MAP lifted inference approaches in MLNs can be catego-

rized into two major methodologies: top-down, which starts from a lifted model and avoids grounding 

as much as possible, and bottom-up methodology, which starts from a propositional model and detects 

repetitive structures (Kimmig, Mihalkova, & Getoor, 2015). The former recognizes identical structures 

and performs computations only once, caching the results and re-using them. Lifted belief propagation 

(Singla & Domingos, 2008), first-order variable elimination (Poole, 2003) and its extensions (de Salvo 

Braz, Amir, & Roth, 2006; Kisynski & Poole, 2009; Milch, Zettlemoyer, Kersting, Haimes, & 

Kaelbling, 2008), domain-lifted MAP inference over non-shared MLNs (Sarkhel, Venugopal, Singla, 

& Gogate,  2014a), lifted recursive conditioning (Poole, Bacchus, & Kisynski, 2011), and its extension 

on MLN conversion to other liftable first-order models (Kazemi, Kimmig, Van den Broeck, & Poole, 

2016) are some of top-down approaches to name but a few. A key advantage of these algorithms is their 
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much smaller computational complexity than propositional algorithms. Their major disadvantage how-

ever, lays on the fact that the presence of evidence breaks the symmetries in the model. Models coming 

from real-world problems are often highly connected, containing many evidence axioms and variables. 

Indeed, several top-down lifted inference approaches (more precisely, those considering symmetry only 

as exchangeability) are evaluated on artificial datasets that are composed of a simple first-order template 

with many instances, resulting in a huge ground network with many indistinguishable objects. 

For several algorithms, both top-down and bottom-up versions exist (Lüdtke, Schröder, Krüger, Ba-

der, & Kirste, 2018). For example, lifted belief propagation has also a bottom-up variant (Kersting, 

Ahmadi, & Natarajan, 2009). For real-world MLN models, the latter methodology seems to fit better in 

obtaining symmetries. RockIt (Noessner, Niepert, & Stuckenschmidt, 2013) is one of the most fa-

mous MLN inference engines that is categorized in the bottom-up approaches, involved in several ap-

plications including ensemble matching (Meilicke, Leopold, Kuss, Stuckenschmidt, & Reijers, 2017), 

root cause analysis (Schoenfisch, Meilicke, von Stülpnagel, Ortmann, & Stuckenschmidt, 2018), com-

puting LPMLN (Lee, Talsania, & Wang, 2017), and data cleaning (Visengeriyeva, Akbib, & Kaul, 2016). 

It introduces aggregation on constraints, namely Cutting Plane Aggregation1, that improves compilation 

from a ground network to an Integer Linear Program (ILP) by decreasing the size of the program and 

better exposing its symmetries. The ILP is further passed to traditional solvers and the solution is 

mapped to a MAP state of the original MLN. 

Despite exploiting acceptable amounts of symmetries, there still exist further symmetries that CPA 

is unable to handle. In this work, we first illustrate some types of these symmetries by introducing order 

of aggregation and showing that CPA is able to perform only aggregations of order one, whereas higher-

order aggregations are required to exploit the ignored symmetries. Secondly, a superior algorithm, 

namely Full-Constraint-Aggregation (FCA) is introduced, empowered with any possible order of ag-

gregation with respect to the model. FCA performs a novel translation to efficient ILPs by relaxing 

some constraints that have no impact on the final solution. We then propose complementary techniques, 

including heuristics and Relational Database Management Systems (RDBMS) leverage to choose effi-

ciently among multiple candidates the one in which FCA fits the best. The proposed methods are im-

plemented within an evolutionary extension of RockIt, namely Xeggora. The extension also sup-

ports numerical constraints in Markov Logic (Chekol, Huber, Meilicke, & Stuckenschmidt, 2016). Fi-

nally, we show that Xeggora’s time-preserving techniques outperform RockIt while applied to 

models with long formulas.  

There also exist approaches that affect other phases of lifted inference independently of the FCA 

scope, such as the grounding phase. For instance, Martínez-Angeles, Dutra, Costa, and Buenabad-Chá-

vez (2016) make use of graphics processing units to speed up grounding, and Mangal, Zhang, Kamath, 

Nori, and Naik (2016) introduce an eager-lazy grounding algorithm which eagerly exploits proofs and 

lazily refutes counterexamples. FCA is a meta-algorithm that affects the translation to ILPs and the 

optimization phase, and is able to be jointed with all these orthogonal algorithms. Cutting Plane Infer-

ence (CPI) (Riedel, 2008) is another approach that reduces the inference runtime by splitting the ground-

ing, translation, and optimization phases into iterations. FCA is also able to get involved in CPI proce-

dure by moving into the iterations.   
 

1  Its owners’ intention of naming the method cutting plane aggregation is unclear to us. However, we prefer to leave this name 

for the aggregation while jointed with CPI and call the single procedure constraint aggregation or first-order aggregation. 
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The rest of this paper is organized as follows. Section 2 defines the preliminaries, mainly constraint 

aggregation and related techniques and describes the problem. Section 3 is composed of the FCA algo-

rithm description and its soundness proofs. Section 4 describes add-on techniques that leverage RDBMS 

and related heuristics to improve the overall performance. Section 5 includes ILP solving analytics and 

reports the empirical evaluation of FCA on six benchmark MLNs. Recent symmetry exploitation ap-

proaches with connections to this work are briefly described in Section 6, and Section 7 concludes. 

2. Preliminaries 

In this section, we review the concepts required for understanding the rest of the paper and define useful 

notations. As the evaluation part includes experiment reports in which we use CPI in conjunction with 

CPA and FCA, we also present a brief explanation of the algorithm, although it is orthogonal to our 

approach with no close relation to the contents of this paper. 

2.1 First-Order Logic 

A first-order knowledge base (KB) is a set of formulas in first-order logic (FOL). Formulas are con-

structed using four types of symbols: constants, variables, functions, and predicates. Constants repre-

sent objects in the domain of interest. Variables range over the objects. Functions represent mappings 

from tuples of objects to objects. Predicates represent relations among objects in the domain or attributes 

of objects. A term is any expression representing an object in the domain; it can be a constant, a variable 

or a function of terms. An atomic formula or atom is a predicate applied to a tuple of terms. Formulas 

are recursively constructed from atoms using logical connectives ¬, ∧, ∨ and quantifiers ∀, ∃. A positive 

literal is an atom; a negative literal is a negated atom. A KB is in the standard Conjunctive Normal Form 

(CNF) if it is expressed as a conjunction of clauses (disjunctive formulas). The length of a clause is the 

number of its constituting literals. The process of (partial) grounding corresponds to substituting con-

stants for (some) all of the free variables in a predicate or a formula. An interpretation (possible world) 

assigns a truth value to each ground atom. In this paper, we assume function-free KB, and permit only 

the universal quantification on variables. For specific applications that use existential quantification in 

MLNs (e.g., Schoenfisch et al., 2018), some pre-processing is involved by Meilicke and Stuckenschmidt 

(2015) to treat it in terms of a comprehensive grounded representation. A good alternative would be 

using the concept of cardinality constraints in formulas as implemented within the RockIt system. 

2.2 Markov Logic 

Markov Logic (Richardson & Domingos, 2006) is a combination of first-order logic and probabilistic 

graphical models. It allows softening a first-order formula f, by attaching a real-valued weight w to it. 

A positive (negative) weight makes the formula support (penalize) worlds in which it is satisfied. Hard 

formulas are regular first-order formulas which are expressed with infinite weights and have to be ful-

filled by every possible world. The probability of a possible world x is proportional to the exponential 

sum of the weights of the soft formulas F that are satisfied in that world. The formal definition is: 

𝑃(𝑋 = 𝑥) =
1

𝑍
𝑒𝑥𝑝 ( ∑ 𝑤𝑖𝑛𝑖(𝑥)

𝑖:𝑓𝑖∈𝐹

) 
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where Z is a normalization constant and 𝑛𝑖(𝑥) is the number of true groundings of 𝑓𝑖 in x. In the presence 

of evidence e, the possible world should satisfy e in addition to hard formulas, and its probability is 

reformulated as: 

𝑃(𝑋 = 𝑥|𝑒) =
1

𝑍𝑒
𝑒𝑥𝑝 ( ∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

) 

where 𝑍𝑒 is the normalization constant with respect to e, and 𝑛𝑖(𝑥, 𝑒) is the number of true groundings 

of 𝑓𝑖 in x that satisfy e. 

MAP inference in Markov Logic corresponds to inferring the most likely possible world: 

𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃(𝑥|𝑒) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥

1

𝑍𝑒
𝑒𝑥𝑝 ( ∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 ∑ 𝑤𝑖𝑛𝑖(𝑥, 𝑒)

𝑖:𝑓𝑖∈𝐹

. 

Thus, MAP inference reduces to finding the interpretation that maximizes the sum of the weights of 

the satisfied clauses. The problem is NP-hard in general. Any standard solver such as MaxWalkSAT 

(Kautz, Selman, & Jiang, 1997) can be used over the ground network to find the MAP solution. As an 

advanced alternative, this can be left as an ILP formulation (Wolsey, 1998) for efficient optimizers to 

be solved. 

There is a rich literature of compiling computational problems to ILPs in operations research com-

munity. Thanks to advances in optimizers development, a wide variety of applications resolve queries 

by translating them to ILPs (or other types of optimization programs) and having an optimizer find the 

exact or approximate solution. Huynh and Mooney (2009) proposed a translation of MAP queries to 

ILPs and Noessner et al. (2013) extended the approach by applying constraint aggregation besides minor 

enhancements to improve efficiency. Here we describe the ILP formulation and constraint aggregation 

methods. 

2.3 Traditional ILP Formulation  

In all parts of the process, formulas are supposed to be conjunction-free, i.e., composed of disjunctive 

clauses. Formulas with conjunctions are treated similarly in a separate procedure (Noessner, 2014). 

Given a set of ground clauses 𝒢 as input, one binary ILP variable 𝑥ℓ is associated with each ground 

atom ℓ occurring in the set, assigning it a value 1 provided ℓ is true and 0 otherwise. Each evidence 

atom (assignment of a truth value to an atom) can be represented as a linear constraint of the form 𝑥ℓ ≤

0 or 𝑥ℓ ≥ 1, or simply by replacing the corresponding ILP variable with a constant binary value. For 

each ground clause 𝑔 ∈ 𝒢 with weight 𝑤𝑔 ∈ ℝ, a binary variable 𝑧𝑔 with coefficient 𝑤𝑔 is added to the 

objective. The objective totally becomes: 

maximize ∑ 𝑤𝑔𝑧𝑔𝑔∈𝒢 . 

It is straightforward to design constraints considering 𝑧𝑔 to be assigned 1 provided its corresponding 

ground clause is satisfied in the MAP solution and 0 otherwise. For a clause with 𝑤𝑔 > 0, the following 

constraint is added to the ILP: 

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≥ 𝑧𝑔 
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where 𝐿+(𝑔) and 𝐿-(𝑔) refer to the sets of all ground atoms occurring unnegated and negated in 𝑔, 

respectively. A truth value assignment to any ground atom that fulfills the disjunctive clause 𝑔, makes 

the left-hand side of the constraint positive, thus, 𝑧𝑔 can take its maximum possible value 1.  

For hard clauses (𝑤𝑔 = ∞), no term is added to the objective and 𝑧𝑔 in the constraint is simply 

replaced with 1: 

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≥ 1. 

For a clause with 𝑤𝑔 < 0, the optimizer tries to lower 𝑧𝑔 to its minimum possible value 0. The 

following constraint is added to permit this only if none of its constituting ground atoms satisfy 𝑔: 

∑ 𝑥ℓ

ℓ∈𝐿+(𝑔)

+ ∑ (1 − 𝑥ℓ)

ℓ∈𝐿-(𝑔)

≤ (|𝐿+(𝑔)| + |𝐿-(𝑔)|) 𝑧𝑔. 

Finally, for clauses with zero weights, no constraint is added to the ILP as they have no effect on the 

MAP solution. 

Example 1 Consider an MLN with a single formula of weight 1.4 stating that each kid may be happy 

of having a kind parent: 

1.4 Child(k, p) ∧ Kind(p) ⇒ Happy(k). 

The formula is expressed in the standard form as: 

1.4 ¬Child(k, p) ∨ ¬Kind(p) ∨ Happy(k). 

By grounding and applying evidence: 

Child(Mary, Jack), 

Child(Mary, Rose), 

Child(Bob, Jack), 

Child(Kate, Jack), 

the essential ground clauses would be: 

𝑔1: 1.4 ¬Kind(Jack) ∨ Happy(Mary) 

𝑔2: 1.4 ¬Kind(Rose) ∨ Happy(Mary) 

𝑔3: 1.4 ¬Kind(Jack) ∨ Happy(Bob) 

𝑔4: 1.4 ¬Kind(Jack) ∨ Happy(Kate) 

This MLN is translated to the following ILP (all variables types are binary): 

maximize 1.4𝑧1 + 1.4𝑧2 + 1.4𝑧3 + 1.4𝑧4 

subject to: 

𝑐1: (1 − 𝐾𝑖𝑛𝑑𝐽𝑎𝑐𝑘) + 𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦 ≥ 𝑧1, 

𝑐2: (1 − 𝐾𝑖𝑛𝑑𝑅𝑜𝑠𝑒) + 𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦 ≥ 𝑧2, 

𝑐3: (1 − 𝐾𝑖𝑛𝑑𝐽𝑎𝑐𝑘) + 𝐻𝑎𝑝𝑝𝑦𝐵𝑜𝑏 ≥ 𝑧3, 

𝑐4: (1 − 𝐾𝑖𝑛𝑑𝐽𝑎𝑐𝑘) + 𝐻𝑎𝑝𝑝𝑦𝐾𝑎𝑡𝑒 ≥ 𝑧4.  

By the essential ground clauses, we mean having inessential, say, free groundings whose truth values 

have no effect on the MAP state removed from the entire ground clauses. For instance, generating the 

ground clause: 1.4 ¬Child(Bob, Rose) ∨ ¬Kind(Rose) ∨ Happy(Bob) in Example 1 is inessential. In 

other words, we always perform grounding only if we need to. This is the only reason for involving 

evidence in the given example. 
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2.4 Cutting Plane Inference  

The well-known idea of using cutting planes from operations research (Dantzig, Fulkerson, & Johnson, 

1954) was involved by Riedel (2008) in ILP solving of MAP inference for Markov Logic. The algorithm 

starts with the given evidence and the trivial parts of the KB (e.g. unary clauses) and solves the corre-

sponding ILP which can be actually much smaller than the ILP formulation of the whole MLN. The 

solution is then checked if it violates any constraints. The violated constraints (if any) are then added to 

the program and solved again. This incremental process iterates until no violated constraint remains. It 

is shown by experiments that CPI can solve previously intractable MAP inference queries within short 

times. 

2.5 Constraint Aggregation  

Grounding formulas in MLN often results in symmetries in multiple ground clauses, and consequently, 

in the ILP constraints. Constraint aggregation proposes aggregating ground clauses that include sym-

metries, resulting in smaller constraint matrices and aiding symmetry detection algorithms of the ILP 

solver. The candidate sets of ground clauses to which aggregation can be applied are defined as follows: 

Definition 1 Let 𝐺 ⊆ 𝒢 be a set of n weighted ground clauses and let c be a ground clause. We say that 

𝐺 can be aggregated with respect to c if (a) all ground clauses in 𝐺 have the same weight and (b) for 

every 𝑔𝑖 ∈ 𝐺, 1 ≤ 𝑖 ≤ 𝑛, we have that 𝑔𝑖 = ℓ𝑖 ∨ 𝑐 where ℓ𝑖 is a positive or a negative literal. 

For such a set, all corresponding ILP constraints can be replaced by fewer constraints with the fol-

lowing rules: 

Definition 2 (First-Order Aggregation Rules) Let 𝐺 ⊆ 𝒢 be a set of n ground clauses with weight 𝑤𝐺  

that can be aggregated with respect to a ground clause c. 

I. In case of a finite weight (𝑤𝐺 ≠ ∞), replace the corresponding terms in the ILP objective with 

a new integer variable 𝑧𝐺 ∈ {0, . . , 𝑛} with coefficient 𝑤𝐺: 

maximize 𝑤𝐺𝑧𝐺  + rest of the objective. 

If 𝑤𝐺 > 0, replace the corresponding ILP constraints with: 

∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑧𝐺 , 

and if 𝑤𝐺 < 02, with: 

∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 ≤ 𝑧𝐺 , 

𝑛𝑥ℓ ≤ 𝑧𝐺             𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿+(𝑐), 

𝑛(1 − 𝑥ℓ) ≤ 𝑧𝐺   𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿-(𝑐). 
 

II. In case of an infinite weight (𝑤𝐺 = ∞)3, only replace the corresponding ILP constraints with: 

∑ 𝑥𝑝𝑝|𝑝∨𝑐∈𝐺 + ∑ (1 − 𝑥𝑞)𝑞|¬𝑞∨𝑐∈𝐺 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑛. 

According to the aggregation rules, 𝑧𝐺  is considered to be assigned the number of satisfied ground 

clauses in 𝐺; it gains the maximum value n provided a solution satisfies the ground clause c, otherwise 

it is equal to the number of the literals (of the form p or ¬q) satisfied by the solution. CPA algorithm 

chooses greedily among sets that can be aggregated to a more compact ILP and applies constraint ag-

gregation. 
 

2,3 Despite the perfect explanation of the process by Noessner et al. (2013) and Noessner (2014), the implementation of 

RockIt (up to the current ver. 0.5.276) lacks the aggregation of hard clauses and also happens to generate irrelevant ILP 

constraints for the case of negative weights which result in incorrect solutions. These issues are fixed in Xeggora. 
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A fundamental distinction should be considered in the resulting ILP between negative and positive 

weights: More constraints are required for negative weights to bind 𝑧𝐺  with the desired value. Intui-

tively, satisfying each negative weighted ground clause brings one penalty in the objective; hence, the 

common disjunctive part (c) of the aggregated clauses should be checked conjunctively for each of its 

constituting literals to bring n penalties if satisfied. To be more precise, adding each integer variable of 

the mathematical program with a negative weighted representative in the objective leads to minimizing 

that variable, which in turn, appears in the right-hand side of multiple inequality constraints to minimize 

the maximum of all the left-hand side values. This is regarded as minimax multi-objective optimization 

in operations research community (Aissi, Bazgan, & Vanderpooten, 2009).  

Example 2 Among the ground clauses of Example 1, {𝑔1, 𝑔2} can be aggregated with respect to 

Happy(Mary), while {𝑔1, 𝑔3, 𝑔4} can be aggregated with respect to ¬Kind(Jack). {𝑔1, 𝑔3, 𝑔4} is cho-

sen by greedy for aggregation. The terms: 1.4𝑧1 + 1.4𝑧3 + 1.4𝑧4 in the objective are replaced by 

1.4𝑧1,3,4, 𝑧1,3,4 ∈ {0. .3} and the ILP constraints {𝑐1, 𝑐3, 𝑐4} are replaced by: 

𝑐1,3,4: 𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦 + 𝐻𝑎𝑝𝑝𝑦𝐵𝑜𝑏 + 𝐻𝑎𝑝𝑝𝑦𝐾𝑎𝑡𝑒 + 3(1 − 𝐾𝑖𝑛𝑑𝐽𝑎𝑐𝑘) ≥ 𝑧1,3,4. 

A distinctive advantage of the aggregation approach is its immunity to evidence in contrast to other 

lifting methods and relates to the different views of the symmetry concept. This can be explained by 

justifying the aggregation rules versus other symmetry exploitation techniques. Conventional lifting 

approaches (e.g. fractional automorphisms for MAP LPs by Bui, Huynh, and Riedel, 2013) define and 

expose symmetry as exchangeability which is justified by encapsulating exchangeable entities into a 

single representative, hence reducing the problem size. This type of symmetry is broken by evidence. 

The reader is referred to Van den Broeck and Darwiche (2013) for illustration. Moreover, the current 

exchangeable variables may not remain exchangeable by any upcoming additional formulas giving in-

formation about them. In the aggregation approach in contrast, symmetric variables do not need to be 

assigned the same value, but to be just capable of being summed up in the constraints. This capability 

won’t suffer from evidence. The difference may be precisely explored in Example 3: 

Example 3 Consider the traditional ILP translation of the MLN in Example 1. The binary variables 

𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦, 𝐻𝑎𝑝𝑝𝑦𝐵𝑜𝑏 and 𝐻𝑎𝑝𝑝𝑦𝐾𝑎𝑡𝑒 are symmetric and may be unified by a conventional lifting 

technique to a representative, say, 𝐻𝑎𝑝𝑝𝑦𝑀𝐵𝐾. Consequently, the constraints {𝑐1, 𝑐3, 𝑐4} would be 

grouped as a unique constraint with one binary representative in the lifted ILP objective. Adding the 

new evidence: “Mary is happy” or the complicated knowledge: “Only one person is not happy” to the 

MLN breaks the symmetries, bringing back the underlying entities to ground. The restriction is even 

more intensive for example in fractional automorphism based methods, because the presence of 

𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦 in 𝑔2 avoids unifying the predicate with 𝐻𝑎𝑝𝑝𝑦𝐵𝑜𝑏 and 𝐻𝑎𝑝𝑝𝑦𝐾𝑎𝑡𝑒 even with no addi-

tional evidence. However, this would not happen to the aggregated constraints in Example 2 as the 

underlying variables have not been unified but summed up. 

As seen in Example 2, constraint aggregation is able to reduce the number of ILP variables and 

constraints. This is however not the case in Example 4, where the members of every non-singular subset 

of the ground clauses differ in at least two literals:  

Example 4 Consider an MLN with a single formula of weight 2.3 stating that each kid may be happy 

of having a kind parent who has fun with him (her): 

2.3 ¬Child(k, p) ∨ ¬Kind(p) ∨ ¬HasFunWith(p, k) ∨ Happy(k). 

By grounding and applying the same evidence of Example 1, the essential ground clauses would be: 

𝑔1: 2.3 ¬Kind(Jack) ∨ ¬HasFunWith(Jack, Mary) ∨ Happy(Mary) 
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𝑔2: 2.3 ¬Kind(Rose) ∨ ¬HasFunWith(Rose, Mary) ∨ Happy(Mary) 

𝑔3: 2.3 ¬Kind(Jack) ∨ ¬HasFunWith(Jack, Bob) ∨ Happy(Bob) 

𝑔4: 2.3 ¬Kind(Jack) ∨ ¬HasFunWith(Jack, Kate) ∨ Happy(Kate) 

Here, there still exist similarities between the members of both {𝑔1, 𝑔2} and {𝑔1, 𝑔3, 𝑔4}, but in 

addition, diversity in more than one literal. These are ignored by the constraint aggregation algorithm; 

it allows only one literal to be distinct while all others must be identical. This is the justification of 

naming the method first-order aggregation. This failure often happens in models containing long for-

mulas. We introduce Full-Constraint-Aggregation that can exploit this type of symmetry.  

3. The FCA Method 

We start by illustrating symmetry types that appear in ground clauses as in Example 4, based on a pa-

rameter we name order of aggregation. Then we describe our superior algorithm which performs 

higher-order aggregations. 

Definition 3 Let 𝐺 ⊆ 𝒢 be a set of n weighted ground clauses and let c be a ground clause with non-

zero length. We say that 𝐺 can be aggregated of order k with respect to c, if (a) all ground clauses in 𝐺 

have the same weight and (b) for every 𝑔𝑖 ∈ 𝐺, 1 ≤ 𝑖 ≤ 𝑛, we have that 𝑔𝑖 = 𝐿𝑖 ∨ 𝑐 where 𝐿𝑖 is a 

ground clause of maximum length k. We call k the aggregation order of 𝐺, if k is the minimum order of 

which 𝐺 can be aggregated (with respect to any ground clause c). 

Due to Definition 3, the constraint aggregation method is only applicable to the sets of ground clauses 

with aggregation order of 1, performing first-order aggregation. For a set of a higher aggregation order, 

we need to associate disjunctions of literals with binary terms in the optimization program, e.g. 𝑎 ∨ 𝑏 ≡

𝑥𝑎 + 𝑥𝑏 − 𝑥𝑎𝑥𝑏. This results in an Integer Polynomial Program. To be more precise, a kth order trivial 

aggregation may be performed to formulate the MAP inference problem as an integer kth order mathe-

matical program. The program can be further linearized to an equivalent ILP using the classic lineari-

zation method outlined by Watters (1967), as previously done in a different MAP inference method by 

Sarkhel, Venugopal, Singla, and Gogate (2014b). However, the resulting ILP would carry much more 

variables and constraints and last longer to be solved than the one from the traditional ILP formulation. 

To overcome this issue, we propose a novel relaxed translation of MLNs to ILPs by associating 

auxiliary variables with disjunctive clauses. This is done through higher-order aggregation rules. 

Definition 4 (Higher-Order Aggregation Rules) Let 𝐺 ⊆ 𝒢 be a set of n ground clauses with weight 𝑤𝐺  

with the aggregation order of 𝑘 > 1, i.e., can be aggregated of order 𝑘 with respect to a ground clause 

c. Each ground clause 𝐿𝑖 such that 𝐿𝑖 ∨ 𝑐 ∈ 𝐺 is a disjunction of at most k unnegated or negated ground 

atoms. For each 𝐿𝑖 with length 1, apply the First-Order Aggregation Rules. For the remainder: 

I. Corresponding to each 𝐿𝑖, define a new binary ILP variable 𝑥𝑠𝑖
. Choose one of the following 

Bound Constraints (BCs) after the sign of 𝑤𝐺  and add it to the ILP:  

Upper-BC: 𝑥𝑠𝑖
≤ ∑ 𝑥ℓℓ∈𝐿+(𝐿𝑖) + ∑ (1 − 𝑥ℓ)ℓ∈𝐿-(𝐿𝑖)       if 𝑤𝐺 > 0 or 𝑤𝐺 = ∞ 

Lower-BC: ∑ 𝑥ℓℓ∈𝐿+(𝐿𝑖) + ∑ (1 − 𝑥ℓ)ℓ∈𝐿-(𝐿𝑖) ≤ |𝐿𝑖|. 𝑥𝑠𝑖
   if 𝑤𝐺 < 0 

 

II. In case of a finite weight (𝑤𝐺 ≠ ∞), replace the corresponding terms in the ILP objective with 

a new integer variable 𝑧𝐺 ∈ {0, . . , 𝑛} with coefficient 𝑤𝐺: 

maximize 𝑤𝐺𝑧𝐺  + rest of the objective. 

If 𝑤𝐺 > 0, replace the corresponding ILP constraints with: 
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∑ 𝑥𝑠𝑖

𝑛
𝑖=1 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑧𝐺, 

and if 𝑤𝐺 < 0, with: 
∑ 𝑥𝑠𝑖

𝑛
𝑖=1 ≤ 𝑧𝐺 , 

𝑛𝑥ℓ ≤ 𝑧𝐺             𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿+(𝑐), 

𝑛(1 − 𝑥ℓ) ≤ 𝑧𝐺   𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 ℓ ∈ 𝐿-(𝑐). 
 

III. In case of an infinite weight (𝑤𝐺 = ∞), only replace the corresponding ILP constraints with: 
∑ 𝑥𝑠𝑖

𝑛
𝑖=1 + ∑ 𝑛𝑥ℓℓ∈𝐿+(𝑐) + ∑ 𝑛(1 − 𝑥ℓ)ℓ∈𝐿-(𝑐) ≥ 𝑛. 

The Upper-BC and Lower-BC pair if used altogether, represent the disjunction operator(s) of 𝐿𝑖 in 

the ILP. Intuitively, to correspond a logical OR operator for two Boolean variables: 𝑐 ≡ 𝑎 ∨ 𝑏 in the 

integer space, one may add two inequalities: 𝑥𝑐 ≤ 𝑥𝑎 + 𝑥𝑏 ≤ 2𝑥𝑐. Similar inequalities would represent 

the disjunction of k Boolean variables. Now if 𝑥𝑐 is involved in either maximization or minimization, 

one can drop the corresponding inessential constraint.  

Example 5 The traditional ILP formulation of Example 4 is straightforward and not mentioned here. 

Among the ground clauses, {𝑔1, 𝑔2} can be aggregated of order 2 with respect to Happy(Mary), and 

{𝑔1, 𝑔3, 𝑔4} can also be aggregated of order 2 with respect to ¬Kind(Jack). By some heuristics, {𝑔1, 

𝑔3, 𝑔4} is chosen as the target for aggregation. The corresponding terms in the objective are replaced 

by: 2.3𝑧1,3,4, 𝑧1,3,4 ∈ {0. .3} and the corresponding ILP constraints are replaced by: 

𝑥𝑠1
≤ (1 − 𝐻𝑎𝑠𝐹𝑢𝑛𝑊𝑖𝑡ℎ𝐽𝑎𝑐𝑘,𝑀𝑎𝑟𝑦) + 𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑟𝑦,  

𝑥𝑠3
≤ (1 − 𝐻𝑎𝑠𝐹𝑢𝑛𝑊𝑖𝑡ℎ𝐽𝑎𝑐𝑘,𝐵𝑜𝑏) + 𝐻𝑎𝑝𝑝𝑦𝐵𝑜𝑏, 

𝑥𝑠4
≤ (1 − 𝐻𝑎𝑠𝐹𝑢𝑛𝑊𝑖𝑡ℎ𝐽𝑎𝑐𝑘,𝐾𝑎𝑡𝑒) + 𝐻𝑎𝑝𝑝𝑦𝐾𝑎𝑡𝑒, 

𝑥𝑠1
+ 𝑥𝑠3

+ 𝑥𝑠4
+ 3(1 − 𝐾𝑖𝑛𝑑𝐽𝑎𝑐𝑘) ≥ 𝑧1,3,4. 

3.1 ILP Analysis 

Applying higher-order aggregation rules results in relaxed ILPs that are necessary to be analyzed in 

terms of soundness and efficiency. To this end, we have the following theorem: 

Theorem Let M be a Markov Logic Network and HOA(M) be the ILP formulation having higher-order 

aggregations applied to all or part of it. Each solution of HOA(M) corresponds one-to-one to a maxi-

mum a-posteriori state of M. 

Proof. The aggregation process is similar to the first-order aggregation whose soundness has been 

proven earlier by Noessner (2014, Theorem 3). We need moreover to show that the auxiliary relaxed 

variables and the BCs of rule I in Definition 4 do not affect the soundness. We build a new MLN with 

the same logic as M, and show that HOA(M) can be produced by applying first-order aggregation to it. 

Consider a set of n ground clauses 𝐺 in M with weight w which has been aggregated of order 𝑘 > 1 

with respect to some ground clause c. Without loss of generality, suppose that the other parts of M are 

not aggregated. For each 𝑔𝑖 ∈ 𝐺, 𝑔𝑖 = 𝐿𝑖 ∨ 𝑐, |𝐿𝑖| > 1 we add to M, without affecting its logic, a Bool-

ean variable 𝑠𝑖 and new hard formulas 𝑠𝑖 ⇒ 𝐿𝑖, 𝐿𝑖 ⇒ 𝑠𝑖 and substitute 𝑠𝑖 ∨ 𝑐 for 𝑔𝑖. Note that any MAP 

inference algorithm tries to satisfy clauses with positive weights (besides hard clauses), and dissatisfy 

those with negative weights. Hence for each i, if 𝑤 > 0 or 𝑤 = ∞, it never tries to dissatisfy 𝑠𝑖 (because 

it appears in no ground clause except 𝑠𝑖 ∨ 𝑐), so 𝐿𝑖 ⇒ 𝑠𝑖 has no impact on the truth values of the literals 

occurring in 𝐿𝑖, and can be relaxed (removed) . Similarly, 𝑠𝑖 ⇒ 𝐿𝑖 can be relaxed if 𝑤 < 0 because the 

inference engine never tries to satisfy 𝑠𝑖. Thus, in both cases we can drop either the upper-BC or the 

lower-BC (as done in rule I). It is remarkable that through relaxation, 𝑠𝑖 is no longer equivalent to 𝐿𝑖; 
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we do not need it to be though. It is straightforward to show that the new MLN can be ILP-formulated 

as HOA(M): For each 𝑖 ∈ {1,2, . . , 𝑛}, associate 𝑠𝑖 with the 𝑥𝑠𝑖
 in Definition 4; each 𝑠𝑖 ⇒ 𝐿𝑖 in the 

standard CNF form is a ground clause of maximum length 𝑘 + 1 that can form an upper-BC. Mean-

while, each 𝐿𝑖 ⇒ 𝑠𝑖 is composed of at most 𝑘 ground clauses in the standard form that can be first-order 

aggregated with respect to 𝑠𝑖 and form a lower-BC. On the other hand, {𝑠𝑖 ∨ 𝑐|1 ≤ 𝑖 ≤ 𝑛} can be first-

order aggregated with respect to c and form the constraints of rule II or III.                                           □ 

Now we deal with the computational aspect of higher-order aggregation by comparing the number 

of variables and constraints of the resulting ILP before and after applying the rules. For a set of n ground 

clauses of length m and aggregation order of k, the identical clause c has length 𝑚– 𝑘. Assuming that 

the clauses don’t share any variables except those occurring in c, the number of variables would be 

𝑛. 𝑘 + 𝑚 − 𝑘 (for hard clauses) or 𝑛. 𝑘 + 𝑚 − 𝑘 + 𝑛 (for soft clauses). The number of corresponding 

constraints is n. After applying kth order aggregation, the number of variables increases by n (for hard 

clauses) or by 1 (for soft clauses). The number of constraints also increases by 1 (in case of positive 

weight) or by 𝑚 − 𝑘 + 1 (in case of negative weight). This would increase by n more constraints with-

out relaxing either upper-BCs or lower-BCs. First-order aggregation is an exception, which in case the 

auxiliary variables and BCs need not be added; hence we have a decrease in the ILP size as outlined by 

Noessner et al. (2013). For the higher aggregation orders, despite the increase in the ILP size, we em-

pirically observed runtime enhancements of the solver. This is because the increase in the ILP size is of 

order of the lengths of clauses and can be ignored while compared to the size of symmetries that aggre-

gation makes explicit to the solver. 

Higher-order aggregation rules bring us the option to choose the target among wider sets of ground 

clauses. Consider a first-order formula that is grounded to a set of ground clauses 𝒢. For each cluster 

𝐺 ⊆ 𝒢, we can partition the constituting literals into identical and distinct parts. Identical literals are the 

ones that every clause in 𝐺 shares exactly the same grounding for. Aggregation would be applicable if 

at least one identical literal exists. Therefore, no similarity is ignored and a full aggregation can be 

performed. The order of aggregation would be the number of distinct literals that can range from 1 to 

the length of the clauses minus 1. 

The FCA algorithm is composed of three phases that are executed iteratively: It first seeks the can-

didate clustering schemes of ground clauses in the MLN for aggregation. Then it chooses a target among 

them by heuristics and finally applies higher-order aggregation rules to the target. The first two phases 

should be essentially time-preserving and efficiency-preserving, so that the enhancement earned by the 

third phase would not be neutralized, i.e., efficient candidates should be chosen to fit the best for aggre-

gation, and this should be done efficiently. To this end, multiple techniques are involved that are de-

scribed in the next section. 

4. Leveraging RDBMS and Heuristics 

We showed analytically a major difference between the first-order and higher-order aggregations. First-

order aggregation, if applicable, reduces the ILP size on the order of the number of aggregated clauses, 

which results in much faster program solving. This is also verified through experiments on the artificial 

data. In order to compare the efficiency between possible clustering schemes for higher-order aggrega-

tions, one may obtain desired metrics. However, designing such metrics is not trivial because efficiency 

is an abstract measure that relates to the cost of the aggregation procedure in terms of size and runtime, 

along with the cost of solving the ILP. Moreover, involving a metric in the algorithm would acquire 
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time-consuming computations. Instead, we propose a heuristic approach to choose an appropriate clus-

tering scheme for aggregation as described in the following algorithm. In order to benefit from query 

optimization technologies, this algorithm leverages RDBMS to compute the compactness of possible 

aggregations. The idea of RDBMS leverage for MAP inference in Markov Logic was inspired by Riedel 

(2008) and evolved by Niu, Ré, Doan, and Shavlik (2011) and Noessner et al. (2013). They used 

RDBMS in the grounding phase and also in finding the violated constraints, but the computation of 

counting features was not implemented with RDBMS because it requires storing or regeneration of the 

ground table which is often inefficient for first-order aggregation. In the case of higher-order aggrega-

tions however, counting the number of rows is required several times which is done by the COUNT 

DISTINCT query. It is a standard SQL query used for counting the number of distinguishable rows on 

the specified columns in a table. Extensionally, MySQL permits using it multiple times in a single query.  

Algorithm CHOOSEFORAGGREGATION 

 Input ℱ: a first-order disjunctive clause 

 Input 𝒢: a SQL table, containing all essential ground clauses of ℱ 

 Output appropriate clustering scheme as the target for aggregation 

1:   L  𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠_𝑜𝑓 (ℱ) 

2:   𝒱  𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠_𝑜𝑓 (L) 

3:   if |L| = 1 

4:       candidate_sets   {∅} 

5:   else 

6:       candidate_sets   {} 

7:   foreach non-empty 𝑉 ⊆ 𝒱 

8:       identical_literals  {ℓ𝑖 ∈ 𝐿| 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠_𝑜𝑓 (ℓ𝑖) ⊆ 𝑉} 

9:       if identical_literals  candidate_sets and identical_literals ≠ L 

10:         add identical_literals to candidate_sets 

11: if candidate_sets contains any sets of literals with the size of |L| - 1 

12:     return best of them greedily to be further first-order aggregated 

13: else 

14:     query  ‘SELECT ’  

15:     foreach identical_part ∈ candidate_sets 

16:         query  query + ‘COUNT (DISTINCT ’ 

              + 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (identical_part) + ‘) as ’ + 𝐶𝑎𝑝𝑡𝑖𝑜𝑛 (identical_part) 

              [+ ‘,’] // except for the last loop 

17:     query  query + ‘FROM ’ + 𝒢 

18:     execute query into #clusters 

19:     best_candidate_sets  {argmin#𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 candidate_sets} 

20:     return argmaxcardinality best_candidate_sets 

The algorithm is provided with a disjunctive clause and a table containing all of its essential ground-

ings in the rows and its constituting variables in the columns. Inessential groundings (e.g. by the substi-

tution of {𝑘 ↦ 𝐵𝑜𝑏, 𝑝 ↦ 𝑅𝑜𝑠𝑒} in Example 4) should have been previously ignored in order to pro-

duce an effective output. The algorithm first acquires the set of all literals that constitute the clause and 

also all variables that participate in grounding (lines 1, 2). In lines 3-6, a set is initialized for storing all 

feasible partitioning schemes of the literals. Each candidate set is a representative for the set of identical 
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literals (i.e., clause c in Definition 3), so the complementary literals are considered distinct. The cardi-

nality of a candidate set represents the clause length minus its proposing order of aggregation. ∅ is by 

default a feasible candidate set. However, it is added only for first-order aggregation as it would not be 

efficient for higher orders, as considered in Definition 3. Lines 7-10 collect candidate sets for aggrega-

tion. One may trivially collect the sets based on ground literals; however, we build the collection method 

upon non-empty sets of variables, in order to avoid producing infeasible candidate sets. It starts with 

partitioning the variables. Each partitioning scheme of variables specifies a feasible partitioning scheme 

of literals which in turn corresponds to a clustering scheme of the essential ground clauses. Line 11 

discovers if any candidates are present for first-order aggregation, to be in case the arguments of a call 

to the procedure (line 12). If there exist more than one candidate, one would be chosen greedily as done 

in CPA. Lines 14-18 contain the code for generating and executing the SQL query that counts the num-

ber of clusters aggregated according to each partitioning scheme. Each single clause that is not aggre-

gated is considered in a singleton cluster. We involve the query output #clusters as a lookup table which 

returns the number of clusters given a candidate set. Finally, the candidate partitioning scheme that 

offers the minimum number of clusters is selected. If there exist multiple solutions, the one with the 

lowest aggregation order is returned (lines 19-20). This is motivated from the analysis on the artificial 

data; keeping other parameters fixed, lower-order aggregations often produce slightly more efficient 

ILPs. 

Example 6 Consider ℱ to be the first-order clause: ¬Kind(p) ∨ ¬HasFunWith(p, k) ∨ Happy(k). Also 

consider 𝒢 to contain its essential groundings from Example 4 as stored in the following SQL table: 

 

k p 

Mary Jack 

Mary Rose 

Bob Jack 

Kate Jack 

Following the algorithm onto line 13, the candidate sets would become {{k}, {p}}. To elaborate the 

process, suppose exceptionally that we permit the universal set to be also a candidate. The counting 

SQL query given the candidate sets: {{k}, {p}, {k, p}} would be generated as: 

 

SELECT COUNT (DISTINCT k) as ‘{Happy(k)}’ 

     , COUNT (DISTINCT p) as ‘{¬Kind(p)}’ 

     , COUNT (DISTINCT k, p) as ‘{¬Kind(p), ¬HasFunWith(p, k), Happy(k)}’ 

FROM 𝒢 

By executing the query, we are provided with a lookup table for #clusters as: 

 

candidate set #clusters 

{Happy(k)} 3 

{¬Kind(p)} 2 

{¬Kind(p), ¬HasFunWith(p, k), Happy(k)} 4 

Finally, the 2nd candidate set:  {¬Kind(p)} is chosen and returned as the identical part for aggregation. 

An extra point which is not described here in detail is that we collect the candidate sets in an elegant 

order by which the number of costly COUNT DISTINCT commands in the query becomes fewer than 

as done by brute force, and the last argmaxing step in the algorithm becomes inessential. 
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5. Empirical Evaluation  

This section is composed of two main evaluation reports. In order to design efficient heuristics for FCA 

as described earlier, the ILP resolution phase was empirically analyzed and evaluated on the artificial 

data. Furthermore, the whole algorithm was experimented on real benchmark MLNs. In both evalua-

tions, Gurobi4 version 8 was employed as the ILP solver to find an exact or approximate solution based 

on a gap parameter (bound of relative error). The gap was set to 10−6 to reach the exact solution in the 

experiments it is reachable. For each benchmark with intractable exact inference, we tried various gap 

ranges to find the best approximation in admissible time. All experiments were performed on a PC with 

8 GB RAM and 4 cores with 2.1 GHz.  

5.1 Analysis on the Artificial Data 

In order to elaborate the enhancement achieved by higher-order aggregations, we first implemented a 

prototype system to generate artificial ILPs that can be produced from the sets of ground clauses with 

various lengths and aggregation orders. We generated two batches of ILPs as the translations by the 

traditional (TRAD) and FCA methods from the same ground clauses of lengths from 1 to 10. The two 

ILP batches were then passed to the ILP solver and the solving times were measured and compared to 

test FCA scalability. In addition to the length and the aggregation order features, we needed to classify 

the operational domain based on two more features in order to analyze the impact of our approach more 

precisely: the sign of the clauses weights and the presence of evidence. All tests were done upon both 

positive and negative-weighted sets of clauses, without and in the presence of evidence for 5%, 10% 

and 20% of all atoms. Figure 1 displays the ILP solving times for a set of 100000 ground clauses of 

length 10 and various aggregation orders. The times are calculated by the average on 5 runs. Based on 

the preceding features, these results are observed from the experiments: 

A. Observations on the TRAD curves characteristics: 

I. All curves slope downward from right to left, i.e., more symmetries in the model cause 

faster inference. These symmetries are originally implicit in the ILP and exposed by the 

solver itself, leading to faster optimization. FCA is supposed to better expose the symme-

tries by making them explicit to the solver. 

II. Solve time rises with an increase in the portion of evidence. Moreover, a significant gap 

is observed between the curves of evidence-free models and the rest. This is because ev-

idence (even over few atoms) breaks variables exchangeability which in turn prevents the 

variables encapsulation.  

III. Among the evidence-free models, no significant difference is observed between inference 

on positive and negative-weighted clauses, while among clauses including constrained 

atoms (caused by evidence), inference on those with negative weights is slightly slower. 

Briefly arguing, the difference may be due to the way TRAD encodes weighted satisfia-

bility constraints as ILPs and solves them in turn. As explained earlier, the translation of 

a negative weighted clause comes with a coefficient (|𝐿+(𝑔)| + |𝐿-(𝑔)|) for one binary 

variable. By LP relaxation, the variable is temporarily relaxed to accept real values and 

later discretized somehow (trivially rounded) to permit only binary values. The gap be-

tween the optimal solutions of the LP and its underlying IP often causes this relaxa-

tion/discretization formalism generate non-optimal (or infeasible) intermediate solutions 

(Wolsey, 1998). On the variables with coefficients, this gap may become larger and cause 

 
4 https://www.gurobi.com/ 

https://www.gurobi.com/
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longer solving times in comparison to the positive weighted case in which no coefficient 

exists. 

B. Observations on the impact of FCA is fourfold:  

I. The best enhancement is achieved for the class of CPA-applicables (the first column), 

where a discrete sharp point in the curve is observed. The reason, as analyzed earlier, is 

the order of the ILP size reduction in case is linear to the number of aggregated con-

straints. 

II. Among the rest of the domain, the sets of clauses with lower aggregation orders, starting 

with aggregation order of 2 (Quadratic Aggregation applicable) receive more enhance-

ments. This is obviously due to more symmetric clauses and is the justification in prefer-

ring lower orders of aggregation in our target selection heuristic. 

III. In high-symmetric clauses with low aggregation orders, the disorder caused by evidence 

in efficacy of FCA is ignorable in contrast to the conventional lifting methods. This is 

resulted from the novel view of symmetry in aggregation which has been discussed ear-

lier. 

IV. As the aggregation order reaches near the clauses length (the identical part vanishes), 

FCA loses its advantage in negative weights, and the meaningful gap between the evi-

dence-free curve and other curves becomes observable (following that of the TRAD 

curves), yet surprisingly, positive weighted clauses proceed receiving enhancements from 

aggregation. In other words, aggregation preserves the efficiency in the presence of evi-

dence even for low-symmetric positive-weighted target sets. This difference could be 

caused by the dissimilar forms of aggregation rules for negative and positive weights. 

Aggregation on positive weights is straightforward and results in a classical maximization 

problem, while on negative weights it leads to minimax multi-objective optimization 

which potentially requires more complicated steps to solve, especially when the gap be-

tween multiple objectives rises (Aissi et al., 2009).    

 

Figure 1: ILP solving times (average on 5 runs) of TRAD and FCA on sets of 100000 ground clauses for positive 

(left) and negative (right) weights of length 10 with various portion of random evidence and aggregation orders 

We also considered the FCA enhancement for a fixed order of aggregation on various clause lengths. 

Figure 2 shows the average solving times of ILPs produced from Quadratic Aggregation (QuadA) com-

pared to TRAD. In addition to the previous observations, it is exemplified that keeping the aggregation 
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order fixed, the solving time for FCA remains near constant as the ground clauses get longer, but grows 

with clauses length in the traditional case. This means that FCA better exposes aggregation advantages 

while applied to longer clauses with symmetries. 

 

Figure 2: ILP solving times (average on 5 runs) of TRAD and QuadA on sets of 100000 ground clauses with 

aggregation order of 2 for positive (left) and negative (right) weights and various lengths and portions of random 

evidence 

5.2 Benchmarks 

As stated in previous sections, our MLN system performs MAP inference within three phases. We an-

alytically and empirically showed improvements in the last phase compared to the traditional method 

and CPA. The overall process evaluation on multiple engineering applications is a further necessity. 

CPA was previously evaluated by Noessner et al. (2013) and reported to outperform other state-of-the-

art inference algorithms on five established benchmark MLNs. The benchmarks included Relational 

Classification (RC), Link Prediction (LP), Information Extraction (IE), Protein Interaction (PR), and 

Entity Resolution (ER). These benchmarks except PR were also the test cases for evaluating the Tuffy 

system (Niu et al, 2011). RC was built for the classification problem on the CORA (McCallum, Nigam, 

Rennie, & Seymore, 2000) dataset. LP performs prediction of the relations holding between UW-CSE 

students, faculty, and staff (Richardson & Domingos, 2006). IE (Poon & Domingos, 2007) extracts 

database records from parsed sources. PR contains information on the yeast protein location, function, 

class, phenotype, and enzymes, from the MIPS (Munich Information center for Protein Sequence) Com-

prehensive Yeast Genome Database, as of February 2005 (Mewes et al., 2000). We used the MLN 

version (Davis & Domingos, 2009) which addresses the problem of predicting interactions between 

proteins, enzymes, and phenotypes. ER is used to find records corresponding to the same real-world 

entity (Singla & Domingos, 2006). 

In order to show empirically to what extent FCA preserves efficiency, we compare FCA with CPA 

and TRAD with various configurations on these benchmarks and in addition, on the EKAW dataset 

whose confidence values were gathered from crowd-sourcing services to be used in ontology learning 

(Noessner, 2014; Niepert, Noessner, & Stuckenschmidt, 2011). The six benchmarks altogether cover a 

wide variety of MLNs in different aspects. Table 1 summarizes their characteristics. 
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Table 1: Characteristics of the six benchmark MLNs 

characteristic RC LP IE PR * ER * EKAW 

# predicates 4 22 18 7 10 21 

# formulas 17 24 1,024 2,460/1,689 1,268/1,265 21 

# evidence atoms 99,161 1,031 258,079 12,999 12,892 10,987 

# clauses 202,215 354,587 340,737 40,234,321 390,720 2,922,601 

# 1st ord. aggr. cnstr. 261,871 352,190 269,817 
3,145,198/ 
1,507,573 

422,959/ 
280,011 

301 

# 2nd ord. aggr. cnstr. 0 0 0 0/0 0/32,407 11,171 

# 3rd ord. aggr. cnstr. 0 0 0 0/0 0/0 391,235 

* multi-valued characteristics refer to simplified/not simplified long formulas with negative weights 

5.3 Experimental Setup 

We implemented the FCA algorithm in Xeggora as an evolutionary extension of RockIt, which is 

invoked as the inference engine on each benchmark. We release the code as an open source project for 

further investigation5. In order to cancel the measurement error caused by the other processes running 

in parallel, all runs shorter than 10 minutes are repeated five times and runtimes are obtained on the 

average. In addition to the solver’s gap bound parameter, we set its time limit to stop optimization if the 

gap is not reached in 10 minutes. For CPI, this limit is applied separately in each iteration thus the overall 

inference process may last much longer. As an external observer, Tuffy is also invoked on all bench-

marks. It leverages RDBMS for grounding and performs MaxWalkSAT for MAP inference. Out of the 

MAP solution of each MLN, we evaluate the objective of a unified ILP equivalent to its ground model. 

By linear scaling of the objective, we obtain a grade for each approximate solution (displayed in paren-

thesis) as a criterion for analyzing its quality; a naïve empty instance (assigning false value to all query 

atoms) is graded 0, while the Tuffy output solution with default parameters is graded 100. Tuffy 

typically achieves higher quality solutions but in longer runtimes. Two exceptions are for the LP and IE 

benchmarks where some ILP approaches reach better approximate solutions (i.e., are graded above 100) 

on LP and the exact solution on IE. 

5.4 Results 

Experiments show different treatments of our approach on the benchmarks which can be discussed in 

three categories. The first category consists of RC, LP, and IE. Table 2 shows the comparison results 

on these benchmarks. We applied a 0.01 gap for LP while the two other models were solved exactly. 

Each method was firstly tested alone and then jointed with CPI. 

Table 2: ILP/total Inference runtimes with various configurations on RC, LP, and IE benchmarks [ms] 

benchmark TRAD CPA FCA 
TRAD  
+CPI 

CPA 
+CPI 

FCA 
+CPI 

Tuffy 

RC 
2,166

6,015
  

𝟕𝟒𝟔

𝟒, 𝟒𝟕𝟗
  

918

5,697
 

12,348

15,671
 

4,642

7,645
 

5,572

9,518
 

−

21,563
 

LP 

9,309

11,487
 

(86.2) 

𝟏, 𝟐𝟖𝟓

𝟑, 𝟎𝟒𝟓
  

(99.3) 

1,364

3,343
 

(82.5) 

81,235

84,014
 

(107.3) 

5,927

8,383
 

(106.5) 

3,369

5,889
 

(106.0) 

−

230,630
 

(100) 

IE 
1,975

21,359
 

949

19,751
 

1,049

20,627
 

53

𝟏𝟖, 𝟐𝟖𝟔
 

29

18,397
 

𝟐𝟔

18,484
 

−

14,400
∗ 

* failed to reach the exact solution even in 40 seconds and by testing various maxFlips values 

 
5 The source code is available at https://github.com/amirian/xeggora.  

https://github.com/amirian/xeggora
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The runtime values of TRAD and CPA verify the experimental results reported by Noessner et al. 

(2013)6. The minimum value in each row is shown bolded. FCA executes in close runtimes to CPA and 

both of them run faster than TRAD. The reason is that FCA operates on sets of clauses with higher 

aggregation orders; in the absence of such sets, FCA behaves the same as CPA. Among these bench-

marks, the IE inference runtimes are not much affected by the method because the optimization phase 

constitutes a small portion (0.14% - 9.2%) of the overall runtime. 

The second category includes the EKAW ontology. We tested FCA and its competitors on an EKAW 

MLN with 10,987 evidence atoms. The MLN is the only test case for aggregation order of 3. It contains 

8 sets of ground clauses with aggregation order of 1, 1105 sets of ground clauses with aggregation order 

of 2, and additionally 5 sets of ground clauses with aggregation order of 3 which totally result in aggre-

gating more than 400,000 hard clauses in each CPI iteration. Without applying CPI, all methods ran out 

of memory in the grounding phase. The inference runtimes of different methods with various gap values 

are listed in Table 3. This category demonstrates a rare paradigm in which aggregation has more cons 

than pros. However, the FCA progressive selection strategy of aggregation targets prevents the runtime 

blow-up as that of CPA’s. CPA shows poor results on EKAW, meanwhile FCA retains the higher so-

lution quality and better runtimes of TRAD as we reduce the gap bound. 

Table 3: ILP/total Inference runtimes with various gaps on EKAW benchmark [sec] 

gap TRAD+CPI CPA+CPI FCA+CPI Tuffy 

0.01 
𝟓𝟎𝟒

𝟓𝟏𝟑
(86.99) 

1,750

1,770
(86.65) 

976

994
(87.04) 

−

25,415
(100) 0.001 

𝟕𝟒𝟎

𝟕𝟒𝟖
(87.35) * 

1,003

1,014
(87.35) 

0.0005 
𝟏, 𝟓𝟑𝟏

𝟏, 𝟓𝟑𝟖
(87.36) * 

1,892

1,903
(87.36) 

* failed to reach the gap within the time limit in one CPI iteration. 

The PR benchmark appeared to provide similar results by FCA and CPA in the primary experiment 

with an improvement compared to TRAD, hence categorized in the first group; FCA and CPA both run 

in near half overall runtime of TRAD. The number of first-order aggregated constraints exceeds 

3,000,000. By default, a formula simplification pre-processing option in RockIt splits long formulas 

with negative weights into shorter parts and the corresponding weights are divided between the parts. 

This simplification procedure is traditionally used by Richardson and Domingos (2006) when a con-

junction of literals is present in the model. Tuffy also performs internal transformations to obtain 

clauses only with positive weights (Niu et al., 2011). It can be shown that the simplification leads to 

different probabilities of the same possible world (Noessner, 2014); hence the final solution would be 

approximated. Moreover, having long formulas broken, high orders of aggregation may disappear in 

the model and consequently, FCA may expose no benefit. 

We repeated all experiments on PR ignoring the simplification step which resulted in an intractable 

inference. Runtimes are listed in Table 4. All executions without applying CPI ran out of memory in the 

grounding phase and are not included. The non-simplified MLN, providing near 1,500,000 first-order 

aggregated constraints fits in the second category, i.e., FCA affords no enhancement compared to 
 

6 One exception is for the TRAD+CPI configuration on LP benchmark; a runtime enhancement for this configuration was 

reported, but our experiments with various gaps and various Gurobi versions resulted in the nearest case a minimum of 30% 

additive runtime compared to TRAD. 
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TRAD but prevents inheritance of CPA’s runtime blow-up. However, the results show that the simpli-

fication should be accomplished for PR; otherwise the ILP methodology actually drops behind Max-

WalkSAT of Tuffy in both quality and runtime aspects. 

Table 4: ILP/total Inference runtimes on PR benchmark [sec] 

configuration TRAD+CPI CPA+CPI FCA+CPI Tuffy 

simplified 
99

154
(21.2) 

40

𝟖𝟓
(21.2) 

𝟑𝟖

91
(21.2) 

−

1,161
(100) 

non-simplified (gap=1) 
4,039

4,124
(36.0) * 

𝟒, 𝟎𝟐𝟖

𝟒, 𝟏𝟐𝟑
(36.0) 

* failed to reach the gap within the time limit in one CPI iteration. 

The last category consists of the ER benchmark on which the simplification step again takes effect. 

The simplified MLN provides 1,612 sets of ground clauses with aggregation order of 1, resulting in 

more than 420,000 aggregated constraints, as both FCA and CPA run in near half runtime of TRAD 

(similar to that of the first category). It is remarkable that no better approximation for the original model 

is reachable in this way because the simplified model has gained its optimum solution. From the non-

simplified MLN, FCA provides about 100,000 fewer aggregated constraints by 3,030 sets with aggre-

gation order of 1 and 967 sets with aggregation order of 2, but with a meaningful runtime enhancement 

compared to CPA and TRAD; FCA facilitates obtaining high quality approximation (grade 99.8) in a 

short time. Results are shown in Table 5. An excessive competition including 16-minutes time limit 

(that of Tuffy’s duration) was also held to compare between the gained objectives; none of the meth-

ods were graded 100, i.e., reached the objective of Tuffy’s solution, yet FCA did the best. CPI-jointed 

methods were not included because the deadline is not applicable to the whole multi-iteration process. 

Table 5: ILP/total Inference runtimes with various gaps on ER benchmark [sec] 

configuration TRAD CPA FCA 
TRAD  
+CPI 

CPA 
+CPI 

FCA 
+CPI 

Tuffy 

simplified 
2.3

5.4
(98.3) 

𝟎. 𝟑𝟓

𝟐. 𝟔
(98.3) 

0.4

3.7
(98.3) 

3.3

7.2
(98.3) 

0.6

3.6
(98.3) 

0.6

4.0
(98.3) 

−

960
(100) 

non-simplified 
(gap=0.3) 

14

16
(99.6) 

20

22
(98.6) 

𝟓. 𝟐

𝟕. 𝟐
(98.5) * * * 

non-simplified 
(gap=0.2) 

581

584
(99.9) 

20

22
(99.6) 

𝟓. 𝟒

𝟕. 𝟒
(99.8) * * * 

960-seconds 
competition 

(99.84) (99.72) (99.86) − − − 

* failed to reach the gap within the time limit in one CPI iteration. 

It can be observed from the results that with increasing the number of higher-order aggregated con-

straints, FCA shows its role of reducing inference runtime, yet retaining the optimality. This happens 

by ignoring the simplification pre-process on the ER benchmark, hence allowing long formulas to take 

place in the model.  

6. Related Works 

A vast line of works with connections to ours has been done on symmetry exposition and exploitation 

in SRL. Bui et al. (2013) propose a general algebraic lifting framework based on the group theory and 
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graph isomorphism for variational inference. Kersting, Mladenov, and Tokmakov (2017) define a syn-

tax for relational domains of linear programs and propose its translation into an equivalent Lifted Linear 

Program (Mladenov, Ahmadi, & Kersting, 2012). By computing the Coarsest Equitable Partition (CEP) 

for the coefficient graph of the LP, they provide a smaller lifted LP which recovers an exact optimal 

solution of the original LP. Mladenov, Globerson, and Kersting (2014) argue that despite the enhance-

ments from lifting a MAP LP, existing message passing solvers such as MPLP and Tree-ReWeighted 

Belief Propagation (TRW-BP) will not work on the lifted version because it contains constraints that do 

not conform to the MAP LP template. Imposing ignorable overhead, they find a small Markov Random 

Field with a ground optimal value equal to the value of the lifted program and produce an equivalent 

LP conforming to the required template. Bui, Huynh, and Sontag (2014) implement the idea of Bui et 

al. (2013) for marginal inference using the Kruskal's algorithm and lifting TRW problem again with 

CEP. Mladenov and Kersting (2015) also apply equitable partitions to lift the message passing algorithm 

for marginal inference with the ability to distribute and parallelize inference computations. Mladenov, 

Kersting, and Globerson (2014) suggest a different way of finding symmetries and lifting MAP LPs 

compared to Lifted Linear Programs, considering higher-order neighborhood to reach tighter approxi-

mation. To find finer partitions, they apply the k-dimensional Weisfeiler-Lehman − an algorithm pre-

viously used for approximating the graph automorphism problem (Cai, Fürer, & Immerman, 1992) − 

to the original graphical model instead of the larger graph of the LP. Mladenov, Kleinhans, and Kersting 

(2017) extend the idea of relational linear programming (Kersting et al., 2017) over convex quadratic 

programs and provide the relational version.  

A common deficiency of Linear (or Quadratic) Programming lifting approaches for MAP inference 

in SRL rises from the fact that MAP inference is equivalent to solving Integer Programs. If solving any 

relaxed IP gives the exact solution, which in turn would lead to an approximation of the underlying IP, 

the lifted version would also provide an exact solution, say, with fewer computations. However, it will 

not go farther for more tightening the approximation. We showed in contrast that as aggregation is 

performed before program relaxation, it can result in tighter approximation for the corresponding ILP. 

Moreover, modern IP solvers involve much more than just solving the LP relaxation of the given ILP. 

Lifting the mathematical program before relaxation allows speeding up pre-processing techniques such 

as exploiting integrality requirements and primal/dual dominance arguments and even program re-for-

mulation to be applied to the compact lifted version. Similar to our idea, Sarkhel et al. (2014b) translate 

the MAP inference problem to an Integer Polynomial Program, but by adapting the theorem proving 

technique (Gogate & Domingos, 2011) and removing its search and conditioning steps. They define 

each variable in the program to represent an assignment to a set of indistinguishable variables. The 

integer polynomial program is further converted to an ILP with classic linearization methods with no 

relaxation except the LP relaxation by the ILP solver. In contrast, we perform an extra relaxation of the 

upper bound or lower bound constraints in the aggregation rules. 

Another major challenge in the area of lifted inference is examining the role of evidence, which is 

rarely targeted in the symmetry exposition. Apsel, Kersting, and Mladenov (2014) discuss the high cost 

of obtaining symmetry with automorphism groups. To solve, they offer a costly graph which can be 

generated once and used multiple times separately from the problem model, concluding with curves that 

confirm the evidence problem. Venugopal and Gogate (2014a) propose a heuristic similarity function 

on groundings to apply K-Means clustering and perform approximation on the evidence in order to 

increase the number of symmetries. Venugopal and Gogate (2014b) utilize the approach to build an 

informed distribution for importance sampling. Bui, Huynh, and de Salvo Braz (2012) consider the 
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models with symmetries that are broken by the evidence. They show that exact lifted inference based 

on distinct soft evidence consisting only of unary predicates can be done in polynomial time. Van den 

Broeck and Niepert (2015) also provide a solution in the presence of distinct soft evidence for marginal 

inference approximation by lifting Metropolis Hastings at the propositional level on asymmetric graph-

ical models where symmetry is a hard condition. Another approach considering evidence on unary pred-

icates is taken by Habeeb, Anand, Mausam, and Singla (2017) who introduce an application specific 

approximate lifted MAP inference. They adapt the general color passing algorithm for symmetry detec-

tion by Kersting et al. (2009) in a way to make effective partitioning in the presence of evidence. Van 

den Broeck and Darwiche (2013) extend the results of Bui et al. (2012) and point out the hardness of 

dealing with binary evidence. They show it can be done efficiently if there is a corresponding low rank 

Boolean Matrix Factorization (BMF). The evidence approximation scheme is further proposed to re-

duce the rank. As an important drawback of dealing with distinct soft evidence and the corresponding 

BMF, all objects with evidence go beyond closed-world assumption, i.e., each predicate is assumed 

either hidden or fully observed. Mladenov, Globerson, and Kersting (2014) also demonstrate that the 

cost of evidence rises in their lifting approach with an increase in the Boolean rank. In contrast to Bui 

et al. (2013) which introduce symmetries on unobserved constants, Kopp, Singla, and Kautz (2015) 

explicitly find symmetries among constants that appear in the evidence. Another schema alongside the 

evidence is the notion of context (variable-value assignment). Contextual symmetry is introduced which 

allows for exploitation of count (Anand, Grover, Mausam, & Singla, 2016) and non-count (Anand, 

Noothigattu, Singla, & Mausam, 2017) symmetries using graph isomorphism in the MCMC framework. 

Addressing the evidence problem comes with building the notion of symmetry given a specific form 

of evidence in some of the above approaches, while partly manipulating (i.e., approximating) evidence 

in the others. All methods are subject to alteration with any change in the evidence (e.g. via incremental 

perception) or its structure (e.g. by adding evidence for unobserved predicates). To our knowledge, CPA 

(Noessner et al., 2013) is the only approach that exploits symmetries independently of the notion of 

evidence. In contrast to CPA which will only aggregate clauses that differ by a single literal, our higher-

order aggregation method can aggregate clauses with an arbitrary number of different literals. FCA, as 

an additional facility, retains all benefits of the CPA approach, such as parallelization, control on the 

error bound, the ability of merging with orthogonal approaches, and leveraging several state-of-the-art 

optimization and data mining techniques. 

Finally, a single approach that deals with long formulas, follows the idea of pairwise MLNs (Fierens 

et al., 2013), performing inference through quadratization for pseudo-Boolean functions by the means 

of first-order slack predicates (de Nijs, Landsiedel, Wollherr, & Buss, 2016). It produces a new model 

with quadratic parfactors, at the cost of additional optimization over slack variables and the benefit of 

better bounds and more persistencies. Similar to our approach, it reports higher quality approximation 

and shorter inference runtime compared to state-of-the-art inference engines on models with long for-

mulas. Unfortunately, no source or executable code as well as benchmarks for testing and comparing 

the methods are made public. Moreover, the configurations during experiments are not described in 

detail, ceasing the option of an estimated comparison by performing similar tests with Xeggora. 

Among the common benchmarks, ER is however the only test case on which its significant runtime 

enhancement compared to RockIt is reported, reducing the inference runtime from 1902 seconds to 

101 seconds. Our experiments show this can be also verged by FCA, setting various gaps in (0.1 , 0.2), 

where FCA runs 10 times faster than CPA on average. 
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7. Conclusion and Future Directions 

Dealing with long formulas has been a challenging task in lifted inference. CPA is a symmetry exploit-

ing algorithm for inference in Markov Logic which is widely used in real-world applications. It exposes 

first-order aggregate-able sets of ground clauses. We showed that in addition to the aggregation of order 

one, there often exist higher aggregation orders in MLNs with long formulas that are ignored by CPA. 

We introduced FCA, a superior meta-algorithm that is empowered with any possible orders of aggre-

gation with respect to the model. We proposed complementary techniques within the FCA algorithm, 

including heuristics and RDBMS leverage to choose efficiently among multiple candidates the one in 

which aggregation fits the best. We implemented the proposed methods within an evolutionary exten-

sion of RockIt, namely Xeggora, besides fixing minor bugs of the previous system and supporting 

numerical constraints (Chekol et al., 2016). Finally, we proved enhancements with comprehensive ex-

periments upon two benchmark sets. The first set of artificial benchmarks explores the effect of higher 

order aggregation as compared to the first order aggregation with respect to the length of clauses. The 

results confirm the intuition developed through the theoretic side. On practical benchmarks for the entire 

system, it is shown that FCA retains the enhancements of previous works on instances where higher 

order aggregation is not applicable, but provides a large benefit in instances where it is.  

Future directions consist of four extensions. One is to define a better ILP encoding for negative 

weighted clauses whereas aggregation brings less efficiency as shown by the analysis on the artificial 

datasets. Another direction is to adapt the conventional lifting LP methods to lift ILPs as well, before 

any relaxation, and see if this provides any time savings or tighter approximation. A third direction 

would be to develop techniques to make symmetry exploitation even more adaptive. For instance, when-

ever a set of ground clauses is clustered to expose symmetries, the partitioning of each cluster to identical 

and distinct parts can be different and independent of the other clusters. FCA treats all clusters the same. 

Fixing the partitions for all clusters won’t promise best constraint aggregation. 

Finally, an extension may be to generalize the constraint aggregation technique for marginal infer-

ence. Marginal inference for MLNs with long formulas is also a challenging purpose for several appli-

cations including natural language semantics inference (Beltagy & Mooney, 2014) and automatic ques-

tion answering (Khot et al., 2015). Researchers already try to avoid heavy process on long formulas by 

either splitting them into shorter parts, or manipulating an inference engine in a way to especially solve 

their precise problem. A general-purpose technique for inferring such MLNs would be a promising 

direction. 
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