
Journal of Artificial Intelligence Research 63 (2018) 875-921 Submitted 06/18; published 12/18

AND/OR Search for Marginal MAP

Radu Marinescu RADU.MARINESCU@IE.IBM.COM

IBM Research
Dublin, Ireland
Junkyu Lee JUNKYUL@ICS.UCI.EDU

Rina Dechter DECHTER@ICS.UCI.EDU

Alexander Ihler IHLER@ICS.UCI.EDU

University of California, Irvine
Irvine, CA 92697, USA

Abstract
Mixed inference such as the marginal MAP query (some variables marginalized by summation

and others by maximization) is key to many prediction and decision models. It is known to
be extremely hard; the problem is NPPP-complete while the decision problem for MAP is only
NP-complete and the summation problem is #P-complete. Consequently, approximation anytime
schemes are essential. In this paper, we show that the framework of heuristic AND/OR search,
which exploits conditional independence in the graphical model, coupled with variational-based
mini-bucket heuristics can be extended to this task and yield powerful state-of-the-art schemes.
Specifically, we explore the complementary properties of best-first search for reducing the number
of conditional sums and providing time-improving upper bounds, with depth-first search for rapidly
generating and improving solutions and lower bounds. We show empirically that a class of solvers
that interleaves depth-first with best-first schemes emerges as the most competitive anytime scheme.

1. Introduction

Probabilistic graphical models provide a powerful framework for reasoning about conditional depen-
dency structures over many variables. For such models, the Marginal MAP (MMAP) inference query
is a particularly difficult yet important task, corresponding to finding the most probable configuration
(or maximizing the probability) over a subset of variables, called MAP variables, after marginalizing
(summing over) the remainder of the model. MMAP inference arises in many situations, especially
in diagnosis and planning tasks, in which the most natural specification of the model contains many
variables whose values we do not care about predicting, but which create interdependence among the
variables of interest. For example, in diagnosis tasks, given observations, we seek to optimize over
a subset of diagnosis variables representing potentially failing components in a system (de Kleer,
Mackworth, & Reiter, 1990; Geffner & Bonet, 2013). Furthermore, a probabilistic conformant
planning task which finds a sequence of actions that maximizes the probability of reaching a goal
state without observations can be solved by MMAP inference (Lee, Marinescu, & Dechter, 2014).
More generally, the optimal policy of a finite horizon probabilistic planning task can be found by
MMAP inference due to the equivalence between MMAP inference and the maximum expected
utility computation (Mauá, 2016).

One reason marginal MAP queries are difficult is that the max and sum operations do not
commute, forcing variable elimination to be processed along a “constrained” order that eliminates
summation variables first, and often has significantly higher induced width than the graph itself

c©2018 AI Access Foundation. All rights reserved.

MARINESCU, LEE, DECHTER, & IHLER

(Dechter, 1999, 2013). In general, MMAP is NPPP-complete and it can be NP-hard even on tree
structured graphs (Park & Darwiche, 2004), while the decision problem for MAP is only NP-complete
(Shimony & Charniak, 1991) and the summation problem is #P-complete (Cooper, 1990).

The difficulty of solving marginal MAP exactly motivates anytime algorithms, which provide
a confidence interval on the exact solution that is gradually improved over time. Similarly, it is
important that any practical algorithm be anyspace, in the sense that it can continue to make progress
once the available memory is exhausted. In this paper, we focus on the framework of heuristic search
to provide these properties.

In particular, we explore several major ways in which heuristic search for marginal MAP can
be made faster and more effective: using best-first techniques, exploiting AND/OR decomposition
structure, and making improvements to the guiding heuristic function.

Past algorithms for solving marginal MAP have been typically based on depth-first branch and
bound search, e.g., Park and Darwiche (2003), Yuan and Hansen (2009). While this approach is
quick to produce an initial MAP configuration, it can be slow to improve. Evaluating or comparing
any two MAP configurations involves a combinatorial sum, and when this is computationally costly,
depth-first methods (which often visit a large number of such configurations) can pay a heavy price.
In contrast, best-first search methods will solve far fewer summation problems to prove optimality,
but will be correspondingly much slower to produce an initial solution.

The AND/OR structure provides additional improvements. AND/OR search spaces leverage
conditional independence relations during search, in order to reduce the effective search space size.
Although naïvely search is exponential in the number of variables, AND/OR search is exponential
only in the depth of the model’s pseudo-tree (Dechter & Mateescu, 2007; Freuder & Quinn, 1985),
which may be far smaller. Moreover, if memory is utilized it can be exponential in the induced width
only.

Finally, the heuristic functions used in previous work (Park & Darwiche, 2003; Yuan & Hansen,
2009) work by exactly solving a relaxed inference problem that follows an “unconstrained” order
on the graph, which can have a smaller induced width than the exact marginal MAP task. However,
this framework has two major drawbacks. First, many marginal MAP problems are not easily
solved even with unconstrained orderings, limiting the methods’ application in practice. We provide
approximate extensions of Park and Darwiche (2003) and Yuan and Hansen (2009) that allow them
to be applied more generally. More importantly, however, since the search process must follow
the constrained order, these heuristics are by necessity dynamic, i.e., evaluating them at some
nodes requires recomputing at least part of the variable elimination procedure, with a nontrivial
computational cost. We show that a heuristic based on partition-based weighted mini-bucket (Dechter
& Rish, 2003; Liu & Ihler, 2011; Marinescu, Dechter, & Ihler, 2014) is much more effective for
search, in part because it allows the heuristic function to be completely pre-compiled, leading to far
faster per-node evaluations.

We develop AND/OR variants of both depth- and best-first search for marginal MAP. Then, moti-
vated by our desire for good anytime behavior and the high cost of evaluating a MAP configuration,
we explore two approaches that balance the benefits of depth-first and best-first behavior: weighted
best-first search (Pohl, 1970; Flerova, Marinescu, & Dechter, 2017), and two hybrid schemes that
interleave best-first and depth-first operations. These algorithms demonstrate significantly better
anytime performance than previous approaches.

We show that indeed heuristic search over AND/OR graphs, guided by such variational-based
partition heuristic can advance exact solvers and more importantly, it results in anytime algorithms

876

AND/OR SEARCH FOR MARGINAL MAP

Algorithm Limited Memory Strategy Anytime Upper Bounds Lower Bounds
AOBB Yes Depth-first Yes No Yes
AOBF No Best-first No Yes No
RBFAOO Yes Recursive best-first No No No
BRAOBB Yes Depth-first Yes No Yes
WAOBF No Weighted best-first Yes No Yes
WAOBF-REP No Weighted best-first Yes No Yes
WRBFAOO Yes Weighted best-first Yes No Yes
AAOBF No Best+depth-first Yes Yes Yes
LAOBF No Best+depth-first Yes Yes Yes

Table 1: New AND/OR search algorithms for marginal MAP.

for generating solutions and bounds that improve with time. Our empirical evaluations conclude
that a class of solvers that interleave depth-first with best-first schemes emerges as most competitive
anytime scheme.

In Table 1 we summarize the main contributions of this paper by listing the proposed AND/OR
search algorithms together with their most important characteristics such as whether or not they
can operate within restricted memory, search strategy, anytime behavior, as well as the ability to
produce upper and lower bounds on the optimal marginal MAP value. Specifically, the first three
algorithms (AOBB, AOBF and RBFAOO) denote the exact depth-first and best-first search schemes
for computing optimal solutions. The subsequent four algorithms (BRAOBB, WAOBF, WAOBF-REP
and WRAOBF) are the anytime schemes based on either depth-first or weighted best-first search
that produce improved quality solutions (corresponding to lower bounds) in an anytime fashion.
Finally, the last two algorithm (LAOBF and AAOBF) correspond to the hybrid depth+best-first search
bounding schemes that compute not only anytime lower bounds but also anytime upper bounds on the
optimal marginal MAP value. We will show empirically: (1) the effectiveness of the AND/OR search
algorithms as exact schemes against previous unconstrained join-tree based methods exploring OR
search spaces and (2) our new best+depth-first search approach produces superior quality solutions
more quickly than the pure best-first or depth-first search as well as the weighted schemes.

The paper is structured as follows. In Section 2 we give notation and background on graphical
models and marginal MAP. Section 3 describes some heuristic functions for marginal MAP. Then,
Section 4 describes depth-first and best-first search, develops AND/OR versions for marginal MAP,
and evaluates and analyzes their performance characteristics as exact solvers. Section 5 develops two
families of anytime search that blend the positive qualities of depth- and best-first methods, based
on using weighted best-first or interleaving best- and depth-first operations, respectively. We assess
the performance of these two frameworks on a number of benchmark problem classes. Finally, we
describe some connections to related work in Section 6, and discuss our conclusions in Section 7.
The paper is a significantly expanded and unified presentation of a line of work by the authors,
including (Marinescu et al., 2014; Marinescu, Dechter, & Ihler, 2015; Lee, Marinescu, Dechter, &
Ihler, 2016; Marinescu, Lee, Dechter, & Ihler, 2017).

877

MARINESCU, LEE, DECHTER, & IHLER

2. Background

A graphical model is a tupleM = 〈X,D,F〉, where X = {Xi : i ∈ V } is a set of variables indexed
by set V and D = {Di : i ∈ V } is the set of their finite domains of values. F = {ψα : α ∈ F} is
a set of discrete positive real-valued local functions defined on subsets of variables, where we use
α ⊆ V and Xα ⊆ X to indicate the scope of function ψα, ie, Xα = var(ψα) = {Xi : i ∈ α}. The
function scopes imply a primal graph whose vertices are the variables and which includes an edge
connecting any two variables that appear in the scope of the same function. The graphical modelM
defines a factorized probability distribution on X, namely

P (X) =
1

Z

∏
α∈F

ψα

The partition function, Z, normalizes the probability to sum to one.
Marginal MAP problems distinguish maximization variables (called MAP variables) and summa-

tion variables (the others). Let XS be the subset of summation variables in X and XM = X \XS

be the complement of XS . The Marginal MAP problem is to find the assignment x∗M to variables
XM that maximizes the value of the marginal distribution after summing out variables XS :

x∗M = arg max
XM

∑
XS

∏
α∈F

ψα(xα) (1)

Example 1. Figure 1(a) depicts the primal graph of an undirected graphical model (called also
a Markov network) representing a distribution over 8 variables, X = A, . . . ,H with 8 functions
defined by the arcs (each pair is a scope of one function). The highlighted variables {A,B,C,D}
denotes the MAP variables, in a possible marginal MAP task.

2.1 Bucket Elimination

An exact solution to (1) can be obtained by using the bucket elimination (BE) algorithm, which
eliminates (sums or maximizes over) the variables in sequence (Dechter, 1999). Given an ordering
of the variables in which all the max variables come before the sum variables, BE partitions the
functions into buckets, each associated with a single variable. A function is placed in the bucket
of its argument that appears latest in the ordering. BE processes each bucket, from last to first, by
multiplying all functions in the current bucket and eliminating the bucket’s variable (by summation
for sum variables and by maximization for MAP variables), resulting in a new function which is then
placed in an earlier bucket, depending on its scope. Since the size of this function is exponential in
its number of arguments, the complexity of BE is time and space exponential in the induced width of
the primal graph along the elimination order (Dechter, 1999).

Because the order in a marginal MAP task is constrained to place all max variables before
all sum variables, we refer to it as a constrained elimination order, and to its induced width as
the constrained induced width, denoted w∗c . The constrained induced width is always higher than
the induced width of the best unconstrained order, sometimes significantly so. Marginal MAP is
harder than pure optimization (MAP) tasks because evaluating the cost of the MAP assignment
requires solving a summation over the sum variables, and harder than pure summation because it
may force an undesirable (constrained) elimination order. For example, while summation is efficient
in tree-structured graphs (induced width 1), it is easy to specify MAP variables such that the resulting

878

AND/OR SEARCH FOR MARGINAL MAP

(a) Primal graph (b) Pseudo-tree

(c) AND/OR search graph

Figure 1: Example (a) primal graph of a graphical model over eight variables; (b) a pseudo-tree
corresponding to the ordering d = (A,B,C,D,E,G, F,H); (c) the resulting AND/OR
search graph. An example solution tree is indicated in red (see Section 4.2).

marginal MAP problem is NP-hard. This effect means that many marginal MAP problems are
impractical to solve exactly through bucket elimination, necessitating approximations and search
methods.

2.2 AND/OR Search Spaces

AND/OR search is guided by a spanning pseudo-tree of the graphical model’s primal graph (in
which any arc of the model not in the tree is a back-arc in the pseudo-tree) and the search space is
exponential in the depth of the pseudo-tree (rather than in the number of variables). Therefore, any
of the inference tasks over a graphical model can be computed by traversing the AND/OR search
tree (Dechter & Mateescu, 2007) even with linear memory. Moreover, when memory can be used the

879

MARINESCU, LEE, DECHTER, & IHLER

AND/OR search space can be compacted into a graph whose size is exponential in the induced width
only.

DEFINITION 1 (pseudo-tree). A pseudo-tree of an undirected graph G = (V,E) is a directed rooted
tree T = (V,E′) such that every arc of G not included in E′ is a back-arc in T , namely it connects
a node in T to one of its ancestors. The arcs in E′ may not all be included in E.

Figure 1(b) shows a pseudo-tree of depth 5 of the graphical model in Figure 1(a) that could be
generated by a depth-first traversal of the graph in Figure 1(a) (for more details on how to construct
pseudo-trees, see Dechter and Mateescu (2007), Marinescu and Dechter (2009a)). Given a graphical
model M = 〈X,D,F〉 with primal graph G and pseudo-tree T of G, the AND/OR search tree
ST based on T has alternating levels of OR nodes corresponding to the variables and AND nodes
corresponding to the values of the OR parent’s variable, with edges weighted according to F. The
AND/OR search space can be compacted further by merging nodes that root identical subtrees. One
way to identify such nodes is by using the notion of context (Dechter & Mateescu, 2007).

DEFINITION 2 (parents, context). Given a graphical modelM with primal graph G and pseudo-tree
T , the parents of variable Xi, denoted by pai or paXi , are the ancestors of Xi in T that have
connections (in G) to Xi or to descendants of Xi in T . Let n be an OR node labeled by variable Xi

in the AND/OR search tree ST . A variable assignment to pai defines the context of node n.

It was shown that any two OR nodes n1 and n2 with identical contexts root identical subproblems
in ST and therefore can be merged (Dechter & Mateescu, 2007). Merging all nodes that have
identical contexts yields the context-minimal AND/OR graph shown in Figure 1(c) (the parents sets of
the variables are shown next to each node of the pseudo-tree in Figure 1(b)). The size of this search
space can be bounded exponentially by the treewidth w∗ (or, the induced width). Searching the
AND/OR context-minimal graph can be bounded to be time and space exponential in the treewidth
w∗, the same complexity bound obeyed by message-passing schemes such as bucket elimination
(Dechter, 1999). Yet, search schemes can work with more flexible representations which is not
necessarily table-based, and invite methods that can trade memory for time and lead smoothly into
anytime schemes.

3. Improved Partitioning Based Upper Bounds for Marginal MAP

Informed search algorithms rely heavily on a heuristic function to guide the search process, and
bound the quality of potential solutions. In practice, these heuristics are usually constructed by
approximating the exact bucket elimination process described in Section 2. In this section, we
describe two common frameworks for heuristic construction: mini-bucket (Dechter & Rish, 2003)
and reordered join-tree (Park & Darwiche, 2003) heuristics. Both frameworks have drawbacks: in
particular, while the reordered heuristic has been shown to outperform mini-bucket, its computational
complexity is not easily controlled, and by construction it can require significant recomputation at
some nodes of the search. We fix the former issue using a heuristic called mini-cluster-tree, which
further approximates the reordered join-tree in a computationally bounded way. In order to develop a
more efficient heuristic, we revisit mini-bucket and augment it with several recent developments to
improve its quality on pure summation (Liu & Ihler, 2011) and pure MAP (Ihler, Flerova, Dechter, &
Otten, 2012), giving a weighted mini-bucket heuristic for marginal MAP that can be used in AND/OR
search. This provides a stronger heuristic than standard mini-bucket, while remaining highly efficient
to evaluate at each node.

880

AND/OR SEARCH FOR MARGINAL MAP

3.1 Mini-Bucket Elimination

Mini-Bucket Elimination (MBE) is a classic relaxation of the exact variable elimination problem in
(1) by approximating each elimination operator (max or sum) to enable the user to control a bound
on the space and time complexity. Following the exact bucket elimination procedure, each bucket
is further partitioned into smaller subsets, called mini-buckets, each containing at most i distinct
variables (where i is a user-selected parameter called the i-bound). The mini-buckets are processed
independently, resulting in messages over fewer variables and thus require less time and memory.
MBE processes the sum buckets and max buckets differently. Max mini-buckets (of variables in XM)
are eliminated by maximization, while for variables in XS , one (arbitrarily selected) mini-bucket
is eliminated by summation, while the rest of the mini-buckets are eliminated by maximization.
The complexity of the algorithm is time and space exponential only in its i-bound, which can be
selected to enforce available computational resources. When i is sufficiently large (i.e., i > w∗c),
MBE coincides with full bucket elimination, yielding the exact answer.

By design, these mini-bucket messages upper bound the exact elimination process, giving an
upper bound on the optimal marginal MAP value. Moreover, given any partial configuration that
respects this ordering (i.e., consists of values for the last k eliminated variables), we can evaluate
an upper bound on the conditional problem from the messages computed during the approximate
elimination. These bounds can be used as a search heuristic, and are very efficient to evaluate,
requiring at most a few table lookup operations per search node. MBE(i) has regularly been used
as an effective heuristic for depth-first branch and bound search on MAP problems (Marinescu &
Dechter, 2009a, 2009b).

3.2 Unconstrained-order, Join-tree Based Upper Bounds

An alternative approach for upper bounding marginal MAP was proposed by Park and Darwiche
(2003). In this method, a join-tree is constructed along an unconstrained elimination order that
interleaves the MAP and the sum variables. Since reversing the order of the sum and max elimination
in (1) gives an upper bound on its value, a standard two-pass evaluation of the join-tree for this
reordered problem is guaranteed to generate an upper bound on the optimal marginal MAP value.
The complexity of the evaluation is exponential in the unconstrained induced width of the underlying
primal graph, which can be less than the constrained induced width. When this computational cost is
not too high, this method was shown to be more effective than MBE (Park & Darwiche, 2003).

Unfortunately, there are two significant drawbacks to this approach. The first is that the computa-
tional requirements are not completely under user control. In many models, even the unconstrained
induced width remains prohibitively high, which limits the method’s practical application. In order
to use these techniques in general models, we may need to further approximate them; in the sequel,
we develop a mini-cluster tree elimination heuristic to overcome this issue.

The second drawback of unconstrained order methods is that they are by definition dynamic,
meaning that, at some search nodes, they may require some significantly non-trivial computation
to evaluate the heuristic bound. Yuan and Hansen (2009) improve on (Park & Darwiche, 2003),
reducing the number of such re-evaluations by carefully caching and reusing messages, but still
require inference re-computation at some nodes. Fundamentally, this is a consequence of the fact that
the search must proceed over the max variables; whenever a re-ordered max variable is conditioned
on in the search, the join tree messages no longer provide a usable heuristic and must be re-computed.

881

MARINESCU, LEE, DECHTER, & IHLER

For this reason, we also propose an improved form of (constrained-order) mini-bucket heuristic for
marginal MAP.

3.3 Mini-Cluster-Tree Elimination

To control the computational costs of the unconstrained order based heuristic, we apply an approx-
imation with bounded complexity, related to mini-bucket but with computations organized more
similarly to join-tree inference, called Mini-Cluster-Tree Elimination (MCTE) (Dechter, Kask, &
Larrosa, 2001). In MCTE, we pass messages along the structure of the join-tree, except that when
computing a message, rather than combining all the functions in the cluster, we first partition it into
mini-clusters, such that each mini-cluster has a bounded number of variables (the i-bound). Each
mini-cluster is then processed independently to compute a set of outgoing messages. Like MBE,
this procedure produces an upper bound on the results of exact inference, and increasing i typically
provides tighter bounds, but at higher computational cost. In spirit, both MBE and MCTE are quite
similar and both methods could be applied to either constrained or unconstrained order eliminations,
but in this paper for consistency we always use MBE-based relaxations on constrained orderings,
and MCTE relaxations on unconstrained orderings.

The dynamically evaluated nature of reordered (unconstrained order) heuristics, however, is more
fundamental to the approach. While dynamic heuristics are often tighter than statically compiled
ones, and can enable additional, useful techniques such as dynamic search orders, the efficiency
of evaluating a static heuristic allows it to visit more nodes in a given time. For this reason, we
explore an improved static heuristic based on weighted mini-bucket elimination, which we show
experimentally leads to a more effective search process.

3.4 Weighted Mini-Bucket Elimination and Cost-shifting

Weighted Mini-Bucket (WMB) (Liu & Ihler, 2011) is a recent enhancement of the mini-bucket
scheme for likelihood (summation) tasks. It replaces the naïve mini-bucket bound with Hölder’s
inequality. For a given variable Xk, the mini-buckets Qkr associated with Xk are each assigned a
non-negative weight wkr ≥ 0, such that

∑
r wkr = 1. Then, each mini-bucket r is processed using a

weighted or power sum, (
∑

Xk
f(X)1/wkr)wkr . It is useful to note that wkr can be interpreted as a

“temperature”; if wkr = 1, the power sum corresponds to a standard summation, while if wkr → 0, it
instead corresponds to a maximization over Xk. Thus, standard mini-bucket for summation queries
corresponds to choosing one mini-bucket r with wkr = 1, and the rest with weight zero.

Weighted mini-bucket is closely related to variational bounds on the likelihood, such as condi-
tional entropy decompositions (Globerson & Jaakkola, 2007) and tree-reweighted belief propagation
(TRBP) (Wainwright, Jaakkola, & Willsky, 2005). The single-pass algorithm of Liu and Ihler (2011)
mirrors standard mini-bucket, except that within each bucket a cost-shifting (or reparameterization)
operator is performed, which matches the marginal beliefs (or “moments”) across mini-buckets to
improve the bound.

The temperature viewpoint of the weights enables a similar procedure for marginal MAP. In
particular, for Xk ∈ XS , we enforce

∑
r wkr = 1, while for Xk ∈ XM , we take

∑
r wkr = 0 (so

that wkr = 0 for all r). The resulting algorithm, presented in Algorithm 1 and called Weighted
Mini-Bucket with Moment Matching (WMB-MM(i)), treats MAP and sum variables differently:
for sum variables it is like Liu and Ihler (2011), while taking the zero-temperature limit for MAP
variables we obtain the max-marginal matching operations described for pure MAP problems in

882

AND/OR SEARCH FOR MARGINAL MAP

Algorithm 1: WMB-MM(i) for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, MAP variables XM , constrained ordering o = X1, . . . , Xn, i-bound i
Output: Upper bound on optimal marginal MAP value

1 foreach k ← n downto 1 do
// Create bucket Bk and mini-buckets Qkr

2 Bk ← {ψα|ψα ∈ F, Xk ∈ var(ψα)}; F← F \Bk

3 LetQ = {Qk1, . . . , QkR} be an i-partition of Bk

4 foreach r = 1 to R do
5 ψkr =

∏
ψ∈Qkr

ψ; Yr = vars(Qkr) \Xk
// Moment Matching

6 if Xk ∈ XS then
7 Assign mini-bucket r weight wkr > 0, st

∑
r wkr = 1

8 µr =
∑

Yr
(ψkr)

1/wkr ; µ =
∏
r (µr)

wkr

9 Update ψkr = ψkr ·
(
µ
µr

)wkr

10 else
11 µr = maxYr ψkr; µ =

(∏
r µr

)1/R
12 Update ψkr = ψkr ·

(
µ
µr

)
// Downward Messages (eliminate Xk)

13 foreach r = 1 to R do
14 if Xk ∈ XS then λkr ← (

∑
Xk

(ψkr)
1/wkr)wkr

15 else λkr ← maxXk ψkr
16 F← F ∪ {λkr}

17 return
∏
ψ∈F ψ

(Ihler et al., 2012). This mirrors the result of (Weiss, Yanover, & Meltzer, 2007), that the linear
programming relaxation for MAP corresponds to a zero-temperature limit of TRBP.

The bounds provided by the single-pass WMB-MM(i) algorithm can be further tightened, if
desired, by additional message passing. One example is the Weighted Mini-Buckets with Join
Graph propagation algorithm, WMB-JG(i), which alternates between downward passes similar to
Algorithm 1 and upward passes, which compute messages used to “focus” the cost-shifting in the
next downward pass; see (Marinescu et al., 2014) for additional details. Another, more distributed
update scheme generalizing dual decomposition methods is given in (Ping, Liu, & Ihler, 2015).

Although iterative methods can produce tighter upper bounds compared to the single-pass WMB-
MM(i), when used in practice as a heuristics generator for search, the computational overhead
associated with iterative schemes such as WMB-JG often outweighs the improved accuracy of its
bounds (Marinescu et al., 2014). Therefore, in the sequel we use WMB-MM(i) as the heuristic to
guide our various AND/OR search algorithms for marginal MAP.

4. AND/OR Search Algorithms for Marginal MAP

In this section, we introduce our search algorithms for marginal MAP. As noted, these algorithms
explore the AND/OR search space for marginal MAP and are guided by effective weighted mini-
bucket heuristics improved with cost shifting schemes. Specifically, we develop depth-first AND/OR
branch and bound and best-first AND/OR search algorithms that explore the context minimal
AND/OR search graph. Since memory can be a bottleneck, especially for best-first search, we also

883

MARINESCU, LEE, DECHTER, & IHLER

develop a recursive best-first AND/OR search algorithm that can operate efficiently within bounded
memory. We first review search methods for marginal MAP which precede our work.

4.1 Early Search Methods

Marginal MAP can be solved by traversing either depth-first or best-first an OR search space defined
by the MAP variables. The search can be further enhanced with a specialized heuristic that upper
bounds the value of each partial MAP assignment, thus allowing the use of standard pruning methods
such as branch and bound. Up until recently, the best performing algorithm for marginal MAP was the
depth-first branch and bound developed by Park and Darwiche (2003) which uses the unconstrained
join-tree upper bound for guidance. During search, the join-tree is fully re-evaluated at each node
in order to compute upper bounds for all uninstantiated MAP variables simultaneously, which
allows the use of dynamic variable ordering. Although this approach provides effective bounds, the
computational overhead at each node in the search space can be quite significant. Subsequently, Yuan
and Hansen (2009) proposed an incremental evaluation of the join-tree bounds which significantly
reduces the computational overhead. However, this modification also requires the search algorithm to
follow a static variable ordering. In practice, Yuan and Hansen’s method proved to be cost effective,
considerably outperforming Park and Darwiche (2003). However, both methods require that the
induced width of the unconstrained join tree to be small enough to be feasible.

4.1.1 DEPTH-FIRST BRANCH AND BOUND

We next describe two algorithms that generalize the Park and Darwiche (2003) and Yuan and Hansen
(2009) schemes for models with high unconstrained induced width. In particular, we use MCTE(i)
(Dechter et al., 2001) to approximate the exact, unconstrained join-tree inference to accommodate
a maximum clique size defined by the i-bound i. The resulting branch and bound with MCTE(i)
unconstrained heuristics, abbreviated BBBT1, is given in Algorithm 2

The algorithm searches the simple OR tree of all partial MAP variable assignments. At each
step, BBBT uses MCTE(i) over an unconstrained ordering to compute an upper bound U(x̄) on the
optimal extension of the current partial MAP assignment x̄ (lines 5-8). If U(x̄) ≤ L, the current best
solution cost, then the current assignment x̄ cannot lead to a better solution and the algorithm can
backtrack (line 9). Otherwise, BBBT expands the current assignment by selecting the next MAP
variable in a static or dynamic variable ordering (line 4) and recursively solves a set of subproblems,
one for each un-pruned domain value. Notice that when x̄ is a complete assignment, BBBT calculates
its marginal MAP value by solving a summation task overM|x̄, the subproblem defined by the sum
variables conditioned on x̄ (line 2). Given sufficient resources (high enough i-bound), this can be
done by variable elimination or by depth-first AND/OR search with caching (Dechter & Mateescu,
2007) (see also Section 4.3). If a better new assignment is found then the lower bound L is updated
(line 10).

If MCTE(i) is fully re-evaluated at each iteration, it produces upper bounds for all uninstantiated
MAP variables simultaneously. In this case, BBBT can accommodate dynamic variable orderings
and can thus be viewed as a generalization of Park and Darwiche (2003). Alternatively, MCTE(i)
can be done in an incremental manner to provide a generalization of Yuan and Hansen (2009); in this
case BBBT requires a static variable ordering.

1. For consistency with prior work, we use the name used in Marinescu et al. (2003), (branch and bound with Bucket-Tree
heuristic) to denote the same algorithm applied to pure MAP queries.

884

AND/OR SEARCH FOR MARGINAL MAP

Algorithm 2: BBBT(i, XM , L, x̄) for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, i-bound i, unassigned MAP variables XM , lower bound L, partial

assignment to MAP variables x̄
Output: Optimal marginal MAP value

1 if XM = ∅ then
2 return eval(M|x̄)

3 else
4 Xk ← SelectV ar(XM)
5 Update MCTE(i)
6 foreach value xk ∈ Dk do
7 Assign Xk to xk: x̄← x̄ ∪ {Xk = xk}
8 U(x̄)← extract(MCTE(i))
9 if U(x̄) > L then

10 L = max(L,BBBT(i,XM \ {Xk}, L, x̄)

11 x̄← x̄ \ {Xk = xk}
12 return L

4.1.2 BEST-FIRST SEARCH

Best-first search schemes (e.g., A*) are known to be superior to other search schemes that traverse
the same search space given the same heuristic information (Dechter & Pearl, 1985). Algorithm A*
expands only nodes satisfying f(n) ≥ C∗ (for maximization) where C∗ is the cost of the optimal
solution and where f(n) = g(n) + h(n) (for sum cost paths), and h(n) is an upper bound of the
best cost extension to a solution (Nilsson, 1980; Pearl, 1988). Any complete search algorithm,
and in particular, depth-first branch and bound (DFBnB), must explore all the nodes expanded by
A*, assuming the same tie breaking rule, and, in addition may also explore some nodes for which
f(n) < C∗. Therefore, the expected benefit of A* over any other search algorithm, B, exploring the
same search space, depends on the number of extra nodes explored by B.

To understand A*’s performance for marginal MAP inference, we define an OR search space
whose nodes are partial assignments to a subset of the MAP variables along a fixed order X1, ..., Xm.
To capture the summation operation applied over XS , we introduce a final solution/goal node denoted
s, which extends any full MAP assignment. A solution path in this search space can be denoted by
(x1, ..., xm, s). Formally,

DEFINITION 3 (OR MMAP search space). Let XM be the MAP variables of a graphical model
M = 〈X,D,F〉 and XS = X \XM . The search space for MMAP has nodes which are partial
assignments over XM , denoted x̄1..j = (x1, . . . , xj). All full MAP assignments have the same child
node, s. All the arc-weights of internal nodes are extracted from the functions F. Specifically, the
weight of the arc (x̄1..l−1 → x̄1..l) is the product of all the functions F (Xl) ⊆ F whose scope
includes Xl and is completely instantiated by the partial assignment x̄1..l, namely w(x̄1..l−1 →
x̄1..l) =

∏
α∈F (Xl)

ψα(xα|x̄1..l). The arc-weight connecting a full MAP assignment xM node to s is
defined by:

w(xM → s) =
∑
XS

∏
α∈F (XS)

ψα(xα|xM)

where F (XS) ⊆ F is the subset of function scopes that include summation variables in XS .

It is easy to show that,

885

MARINESCU, LEE, DECHTER, & IHLER

PROPOSITION 1. Given a graphical modelM = 〈X,D,F〉 and MAP variables XM , any search
algorithm finding an optimal solution path over its MMAP search space, finds an optimal solution to
its MMAP task.

Proof. Let π = (x1, . . . , xm, s) be a solution path in the MMAP search space. By definition 3, the
cost of π obeys c(π) =

∏m
l=1

∏
α∈F (Xl)

ψ(xα|x̄1..l) ·
∑

xS

∏
α∈F (XS) ψ(xα|x̄1..m). Let F (XM) ⊆

F be the subset of function scopes that are defined on MAP variables only. It follows easily that
c(π) =

∏
α∈F (XM) ψα(xα|x̄1..m) ·∑XS

∏
α∈F (XS) ψ(xα|x̄1..m) and since F = F (XM)∪F (XS)

we obtain c(π) =
∑

XS

∏
α∈F ψ(xα|x̄1..m). The optimal solution path π∗ is π∗ = argmaxπ c(π) =

argmaxx̄1..m

∑
XS

∏
α∈F ψ(xα|x̄1..m) which is the optimal solution to the MMAP task.

The most costly operation when traversing even a single solution path in the MMAP search space
is when the algorithm expands a full MAP assignment x̄1..m, called a frontier MAP node. This is
because it needs to evaluate the last arc-weight, which is the cost of this MAP assignment, by a
summation problem.

Thus, a search algorithm that minimizes such expansions can be significantly more effective. In
fact, we argue that A*’s potential for marginal MAP is likely to be more profound than in regular
optimization (e.g., for pure MAP) because it can save not only on the number of regular nodes
expanded, but (much more significantly) on the number of expansions of MAP frontier nodes, and
therefore the number of summation sub-tasks.

THEOREM 1. Let A* be a search algorithm exploring the OR MMAP search space and let B be
any optimal search algorithm that explores the same search space as A*. Given the same heuristic
function and the same tie breaking rule, we have that:

(a) any node expanded by A* will be expanded by B.

(b) any MAP frontier node expanded by A* must be expanded by B.

Proof. When A* terminates with a path (x1, ..., xm, s) it has found the optimal MAP solution.
Denote by R the set of full MAP assignments, of the form (x1, ..., xm) in OPEN at the moment

A* terminates (namely, those nodes which were evaluated but not expanded). Denote by S the full
solutions in OPEN, having the form (x1, ..., xm, s). Any node in S represents an evaluation of the
summation sub-task. From the known optimality of A* (Nilsson, 1980), it follows that all the nodes
in S must also be evaluated by B, and in particular, by DFBnB, and all have f ≥ C∗ where C∗ is
the cost of an optimal MAP assignment.

We argue that a DFBnB scheme is likely to expand extra MAP frontier nodes beyond S, some of
which have f < C∗. While extra node expansions occur in any regular path-finding DFBnB search,
they are normally easy to control. This is because DFBnB is often supplied with a near-optimal
solution (e.g., using local search) which closes the gap between its best current solution L and C∗,
and thus prunes the search space almost as effectively as A* (since f(n) < L is close to f(n) < C∗).
However, finding an initial good solution (and thus a good lower bound) is far harder in the context
of marginal MAP as there is no simple and effective local search scheme. For these reasons, the
superiority of A* over DFBnB is potentially more significant for MMAP.

886

AND/OR SEARCH FOR MARGINAL MAP

4.2 AND/OR Search Spaces for Marginal MAP

The AND/OR search space for marginal MAP is defined relative to a valid pseudo-tree, in which the
MAP variables are grouped at the top of the pseudo-tree so that they form a start pseudo tree, or a
subtree of pseudo-tree T that has the same root as T .

Given a context-minimal AND/OR graph CT relative to a valid pseudo-tree T , a solution tree x̂
of CT is a subtree defined over the MAP variables only such that: (1) it contains the root of CT ; (2)
if an internal OR node n∈CT is in x̂, then n is labeled by a MAP variable and exactly one of its
children is in x̂; (3) if an internal AND node n∈CT is in x̂ then all its OR children labeled by MAP
variables are in x̂.

Each node n in CT can be associated with a value v(n); for MAP variables, v(n) captures the
optimal marginal MAP value of the conditioned subproblem rooted at n, while for sum variables it
is the conditional likelihood (sum) of the subproblem. Clearly, v(n) can be computed recursively
based on the values of n’s successors: OR nodes by maximization or summation (for MAP or sum
variables, respectively), and AND nodes by multiplication.

It is important to notice that, by definition, the AND/OR search space for marginal MAP spans
both the MAP as well as the summation variables. Therefore, the AND/OR search algorithms
presented in this section and the next can exploit decomposition in the MAP part of the problem as
well as in the corresponding conditioned summation part.

Example 2. Consider again the context-minimal AND/OR search graph from Figure 1(c) relative
to the valid pseudo-tree from Figure 1(b). The parents sets of the variables (which define the node
contexts in the search space) are shown next to the pseudo-tree nodes. It is easy to see that the
MAP variables form a start pseudo-tree. A solution tree corresponding to the MAP assignment
(A = 0, B = 1, C = 1, D = 0) is indicated in red.

4.3 AOBB: Depth-First AND/OR Branch and Bound

We are now ready to describe our depth-first AND/OR branch and bound (AOBB) algorithm for
marginal MAP. The idea is to traverse the AND/OR search space in a depth-first manner and update
the node values recursively based on the values of their successors. In order to guide the search more
effectively, each node n in the search space that is labeled by a MAP variable is associated with a
heuristic estimate h(n) which provides an upper bound on v(n). These estimates are then used to
prune unpromising regions of the search space. AOBB is presented in Algorithm 3.

We use the notation that T ′s is the current partial solution subtree, s is the root node of the search
space and the table Cache, indexed by node contexts, holds the partial search results. The fringe of
the search is maintained by a stack called OPEN . The algorithm assumes that variables are selected
in a static order respecting a valid pseudo-tree T . A heuristic f(T ′m) calculates an upper bound on
the optimal marginal MAP extension of T ′m, where T ′m is a partial solution subtree rooted at node m
(T ′m is also a subtree of T ′s and m ∈ T ′s). Each OR node n is associated with a flag n.optimal which,
if true, indicates that the subproblem rooted by n was solved optimally.

AOBB interleaves a top-down forward expansion of the current partial solution tree with a
bottom-up cost revision step that updates the node values. It selects the tip node n on top of the
search stack and, if n is labeled by a MAP variable, the algorithm attempts to prune the search space
below it (lines 4–10). Specifically, it computes the heuristic evaluation function for every partial
solution subtree rooted at the OR ancestors of n along the path to the root. The search below n is
terminated if, for some ancestor m, f(T ′m) ≤ v(m), where v(m) is the current lower bound on the

887

MARINESCU, LEE, DECHTER, & IHLER

Algorithm 3: AOBB for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, pseudo-tree T , heuristic function h(·)
Output: Optimal marginal MAP value

1 Create root OR node s labeled by the root X1 of T , set v(s)← −∞ and let OPEN ← {s}
2 while OPEN 6= ∅ do
3 Let n← pop(OPEN) and set n.deadend← false
4 if n is labeled by a MAP variable xi i.e., Xi ∈ XM then
5 foreach OR ancestor m of n along the path to root s do
6 Calculate f(T ′m) using the h(e) estimates of the unexpanded leaves e of T ′m
7 if f(T ′m) ≤ v(m) then
8 foreach OR node p between n and m (excluding m) do
9 Set p.optimal← false

10 n.deadend← true and break

11 if n.deadend == false then
12 if n is OR node labeled by Xi then
13 if n.context ∈ Cache then v(n)← Cache[n.context]
14 else
15 foreach value xi ∈ Di do
16 Create an AND successor n′ of n labeled 〈Xi, xi〉 and add n′ to succ(n)
17 Initialize h(n′) (if Xi ∈ XM) and set v(n′)← 1

18 else if n is AND node labeled by 〈Xi, xi〉 then
19 foreach children Xj of Xi in T do
20 Create an OR successor n′ of n labeled 〈Xi〉, set n′.optimal← true and add n′ to succ(n)
21 if Xi ∈ XM then Initialize h(n′) and set v(n′)← −∞
22 else if Xi ∈ XS then v(n′)← 0

23 Add succ(n) on top of OPEN

24 while succ(n) = ∅ do
25 Let p be the parent of n in the search space
26 if n is OR node labeled Xi then
27 if Xi = X1 then return v(n)
28 else
29 v(p)← v(p) · v(n)
30 if n.optimal then Cache[n.context]← v(n)

31 else if n is AND node labeled 〈Xi, xi〉 then
32 if Xi ∈ XM then v(p)← max(v(p), v(n) + w(p, n))
33 else v(p)← v(p) + (v(n) + w(p, n))

34 Remove n from succ(p) (and from the search space) and set n← p

optimal value below m. The algorithm also labels as not optimal all of n’s OR ancestors between n
and m (excluding m) indicating that it is not safe to cache the values of these nodes. It is easy to see
that AOBB ensures only provably optimal OR node values are cached and reused during search.

If node n was not pruned then the algorithm expands it by generating its successors. If n is an
OR node, labeled by Xi, then its successors are AND nodes represented by the values xi in variable
Xi’s domain (lines 12-17). Notice that at this stage the algorithm checks the cache table and if the
same context n.context was encountered before it is retrieved from cache which will trigger the

888

AND/OR SEARCH FOR MARGINAL MAP

propagation step. If n is an AND node labeled 〈Xi, xi〉, then its successors are OR nodes labeled by
the child variables of xi in the pseudo-tree T (lines 18–22).

The node values are updated by a bottom-up propagation step (lines 24–34) which is triggered
when a node n has an empty set of successors. Note that as each successor is evaluated, it is removed
from the set of successors in line 34. This means that all of n’s children have been evaluated and their
final node values are already determined. If the current node is the root, then the search terminates
with the optimal marginal MAP value (line 27). If n is an OR node, then its parent p is an AND
node, and therefore p updates its current value v(p) by multiplication with the value of n (line 29). If
node n was previously labeled optimal then the algorithm also saves in cache its value. An AND
node n propagates its value to its parent p in a similar way, either by maximization or by summation
depending on whether p is labeled by a MAP or by a summation variable (lines 31–33). Finally, the
current node n is set to its parent p (line 34), because n was completely evaluated. Search continues
either with a propagation step (if conditions are met) or with an expansion step. The algorithm can be
easily instrumented to also recover the optimal solution tree x̂ corresponding to the optimal marginal
MAP value (see also Marinescu and Dechter (2009a) for additional details).

Our AOBB typically computes its heuristic h(·) using a weighted mini-bucket bounding scheme
(see Section 3), which can be pre-compiled along the reverse order of a depth-first traversal of the
valid pseudo-tree which is built along a constrained elimination order.

4.3.1 BREADTH ROTATING AOBB (BRAOBB)

Depth-first AND/OR branch and bound often lacks good anytime behavior because, during search,
AOBB will solve to completion all but one independent subproblems rooted at an AND node. This
behavior was first observed by Otten and Dechter (2011) in the context of pure MAP inference.
Therefore, Breadth Rotating AOBB (BRAOBB) was introduced as an anytime depth-first AND/OR
search scheme that rotates through different subproblems in a round-robin manner. Empirical
evaluations showed that BRAOBB considerably improves AOBB’s anytime behavior, and is better
able to produce suboptimal solutions quickly and then gradually improve upon them. Without going
into the details, the algorithm described in Otten and Dechter (2011) can be applied directly to
marginal MAP queries by performing subproblem rotation to the MAP variables only.

4.4 AOBF: Best-First AND/OR Search

We next introduce a best-first search algorithm over the context-minimal AND/OR search graph
(Algorithm 4). The algorithm belongs to the so-called AO* family (Nilsson, 1980). Like any AO*,
AOBF maintains a partially explored AND/OR graph CT and its current best partial solution tree
T ′ that represents an optimal solution extension of CT under the assumption that the tips n of CT
are the terminal nodes with values given by the heuristic h(n) (if labeled by a MAP variable) or by
the corresponding conditioned likelihood (if labeled by a sum variable), respectively (see line 10).
Initially, CT contains the root node s which is an OR node labeled by the root of the pseudo-tree T .
Then, at each iteration, the algorithm selects a non-terminal leaf node of the partial solution tree T ′

and expands it by generating its successors. The best partial tree is then recomputed by backward
node value propagation, which sets the values of the leaves in CT to its heuristic or conditioned
likelihood values. The latter are calculated using procedure eval(M|T ′) which solves exactly the
summation sub-problem rooted by the respective sum variable. Clearly, we can use one of the best
algorithms for summation subproblems such as the depth-first AND/OR search with full/adaptive

889

MARINESCU, LEE, DECHTER, & IHLER

Algorithm 4: AOBF for marginal MAP
Input: Graphical modelM = 〈X,D,F〉 such that XM = X \XS , pseudo-tree T , heuristic h(·)
Output: Optimal marginal MAP value

1 Insert root s in CT , where s is labeled by the root of T
2 Initialize q(s)← h(s) and let T ′ = {s}
3 while true do
4 Select non-terminal tip node n in the best partial tree T ′.
5 if tips(T ′) = ∅ then break

// Expand
6 foreach successor n′ of n do
7 if n′ /∈ CT then
8 Add n′ as child of n in CT

9 if n′ is OR node labeled by X ∈ XS then
10 q(n′)← eval(M|T ′)

11 else q(n′)← h(n′)

// Update
12 foreach ancestor m of n in CT do
13 if m is OR node then
14 q(m)← maxn′∈succ(m) w(m,n′) · q(n′)
15 Mark best successor n′ of m as n′ = argmaxn′∈succ(m) w(m,n′) · q(n′), maintaining marked

successor if still best

16 else q(m)←
∏
n′∈succ(m) q(n

′)

17 Recompute best partial tree T ′ by following marked arcs from the root s

18 return q(s)

caching (Mateescu & Dechter, 2007), and also allow sharing the summation sub-task computations
via caching. Algorithm AOBF terminates when there are no leaf nodes in the best partial tree T ′. In
this case T ′ represents the optimal MMAP assignment and its value is given by the updated value of
the root node.

The complexity of AOBF is bounded by the size of the underlying context minimal search graph,
and is therefore time and space O(n ·kwc), where wc is the induced width along the valid pseudo-tree
(i.e., the constrained induced width) (Marinescu & Dechter, 2009a, 2009b).

4.5 RBFAOO: Recursive Best-First AND/OR Search

In practice, however, AOBF may require an enormous amount of memory, especially on difficult
problem instances. We therefore developed a limited memory best-first search scheme based on the
recursive best-first search idea (Korf, 1993). The algorithm is called Recursive Best-First AND/OR
search with Overestimation (RBFAOO) and was shown to be very effective for pure MAP (Kishimoto
& Marinescu, 2014). Algorithm 5 presents the extension of RBFAOO to the marginal MAP task.

RBFAOO uses a local threshold control mechanism to explore the context minimal AND/OR
search graph in a depth first-like manner (Korf, 1993). Let the q-value q(n) be an upper bound
of the solution cost at node n, and let θ(n) be the threshold at n indicating the availability of a
second best solution cost besides q(n). RBFAOO keeps examining the subtree rooted at n until
either q(n) < θ(n) or the subtree rooted at n is solved optimally. Therefore, it gradually grows
the search space by updating the q-values of the internal nodes and unlike AOBF, re-expanding

890

AND/OR SEARCH FOR MARGINAL MAP

Algorithm 5: RBFAOO for marginal MAP
Input: Graphical modelM = 〈X,D,F〉 such that XM = X \XS , pseudo-tree T , heuristic h(·)
Output: Optimal marginal MAP value

1 Procedure RBFAOO()
2 Insert root s in CT , where s is labeled by the root of T
3 OrNode(s, 0)
4 return q(s)

5 Function OrNode(n, θ)
6 while true do
7 foreach AND child c of n do
8 if c.context is in cache then q(c)← ReadCache(c.context)
9 else q(c)← h(c)

10 q(c) = w(n, c) · q(c)
11 Update q(n)← maxc∈succ(n) q(c) and mark n as solved if the child with the highest q-value is solved
12 if q(n) < θ(n) or n is solved then
13 break

14 Identify two children (c1, c2) of n with the two highest q- values s.t. q(c1) ≥ q(c2) ≥ q(others) and
update threshold as θ(c1) = max(θ(n), q(c2))/w(n, c1)

15 AndNode(c1, θ(c1))

16 WriteCache(n.context, q(n))

17 Function AndNode(n, θ)
18 while true do
19 foreach OR child c of n do
20 if c.context is in cache then q(c)← ReadCache(c.context)
21 else if c is labeled by X ∈ XS then
22 q(c)← eval(M|x̄), where x̄ is the assignment along the current path from root to c

23 else q(c)← h(c)

24 Update q(n)←
∏
c∈succ(n) q(c), and mark n as solved if all its children are solved

25 if q(n) < θ(n) or n is solved then
26 break

27 Identify an unsolved OR child c1 of n and update threshold θ(c1) = θ(n) · q(c1)/q(n)
28 OrNode(c1, θ(c1))

29 WriteCache(n.context, q(n))

them. The algorithm may operate with linear space (no caching). However, it can also use a fixed
size cache table to store some of the nodes (based on their contexts). When RBFAOO selects the
next best child to expand, it examines it with a new threshold which is updated appropriately for
OR and for AND nodes (see lines 14 and 27). Notice also that when expanding an AND node, the
algorithm evaluates the conditional likelihood for all OR children that are labeled by sum variables
using procedure eval(·) (line 22). For efficiency, we implemented this step using the same recursive
best-first approach but with the threshold set to −∞ which essentially corresponds to depth-first
AND/OR search with bounded cache.

If AOBF expands O(N) nodes in the worst case, then RBFAOO expands O(N2) due to node
re-expansions. Since N is bounded by O(n · kw∗c), the time complexity of RBFAOO is bounded by
O(n2 · k2·w∗c) but it can operate in linear space. However, in practice, by slightly overestimating the

891

MARINESCU, LEE, DECHTER, & IHLER

Algorithm Search Space Heuristic Variable Ordering
AOBB AND/OR WMB-MM(i) Static
BRAOBB AND/OR WMB-MM(i) Static
AOBF AND/OR WMB-MM(i) Static
RBFAOO AND/OR WMB-MM(i) Static
PARK OR Unconstrained join tree Dynamic
YUAN OR Unconstrained join tree Static
BBBTd OR MCTE(i) - unconstrained join tree Dynamic
BBBTi OR MCTE(i) - unconstrained join tree Static
OBB OR WMB-MM(i) Static

Table 2: Marginal MAP search algorithms. Search spaces are either AND/OR search graph or OR
search graph introduced in Section 2, and heuristic functions are defined in Section 3.
Dynamic variable ordering schemes re-evaluate the heuristic function as search proceeds,
whereas static schemes only evaluate it once before search.

node thresholds (by a small constant δ), RBFAOO avoids such a high node re-expansion overhead
(see also Kishimoto and Marinescu (2014) for more details).

4.6 Experimental Results

We next evaluate empirically the performance of the proposed depth-first and best-first AND/OR
search algorithms as exact schemes for solving optimally the marginal MAP task. All competing
algorithms were implemented in C++, and the experiments were conducted on a cluster with 27
computing nodes. Each node has a dual-core 2.67 GHz Intel Xeon X5650 CPU with 24 GB of RAM
and was operated by a 64-bit Linux operating system. Each run of algorithms was allotted a 2-hour
time limit and a 24 GB memory limit.

4.6.1 OVERVIEW AND METHODOLOGY

Algorithm Setup Table 2 shows all algorithms evaluated in the following experiments. We consid-
ered the AND/OR algorithms AOBB, AOBF, BRAOBB, and RBFAOO, respectively. They all use
the weighted mini-bucket heuristic WMB-MM(i) (see Section 3) which has a single parameter called
i-bound that controls the accuracy at the cost of using memory exponential in i. The hyperparameters
of BRAOBB and RBFAOO are given as follows: we set the rotation limit to 1,000 for BRAOBB and
the overestimation parameter to 1.0 for RBFAOO, respectively. The best-first AND/OR algorithms,
AOBF and RBFAOO, use 4 GB of memory for storing the values of nodes in the AND/OR search
graph. The depth-first AND/OR algorithms, AOBB and BRAOBB, use cache tables up to the
total memory limit. We compare the AND/OR search algorithms with the OR search algorithms,
PARK/YUAN and their generalizations BBBTd/BBBTi, respectively. We also evaluate the depth-first
OR search algorithm with the WMB-MM(i) heuristic that we call OBB in order to compare the
impact of using the AND/OR search space. For this purpose, we modified AOBB to explore an OR
search space by enforcing a chain structure on the MAP variables in the guiding pseudo-tree.

Benchmarks The benchmark problem sets are derived from the Pascal2 competition problems
(Elidan et al., 2012). They include (1) the grid domain which is a collection of random grid networks

892

AND/OR SEARCH FOR MARGINAL MAP

Benchmark # inst n k wc hc wu hu

grid
easy 15 144 – 1156 2 – 2 16 – 52 50 – 164 15 – 49 48 –198

hard 60 144 – 1156 2 – 2 25 – 375 42 – 421 – –

pedigree
easy 10 334 – 1289 4 – 7 35 – 237 51 – 134 15 – 29 60 –160

hard 40 334 – 1289 4 – 7 35 – 237 63 – 259 – –

promedas
easy 10 453 – 1849 2 – 2 10 – 122 42 – 174 10 – 106 43 –157

hard 40 453 – 1849 2 – 2 11 – 490 36 – 507 – –

Table 3: Benchmark instances. #. inst is the number of instances in each domain. We also dis-
tinguish easy and hard instances. The minimum and the maximum values from the set
of problems are shown in the following parameters: n is the number of variables, k is
the maximum domain size, wc is the constrained induced width, hc is the height of the
pseudo-tree corresponding to the constrained elimination ordering. The unconstrained
induced width, wu and pseudo-tree height, hu are also shown to highlight the difficulty of
hard marginal MAP problem instances.

ranging from 12-by-12 to 34-by-34 grids, (2) the pedigree domain which is a collection of genetic
linkage analysis problems that are related to the haplotyping task, and (3) the promedas domain
which is a collection of Markov networks modeling an expert system for medical diagnosis tasks.
Since the original problems from the Pascal2 competition define pure MAP tasks, we generated
synthetic marginal MAP problem instances from each MAP problem as follows. For each problem
instance, we selected m variables and marked them as MAP variables while the remaining ones were
marked as summation variables, respectively. Specifically, we generated two types of marginal MAP
instances with m MAP variables for each network, easy and hard. The easy instances were generated
by selecting the first m variables from a breadth-first traversal of a pseudo-tree obtained from a join
tree decomposition of the primal graph and the hard instances were generated by selecting the MAP
variables uniformly at random. The easy instances were designed so that problem decomposition
is maximized and the constrained and unconstrained elimination orders are relatively close to each
other, thus having similar induced widths. In contrast, the hard instances tend to have very large
constrained induced widths wc compared to the easy problem instances and to the unconstrained
induced width wu. In our experiments, m is selected to be equal to 50% of the variables (see also
Table 3 for more details). For consistency, all competing algorithms used the same constrained or
unconstrained elimination ordering.

Measures of Performance From the evaluation results, we report the following metrics: (1) the
CPU time in seconds for finding an optimal marginal MAP value from selected instances, (2) the
number of summation problems evaluated until finding an optimal solution from selected instances,
(3) the number of instances that returned an optimal solution from benchmark domains, and (4)
the average CPU time for finding an optimal solution from benchmark domains. The first metric
compares the CPU time for search algorithms that terminate with an optimal solution on an individual
instance with varying strength of the heuristic functions controlled by the i-bound. The second
metric compares the number of summation subproblems evaluated until finding an optimal solution
on an individual instance with varying i-bounds, especially for the AND/OR search algorithms since

893

MARINESCU, LEE, DECHTER, & IHLER

the exact computation of summation subproblem imposes significant overheads to AND/OR search
algorithms. The third metric visualizes the fraction of problem instances solved optimally given the
total time and memory resources, and the last metric complements the third metric by comparing
the average CPU time spent on finding an optimal solution from the common subset of benchmark
domains that are solved by all AND/OR search based algorithms.

4.6.2 THE CPU TIME FOR FINDING THE OPTIMAL SOLUTION

Figure 2 shows the CPU time in seconds for finding the optimal solution on selected problem
instances from the grid, pedigree and promedas domains, respectively. In each plot, we show only
the algorithms that were able to prove optimality within the 2-hour time limit. Clearly, we see that
the AND/OR search algorithms dominate all the OR search algorithms. The curves of AOBB, AOBF,
BRAOBB, and RBFAOO lie below the curves of PARK, YUAN, BBBTd, BBBTi, and OBB at all
i-bounds on all 6 instances. Note, the absence of a curve means that the algorithm could not terminate
within the 2-hour time limit.

• PARK/YUAN failed to find an optimal solution for all problem instances except the easy
pedigree1 instance due to high unconstrained induced widths. The unconstrained induced
width wu of each problem instance is wu = 29 for grid 75-21-5, wu = 17 for pedigree1,
and wu = 27 for or_chain_4fg, respectively. Therefore, PARK/YUAN couldn’t generate
the unconstrained join-tree based heuristic for the grid 75-21-5 and or_chain_4fg instances
because of the memory limit.

• BBBTd/BBBTi solved additional instances compared to PARK/YUAN, e.g., the easy or_chain_4fg
was solved in 216 seconds and in 142 seconds by BBBTd and BBBTi, respectively. This is due
to the use of the MCTE(i) heuristic that partitions the unconstrained join-tree with the i-bound.

• AOBB, AOBF, BRAOBB, and RBFAOO found an optimal solution in about 10 seconds with
i-bound 16 or higher on these problem instances. Furthermore, on the hard or_chain_4fg
instance, BBBTd and BBBTi found the optimal solution in 2863 seconds and 6832 seconds,
respectively, while AOBB, AOBF, BRAOBB, and RBFAOO only spent 626 seconds, 293
seconds, 744 seconds, and 117 seconds, respectively, at the same i-bound 18.

• RBFAOO found an optimal solution on the easy grid 75-21-5, the hard grid 75-21-5, the hard
pedigree1, and the hard or_chain_4fg instances with the smallest reported i-bounds (from 10
to 14) when other AND/OR search algorithms failed to find an optimal solution due to the
time or memory limit.

We can see that algorithms AOBB and BRAOBB consistently dominate the OBB counterpart on
all instances and at all reported i-bounds. Since OBB and AOBB are based on the same algorithm
with the only difference being in how the search space is generated, we can conclude that the
performance gain of AOBB and BRAOBB compared to OBB can be attributed to the compactness of
AND/OR search space. When we compare OBB with other OR search algorithms we can see that
OBB is the fastest OR search algorithm for finding an optimal solution. For example, OBB finds the
optimal solution faster than BBBTd/BBBTi at the i-bound 18 or higher on the easy or_chain_4fg and
hard or_chain_4fg instances. Furthermore, OBB is the only OR search algorithm that terminated
within the 2 hour time limit on the easy grid 75-21-5 and the hard pedigree1 instances. Since OR
search algorithms are only distinguished by the heuristic functions, we can also conclude that for

894

AND/OR SEARCH FOR MARGINAL MAP

(a) grid
instance algorithm i = 10 i = 12 i = 16 i = 18

(n, f , k, wc, wu) time nodes time nodes time nodes time nodes
grid easy PARK 167 1458
75-16-5 I0 YUAN 29 17119
(256, 256, 2, 22, 21) BBBTd oot 302716 659 54520 42 17491 50 19584

BBBTi oot 176156 2345 70590 85 30898 39 31424
OBB 1401 100538171 3 215404 0.48 7779 0.49 1733

AOBB 65 1919431 0.52 22334 0.41 3253 0.43 646
BRAOBB 7 566677 0.59 27771 0.35 2832 0.44 758

AOBF 7 212165 0.38 10687 0.27 2672 0.28 583
RBFAOO 1 290917 0.22 22279 0.16 2042 0.26 693

grid hard PARK 1415 5810
75-16-5 I1 YUAN 508 483065
(256, 256, 2, 82, 21) BBBTd oot 360097 oot 40291 4546 2389 2114 1607

BBBTi oot 1009103 oot 115935 6288 3139 oot 3220
OBB oot 220938105 oot 243066878 oot 319929239 85 4351922

AOBB oot 398833504 632 37708909 5 340611 3 224719
BRAOBB 6964 380238949 324 18873588 5 350248 3 227999

AOBF 728 15144899 721 13471576 10 249319 7 196812
RBFAOO 7161 553985425 309 29811222 7 784408 2 229745

(b) pedigree
instance algorithm i = 10 i = 12 i = 16 i = 18

(n, f , k, wc, wu) time nodes time nodes time nodes time nodes
pedigree easy PARK oom oom
pedigree33 I0 YUAN oom oom
(798, 798, 4, 28, 24) BBBTd oot 208815 oot 145663 oot 52744 oot 43948

BBBTi oot 246582 oot 209620 oot 120843 oot 50220
OBB oot 72686306 3584 31265034 726 5896706 745 527116

AOBB 20 877731 7 328531 4 107914 5 25357
BRAOBB 33 1498544 11 532770 5 157469 7 38222

AOBF 14 473329 7 212385 3 63495 4 17158
RBFAOO 10 1082112 4 450426 2 107853 4 29505

pedigree hard PARK oom oom
pedigree 33 I3 YUAN oom oom
(798, 798, 4, 90, 24) BBBTd oot 129028 oot 50439 oot 9883 oot 7514

BBBTi oot 17291423 oot 11827308 oot 2208894 oot 15783
OBB oot 90882192 oot 88027605 oot 92162950 oot 108961101

AOBB oot 371082807 oot 398810432 3064 194413004 334 20981934
BRAOBB oot 252364162 oot 274187876 oot 274849031 700 32731707

AOBF oom 17448194 oom 16341293 oom 15891613 oom 11957878
RBFAOO oot 653477484 3751 333264049 880 86995051 55 6515774

(c) promedas
instance algorithm i = 10 i = 12 i = 16 i = 18

(n, f , k, wc, wu) time nodes time nodes time nodes time nodes
promedas easy PARK oom oom
or chain8 fg I0 YUAN oom oom
(1044, 1055, 2, 63, 56) BBBTd oot 123551 oot 28609 3191 17816 oot 13992

BBBTi oot 1202749 oot 85250 oot 25481 oot 13975
OBB oot 45854883 oot 44042781 oot 24204379 oot 21909874

AOBB oot 430376779 oot 359556370 oot 391666636 1583 108529398
BRAOBB oot 359396003 oot 312111365 5288 272736813 758 57647876

AOBF oom 16843900 oom 17038664 oom 17191924 510 15923902
RBFAOO 6425 555895245 1268 126337093 682 78371234 152 21786146

promedas hard PARK oom oom
or chain4 fg I4 YUAN oom oom
(691, 701, 2, 100, 27) BBBTd 3496 4178 607 2650 261 3009 591 2031

BBBTi 4319 31507 4798 12221 2463 3699 1545 3295
OBB oot 54940954 oot 60336495 oot 80233378 oot 84429447

AOBB oot 388478093 oot 403472921 497 30889027 55 4205131
BRAOBB 3320 199196858 2127 147963142 154 12173651 33 2754174

AOBF 630 17599487 550 17612588 100 3276123 44 1505211
RBFAOO 215 29608915 326 44855073 26 4260266 9 1443645

Table 4: CPU time in seconds and number of nodes expanded for solving selected problem instances.
Time limit 2 hours, memory limit 24GB. ’oot’ and ’oom’ stand for out-of-time and out-of-
memory, respectively. 895

MARINESCU, LEE, DECHTER, & IHLER

10 12 14 16 18 20

ibound

10−1

100

101

102

103

104

105

lo
g

(C
P

U
tim

e)
se

c

Easy Grid 75-21-5 (N=441, F=441, K=2, S=3, Wc=30)

aobf
rbfaoo

aobb braobb obb

10 12 14 16 18 20

ibound

10−1

100

101

102

103

104

105

lo
g

(C
P

U
tim

e)
se

c

Hard Grid 50-20-5 (N=400, F=400, K=2, S=3, Wc=67)

aobf rbfaoo aobb braobb

10 12 14 16 18 20

ibound

10−1

100

101

102

103

104

105

lo
g

(C
P

U
tim

e)
se

c

Easy Pedigree1 (N=334, F=334, K=4, S=5, Wc=17)

aobf
rbfaoo
aobb

braobb
obb

park
yuan

bbbtd
bbbti

10 12 14 16 18 20

ibound

10−1

100

101

102

103

104

105

lo
g

(C
P

U
tim

e)
se

c

Hard Pedigree1 (N=334, F=334, K=4, S=5, Wc=56)

aobf
rbfaoo

aobb braobb obb

10 12 14 16 18 20

ibound

10−1

100

101

102

103

104

105

lo
g

(C
P

U
tim

e)
se

c

Easy Or Chain 4fg (N=691, F=701, K=2, S=3, Wc=28)

aobf
rbfaoo

aobb
braobb

obb
bbbtd

bbbti

10 12 14 16 18 20

ibound

10−1

100

101

102

103

104

105

lo
g

(C
P

U
tim

e)
se

c

Hard Or Chain 4fg (N=691, F=701, K=2, S=3, Wc=100)

aobf
rbfaoo

aobb
braobb

obb
bbbtd

bbbti

Figure 2: The CPU time in seconds from 6 problem instances. The horizontal axis is the i-bound
of WMB-MM(i) heuristic for AND/OR search algorithms and MCTE(i) heuristic for OR
search algorithms. The vertical axis is the CPU time in log scale. The missing data points
indicate a search algorithm failed to find the optimal solution in time limit of 2 hours.
PARK/YUAN are shown only in the easy pedigree1 instance since both failed to find
the optimal solution for all other instances in the time limit, and BBBTi/BBBTd are also
shown in the easy pedigree1 instance and promedas instances.

the same i-bound value the WMB-MM(i) heuristic is tighter than the MCTE(i) heuristic used by
BBBTd/BBBTi.

896

AND/OR SEARCH FOR MARGINAL MAP

When comparing the AND/OR search algorithms, we can conclude that the best-first search
algorithms perform better than the depth-first search ones on all problem instances and at all i-bounds
according to the current metric. Specifically, RBFAOO the variant that operates within limited
memory, emerges as the best performing exact AND/OR search algorithm. Table 4 reports additional
results on individual problem instances from the 3 benchmark domains. The results display similar
patterns as before, namely the AND/OR search algorithms dominate the OR search algorithms.

4.6.3 THE NUMBER OF CONDITIONAL LIKELIHOOD EVALUATIONS

Figure 3 shows the number of conditional likelihood evaluations by the AND/OR search algorithms
from 6 problem instances at varying i-bounds. Note that we only show the number of conditional
likelihood evaluations when a search algorithm found the optimal solution. Thus, the missing data
points in the plot indicates a search algorithm couldn’t find the optimal solution within the 2-hour
time limit. For example:

• On the easy grid 75-21-5 instance with i-bound 18, AOBF, RBFAOO, AOBB and BRAOBB
evaluated 282, 173, 3106, and 1924 summation subproblems, respectively. The trend is similar
on the hard grid 75-21-5 instance as well.

• On the hard grid 50-20-5 instance with i-bound 18, AOBF, RBFAOO, AOBB and BRAOBB
evaluated 226474, 55355, 481760, and 572050 summation subproblems.

• On the hard pedigree 9 instance with i-bond 18, AOBF, RBFAOO, AOBB and BRAOBB
evaluated 2985, 4838, 6410, and 21632 summation subproblems.

We can see that AOBF and RBFAOO consistently evaluate a smaller number of summation
problems than AOBB and BRAOBB. It is important to note that RBFAOO has a much smaller
computational overhead compared with AOBF which often translates into a much higher node
expansion rate per second than that of AOBF. This means that RBFAOO is able to reach the most
promising region of the search space (containing the optimal solution) quicker than AOBF which
explains the reduced number of conditional likelihood evaluations of RBFAOO. We discuss next the
two major sources of AOBF’s significant additional overhead. First, when expanding the current
node n, AOBF may need to update the node values of all n’s ancestors all the way up to the root,
whereas RBFAOO may only update the q-value of n’s parent. Second, AOBF needs to maintain in
memory the entire explicated search graph and this may be difficult especially when the memory
used approaches the 24GB limit. In contrast, RBFAOO conducts the search in a depth-first like
manner and uses only 4GB of RAM for its cache table. We also observe that higher i-bounds lead
to fewer summation evaluations for all search algorithms because of improved heuristics and more
effective pruning.

4.6.4 THE NUMBER OF INSTANCES THAT RETURNED AN OPTIMAL SOLUTION

Figure 4 provides aggregated results showing the number of instances on which the algorithms
returned an optimal solution for all 3 problem domains combining easy and hard problem instances.
We observe that the AND/OR search algorithms solved a larger number of instances than the OR
search algorithms on all domains. Moreover, the best-first AND/OR search algorithms, AOBF
and RBFAOO, solved more instances than the depth-first AND/OR search algorithms, AOBB and
BRAOBB, respectively.

897

MARINESCU, LEE, DECHTER, & IHLER

10 12 14 16 18 20

ibound

100

101

102

103

104

105

106

107

108

109

lo
g

(s
um

m
at

io
n

ev
al

ua
tio

ns
)

Easy Grid 75-21-5 (N=441, F=441, K=2, S=3, Wc=30)

aobf
rbfaoo

aobb
braobb

10 12 14 16 18 20

ibound

100

101

102

103

104

105

106

107

108

lo
g

(s
um

m
at

io
n

ev
al

ua
tio

ns
)

Hard Grid 50-20-5 (N=400, F=400, K=2, S=3, Wc=67)

aobf
rbfaoo

aobb
braobb

10 12 14 16 18 20

ibound

100

101

102

103

104

105

106

107

lo
g

(s
um

m
at

io
n

ev
al

ua
tio

ns
)

Easy Pedigree9 (N=1118, F=1118, K=7, S=4, Wc=26)

aobf
rbfaoo

aobb
braobb

10 12 14 16 18 20

ibound

100

101

102

103

104

105

106

107

108

109

lo
g

(s
um

m
at

io
n

ev
al

ua
tio

ns
)

Hard Pedigree1 (N=334, F=334, K=4, S=5, Wc=56)

aobf
rbfaoo

aobb
braobb

10 12 14 16 18 20

ibound

100

101

102

103

104

105

106

lo
g

(s
um

m
at

io
n

ev
al

ua
tio

ns
)

Easy Or Chain 4fg (N=691, F=701, K=2, S=3, Wc=28)

aobf
rbfaoo

aobb
braobb

10 12 14 16 18 20

ibound

100

101

102

103

104

105

106

107

lo
g

(s
um

m
at

io
n

ev
al

ua
tio

ns
)

Hard Or Chain 4fg (N=691, F=701, K=2, S=3, Wc=100)

aobf
rbfaoo

aobb
braobb

Figure 3: The number of conditional likelihood evaluations of AND/OR search algorithms from
6 problem instances. The horizontal axis is the i-bound of WMB-MM(i) heuristic for
AND/OR search algorithms and MCTE(i) heuristic for OR search algorithms. The vertical
axis is the number of summation problems solved until finding the optimal solution within
2 hour time limit.

• On the grid domain with i-bound 20, AOBF, RBFAOO, AOBB, BRAOBB, OBB, BBBTd,
and BBBTi solved 76%, 79%, 73%, 76%, 55%, 28%, and 23% of the problem instances,
respectively.

898

AND/OR SEARCH FOR MARGINAL MAP

10 12 14 16 18 20
i-bound

20

40

60

80

100
Pe

rc
en

to
fI

ns
ta

nc
es

(%
)

Grid (Total 75 Instances)

aobf
obb

rbfaoo
bbbtd

aobb
bbbti

braobb

10 12 14 16 18 20
i-bound

20

40

60

80

100

Pe
rc

en
to

fI
ns

ta
nc

es
(%

)

Pedigree (Total 50 Instances)

aobf
obb

rbfaoo
bbbtd

aobb
bbbti

braobb

10 12 14 16 18 20
i-bound

20

40

60

80

100

Pe
rc

en
to

fI
ns

ta
nc

es
(%

)

Promedas (Total 40 Instances)

aobf
obb

rbfaoo
bbbtd

aobb
bbbti

braobb

Figure 4: The number of instances returned with the optimal solution from 3 problem domains. Easy
and hard problem instances are combined into a single group. The horizontal axis is the
i-bound of WMB-MM(i) heuristic function and the vertical axis is the normalized count
on the instances returned with the optimal solution in 2 hour time limit. AND/OR search
algorithms solved more instances than OR search algorithms, and RBFAOO solved the
largest number of instances at all domains over all i-bounds.

• On pedigrees with i-bound 20, AOBF, RBFAOO, AOBB, BRAOBB, OBB, BBBTd, and
BBBTi solved 32%, 50%, 36%, 42%, 18%, 4%, and 2% following the similar trend as in the
grid domain.

• On promedas with i-bound 20, AOBF, RBFAOO, AOBB, BRAOBB, OBB, BBBTd, and
BBBTi solved 52%, 55%, 53%, 53%, 47%, 50%, and 40%, showing that RBFAOO still
performs the best but the difference between AND/OR search algorithms and OR search
algorithms are less significant than on the other two domains.

Clearly, RBFAOO is the best performing algorithm on all domains and at all reported i-bounds.
Comparing AOBF and AOBB, both algorithms solved a similar number of instances in the 2-hour
time limit and the 24 GB memory limit, while BRAOBB solved slightly fewer instances than AOBB
because of the computational overhead associated with rotating over the independent subproblems in
the AND/OR search space. BBBTd and BBBTi solved the smallest number of problem instances
across all domains and both failed to solve even a single instance from the hard pedigree

899

MARINESCU, LEE, DECHTER, & IHLER

10 12 14 16 18 20

i-bound

100

101

102

103

lo
g

(m
ed

ia
n

C
P

U
tim

e
se

c)

Grid (average CPU time)

aobf
rbfaoo

aobb braobb obb

10 12 14 16 18 20

i-bound

100

101

102

103

lo
g

(m
ed

ia
n

C
P

U
tim

e
se

c)

Pedigree (average CPU time)

aobf
rbfaoo

aobb braobb obb

10 12 14 16 18 20

i-bound

100

101

102

103

lo
g

(m
ed

ia
n

C
P

U
tim

e
se

c)

Promedas (average CPU time)

aobf
rbfaoo

aobb braobb obb

Figure 5: The average CPU time for finding the optimal solutions in a benchmark. The horizontal
axis is the i-bound of WMB-MM(i) heuristic function and the vertical axis is the average
CPU time for finding the optimal solution in log scale. The average time was computed
from the common problem instances that are solved by all four algorithms in two hours.
The best-first search spent less time than depth-first search. RBFAOO is the fastest
algorithm across all problem domains and i-bounds.

instances. The performance of OBB lies between AND/OR search algorithms and the other OR
search algorithms guided by unconstrained join-tree based heuristics, thus demonstrating on one
hand the effectiveness of the WMB-MM(i) heuristics compared to the MCTE(i) with unconstrained
order, and the compactness of the AND/OR search space versus the OR search space on the other
hand.

4.6.5 THE AVERAGE CPU TIME

Since the previous metric only considers the number of solvable instances (thus providing the
provable optimal solution), we report in Figure 5 the average CPU time in seconds for finding the
optimal solution, for problem instances solved by all four AND/OR search algorithms to avoid bias:
40 grid instances, 9 pedigree instances, and 19 promedas instances were solved optimally by all four
algorithms with i-bound 20.

900

AND/OR SEARCH FOR MARGINAL MAP

• On the grid domain with i-bound 20, the average CPU times of AOBF, RBFAOO, AOBB,
BRAOBB, and OBB search algorithms are 5.61 seconds, 3.18 seconds, 6.18 seconds, 6.07
seconds, and 296.11 seconds, respectively. RBFAOO and AOBF solved problem instances
faster than BRAOBB and AOBB, and OBB spent significantly longer time compared to the
AND/OR search algorithms.

• On pedigrees with i-bound 20, the average CPU times of AOBF, RBFAOO, AOBB,
BRAOBB, and OBB search algorithms are 26.13 seconds, 9.87 seconds, 15.09 seconds, 15.26
seconds, and 192.05 seconds, respectively. We see again a similar trend as before.

• On promedas with i-bound 20, the average CPU times of AOBF, RBFAOO, AOBB,
BRAOBB, and OBB search algorithms are 6.36 seconds, 2.49 seconds, 8.30 seconds, 7.63
seconds, and 287.27 seconds, respectively.

In summary, for exact algorithms, we conclude that RBFAOO is overall the best exact search
algorithm. We also see that AOBF can solve problem instances faster than AOBB and BRAOBB at
higher i-bounds, while AOBB and BRAOBB are competitive with AOBF at smaller i-bounds.

5. Anytime Search Algorithms for Marginal MAP

In the previous section we introduced the main exact search schemes traversing the AND/OR space
for marginal MAP. These schemes have obvious shortcomings. Best-first search provides a solution
only at termination. Depth-first search is more flexible with anytime capabilities and seems more
tuned with our goal of yielding anytime performance as well as bounds that can be tightened with
time. In this section we show how we can move towards both these goals by building upon the
complementary properties of best-first and depth-first search. We first explore the potential of the
well-known principle of weighted search that converts best-first search algorithms into anytime search
schemes (Section 5.1). This scheme was previously explored for pure MAP (Flerova et al., 2017),
and we will show in the sequel how it can be extended to marginal MAP. Subsequently, (Section
5.2), we will present an alternative anytime approach that combines the best-first and depth-first
principles into hybrid search schemes. Both methods provide anytime confidence intervals in the
form of improving upper and lower bounds on the optimum.

5.1 Weighted Best-First AND/OR Search

Weighted best-first AND/OR search was introduced recently as an effective alternative to anytime
depth-first search schemes for pure MAP tasks (Flerova et al., 2017). These algorithms were evaluated
on a wide range of benchmark problems and were shown to be highly competitive with Breadth
Rotating AOBB search (Otten & Dechter, 2011), one of the best performing anytime MAP solvers.

We first note that in this section (and only in this one) we will convert the marginal MAP task into
a minimization task, because weighted heuristic schemes are normally, and more naturally described
in the context of min-sum tasks. We show next how to transform Equation 1 into a minimization
problem. Let FM be the subset of functions whose scopes are subsumed by MAP variables only, i.e.,
FM = {α : Xα ⊆ XM}. Then, we have that:

901

MARINESCU, LEE, DECHTER, & IHLER

x∗ = argmin
xM

− log

(∑
Xs

∏
α∈F

ψα(xα|xM)

)

= argmin
xM

− log

∑
Xs

∏
α∈FM

ψα(xα|xM) ·
∏

α∈F\FM
ψα(xα|xM)


= argmin

xM

− log

 ∏
α∈FM

ψα(xα|xM) ·
∑
Xs

∏
α∈F\FM

ψα(xα|xM)


= argmin

xM

− log

 ∏
α∈FM

ψα(xα|xM)

− log

∑
Xs

∏
α∈F\FM

ψα(xα|xM)


= argmin

xM

∑
α∈FM

− logψα(xα|xM)− log

∑
Xs

∏
α∈F\FM

ψα(xα|xM)


= argmin

xM

∑
α∈FM

θα(xα|xM) + φ(xM)

(2)

It is easy to see that φ(xM) corresponds to the summation subproblem conditioned on the assign-
ment xM to the MAP variables XM . Therefore, algorithms AOBF and RBFAOO can be modified
in a straightforward manner to solve Equation 2 by replacing maximization with minimization at
the OR nodes labeled by MAP variables, and multiplication with summation at their AND children,
respectively. We also note that for each of the conditioned summation subproblems the algorithms
consider the negative log of the respective value.

Yet, note that when the arc-costs are larger than 1, the negative log-transformation yields negative
numbers (e.g. Markov networks), which are not suitable for the min-sum formulation. It may be
possible to handle this by normalizing by a large constant. Since our benchmarks are all based on
Bayesian networks we did not encounter this problem and did not explore nor experimented with this
issue and we leave this for future work.

5.1.1 WEIGHTED AOBF AND RBFAOO

The fixed-weighted version of the AOBF and RBFAOO algorithms can be obtained by multiplying the
heuristic function h(n) of a node n in the AND/OR search graph by a weight α > 1 (i.e., substituting
h(n) by α · h(n)). This would involve only the portion of the search space that corresponds to the
MAP variables. If h(n) is admissible, which is the case for mini-bucket heuristics, then the cost of the
solution obtained by weighted AOBF (or weighted RBFAOO) is α-optimal, namely it is guaranteed
to be within a factor α from the optimal one. These schemes extend well known approaches such as
WA* (Pohl, 1970) and WAO* (Chakrabarti, Ghose, & Sarkar, 1987) to the marginal MAP query.

5.1.2 ITERATIVE WEIGHTED AOBF WITH REPAIRS

Since weighted AOBF yields α-optimal solutions, it can then be extended into an iterative anytime
scheme that we call WAOBF (Algorithm 6), by decreasing the weight from one iteration to the next
(until it becomes 1). Specifically, WAOBF starts by running weighted AOBF with an initial weight

902

AND/OR SEARCH FOR MARGINAL MAP

Algorithm 6: WAOBF for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, pseudo-tree T , XM = X \XS , heuristic h(·), initial weight α0

Output: α-optimal marginal MAP value V(x̄), and assignment x̄
1 Initialize α = α0, V(x̄) = −∞, x̄ = ∅
2 while α >= 1 do
3 (V(x̄′), x̄′)← AOBF(M, α · h)
4 Maintain and report current best solution as (V(x̄), x̄)
5 Decrease weight α according to schedule policy

6 return (V(x̄), x̄)

Algorithm 7: WAOBF-REP for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, pseudo-tree T , XM = X \XS , heuristic h(·), initial weight α0

Output: α-optimal marginal MAP value V(x̄), and assignment x̄
1 Create root OR node s labeled by root of T
2 Initialize α = α0, C′T = {s}, V(x̄) = −∞, x̄ = ∅, T = ∅
3 while α >= 1 do
4 (V(x̄′), x̄′, C′T)← AOBF(M, α · h,C′T , T)
5 Maintain and report current best solution as (V(x̄), x̄)
6 Decrease weight α according to schedule policy
7 Revise C′T according to α · h from leaves to the root
8 Update the best partial solution tree T from revised C′T
9 return (V(x̄), x̄)

α0 until it finds a suboptimal solution. It then restarts the search with a decreased weight using
a weight update schedule policy such as αi+1 =

√
αi. Clearly, different schedules can be used,

however, the latter proved quite effective in practice when solving a MAP query (Flerova et al., 2017).
Notice that the algorithm also outputs a α-optimality guarantee for the smallest α it reached.

Running WAOBF afresh at each iteration seems redundant however. Therefore, we introduce
another anytime scheme, called WAOBF-REP, that is based on the anytime repairing AOBF approach
for pure MAP (Flerova et al., 2017). The algorithm is capable of reusing information from previous
iterations. WAOBF-REP is described in Algorithm 7. As noted, it does not discard the explicated
AND/OR search graph C ′T after finishing the i-th iteration but rather revises the node values in C ′T
from leaves to the root node according to the newly inflated heuristic αi+1 · h(n). Then, search
restarts with the revised best partial solution tree.

5.1.3 ITERATIVE WEIGHTED RBFAOO

Finally, an anytime weighted RBFAOO, called WRBFAOO, is obtained by replacing the call to
AOBF in line 3 of Algorithm 6 with a call to RBFAOO, respectively.

5.2 Hybrid Best+Depth-First AND/OR Search

While weighted best-first search schemes turned out to be favorable for marginal MAP compared
with depth-first search, as we will show in our experiments (see also Lee et al. (2016)), their anytime
performance seems quite sensitive to the initial weight and to the weight update schedule. In
particular: (i) the algorithms sometimes spend significant computational resources (time, memory)
struggling to find even the first suboptimal solution; (ii) depending on the weight update schedule,

903

MARINESCU, LEE, DECHTER, & IHLER

either very few solutions are generated or there is no improvement in the solution quality; (iii) most
critically, the sub-optimality bound produced by the weight is often very loose.

We now explore schemes that combine best-first and depth-first search into best+depth hybrid
anytime search algorithms. These algorithms provide anytime upper and lower bounds on the optimal
marginal MAP value that can be used to better gauge the solution quality during search, and these
bounds tighten with time.

5.2.1 NOTATIONS

Let C ′T denote the explicated context-minimal AND/OR search graph relative to pseudo-tree T .
Note that in this case C ′T is defined over the MAP variables only. Each node n ∈ C ′T maintains
two values q(n) and l(n), respectively. The quantity q(n) represents an upper bound provided by
the heuristic evaluation function at the node n (i.e., the weighted mini-bucket value), while l(n) is
the cost of the current best solution found below node n, and is therefore a lower bound on the best
solution in the search space below n. We use U and L to denote the current best global upper and
lower bounds on the optimal MMAP of the root node. For node n ∈ C ′T , ch(n) denote its children
in C ′T , while w(n,m) is the weight labeling the arc n→ m in C ′T . Algorithm 8 describes the node
expansion (EXPAND(n)) and node values update (UPDATE(n)) procedures during search. Clearly,
the q- and l-values are updated bottom-up based on the corresponding values of their children in
the search graph. Note that during the update of q-values, we also mark with a ? symbol the arc
corresponding to the best child m′ of an OR node n.

5.2.2 LAOBF: BEST-FIRST AND/OR SEARCH WITH DEPTH-FIRST LOOKAHEADS

As noted before, the rationale behind best+depth based search is to alternate in some manner between
the two styles of search space exploration, where the best-first component progresses towards
improved upper bounds and depth-first progresses towards improved potential solutions and their
accompanying lower bounds.

A simple way to augment best-first search with a mechanism that generates solutions is to do
explicit depth-first lookahead dives under some nodes in the best-first search frontier (Stern, Kulberis,
Felner, & Holte, 2010). Our first best+depth hybrid, Best-First AND/OR Search with Depth-First
Lookaheads (LAOBF), is described in Algorithm 9. We elaborate on these dives next.

DFS and BFS Iterations Let Tb be the current best partial solution tree of the best-first search
scheme, tips(Tb) be the set of tip nodes of Tb, and m be one of these tips. The algorithm performs
a depth-first dive at the subtree rooted at m, recording the conditioned lower bound found as l(m).
This is accomplished by the dfs-lookahead(m) function in line 8. Once all the tips of Tb are
explored in such a depth-first manner, a global lower bound L of Tb can be obtained by multiplying
the generated lower bounds l(m) by their corresponding arc costs in Tb (line 10). Once such a full
dive is accomplished, best-first search takes over as usual, expanding a tip node n from the current
Tb, updating the q-values of n’s ancestors, and selecting the next best partial solution tree. Then, a
new depth-first dive can be performed from all tip nodes, and so on. The updated q-value of the root
node provides an anytime (and often improved) upper bound U on the optimal MMAP value.

Performing the depth-first lookaheads at every single iteration can often incur significant overhead.
To bound this overhead, we use a cutoff parameter θ to trigger the depth-first lookaheads every θ
best-first iterations (see line 6). It is also important to note that the cache information is shared

904

AND/OR SEARCH FOR MARGINAL MAP

Algorithm 8: Expanding a node and updating the node q- and l-values (LAOBF and AAOBF)
Input: node n, pseudo-tree T , search graph C′T , heuristic h(·)

1 Function EXPAND(n):
2 if n is OR node labeled by 〈Xi〉 and Xi ∈ XM then
3 foreach values xi ∈ Di do
4 Create AND child c labeled by 〈Xi, xi〉 and add c to C′T if not already there
5 if c is terminal then
6 q(c)← 1 and l(c)← 1

7 else
8 q(c)← h(c) and l(c)← −∞

9 else if n is AND labeled by 〈Xi, xi〉 and Xi ∈ XM then
10 foreach successors Xj of Xi in T do
11 Create OR child c labeled by 〈Xj〉 and add c to C′T if not already there
12 if Xj ∈ XM then
13 q(c)← h(c) and l(c)← −∞
14 else if Xj ∈ XS then
15 q(c) = l(c)← eval(M|x̄)

16 Function UPDATE(n):
17 forall ancestor p of n in C′T , including n do
18 if p is OR node then
19 l(p)← maxm∈ch(p)(w(p,m) · l(m))
20 q(p)← maxm∈ch(p)(w(p,m) · q(m))
21 m′ ← argmaxm∈ch(p)(w(p,m) · q(p))
22 Mark with symbol ? the arc p→ m′

23 else if p is AND node then
24 l(p)←

∏
m∈ch(p) l(m)

25 q(p)←
∏
m∈ch(p) q(m)

between the depth-first and best-first iterations, so that the solutions to the summation subproblems
can be reused.

5.2.3 AAOBF: ALTERNATING BEST-FIRST WITH DEPTH-FIRST AND/OR SEARCH

LAOBF described above restricts the depth-first exploration to the subspaces below the tip nodes of
the current best partial solution tree Tb, and, as we will show in the experimental section, this may
not always lead to improved lower bounds. Moreover, we find that LAOBF requires carefully tuning
the cutoff parameter, which may be challenging. Therefore, our second approach called Alternating
Depth-First and Best-First AND/OR Search (AAOBF) is a parameter-free best+depth hybrid that
aims to diversify the depth-first exploration (thus allowing it to explore feasible solutions in a greedier
manner, rather than restricting it to specific regions dictated by the best-first search process).

Specifically, AAOBF (Algorithm 10) alternates between a depth-first and a best-first stage and
maintains two independent partial solution trees for each. In its depth-first stage it expands, depth-
first, a current feasible partial solution tree Tl (lines 4–12), where Tl is a partial assignment that
can be extended to a feasible (often suboptimal) solution, to improve the global lower bound. In its
best-first stage it expands, best-first, a current best partial solution tree Tb (lines 13–30) to improve

905

MARINESCU, LEE, DECHTER, & IHLER

Algorithm 9: LAOBF for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, pseudo-tree T , heuristic function h(·), XM = X \XS , cutoff θ
Output: Anytime upper and lower bounds on optimal marginal MAP value

1 Create an OR node s labeled by the root of T
2 Initialize U = q(s) = h(s), L = l(s) = −∞, C′T = {s}, Tb = {s}
3 counter ← 0
4 while U 6= L do
5 Let cost(Tb) =

∏
(n,m)∈arcs(Tb) w(n,m) i.e., the product of arc costs in Tb

6 if counter mod θ = 0 then
7 forall node m in tips(Tb) do
8 l(m)← dfs-lookahead(m)

9 if cost(Tb) ·
∏
m∈tips(Tb) l(m)) > L then

10 L ← cost(Tb) ·
∏
m∈tips(Tb) l(m))

11 U ← q(s)
12 print〈U ,L〉
13 Select non-terminal tip node n in Tb
14 EXPAND(n)
15 UPDATE(n)
16 Select new Tb by tracing down ?-marked arcs from root s
17 counter ← counter + 1

18 return U

the global solution and an associated upper bound and guide the exploration closer to the region
containing the optimal solution. At any stage during search, the partial solution trees Tl and Tb can
be identified by tracing down �- and ?-marked arcs (respectively) from the root s of G′T .

The algorithm begins by expanding non-terminal tip nodes from the current Tl. Each node
expansion is followed by a bottom-up revision of the q- and l-values (lines 6–7). An OR node which
was just expanded also marks with a � symbol the arc to its best AND child (lines 8–10). Notice that
the �-markings do not change during this stage, and therefore Tl is extended depth-first to a solution
tree.

When a solution is found (i.e., Tl has no tips), AAOBF attempts to give control to best-first
search. Before turning to best-first search, it revises the �-markings along the arcs in G′T so that
a new feasible partial solution tree could be selected later. Specifically, if there is a lower bound
l(n) at node n (i.e., l(n) 6= −∞) then AAOBF marks with a � symbol the arc to the AND child that
minimizes the ratio between the current l(n) and the successor’s updated q-value, and therefore is
the most likely to increase l(n) (line 19). Otherwise, it selects the best AND child having the largest
heuristic (upper bounding) value (line 21).

AAOBF continues by expanding nodes from Tb in the usual best-first manner. However, if
during this stage a new feasible partial solution tree Tl is identified (line 29), the algorithm switches
immediately to the depth-first expansion of the new Tl. Search terminates with the optimal marginal
MAP value when the global lower and upper bounds are equal.

Since the proposed best+depth-first search algorithms for marginal MAP traverse the context-
minimal AND/OR search graph, we have that:

THEOREM 2 (complexity). Algorithms LAOBF and AAOBF are sound and complete (namely, they
will find an optimal solution if given enough time and space). Their complexity is time O(n ·m · kw∗c

906

AND/OR SEARCH FOR MARGINAL MAP

Algorithm 10: AAOBF for marginal MAP
Input: Graphical modelM = 〈X,D,F〉, pseudo-tree T , heuristic function h(·), XM = X \XS

Output: Anytime upper and lower bounds on optimal marginal MAP value
1 Create an OR node s labeled by the root of T
2 Initialize U = q(s) = h(s), L = l(s) = −∞, C′T = {s}, Tl = {s}, Tb = {s}, flag = false
3 while U 6= L do
4 if tips(Tl) 6= ∅ then
5 Select non-terminal tip node n in Tl
6 EXPAND(n)
7 UPDATE(n)
8 if n is OR node then
9 m′ ← argmaxm∈ch(n)(w(n,m) · q(m))

10 Mark with symbol � the arc n→ m′

11 Select new Tl using �-marked arcs from s
12 flag ← true

13 else
14 if l(s) > L then
15 U ← q(s), L ← f(s) and print〈U ,L〉
16 if flag = true then
17 forall OR nodes n in C′T do
18 if l(n) 6= −∞ then
19 m′ ← argminm∈ch(n)

l(n)
w(n,m)·q(m)

20 else
21 m′ ← argmaxm∈ch(n)(w(n,m) · q(m))

22 Mark with symbol � the arc n→ m′

23 Select new Tb using ?-marked arcs from s
24 flag ← false

25 Select non-terminal tip node n in Tb
26 EXPAND(n)
27 UPDATE(n)
28 Select new Tb using ?-marked arcs from s
29 Select new Tl using �-marked arcs from s

30 return U

and space O(n · kw∗c), where n is the total number of variables, m is the number of MAP variables
k bounds the domain size, and w∗c it the induced width of the valid pseudo-tree (i.e., constrained
induced width).

Proof. Clearly, the size of the search space explored, and therefore the space complexity of both
LAOBF and AAOBF, is bounded by O(n · kw∗c). For both LAOBF and AAOBF, each node expanded
during the best-first search stage can be followed in the worst case by a greedy depth-first dive to
compute a complete (but not optimal) MAP assignment. Since the depth-first dive takes O(m) time,
we have that the time complexity of algorithms LAOBF and AAOBF is O(n ·m · kw∗c).

Finally, we note that both LAOBF and AAOBF can switch to using only depth-first tree search as
soon as memory fills up, thus continuing to improve the lower bound.

907

MARINESCU, LEE, DECHTER, & IHLER

5.3 Experimental Results

In this section, we report results obtained with the anytime search algorithms on the same benchmark
domains and using the same evaluation environment as in Section 4.6.

5.3.1 OVERVIEW AND METHODOLOGY

We evaluate algorithms WAOBF, WAOBF-REP, WRBFAOO, LAOBF and AAOBF using the
weighted mini-bucket based heuristic function WMB-MM(i). The hyperparameters of the algorithms
are set as follows. The initial weight α0 used by the weighted best-first AND/OR search algorithms
WAOBF, WAOBF-REP and WRBFAOO is 64, while the weight update schedule is αi+1 =

√
αi.

The cutoff parameter of LAOBF is 1000.
Since the anytime AND/OR search algorithms generate anytime suboptimal solutions (lower

bounds) as well as anytime upper bounds, we developed the anytime performance metrics that focus
on the improvement of the quality of anytime solutions and upper bounds over time. In the following
subsections, we first show plots depicting the anytime solutions and upper bounds for selected
problem instances. Then, we report 3 aggregate metrics to compare the anytime performance of
the anytime AND/OR search algorithms, as follows: (1) the number of instances that returned any
solution at various time bounds, which compares how fast an algorithm can generate any solution, (2)
the average of relative anytime solution qualities as a function of time, which compares the quality of
anytime solutions, and (3) the average gap as a function of time, which compares the gap between
the upper bound and the anytime solution found by each algorithm. The first metric characterizes
how fast an algorithm can generate any solution, regardless of the quality. This fast response time is
a desirable property in many real-time applications. The second metric complements the first one by
considering the relative solution quality over time, while the last metric characterizes the average
quality of anytime solutions by deviations from the corresponding upper bounds.

5.3.2 RESULTS ON INDIVIDUAL INSTANCES

We now present the anytime solutions and upper bounds found on selected problem instances from
each benchmark. For the weighted best-first AND/OR search algorithms, we compute upper bounds
using the weight. Recall that these algorithms guarantee that at termination the generated solution
lies within a constant factor α of the optimal solution. In Figure 6, we show plots of the anytime
solutions and upper bounds as a function of time for i-bounds 12 and 18, respectively. Table 5 reports
similar numerical results obtained on additional problem instances.

• On the grid domain, the anytime weighted AND/OR search algorithms perform significantly
worse than the hybrid AND/OR search algorithms. For example, in Table 5 we see that on
the hard grid 90-34-5 instance, all three weighted AND/OR search algorithms failed to find
a single suboptimal solution due to the memory limit, while AAOBF and LAOBF found
anytime solutions and upper bounds at the 1 minute time bound and improved them over
time. Furthermore, on the hard grid 90-30-5 instance, only WAOBF returned any solution
within the 1 minute time bound, but AAOBF and LAOBF found better anytime solutions and
upper bounds, respectively. We also observe that both AAOBF and LAOBF generate frequent
anytime updates compared to the weighted best-first search algorithms.

• On pedigrees, both algorithms AAOBF and LAOBF found and improved the anytime
solutions and upper bounds over time on the hard pedigree38, hard pedigree39, and hard

908

AND/OR SEARCH FOR MARGINAL MAP

10−3 10−2 10−1 100 101 102 103 104

log (CPU time) sec

−200

−150

−100

−50

0

50

100

ln
(s

ol
ut

io
n)

2 hr time limit

Hard Grid 90-30-5 (N=900, F=900, K=2, S=3, Wc=246), i-bound=12

waobf
waobf-rep

laobf
aaobf

10−3 10−2 10−1 100 101 102 103 104

log (CPU time) sec

−150

−100

−50

0

50

ln
(s

ol
ut

io
n)

2 hr time limit

Hard Grid 90-30-5 (N=900, F=900, K=2, S=3, Wc=246), i-bound=18

waobf
waobf-rep
wrbfaoo

laobf
aaobf

10−3 10−2 10−1 100 101 102 103 104

log (CPU time) sec

−150

−100

−50

0

50

ln
(s

ol
ut

io
n)

2 hr time limit

optimal solution

Hard Pedigree20 (N=437, F=437, K=5, S=4, Wc=76), i-bound=12

waobf
waobf-rep
wrbfaoo

laobf
aaobf

10−3 10−2 10−1 100 101 102 103 104

log (CPU time) sec

−150

−100

−50

0

50

ln
(s

ol
ut

io
n)

2 hr time limit

optimal solution

Hard Pedigree20 (N=437, F=437, K=5, S=4, Wc=76), i-bound=18

waobf
waobf-rep
wrbfaoo

laobf
aaobf

10−3 10−2 10−1 100 101 102 103 104

log (CPU time) sec

−100

−80

−60

−40

−20

0

20

40

ln
(s

ol
ut

io
n)

2 hr time limit

Hard Or Chain 8fg (N=531, F=535, K=2, S=3, Wc=29), i-bound=12

wrbfaoo
laobf

aaobf

10−3 10−2 10−1 100 101 102 103 104

log (CPU time) sec

−120

−100

−80

−60

−40

−20

0

20

40

ln
(s

ol
ut

io
n)

2 hr time limit

Hard Or Chain 8fg (N=531, F=535, K=2, S=3, Wc=29), i-bound=18

wrbfaoo
laobf

aaobf

Figure 6: Anytime lower and upper bounds from hard problem instances with i-bound 12 (left) and
18 (right). The horizontal axis is the CPU time in log scale and the vertical axis is the
value of marginal MAP in log scale. This figure visualizes the improvement of anytime
solutions over increased time bounds up to 2 hour, and each data point of the lower curves
corresponds to the time that anytime solutions were discovered. The upper curves show
the upper bounds. A search algorithm terminates with the optimal solution when upper
and lower curves coincided.

pedigree20 instances. We see WAOBF-REP failed to find a single solution on the hard
pedigree38 and the hard pedigree39 instances. WAOBF also failed on the hard pedigree38

909

MARINESCU, LEE, DECHTER, & IHLER

instance due to the memory limit. We can also observe that AAOBF and LAOBF converge
faster to the optimal solution on the hard pedigree20 instance.

• On promedas, algorithms WAOBF, WAOBF-REP, and WRBFAOO failed to find a single
solution on the hard or_chain16_fg and the hard or_chain24_fg instances, while both AAOBF
and LAOBF found and improved the solutions and upper bounds over time. Moreover,
AAOBF and LAOBF produced better anytime solutions than BRAOBB on all reported problem
instances with i-bounds 12 and 18, respectively.

Overall, from Figure 6 and Table 5, we see that the anytime solutions (lower curves) found
by AAOBF and LAOBF are superior to those found by WAOBF, WAOBF-REP, and WRBFAOO,
respectively. Furthermore, the distinction of the quality of anytime solution is clear at i-bound 12.
Comparing AAOBF and LAOBF, we can see that AAOBF found higher quality solutions at earlier
time bounds on the hard pedigree20 and the hard or_chain8_fg instances. In addition, the hybrid
AND/OR search algorithms produced more frequent anytime solutions compared to the weighted
best-first AND/OR search algorithms. WAOBF found only a single anytime solution on the hard grid
90-30-5 instance at i-bound 12, while AAOBF and LAOBF found 14 and 15 anytime solution within
the same 2-hour time limit, respectively. We also observe that LAOBF and AAOBF produced tighter
upper bounds than the weighted best-first search algorithms. Comparing the upper bounds produced
by LAOBF and AAOBF, we see that they mostly overlap on the problem instances considered.

5.3.3 THE NUMBER OF INSTANCES THAT RETURNED ANY SOLUTION AT TIME T

We next report the number of instances that returned any solution at various time bounds. This
metric visualizes how fast each algorithm can produce a solution, regardless of its quality. Figure 7
compares the percentage of problem instances returning feasible solutions at varying time bounds
for all competing algorithms at the i-bounds 12 and 18, respectively. Note that the dashed lines
and the solid lines correspond to the ratio computed from anytime solutions and optimal solutions,
respectively.

In Figure 7, we see that RBFAOO solves optimally within time the largest number of instances
on all benchmark and at all reported i-bounds. However, at the 1 minute time bound and for i-bound
18, the percent of instances exactly solved by RBFAOO is only 61%, 42%, and 36% on the grid,
pedigree, and promedas domain, respectively. Considering the fact that the exact best-first
AND/OR search algorithms are usually terminated by the memory limit, the anytime AND/OR search
algorithms are more desirable for improving the coverage with suboptimal solutions. Comparing
the dashed lines, we observe that both AAOBF and LAOBF cover more instances than the weighted
best-first AND/OR search algorithms at all reported time bounds.

• On the grid domain with i-bound 18, AAOBF and LAOBF covered 98.6% and 97.3% of the
instances at the 1 minute time bound, while WAOBF, WAOBF-REP, and WRBFAOO covered
93.3%, 93.3%, and 92.0%, respectively. BRAOBB also generated anytime solutions for 97.3%
of the instances. We can see that all anytime AND/OR search algorithms solved more than
30% of the instances compared to RBFAOO.

• On pedigrees with i-bound 18, AAOBF and LAOBF covered 92.0% and 80.0% of the
instances, respectively, at the 1 minute time bound, while WAOBF, WAOBF-REP, and WRB-
FAOO covered 80.0%, 80.0%, and 84.0%, respectively. BRAOBB covered 54.0% of the

910

AND/OR SEARCH FOR MARGINAL MAP

(a) grid
instance algorithm i = 12 i = 18

(n, f , k,wc ,wu) 1min 1hr 1min 1hr

lb ub lb ub lb ub lb ub

grid hard AAOBF -163.581 -9.54662 -143.601 -10.8083 -103.973 -15.563 -80.962 -18.8718

90-30-5 I1 LAOBF -134.606 -10.0975 -64.4327 -13.1226 -67.161 -17.2402 -25.4589 -18.5986

(900, 900, 2, 246, 43) WAOBF -160.909 -2.5142 - - -75.6271 -9.45339 -25.663 -15.2593

WAOBF-REP - - - - - - - -

WRBFAOO - - - - - - - -

BRAOBB -126.653 - -126.653 - -104.404 - -104.404 -

grid hard AAOBF -235.169 1.23546 -224.245 0.937635 -96.3262 -11.9388 -71.4547 -12.7446

90-34-5 I1 LAOBF -194.728 -0.52338 -170.317 -0.85827 -80.75 -14.599 -54.0588 -15.346

(1156, 1156, 2, 301, 49) WAOBF - - - - - - - -

WAOBF-REP - - - - - - - -

WRBFAOO - - - - - - - -

BRAOBB -253.812 - -253.812 - -118.629 - -106.33 -

(b) pedigree
instance algorithm i = 12 i = 18

(n, f , k,wc ,wu) 1min 1hr 1min 1hr

lb ub lb ub lb ub lb ub

pedigree hard AAOBF -216.404 -161.012 -214.364 -161.309 -183.628 -163.778 -181.372 -164.04

pedigree38 I1 LAOBF -208.81 -162.96 -198.402 -163.595 -199.539 -164.345 -198.698 -164.942

(724, 724, 5, 149, 62) WAOBF - - - - - - - -

WAOBF-REP - - - - - - - -

WRBFAOO - - -285.035 -35.6294 - - -184.065 -109.446

BRAOBB -232.987 - -212.611 - -206.441 - -206.441 -

pedigree hard AAOBF -321.692 -299.275 -320.595 -300.202 -325.879 -301.936 -315.208 -302.987

pedigree39 I1 LAOBF -321.044 -301.09 -319.8 -303.019 -318.817 -304.423 -313.72 -306.28

(1272, 1272, 5, 132, 20) WAOBF -334.015 -118.092 -332.306 -197.591 -329.458 -116.481 -329.458 -116.481

WAOBF-REP - - - - - - - -

WRBFAOO -343.759 -204.401 -343.759 -204.401 -340.981 -202.749 -332.914 -256.712

BRAOBB - - - - - - - -

(c) promedas
instance algorithm i = 12 i = 18

(n, f , k,wc ,wu) 1min 1hr 1min 1hr

lb ub lb ub lb ub lb ub

promedas hard AAOBF -226.479 -18.7189 -210.327 -18.7195 -137.205 -19.853 -136.494 -19.8553

or chain 16 fg I1 LAOBF -192.147 -18.5613 -191.184 -18.5617 -129.625 -9.39193 -120.084 -9.39332

(1675, 1701, 2, 490, 90) WAOBF - - - - - - - -

WAOBF-REP - - - - - - - -

WRBFAOO - - - - - - - -

BRAOBB -218.756 - -218.756 - -190.695 - -190.695 -

promedas hard AAOBF -111.666 -7.1599 -88.933 -7.16056 -64.8236 -10.0497 -64.8236 -10.0497

or chain 24 fg I1 LAOBF -129.625 -9.39193 -120.084 -9.39332 -125.953 -9.79024 -95.841 -9.81755

(1155, 1172, 2, 154, 71) WAOBF - - - - - - - -

WAOBF-REP - - - - - - - -

WRBFAOO - - - - - - - -

BRAOBB -166.674 - -115.428 - -113.823 - -113.823 -

Table 5: Lower and upper bounds on the optimal value on 2 selected instances from each benchmark
at 1 minute and 1 hour time bound with i-bound 12 and 18. In the table, lb denotes the
solution cost at the time bound and ub denotes the upper bound. The highlighted results
show best performance for an instance and a time bound. The hybrid schemes seem superior.

911

MARINESCU, LEE, DECHTER, & IHLER

1 sec 5 sec 30 sec 1 min 20 min 1 hr 2hr

0

20

40

60

80

100

Pe
rc

en
to

fI
ns

ta
nc

es
(%

)

Grid (Total 75 Instances), i-bound 12

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

1 sec 5 sec 30 sec 1 min 20 min 1 hr 2hr

0

20

40

60

80

100

Pe
rc

en
to

fI
ns

ta
nc

es
(%

)

Grid (Total 75 Instances), i-bound 18

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

1 sec 5 sec 30 sec 1 min 20 min 1 hr 2hr

0

20

40

60

80

100

Pe
rc

en
to

fI
ns

ta
nc

es
(%

)

Pedigree (Total 50 Instances), i-bound 12

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

1 sec 5 sec 30 sec 1 min 20 min 1 hr 2hr

0

20

40

60

80

100

Pe
rc

en
to

fI
ns

ta
nc

es
(%

)

Pedigree (Total 50 Instances), i-bound 18

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

1 sec 5 sec 30 sec 1 min 20 min 1 hr 2hr

0

20

40

60

80

100

Pe
rc

en
to

fI
ns

ta
nc

es
(%

)

Promedas (Total 50 Instances), i-bound 12

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

1 sec 5 sec 30 sec 1 min 20 min 1 hr 2hr

0

20

40

60

80

100

Pe
rc

en
to

fI
ns

ta
nc

es
(%

)

Promedas (Total 50 Instances), i-bound 18

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

Figure 7: The number of instances returned any solution at time t with the i-bound 12 (left) and 18
(right). The horizontal axis is time bounds from 1 second to 2 hours and the vertical axis
is the percent of instances solved. The solid lines show the progress of finding optimal
solutions with increased time bounds by anytime AND/OR search algorithms. The dashed
line corresponds to percent of instances that returned at least one solution within the
time bounds. Anytime AND/OR search shows good performance in is ability for finding
feasible solutions in a shorter time bounds. In particular, AAOBF and LAOBF returned
feasible solutions for more than 90 % of instances on all domains in 5 second time bounds.
Overall, AAOBF and LAOBF outperformed other algorithms on this metric.

instances. Compared to RBFAOO, the anytime AND/OR search algorithms covered more than
50% of the instances.

912

AND/OR SEARCH FOR MARGINAL MAP

• On promedas with i-bound 18, the coverage of AAOBF and LAOBF is 100.0% and 96.0%
at the 1 minute time bound, while WAOBF, WAOBF-REP, and WRBFAOO covered 44.0%,
44.0%, and 54.0%, respectively. BRAOBB covered 90.0 % of the instances. The trend is
quite different in the promedas domain where AAOBF and LAOBF showed more than 60%
improvement over RBFAOO while WAOBF, WAOBF-REP, and WRBFAOO improved over
RBFAOO only by 10%.

Overall, we can conclude that AAOBF and LAOBF are the best performing algorithms according
to the current metric.

5.3.4 THE AVERAGE OF RELATIVE ANYTIME SOLUTION QUALITIES AT TIME T

We next report our second aggregate measure; the average of relative solution qualities as a function
of time. We define the relative solution quality of an anytime search algorithm on a measure per
instance i at time t by:

ρisol(t) =
The solution cost of algorithm at time t

The best solution cost found at time t by any algorithm
(3)

Larger values indicate superior solutions (i.e., larger lower bounds). When all anytime search
algorithms failed to produce a single anytime solution, we set ρisol(t) to 0. The average of relative
anytime metric is the mean of ρisol(t) over all problem instances a benchmark domain:

ρsol(t) =

∑
i∈I ρ

i
sol(t)

|I| , (4)

where I is the set of instances and |I| denotes the total number of instances in a domain.
Figure 8 reports the average relative solution quality obtained on the grid, pedigree and

promedas domains, using i-bounds 12 and 18, respectively. In this case, RBFAOO can only take
two values for ρsol(t), namely either 1.0 if it terminated within the time bound or 0.0 otherwise. We
observe that all algorithms show superior performance compared with RBFAOO on all benchmark
and at almost all reported time bounds.

• On the grid domain with i-bound 18 at the 1 minute time bound, the solution qualities of
AAOBF, LAOBF, WAOBF, WAOBF-REP, WRBFAOO, and BRAOBB are 0.935, 0.926, 0.887,
0.894, 0.923, and 0.836, respectively. We can see that both AAOBF and LAOBF maintain a
higher solution quality compared to the weighted AND/OR search algorithms. In this case
BRAOBB performs the worst. The trend is similar for the smaller i-bound of 12.

• On pedigrees with i-bound 18 at the 1 minute time bound, the solution qualities of AAOBF,
LAOBF, WAOBF, WAOBF-REP, WRBFAOO, and BRAOBB are 0.931, 0.799, 0.802, 0.794,
0.836, and 0.528, respectively. Here, AAOBF is still superior while LAOBF and the weighted
best-first search algorithms perform similarly to each other. BRAOBB is inferior to AAOBF
and the gap remains consistent over time. Again, the trend is similar for i-bound 12.

• On promedas domain with i-bound 18 at the 1 minute time bound, the solution qualities of
AAOBF, LAOBF, WAOBF, WAOBF-REP, WRBFAOO, and BRAOBB are 0.907, 0.841, 0.414,
0.415, 0.460, and 0.877, respectively. We can see that AAOBF and LAOBF maintain higher
solution quality compared to the weighted AND/OR search algorithms. The improvement of

913

MARINESCU, LEE, DECHTER, & IHLER

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

ve
ra

ge
R

el
at

iv
e

A
ny

tim
e

S
ol

ut
io

n
Q

ua
lit

y

Grid (total 75 instances), i-bound=12

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

R
el

at
iv

e
A

ny
tim

e
S

ol
ut

io
n

Q
ua

lit
y

Grid (total 75 instances), i-bound=18

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

R
el

at
iv

e
A

ny
tim

e
S

ol
ut

io
n

Q
ua

lit
y

Pedigree (total 50 instances), i-bound=12

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

R
el

at
iv

e
A

ny
tim

e
S

ol
ut

io
n

Q
ua

lit
y

Pedigree (total 50 instances), i-bound=18

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

R
el

at
iv

e
A

ny
tim

e
S

ol
ut

io
n

Q
ua

lit
y

Promedas (total 50 instances), i-bound=12

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

R
el

at
iv

e
A

ny
tim

e
S

ol
ut

io
n

Q
ua

lit
y

Promedas (total 50 instances), i-bound=18

rbfaoo
braobb

waobf
waobf-rep

wrbfaoo
laobf

aaobf

Figure 8: The average relative anytime solution qualities with i-bound 12 (left) and 18 (right). The
horizontal axis is the time bounds from 1 second to 2 hour and the vertical axis is the
relative anytime solution quality ranging from 0 to 1. Each line shows the changes of the
solution quality over varying time bounds for a search algorithm. On the average, the
hybrid search algorithms obtain the best solution quality in most cases and the quality
measure approaches 1.0.

the solution quality achieved by weighted best-first search compared to RBFAOO is not as
significant (< 0.1). We also see that BRAOBB is the best performing algorithm at longer time

914

AND/OR SEARCH FOR MARGINAL MAP

bounds. For example, the solution quality at the 2-hour time bound of BRAOBB and AAOBF
is 0.909 and 0.876, respectively.

Overall, we see that AAOBF and LAOBF produced higher quality anytime solutions than the
other anytime AND/OR search algorithms across benchmarks and i-bounds. The weighted best-first
search algorithms have similar relative solution quality but WRBFAOO consistently outperforms
WAOBF and WAOBF-REP, respectively.

5.3.5 THE AVERAGE GAP OF ANYTIME SOLUTIONS AND UPPER BOUNDS AT TIME T

The last metric considered is the average gap for a benchmark domain at time t. We define the gap at
time t for algorithm A as the ratio between the logarithm of the upper bound U generated by A and
the logarithm of the solution cost L (lower bound) at time t, as follows:

γA(t) =

{
α−β
α if 0 ≤ L, U ≤ 1
α

α−β if 0 ≤ L ≤ 1 and 1 ≤ U (5)

where α = log(solution cost at t) and β = log(upper bound at t). For the weighted best-first search
algorithms, we set β = α

w and always use the first formula in Equation 5. Therefore, 0≤γA(t)≤1,
and γA(t) is 0 only if an anytime algorithm founds an optimal solution. When an algorithm failed to
find a single anytime solution from an individual instance, we set γA(t) to 1.0. The average gap is
the mean of γA(t) over all problem instances in the benchmark domain.

Figure 9 shows the average gap between the upper and the lower bounds of the algorithms that
are able to provide both upper and lower bounds, using i-bounds 12 and 18, respectively. Therefore,
algorithms RBFAOO and BRAOBB are excluded.

• On the grid domain with i-bound 18 at the 1 minute time bound, the average gap qualities of
AAOBF, LAOBF, WAOBF, WAOBF-REP, and WRBFAOO are 0.127, 0.095, 0.144, 0.124, and
0.126, respectively. We observe that LAOBF is the best and AAOBF follows. The weighted
best-first algorithms have similar gap qualities. The trend is the same at longer time bounds.

• On pedigree with i-bound 18 at the 1 minute time bound, the average gap qualities of
AAOBF, LAOBF, WAOBF, WAOBF-REP, and WRBFAOO are 0.133, 0.208, 0.286, 0.242, and
0.283, respectively. Here, AAOBF shows notable superiority compared to LAOBF, and the
overall trend remains similar to the results from the other benchmarks.

• On promedas with i-bound 18 at the 1 minute time bound, the average gap qualities of
AAOBF, LAOBF, WAOBF, WAOBF-REP, and WRBFAOO are 0.531, 0.496, 0.607, 0.577,
and 0.562, respectively. Again, AAOBF and LAOBF perform better than the corresponding
weighted best-first search algorithms.

In summary, we see that the hybrid AND/OR search algorithms have superior average gap quality
compared to the weighted best-first AND/OR search algorithms across all benchmark domains
considered.

6. Related Work

Solving marginal MAP exactly by depth-first branch and bound search was first introduced in Park
and Darwiche (2003) who developed an unconstrained join-tree based upper bound to guide the

915

MARINESCU, LEE, DECHTER, & IHLER

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

ve
ra

ge
G

ap
be

tw
ee

n
U

pp
er

an
d

Lo
w

er
B

ou
nd

s

Grid (total 75 instances), i-bound=12

waobf
waobf-rep
wrbfaoo

laobf
aaobf

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

G
ap

be
tw

ee
n

U
pp

er
an

d
Lo

w
er

B
ou

nd
s

Grid (total 75 instances), i-bound=18

waobf
waobf-rep
wrbfaoo

laobf
aaobf

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

G
ap

be
tw

ee
n

U
pp

er
an

d
Lo

w
er

B
ou

nd
s

Pedigree (total 50 instances), i-bound=12

waobf
waobf-rep
wrbfaoo

laobf
aaobf

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

G
ap

be
tw

ee
n

U
pp

er
an

d
Lo

w
er

B
ou

nd
s

Pedigree (total 50 instances), i-bound=18

waobf
waobf-rep
wrbfaoo

laobf
aaobf

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

G
ap

be
tw

ee
n

U
pp

er
an

d
Lo

w
er

B
ou

nd
s

Promedas (total 50 instances), i-bound=12

waobf
waobf-rep
wrbfaoo

laobf
aaobf

10−1 100 101 102 103 104

log (CPU Time) sec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

G
ap

be
tw

ee
n

U
pp

er
an

d
Lo

w
er

B
ou

nd
s

Promedas (total 50 instances), i-bound=18

waobf
waobf-rep
wrbfaoo

laobf
aaobf

Figure 9: The average relative anytime gap qualities with the i-bound 12 (left) and 18 (right). Each
line corresponds to a search algorithm that produce both the upper bounds and feasible
solutions. The average gap between upper and lower bounds of all search algorithms
decrease with time, and AAOBF produced high quality solutions quickly compared with
the other algorithms.

search. The join-tree is fully re-valuated at each search node in order to compute upper bounds
for all uninstantiated MAP variables simultaneously which allows for dynamic variable orderings.
Subsequently, Yuan and Hansen (2009) proposed an incremental evaluation of the unconstrained

916

AND/OR SEARCH FOR MARGINAL MAP

join-tree based upper bound which reduces significantly the computational overhead during search.
However, this requires the search to be conducted along a static variable ordering.

Approximation algorithms for marginal MAP, including message passing and variational methods,
have also been introduced (Liu & Ihler, 2013; Jiang, Rai, & Daume, 2011; Cheng, Chen, Dong, Xu, &
Ihler, 2012; Ping et al., 2015). Upper and lower bound versions of these methods are closely related
to the WMB heuristic we use to guide the search. However, unlike our search based algorithms, these
schemes do not guarantee eventual optimality of their solutions in an anyspace way, i.e., without
significantly increasing memory requirements.

The anytime marginal MAP algorithm introduced recently by Maua and Campos (2012) is
another approach that can provide upper and lower bounds. It is an iterative join-tree based algorithm
that propagates sets of messages (called factor sets) between the clusters of the join tree. These
messages, however, tend to grow very large and therefore the method is limited to solving relatively
easy problems with small induced widths.

The exact AND/OR search algorithms for marginal MAP was first introduced by (Marinescu
et al., 2014) and the anytime AND/OR search by extending exact best first search by weighted best
first search scheme was introduced by (Lee et al., 2016). The hybrid of depth-first and best-first
AND/OR search algorithms that provides both upper and lower bounds was introduced by (Marinescu
et al., 2017). This paper presents the above AND/OR search algorithms and related algorithms for
marginal MAP with additional proofs and extended evaluations from coherent benchmark domains.

Hybrids of depth-first and best-first search The idea of combining depth-first and best-first
search was first described in Pearl (1984). A similar idea was also employed in mixed integer
programming algorithms as a plunging strategy in Achterberg (2007). The work that is closest in
spirit to our LAOBF is that by Stern et al. (2010) who developed an A* with depth-first lookaheads
in the context of generic path-finding. More recently, (Allouche, de Givry, Katsileros, Schiex, &
Zytnicki, 2015) introduced a hybrid best-first search algorithm for solving Weighted CSPs that can
be guided by a tree decomposition. It selects a node in the best-first manner and performs standard
depth-first search with an adaptive number of backtracks to expand the frontier.

7. Conclusions

In this paper, we developed depth-first and best-first search algorithms for marginal MAP that explore
the compact AND/OR context minimal search space for graphical models, guided by pre-compiled
weighted mini-bucket with cost-shifting schemes. We focused on the algorithms as exact solvers at
first, and then extended them into anytime algorithms that produce improved solutions with time as
well as tightened upper and lower bounds. Through extensive empirical evaluations on a variety of
benchmarks we demonstrate the effectiveness of these algorithms as exact schemes against previous
unconstrained join-tree based methods, which we also extend to be sensitive to high induced-width
models. Our results show not only orders of magnitude improvements over the existing methods,
but also the ability to optimally solve many instances that could not be solved before. In particular,
the limited memory recursive best-first AND/OR search scheme consistently solved more problems
within a two hour time-bound and in many cases was faster, by orders of magnitude, compared with
all depth-first OR search counterparts. It emerges as the superior exact scheme overall.

Our proposed new anytime search algorithms for marginal MAP algorithms are based on either
weighted search or interleaving best-first and depth-first search. These schemes are able to compute
not only anytime lower bounds, but also anytime upper bounds on the optimal marginal MAP value,

917

MARINESCU, LEE, DECHTER, & IHLER

and the gap between the two can be used to better gauge the solution quality during search. Our
extensive empirical evaluation on various benchmarks demonstrates the effectiveness of the new
algorithms compared with state-of-the-art depth-first search. We are able to show conclusively that
our new best+depth-first search approach produces superior quality solutions more quickly than
the pure best-first or depth-first search as well as the weighted schemes. They also give tighter gap
guarantees compared to weighted best-first search.

The immediate question called for is how to extend our schemes to cases where the conditioned
summation task is not tractable (remember that we addressed only cases when the number of MAP
variables were large enough to bound the hardness of the summation task). So, for future work
we plan to extend our proposed anytime search schemes to also handle effectively marginal MAP
problems where the conditioned summation subproblem is not tractable anymore. We also plan
to explore parallel search schemes for solving marginal MAP queries. Finally, we will extend to
marginal MAP recent look-ahead and subproblem ordering ideas that proved effective for pure
optimization tasks (Lam, Kask, Larrosa, & Dechter, 2017, 2018).

References

Achterberg, T. (2007). Constraint Integer Programming. Ph.D. thesis, Zuse Institute Berlin.

Allouche, D., de Givry, S., Katsileros, G., Schiex, T., & Zytnicki, M. (2015). Anytime hybrid
best-first search with tree decomposition for weighted csp. In International Conference on
Principles and Practice of Constraint Programming, pp. 12–29.

Chakrabarti, P., Ghose, S., & Sarkar, S. D. (1987). Admissibility of AO* when heuristics overestimate.
Artificial Intelligence, 34(1), 97–113.

Cheng, Q., Chen, F., Dong, J., Xu, W., & Ihler, A. (2012). Approximating the sum operation for
marginal-map inference. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, AAAI’12, pp. 1882–1887. AAAI Press.

Cooper, G. (1990). The computational complexity of probabistic inferences. Artificial Intelligence,
42, 393–405.

de Kleer, J., Mackworth, A. K., & Reiter, R. (1990). Characterizing diagnoses. In Proceedings of the
8th National Conference on Artificial Intelligence. Boston, Massachusetts, July 29 - August 3,
1990, 2 Volumes., pp. 324–330.

Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113(1-2), 41–85.

Dechter, R., Kask, K., & Larrosa, J. (2001). A general scheme for multiple lower bound computation
in constraint optimization. In Principles and Practice of Constraint Programming, pp. 346–
360.

Dechter, R., & Mateescu, R. (2007). AND/OR search spaces for graphical models. Artificial
Intelligence, 171(2-3), 73–106.

Dechter, R., & Pearl, J. (1985). Generalized best-first search strategies and the optimality of A*.. In
Journal of ACM, 32(3), 505–536.

Dechter, R., & Rish, I. (2003). Mini-buckets: A general scheme of approximating inference. Journal
of ACM, 50(2), 107–153.

918

AND/OR SEARCH FOR MARGINAL MAP

Dechter, R. (2013). Reasoning with Probabilistic and Deterministic Graphical Models: Exact
Algorithms. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.

Dechter, R., & Mateescu, R. (2007). AND/OR search spaces for graphical models. Artificial
Intelligence, 171(2-3), 73–106.

Elidan, G., Globerson, A., & Heinemann, U. (2012). PASCAL 2011 probabilistic inference challenge.
http://www.cs.huji.ac.il/project/PASCAL/.

Flerova, N., Marinescu, R., & Dechter, R. (2017). Weighted heuristic anytime search: new schemes
for optimization over graphical models. Ann. Math. Artif. Intell., 79(1-3), 77–128.

Freuder, E. C., & Quinn, M. J. (1985). Taking advantage of stable sets of variables in constraint
satisfaction problems. In Proceedings of the 9th International Joint Conference on Artificial
Intelligence. Los Angeles, CA, USA, August 1985, pp. 1076–1078.

Geffner, H., & Bonet, B. (2013). A Concise Introduction to Models and Methods for Automated
Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.

Globerson, A., & Jaakkola, T. (2007). Approximate inference using conditional entropy decompo-
sitions. In International Conference on Artificial Intelligence and Statistics (AISTATS), pp.
130–138.

Ihler, A., Flerova, N., Dechter, R., & Otten, L. (2012). Join-graph based cost-shifting schemes. In
Uncertainty in Artificial Intelligence (UAI), pp. 397–406.

Jiang, J., Rai, P., & Daume, H. (2011). Message-passing for approximate map inference with
latent variables. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F., & Weinberger,
K. Q. (Eds.), Advances in Neural Information Processing Systems 24, pp. 1197–1205. Curran
Associates, Inc.

Kishimoto, A., & Marinescu, R. (2014). Recursive best-first AND/OR search for optimization in
graphical models. In Uncertainty in Artificial Intelligence (UAI), pp. 400–409.

Korf, R. (1993). Linear-space best-first search. Artificial Intelligence, 62(1), 41–78.

Lam, W., Kask, K., Larrosa, J., & Dechter, R. (2017). Residual-guided look-ahead in AND/OR
search for graphical models. J. Artif. Intell. Res., 60, 287–346.

Lam, W., Kask, K., Larrosa, J., & Dechter, R. (2018). Subproblem ordering heuristics for AND/OR
best-first search. J. Comput. Syst. Sci., 94, 41–62.

Lee, J., Marinescu, R., Dechter, R., & Ihler, A. (2016). From exact to anytime solutions for marginal
MAP. In 30th AAAI Conference on Artificial Intelligence, pp. 1749–1755.

Lee, J., Marinescu, R., & Dechter, R. (2014). Applying marginal map search to probabilistic
conformant planning: Initial results.. In AAAI Workshop: Statistical Relational Artificial
Intelligence.

Liu, Q., & Ihler, A. (2011). Bounding the partition function using Hölder’s inequality. In International
Conference on Machine Learning (ICML), pp. 849–856.

Liu, Q., & Ihler, A. (2013). Variational algorithms for marginal MAP. Journal of Machine Learning
Research, 14, 3165–3200.

919

MARINESCU, LEE, DECHTER, & IHLER

Marinescu, R., & Dechter, R. (2009a). AND/OR branch-and-bound search for combinatorial
optimization in graphical models. Artificial Intelligence, 173(16-17), 1457–1491.

Marinescu, R., & Dechter, R. (2009b). Memory intensive AND/OR search for combinatorial
optimization in graphical models. Artificial Intelligence, 173(16-17), 1492–1524.

Marinescu, R., Dechter, R., & Ihler, A. (2014). AND/OR search for marginal MAP. In Uncertainty
in Artificial Intelligence (UAI), pp. 563–572.

Marinescu, R., Dechter, R., & Ihler, A. (2015). Pushing forward marginal MAP with best-first search.
In International Joint Conference on Artificial Intelligence (IJCAI), pp. 696–702.

Marinescu, R., Kask, K., & Dechter, R. (2003). Systematic vs non-systematic algorithms for solving
the MPE task.. In Uncertainty in Artificial Intelligence (UAI), pp. 394–402.

Marinescu, R., Lee, J., Dechter, R., & Ihler, A. (2017). Anytime best+depth-first search for bounding
marginal MAP. In 31th AAAI Conference on Artificial Intelligence, pp. 1749–1755.

Mateescu, R., & Dechter, R. (2007). A comparison of time-space scheme for graphical models.
In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, pp.
2346–2352.

Maua, D., & Campos, C. D. (2012). Anytime marginal MAP inference. In International Conference
on Machine Learning, pp. 1471–1478.

Mauá, D. D. (2016). Equivalences between maximum a posteriori inference in bayesian networks
and maximum expected utility computation in influence diagrams. Int. J. Approx. Reasoning,
68(C), 211–229.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Tioga, Palo Alto, CA.

Otten, L., & Dechter, R. (2011). Anytime AND/OR depth-first search for combinatorial optimization.
In International Symposium on Combinatorial Search, pp. 117–702.

Park, J., & Darwiche, A. (2003). Solving MAP exactly using systematic search. In Uncertainty in
Artificial Intelligence (UAI), pp. 459–468.

Park, J., & Darwiche, A. (2004). Complexity results and approximation strategies for MAP explana-
tions. Journal of Artificial Intelligence Research, 21(1), 101–133.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies. Addison-Wesley.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.

Ping, W., Liu, Q., & Ihler, A. T. (2015). Decomposition bounds for marginal MAP. In Advances in
Neural Information Processing Systems 28, pp. 3267–3275.

Pohl, I. (1970). Heuristic search viewed as path finding in a graph. Artificial Intelligence, 1(3-4),
193–204.

Shimony, S., & Charniak, E. (1991). A new algorithm for finding MAP assignments to belief
networks. In P. Bonissone, M. Henrion, L. Kanal, and J. Lemmer (Eds.), Uncertainty in
Artificial Intelligence, Vol. 6, pp. 185–193.

Stern, R., Kulberis, T., Felner, A., & Holte, R. (2010). Using lookahead with optimal best-first search.
In 24th AAAI Conference on Artificial Intelligence, pp. 185–190.

920

AND/OR SEARCH FOR MARGINAL MAP

Wainwright, M., Jaakkola, T., & Willsky, A. (2005). A new class of upper bounds on the log partition
function. IEEE Trans. Info. Theory, 51(7), 2313–2335.

Weiss, Y., Yanover, C., & Meltzer, T. (2007). MAP estimation, linear programming and belief
propagation with convex free energies. In Uncertainty in Artificial Intelligence (UAI), pp.
416–425.

Yuan, C., & Hansen, E. (2009). Efficient computation of jointree bounds for systematic MAP search.
In International Joint Conference on Artificial Intelligence (IJCAI), pp. 1982–1989.

921

