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Abstract

The article presents a solution approach for the Torpedo Scheduling Problem, an oper-
ational planning problem found in steel production. The problem consists of the integrated
scheduling and routing of torpedo cars, i. e. steel transporting vehicles, from a blast fur-
nace to steel converters. In the continuous metallurgic transformation of iron into steel,
the discrete transportation step of molten iron must be planned with considerable care in
order to ensure a continuous material flow.

The problem is solved by a Simulated Annealing algorithm, coupled with an approach
of reducing the set of feasible material assignments. The latter is based on logical reductions
and lower bound calculations on the number of torpedo cars.

Experimental investigations are performed on a larger number of problem instances,
which stem from the 2016 implementation challenge of the Association of Constraint Pro-
gramming (ACP). Our approach was ranked first (joint first place) in the 2016 ACP chal-
lenge and found optimal solutions for all used instances in this challenge.

1. Introduction

This paper investigates a planning and scheduling problem in steel production that was
proposed in the 2016 ACP (Association for Constraint Programming) challenge (Schaus
et al., 2016). The aim is to provide optimal solutions for the Torpedo Scheduling Problem
where the transport of hot metal across various zones needs to be optimized. The solutions
should fulfill various hard constraints regarding material flow, time deadlines, capacity and
duration when moving through the zones of the steel production plant. The optimization
criteria include the minimization of the number of vehicles (torpedoes) and the time spent
for a chemical process called ‘desulfurization’.

To the best of our knowledge the Torpedo Scheduling Problem proposed in the 2016
ACP challenge (Schaus et al., 2016) has only recently been considered in the literature.
Our solution approaches that were ranked first and third in this challenge were published in
conference proceedings (Geiger, 2017b; Kletzander & Musliu, 2017). After the completion
of the challenge, a solution approach based on Logic-based Benders Decomposition us-
ing Mixed-Integer and Constraint Programming was proposed (Goldwaser & Schutt, 2017,
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2018). The authors report optimal solutions for instances used in the ACP challenge and
also apply their method for other larger instances.

The current paper is an extension of our previous conference papers (Geiger, 2017b;
Kletzander & Musliu, 2017). In particular, the current work improves our solution approach
that was ranked first (joint first place) in the ACP challenge competition by combining it
with a reduction approach that prunes the search space. Furthermore, the experimental
section is significantly extended and methods are evaluated on a larger set of instances that
were generated with the problem generator, proposed by the challenge organizers.

Overall, the main contributions of this article comprise:

• The proposal of a new approach to reduce the set of possible material assignments
prior to solving the problem by a search technique. This approach is based on temporal
and logical reductions, as well as lower bounds regarding the number of torpedoes in
use. This approach enables the reduction of the solution space and thus leads to a
more effective use of the proposed search techniques.

• The search for the optimal solutions by a proposed multi-stage Simulated Anneal-
ing algorithm adapted for the provided lexicographic evaluation function. The first
round of Simulated Annealing focuses on the primary goal of optimizing the number
of torpedoes while the second round deals with the secondary goal of reducing the
desulfurization time. The algorithm is designed to efficiently apply a large number of
moves in a short time by emphasis on efficient move calculations. Various parameters
for the algorithm were determined by empiric evaluation.

• The combination of both approaches and the evaluation of our methods on the ACP
challenge instances and additional instances generated by a randomized generator.
Our method was able to generate optimal solutions for all instances used in the chal-
lenge, and we show that the reduction procedure has a significant impact on the
efficiency of the search procedure for the problem at hand.

2. Related Work

The Torpedo Scheduling Problem investigated in this paper was solved by teams that par-
ticipated in the 2016 ACP challenge (Schaus et al., 2016). The most successful approaches
proposed in the competition included a local search based approach based on Simulated
Annealing (Kletzander & Musliu, 2017), a mathematical programming approach based
on state-expanded networks (Römer, 2018) and a Branch-and-Bound technique (Geiger,
2017b). All these methods were used on the limited set of avaliable instances from the
competition.

Recently, Goldwaser and Schutt (2017, 2018) proposed a new exact method based on
Logic-Based Benders Decomposition. Their solution method consists of Benders decompo-
sition that includes solving of a master problem and scheduling problems. In the master
problem the lexicographic objective is optimized, and the oxygen converter events and
unmatched blast furnace events are assigned to torpedo runs and emergency pit trips, re-
spectively. A MIP formulation is used for the master problem. The rest of the problem is
then decomposed into sub-problems, which are solved by a Constraint Programming Solver.
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In this phase the desulfurization time is minimized. Based on the solutions obtained for sub-
problems, the method concludes that the optimal solution has been reached, or computes
infeasibility cuts (if some sub-problems are infeasible) that are then used to re-optimize
the MIP, or adds optimality cuts (if some sub-problems require extra desulfurization time)
to force the objective to consider extra desulfurization time. The proposed method was
evaluated on the competition instances and larger generated instances. This was the first
published method that could prove the optimality of the ACP 2016 Challenge instances.
Our method used in the competition was able to find optimal solutions, but there was no
guarantee that these solutions are optimal. According to Römer (2018), he also used an
exact method in the competition, but the method has not been published, yet.

2.1 Related Problems in Steel Production

In the wider area of steel production, various related problems have been reported in the
literature. The molten iron allocation problem, modeled as a parallel machine scheduling
problem (Tang, Wang, & Liu, 2007) and the molten iron scheduling problem, modeled as
a flow shop problem (Huang, Chai, Luo, Zheng, & Wang, 2011; Li, Pan, & Duan, 2016),
deal with assignments of torpedoes to machines. Various torpedo scheduling problems are
defined for planning the transport of hot metal with the focus on vehicle routing across a
network of rails, and the objective is to minimize transportation times (Kikuchi, Konishi,
& Imai, 2008; Deng, Inoue, & Kawakami, 2011; Liu & Wang, 2015). Further production
stages of steel making are also considered, e. g. steelmaking – continuous casting (Tang,
Zhao, & Liu, 2014) which comes after the stage considered in this paper.

2.2 Simulated Annealing

The technique to simulate the physical process of annealing was introduced by Kirkpatrick,
Gelatt, and Vecchi (1983) and is a widely used technique in many applications (Dowsland
& Thompson, 2012; Pham & Karaboga, 2012). Applications of multi-stage algorithms
can be found, e. g., in the domain of vehicle routing problems with time windows. These
applications range back to Homberger and Gehring (1999) and also include application of
Simulated Annealing (Bent & Van Hentenryck, 2004), however, only for one stage. Several
of these problems share a primary goal to minimize a number of vehicles, but pursue very
different secondary objectives.

3. Problem Definition

In this section, we first present the industrial context of the problem, followed by the
constraints and formal representation we use in this article.

3.1 Context and Movements of Torpedoes

The Torpedo Scheduling Problem considers the transportation of liquid iron from a blast
furnace to a set of converters, in which the conversion of iron into steel (of a desired quality)
is carried out. Figure 1 depicts this phase within the wider context of steel production: Hot
molten iron is transported by means of torpedo cars, running on tracks. Torpedo scheduling
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therefore presents the link between the iron making and the secondary refinement of iron
within the steel making.

It is noteworthy and possible to see that both the preceding, upstream production
phase, i. e. the reduction of iron ore to molten iron within the blast furnace, as well as the
succeeding casting of steel are continuous processes that cannot be interrupted. Conversely,
the transportation and the conversion phases are batch production steps.

Figure 1: Illustration of steel production plant (Schaus et al., 2016)

Figure 2 depicts the usage of torpedo cars in more detail. Coming from an empty buffer,
which in principle represents a waiting zone, they approach the blast furnace, shown on the
right, where liquid iron is poured into. The next step consists of a buffer zone. Here, the
torpedoes may be re-ordered, or simply parked for a limited time before moving further.
A desulfurization phase is reached afterwards, in which the sulfur level of the liquid iron
may be reduced, if necessary. Finally, the converters are reached, and the molten iron is
transferred into these production facilities. The corresponding empty torpedo then moves
back to the empty buffer.
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Figure 2: Torpedo rotation (Schaus et al., 2016)

Besides this general rotation, an emergency process may be triggered, depicted in Fig-
ure 2 by a dashed arc. In this process, excessive material is discarded into an emergency
pit. This happens in phases in which the blast furnace produces more material than can be
accepted by the downstream converters, thus balancing the material flow.
In the real-world application of the Torpedo Scheduling Problem, we can expect that such
emergency cycles are scarce, as the capacities of the production stages of a steel plant are
typically well-balanced. Besides, the material moved into the emergency pit may be re-used
later, so this process presents a short-term solution only, and does not correspond to a waste
of expensive resources.

More formally, the movements of torpedoes through the system can be described by
means of an activity-on-node network as depicted in Figure 3. Three processes p become
apparent: Process 1 on the left applies to any torpedo moving through the facility and
comprises the activities from the empty buffer to the blast furnace. Then, the torpedoes
either move on to the converters (process 2), or discard the material in the emergency pit
(process 3). In each case, they return to the waiting area for empty cars after completing
their activities.

Let P be the set of processes, and K be the set of activities. For every p ∈ P and k ∈ K
we denote the starting time of each activity k of process p with spk, its end with epk, and
its duration with dpk. Note that epk = spk + dpk ,∀p, k. Moreover, each activity k starts
immediately after the completion of its direct predecessor k′ of process p′: spk = ep′k′ .
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Figure 3: Activity-on-node formulation of the torpedo rotation

3.2 Time Constraints

The continuous nature of the preceding and succeeding production steps within steel pro-
duction results in tight time constraints for the scheduling of the torpedoes. The material
at the blast furnace must be picked up at given times. We denote these material release
dates with Ri, with i as an index of the operations at the blast furnace, i = 1, . . . , n, where
n is the number of release dates. Conversely, the material must reach the converters at
pre-defined due dates, denoted as Dj , with j representing the operations at the converters,
j = 1, . . . ,m, where m is the number of due dates at the converters.

As introduced above, Figure 3 illustrates the two possible schedules for torpedo cycles.
In the above mentioned emergency cycle (process 3), the iron is picked up at the blast
furnace at s1,3 = Ri. Note that the torpedo may arrive prior to the actual material transfer,
and spend an additional time d1,2 waiting at the blast furnace. Overall, the durations are
bounded by minimum times / problem parameters.
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The more common movements of torpedoes to the converters are shown in Figure 3 by
process 2. Here, the start of pouring the iron into the torpedo is again set to s1,3 = Ri,
and the transfer of the iron into the converter is defined by s2,7 = Dj . Again, the durations
of the activities must assume minimum values, which stem from travel times (‘tt’) between
places in the production plant or given minimum processing times for pouring the liquid
iron.
The minimum duration spent in the desulfurization phase, d2,4, depends on SB i and SC j ,
which denote the sulfur level of the iron coming from the blast furnace (SB i), and going
to the converter (SC j). In the available data, possible values are from 5 (high sulfur level)
to 1 (low level), and a reduction of one step results in a minimum desulfurization time of
durDES . It follows that the duration of the desulfurization step, denoted as d2,4 must be:
d2,4 ≥ max {0; durDES · (SB i − SC j)}.

For a torpedo picking up iron at the blast furnace at Ri and delivering it to the converters
at Dj , it follows that the total duration of all activities in between cannot exceed the length
of the timespan Dj − Ri. Formally, this can be expressed by computing a lower bound
LB on all activities between the two dates Ri and Dj , which is derived by taking, for each
activity, its minimum duration. In the particular example of our application this means
that the following equation must hold:

Dj −Ri ≥ LB

(
d1,3 +

6∑
k=1

d2,k

)
(1)

3.3 Capacity Constraints

The resources that can hold torpedoes are limited. This means that, at any given time, a
maximum number of torpedoes must not be exceeded for each resource, which presents, due
to the size of the torpedoes and the limited space within the production facility, a practical
yet obvious side constraint. For the problem at hand, we denote the maximum number of
torpedoes (i. e., the number of available slots) for the stages with sFB , sDES , and sCON ,
respectively. Moreover, at any given time, at most a single torpedo might travel between
two stages. The movements to the emergency pit are assumed to be unlimited.

Appropriate mathematical models for such aspects are found in the area of resource
constrained project scheduling, and we here refer to such problems (Geiger, 2017a).

3.4 Feasible Material Flow

Part of the scheduling is to ensure an uninterrupted material flow, which means that the
demand at the converters must be met at all times.

Let us denote the assignment of material coming from the blast furnace at Ri to the
converters at Dj with xij . The variables xij assume a value of 1 if the material flow
assignment i → j is made, and 0 otherwise. As described above, material that does not
reach the converters is moved into the emergency pit. This is mathematically captured by
a variable yi that assumes, if this is the case, a value of 1, and 0 otherwise. Then, the
following expressions must hold.
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n∑
i=1

xij = 1 ∀j (2)

m∑
j=1

xij + yi = 1 ∀i (3)

xij ∈ {0; 1} ∀i, j (4)

yi ∈ {0; 1} ∀i (5)

Expression (2) ensures that all material requirements at the converters are met, and
Expression (3) ensures that the material deliveries from the blast furnace are at most used
once.

It follows that a feasible solution cannot exist for data sets with n < m. For the activity-
on-node network introduced in Figure 3 this means that there will be exactly m processes
2 (material deliveries to the converters), and n −m processes 3 (discarding of material in
the emergency pit).

3.5 Optimality Criteria

The above described problem comes with two optimality criteria. First of all, the maximum
number of torpedoes in use is to be minimized. This clearly presents a strategic / tactical
planning problem and is justified by the fact that investments in torpedo cars are typically
cost intensive. As a secondary objective, the time spent in the desulfurization phase is
to be minimized. The two criteria are lexicographically ordered, with the minimization of
the maximum number of torpedoes preceding the minimization of the total desulfurization
time.

Minimizing the maximum number of torpedoes in use means rotating them through the
system as fast as possible. This insight is based on the observation that once a torpedo
returns from carrying out its activities, it can be re-used and sent on the next cycle. Tech-
nically, the empty buffer can be modeled as a stack of torpedoes from which we always take
the topmost torpedo to serve the next job at the blast furnace.
Hence, returning quickly is the key to the minimization of the number of torpedoes used
over time. In between, as little time as possible should be spent, resulting in assignments
i → j with possibly ‘close’ due dates Ri and Dj , i. e., with a small gap in between the
release of the material Ri and the consumption Dj , and ultimately resulting in short cycles.
Intuitively, this strategy of rotating torpedoes makes sense, as the overall time spent in the
system is foremost determined by these two dates.
Moreover, it makes sense to arrive as late as possible at the blast furnace, avoiding waiting
times (d1,2) before the liquid iron is poured into the torpedo.

Note that this intuition of fast rotating torpedoes through the system is reflected by the
subsequent introduction of lower bounds, see the following section.
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4. Lower Bounds and Reductions of Material Assignments

Prior to solving the actual scheduling problem we investigate ways of reducing the search
space to facilitate an easier solution of the problem. The underlying idea is to prune the set
of feasible assignments as much as possible, resulting in a reduction of the solution space.

4.1 Modeling Approach

The further investigations are based on modeling the problem as a tripartite graph with
three parallel time lines, depicted in Figure 4. In this formulation, the due dates at the
blast furnace and at the converters are nodes at given times Ri and Dj , shown in the middle
and bottom time axes.

1 2 3 4 5 6 7 8

1 2 3 4

1 2 3 4

5 6 7 8i=

j=
m

n T

T

T

(“emergency pit”)

Figure 4: Tripartite graph formulation

As a necessary condition for a feasible solution, each Dj is linked to exactly one preceding
Ri, resulting in an arc in the graph formulation. The length of the arc over the time axis, plus
the time needed for traveling to and waiting at the blast furnace (d1,1 + d1,2) and the time
spent at and after the converters (d2,7 +d2,8) represents the cycle time of a torpedo through
the system. With LB denoting a lower bound on the minimum duration of an activity,
Expression (6) gives the minimum time interval for the material flow to the converters.

[Ri − LB(d1,1 + d1,2), Dj + LB(d2,7 + d2,8)] ∀i, j | xij = 1 (6)

Material flows from the blast furnace that do not serve the converters are moved into
the emergency pit, followed by traveling back to the empty buffer. As this is assumed to be
an unlimited resource, the time for this activity is a constant (durBF + tt(BF ,EP ,EB)). In
the tripartite graph formulation, those processes are represented by arcs pointing to nodes
on a third axis, given on the top of Figure 4. More formally, the minimum time interval of
all torpedoes moving into the emergency pit is given in Expression (7).

[Ri − LB(d1,1 + d1,2), Ri + durBF + tt(BF ,EP ,EB)] ∀i | yi = 1 (7)

It can be seen that a feasible solution of the mathematical model corresponds to an
introduction of n distinct arcs, m of which are linked to the nodes in the bottom axis,
and n−m linked to nodes on the top axis. The number of torpedoes used in the solution
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corresponds to the maximum number of parallel (simultaneous) processes over the entire
planning horizon T . It follows that the effort to compute the number of torpedoes in use is
only dependent on the number of arcs n.

4.2 Temporal Reductions

Per problem definition, material cannot travel backwards in time. Therefore, and for each
i, j:

If Ri + LB
(
d1,3 +

∑6
k=1 d2,k

)
> Dj , then xij = 0, and xij ∈ {0, 1} otherwise.

Note that this follows directly from Expression (1). Again, the minimum durations are
taken for the computation of the lower bound LB.

Based on this straight-forward computation, potential assignments can be excluded. By
applying the reasoning presented above for each i, j, we derive, for each j, a set of potential
deliveries i, and conversely, for each delivery i, a set of potential converter consumptions j.
For the example in Figure 4, the values might assume:

j = 1 : i ∈ {1, 2}
j = 2 : i ∈ {1, 2}
j = 3 : i ∈ {1, 2, 3, 4}
j = 4 : i ∈ {1, 2, 3, 4, 5, 6}
i = 1 : j ∈ {1, 2, 3, 4}
i = 2 : j ∈ {1, 2, 3, 4}
i = 3 : j ∈ {3, 4}
i = 4 : j ∈ {3, 4}
i = 5 : j ∈ {4}
i = 6 : j ∈ {4}
i = 7 : j ∈ {}
i = 8 : j ∈ {}

4.3 Logical Reductions

Additional logical considerations can further prune the set of possible assignments / sched-
ules. First of all, material deliveries that cannot reach a converter can be automatically
assigned to the emergency pit. In the example above, this applies to i ∈ {7, 8}.

Then, we may compute subsets of j which share the same subset of possible values
of i. As each converter demand requires a distinct material delivery, this constitutes an
alldifferent constraint and Hall sets (Hall, 1935) can be applied. If both subsets are of
the same cardinality, it follows that all values of i can be discarded from the potential
assignments outside the computed subset on j. In the example above, this is found for
j ∈ {1, 2}. Both material demands j can be satisfied by either i = 1 or i = 2. Therefore,
i = 1 and i = 2 cannot be used to satisfy any other demand than j = 1 or j = 2:
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j = 1 : i ∈ {1, 2}
j = 2 : i ∈ {1, 2}
j = 3 : i ∈ {6 1, 6 2, 3, 4}
j = 4 : i ∈ {6 1, 6 2, 3, 4, 5, 6}
i = 1 : j ∈ {1, 2, 6 3, 6 4}
i = 2 : j ∈ {1, 2, 6 3, 6 4}
i = 3 : j ∈ {3, 4}
i = 4 : j ∈ {3, 4}
i = 5 : j ∈ {4}
i = 6 : j ∈ {4}

Such logical checks may recursively be applied until no further domain reduction is
possible. Further, instances might be proven infeasible by the Hall sets if demand cannot
be satisfied, indicated by the subset on i having lower cardinality than the subset on j.

4.4 Lower Bounds

The subsequent calculations are based on a special property in the data sets, i. e., that
emergency cycles are shorter than the lower bound on ‘regular’ cycles:

d3,1 < LB

(
6∑

k=1

d2,k

)
(8)

The left-hand side of the Expression (8) stems from the fact that the emergency pit is
assumed to be an unlimited resource. Therefore, the actual processing times can assume
their minimum values. The right-hand side is obtained by summing up the minimum
processing times and minimum required travel times between resources. For the available
data sets, the latter yields larger values than what we find on the left-hand side. On a more
practical note, having to deal with data sets with such values makes sense, as the actual
production facilities in steel production are rather big plants with long transportation tracks.

It follows that replacing regular cycles with emergency cycles never overestimates the
minimum usage of torpedoes at any given time. More formally speaking, the time interval
given in Expression (7) never exceeds the one of (6).

Type ECO – emergency cycles only. Following the above mentioned property (see
Expression (8)), a näıve lower bound on the usage of torpedoes can be obtained by discard-
ing all material deliveries, replacing them with n emergency cycles. With respect to the
mathematical model, this implies that we relax all the constraints given in Expression (2).
As a result, all yi-variables assume a value of 1, and all xij are 0. The formal computations
are depicted in the following Algorithm 1.

ALGORITHM 1: Computation of bound ECO

set yi = 1 ∀i;
set xij = 0 ∀i, j;

Figure 5 illustrates the result of this first approach. Clearly, this type of a lower bound
does not yield the best possible lower bound, as any other cycle than an emergency cycle
will be of a longer duration. We merely mention this approach in order to be complete.
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Figure 5: Emergency cycles only

Type CCF – converter coverage forward. In comparison to the bound of type ECO, a
better lower estimate is obtained by connecting each material demand to its closest possible
delivery. In the illustration of Figure 6, and in the pseudo-code provided in Algorithm 2, this
is done in increasing order of j, not permitting multiple assignments of values of i. In this
sense, some, but not all side constraints of Expression (2) are reconsidered. At the same
time, multiple assignments, as forbidden by Expression (3), are respected. As discussed
above, assigning material from the blast furnace to the closest possible consumptions at
the converter does not over-estimate the duration of torpedoes in the production system.
Recalling the time interval as given in Expression (6), it follows that this is a feasible way
of computing a lower bound.

ALGORITHM 2: Computation of bound CCF

initialize yi = 0 ∀i;
initialize xij = 0 ∀i, j;
for all material requests at the converters j, j = 1, . . . ,m do

obtain largest index i of material coming from the blast furnace that can be assigned to j;
if
∑m

k=1 xik = 0 then
set xij = 1;

end

end
for all material coming from the blast furnace i, i = 1, . . . , n do

if
∑m

j=1 xij = 0 then

set yi = 1;
end

end

In brief, this typically leads to some demands j that cannot be connected to their closest
delivery i, see j = 2. Unassigned material deliveries from the blast furnace are handled in
emergency cycles (which do not overestimate the torpedo usage).

Type CCB – converter coverage backward. Similar to the type CCF, the material
coverage at the converters can be done in decreasing order of j, with the result illustrated
in Figure 7. Although this is a slight variation of the bound type CCF, it is, depending on
the instance data, different enough to be tested.
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Figure 6: Bound type CCF – converter coverage forward in time
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Figure 7: Bound type CCB – converter coverage backwards in time

Note that the pseudo-code for this procedure is almost identical to the one given in
Algorithm 2, with the order of j reversed from m to 1 instead of 1, . . . ,m.

Type CCMA – converter coverage with multiple assignments. Yet another lower
bound can be found by discarding all emergency cycles and assuming deliveries for each
material supply at the blast furnace. Algorithm 3 describes the logic of this procedure,
and Figure 8 gives the result for the above introduced example. Clearly, we here relax side
constraint (3), but re-introduce (2): The material demand at the converter is fully satisfied,
however, at the price of possibly assigning material from the blast furnace multiple times.

ALGORITHM 3: Computation of bound CCMA

initialize yi = 0 ∀i;
initialize xij = 0 ∀i, j;
for all material requests at the converters j, j = 1, . . . ,m do

obtain largest index i of material coming from the blast furnace that can be assigned to j;
set xij = 1;

end
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1 2 3 4

1 2 3 4
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1 2 3 4 5 6 7 8

Figure 8: Bound type CCMA – converter coverage with multiple assignments

4.5 Reductions

Each of the above introduced procedures yields, for each time-step, a lower estimate on the
number of torpedoes in use. The maximum over all time-steps therefore presents a lower
bound on the minimum number of torpedoes that are required in a feasible solution. In the
example above, we can see that any solution will employ at least two torpedoes.

On a more technical note, we can see that the computation of the lower bounds intro-
duced above requires the sorting of release dates and due dates. Therefore, the complexity
is bounded by the one of sorting, which is n log n and m logm, respectively. This underlines
the applicability of the ideas, even for larger data sets.

In the following, let us assume we are able to identify a feasible solution making use of
the same number of torpedoes as given by the lower bound computations, i. e., an optimal
solution for the minimization of the maximum number of torpedoes. Then (and only then),
additional reductions of material assignments are possible.

1 2 3 4

1 2 3 4

5 6 7 8i=

j=
m

n T

T

T

(“emergency pit”)

1 2 3 4 5 6 7 8

Figure 9: Reductions of assignments

Figure 9 illustrates this principle. For the purpose of our example, we assume that a
feasible solution with using two torpedoes exists. In this case, and using the computations
of bound type CCMA, assignments of i = 1 to j ∈ {3, 4} would result in a solution with
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a larger number of torpedoes. As a corollary, such connections can be discarded from the
search space.

5. A Simulated Annealing Approach for the Problem at Hand

To solve the given problem we introduce a new two-stage Simulated Annealing based al-
gorithm. Our algorithm is described below. We first formulate solution candidates and a
set of equations to efficiently track data determining the solution quality. We then provide
the overview of the algorithm and describe the motivation for the design of individual parts
and their contributions for improving the solution quality. Emphasis is put on the design
of the objective functions to use the power of the two-stage approach.

5.1 Representing a Solution Candidate

We model a possible solution with the concept of a torpedo cycle that is tied to exactly
one blast furnace due date and either one converter due date or the emergency pit. The
total amount of cycles is equal to the number of blast furnace due dates n. The amount of
runs targeting the converter is equal to the number of converter due dates m and the rest
is targeting the emergency pit.

As a solution candidate we use an array of such torpedo cycles that contains the correct
number of cycles targeting the converter and emergency pit. The algorithm is designed to
respect the order of zones, prevent violations of zone durations and transition times and to
always meet the blast furnace due dates. Other violations are possible in the algorithm, in
particular s2,7 = Dj and d2,4 ≥ max{0; durDES · (SB i − SC j)} can be violated as well as
the capacity constraints. Instead of preventing them they are monitored and penalized by
the objective functions used in the Simulated Annealing algorithm.

5.1.1 Monitoring Constraint Violations

Constraint violations are tracked by maintaining an array of 10 values called badness each
representing a certain kind of violation that can be individually weighted in the objective
function.

The first set of constraint violations regarding the converter demands can be described
as follows given the notation that RC is the set of torpedo cycles targeting the converter:∑

r∈RC

max{sr2,7 −Dr
j ; 0} (9)

∑
r∈RC

max{SBr
i −

⌊
dr2,4

durDES

⌋
− SC r

j ; 0} (10)

Equation (9) sums up the delays at the converter across all runs r that miss their
deadline, in which case the start time at the converter sr2,7 will be after the time of the
assigned converter deadline.

Equation (10) first calculates the final sulfurization level for torpedo cycle r using the
level at the blast furnace SBr

i and the amount of time spent in the desulfurization zone dr2,4.
By subtracting the maximum allowed level at the converter SC r

j it calculates the difference
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between the maximum allowed level and the actual level and penalizes values above 0 that
indicate sulfurization level misses.

For each of the remaining capacity constraints the algorithm maintains an array with
the size T equal to the amount of time units in the whole planning period. One such array
is maintained for each capacitated zone (cBF , cFB , cD and cC ) and for the corresponding
transitions (cBFtoFB , cFBtoD , cDtoC and cCtoE ). Each element of such an array counts
the amount of torpedo cycles using the respective zone or transition at the given point in
time.

To track the violations for each of these arrays X the corresponding badness value is
calculated by ∑

0≤t<T

max{X[t]−maxOccupationX ; 0} (11)

where maxOccupationX is either one of the given capacities sFB , sDES , sCON for the
corresponding arrays or 1 in all other cases.

5.1.2 Monitoring Optimization Goals

To keep track of the number of torpedoes another array spanning the entire planning period
is used. The array occupation counts for each point in time the number of torpedo cycles
that are currently active. Therefore the maximum value of this array represents the current
value of the main evaluation goal.

However, for this array tracking the maximum of all values is not good enough for use
in the objective functions. Therefore, the array occupationCount counts the number of
elements of occupation having a certain value by

occupationCount [i] = count{t : occupation[t] = i} , (12)

e. g. occupationCount [1] counts the amount of time points where exactly one torpedo cycle
is active. This concept allows to individually weigh specific levels of occupation.

Finally the desulfurization is tracked by timeDesulf holding the total amount of desul-
furization time for all torpedo runs. Further the array desulfMismatch keeps track of the
difference between the sulfurization levels of the metal provided at the blast furnace com-
pared to the required levels at the converter. It calculates

desulfMismatch[i] = count{r : SBr
i − SC r

j = i} (13)

for 0 < i < 5, e. g., desulfMismatch[3] counts the amount of torpedo runs that need at
least 3 desulfurization steps in order to be feasible. This again allows individual weights for
specific difference values.

5.2 The Simulated Annealing Algorithm

The Simulated Annealing process is done in two rounds using almost the same parameters,
but very different objective functions. The general design of each round uses the usual
process of Simulated Annealing as shown in Algorithm 4.
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ALGORITHM 4: Simulated Annealing

generateInitialSolution();
for round = 0. . . 1 do

value = evaluateSolution();
t = value / t fraction;
for outer = 0. . . outerIterations do

for inner = 0. . . innerIterations() do
chooseMove();
newValue = evaluateSolution();
if shouldAccept() then

acceptMove();
else

abortMove();
end

end
t *= t factor;

end

end

5.2.1 Heuristic Generation of the Initial Solution Candidate

The concept of generateInitialSolution() as shown in Algorithm 5 is to take the ordered
lists of blast furnace and converter due dates and pair them according to this ordering.
In assignNextConverter(i , c), assigning blast furnace due date i to the next unassigned
converter due date in c, the torpedo cycles are initialized to spend the minimum amount of
time in the desulfurization zone that allows them to meet the sulfurization level requirement
of the assigned converter. They arrive at the converter just at the time of the due date or
too late in case this pairing is actually infeasible and spend any required waiting time in
the full buffer.

ALGORITHM 5: generateInitialSolution()

Data: Ordered lists of blast furnace due dates bf and converter due dates c
blocked = -1;
for i = 0. . . |bf | − 1 do

if i 6= blocked ∧ countUnassignedConverters() 6= |bf | − i ∧ ¬converterMiss(i+1,c) then
assignEmergencyPit(i);

else
assignNextConverter(i,c);
if converterMiss(i,c) then

blocked = previousEmergencyPitAssignment(i);
if blocked ≥ 0 then

i = blocked-1;
unassignLaterConverters(i);

end

end

end

end

As long as emergency pit runs are available (condition countUnassignedConverters() 6=
|bf | − i), they are set whenever it is possible to put the current blast furnace output to the

17



Geiger, Kletzander & Musliu

emergency pit and still transport the next blast furnace output to the current converter
due date in time (condition ¬converterMiss(i + 1, c)). As emergency pit cycles tend to get
scheduled a bit too early by this approach and cause converter due date misses a few runs
later, the algorithm includes a repair procedure on such due date misses to remove the
previous emergency pit run and schedule it later by using blocked .

At first, time and space proportional to the total length of the planning period are
required as all the capacity tracking arrays need to be initialized. The effort of constructing
the initial solution is proportional to the number of blast furnace due dates (actually not
linear due to the repair procedure, but in practice still very close) times the duration of a
cycle as each cycle needs to be added to the capacity tracking system.

Note that in most cases the initial solution will not be feasible as some degree of con-
straint violation in regard to missing due dates and capacity constraints is to be expected.
However, it is designed to have a structure that produces a small amount of constraint
violations while still keeping the execution very fast.

5.2.2 Parameter Tuning

The parameters for the algorithm were carefully chosen by experimental evaluation of var-
ious combinations of parameters to increase the performance. In the following the best
values used in the final computation for the competition are presented. Reasons for the
provided choice are given as well as problems encountered with different values. Unless
otherwise stated, changes in most parameters only resulted in small changes in the results.

Some parameters were chosen differently depending on whether the algorithm was ex-
ecuted with or without the reduction procedures, mostly in the cooling scheme. The used
values are presented in the evaluation section in such cases.

5.2.3 Iteration Parameters

For each round the algorithm uses a fixed number of outer iterations outer that depends
on inclusion of the reduction procedures. The selected value should always ensure that the
algorithm converges to a stable result.

The temperature was set to start with the initial value of the objective function divided
by t fraction. In each outer iteration the temperature is decreased by multiplying with the
factor t factor . This choice, especially combined with the starting temperature and the
number of inner iterations was one of the more critical choices for the quality of the results
and therefore subject of detailed empirical evaluation. The initial solution is constructed
in a way to already have a structure limiting the amount of constraint violations. While a
certain increase in such violations is expected in the early stage of the Simulated Annealing
process to prevent getting stuck too close to the initial solution, keeping the temperature
high for too long destroys the structure of the initial solution requiring extensive amounts
of repair at lower temperatures that make the overall result worse. On the other hand,
dropping the temperature too fast leads to getting stuck in local optima.

The number of inner iterations innerIterations() depends on the size of the instance,
more precisely it is the number of blast furnace deadlines. This choice was made as the
number of possible moves also depends on this value. The second round experiments showed
an increase by a factor of 4 to be beneficial.
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5.2.4 Efficient Moves

We proposed four moves that are chosen randomly with certain probabilities in
chooseMove(). The first move is a switch between the assigned converter deadlines for
two torpedo cycles. It is chosen with a probability of 0.4 in the first round and 0.6 in the
second round. The rather high probability is due to the fact that this is the move with
the highest impact on the structure of the solution. The selection of the two cycles is not
randomized, but actually a sensitive choice. The reason is that choosing two cycles at very
different time points in the whole planning period will likely not be a good move as large
deadline misses can be expected. On the other hand, only switching closely adjacent runs
will likely end up in local optima too soon. Therefore, once the first cycle is selected, the
second is chosen within the 10 closest blast furnance deadlines before or after the first cycle,
as this showed to provide good results.

Additionally cycles are locally improved after such a move to reduce the amount of
converter due date misses and sulfurization level misses. First the time spent at the desul-
furization station is set to exactly the amount of time needed to pass the required maximum
sulfurization level at the converter. Second if the converter due date is missed, the time at
the full buffer is reduced just enough to get the due date, or to 0 if the deadline miss is
larger than the full buffer time.

The other moves consist of changing the time spent at the full buffer (probability 0.4 in
the first round and 0.2 in the second), the time spend at the desulfurization zone (probability
0.1), or the time spend at the converter (probability 0.1). As these moves are intended to
change the internal structure of a cycle towards a good feasible solution, new values for the
respective times are chosen randomly within limits preventing a converter due date miss if
possible.

The key concept in tracking the capacity and goal data is to allow very fast calculation
of changes triggered by moves in the algorithm and therefore to be able to try a lot of
moves in a short amount of time. For the moves it is necessary to first compute the effects
of the move and then either accept or reject it. Therefore, every move is reflected by first
creating copies of the torpedo cycles that are affected by the move. Then all tracking data
is updated by removing the original runs and adding the changed copies. In case the move
is rejected, the copies are removed again and the originals added back to the tracking data.
In case it is accepted, the copies replace the originals in the array of torpedo runs.

The important aspect is that all badness and goal tracking data can be updated in-
crementally. The sums or counts in (9), (10) and (13) allow easy removal and addition of
torpedo cycles. For (11) and (12) only the parts of the arrays X and occupation affected
by the currently changed torpedo runs need to be updated, the effects on the sum and the
count can easily be computed incrementally again.

Using this principle it is possible to update all tracked data in time that just depends
on the duration of the respective torpedo cycles that are removed or added. This dura-
tion is usually very small compared to the whole time span of the planning period and is
independent of the number of torpedo cycles.

Moves are accepted by shouldAccept() if their evaluation yields a better or equal result
according to evaluateSolution() or else with a probability of exp

(
value−newValue

t

)
.
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5.2.5 Selection Bias

As the main objective in the first round is to reduce the maximum number of torpedoes
used, optimization in areas with already low numbers of torpedoes might not be relevant for
the result at all while a single point with a high number determines the value of the result.
Therefore, the selection for a move is biased to prefer runs in areas with a high number of
torpedoes in use. On the other hand, for the desulfurization time the total sum is relevant,
therefore every optimization matters and no selection bias is used in the second round.

5.3 Objective Functions

To use the power of the two-stage approach we proposed specific objective functions for
evaluateSolution() for each round tailored to the respective goals:∑

0≤i<10

w1[i] · badness[i] +
∑
i≥0

occupationCount [i] · ik + timeDesulf (14)

∑
0≤i<10

w2[i] · badness[i] +
∑

i>fixed

1000000 · occupationCount [i] · ik+

∑
0≤i<5

10000 · desulfMismatch[i] · i + timeDesulf (15)

Equation (14) denotes the objective function for the first round and (15) the objective
function for the second round. Again, the weights were chosen by experimental evaluation.

5.3.1 Constraint Violations

First, both objective functions take into account the constraint violations maintained by
badness, however, with different weight vectors w1 and w2.

Both objective functions use a weight of 100000 for the total converter due date miss
time as missing such deadlines potentially indicates structural problems of the solution and
therefore is considered a priority for optimization.

For the optimization of the sulfurization level misses the first round again uses a weight
of 100000 as it focuses on finding a feasible solution with the least possible amount of
torpedoes. The high value ensures the focus on feasibility. For the second round, however,
the weight is only 1000 as there is a special part of the objective function that also deals
with the sulfurization level misses in more detail.

Capacity constraint violations are all penalized by a weight of 10000 in the first round.
Again the values were chosen rather high to focus on feasibility. For the second run weights
for capacity misses at specific zones are only weighted by 10, for transitions by 1000. Tran-
sitions need to be weighted higher as their maximum occupation of 1 leaves less margin
in general, but the weights for the zones were chosen very low to prevent the algorithm
to get stuck in local optima. This actually introduces a small probability for constraint
violations still present in the final result, however, higher values focused the process more
on these constraints in the first place and only afterwards optimizing the desulfurization
times within the limits already set by the constraints while the low values allow a kind of
parallel optimization of both desulfurization times and capacity violations at a similar pace.
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5.3.2 Number of Torpedoes

The next part of the objective functions uses the occupationCount array. For the first round
each element occupationCount [i] is weighted by ik. This polynomial weighting strategy
ensures a strong optimization towards a small number of currently active torpedo cycles
at any point in time with a special emphasis on eliminating areas using a high number of
torpedoes. This showed to be a successful approach to optimize the first objective. While
k = 2 is sufficient when the reduction procedures are included, the value needs to be even
higher (k = 4) without them in order to achieve the best possible results regarding the
number of torpedoes.

For the second round the goal of this part of the objective function is completely changed.
This part is the reason for choosing to use two separate rounds of optimization in the first
place. The key point is the structure of the solution created in the first round. The number
of currently active torpedoes is kept as low as possible across the whole time span in order
for the optimization to work. However, as only the maximum number of torpedoes counts
for the value of the solution and this maximum value might only be reached at a small
part of the whole process, this kind of optimization restricts the possibilities to optimize
the desulfurization time more than necessary. Section 6.3 will highlight this in the results.

Therefore, the second round memorizes the amount of torpedoes reached in the first
round (fixed) and sets the weight for every i up to this value to 0. For all i above this
value previous weights are increased by a factor of 1000000. This allows free use of any
number of torpedoes up to the set limit allowing much more flexibility for the reduction of
desulfurization times by utilization of torpedoes that would otherwise be on standby. On
the other hand the excessive weights for going beyond this limit ensure that the optimization
result from the first round is kept throughout the second round.

5.3.3 Desulfurization

In the first round the objective function adds the optimization of desulfurization times as
a low priority goal to the process.

In the second round the desulfurization times are included in more detail to encourage
better matching of blast furnace and converter deadlines with respect to their sulfurization
levels. To incorporate the difference in initial sulfurization levels compared to the actual
converter level demands the array desulfMismatch is used. A level miss is weighted by
10000·i where i counts the number of missed levels, therefore linearly penalizing the distance
to the required level. Here a range of other methods were tried as well, in particular using
polynomial strategies like for the number of torpedoes or also penalizing levels that are
lower than required in order to reduce potentially wasteful situations where torpedo cycles
with low level are used for converter demands with high maximum level. However, none of
these strategies gave better results than the one described above.

Finally, the total desulfurization time is added to the objective function as well. Using
a weight of 1, this (actually the overall optimization goal of the second round) is a rather
low priority target in the optimization process. This is because putting more emphasis on
parts like the sulfurization level mismatch works towards producing an optimal structure
of the solution earlier. This is important especially regarding the assignment of converter
due dates to the torpedo cycles. As such switches can easily produce at least temporary
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constraint violations it is beneficial to work on an optimized assignment while the temper-
ature is still high and then focus on optimizations within cycles by shifting times to reduce
desulfurization times locally at a later point in the process.

5.3.4 Reduction Procedures

The algorithm as described above can be used without applying the reduction procedures.
However, applying these procedures can eliminate a large part of potential blast furnace
to converter assignments beforehand and therefore allow a major reduction of the search
space. This in turn can be used to greatly reduce the time for application of the Simulated
Annealing algorithm while maintaining the same or even slightly better results.

The application is implemented by storing a boolean matrix of possible blast furnace
to converter assignments and checking every potential assignment during application of the
moves in Simulated Annealing whether it is allowed. Only when the resulting assignments
of a move are in the allowed search space the evaluation of the move is triggered.

6. Experimental Investigation

The algorithm was executed on an Intel Core i7-6700K with 4 x 4.0 GHz using a single
core. First we present the data sets and evaluate the reduction procedures. The next part
evaluates the need for the two-stage algorithm by exploring the structure of a solution in
different stages of the algorithm. Then the algorithm is applied to the full data set both
with and without utilizing the reduction process.

6.1 Data Sets

An original set of six instances was provided for the ACP 2016 Challenge (Schaus et al.,
2016). Those instances were generated by an instance generator that was published along
with the configuration files used for the generator. To evaluate our approach on a larger set
of instances, we applied the following process to generate more instances.

The features of an instance are given by the configuration file, setting numbers of slots as
well as ranges for the durations and by providing the number of blast furnace and converter
due dates directly to the generator. Table 1 shows the used configuration files.

Table 1: Instance configuration files

File sFB sDES sCON Small TT Medium TT Large TT Duration length

01 6 2 3 1-3 10 17 13-27
02 6 2 2 1-3 10 22 11-23
03 6 2 2 1-3 9 20 10-27
04 4 1 2 1-3 6 16 14-17
05 4 1 2 1-3 9 13 11-27
06 4 1 2 1-3 10 27 11-25
high 15 5 5 1-3 6-10 13-27 10-27
long 6 2 2 3-9 18-30 29-81 30-81
narrow 2 2 2 1-3 6-10 13-27 10-27
short 6 2 2 1 2-3 4-9 3-9
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Table 2 shows the number of blast furnace and converter due dates for the competition
instances.

Table 2: Number of blast furnace and converter due dates

instance01 instance02 instance03 instance04 instance05 instance06

Blast furnace due dates 850 1500 2200 1000 1800 2500
Converter due dates 800 1400 2100 1000 1780 2350

Now for each existing instance instance0x three new instances with the same configura-
tion file 0x and the same number of blast furnace and converter due dates are generated.
Further each of the configuration files high, using 2 to 3 times more slots, long , using triple
durations, narrow , using only a third of the number of slots for the full buffer, and short ,
using durations at roughly a third of the usual values, is combined with each of the sets of
due dates to investigate the effect of those features on the solutions.

An additional set of instances is created to investigate the importance of the ratio
between the number of blast furnace and converter due dates on the difficulty of the problem.
Instance 4 from the original instances has equal numbers of these due dates and turned out
to be the easiest original instance to solve. Therefore, using the same configuration file
04 and the same number of 1000 blast furnace due dates, instances with the number of
converter due dates set to 999, 995, 990, 975, 950, 900, 750 and 500 are generated as
instance04 ratioY .

6.2 Effect of the Reduction Procedures

A detailed analysis of the effect of reducing the possible material assignments has been
conducted. First, we apply the logical reductions as described in Section 4.3. Then, all as-
signments based on the lower bound computations (types CCF, CCB, CCMA) are removed.
Here, no particular order has to be respected as all types of lower bounds are independent
from each other. Once these assignments have been removed (Log-1, Type CCF, Type
CCB, Type CCMA), the logical checks can yet once more be run, and additional material
assignments might be removed. It terminates after the second application of the logical
checks. At this point, no further reductions of variable values are possible. Formally, the
procedure is given in Algorithm 6.

ALGORITHM 6: Application of the reduction procedures

apply logical reductions based on Hall sets;
if reductions based on the lower bounds (type CCF, CCB, CCMA) then

re-apply logical reductions;
end

Table 3 reports the findings of these experiments: We first give for each instance the
number of possible assignments i→ j in column 2. The number of removed assignments by
applying the logical tests is shown in the third column, ‘Log-1’. Then, columns 4–6 give the
number of removed assignments for the different types of lower bound calculations, Type
CCF, CCB, and CCMA.

The effect of this second run of the logical checks is reported in column ‘Log-2’. Finally,
the remaining number of possible i→ j-assignments is given in column 8, and the reduction

23



Geiger, Kletzander & Musliu

Table 3: Reductions of possible material assignments

Instance poss.ass. Log-1 Type CCF Type CCB Type CCMA Log-2 net red.

instance01 339506 4779 0 0 122740 0 213127 37.2%
instance01 1 341486 25839 285185 285185 285453 15227 36581 89.3%
instance01 2 341560 15010 169312 169312 170976 829 162649 52.4%
instance01 3 339448 0 282257 282257 284578 2542 44627 86.9%
instance01 high 340193 3190 298114 301921 304251 5991 27718 91.9%
instance01 long 341717 9522 0 0 61200 0 271955 20.4%
instance01 narrow 342332 7155 273433 273433 264132 10396 55151 83.9%
instance01 short 339728 9522 107007 107007 46620 0 195476 42.5%
instance02 1049611 55180 221725 221725 226625 8547 808259 23.0%
instance02 1 1045626 30547 962367 966245 972065 10850 50547 95.2%
instance02 2 1050299 19495 964782 969723 967166 6865 65127 93.8%
instance02 3 1054856 27790 0 224907 228594 0 823052 22.0%
instance02 high 1054967 26406 954919 984951 1001123 7968 41569 96.1%
instance02 long 1045039 11164 0 0 689550 10239 341782 67.3%
instance02 narrow 1053142 25029 440580 440580 442260 4961 588452 44.1%
instance02 short 1053648 26409 483171 483171 484692 0 552180 47.6%
instance03 2316980 0 2166964 2186186 2208911 24205 75436 96.7%
instance03 1 2307282 16764 2199520 2210854 2226926 18314 59146 97.4%
instance03 2 2314182 52175 2218779 2218779 2215054 18471 58946 97.5%
instance03 3 2324378 2099 0 0 1069027 32420 1222855 47.4%
instance03 high 2312085 130277 0 529590 1376628 49686 840301 63.7%
instance03 long 2310500 10485 2157887 2172908 2173538 24586 105365 95.4%
instance03 narrow 2313388 35547 728945 728945 728828 9587 1542934 33.3%
instance03 short 2307957 16764 0 0 716984 0 1587737 31.2%
instance04 500518 499462 444322 444322 450682 0 1056 99.8%
instance04 1 500499 499467 436326 436866 443898 0 1032 99.8%
instance04 2 500496 499474 427153 427153 447344 0 1022 99.8%
instance04 3 500509 499473 437172 437172 440155 0 1036 99.8%
instance04 high 500512 499390 438154 438154 455028 0 1122 99.8%
instance04 long 500497 499481 89600 89600 89900 0 1016 99.8%
instance04 narrow 500500 499479 382606 382984 404708 0 1021 99.8%
instance04 ratio1 500254 212347 462951 464643 473310 21106 1031 99.8%
instance04 ratio2 498760 40887 451685 451685 458403 26938 7661 98.5%
instance04 ratio3 496456 25389 428430 428430 442963 33492 19494 96.1%
instance04 ratio4 489920 4860 432088 432088 446602 18194 22865 95.3%
instance04 ratio5 473646 2844 414319 414858 405249 5119 49789 89.5%
instance04 ratio6 456267 8945 403400 403400 410621 4553 39036 91.4%
instance04 ratio7 381719 3735 191100 191100 0 0 188634 50.6%
instance04 ratio8 242379 1493 230938 231142 206717 93 10117 95.8%
instance04 short 500502 499478 294569 294569 295853 0 1024 99.8%
instance05 1606620 58177 0 0 0 0 1548443 3.6%
instance05 1 1605055 28344 1500791 1503682 1534642 42626 27045 98.3%
instance05 2 1604175 79065 31986 31986 32040 0 1493880 6.9%
instance05 3 1603430 5334 1531455 1531455 1537263 45922 17324 98.9%
instance05 high 1603041 70377 791586 791586 257637 7679 659833 58.8%
instance05 long 1603350 217931 1498030 1498030 1516777 36671 41253 97.4%
instance05 narrow 1604282 5334 1465417 1476834 1498512 44507 60035 96.3%
instance05 short 1601786 142557 656676 656676 695566 42788 823069 48.6%
instance06 2937339 28122 1450224 1450224 1454112 0 1470657 49.9%
instance06 1 2943650 74672 2795463 2795841 2802034 19431 101386 96.6%
instance06 2 2933658 25784 2822590 2822590 2826441 28731 68046 97.7%
instance06 3 2925694 202883 2740734 2740734 2765510 27989 123617 95.8%
instance06 high 2938013 116220 1454007 1812163 2027787 17109 877998 70.1%
instance06 long 2930533 16422 0 0 1200394 2686 1715749 41.5%
instance06 narrow 2943567 37464 502196 502196 503088 222 2406361 18.3%
instance06 short 2939371 74671 0 0 754820 6425 2177439 25.9%
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is summarized in column 9 (‘red.’, in percent). Note that the different tests typically do not
remove distinct assignments, but that there is a considerable overlap between the different
approaches.

Our analysis has shown that the reductions of the lower bounds Type CCF and Type
CCB are overlapping to a large degree. In some cases, they are even identical. This is to
be expected, as the logic for constructing the lower bounds is very similar, differing only
in the sequence in which the assignments are made. Still, there are some differences, and
some material assignments are excluded by one type but not the other. Ultimately, both
should be applied as they both contribute.

Cases in which the lower bound computed by our procedures is not found as an upper
bound are scarce. In our experiments, this was only the case for instance05. Consequently,
the reductions by the lower bound calculations are, here, zero.

We are also able to see that there does not seem a clear pattern of when the concepts
are particularly useful and when not, apart from the case of instance04. Here, close to
mn − m assignments are removed. Clearly, this relates to the structure of the instances,
as m = n. Effectively, the tightness of the constraints does not allow for many different
material assignments, and this is reflected in the large number of reductions.

Overall, the investigation reveals that the ideas put forward in this article are highly
useful for reducing the set of possible material assignments. On average, and after applying
all reductions, 72.8% of all potential assignments are discarded, which is quite impressive.
Bearing in mind that the computations proposed by us can be done as a preprocessing
step, keeping the outcomes for further optimization runs, we believe them to be a valuable
contribution for the problem at hand.

6.3 Structure of a Solution

To see the importance of using two rounds of Simulated Annealing, data collected from one
particular computation of instance01 is presented after the creation of the initial solution
and after each round of Simulated Annealing. The resulting distribution is similar in all
instances, therefore it is only described for instance01 to highlight the way the algorithm
transforms the solution.

Table 4 shows the elements of occupationCount for indices 0 to 5 and timeDesulf for
instance01 . All values occupationCount [i] with i > 5 are 0.

Table 4: Objective values in various stages of the algorithm (instance01 )

Value [0] [1] [2] [3] [4] [5] timeDesulf

Initial 41077 58754 25050 6091 239 11 18333
Round 0 68141 49830 12136 1053 62 0 18512
Round 1 681 17303 55387 46254 11597 0 7776

The initial solution generated by the heuristic typically uses only a few torpedoes more
than the final result, in this case 5 torpedoes are used. However, as to be expected, this
solution is infeasible, and capacity constraints are slightly violated at the transitions FBtoD ,
DtoC and CtoE as well as at the desulfurization zone. Figure 10 shows the distribution of
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Figure 10: Objective values in various stages of the algorithm (instance01 )

the occupation values. The most frequent occupation at this stage is to have 0 or 1 torpedo
active.

After the first round of Simulated Annealing the number of torpedoes was lowered to 4,
however, the desulfurization time slightly increased despite the fact that desulfurization is
added as a low level optimization goal to this stage. This solution is already feasible and
fixes the number of torpedoes used in the final solution. As the figure shows, the distribution
for occupationCount is shifted as far as possible to the lower indices. The highest number
of torpedoes is only used at a very small number of time points. In fact, for almost half the
time no torpedoes are active at all.

In the second round of Simulated Annealing this distribution completely changes as the
algorithm now permits free use of any number of torpedoes up to 4 in order to optimize
the desulfurization time as much as possible. The results show that there is almost no time
left without any torpedo on the move while the most frequent occupation shifts to 2 and 3.
This allows much more flexibility for optimizing the desulfurization time and results in less
than half the time compared to the first round.

6.4 Results

For these results the algorithm was evaluated 20 times on each instance. The evalua-
tion without reduction procedures in Table 5 uses outer = 10000, t fraction = 10 and
t factor = 0 .998 , while the evaluation with reduction procedures in Table 6 uses the much
faster cooling with outer = 1000, t fraction = 1000 and t factor = 0.99.

The column Ab. 1 shows the number of runs where the best known number of torpedoes
could not be reached in stage 1. Ab. 2 shows the number of runs where the final result
had to be discarded due to constraint violations. These cases typically included a minor
capacity violation that could not be resolved.

The column Torp. shows the result for the main objective, the maximum number of
torpedoes. The next columns show the best respecitively average number of time steps
spent in disulfurization as well as the standard deviation for this value. Note that average
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Table 5: Results of Simulated Annealing without reductions

Instance Ab. 1 Ab. 2 Torp. Best desulf Avg. desulf Std. dev. Time

instance01 2 1 4 7722 7769.88 32.78 257.38
instance01 1 0 0 3 7463 7480.85 12.58 164.40
instance01 2 0 0 4 4743 4752.35 10.02 187.34
instance01 3 0 0 3 5151 5162.05 9.73 165.66
instance01 high 0 0 4 5344 5360.00 13.39 138.89
instance01 long 0 0 4 14184 14281.35 97.22 569.71
instance01 narrow 1 0 3 4914 4924.32 10.00 154.86
instance01 short 0 0 4 1314 1323.60 6.95 112.47
instance02 0 0 4 5302 5318.30 10.90 458.66
instance02 1 1 0 3 14278 14302.32 20.06 387.29
instance02 2 0 0 3 12188 12216.60 33.44 360.96
instance02 3 0 0 4 8020 8076.05 25.30 415.99
instance02 high 0 0 4 14823 14845.95 23.03 233.16
instance02 long 0 0 4 34438 34505.60 52.03 946.51
instance02 narrow 0 0 4 9051 9091.10 20.87 411.02
instance02 short 0 0 4 2646 2659.50 8.87 220.47
instance03 11 0 3 27150 27186.11 20.79 620.29
instance03 1 7 0 3 20940 20961.54 14.60 533.40
instance03 2 2 0 3 20800 20820.00 20.00 596.48
instance03 3 0 0 4 14560 14608.00 25.61 688.61
instance03 high 0 0 5 15000 15040.80 26.40 354.67
instance03 long 3 0 3 57230 57296.24 63.75 1084.58
instance03 narrow 0 0 4 14288 14320.50 20.87 579.19
instance03 short 0 0 5 2860 2877.85 9.41 329.64
instance04 0 1 3 10676 10676.00 0.00 181.57
instance04 1 0 0 3 12128 12128.00 0.00 174.59
instance04 2 0 0 3 11824 11824.00 0.00 177.67
instance04 3 0 0 3 11856 11856.00 0.00 226.42
instance04 high 0 0 4 12407 12407.00 0.00 167.72
instance04 long 0 0 4 49352 49352.00 0.00 498.38
instance04 narrow 0 0 3 16588 16588.00 0.00 250.48
instance04 ratio1 2 0 3 12144 12144.00 0.00 190.54
instance04 ratio2 7 0 3 11120 11122.46 5.77 186.48
instance04 ratio3 3 0 3 9168 9186.82 13.70 187.73
instance04 ratio4 4 0 3 8176 8192.00 11.31 188.22
instance04 ratio5 1 0 3 6512 6529.68 14.59 195.38
instance04 ratio6 1 0 3 6672 6692.21 12.55 179.92
instance04 ratio7 0 0 4 1824 1836.80 11.97 175.98
instance04 ratio8 1 0 3 1328 1328.84 3.57 100.85
instance04 short 0 0 4 3710 3710.00 0.00 107.34
instance05 4 1 4 16362 16401.67 33.94 520.27
instance05 1 4 0 3 15119 15126.31 7.92 326.68
instance05 2 0 0 4 7826 7840.95 14.98 388.73
instance05 3 7 0 3 13052 13067.00 11.22 421.95
instance05 high 0 0 5 17064 17105.85 32.48 384.10
instance05 long 2 0 3 47520 47566.50 17.79 785.83
instance05 narrow 4 0 3 23730 23733.94 8.20 423.11
instance05 short 1 0 4 5248 5258.11 10.00 269.69
instance06 2 0 4 7755 7788.00 22.30 605.97
instance06 1 5 0 3 26460 26508.60 32.99 699.28
instance06 2 3 0 3 27891 27949.76 36.15 772.33
instance06 3 4 0 3 27513 27582.19 40.46 814.06
instance06 high 1 0 5 14278 14352.11 38.58 460.70
instance06 long 0 0 4 49984 50202.20 120.56 1801.16
instance06 narrow 0 0 4 10387 10418.25 18.13 566.34
instance06 short 0 0 4 6320 6342.00 9.76 414.50
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Table 6: Results of Simulated Annealing with reductions

Instance Ab. 1 Ab. 2 Torp. Best des. Avg. des. Std. dev. Time Avg. diff Time diff

instance01 0 0 4 7695 7744.95 32.26 77.33 -0.32% -69.96%
instance01 1 0 0 3 7463 7473.20 9.91 46.40 -0.10% -71.78%
instance01 2 0 0 4 4743 4746.40 6.80 53.39 -0.13% -71.50%
instance01 3 0 0 3 5151 5162.05 12.35 43.30 0.00% -73.86%
instance01 high 0 0 4 5344 5353.60 12.80 31.85 -0.12% -77.07%
instance01 long 0 0 4 14184 14331.60 114.92 197.44 0.35% -65.34%
instance01 narrow 0 0 3 4914 4917.50 7.51 43.71 -0.14% -71.78%
instance01 short 0 0 4 1314 1419.70 97.81 30.83 7.26% -72.59%
instance02 0 0 4 5302 5314.35 14.94 104.13 -0.07% -77.30%
instance02 1 0 0 3 14278 14289.00 13.02 108.61 -0.09% -71.96%
instance02 2 0 0 3 12166 12183.60 16.46 105.79 -0.27% -70.69%
instance02 3 0 0 4 8027 8064.05 27.66 131.77 -0.15% -68.32%
instance02 high 0 0 4 14823 14845.95 28.67 67.11 0.00% -71.22%
instance02 long 0 0 4 34371 34558.60 91.38 354.21 0.15% -62.58%
instance02 narrow 0 0 4 9051 9088.10 22.37 147.47 -0.03% -64.12%
instance02 short 0 0 4 2646 2661.20 39.07 55.82 0.06% -74.68%
instance03 0 0 3 27150 27160.00 12.25 205.50 -0.10% -66.87%
instance03 1 0 0 3 20940 20955.00 16.58 166.41 -0.03% -68.80%
instance03 2 0 0 3 20780 20802.00 14.00 167.38 -0.09% -71.94%
instance03 3 0 0 4 14560 14592.00 18.33 206.45 -0.11% -70.02%
instance03 high 0 0 5 14976 15015.60 31.54 115.01 -0.17% -67.57%
instance03 long 0 0 3 57230 57274.25 55.58 397.46 -0.04% -63.35%
instance03 narrow 0 0 4 14269 14369.05 118.47 220.20 0.34% -61.98%
instance03 short 0 0 5 2870 2944.15 78.66 128.46 2.30% -61.03%
instance04 0 2 3 10676 10676.00 0.00 36.15 0.00% -80.09%
instance04 1 0 0 3 12128 12128.00 0.00 33.05 0.00% -81.07%
instance04 2 0 0 3 11824 11824.00 0.00 32.32 0.00% -81.81%
instance04 3 0 0 3 11856 11856.00 0.00 33.84 0.00% -85.06%
instance04 high 0 0 4 12407 12407.00 0.00 34.70 0.00% -79.31%
instance04 long 0 0 4 49352 49352.00 0.00 42.86 0.00% -91.40%
instance04 narrow 0 0 3 16588 16588.00 0.00 34.18 0.00% -86.35%
instance04 ratio1 0 0 3 12144 12144.00 0.00 32.27 0.00% -83.07%
instance04 ratio2 0 0 3 11120 11120.00 0.00 52.31 -0.02% -71.95%
instance04 ratio3 0 0 3 9168 9184.80 7.96 60.54 -0.02% -67.75%
instance04 ratio4 0 5 3 8176 8179.20 8.67 57.78 -0.16% -69.30%
instance04 ratio5 0 0 3 6512 6520.80 12.87 55.43 -0.14% -71.63%
instance04 ratio6 0 0 3 6672 6681.65 10.65 49.09 -0.16% -72.72%
instance04 ratio7 0 0 4 1824 1834.40 10.46 46.21 -0.13% -73.74%
instance04 ratio8 1 0 3 1328 1329.68 4.91 21.07 0.06% -79.11%
instance04 short 0 0 4 3710 3710.05 0.22 32.88 0.00% -69.37%
instance05 3 0 4 16308 16360.41 29.97 178.73 -0.25% -65.65%
instance05 1 0 0 3 15119 15120.30 3.90 109.03 -0.04% -66.63%
instance05 2 0 0 4 7826 7837.70 12.26 129.69 -0.04% -66.64%
instance05 3 0 0 3 13052 13053.95 4.64 113.62 -0.10% -73.07%
instance05 high 0 0 5 17037 17082.90 21.09 105.01 -0.13% -72.66%
instance05 long 0 0 3 47520 47526.60 15.71 277.08 -0.08% -64.74%
instance05 narrow 0 0 3 23730 23730.00 0.00 145.83 -0.02% -65.53%
instance05 short 0 0 4 5248 5252.00 5.37 91.76 -0.12% -65.98%
instance06 0 5 4 7755 7779.93 14.74 199.93 -0.10% -67.01%
instance06 1 0 0 3 26433 26455.95 24.56 231.14 -0.20% -66.95%
instance06 2 0 0 3 27891 27916.65 30.16 228.74 -0.12% -70.38%
instance06 3 0 0 3 27486 27530.55 33.37 231.97 -0.19% -71.50%
instance06 high 0 0 5 14278 14312.10 22.52 123.24 -0.28% -73.25%
instance06 long 0 0 4 49920 50218.35 103.74 659.01 0.03% -63.41%
instance06 narrow 0 0 4 10387 10409.15 15.41 193.21 -0.09% -65.88%
instance06 short 0 0 4 6312 6327.25 9.89 126.25 -0.23% -69.54%
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and standard deviation are calculated on feasible runs reaching the best known number of
torpedoes only. The time is given in seconds and represents the average running time of
those runs.

Even without application of the reduction procedures this algorithm was able to find
the best solutions for the six original instances in the ACP 2016 Challenge, using 50 runs
per instance. For the extended evaluation 20 runs where performed per instance. As we
mentioned in the related work the first published method that proved the optimality of ACP
challenge instances was proposed by Goldwaser and Schutt (2017, 2018). Comparing to this
approach, our method was also able to find the optimal solutions for the ACP challenge
instances. Results on these instances show that although our method is based on local
search and in general can not guarantee the optimality, it is very robust.

The results show that in general the algorithm produces very stable solutions that do
not differ much. This is important for practical use as the calculation could be done with
only few runs in a short time while still staying within a short distance to the best solutions
the algorithm might find given more runs.

6.4.1 Effect of the Reduction Procedures

Several effects can be noticed when applying the reduction procedures. In total 56 instances
were evaluated, leading to 1120 runs for each of the result tables. As presented in Table 5,
out of those 83, which amounts to 7.4%, did not reach the best known number of torpedoes.
In Table 6, this amout reduces to 4 runs, or 0.4%, of all runs, which is a major improvement.
Note that the amount of infeasible instances raises from 3 (0.3%) to 12 (1.1%), but still
the overall sum of aborts shows a major drop from 86 (7.7%) to 16 (1.4%). The best
known number of torpedoes does not change for any of the instances. However, the rate for
reaching this best value is significantly improved.

The tables show that the best desulfurization time out of 20 runs is improved for 12
out of 56 instances (avg. −0.2%), while only 2 instances reach a slightly worse result (avg.
+0.2%). The corresponding best values are printed in bold in the tables. For the other
42 instances the same best values where reached, however, the number of times the best
value is reached out of 20 runs is improved for 30 instances, while it decreased for only 6
instances, in total raising the number from 388 to 548 out of 1120 runs.

The average desulfurization time is improved for 37 out of 56 instances, only 9 show a
worse average. 32 instances show smaller standard deviation, while 16 show larger standard
deviation. Most of these differences are rather small, still a clear trend towards slightly
better results in Table 6 compared to Table 5 can be seen. A noteable negative effect can
be seen on some of the short instances (mainly instance01 short and instance02 short),
where the best result is very similar, but average and standard deviation get worse.

A large improvement can be seen across all instances regarding the runtime, where in the
average a reduction by 71% can be achieved with the reduction procedures. Note that the
runtime results from the settings for the cooling scheme, not directly from the reductions.
However, simply reducing the runtime in the same way without applying the reduction
has significant negative influence on the results. A comparision shows that for 4 instances
the best known number of torpedoes can not be reached any more (number of torpedoes
+33.3% each), the total number of aborts (not reaching the best known number of torpedoes
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or including constraint violations) goes up to 153 (13.7%) and out of the 52 instances with
the same number of torpedoes 16 have a worse best desulfurization time (2 better) and 43
have a worse average desulfurization time (3 better). In the average the desulfurization time
would raise by 0.3% with worst instances getting up to 7% higher desulfurization times,
while improvements are not better than 0.2% at best.

In contrast, using the same cooling scheme as used without reductions, but including
the reductions, 14 solutions have improved best desulfurization time (0 worse, up to 0.5%
better) and 47 have improved average desulfurization time (1 worse, average 0.2% better).

6.4.2 Instance Analysis

Regarding the differences between the individual instances, a few conclusions can be drawn.
The individual instances generated with the same configurations often show similar runtimes
and highlight the conflict between the two given objectives that requires the two-stage
algorithm. Typically instances with a higher number of torpedoes in turn show a lower
desulfurization time and vice versa.

As expected due to the design of the algorithm, the long versions have significantly
higher runtime, the short versions have significantly lower runtime within their category.
high instances often resulted in more torpedoes in the solution, narrow did not seem to
make much difference. Regarding the ratio instances the first two (1 and 5 emergency pit
cycles) have a standard deviation of 0 in Table 6, indicating that the algorithm most likely
always reaches the best result, while for more emergency pit cycles this is not the case any
more.

7. Conclusions

This paper presented a new approach to solve a scheduling problem in steel production
plants. Our overall algorithm includes a new approach for pruning the search space based
on reducing the set of possible material assignments, and a search algorithm following
the concept of Simulated Annealing. The pruning approach is based on logical reductions
and lower bound calculations on the number of torpedo cars. The Simulated Annealing
algorithm utilizes several proposed efficient moves and optimizes the result for two lexico-
graphically ordered optimality criteria. In order to achieve this, each part of the solution
algorithm is tailored towards the optimal progress for its corresponding goal. Hence, a
two-stage Simulated Annealing is employed.

Our approach has been experimentally evaluated on instances of the ACP challenge. We
conclude that by using our reduction procedure the efficiency can significantly be improved
across all instances. On average, a runtime reduction of 71% can be achieved. Furthermore,
the quality of the solutions for several instances could be improved by applying the reduction
procedure. Our Simulated Annealing algorithm was able to obtain best existing results in
the ACP challenge and it consistently obtains very good results for new and larger generated
instances regarding the main optimization criteria, which is the number of used torpedoes.

The results show that the approach is a valid and competitive method to solve the given
problem. The reduction procedure can also be used as prepossessing step for any other
search technique. Besides, the ideas of Simulated Annealing are generic and can also be
adapted to various other problems utilizing lexicographic evaluation functions.
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From our perspective, future work could include the adaption of the approach to other
related problems in this domain. Furthermore, it would be interesting to evaluate the impact
of the reduction procedure on the efficiency of other search techniques for the Torpedo
Scheduling Problem.
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