
Journal of Artificial Intelligence Research 63 (2018) 789-848 Submitted 04/18; published 12/18

State-Space Abstractions for Probabilistic Inference:
A Systematic Review

Stefan Lüdtke stefan.luedtke2@uni-rostock.de
Institute of Computer Science
University of Rostock, Germany

Max Schröder max.schroeder@uni-rostock.de
Frank Krüger frank.krueger@uni-rostock.de
Institute of Communications Engineering
University of Rostock, Germany

Sebastian Bader sebastian.bader@uni-rostock.de

Thomas Kirste thomas.kirste@uni-rostock.de

Institute of Computer Science

University of Rostock, Germany

Abstract

Tasks such as social network analysis, human behavior recognition, or modeling bio-
chemical reactions, can be solved elegantly by using the probabilistic inference framework.
However, standard probabilistic inference algorithms work at a propositional level, and
thus cannot capture the symmetries and redundancies that are present in these tasks.

Algorithms that exploit those symmetries have been devised in different research fields,
for example by the lifted inference-, multiple object tracking-, and modeling and simulation-
communities. The common idea, that we call state space abstraction, is to perform inference
over compact representations of sets of symmetric states. Although they are concerned
with a similar topic, the relationship between these approaches has not been investigated
systematically.

This survey provides the following contributions. We perform a systematic literature
review to outline the state of the art in probabilistic inference methods exploiting sym-
metries. From an initial set of more than 4,000 papers, we identify 116 relevant papers.
Furthermore, we provide new high-level categories that classify the approaches, based on
common properties of the approaches. The research areas underlying each of the categories
are introduced concisely. Researchers from different fields that are confronted with a state
space explosion problem in a probabilistic system can use this classification to identify pos-
sible solutions. Finally, based on this conceptualization, we identify potentials for future
research, as some relevant application domains are not addressed by current approaches.

1. Introduction

Many real-world problems are inherently symmetric. For example, human behavior recog-
nition from sensor data (Fox, Hightower, Liao, Schulz, & Borriello, 2003), social network
analysis (Singla & Domingos, 2008), and models of biochemical reactions (Barbuti, Levi,
Milazzo, & Scatena, 2011) all have symmetric properties. These application scenarios are
also probabilistic: We do not have perfect knowledge about the state of the system, and
the system can develop non-deterministically over time. Performing probabilistic inference
in these domains quickly leads to a combinatorial explosion, known as state space explosion

c©2018 AI Access Foundation. All rights reserved.



Lüdtke, Schröder, Krüger, Bader, & Kirste

problem (Clarke, Grumberg, Jha, Lu, & Veith, 2001). To overcome this problem, prob-
abilistic inference approaches that exploit symmetric properties of the system have been
devised. In this survey, we systematically review the literature on these approaches and
develop a new conceptual model to classify the approaches. Previous surveys on this topic
(Kersting, 2012; Kimmig, Mihalkova, & Getoor, 2015) have focussed on a specific class of
such algorithms, known as lifted inference. In this review, we put more emphasis on infer-
ence in sequential processes (known as Bayesian filtering, a method that is highly relevant
for many different application domains), and consider algorithms devised in a number of
different research fields, like control theory, modeling and simulation, and computer vision.

To give an intuition of the state space explosion problem, we give some initial examples
that show how it manifests itself in different domains.

Example 1 (Friends and Smokers, Singla & Domingos, 2008). The relationship of smoking
habits and lung cancer is modeled. People who smoke are more likely to develop lung
cancer, and friends tend to have similar smoking habits. We can model this problem as a
Bayesian network with one random variable for the smoking probability of each person, one
random variable for the cancer risk of each person, and one random variable for each pair
of people that represents whether they are friends or not. The number of random variables
and the treewidth of the graphical model grows linearly with the number of people, and
thus the inference time grows exponentially (as inference is NP-hard in the treewidth of the
model). ◦

Example 2 (Office, Fox et al., 2003). Several people walk around in an office. The office
is equipped with presence sensors that get activated when a person is nearby. The sensors
do not identify the specific person that is near the sensor. The task is to keep track of the
locations of each person. An inference algorithm has to track an exponential number of
possible situations (all possible permutations of observations to person identities). ◦

Example 3 (Biochemical Reaction, Barbuti et al., 2011). Biochemical reactions can involve
many different reactants. In each specific reaction, many instances of the same molecule
can participate in that reaction. A naive algorithm has to consider an exponential number
of specific reactions (one for each combination of specific molecule instances) that can take
place. ◦

In all of these cases, standard probabilistic inference algorithms are not suitable, due
to the exponential growth in problem complexity. However, we can exploit the symmetries
underlying each of these problems: In Example 1, the probability of each person having
cancer is the same, as long as we have the same information about each person. We can
therefore reason over all people simultaneously, by only representing the probability of a
generic person having cancer. In Example 2, people are not identified. Thus, all states that
are only different in the assignment of names to people cannot be distinguished and can be
grouped together. In Example 3, it does not matter which specific molecule participates in
the reaction, as the result of the reaction is the same. In all of the examples, the general
idea is to represent multiple concrete (or grounded) states that are symmetrical by a single
abstract state (also called lifted state). In this paper, we identify two types of symmetries,
based on exchangeability in state variables or on variables following the same parametric

790



State-Space Abstractions for Probabilistic Inference

distribution. In the following, we call the procedure of grouping symmetrical states state
space abstraction. To perform inference efficiently, an inference algorithm must be able to
reason directly with the abstract states, without resorting to grounded states.

This systematic review aims at giving an overview of different methods of state space
abstractions for probabilistic models, and inference algorithms that exploit these abstrac-
tions. The format of a systematic literature review has been chosen because state space
abstractions have been considered in different research communities (e.g. probabilistic infer-
ence, see Kersting, 2012; control theory, see Nitti, De Laet, & De Raedt, 2014; modeling and
simulation, see Maus, Rybacki, & Uhrmacher, 2011; computer vision, see Huang, Guestrin,
& Guibas, 2009b, etc.). A systematic review is the appropriate tool in this case, because it
reduces the chance to miss out relevant contributions from different research areas.

The contribution of this paper is a novel structure of the research field that is based
on an application-centric classification of the approaches. That is, approaches in the same
class can exploit symmetries in the same problem domain.

Recently, attempts have been made to formally structure the problem classes of lifted in-
ference algorithms, by investigating which structures of a probabilistic model allow efficient
(lifted) probabilistic inference (Jaeger & Van den Broeck, 2012). For lifted inference algo-
rithms, this classification is precise and robust – we present this classification in Appendix
A. However, it does not address algorithms for models containing continuous distributions,
or dynamic models. In contrast, our classification is much more coarse-grained and infor-
mal (all problem classes they consider fall in the same category in our classification), but
it applies to a broader range of algorithms.

By using this classification, for the first time, this review draws connections between pre-
viously distinct lines of research, like lifted inference, logical filtering, and multiset rewriting,
and outlines the common idea shared by these approaches – the use of state space abstrac-
tions. We hope that this structure helps researchers from different research fields that
are confronted with a state space explosion in a probabilistic system to identify possible
solutions. Finally, we identify potential future research directions.

We proceed as follows. In Section 2, we introduce the basic concepts used in the rest
of the paper. Section 3 contains a description of the properties that are used to charac-
terize the approaches. In Section 4, we describe the systematic procedure we applied for
retrieving, selecting and analyzing the relevant work. An empirical overview of the retrieved
papers is presented in Section 4.5. Section 5 contains the analysis of the retrieved papers,
regarding the criteria proposed in Section 3. This evaluation leads to a categorization of
the approaches, regarding the problem class they are concerned with. Each of the resulting
groups is described separately. We conclude in Section 7, by discussing the results of this
review, and proposing future research directions.

2. Preliminaries

This chapter gives a brief overview over basic concepts used in the remainder of the paper. It
consists of two parts: Section 2.1 and 2.2 introduce the basic concepts and algorithms used in
the context of probabilistic inference. Sections 2.3 and 2.4 introduce the two basic concepts
for state space abstractions that are discussed in this review: Lifted graphical models and

791



Lüdtke, Schröder, Krüger, Bader, & Kirste

Rao-Blackwellization. Each state space abstraction approach that we will discuss is based
on either of these two concepts.

2.1 Graphical Models and Probabilistic Inference

In this section, we introduce the basic concepts of probabilistic inference, and briefly present
three algorithms that are the basis for the lifted inference algorithms discussed in Section
5.1. For a more thorough introduction to graphical models, see the book by Koller and
Friedman (2009).

2.1.1 Graphical Models

Probabilistic graphical models are a way to compactly represent a joint probability distribu-
tion P (X1, . . . , Xn) that exhibits certain independence assumptions. They represent a joint
probability distribution over multiple random variables (RVs) X1, . . . , Xn by decomposing
the distribution P (X1, . . . , Xn) into a set of factors F . Each factor φ ∈ F maps a vector
of RV assignments to non-negative real numbers, and the product of all factors describes
the joint distribution (together with a normalization constant Z ensuring that the total
probability sums to one):

P (X1 = x1, . . . , Xn = xn) = Z−1
∏
φ∈F

φ(xφ) (1)

xφ denotes the subset of values of RVs that is necessary to compute the factor φ. A factor
of binary RVs is often represented as a table (for example, see Figure 1). A factor graph is
a depiction of the relationship between factors and RVs. RVs are depicted by a circle, and
factors by a box (see Figure 1). Edges between factors and RVs mean that the RV is part
of the factor.

Thus, graphical models provide a compact representation for probability distributions:
Instead of representing a distribution over, for example, n binary variables by a factor of
size 2n (a table with 2n rows), the distribution is represented by a set of much smaller
factors. This also makes reasoning about the distribution more efficient, as described later.

Bayesian networks and Markov networks can be seen as special cases of factor graphs,
where the factors are defined implicitly by the graph structure. Bayesian networks are
directed graphical models. The nodes represent RVs and an edge from a node X to a node
Y means that the distribution of the RV Y depends on the RV X. Markov networks are
undirected graphical models, where nodes represent RVs, and there is a factor for each
maximal clique in the graph that takes the nodes of the clique as arguments.

Consider the scenario introduced in Example 1. We present a slightly adapted version
of this scenario here (omitting the friends relation for simplicity).

Example 4 (Smokers). Each person either smokes or does not smoke. For people who
smoke, the chance of getting cancer is higher than for people who do not smoke. Whether
or not at least one person died last year depends on the number of people who have cancer.
◦

792



State-Space Abstractions for Probabilistic Inference

smokes(alice)

cancer(alice)

smokes(bob)

cancer(bob)

deaths

β
1

β
2

α
1 α

2

(a) Factor graph.

s(a) c(a) β1

0 0 β
(00)
1

0 1 β
(01)
1

1 0 β
(10)
1

1 1 β
(11)
1

(b) Factor β1. The values
β(xx) are real numbers. The
factor β2 looks similar (see
text).

c(a) d α1

0 0 α
(00)
1

0 1 α
(01)
1

1 0 α
(10)
1

1 1 α
(11)
1

(c) Factor α1. The values
α(xx) are real numbers. The
factor α2 looks similar (see
text).

Figure 1: Factor graph of Example 4 (adapted from Richardson & Domingos, 2006).

For now, let us assume that only two people, Alice and Bob, exist. We can then model
this scenario with the binary random variables smokes(alice), cancer(alice), smokes(bob),
cancer(bob) and death1. The factor graph for this scenario can be seen in Figure 1.

The factor graph describes a joint probability by multiplying all of the factors, for
example:

P (s(a) = 1, s(b) = 1, c(a) = 0, c(b) = 0, d = 0)

=Z−1 β1(s(a) = 1, c(a) = 0) β2(s(b) = 1, c(b) = 0) α1(d = 0, c(a) = 0) α2(d = 0, c(b) = 0)

(2)

Note that this example shows the need (and potential) for employing abstractions: We see
that there is a certain redundancy in the model: The factors β1 and β2 as well as α1 and
α2 are identical, when we exchange s(a) and c(a) for s(b) and c(b). If we want to add
more people to the model, we need similar random variables and factors for each person.
This behavior is the main motivation for employing state space abstractions: To be able to
reason over these redundant variables as a group, ideally independently of the number of
people (domain objects) involved.

2.1.2 Inference Algorithms

Given a graphical model, we can answer different questions. In our example, we may want to
know the probability that Alice has cancer, or the expected number of deaths. These ques-
tions fall into different categories: Conditional probability queries p(Q |E=e), where the goal
is to compute the conditional probability of some variables Q, given values of evidence vari-
ables E, Maximum-a-posteriori (MAP) queries MAP(Q | E=e) = arg maxq p(Q=q, E=e)
that ask for the most likely joint assignment of variables, given values of evidence variables,
and marginal MAP queries MMAP(S |E=e) that ask for the most likely assignment of a
subset S ⊂ Q of variables, while the other variables Q \ S are marginalized.

The process of calculating answers to these questions is called probabilistic inference.
Inference can always be performed by computing the complete joint distribution, and sum-
ming out (marginalizing) the variables we are not interested in. However, the reason for

1. For readability, we use c(a) and c(b) instead of cancer(a) and cancer(b), s(a) and s(b) instead of
smokes(a) and smokes(b), and d instead of death.

793



Lüdtke, Schröder, Krüger, Bader, & Kirste

using graphical models in the first place was to avoid computing the complete joint distri-
bution, so efficient inference algorithms avoid this. The remainder of this section will focus
on conditional probability queries2.

Variable Elimination Variable elimination (VE) (Zhang & Poole, 1994) is an inference
algorithm for conditional probability queries that operates on a factor graph. It eliminates
the non-query and non-evidence variables one by one without computing the entire joint
probability. A variable is eliminated by multiplying all factors that contain this variable, and
then summing out (marginalizing) this variable. The performance depends on the order in
which the variables are eliminated, and thus heuristics for good elimination orderings have
been proposed (Darwiche, 2009).

Example 5. Consider the graphical model of Example 4 and the query P (s(a), s(b), d=1)3.
VE eliminates the non-query and non-evidence variables c(a) and c(b) one by one: The RV
c(a) is eliminated by multiplying the factor α1 and β1, resulting in a factor f0 that has the
following representation as a table (with 8 rows):

s(a) c(a) d f0

0 0 0 β
(00)
1 α

(00)
1

0 0 1 β
(00)
1 α

(01)
1

...
...

...
...

The RV c(a) is summed out of f0, resulting in a factor

f1(s(a), d) =
∑
v

f0(s(a), c(a)=v, d) =
∑
v

β1(s(a), c(a)=v)α1(c(a)=v, d)

that is represented by the following table:

s(a) d f1

0 0 β
(00)
1 α

(00)
1 + β

(01)
1 α

(10)
1

0 1 β
(00)
1 α

(01)
1 + β

(01)
1 α

(11)
1

...
...

...

Thus, the distribution P (s(a), s(b), c(b), d) can be represented by the factors α2, β2 and
f1 as follows:

P (s(a), s(b), c(b), d) = Z−1 f1(s(a), d)β2(s(b), c(b))α2(c(b), d))

2. MAP queries can be answered by adapting conditional probability inference algorithms (like variable
elimination), or by specialized optimization algorithms. MMAP requires to calculate a marginal proba-
bility for each explored assignment of MAP variables, and thus in general is harder than the other query
types. MMAP can be solved by search-based algorithms (Marinescu, Dechter, & Ihler, 2015).

3. This query is the first step in answering the conditional probability query
P (s(a), s(b) |d) = P (s(a), s(b), d)/P (d).

794



State-Space Abstractions for Probabilistic Inference

Afterwards, the same procedure is performed for c(b): α2 and β2 are multiplied, c(b) is
marginalized, the result is multiplied with f1. The result directly represents the distribution
of the above query. ◦

In this example, the computations for eliminating c(a) and c(b) are similar, which hints
to the possibility of performing the elimination more efficiently, as shown in Section 5.1.

Recursive Conditioning Recursive conditioning (RC) (Darwiche, 2001) is the search-
based variant of VE. Instead of summing out RVs, it branches on the value of RVs. Once
all information to evaluate a factor are present, it is evaluated directly, and the values of all
branches are combined appropriately. The presentation of RC given here is based on the
description of De Raedt, Kersting, Natarajan, and Poole (2016).

Given a partially instantiated factor graph, the following cases are distinguished: (i)
If there is a factor that can be evaluated, i.e. all RVs of this factor are instantiated, then
it is evaluated, and RC is called on the remaining factor graph. The result of the factor
evaluation and the RC call are multiplied. (ii) Otherwise, an RV is selected to branch on,
RC is called recursively for each possible value of the RV, and the results of all recursive
calls are summed. Furthermore, caching can be used to avoid repeated evaluation of the
same expression, and disconnected components can be treated independently.

Example 6. Consider the same problem as in Example 5, i.e. the graphical model of
Example 4 and the query P (s(a), s(b), d=1). RC starts with only d = 1 instantiated, i.e.
no factor can be evaluated. The algorithm selects c(a) for branching, leading to the two
branches b1 where {d = 1, c(a) = 0} and b2 where {d = 1, c(a) = 1}. In both cases, the
factor α1 can be evaluated, and the algorithm is called with the remaining factor graph.
In the following, the algorithm branches on the other RVs c(b), s(a) and s(b). The factor
evaluations in each branch are multiplied, and the results of each branch are summed. ◦

Belief Propagation Belief propagation (BP) (Pearl, 1988) is a message-passing inference
algorithm, related to the forward-backward algorithm used in Hidden Markov Models. It
is exact for acyclic factor graphs, and provides an approximate solution for factor graphs
with cycles. The idea is that each node (i.e. each RV node and each factor node) in a factor
graph sends messages to its neighbors, based on the messages it receives.

Let x be an RV node (of the RV x) and f be a factor node (of the factor f). Messages
are passed either from an RV node to a factor node (µx→f ) or from a factor node to an
RV node (µf→x). The messages are partial functions with domain dom(x), i.e. vectors of
length |dom(x)|. The intuition on the messages µf→x(xj) is that the values are proportional
to how likely node f “thinks” the RV corresponding to node x is in the state xj .

More specifically, the messages are calculated as follows: The message sent from an RV
node x to a factor node f is the multiplicative summary of the message it received:

µx→f (xi) =
∏

f ′∈n(x)\{f}

µf ′→x(xi)

795



Lüdtke, Schröder, Krüger, Bader, & Kirste

n(x) denotes the set of neighboring nodes of x in the factor graph. The message sent from
a factor node f to an RV node x is

µf→x(xi) =
∑
y

f(xi,y)
∏

x′∈n(f)\{x}

µx′→f (y)


The summation is over all possible assignments y ∈ {dom(x′) | x′ ∈ n(f) \ {x}} of RVs
x′ that are neighbors of f . All messages µx→f are initially set to 1. Then, the messages
are updated until convergence. For acyclic factor graphs, belief propagation converges
after a message has been sent and received by each node. For factor graphs with cycles,
multiple iterations of sending and receiving messages can be performed (called loopy belief
propagation). Conditions for convergence of the algorithm have been investigated by Weiss
(2000).

Example 7. Consider the factor graph of Example 4. Here, we will not show the complete
belief propagation algorithm, but only show how some of the messages are calculated. The
message µc(a)→α1

(xc(a)) with xc(a) ∈ {0, 1} is updated according to

µc(a)→α1
(xc(a)) =

∏
f ′∈n(c(a))\α1

µf ′→c(a)(xc(a)) = µβ1→c(a)(xc(a))

The message µα1→c(a)(xc(a)) is updated according to

µα1→c(a)(xc(a)) =
∑

xd∈{0,1}

α1(d=xd, c(a)=xc(a)) µd→α1(xd)

◦

2.2 Bayesian Filtering

An important subclass of probabilistic inference algorithms considers inference in cases
where a distribution changes over time. They can be subsumed under the framework of
Bayesian filtering (also called recursive Bayesian state estimation) (Särkkä, 2013). For
example, consider the following extension of Example 4:

Example 8. Smoking does not cause cancer immediately, but can cause cancer in the
future. Having cancer does not immediately lead to death, but can cause death in the
future. Also, people who smoke tend to stay smokers, i.e. the probability of a person being
a smoker depends on the person being a smoker at the previous time step. ◦

Such scenarios can be efficiently modeled by a dynamic Bayesian network (DBN). A
DBN is essentially a Bayesian network with another dimension: There is a family of random
variables indexed by time, and the value of each RV can depend on other RVs indexed by
the same time, but also on RVs indexed by a previous time. That is, a DBN describes a
stochastic process that has the Markov property. The inference goal in a DBN is to estimate
the state of some (not observed, or hidden) variables, given a sequence of observations of
the other variables. This task is known as Bayesian filtering. In the example, we might

796



State-Space Abstractions for Probabilistic Inference

smokes(bob)

cancer(bob)

deaths

t-1

t-1

t-1

smokes(bob)

cancer(bob)

deaths

t

t

t
tt-1

(a) Dynamic Bayesian Network

smokes(bob)

cancer(bob)

deaths

1

1

1

smokes(bob)

cancer(bob)

deaths

2

2

2

smokes(bob)

cancer(bob)

deaths

3

3

3

(b) Unrolled Bayesian Network

Figure 2: Smokers domain with time dependencies (Example 8). Light grey boxes indicate
that the variables share the same time index.

get information about the number of deaths for each time step, and want to estimate the
number of smokers per time step.

This task can be solved by viewing the DBN as standard graphical model (known as “un-
rolling”), see Figure 2b. Unrolling requires a finite observation sequence, and the sequence
must be completely known to construct the unrolled network. However, for applications like
sensor data processing, the observations sequence is of arbitrary length, and the observa-
tion sequence is not completely present at the beginning. Instead, the inference algorithm
must be able to process the observations “as they arrive”, without having access to “later”
observations.

Efficient algorithms for Bayesian filtering estimate the hidden state sequence x1, . . . , xt
recursively over time, given the observation sequence y1, . . . , yt. To do so, the DBN is
factored into a transition model and an observation model. The transition model p(xt+1 |
xt) describes how the hidden state at time t influences the hidden state at time t + 1.
The observation model p(yt | xt) describes how the hidden state at time t influences the
observation at the same time step. The inference procedure is usually decomposed into two
steps: In the prediction, the state distribution for the next time step is calculated, based on
the state distribution at the current time and the transition model, and by marginalizing
over the current state:

p(xt+1 |y1:t) =

∫
p(xt |y1:t) p(xt+1 |xt) dxt (3)

Afterwards, the predicted state is updated, based on the observation:

p(xt+1 |y1:t+1) =
p(yt+1 |xt+1) p(xt+1 |y1:t)

p(yt+1 |y1:t)
(4)

Two well-known algorithms that implement this framework are the Kalman filter and the
Hidden Markov Model. They can only be used for linear-gaussian models or models with
finite state spaces, respectively. In general, solving these equations exactly is infeasible.
A popular Monte-Carlo algorithm for Bayesian filtering is the particle filter (Doucet, de
Freitas, & Gordon, 2001). The idea is to approximate the distribution p(x1:t | y1:t) (the
belief state) by a set of weighted samples. The predict and update steps are performed on
these particles. That is, a new set of particles is obtained by sampling from the transition

797



Lüdtke, Schröder, Krüger, Bader, & Kirste

s(a) = 0
s(b) = 0
c(a) = 1
c(b) = 0
d     = 1

t t+1

s(a) = 1
s(b) = 0
c(a) = 0
c(b) = 1
d     = 2

Figure 3: Predict step of the particle filter for Example 8. The example shows two particles
at time t. Each particle has three successor states, leading to six particles at time t + 1.
The update step is not shown. Light grey boxes indicate the time index.

smokes(X)

cancer(X)

deaths

X: {alice,bob}

β

α

(a) Parfactor graph.

s(X) c(X) β

0 0 β(00)

0 1 β(01)

1 0 β(10)

1 1 β(11)

(b) Parfactor β.

c(X) d α

0 0 α(00)

0 1 α(01)

1 0 α(10)

1 1 α(11)

(c) Parfactor α.

Figure 4: Parfactor graph for Example 4, using par-RVs and plate notation (Buntine, 1994).

distribution, conditioned on the current particles. Afterwards, each particle is updated
according to the observation model. The algorithm is visualized in Figure 3.

The state space explosion problem is also evident in many dynamic models: In Example
8, the number of possible states per time step increases exponentially with the number of
people.

2.3 Lifted Graphical Models

As discussed above, graphical models for situations that contain redundancies exhibit a
symmetrical structure (cf. Example 4). Lifted graphical models (also known as relational
graphical models) provide a more compact syntactic representation for these cases. They
provide a basis for lifted inference algorithms that allow to perform inference directly on this
compact syntactic representation, avoiding redundant computations. In the following, we
will introduce parfactor graphs, one of the most common lifted graphical model formalisms.

798



State-Space Abstractions for Probabilistic Inference

Parfactor graphs have been introduced by Poole (2003). They are motivated by the
redundancies that can occur in factor graphs. The idea of parfactor graphs is to represent
the redundant factors (e.g. the factors β1 and β2 in Example 4) only once.

Parfactor graphs achieve this by extending factor graphs by a first-order language. Fac-
tor graphs are related to parfactor graphs in the same way that propositional logic is related
to first-order logic. A parametric random variable (par-RV) represents a set of random vari-
ables, one for each assignment of constants the parameters. The domain of each parameter
is called population (i.e. a set of individuals). For example, if X is a parameter with the
domain {a, b}, then s(X) is a par-RV, and the parameter assignments s(a) and s(b) both
represent a random variable. We call these RVs the groundings of the par-RV.

A parametric factor, or parfactor, is a function that maps par-RV assignments to the
non-negative reals. For discrete RVs, the parfactor can be represented as a table. For
example, the parfactor β of Example 4 is shown in Figure 4b. Note that the factor is not
indexed by the parameters of the par-RVs, i.e. the parfactor does not depend on the specific
parameter assignments of the par-RVs. A parfactor represents a set of factors, one for
each grounding of the par-RVs. For example, the parfactor β(s(X), c(X)) represents the
two factors β1(s(a), c(a)) and β2(s(b), c(b)). These factors are called the groundings of the
parfactor.

A set of par-RVs and parfactors can be represented by a parfactor graph. The parfactor
graph for Example 4 is shown in Figure 4 (using plate notation, Buntine, 1994). A parfactor
graph defines a joint probability distribution as the normalized product of all groundings
of the parfactors. However, the joint distribution can also be calculated directly, without
grounding all parfactors: Parfactors with the same truth assignment of variables need to
be evaluated only once, raised to the power of the number of corresponding factors. For
example, the probability calculated in Equation 2 can be calculated as:

P(s(a)=1, s(b)=1, c(a)=0, c(b)=0, d=0)

=Z−1 β1(s(a)=1, c(a)=0) β2(s(b)=1, c(b)=0) α1(d=0, c(a)=0) α2(d=0, c(b)=0)

=Z−1
∏

X∈{a,b}

β(s(X)=1, c(X)=0) α(d=0, c(X)=0)

=Z−1 β(s(X)=1, c(X)=0)
2
α(d=0, c(X)=0)

2

(5)

Compare this with Equation 2, where the factors β1 and β2 are evaluated and multiplied
separately. This example shows that inference operations can exploit the compact syntactic
representation. Probabilistic inference algorithms that directly work on this representation
are presented in Section 5.1.

Multiple other lifted graphical model formalisms have been devised. A popular formal-
ism are Markov logic networks (MLNs) (Richardson & Domingos, 2006). MLNs are an
extension of first-order logic with means to express uncertainty by assigning each first-order
formula a weight that describes the tendency of the formula being violated. Other for-
malisms are based on paradigms like probabilistic logic programming (Kersting & De Raedt,
2007; Fierens, 2010), or object orientation (Koller & Pfeffer, 1997; Torti, Wuillemin, & Gon-
zales, 2010). A detailed description of representational formalisms is provided by Kimmig
et al. (2015). In general, a main difference between these formalisms is whether they are
directed or undirected. Directed models can be interpreted in terms of conditional probabil-

799



Lüdtke, Schröder, Krüger, Bader, & Kirste

ities. The weights of undirected models cannot be interpreted locally, all weights together
define the probabilistic model. In contrast to propositional graphical models, directed and
undirected lifted models cannot be translated into each other in general. Differences of the
representation formalisms are discussed by De Raedt et al. (2016).

In this review, we focus on parfactor graphs, as they are easy to understand and allow
a simple description of the exemplary lifted inference algorithms shown in Section 5.1 to
illustrate the basic idea of lifted inference.

2.4 Rao-Blackwellization

Apart from lifted graphical models, we consider a second type of state space abstraction
in this review, called Rao-Blackwellization. Lifted graphical models exploit the fact that
multiple RVs are similar, i.e. symmetries between multiple RVs. Opposed to that, Rao-
Blackwellization exploits the fact that the (conditional) distribution of several (often, but
not necessarily continuous) RVs follows a certain regular structure. The idea is to represent
such a distribution not explicitly (e.g. as a table of all possible values or a set of samples),
but parametrically. For example, consider a bivariate distribution p(a, b) = p(a) p(b|a).
Suppose that the conditional distribution p(b|a) has some regular structure (e.g. it follows
a normal distribution).

For storing and manipulating this parametric function, the function needs to have a
finite representation, like the string “N (0, 1)”4. The semantics of this syntactic structure
is the normal distribution with mean 0 and variance 1.

A well-known use of Rao-Blackwellization is the Rao-Blackwellized particle filter (RBPF)
(Doucet, De Freitas, Murphy, & Russell, 2000). In a RBPF, the state is decomposed, such
that some RVs can be represented parametrically. The transition and observation model
of the RBPF have to be able to maintain this representation appropriately, i.e. it must
be possible to represent the posterior distribution (the distribution after performing one
predict-update step) of these variables parametrically again. This means that fewer particles
are necessary to represent the belief state, because a distribution over fewer variables needs
to be represented explicitly by samples. Thus, the belief state can be represented more
compactly. The Kalman filter can be seen as the extreme case of a RBPF, where all variables
are represented parametrically (by a normal distribution), and the transition model is linear.
Note that Rao-Blackwellization is orthogonal to lifted graphical models: Lifted graphical
models represent graphical models with symmetrical variables compactly by grouping them,
Rao-Blackwellization represents the distribution of a single or multiple variables compactly.

Example 9. Suppose that we do not want to model whether or not a death occurred in
Example 4, but the number nt of deaths, i.e. n is an N-valued RV, and we have a single
factor α on all c(X) RVs and the n RV. Instead of representing the factor α explicitly by a
table of exponential size, we can represent the number of deaths by a binomial distribution
of the number #P (c(P )=1) of people with cancer: n ∼ binom(#P (c(P )=1), pd). This rep-
resentation is much smaller (constant size in the number of c(X) RVs). However, whenever
the factor α needs to be manipulated (i.e. marginalizing RVs), this either has to be done

4. If we only consider normal distributions, we could also represent it by a pair of reals. However, if we
allow arbitrary parametric functions (that can have different numbers of parameters), a more flexible
structure like a string is required.

800



State-Space Abstractions for Probabilistic Inference

(a) Group Variables. Equivalent vari-
ables represented as a group (“lifted in-
ference”).

● ●● ● ●● ●● ● ●● ●● ● ●● ●●●● ●● ●●● ● ●●●● ●●● ● ● ●● ●● ●

(b) Parameterization. The distribution
of some state variables is represented
parametrically, instead of explicitly by
samples.

(c) Splitting. An operation that obtains a
more specific representation.

(d) Merging. An operation that obtains a
more abstract representation.

(e) Identification. The value of single
RVs can be observed individually.

(f) Online. For each time t, a query
is answered, each depending on current
observations and estimate at time t− 1.

Figure 5: Schematic depiction of properties of the algorithmic approaches.

on the parametric level (which may not be trivial), or the representation as a table has to
be generated (which we try to avoid due to the exponential size of the table). ◦

In general, such a parametric representation is only possible for certain distributions,
more specifically distributions that can be represented syntactically by a closed form math-
ematical expression.

3. Properties of Inference Algorithms

In the following, we present six properties that characterize the algorithms we investigate
in this review. They have been obtained by analyzing the application domains of the
approaches retrieved by the systematic literature review described in Section 4. Thus, they

801



Lüdtke, Schröder, Krüger, Bader, & Kirste

are a result of the systematic review, and one of the major contributions of this review. We
chose to present them at this point in the paper because they are also used as a basis for
analyzing and discussing the retrieved papers. They are depicted schematically in Figure
5.

Can the algorithm handle equivalent RVs efficiently as a group? (Group Vari-
ables) The first two properties characterize the type of abstraction that the algorithms are
using. In Section 2, we presented two abstraction approaches: The first one groups multiple
equivalent variables and reasons over them as a group – as for example done prominently
in lifted graphical models. For example, the RVs c(a) and c(b), as well as the corresponding
factors β1 and β2 in Example 4 have been grouped.

Can the algorithm handle distributions at the parametric level? (Parameter-
ization) The second type of abstraction represents a distribution compactly by noting
that the distribution follows some parametric form, and that it is sufficient to store and
manipulate the parameters (which are typically far less than the enumeration of all values).
The Kalman filter is a good example for this concept. The parametric distributions can also
make up only some factors of the joint distribution, like in the Rao-Blackwellized particle
filter, or it might be necessary to consider mixtures of parametric functions. In Example 4,
the α factor could be represented parametrically.

Can the algorithm obtain a more specific distribution representation? (Split-
ting) We identify two basic operations that can be performed by an inference algorithm to
modify the degree of abstraction: Merging and Splitting. Splitting is the process of obtain-
ing a more specific (propositional) representation from an abstract representation (in logic,
this operation is known as grounding). Splitting operations are necessary for incorporating
observations: Evidence about an RV makes this RV distinct from other RVs that are part of
the same par-RV, and thus requires a split of this par-RV and the corresponding parfactors.
It can also be necessary to ensure the applicability of certain inference operations (e.g. the
inversion elimination step in first-order variable elimination requires certain conditions that
are ensured by splitting). In Example 4, if we obtain the information that Bob smokes, but
we have no information whether Alice smokes, the corresponding par-RV s(X) cannot be
maintained any longer and has to be split into separate RVs s(a) and s(b).

Can the algorithm obtain a more abstract distribution representation? (Merg-
ing) Merging (or lifting) is the reverse process to splitting: Obtaining a more abstract
or aggregated representation, by grouping equivalent variables. For example, grouping the
RVs s(a) and s(b) into the par-RV s(X) is a merging operation. Merging is necessary in all
domains where either the problem is given in a propositional form, or domains where the
problem degenerates over time by repeated splitting operations. Splitting and merging only
change the representation of a distribution, they do not change the distribution itself (or
at least, when approximate methods are used, they try to change it as little as possible).

Can the algorithm handle information about individuals? (Identification) In
lifted models, a common problem is how information about single individuals (i.e. single
RVs) is handled. For example, suppose that in the parfactor graph given in Figure 4, we are
provided with the evidence that Alice has cancer. In this case, the evidence can be incor-
porated into the model by splitting the representation, and handling Alice differently from

802



State-Space Abstractions for Probabilistic Inference

the rest of the population. Not all algorithms handle identifying information by splitting.
For example, when the model is given in propositional form and merging operations are
applied to it, the evidence can be considered there, leaving Alice as a special case. Some
methods do not allow to process evidence about individuals at all, like Multiset Rewriting
Systems.

Can the algorithm perform inference in dynamic domains? (Online) This prop-
erty describes the difference between probabilistic inference and Bayesian filtering. Proba-
bilistic inference answers a single query (i.e. it estimates the state of hidden variables) for a
single point in time, given evidence. Bayesian Filtering answers a sequence of queries, one
for each time step. Each query depends on the current observation, and the distribution of
the hidden variables of the previous point in time. In general, the observation sequence is
not known in advance, but more observations are obtained as time passes. As explained in
Section 2.2, such problems cannot be solved efficiently with non-sequential inference algo-
rithms. Instead, the inference algorithms require a property that we call online inference:
Calculating the posterior probability in a sequential fashion, with a time complexity of each
step that does not depend on the total sequence length. This way, observation sequences
of indeterminate length can be processed by the algorithm.

The properties describe the application domain of the approaches: Two approaches
that are similar regarding these properties can (in principle) be applied to the same class
of problems, while exploiting some symmetry of the domain. We want to point out that
only two of the properties describe state space abstraction methods – the others describe
transformations between abstract and explicit representation, and further properties that
are required by some domains. They are chosen in such a way that they are meaningful for
all of the approaches considered in this review5 – but for each resulting class of approaches,
we incorporate a discussion of group-specific properties, whenever necessary. Note that the
properties do not describe complexity classes – in contrast to the classification proposed by
Jaeger and Van den Broeck (2012) (see Appendix A), which is, however, only meaningful
for a subset of all approaches, namely lifted inference algorithms. That is, two approaches
that fall in the same group can still be different regarding the subproblems for which they
are tractable.

4. Systematic Literature Review

In the following, we describe the search and evaluation methods used in this systematic
review. As systematic reviews are not very common in computer science, this section starts
by briefly introducing the systematic review methodology. Afterwards, we describe how
each of the steps has been realized for this review.

A systematic literature review aims at finding all relevant work addressing a specific
research problem by performing a reproducible and objective process. Compared to an
unstructured review, a systematic review gives a broader, unbiased view of the topic. Un-

5. For example, Lifted Inference algorithms can be distinguished based on their algorithmic ideas (search-
based, graph manipulation-based, MCMC-based etc.), the representation formalism, etc., but such a
distinction is (1) not meaningful for some approaches, e.g. for Multiset Rewriting Systems, and (2) does
not characterize the problem domain, as intended by us.

803



Lüdtke, Schröder, Krüger, Bader, & Kirste

structured reviews have a higher chance to miss out contributions, either because they have
not been found or because of narrative distortion, the observations that the author of a
review is more likely to include a paper if it supports the argumentation structure of the
review. A systematic review consists of the following steps (Kitchenham, 2004): (1) define
the research question, (2) define the search procedure, (3) identification of research items
(papers), (4) paper selection, (5) paper analysis. The PRISMA statement (Moher et al.,
2009) is an established guideline that describes which items should be reported in a system-
atic review. In this review, we try to follow this guideline whenever possible. However, the
PRISMA statement is directed towards quantitative analysis of medical research, whereas
the present review is more concerned with qualitative aspects, namely assessing solution
strategies to a specific problem. Therefore, some items could not be reported.

The research question (of the systematic review, not to be confused with the research
question of the analyzed papers) typically consists of the following parts: (1) What research
exist that solve problem P? (2) How are the solutions of P related to each other? (3) What
further research topics arise from the existing research? After the research question is made
clear, the search procedure to answer this question is defined. This includes the definition
of search terms as well as the publication databases that are used for the literature search.
A common strategy to identify search terms is to use a set of pilot papers that are known
to be relevant, based on prior knowledge of the field. These pilot papers then guide the
definition of the search terms, by making sure that all of them are retrieved.

Based on the search terms, the selected publication databases are searched and a list of
initial papers is retrieved. These papers are then examined to assess their relevance to the
research question, based on predefined inclusion and exclusion criteria. This step is per-
formed by only considering the title, abstract and keywords of each paper. Afterwards, the
full-text of the remaining papers is retrieved and their relevance regarding the inclusion and
exclusion criteria is examined once again. The remaining papers are called primary papers.
The primary papers are then analyzed with respect to the research question. This includes
finding the underlying structure and relationship of the approaches and identifying possible
research gaps. In the following, we describe how each of the steps has been implemented
for this review.

4.1 Research Question

As described in the introduction, this review aims at giving an overview over solutions
to the state space explosion problem from different research fields. More specifically, we
are concerned with probabilistic inference algorithms that exploit state space abstractions.
Our goal is to identify the common underlying structure of the approaches: What are
common properties of the algorithms, and how does this reflect their capabilities, i.e. their
applicability to different problem instances.

More formally, these questions can be stated as follows:

Q1 What methods exist to overcome the state space explosion problem in probabilistic
inference?

Q2 What types of problems can different methods be applied to, and how is this reflected
by the properties of the methods?

804



State-Space Abstractions for Probabilistic Inference

First term set

lifted
first order
higher order
symmetry
permutation
multiset

Second term set

bayesian inference
probabilistic inference
probabilistic reasoning
graphical model
bayesian network
state space model
recursive bayesian estimation
bayesian filtering
particle filter
hidden markov model
probabilistic multiset rewriting
multi-agent
multi-target
multi-object
activity recognition
plan recognition

Table 1: Search terms used to construct search query.

Q3 How are these methods related to each other, i.e. are similar concepts used in multiple
approaches?

Q4 Which topics for future research can be derived?

4.2 Search Procedure

For the literature search, we used the publication databases ScienceDirect, IEEE Xplore,
ACM digital library, and Scopus. These databases were chosen based on their relevance for
computer science publications, and the possibility to perform a search only on title, abstract
and keywords of a publication6. Our definition of search terms has been based on 10 pilot
papers (Barbuti et al., 2011; de Salvo Braz et al., 2005; Gogate & Domingos, 2016; Huang
et al., 2009b; Kersting, 2012; Kwiatkowska et al., 2006; Milch et al., 2008; Niepert, 2012;
Poole, 2003; Singla & Domingos, 2008) that were the result of an explorative investigation
of the literature. The search terms were defined to make sure that all of these papers have
been retrieved. However, they were formulated in a general way and do not aim at specific
papers or methods, to retrieve as many papers as possible that are relevant for the scope
of this review. The search terms have been iteratively refined during the search process,
by adding search terms to the set whenever we discovered literature that we considered
relevant, and the field has not been fully covered by the current terms. The resulting terms
are shown in Table 1.

The first term set describes possible state space abstractions, the second term set de-
scribes the domain where the abstractions are applied, or the research area where such

6. Another common publication database, SpringerLink, was not used because it only allowed full text
searches.

805



Lüdtke, Schröder, Krüger, Bader, & Kirste

abstractions are used. We constructed the query by connecting all terms in a set with logi-
cal OR and both sets with logical AND. This query describes all papers where at least one
of the terms of the first set and at least one of the elements of the second set occurs. The
search has been performed on the title, keywords and abstract of the publications. This
way, the number of results stayed manageable, and we still retrieved all papers where any
of the terms occurred prominently (i.e. that might be relevant).

4.3 Paper Selection

The search results have been assessed based on the following inclusion criteria.

I1 The paper is written in English.

I2 The paper is peer-reviewed.

I3 The full text of the paper is available via IEEExplore, the ACM Digital Library,
SpringerLink, ScienceDirect, or other sources like the author’s website.

I4 The paper includes a novel algorithmic contribution.

I5 The paper is considering a probabilistic model.

I6 The paper presents an inference algorithm for the probabilistic model.

I7 The paper presents an abstract representation of the state space or a method to reduce
the state space.

I8 The inference algorithm exploits the state space abstraction.

Criteria I1-I3 make sure that the analysis of the papers is feasible for us. This review
focuses on technical approaches to handle the state space explosion problem. Therefore,
I4 ensures that application and review papers are excluded. Criterion I5 implies that
only approaches that model a probability distribution have been considered. Reduction
methods in deterministic settings, like first-order resolution, or state space abstraction
in search problems (Holte & Fan, 2015), were excluded by this criterion: Although they
might contain interesting ideas on how a state space can be abstractly represented, they
cannot be applied to probabilistic models in a straightforward manner. For I6, we defined
probabilistic inference as calculating a posterior distribution, given a prior distribution.
This definition also includes inference algorithms for dynamic domains, that might perform
this step repeatedly. Criteria I7 and I8 ensure that only approaches that exploit a state
space reduction method were included. Specifically, approaches that perform inference by
grounding the abstract representation were not included, for example approaches known
as knowledge-based model construction. The rationale is that this review is focused on
inference algorithms that actually exploit the lifted representation, i.e. directly reason in
the lifted domain.

Paper inclusion/exclusion used a three-step process. At first, only the title, abstract,
and keywords of each publication have been examined. The full-text of the remaining papers
has been examined in more detail. By examining the references in the remaining papers,
we identified additional relevant papers (see flow diagram in Figure 6).

806



State-Space Abstractions for Probabilistic Inference

Figure 6: Flow Diagram of paper selection, oriented on PRISMA statement (Moher et al.,
2009).

4.4 Analysis Procedure

We analyzed the remaining papers in order to answer research questions Q1 – Q4. The
analysis is based on the properties of inference algorithms defined in Section 3, i.e. these
properties have been assessed for all approaches described in the retrieved papers. Af-
terwards, we performed a clustering of the approaches based on their manifestation of the
properties, i.e. all approaches having the same manifestation of the properties form a cluster
(or group). These groups thus define all approaches that behave similar from an application
point of view, i.e. all approaches from the same group can be applied in the same problem
domain (although different subclasses of the domain may be solvable efficiently).

4.5 Results

This section gives quantitative results about the retrieved papers. From the 4503 initial
records that have been retrieved by the database search, 4235 have been excluded by only
examining their title, keywords, and abstract. The relevance of the remaining 268 papers
(regarding the inclusion criteria) has been examined based on the full-text. 195 of those
papers have been excluded, based on the inclusion criteria as shown in Table 2. When
multiple reasons apply to one paper, it is grouped under the the first reason, based on the
order of the inclusion criteria. The high number of papers excluded because of I6 shows
that the query terms have been chosen very broadly, such that also a great number of
papers that are not concerned with probabilistic inference have been retrieved. Most of the
papers excluded because of I8 are concerned with knowledge-based model construction, i.e.
propositional inference in lifted models, a research field much older than lifted inference. In
Appendix B, it is further discussed why specific approaches that might seem relevant have
not been included.

807



Lüdtke, Schröder, Krüger, Bader, & Kirste

0

5

10

15

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

N
o.

 p
ap

er
s

group

Top−down LI

Bottom−up LI

Continuous Inference

Logical Particle Filter

Relational Particle Filter

Relational Kalman Filter

Data Association

Prob. Multiset Rewriting

Figure 7: Number of examined papers per year. The papers have been retrieved from Jan-
uary to February 2017. The groups are based on the analysis and clustering of approaches,
as described in the text.

Crit. # Explanation

I1 3 Paper not written in English
I2 0 Full-text not available
I3 9 Paper not peer reviewed
I4 31 Paper does not contain a novel algorithmic contribution (e.g. application and review

papers)
I5 11 Model is not probabilistic (e.g. inference in first-order logic)
I6 77 No inference algorithm for probabilistic model (e.g. because paper presents an al-

gorithm for learning the model structure, or something completely different, like
planning or model checking)

I7 17 No lifted representation of probabilistic model (e.g. propositional models)
I8 46 Inference algorithm does not exploit abstract representation (e.g. it relies on a

complete grounding)

Table 2: Reasons for excluding 195 of the 268 papers that remained after examining title,
keywords and abstract of the 4503 initial records.

The remaining 73 papers were considered relevant and included into this review. The
references of these papers were examined, which lead to the identification of another 43 rel-
evant papers. Thus, 116 papers have been included in this review in total. This corresponds
to a precision of 73/4503 = 1.6% and a recall of 73/116 = 62.9% of the initial query. These
low values point to the fact that the terminology in the field is not very consistent.

808



State-Space Abstractions for Probabilistic Inference

O
n

li
n

e

Id
en

ti
fi

ca
ti

o
n

G
ro

u
p

V
a
ri

a
b

le
s

P
ar

am
et

ri
za

ti
o
n

S
p

li
tt

in
g

M
er

gi
n

g

N
o
.

P
ap

er
s

N
a
m

e

S
ec

ti
on

� � � � � - 50 LI Top-down 6.1.1
� � � � - � 31 LI Bottom-up 6.1.2
� � � � � � 5 Continuous Inference 6.2
� � � � - - 7 Multiset Rewriting 6.3
� � � � � � 1 Logical Particle Filter 6.4
� � � � � � 3 Relational Particle Filter 6.5
� � � � � � 3 Relational Kalman Filter 6.6
� � � � - - 16 Data Association 6.7

Table 3: Groups of inference approaches, based on the properties defined in Section 3. �:
has property, �: does not have property, -: property not necessary/not meaningful.

The properties of the approaches presented in these 116 papers have been evaluated,
as described in Section 4.4 (thus answering Q1). We then clustered the approaches, as
described in Section 4.4: All approaches having the same manifestation of the properties
have been put into the same group. With this process, we found eight distinct groups. We
assigned names to the groups that seemed appropriate to us. The groups are shown in
Table 3. The complete list of all papers per group is shown in Appendix C. We want to
emphasize that the groups have not been predefined, but they are a result of the individual
analysis of each paper.

As can be seen from Table 3, the “lifted inference” groups contain by far the most
papers. This shows that lifted inference is a very active research area. The other groups
contain fewer papers. One reason may be that they belong to a larger research area (for
example, there are numerous papers on data association in general), but only a small subset
of the approaches employ state space abstraction.

Figure 7 shows the chronological development of the research area. Although the first
lifted inference paper was published in 2003, the majority of lifted inference papers has been
published after 2008. The drop in the total number of included papers after 2014 may be
due to the fact that not all papers form 2015 and 2016 are properly indexed at the used
publication databases at the time of retrieving the papers (January – February 2017).

5. Categories of Inference Algorithms

As discussed in Section 4.5, we defined groups or classes of approaches that consist of all
approaches that are similar regarding the six properties defined in Section 4.4 (shown in
Tables 3 and Appendix C). In the following, we briefly describe the common algorithmic
ideas that are shared by all approaches in the same group.

809



Lüdtke, Schröder, Krüger, Bader, & Kirste

5.1 Lifted Inference

Lifted inference algorithms are concerned with probabilistic inference in lifted graphical
models (Section 2.3). They aim at performing the inference directly in the first-order do-
main, without grounding the lifted graphical model, whenever possible. By maintaining
the lifted representation, they can exploit the symmetries and redundancies that are in-
herent to these representations. More specifically, lifted inference algorithm can be seen as
exploiting exchangeability in the model (Niepert & Van den Broeck, 2014): They exploit
the fact that in lifted graphical models, it is not necessary to know the specific RVs having
a certain value, but only the number of RVs having each value. In general, lifted inference
algorithms can be viewed as performing the following steps: (1) Decompose the inference
problem into similar, independent subproblems, (2) solve one representative instance, (3)
count the number of instances (instead of generating all instances) (Taghipour, Fierens,
Van Den Broeck, Davis, & Blockeel, 2013c).

How these steps are implemented is specific to the different lifted inference algorithms.
As a high-level distinction, we distinguish between top-down and bottom-up lifted inference,
following Kersting (2012). The difference of these approaches is the input they receive:
Top-down lifted inference algorithms start with a lifted graphical model, while bottom-up
algorithms receive a propositional model as input (thus, they are different in step (1) – the
generation of subproblems). From the algorithmic viewpoint, this distinction is not always
very precise, as it is just a matter of preprocessing: For several algorithms, both top-down
and bottom-up versions exist – for example, lifted belief propagation has top-down (Singla &
Domingos, 2008) and bottom-up (Kersting, Ahmadi, & Natarajan, 2009) variants. However,
as this review is explicitly concerned with the problem class each approach can process, we
still consider bottom-up/top-down a meaningful distinction – it is also directly reflected by
the properties (Section 3) of the algorithms: Top-down algorithms apply splitting operations,
while bottom-up algorithms need to perform merging operations on the propositional model
(but never need to apply splitting operations)7. Top-down algorithms, on the other hand,
never apply merging operations (i.e. they never explicitly search exchangeable RVs and
group them).

We want to point out that lifted inference problems and algorithms can be structured
further, as proposed by Jaeger and Van den Broeck (2012): Broadly speaking, the idea is
to classify lifted probabilistic models by the “complexity” of their structure (in terms of
numbers of parameters of par-RVs and parfactors). For some of the resulting classes, it can
be shown that inference can always be performed in time that is polynomial in the domain
size of the model, while in general, no such guarantees can be given. In Appendix A, we
give an overview over these problem classes. However, as an in-depth discussion of lifted
inference is not the focus of this review, we do not discuss this classification in detail here.
From the high-level point of view of this review, all lifted inference algorithms are concerned
with a similar problem: Efficient inference in graphical models containing symmetries. For
a more in-depth discussion, we refer to the review papers of Kersting (2012) and Kimmig
et al. (2015), as well as the books by De Raedt et al. (2016) and Getoor and Taskar (2007).

7. Search-based algorithms are also considered top-down. They branch on the value of the (par-)RVs,
resulting in a simpler inference problem in each branch. We consider this branching a form of splitting.

810



State-Space Abstractions for Probabilistic Inference

In the following, we explain the general idea of some prominent lifted inference algorithms
(first-order variable elimination, lifted recursive conditioning, lifted belief propagation).

5.1.1 Top-Down Lifted Inference

First-order Variable Elimination Poole (2003) proposed the first ideas related to lifted
inference, in an algorithm known as first-order variable elimination (FOVE). The idea is to
perform variable elimination directly on a parfactor graph, eliminating entire par-RVs in
one step, instead of single RVs.

Example 10. Consider the graphical model of Example 4 and the query P(s(X), d=1).
Remember that inference in the propositional model (with X = {a, b}) requires two elimi-
nation steps, the elimination of c(a) and c(b) (Example 5). In the parfactor graph (Figure
4), we can in principle directly eliminate the par-RV c(X) by multiplying the parfactors β
and α and marginalizing c(X) to get a factor

f(s(X), d) =
∑
v

α(c(X)=v, d) β(s(X), c(X)=v)

which can be represented by the table

s(X) d f

0 0 β(00) α(00) + β(01) α(10)

0 1 β(00) α(01) + β(01) α(11)

...
...

...

This factor directly leads to the query solution P(s(X), d=1) = f(s(X), d=1). ◦

The elimination step performed for eliminating c(X) in the example is called inversion
elimination. Not all cases can be handled this way: For example, consider the case of
eliminating d: In the ground factor graph, eliminating d means we need to multiply all
αi factors, resulting in a factor of all c(X), i.e. a factor that has exponential size with
respect to the domain. In general, inversion elimination can only be applied when the
parameters that appear in the par-RV to be eliminated are the same as the parameters
in each parfactor depending on this par-RV. Thus, for eliminating d, inversion elimination
cannot be applied, and FOVE as proposed by Poole (2003) needs to ground c(X) and create
the the exponentially large factor.

However, the RV d (whether or not a death occurred last year) might only depend
on the number of people having cancer, not their specific identities. Thus, it is sufficient
that the resulting factor considers the number of instances of c(X) that are true. This
was first realized by de Salvo Braz et al. (2005), who presented an elimination operator
that can handle this case. Later, Milch et al. (2008) proposed an explicit representation of
such factors, called counting formulae, that have later been generalized by Taghipour et al.
(2014). Additional elimination rules that make FOVE applicable to more cases without
grounding are provided by Apsel and Brafman (2011), and Taghipour et al. (2014, 2013b).
Using these rules, the class FO2 (inference problems containing at most two parameters

811



Lüdtke, Schröder, Krüger, Bader, & Kirste

per parfactor, see Appendix A for more details) can always be solved in polynomial time
in the parameter domain size. The works of Taghipour et al. (2012, 2013a) allow for more
general constraints in the parfactors.

Lifted Recursive Conditioning Approaches based on variable elimination have the
problem that they need to represent the intermediate results of the elimination operations,
that can become increasingly complex during inference. Recently, search-based lifted infer-
ence algorithms have emerged, that do not manipulate the representation of the parfactors
directly, but branch on the values of par-RVs and combine the results of each branch ap-
propriately. The convenient property of these algorithms is that the intermediate results
(partially instantiated lifted graphical models) become simpler with each operation, instead
of more complex.

For example, lifted recursive conditioning (Poole, Bacchus, & Kisynski, 2011) works
similar to recursive conditioning (see Section 2.1.2), but branches on the values of par-
RVs instead of (propositional) RVs. The algorithm exploits a similar idea as counting
elimination: There are cases where it is sufficient to branch on the number of RVs having
each possible value, instead of all assignments of the RVs. An extension of lifted recursive
conditioning (Kazemi, Kimmig, Van den Broeck, & Poole, 2016) is able to solve all problems
in the class S2RU in polynomial time – which is currently one of the largest classes where
tractable inference can be guaranteed (see Appendix A for details).

Example 11. Consider the graphical model of Example 4 and the query P(s(X), d=1).
At the beginning, only d=1 is instantiated and the algorithm needs to branch. Instead of
branching on the values of a single RV, it creates one branch for each histogram of possible
values of the instances of a par-RV. In this example, the algorithm chooses c(X) to branch,
leading to three recursive calls of the algorithm, where 0, 1 or 2 instances of c(X) are true,
respectively. In each branch, the factor α can be evaluated. For example, in the branch
where 2 instances of c(X) are true, it is evaluated as α(d=1, c(X)=1)

2
. Afterwards, a similar

branch is performed on s(X). Note that the result of each branch needs to be multiplied by(
n
i

)
(where i is the number of true instance in the branch, and n is the population size), as

this is the number of equivalent ground assignments represented by this branch. Compared
to recursive conditioning, where we need to branch on each (ground) RV, fewer branches
need to be performed. ◦

Several other search-based algorithms have been devised. The approaches of Van Den
Broeck et al. (2011), and Gogate and Domingos (2016) transform the problem into a
weighted model counting problem on a first-order logical theory (WFOMC): Given a first-
order logical theory T and positive and negative weight functions w and w for each predicate.
WFOMC is the problem of computing∑

I|=T

∏
a∈I

w(Pred(a))
∏

a∈HB(T )\I

w(Pred(a)) (6)

where I is a model of T , HB(T ) is the Herbrand base of T and Pred is the predicate of
an atom a. Note that the weighted theory defined above is different form an MLN, where
a weight is assigned to each formula, not to each predicate. Given a parfactor graph, one
can construct a weighted theory such that the weighted model count is the probability of

812



State-Space Abstractions for Probabilistic Inference

some evidence in the factor graph. The basic idea is that each model relates to a value
assignment of the RVs that is consistent with the evidence. WFOMC can be solved directly
by a search-based algorithm (Gogate & Domingos, 2016), or by compilation into a first-order
arithmetic circuit (Van Den Broeck et al., 2011).

Jha et al. (2010) propose a rewriting-rule based inference algorithm. These rules take
an MLN and express it as a combination of multiple simpler MLNs until the MLNs are
trivial such that the solution can be computed directly.

Probabilistic Databases Ideas related to lifted inference arose independently in the
probabilistic database community. Probabilistic databases are relational databases where
each tuple is a boolean random variable, and database queries output a probability distribu-
tion of possible answers (instead of a single answer, as in conventional relational databases).
Thus, query evaluation in a probabilistic database is a probabilistic inference task. More
details on probabilistic databases and query evaluation are provided in the book by Suciu,
Olteanu, Ré, and Koch (2011).

Answering queries in probabilistic databases corresponds to an asymmetric weighted
model counting task, where weights of predicates can vary, depending on the domain con-
stant (as compared to symmetrical WFOMC defined above, where each predicate always
has the same weight). Still, symmetries can be present, allowing to use methods closely
related to (bottom-up) lifted inference algorithms (Sen, Deshpande, & Getoor, 2008). Dalvi
and Suciu (2007) present an algorithm that rewrites a probabilistic database query in terms
of combinations of simpler queries, until trivial queries can be answered directly. This
approach is conceptually similar to search-based lifted inference algorithms like lifted recur-
sive conditioning (Poole et al., 2011). Typically, probabilistic databases assume that tuples
are independent, which can make inference much easier in certain cases. Jha and Suciu
(2012) show how correlations can be modeled in tuple-independent databases, allowing to
use lifted methods devised for tuple-independent databases (e.g., Dalvi & Suciu, 2007) in a
more general setting. Dylla, Miliaraki, and Theobald (2013) devise an algorithm for find-
ing the k most probable query results according to their marginal probabilities, without
the need to first materialize all answer candidates. The symmetrical case of WFOMC has
also been considered by the probabilistic database community, leading to new insights on
domain-liftable inference problem classes (Beame, Van den Broeck, Gribkoff, & Suciu, 2015)
– outlined in Appendix A.

5.1.2 Bottom-Up Lifted Inference

As opposed to top-down lifted inference algorithms, bottom-up approaches take a propo-
sitional model and perform merging operations to obtain a first-order structure that can
be exploited. Thus, bottom-up approaches are potentially applicable to a larger class of
problems, as they do not require the model to be in lifted form (or to even contain exact
symmetries, instead they can approximate the model by a symmetric one). However, per-
forming merging operations is an additional overhead: The propositional model can be very
large, and merging requires at least linear time in the propositional model size.

A well-known bottom-up lifted inference algorithm is lifted belief propagation proposed
by Kersting et al. (2009). The idea is to perform belief propagation (BP) on a factor graph
where each node represents a set of nodes that would send and receive the same messages

813



Lüdtke, Schröder, Krüger, Bader, & Kirste

(a) Initially, all
RV and factor
nodes have same
color.

(b) RV nodes
send color to
factor nodes.

(c) Factor nodes
send stacked
colors to RV
nodes.

(d) Colors are
stacked at RV
nodes.

(e) RV nodes
with same colors
are grouped.

Figure 8: From left to right, the steps of lifted BP factor graph compression (adapted from
Kersting et al., 2009).

in standard BP. This lifted factor graph is obtained by simulating BP and keeping track of
which nodes send and receive the same messages. In this simulation, each node sends its
color (a signature) instead of the actual message. Initially, all RV and factor nodes have the
same color signature. The colors a node receives extend the current color of the node. This
color signature is sent in consecutive messages. After one iteration (all nodes have sent and
received a message), nodes with the same color signature are grouped for the next iteration.

Example 12. Figure 8 shows the steps of simulating BP and compressing the factor graph
of Example 4. The nodes s(a) and s(b), c(a) and c(b) as well as β1 and β2 have the
same color signature after one iteration. Thus, they are grouped together in the factor
graph. Afterwards, a modified BP algorithm is performed on the compressed factor graph.
This algorithm needs to consider the actual number of messages sent and received by the
grouped nodes. For example, a message sent from node c(a), c(b) to α actually represents
two identical messages. ◦

For cases where it is necessary to answer multiple queries on the same graphical model
with only slight changes in the evidence, it is not necessary to re-construct the lifted network
from scratch each time. Instead, Nath and Domingos (2010b), and Ahmadi, Kersting, and
Hadiji (2010) showed how the lifted network can be re-used, which is not trivial, as the
structure of the lifted network depends on the evidence. These methods can be used to
realize lifted variants of the Kalman filter and PageRank algorithm (Ahmadi, Mladenov,
Kersting, & Sanner, 2011), as well as lifted linear program solvers (Mladenov, Ahmadi, &
Kersting, 2012).

Other bottom-up algorithms find symmetries in the graphical model by examining graph
automorphisms of the graphical model. These automorphisms can be used for lifted varia-
tional inference (Bui, Huynh, & Riedel, 2013) and lifted sampling-based inference (Niepert,
2012; Venugopal & Gogate, 2012). In general, such approximate algorithms (based on sam-

814



State-Space Abstractions for Probabilistic Inference

pling or belief propagation) can be feasible for very large and complex models, where exact
inference (like variable elimination or recursive conditioning) is infeasible.

Another interesting property of bottom-up algorithms is that they can potentially also
be applied to models that are not exactly symmetric, but exhibit approximate symmetries.
This can happen when evidence about individuals is observed, and is a main issue for exact
lifted inference algorithms. Methods have been devised that that approximate the model by
a symmetric one, and then perform lifted inference in the symmetric model (Singla, Nath,
& Domingos, 2014; Venugopal & Gogate, 2014a; Van Den Broeck & Niepert, 2015). Com-
bining this with approximate inference algorithms can lead to even more efficient inference.

5.2 Continuous Inference

Most research on probabilistic inference is concerned with discrete RVs, although many
practical problems require modeling continuous variables. For inference in graphical models
containing continuous RVs, algorithms for discrete models cannot be used directly, as they
typically rely on enumerating all values of the RV. Instead, it is necessary to describe the
functional form of the factors containing continuous RVs and manipulate them analytically
(this is an instance of the parameterization property introduced in Section 3). Typical
operations that need to be handled are marginalization (integration) and multiplication of
such continuous factors. In general, such operations can be difficult or impossible. However,
recent research has focused on piecewise polynomial functions for describing factors, which
can be manipulated efficiently. For example, in the approach by Sanner and Abbasnejad
(2012), factors are represented as piecewise polynomial functions that are noted as case
statements, as illustrated by the following example.

Example 13. The position of an object is observed by a noisy sensor observation. Both
the position (x) and the observation (o) are continuous RVs. The sensor can either fail, or
work properly (modeled as a binary RV b). In the former case, the observation density is
uniform in the interval [0, 10] (i.e. the density is constant 1/10 in this interval, such that
it integrates to one). In the latter case, the conditional observation density is a quadratic
function, centered at the real position and truncated at a distance of one from the true
position8. This continuous distribution can be represented by a case statement as follows:

p(o|x, b) =


−(o− x)2 + 5/6 b = 0 ∧ x− 1 ≤ o ≤ x+ 1

1/10 b = 1 ∧ 0 ≤ o ≤ 10

0 otherwise

◦

In the approach by Sanner and Abbasnejad (2012), inference is defined in terms of
variable elimination. When a variable is marginalized from a factor (a piecewise polynomial
function), the factor is integrated on the variable to be eliminated. This integration can be
calculated symbolically. The resulting factor can be more complex than the original factor
(i.e. it can contain more cases), but it is always again a piecewise polynomial function and
thus can be represented by case statements. These operation thus result in a more complex,

8. The added constant 5/6 ensures that the density is always positive and integrates to one.

815



Lüdtke, Schröder, Krüger, Bader, & Kirste

explicit representation of the distribution (more cases need to be distinguished explicitly)
– in the context of this review, this is a splitting operation.

We can also think of an operation similar to merging for continuous inference meth-
ods: Given a distribution as case statement, a merging operation finds an equivalent case
statement with fewer cases. For example, consider the case statement

p(a) =


−a −1 ≤ a ≤ 0

a 0 < a ≤ 1

0 otherwise

where the first two cases can be merged into the single case |a|, when − 1 ≤ a ≤ 1. Such
operations are implicitly performed in the approach by Sanner and Abbasnejad (2012), who
represent case statements as some variant of algebraic decision diagrams (ADDs) – this way,
it is ensured that the case statements can be represented sufficiently compact.

Inference algorithms in continuous or hybrid models that rely on polynomial approxi-
mations have also been devised in the context of belief propagation (Shenoy & West, 2011),
and weighted model counting (Belle, Passerini, & Van den Broeck, 2015a).

5.3 Probabilistic Multiset Rewriting Systems

Multiset rewriting systems (MRSs) (Calude, Paun, Rozenberg, & Salomaa, 2001) are a for-
malism to model dynamic systems where the state can be described as a multiset of entities
(i.e. they perform online inference). The state transitions are defined in terms of rewriting
rules having preconditions (a multiset of entities that are consumed by the reaction) and
effects (a multiset of entities that are created by the reaction). They are for instance used to
model biochemical reactions (Barbuti et al., 2011), population dynamics in ecological stud-
ies (Pescini, Besozzi, Mauri, & Zandron, 2006) or network protocols (Cervesato, Durgin,
Lincoln, Mitchell, & Scedrov, 1999).

Example 14. A system consists of prey (x) and predators (y). Prey can reproduce, and
predators can eat prey. In this simple model, eating a prey results in the death of the prey
and the birth of a predator. This system can be modeled as a MRS with the two rewriting
rules r(x)→ 2x and e(x, y)→ 2y. ◦

Stochastic MRSs (Bistarelli, Cervesato, Lenzini, Marangoni, & Martinelli, 2003) assign
weights to each rule, thereby specifying the probability of selecting this rule. Typically,
MRSs are used for simulation studies: At each step, one of the rules is sampled according
to their probabilities, leading to a sequence of multiset states.

Example 15. Consider the multiset state9 consisting of two predators and two preys s =
J 2x, 2y K and the rules r(x) → 2x and e(x, y) → 2y given in Example 14. The rules have
the weight wr = 2 and we = 1. Thus, their probability is p(r) = 2/3 and p(e) = 1/3 and
the successor states sr = J 3x, 2y K and se = J 1x, 3y K have the same probabilities. ◦

9. We use J · K to denote multisets.

816



State-Space Abstractions for Probabilistic Inference

A popular formalism relying on MRS semantics are P Systems (Paun, 2012), where states
can have a hierarchical structure (i.e. multisets can contain other multisets, and rewriting
rules can also apply to the components of these inner multisets). Instead of executing one
action per time step, they define the state transitions by parallel rule applications: At each
step, a maximal multiset of rules (i.e. such that no more rules are applicable at the same
time step, given the multiset state) is executed.

Example 16. Consider the same situation as in Example 15, but a parallel transition
semantics. The following maximal rules are applicable: c1 = J 2r(x) K, c2 = J 1r(x), 1e(x, y) K
and c3 = J 2e(x, y) K. To compute the weight of each parallel rule, we multiply the weights of
the individual rules and the number of ways that entities in the state can be assigned to the
preconditions of the actions. Thus, the weights of the parallel actions are w1 = w2

r ∗ 2 = 8,
w2 = wr ∗ we ∗ 2 ∗ 2 = 8 and w3 = w2

e ∗ 2 = 2. Finally, the probabilities are obtained by
normalizing the weights: p(c1) = p(c2) = 4/9, p(c3) = 1/9. ◦

Computing the distribution of maximally parallel rules is a search problem related to
weighted model counting (WMC): Each maximally parallel rule is a model of an appropri-
ately defined formula. Instead of the sum of all weights of all models (as in WMC), the
goal is to enumerate all models and their weights.

The state space representation of MRSs groups equivalent variables, and reasons about
them as a group. When computing the applicable rules (and their probabilities), we only
need to reason about the number of entities of a species in a multiset, not their specific
identities or ordering. This concept is related to counting formulae in C-FOVE, where
probabilities only depend on the number of RVs of a parfactor with a specific value, and
not the specific identities. For example, in the predator-prey scenario above, the probability
of applying the reproduction rule depends only on the number of prey, and the probability
of applying the eating rule depends only on the number of predator-prey pairs. However,
the probability does not depend on presence of any specific predator or prey entity.

However, there is no way for existing MRS algorithms to reason about individual entities:
All entities belonging to the same species are exactly identical. From our point of view, a
MRS always operates on an abstract representation, and never propositionalizes the state
space (by identification of specific entities). Therefore, splitting and merging operations are
not meaningful for this representation.

5.4 Logical Particle Filter

The logical particle filter (LPF) (Zettlemoyer, Pasula, & Kaelbling, 2008) is a Bayesian
filtering algorithm where states are described by partially instantiated first-order logical
formulae. Each of those state descriptions actually represent a set of ground states (all
instantiations of the formulae).

Example 17. Consider the dynamic smokers scenario (Example 8, Figure 2). Suppose we
know that exactly one person has cancer, but we do not know which person. Furthermore,
it is known that Bob smokes, and all other state variables are unknown. This situation can
be represented by a single logical state in the LPF (representing the set of all 8 ground

817



Lüdtke, Schröder, Krüger, Bader, & Kirste

s(b) = 1
∃! x: c(x) = 1

Instantiation Prediction

t t+1

s(b) = 1
c(a) = 1
c(b) = 0

s(b) = 1
c(a) = 0
c(b) = 1

Figure 9: Depiction of the logical particle filter for Example 8. The instantiation step
materializes all predicates necessary to calculate the transition model. Here, we assume
that the values of c(a) and c(b) must be known to calculate the state transitions. Thus, all
instantiations of ∃!x : c(x)=1 are materialized.

states that correspond to this situation):

s(b)=1, ∃!x : c(x)=1

Two examples for ground states that are represented by this logical state are:

s(a)=1, s(b)=0, c(a)=1, c(b)=0, d=0

s(a)=1, s(b)=0, c(a)=0, c(b)=1, d=1

◦

The transition model is described in terms of rules that have preconditions and proba-
bilistic effects. A state transition is performed as follows: First, a split operation is applied,
which is necessary to determine which state transition rules are applicable in the current
state.

Example 18. Suppose that the transition model requires that the specific person having
cancer is known (for example because the probability of Bob dying from cancer is higher
than the probability of Alice dying from cancer). The state

s(b)=1, ∃!x : c(x)=1

is split into two states:

s(b)=1, c(a)=1, c(b)=0

s(b)=1, c(a)=0, c(b)=1

Note that these two states still represent multiple ground states each. ◦

818



State-Space Abstractions for Probabilistic Inference

Afterwards, the transition model is applied to each state separately (in the same way
as in a standard particle filter). The situation is depicted in Figure 9.

The LPF implicitly groups multiple RVs of a state: In the state s(b)=1,∃!x : c(x)=1,
it is not specified which specific person has cancer, only that the number of people having
cancer is one. In a way, this representation exploits the exchangeability of the RVs c(a) and
c(b) in the underlying distribution described by the state ∃!x : c(x)=1. However, opposed
to lifted inference algorithms, this capability to exploit exchangeability is limited: There is
no formalism to specify that a specific number of RVs have a certain value (like counting
formulae in lifted inference), and no algorithmic solution to handle such cases has been
proposed.

A problem not devised by the LPF is that predicates that are instantiated once stay
instantiated for this particle, i.e. merging operations for LPFs have not yet been devised.
This can lead to a complete propositionalization of the state space over time. Zettlemoyer
et al. (2008) acknowledges that a merging operation would be necessary to apply LPF to
realistic domains.

5.5 Relational Particle Filter

The relational particle filter (RPF) (Nitti et al., 2013, 2014, 2016) is a Bayesian filtering
algorithm where states, as well as the transition and observation model, are described by
distributional clauses.

Distributional clauses are a way to describe conditional probabilities, closely related
to parfactors. They have the form h ∼ D ← B ∼= b, which describes the probability
p(h|B=b) = D. Each of H, B and D can have logical variables. For example, the clause

size(X) ∼ beta(2, 3)← material(X) ∼= metal

describes a conditional probability p(size(X) |material(X)=metal) for each X. A dynamic
distributional clause (DDC) furthermore allows RVs to have time indices. Thus, DDCs
can be used to describe the conditional probabilities p(xt | xt−1) and p(yt | xt) of Bayesian
filtering models. The algorithm performs particle filtering, using distributional clauses for
the transition and observation model. Each particle is an assignment of values to the RVs,
where some RVs may not have a specific value, but a distribution that is assigned to them.

Example 19. Consider the dynamic smokers scenario (Example 8, Figure 2). The transi-
tion model is described in terms of a DDC. For example, the DDC

c(X)t ∼ bernoulli(0.5)← s(X)t−1 ∼= 1

c(X)t ∼ bernoulli(0.1)← s(X)t−1 ∼= 0

describes that the probability of each person having cancer depends on the smoking state of
this person at the previous time step. Other aspects of the transition and observation model
are expressed in a similar fashion. As an example of a particle, suppose that one of the
particles encodes the state where both persons do not smoke, but have cancer, and where
the value of dt (whether at least one person died at time t) follows a Bernoulli distribution:

s(a)t=0, s(b)t=0, c(a)t=1, c(b)t=1, dt∼bernoulli(0.1)

◦

819



Lüdtke, Schröder, Krüger, Bader, & Kirste

t

t

t+1

t+1m

v(X)

t

O O

T

P P
T

v(X)

m

obs t+1obs

Figure 10: Parfactor graph describing the relational Kalman filter for Example 20. P
parfactors describe the state distribution, T parfactors correspond to the transition model,
O parfactors correspond to the observation model.

Thus, each particle actually describes a distribution of ground states, similar to the Rao-
Blackwellized particle filter (RBPF). For example, the state above describes a distribution
of two ground states with d = 0 and d = 1. A transition might require to know the
specific value of an RV. This is achieved by sampling from the corresponding distribution
– obtaining a new set of particles – and applying the transition model to each particle
separately. This procedure is an instance of splitting. Similar to the LPF, the RPF can
suffer from a complete grounding over time, as merging operations for the RPF have not
yet been devised.

5.6 Relational Kalman Filter

The relational Kalman filter (Choi, Guzman-Rivera, & Amir, 2011b) is an algorithm for
Bayesian filtering that is based on lifted inference, more specifically continuous FOVE (Choi,
Amir, & Hill, 2010). The standard Kalman filter assumes a state that follows a multivari-
ate normal distribution. Opposed to that, the state of the system in the relational Kalman
filter is modeled as a relational pairwise model (RPM) (Choi et al., 2010), an extension
of parfactor graphs where the par-RVs are continuous and the parfactors are normal dis-
tributions of arity 2 (the latter is a technical condition, as the inference operations only
work for these parfactors). RPMs essentially represent a multivariate normal distribution
with additional independence assumptions. The transition and observation model are also
defined by RPMs. Based on this state representation, a Bayesian Filtering algorithm is
defined, that is, predict and update steps are iteratively applied. Both steps are performed
by employing continuous FOVE (Choi et al., 2010), i.e. by marginalizing out variables of
the previous time step.

Example 20. The true value of a number of real estates is to be estimated over time, based
on observations of sales prices and other factors, like the housing market index. The value
of real estate i at time t is modeled as a Gaussian RV vt(i), and the housing market index
is modeled as a Gaussian RV mt. At each step, several sales prices will be observed. If

820



State-Space Abstractions for Probabilistic Inference

A B C

B or C?A, B or C? A, B or C?

Figure 11: Data association problem. Three objects A, B and C move in 2D space. The
identities of the objects cannot be observed directly. When they come too close, we get
confused about the correspondence of the objects and the tracks (adapted from Huang et al.,
2009b).

we initially assume each real estate to have an identical value, the estimated vt(i) will be
the same for all unobserved i. Thus, all of these values can be represented by a single,
parametric RV vt(X). The dependency between the state RVs at a single time step t is
represented by a parfactor (specifically, an RPM) P(vt(X),mt) and the observation model
is an RPM O(vt(X), obst). The transition model can (for example) be described by RPMs
Tv(vt(X), vt+1(X)) and Tm(mt,mt+1). Figure 10 shows the parfactor graph describing the
situation. The predict and update steps thus have to be performed only once for each
par-RV, instead of once for each RV. For the predict step, the par-RVs v(X)t and mt are
marginalized out of the joint distribution of par-RVs of time t and t + 1. For the update
step, the distribution of par-RVs is updated, based on the new observation obst+1. ◦

The key challenge of the relational Kalman filter arises when individual observations
about RVs corresponding to the same par-RV are made. In this case, in general, a split
operation needs to be performed to handle each observed RV individually. Interestingly,
splitting is not necessary when only the means of the ground RVs become distinct, but
only when the variances of the RVs become distinct. Choi, Amir, Xu, and Valocchi (2015)
describe an algorithm to approximately merge variables that have become distinct due to
observations.

This approach groups equivalent variables and reasons about them as a group (group
variables), and also represents variables parametrically, as a Gaussian distribution (para-
metrization). Thus, it is the only approach we know of that exploits both types of lifting
defined in this review. However, the approach is limited in its applicability, because it only
allows Gaussian RVs and a linear transition model.

821



Lüdtke, Schröder, Krüger, Bader, & Kirste


2 12 4 4
1 2 11 0
10 4 4 15
5 2 1 2


(a) Information Matrix.

Â = argmax
A

trATΩ =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


(b) Most likely association.

Figure 12: Illustration of the information form approach for data association (adapted from
Schumitsch et al., 2005).

5.7 Data Association

Data Association algorithms are concerned with the following problem: Given a number of
tracks t1, ..., tn (e.g. radar measurements, tracks of people in a video) that correspond to
objects o1, ..., on, maintain the correct correspondence between tracks and objects (or, more
general, a distribution of object-track associations). The problem is visualized in Figure
11. This problem can be viewed as performing Bayesian filtering in a state space where
each state is a permutation of objects. There are n! many of these permutations, so the
naive approach to maintain a distribution of those permutations explicitly suffers from the
state space explosion problem. Thus, the central task of Data Association algorithms is to
maintain an efficient representation of distributions of permutations, and mechanisms to
perform the predict and update steps of Bayesian filtering directly on this representation.
Two conceptually different approaches for this goal have been devised. The first one, known
as the Fourier-theoretic approach (Huang et al., 2009a, 2009b, 2009c; Jagabathula & Shah,
2011; Kondor et al., 2007), utilizes a Fourier transformation over the symmetric group Sn
(the group that represents permutations of n objects). Instead of maintaining the complete
distribution p(σ), σ ∈ Sn, the distribution is approximated by its first few Fourier matrices,
just like a function f(x), x ∈ R can be approximated by its first few Fourier coefficients.

The second approach (Schumitsch, Thrun, Bradski, & Olukotun, 2005) maintains a
compact representation of the distribution over permutations matrices by an information
matrix Ω. The information matrix contains unnormalized marginal probabilities Ωij for
each association of track i with identity j. The following example illustrates the approach.

Example 21. Suppose we are tracking four objects. The distribution of object-track as-
sociations can be represented by the information matrix shown in Figure 12a. The first
column corresponds to track 1, and the values imply the association of this track with the
four objects, suggesting that track 1 is most strongly associated with object 3 (since this is
the largest value in the column). However, the most likely permutation matrix, shown in
Figure 12b, shows that actually, track 1 is most likely associated with object 4 (i.e. it is not
sufficient to consider the columns separately). ◦

Given the information matrix Ω, we can calculate the probability of any permutation
matrix A as p(A) = 1/Z exp trATΩ. Calculating the partition function Z is difficult, as it
involves summing over all permutation matrices. However, the predict and update steps of
the Bayesian filter can be performed directly on the information matrix: The observation of

822



State-Space Abstractions for Probabilistic Inference

an association of a track i with a specific object j leads to an increase of the corresponding
value Ωij , and the mixing of tracks i1 and i2 leads to the same values in columns i1 and i2
in the information matrix.

Both approaches have been compared by Jiang, Huang, and Guibas (2011). They found
that the Fourier-theoretic approach is better suited for scenarios with high uncertainty,
while the information-theoretic approach is better suited for scenarios with low uncertainty
about the data association.

To sum up, both approaches represent a (high-dimensional) distribution compactly.
They do this by transforming the distribution into a different space, where it is easy to
find a compact, approximate representation. This transformation can be seen as a form
of parameterization, as defined in Section 3: The Fourier coefficients are the parameters of
a mixture model of complex exponential functions. Operations corresponding to splitting
or merging are not necessary in this setting: The distribution is always represented in this
transformed space, and a grounding (in this case, an transformation back into the original
space) is never necessary.

6. A Guide to Identify Suitable State-Space Abstraction Approaches

The goal of this section is to provide a useful guideline for practitioners to identify ap-
propriate algorithms (or algorithmic ideas) for a given problem. It also summarizes our
findings regarding research question Q2: How can we characterize the problem classes that
each of the 8 groups of approaches can solve? We do so by rephrasing the properties of the
algorithms as properties of the problem domains. At the same time, this perspective shows
interesting problem domains that are not addressed by current approaches, and therefore
identifies interesting directions for future research. As stated previously, the properties of
the algorithms (see Table 3) directly provide a characterization of the application domain:

• Online algorithms are applicable to inference problems for sequential processes (e.g.
the dynamic smokers domain of Example 8).

• Identification is necessary in two cases: Either observations about individuals are made
(e.g. we observe that an individual person smokes), or the individuals need to be
distinguished for some other reason (for example, because the transition model in a
dynamic model requires to know the value of an individual RV, as in the variant of
the dynamic smokers domain in Example 18).

• Grouping of Variables means that the algorithm can exploit exchangeability in the
state space, i.e. a regular structure between multiple variables. Algorithm that have
this capability can potentially solve some problems (that exhibit exchangeability)
more efficiently (typically, for problems that do do not exhibit exchangeability, the
algorithms simply resort to propositional inference). For example, algorithms that can
group variables can potentially solve the smokers domain (Example 4) more efficiently
that propositional inference algorithms.

• Parametrization allows the inference algorithm to exploit a regular structure in the dis-
tribution of a single variable. This is necessary for domains with continuous variables

823



Lüdtke, Schröder, Krüger, Bader, & Kirste

Figure 13: Decision diagram to decide on appropriate method to solve a given problem
instance. Diamonds denote decisions, rectangles denote categories of inference algorithms,
and paths to ellipses describe problems for which no inference algorithm (that performs
state-space abstractions) exists yet.

(see Example 13), but discrete domains (like Data Association tasks) can also benefit
from parametrization.

• Splitting operations are necessary for algorithms that start with a lifted representation
(for example, a lifted graphical model or a first-order logic state representation, as in
the Logical Particle Filter) and then need to identify individuals (as outlined for the
identification property).

• Merging operations make the algorithm applicable to problems that are given in propo-
sitional form, but still contain symmetric properties (e.g. the ground factor graph for
the smokers domain, Example 4). Merging is also useful in cases where the represen-
tation propositionalizes over time due to repeated splitting: In these cases, merging
operations can re-introduce a compact representation (as for example done in the
relational Kalman filter, see Choi et al., 2015).

Based on these considerations, we can identify approaches or algorithmic ideas that are
suitable to solve a given problem in a lifted way (see Figure 13). The first decision (D1)
is concerned with whether the system develops sequentially over time, constantly receiving
new observations (requiring an approach capable of online inference), or not. Next, one
needs to decide on the type of state space abstraction that the inference problem is suscep-
tible of (D2 and D4): Either the distribution exhibits exchangeability, or some (marginal)
distribution can be represented in a parametric form, or both (if both is not the case, then

824



State-Space Abstractions for Probabilistic Inference

the inference problem does not allow any state space abstraction of the types investigated
in this review). For non-sequential problems (D2), continuous inference algorithms can be
used when the probabilistic model contains continuous variables whose distributions can
be modeled (or approximated) by piecewise polynomial functions. When some of the RVs
in the model are exchangeable, lifted inference algorithms can exploit this fact for efficient
inference. Depending on the input format of the model (D3), bottom-up or top-down lifted
inference algorithms can be applied. For lifted inference to be polynomial in the domain
size, certain conditions have to apply, as discussed in Appendix A. However, even when
these conditions do not apply, lifted inference can be more efficient than propositional in-
ference. A combination of continuous and lifted inference algorithms, that can exploit both
exchangeability and parametric distributions, has not been devised yet.

Sequential processes, on the other hand, require online algorithms to cope with indefinite
observation sequences and unlimited numbers of RVs. Here again, one has to decide on the
applicable type of state space abstraction (D4). When some of the marginal distributions
can be represented in parametric form, the relational particle filter (or Rao-Blackwellized
filtering in general) can be used. Some specific form of parametrization – data association
methods – can be used when the state space consists of permutations (D5).

There are two categories of online algorithms that exploit exchangeability: When no
observations are made (D6), Multiset rewriting systems can be used. Otherwise, the logical
particle filter may be applicable, which has, however, very limited capabilities to make use
of exchangeability (D7). The relational Kalman filter exploits exchangeability, and also
makes use of parametric distributions – as long as all distributions are Gaussian (D8).

Finally, coming back to the three examples from the introduction, Example 1 (smokers)
can be solved with a lifted inference algorithm, Example 2 (office) with a data association
approach, and Example 3 (biochemical reaction) with a multiset rewriting system.

7. Conclusion and Future Work

In this section, we discuss the open problems identified in Section 6 in more detail. We
propose ideas on how the methods identified in this review could be combined or extended
appropriately, to devise an algorithm that can solve this problem class.

7.1 Future Work

As becomes obvious from the flow chart in Figure 13, there is no algorithm that can exploit
exchangeability (as lifted inference does) and at the same time handle (continuous) distri-
butions parametrically (as continuous inference algorithms do). One can easily imagine a
scenario where this would be beneficial: Consider an object localization task similar to Ex-
ample 13, but multiple objects are observed. A combination of both state space abstraction
types is, for example, conceivable for variable elimination, for which both lifted inference
(Taghipour et al., 2014) and parametric inference (Sanner & Abbasnejad, 2012) approaches
exist, or weighted model counting, for which also both lifted inference (Van Den Broeck
et al., 2011) and parametric inference (Belle et al., 2015a) exists.

For sequential inference tasks, there is no algorithm that can exploit exchangeability to
the same extend as lifted inference does for non-sequential inference. This would, however,
be relevant for sequential inference problems exhibiting exchangeability, like the dynamic

825



Lüdtke, Schröder, Krüger, Bader, & Kirste

smokers domain presented in Example 8. The relational Kalman filter requires all factors
to be Gaussian, and logical particle filtering cannot handle statements about counts, like
“exactly 3 RVs of this group of RVs are true, and it does not matter which”. Multiset
rewriting systems (MRSs) can efficiently handle systems with exchangeable RVs – however,
current MRSs do not provide a mechanism to incorporate evidence about specific individuals
(say, we know that Bob is having cancer at t = 10). In the following, we sketch two ideas
that seem promising for developing a general lifted Bayesian filtering algorithm.

One idea is to base such an algorithm on an MRS, i.e. a Bayesian filtering algorithm with
a multiset-based state description and a transition model defined in terms of rewriting rules.
Such a system directly allows to group equivalent aspects of the state by the multiset state
representation. The crucial aspect for such a system is the way the state space abstractions
are represented, i.e. how similar entities can be grouped, despite the fact that they may not
be completely the same (e.g. because we have distinct observations about them).

The other idea is to base the algorithm on lifted inference approaches, and examine how
they can be used to implement the predict and update step of Bayesian filtering. A first
step in this direction are filtering algorithms for dynamic MLNs (Geier & Biundo, 2011;
Papai, Kautz, & Stefankovic, 2012), that require using a probabilistic inference algorithm
at each time step. However, the effects of using a lifted inference algorithm each time has
not been evaluated yet, and it is unclear how to maintain a lifted state representation over
time.

Furthermore, exploiting both exchangeability and parametric distributions is also rele-
vant for sequential inference algorithms. As an example, consider the localization task from
Example 13, but for multiple agents instead of a single agent. Here, some RVs (locations,
sensor measurements) are continuous, and RVs of different agents can be exchangeable
(e.g. we might know that two agents have the same location distribution, one agent has a
different location distribution, but we do not know which agent is associated with which
distribution).

In general, one of the most challenging aspects of inference algorithms that exploit
symmetries is the question how to prevent the state representation from degenerating (be-
come increasingly grounded), as individual observations that break the symmetries in the
state space are received. Kersting (2012) notes: “Even if there are symmetries within a
probabilistic model, they easily break when it comes to inference since variables become
correlated by virtue of depending asymmetrically on evidence” (p. 37). This is specifically
problematic for exact algorithms, that need to consider even slight symmetry breaks. For
non-sequential models, approaches that can handle this problem by finding approximate
symmetries in the model have been proposed (Singla et al., 2014; Venugopal & Gogate,
2014a; Van Den Broeck & Niepert, 2015) – which can gain even more efficiently by also
using approximate inference algorithms (like belief propagation or sampling).

The problem is even more prevalent in sequential lifted inference algorithms: Even when
evidence for a single time step leads only to a slight degeneration of the symmetries, over
time, the complete model will become ground. On the other hand, the prediction step in
Bayesian filtering might lead to an increase in symmetry: The intuition here is that the
prediction in general increases the uncertainty of the state estimate, potentially (partially)
revoking the effect of symmetry-breaking evidence. There is only very few research on
this aspect for sequential models. For the relational Kalman filter, an approach has been

826



State-Space Abstractions for Probabilistic Inference

devised that approximately regroups state variables after symmetry-breaking evidence has
been observed (Choi et al., 2015), relying on the fact that the difference in these variables
can be bound under certain conditions. In general, the idea of occasionally performing
operations that re-introduce (approximate) symmetries seems to be a promising idea for
more general lifted Bayesian filtering algorithms.

7.2 Conclusion

Probabilistic inference is the task to derive the probability of certain random variables,
given the values of other variables and a model for the relationship between the variables.
In many cases, symmetries and redundancies are implicitly present in the model, which
cannot be exploited by conventional inference algorithms. In the last 15 years, inference
methods have been devised that can exploit the symmetric structure to speed up inference
and thus make it feasible for much larger models.

In this article, we presented the results of a systematic review concerned with these
methods. We identified eight classes of such inference algorithms, which have been grouped
based on their common properties, and thus the common problems they can be applied to.
For the first time, this systematic review presented a unified view of these methods, that
have been devised by different research communities. Specifically, we emphasized inference
algorithms for sequential processes (Bayesian filtering), a relevant application domain that
has been neglected by lifted inference algorithms, and is not discussed in previous reviews of
the same topic (Kersting, 2012; Kimmig et al., 2015). We found that no Bayesian filtering
algorithm has been devised yet that can exploit symmetries to the same extend as lifted
inference algorithms do for non-sequential inference. Developing such an algorithm might
be approached by employing ideas from lifted inference or multiset rewriting systems.

One of the main problems underlying all approaches is symmetry-breaking evidence that
makes it difficult to maintain a lifted representation. This problem is very prevalent in
real-world scenarios, like sensor data processing, and solutions for non-sequential inference
algorithms based on finding approximate symmetries have been proposed. Investigating
how to cope with this problem in the context of Bayesian filtering is an interesting future
research topic.

Acknowledgements

We are grateful to the three anonymous reviewers for their extensive comments and sug-
gestions, which vastly improved the quality of the paper.

Appendix A. Lifted Inference Complexity Classes

Recently, attempts have been made to structure the problem classes for lifted inference
algorithms, based on whether they can be solved efficiently. In general, there is no guarantee
that lifted inference is tractable (i.e. has a polynomial runtime), Jaeger and Van den Broeck
(2012) even showed the existence of intractable inference problems.

However, there are problem classes for which tractability guarantees can be given. To
analyze them, it is useful to define inference problems in terms of weighted model counting
on a first-order knowledge base (see Section 5.1.1). Using this representation, different

827



Lüdtke, Schröder, Krüger, Bader, & Kirste

problem classes can be defined regarding the specific fragment of first-order logic used
(FO: function-free first-order logic and RFOL: FO without constant symbols), allowed
quantifiers, and the maximum number of logical variables per formula.

The central notion is that of domain-lifted algorithms. An algorithm is domain-lifted
for a problem class, iff for all instances of this problem class, inference is polynomial in
the domain size of the logical variables. Table 4 shows domain-liftability results for dif-
ferent algorithms and problem classes. Note that this table shows only results regarding
domain-lifting. Results regarding other definitions of lifting (e.g. approximate liftability)
are discussed by Jaeger and Van den Broeck (2012).

It turns out that inference on knowledge bases with at most two logical variables per
formula (FO2) is domain-liftable, i.e. all instances of this class can be solved in polynomial
time with respect to the domain size (as well as a generalization, S2FO2). Furthermore,
at least two inference algorithms are known that can actually perform inference for this
problem class in polynomial time: WFOMC, as proposed by Van Den Broeck (2011) and
Van Den Broeck et al. (2014), and the FOVE variant of Taghipour et al. (2013b). On the
other hand, it was shown that for general FO, Lifted Inference is not polynomial in the
domain size.

Another class of inference problems that is known to be domain-lifted is recursive unary
(RU), which basically describes the problems that can be solved in polynomial time by
lifted recursive conditioning (Section 5.1.1): A theory is in RU when exhaustively applying
the rules of lifted recursive conditioning leads to a theory which contains a predicate that
has only a single logical variable. Then, the algorithm can branch on this atom, generating
branches for all numbers of corresponding RVs being true. It has been shown that RU
subsumes FO2 (Kazemi et al., 2016).

An example of a problem where no domain-lifted marginal inference algorithm is known
is the transitive formula friends(X,Y ) ∧ friends(Y,Z)⇒ friends(X,Z) (although MAP
inference can be performed efficiently for this formula, see Mittal, Goyal, Gogate, & Singla,
2014).

Appendix B. Related Approaches

There are multiple approaches that touch upon related topics as the ones explored in this
review, but have not been included. In the following, we will discuss their connection to
the approaches examined by this review, and argue why each of them did not match our
inclusion criteria.

B.1 Knowledge-Based Model Construction

Knowledge-based model construction (KBMC) is a type of inference algorithm for lifted
graphical models. They work by completely grounding the model and performing standard
probabilistic inference in the propositional model.

There are numerous extensions and improvements that have been proposed for these
algorithms. For example, Richardson and Domingos (2006) ground only those formulae
necessary to answer the query. Singla and Domingos (2006) propose a lazy KBMC algorithm
that performs grounding on the fly. Glass and Barker (2012) propose an approximate
algorithm that only produces the most relevant ground formulae, and ignores the rest.

828



State-Space Abstractions for Probabilistic Inference

Algorithm KB DL Reference

All RFOL(∀∃ =) � (Jaeger, 2000)
WFOMC (Van Den Broeck
et al., 2011, 2014)

FO2(∀∃ =) � (Van Den Broeck, 2011; Van
Den Broeck et al., 2014)

WFOMC (Beame et al., 2015) γ-acyclic query10 � (Beame et al., 2015)

LRC (Poole et al., 2011) RU � (Poole et al., 2011)
LRC (Kazemi et al., 2016) S2FO2(=)11 � (Kazemi et al., 2016)
LRC (Kazemi et al., 2016) S2RU � (Kazemi et al., 2016)

FOVE (de Salvo Braz et al.,
2005)

FO1(=) � (Taghipour et al., 2013b)

C-FOVE (Milch et al., 2008) FO1(=) � (Taghipour et al., 2013b)
C-FOVE# (Taghipour et al.,
2014; Apsel & Brafman, 2011)

FO1(=) � (Taghipour et al., 2013b)

C-FOVE# (Taghipour et al.,
2014; Apsel & Brafman, 2011)

FO2(=) � (Taghipour et al., 2013b)

C-FOVE+ (Taghipour et al.,
2013b)

FO2(=) � (Taghipour et al., 2013b)

Table 4: Liftability results for different algorithms and problem classes. “All” algorithms
mean that the result applies to all lifted inference in general. KB: Knowledge Base, DL:
Domain-lifted, �: Not domain-lifted, �: Domain-lifted (adapted from Taghipour et al.,
2013c; Jaeger & Van den Broeck, 2012).

Using these methods, KBMC approaches can be more efficient than standard, propositional
inference. However, at their core, they perform propositional inference. Thus, they do not
match inclusion criterion 8.

B.2 Knowledge Compilation and Arithmetic Circuits

Arithmetic circuits are data structures that compactly represent functions. Early ap-
proaches like Binary Decision Diagrams (BDDs) represent boolean functions, but extensions
have been devised for representing functions of the type Bn → R. Darwiche and Marquis
(2002) provide a detailed comparison of such approaches. The appeal of these methods
is that they allow to efficiently answer specific classes of queries. Knowledge compilation
exploits this fact, by tranforming logical formulae into such a formalism, which then allows
efficient inference. The motivation is to perform this (potentially costly) transformation up-
front, and then be able to answer a large number of queries on the compiled representation
very fast.

This idea can be also be used for probabilistic inference: As discussed in Section 5.1.1,
probabilistic inference can be transformed into a weighted model counting (WMC) problem.
Knowledge compilation can then be used to solve the WMC problem efficiently. On the
other hand, arithmetic circuits can also be used directly to represent distributions (instead

829



Lüdtke, Schröder, Krüger, Bader, & Kirste

of using a conventional graphical model). Examples include variants of Ordered Binary
Decision Diagrams (Jaeger, 2004; Dal & Lucas, 2017), Algebraic Decision Diagrams (Sanner
& McAllester, 2005), and Sum-Product Networks (Gens & Domingos, 2013). In these
formalisms, some probabilistic inference operations can be performed in polynomial time
(in the size of the circuit).

These approaches have not been included in this review because they do not perform
any of the two investigated state space abstraction methods: They do not group similar
RVs, and they do not operate on parameters of the distributions (i.e. they do not match
the definition of state space abstraction that we use). Still, they are related to the methods
presented here insofar as they pursue the same overall goal: Compact representations of
distributions, and efficient operations on this representations that lead to efficient inference.

Knowledge compilation methods and arithmetic circuits have successfully been com-
bined with other state space abstraction methods: Combining knowledge compilation with
lifted inference ideas yields first-order knowledge compilation (Van Den Broeck et al., 2011),
discussed in Section 5.1.1. Arithmetic circuits (specifically, ADDs) are used for symbolic
variable elimination (outlined in Section 5.2), to keep the representation of the case state-
ments compact.

B.3 Markov Decision Processes

A Markov decision process (MDP) is a model for sequential decision making where an agent
has to select actions based on the current environment state. Each action is associated with
a reward. Given an MDP, the task is to compute an optimal policy, i.e. a function that
assigns each state a corresponding action such that the long-term reward is maximized.
The optimal policy can be obtained by computing the value function (that assigns a value
to each state) using dynamic programming. Puterman (2014) provides a more thorough
introduction into algorithms for solving MDPs.

MDPs also suffer from the state space explosion problem, and solutions similar to some
of the algorithms discussed in Section 5 have been developed. These methods follow two
basic ideas. The first approach is to find symmetries in the state space of an MDP and
group symmetric state, thus obtaining a smaller state space (Dean & Givan, 1997; Givan,
Dean, & Greig, 2003; Kang & Kim, 2012). The second approach is to perform all operations
within a more compact first-order representation (Boutilier, Reiter, & Price, 2001; Kersting,
Van Otterlo, & De Raedt, 2004; Hölldobler & Skvortsova, 2004; Sanner & Boutilier, 2009;
Wang, Joshi, & Khardon, 2008). In these approaches, states, actions, reward functions,
value functions and policies are all based on first-order logic. This way, the resulting policy
can be independent of the actual domain objects, and the computations to obtain this policy
can be independent of the domain size. A problem is that the (logical) representation of the
value function can easily become very complex and redundant, requiring expensive first-
order simplification. A first-order extension of ADDs (first-order ADDs, FOADDs) has
been devised, which can be used to compactly represent the value function. Furthermore,
approximate methods (like approximate first-order linear programming), that avoid this
problem, can be used. Conceptually, first-order MDPs (and their solution techniques) bear
strong relationships to lifted probabilistic inference: Both are concerned with first-order
models, where parts of the model are redundant or identical. They both exploit these

830



State-Space Abstractions for Probabilistic Inference

symmetries to achieve more efficient algorithms, by performing operations “in bulk” for
entire sets of redundant components.

However, there is also a more technical, intimate relationship between MDPs and prob-
abilistic inference: It has been shown that decision problems (in terms of an MDP) can be
cast into a probabilistic inference problem (Toussaint & Storkey, 2006). Thus, any proba-
bilistic inference algorithm can be used to solve MDPs. From this point of view, first-order
MDPs are an application domain of probabilistic inference (although research on both top-
ics has mostly been distinct). This relationship also holds for first-order MDPs: Recently,
Khardon and Sanner (2017) showed that the probabilistic inference problem that can be
derived from a first-order MDP inherits its symmetric structure. This structure can be ex-
ploited by lifted inference, avoiding redundant computations. Due to the complex structure
of the query, it is however not possible to use standard lifted inference algorithms here.
Instead, the first-order dynamic programming approaches can be seen as performing some
specialized lifted inference algorithm (that is completely independent of the domain size).
An interesting perspective for future research is to combine the distinct innovations from
both domains, and close the gap between the respective lines of research – a paradigm
termed generalized lifted inference by Khardon and Sanner (2017).

Nevertheless, we chose to not consider first-order MDPs in Section 5 of this review. The
reason is that the dynamic programming-based algorithms that are at the heart of solving
MDPs do not directly involve probabilistic inference, and thus some of the properties derived
in Section 3 are not meaningful for these algorithms. In other words, dynamic programming
does not match inclusion criterion 6.

B.4 Statistical Relational Learning

A relevant question not discussed so far in this review is that of learning first-order proba-
bilistic models. So far, we assumed that the models are given, and the only task is perform
inference in these models. For many application domains, learning the model is one of the
most relevant (and most challenging) aspects. For example, in tasks like link prediction
(decide whether a specific relation exists between two objects) or entity resolution (decide
which records in a database refer to the same real-world entity), we are given a rich, re-
lational structure, and want to estimate a first-order probabilistic model describing this
structure (to then perform inference in this model). The research field investigating this
task is known as statistical relational learning. For an overview of the methods used in this
field, we refer to the book by Getoor and Taskar (2007).

One can distinguish parameter learning, where the structure of the probabilistic model
is given, and structure learning, where even the structure needs to be learned. In parameter
learning, the goal is to optimize the likelihood of the model, given the data. This is, as
in the propositional setting, typically done by Expectation Maximization: The parameters
are computed in an iterative process, consisting of computing the expected likelihood of the
model, given the current parameters, and maximizing this expectation function. In contrast
to propositional models, however, multiple parameters may be tied in relational models
(thus effectively reducing the total number of parameters). Parameter learning is a difficult
task, as it requires to perform probabilistic inference (which is itself a hard problem) each
time the expectation is computed. Thus, approximate methods are typically used, that

831



Lüdtke, Schröder, Krüger, Bader, & Kirste

optimize easier to compute measures than the likelihood. Recently, exact (Van Haaren,
b Van den Broeck, Meert, & Davis, 2016) and approximate (Ahmadi, Kersting, Mladenov, &
Natarajan, 2013a) lifted inference has been used for parameter learning. Structure learning
is even more challenging: The structure is also learned in an iterative process, requiring
parameter learning at each step. Learning methods have been devised for a large number of
probabilistic relational formalisms, including MLNs (Richardson & Domingos, 2006; Khot
et al., 2011), Problog (Gutmann, Thon, & De Raedt, 2011), CP-logic (Thon, Landwehr, &
De Raedt, 2011), PRISM (Sato & Kameya, 2001), probabilistic relational models (Getoor,
Friedman, Koller, & Taskar, 2002) and Bayesian logic programs (Kersting & De Raedt,
2001).

As this paper focuses on inference rather than learning, these methods are not discussed
in the main part of this review (i.e. they do not match inclusion criterion 6).

B.5 Logical Hidden Markov Models

Logical Hidden Markov Models (LHMMs) (Kersting, De Raedt, & Raiko, 2006; Natarajan,
Bui, Tadepalli, Kersting, & Wong, 2008; Yue, Xu, Qin, & Yin, 2015b; Yue, Jiao, Zha, &
Yin, 2015a) are similar to Hidden Markov Models (HMMs), except that each state consists
of a logical atom. A LHMM transition consists of two steps. First, a ground atom is sam-
pled based on the current state, i.e. the current logical atom. Then, an abstract transition
is selected whose precondition matches the ground atom. This transition leads to a new ab-
stract state. The filtering algorithm that has been presented for this representation requires
considering all ground atoms. Thus, this approach does not match inclusion criterion 8.

B.6 Probabilistic Model Checking

Model Checking is concerned with the following problem: Given an abstract system spec-
ification, test if certain properties (defined in a temporal logic like LTL or CTL logic)
are satisfied by the system. These specifications define a state space that is exhaustively
searched to verify the property. A common technique is to not represent the state space ex-
plicitly, but symbolically as a propositional formula, that in turn is represented as a binary
decision diagram (BDD). Probabilistic model checking furthermore models state transition
probabilities.

In Model Checking, the state space explosion problem is very common. For example,
when the system consists of multiple concurrent processes, each execution ordering needs
to be considered, which leads to a combinatorial explosion in the state space (Clarke et al.,
2001). Symbolic state space representation is one way to handle this problem. When the
state space has a certain regular structure, the BDD representation can be much smaller
than representing the state space explicitly. Other methods directly reduce the number of
states, the most prominent ones being partial order reduction (POR) (Valmari, 1989; Peled,
1993; Godefroid, Van Leeuwen, Hartmanis, Goos, & Wolper, 1996) and symmetry reduction
(Clarke, Emerson, Jha, & Sistla, 1998). These reduction methods follow similar ideas than
bottom-up lifted inference algorithms: Starting with a propositional model, and finding
symmetries in this model. Then, the model can be represented by a single representative
of each set of symmetric state.

832



State-Space Abstractions for Probabilistic Inference

The reasons for excluding these approaches are similar to the reasons for excluding
MDP-based approaches: Although they contain interesting ideas for state space reduction,
the task and the used algorithms are completely different. This also means that the type
of symmetry considered is quite different: In lifted inference, the symmetries must preserve
the (conditional) probabilities of the RVs. In model checking, the symmetries must preserve
the property we want to check.

B.7 Multiple Hypotheses Tracking

There is a large number of papers from the data association community that have not been
included in this review. A prominent example for this class of algorithms is the multiple
hypotheses tracker (Reid, 1979). It maintains all possible associations of measurements to
objects explicitly. Therefore, it suffers from the state space explosion problem. Several
approximation methods, like pruning (keeping only the most likely hypotheses) (Cox &
Hingorani, 1996) have been developed. Other data association approaches have been pro-
posed by Fortmann, Bar-Shalom, and Scheffe (1983), Han, Xu, Tao, and Gong (2004), and
Oh, Russell, and Sastry (2004). None of these approaches employ state space abstractions,
which is the reason why we did not consider them for this review.

B.8 Probabilistic Situation Calculus

The situation calculus (Reiter, 1991) is a first-order logic formalism to reason about dynamic
domains that are changed by actions. Several approaches combine the situation calculus
with some form of probabilistic model. In the works of Mateus, Pacheco, Pinto, Sernadas,
and Sernadas (2001), and Hajishirzi and Amir (2008), actions have probabilistic effects.
Bacchus, Halpern, and Levesque (1995, 1999), and Mateus et al. (2002) introduce uncertain
observations (uncertainty about the current state). The problem that is solved by these
approaches is: Given a sequence of actions and an initial state, what is the probability that
a first-order formula is true in the final state, after executing these actions? This is done
by providing an explicit distribution over all possible states (Bacchus et al., 1995, 1999), or
by sampling-based approaches (Mateus et al., 2001, 2002; Hajishirzi & Amir, 2008).

This formalism provides a compact state representation, by representing states using
first-order logic. However, no algorithm that can reason efficiently in this representation
has been devised. In fact, the state representation can become arbitrarily complex, as noted
by Boutilier et al. (2001).

833



Lüdtke, Schröder, Krüger, Bader, & Kirste

Appendix C. Assignment of Papers to Groups

The following table shows the specific papers associated with each of the groups defined in
Section 4.5.

Name References

Top-down LI (Poole, 2003) (Kisyński & Poole, 2009a) (de Salvo Braz
et al., 2005) (de Salvo Braz et al., 2006) (Milch et al.,
2008) (Apsel & Brafman, 2011) (Taghipour et al., 2014)
(Taghipour et al., 2013b) (Taghipour et al., 2013c) (Das
et al., 2016) (Taghipour et al., 2012) (Taghipour et al.,
2013a) (Ng et al., 2008) (Ng & Lloyd, 2009) (Takiyama
& Cozman, 2014) (Kisyński & Poole, 2009b) (Choi et al.,
2011a) (Singla & Domingos, 2008) (de Salvo Braz et al.,
2009) (Singla et al., 2010) (Singla et al., 2014) (Gogate &
Domingos, 2016) (Gogate et al., 2012) (Van Den Broeck
et al., 2011) (Van Den Broeck & Davis, 2012) (Van
Den Broeck, 2011) (Van Den Broeck et al., 2014) (Meert
et al., 2014) (Beame et al., 2015) (Vlasselaer et al., 2016)
(Bui et al., 2012) (Gogate & Domingos, 2010) (Choi & Amir,
2012) (Jha et al., 2010) (Poole et al., 2011) (Kazemi & Poole,
2014) (Kazemi et al., 2016) (Kazemi et al., 2017) (Kiddon &
Domingos, 2010) (Kiddon & Domingos, 2011) (Poon et al.,
2008) (Sarkhel & Gogate, 2013) (Sarkhel et al., 2014) (Venu-
gopal et al., 2015) (Mittal et al., 2014) (Domingos & Webb,
2012) (Dalvi et al., 2010) (Dalvi & Suciu, 2007) (Dylla et al.,
2013) (Jha & Suciu, 2012)

Bottom-up LI (Kersting et al., 2010) (Jaimovich et al., 2007) (Kersting
et al., 2009) (Ahmadi et al., 2013b) (Ahmadi et al., 2013a)
(Venugopal et al., 2016) (Venugopal & Gogate, 2014b)
(Venugopal & Gogate, 2012) (Venugopal & Gogate, 2014a)
(Van Den Broeck et al., 2012) (Hadiji & Kersting, 2013) (Sen
et al., 2008) (Sen et al., 2009) (Bui et al., 2013) (Bui et al.,
2014) (Niepert, 2012) (Anand et al., 2016) (Van Den Broeck
& Niepert, 2015) (Niepert, 2013) (Mladenov et al., 2014a)
(Apsel et al., 2014) (Mladenov et al., 2012) (Mladenov &
Kersting, 2013) (Mladenov et al., 2014b) (Van Den Broeck
& Darwiche, 2013) (Nath & Domingos, 2010b) (Nath &
Domingos, 2010a) (Ahmadi et al., 2010) (Hadiji et al., 2011)
(Ahmadi et al., 2011) (Geier & Biundo, 2011)

Continuous Inference (Belle et al., 2015a) (Belle et al., 2015b) (Belle et al., 2016)
(Sanner & Abbasnejad, 2012) (Shenoy & West, 2011)

Logical Particle Filter (Zettlemoyer et al., 2008)
Relational Particle Filter (Nitti et al., 2013) (Nitti et al., 2016) (Nitti et al., 2014)
Relational Kalman Filter (Choi et al., 2010) (Choi et al., 2011b) (Choi et al., 2015)

834



State-Space Abstractions for Probabilistic Inference

Data Association (Schumitsch et al., 2005) (Huang et al., 2009a) (Huang
et al., 2009b) (Huang et al., 2009c) (Jagabathula & Shah,
2011) (Kondor et al., 2007) (Jiang et al., 2011) (Baum
& Hanebeck, 2010) (Baum & Hanebeck, 2011) (Baum &
Hanebeck, 2013) (Baum et al., 2012) (Baum et al., 2014)
(Hanebeck & Baum, 2015) (Leven & Lanterman, 2004)
(Leven & Lanterman, 2009) (Mahler, 2003)

Prob. Multiset Rewriting (Barbuti et al., 2011) (Barbuti et al., 2012) (Krishnamurthy
et al., 2004) (Warnke et al., 2015) (Bistarelli et al., 2003)
(Oury & Plotkin, 2013) (Maus et al., 2011)

Appendix D. List of Abbreviations

Abbreviation Explanation

BP Belief propagation
C-FOVE Counting first-order variable elimination
DBN Dynamic Bayesian network
FOVE First-order variable elimination
LBP Lifted belief propagation
LI Lifted inference
LP Linear program
LPF Logical particle filter
MAP Maximum-a-posteriori
MCMC Markov chain Monte Carlo
MDP Markov decision process
MLN Markov logic network
MRS Multiset rewriting system
RC Recursive conditioning
RV Random variable
VE Variable elimination
WFOMC Weighted first-order model counting

References

Ahmadi, B., Kersting, K., & Hadiji, F. (2010). Lifted belief propagation: Pairwise marginals
and beyond. In Proceedings of the 5th European Workshop on Probabilistic Graphical
Models, pp. 9–16.

Ahmadi, B., Kersting, K., Mladenov, M., & Natarajan, S. (2013a). Exploiting symmetries
for scaling loopy belief propagation and relational training. Machine Learning, 92 (1),
91–132.

Ahmadi, B., Kersting, K., & Natarajan, S. (2013b). MapReduce lifting for belief propaga-
tion. In AAAI Workshop - Technical Report, Vol. WS-13-16, pp. 2–7.

835



Lüdtke, Schröder, Krüger, Bader, & Kirste

Ahmadi, B., Mladenov, M., Kersting, K., & Sanner, S. (2011). On lifted pagerank, kalman
filter and towards lifted linear program solving. In Technical Report of the Symposium
”Lernen, Wissen, Adaptivitat - Learning, Knowledge, and Adaptivity 2011” of the GI
Special Interest Groups KDML, IR and WM, pp. 35–42.

Anand, A., Grover, A., Mausam, & Singla, P. (2016). Contextual symmetries in probabilistic
graphical models. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence.

Apsel, U., & Brafman, R. (2011). Extended Lifted Inference with Joint Formulas. In Pro-
ceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
UAI’11, pp. 11–18, Barcelona, Spain. AUAI Press.

Apsel, U., Kersting, K., & Mladenov, M. (2014). Lifting relational MAP-LPs using cluster
signatures. In AAAI Workshop - Technical Report, Vol. WS-14-13, pp. 2–8.

Bacchus, F., Halpern, J., & Levesque, H. (1999). Reasoning about noisy sensors and effectors
in the situation calculus. Artificial Intelligence, 111 (1-2), 171–208.

Bacchus, F., Halpern, J., & Levesque, J. (1995). Reasoning about noisy sensors in the situ-
ation calculus. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, pp. 1933–1940.

Barbuti, R., Levi, F., Milazzo, P., & Scatena, G. (2011). Maximally Parallel Probabilistic
Semantics for Multiset Rewriting. Fundamenta Informaticae, 112 (1), 1–17.

Barbuti, R., Levi, F., Milazzo, P., & Scatena, G. (2012). Probabilistic model checking of
biological systems with uncertain kinetic rates. Theoretical Computer Science, 419, 2
– 16.

Baum, M., & Hanebeck, U. (2010). Association-free tracking of two closely spaced targets.
In Proceedings of the IEEE Conference on Multisensor Fusion and Integration for
Intelligent Systems, pp. 62–67. IEEE.

Baum, M., & Hanebeck, U. (2011). Using symmetric state transformations for multi-target
tracking. In Proceedings of the 14th International Conference on Information Fusion,
pp. 1–8. IEEE.

Baum, M., & Hanebeck, U. (2013). The kernel-sme filter for multiple target tracking. In
Proceedings of the 16th International Conference on Information Fusion, pp. 288–295.
IEEE.

Baum, M., Ruoff, P., Itte, D., & Hanebeck, U. (2012). Optimal Point Estimates for Multi-
target States based on Kernel Distances. In Proceedings of the 51st IEEE Conference
on Decision and Control, Maui, Hawaii, USA.

Baum, M., Willett, P., & Hanebeck, U. (2014). MMOSPA-based track extraction in the
PHD filter-a justification for k-means clustering. In Proceedings of the IEEE 53rd
Annual Conference on Decision and Control, pp. 1816–1821. IEEE.

Beame, P., Van den Broeck, G., Gribkoff, E., & Suciu, D. (2015). Symmetric Weighted First-
Order Model Counting. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pp. 313–328.

836



State-Space Abstractions for Probabilistic Inference

Belle, V., Passerini, A., & Van den Broeck, G. (2015a). Probabilistic inference in hybrid
domains by weighted model integration. In Proceedings of 24th International Joint
Conference on Artificial Intelligence, pp. 2770–2776.

Belle, V., Van den Broeck, G., & Passerini, A. (2015b). Hashing-based approximate proba-
bilistic inference in hybrid domains. In Proceedings of the 31st Conference on Uncer-
tainty in Artificial Intelligence (UAI), pp. 141–150.

Belle, V., Van den Broeck, G., & Passerini, A. (2016). Component Caching in Hybrid
Domains with Piecewise Polynomial Densities.. In AAAI, pp. 3369–3375.

Bistarelli, S., Cervesato, I., Lenzini, G., Marangoni, R., & Martinelli, F. (2003). On repre-
senting biological systems through multiset rewriting. In International Conference on
Computer Aided Systems Theory, pp. 415–426. Springer.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic programming for first-order
MDPs. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, Vol. 1, pp. 690–700.

Bui, H., Huynh, T., & De Braz, R. (2012). Exact lifted inference with distinct soft evidence
on every object. In Proceedings of the National Conference on Artificial Intelligence,
Vol. 3, pp. 1875–1881.

Bui, H., Huynh, T., & Riedel, S. (2013). Automorphism groups of graphical models and
lifted variational inference. In Uncertainty in Artificial Intelligence - Proceedings of
the 29th Conference, pp. 132–141.

Bui, H., Huynh, T., & Sontag, D. (2014). Lifted tree-reweighted variational inference. In
Uncertainty in Artificial Intelligence - Proceedings of the 30th Conference, pp. 92–101.

Buntine, W. (1994). Operations for learning with graphical models. Journal of artificial
intelligence research, 2, 159–225.

Calude, C., Paun, G., Rozenberg, G., & Salomaa, A. (2001). Multiset Processing: Math-
ematical, Computer Science, and Molecular Computing Points of View, Vol. 2235.
Springer Science & Business Media.

Cervesato, I., Durgin, N. A., Lincoln, P. D., Mitchell, J. C., & Scedrov, A. (1999). A
Meta-Notation for Protocol Analysis. In Proceedings of the 12th IEEE Workshop on
Computer Security Foundations, CSFW ’99, pp. 55–, Washington, DC, USA. IEEE
Computer Society.

Choi, J., & Amir, E. (2012). Lifted Relational Variational Inference. In Proceedings of
the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI’12, pp.
196–206, Catalina Island, CA. AUAI Press.

Choi, J., Amir, E., & Hill, D. (2010). Lifted Inference for Relational Continuous Models. In
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence,
UAI’10, pp. 126–134, Catalina Island, CA. AUAI Press.

Choi, J., Amir, E., Xu, T., & Valocchi, A. (2015). Learning Relational Kalman Filtering..
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp.
2539–2546.

837



Lüdtke, Schröder, Krüger, Bader, & Kirste

Choi, J., de Salvo Braz, R., & Bui, H. (2011a). Efficient Methods for Lifted Inference with
Aggregate Factors.. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence.

Choi, J., Guzman-Rivera, A., & Amir, E. (2011b). Lifted Relational Kalman Filtering.. In
Proceedings of the Twenty-Second International Joint Conference on Artificial Intel-
ligence, pp. 2092–2099.

Clarke, E., Emerson, E., Jha, S., & Sistla, A. (1998). Symmetry reductions in model
checking. In International Conference on Computer Aided Verification, pp. 147–158.
Springer.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2001). Progress on the state
explosion problem in model checking. In Informatics, pp. 176–194. Springer.

Cox, I., & Hingorani, S. (1996). An efficient implementation of Reid’s multiple hypoth-
esis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE
Transactions on pattern analysis and machine intelligence, 18 (2), 138–150.

Dal, G. H., & Lucas, P. J. (2017). Weighted positive binary decision diagrams for exact
probabilistic inference. International Journal of Approximate Reasoning, 90, 411–432.

Dalvi, N., Schnaitter, K., & Suciu, D. (2010). Computing query probability with incidence
algebras. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, pp. 203–214. ACM.

Dalvi, N., & Suciu, D. (2007). Efficient query evaluation on probabilistic databases. The
International Journal on Very Large Data Bases, 16 (4), 523–544.

Darwiche, A. (2001). Recursive Conditioning. Artificial Intelligence, 126 (1-2), 5–41.

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cambridge Univer-
sity Press.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial
Intelligence Research, 17 (1), 229–264.

Das, M., Wu, Y., Khot, T., Kersting, K., & Natarajan, S. (2016). Scaling lifted proba-
bilistic inference and learning via graph databases. In Proceedings of the 16th SIAM
International Conference on Data Mining 2016, pp. 738–746.

De Raedt, L., Kersting, K., Natarajan, S., & Poole, D. (2016). Statistical relational artificial
intelligence: Logic, probability, and computation. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 10, 1–189.

de Salvo Braz, R., Amir, E., & Roth, D. (2005). Lifted first-order probabilistic inference. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp.
1319–1325.

de Salvo Braz, R., Amir, E., & Roth, D. (2006). MPE and partial inversion in lifted prob-
abilistic variable elimination. In Proceedings of the National Conference on Artificial
Intelligence, Vol. 2, pp. 1123–1130.

de Salvo Braz, R., Natarajan, S., Bui, H., Shavlik, J., & Russell, S. (2009). Anytime lifted
belief propagation. In International Workshop on Statistical Relational Learning,
Vol. 9.

838



State-Space Abstractions for Probabilistic Inference

Dean, T., & Givan, R. (1997). Model minimization in Markov decision processes. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth
Conference on Innovative Applications of Artificial Intelligence, pp. 106–111.

Domingos, P., & Webb, W. (2012). A tractable first-order probabilistic logic. In Proceedings
of the National Conference on Artificial Intelligence, Vol. 3, pp. 1902–1909.

Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo Methods in
Practice. Springer-Verlag, New York.

Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2000). Rao-Blackwellised particle
filtering for dynamic Bayesian networks. In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence, pp. 176–183. Morgan Kaufmann Publishers
Inc.

Dylla, M., Miliaraki, I., & Theobald, M. (2013). Top-k query processing in probabilistic
databases with non-materialized views. In 29th International Conference on Data
Engineering, pp. 122–133. IEEE.

Fagin, R. (1983). Degrees of acyclicity for hypergraphs and relational database schemes.
Journal of the ACM, 30 (3), 514–550.

Fierens, D. (2010). Context-specific independence in directed relational probabilistic models
and its influence on the efficiency of Gibbs sampling. Frontiers in Artificial Intelligence
and Applications, 215, 243–248.

Fortmann, T., Bar-Shalom, Y., & Scheffe, M. (1983). Sonar tracking of multiple targets
using joint probabilistic data association. IEEE journal of Oceanic Engineering, 8 (3),
173–184.

Fox, V., Hightower, J., Liao, L., Schulz, D., & Borriello, G. (2003). Bayesian filtering for
location estimation. IEEE pervasive computing, 2 (3), 24–33.

Geier, T., & Biundo, S. (2011). Approximate online inference for dynamic markov logic
networks. In 23rd IEEE International Conference on Tools with Artificial Intelligence,
pp. 764–768. IEEE.

Gens, R., & Domingos, P. (2013). Learning the structure of sum-product networks. In
International Conference on Machine Learning, pp. 873–880.

Getoor, L., Friedman, N., Koller, D., & Taskar, B. (2002). Learning Probabilistic Models
of Link Structure. Journal of Machine Learning Research, 3, 29.

Getoor, L., & Taskar, B. (2007). Introduction to Statistical Relational Learning. MIT press.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence, 147 (1-2), 163–223.

Glass, M., & Barker, K. (2012). Focused grounding for markov logic networks. In Proceedings
of the 25th International Florida Artificial Intelligence Research Society Conference,
pp. 531–536.

Godefroid, P., Van Leeuwen, J., Hartmanis, J., Goos, G., & Wolper, P. (1996). Partial-
Order Methods for the Verification of Concurrent Systems: An Approach to the State-
Explosion Problem, Vol. 1032. Springer Heidelberg.

839



Lüdtke, Schröder, Krüger, Bader, & Kirste

Gogate, V., & Domingos, P. (2010). Exploiting logical structure in lifted probabilistic
inference. In AAAI Workshop - Technical Report, Vol. WS-10-06, pp. 19–25.

Gogate, V., & Domingos, P. (2016). Probabilistic Theorem Proving. Commun. ACM, 59 (7),
107–115.

Gogate, V., Jha, A., & Venugopal, D. (2012). Advances in Lifted Importance Sampling..
In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence.

Gutmann, B., Thon, I., & De Raedt, L. (2011). Learning the Parameters of Probabilistic
Logic Programs from Interpretations. In Machine Learning and Knowledge Discovery
in Databases, Vol. 6911, pp. 581–596. Springer Berlin Heidelberg, Berlin, Heidelberg.

Hadiji, F., Ahmadi, B., & Kersting, K. (2011). Efficient sequential clamping for lifted
message passing. In Lecture Notes in Computer Science, Vol. 7006 LNAI, pp. 122–
133.

Hadiji, F., & Kersting, K. (2013). Reduce and re-lift: Bootstrapped lifted likelihood maxi-
mization for MAP. In AAAI Workshop - Technical Report, Vol. WS-13-16, pp. 8–14.

Hajishirzi, H., & Amir, E. (2008). Sampling First Order Logical Particles. In Proceedings of
the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI’08, pp.
248–255, Helsinki, Finland. AUAI Press.

Han, M., Xu, W., Tao, H., & Gong, Y. (2004). An algorithm for multiple object trajectory
tracking. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Vol. 1, pp. I–I. IEEE.

Hanebeck, U., & Baum, M. (2015). Association-free direct filtering of multi-target random
finite sets with set distance measures. In 18th International Conference on Information
Fusion, pp. 1367–1374. IEEE.

Hölldobler, S., & Skvortsova, O. (2004). A logic-based approach to dynamic program-
ming. In Proceedings of the Workshop on “Learning and Planning in Markov Pro-
cesses–Advances and Challenges” at the Nineteenth National Conference on Artificial
Intelligence, pp. 31–36.

Holte, R., & Fan, G. (2015). State Space Abstraction in Artificial Intelligence and Oper-
ations Research. In Workshops at the Twenty-Ninth AAAI Conference on Artificial
Intelligence.

Huang, J., Guestrin, C., & Guibas, L. (2009a). Efficient inference for distributions on
permutations. In Advances in Neural Information Processing Systems.

Huang, J., Guestrin, C., & Guibas, L. (2009b). Fourier Theoretic Probabilistic Inference
over Permutations. Journal of Machine Learning Research, 10, 997–1070.

Huang, J., Guestrin, C., Jiang, X., & Guibas, L. (2009c). Exploiting Probabilistic Indepen-
dence for Permutations.. In International Conference on Artificial Intelligence and
Statistics, pp. 248–255.

Jaeger, M., & Van den Broeck, G. (2012). Liftability of Probabilistic Inference: Upper and
Lower Bounds. In Proceedings of StarAI.

Jaeger, M. (2000). On the complexity of inference about probabilistic relational models.
Artificial Intelligence, pp. 297–308.

840



State-Space Abstractions for Probabilistic Inference

Jaeger, M. (2004). Probabilistic decision graphs—combining verification and AI tech-
niques for probabilistic inference. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 12 (supp01), 19–42.

Jagabathula, S., & Shah, D. (2011). Inferring rankings using constrained sensing. IEEE
Transactions on Information Theory, 57 (11), 7288–7306.

Jaimovich, A., Meshi, O., & Friedman, N. (2007). Template based inference in symmetric
relational Markov random fields. In Proceedings of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence.

Jha, A., Gogate, V., Meliou, A., & Suciu, D. (2010). Lifted inference seen from the other side:
The tractable features. In 24th Annual Conference on Neural Information Processing
Systems.

Jha, A., & Suciu, D. (2012). Probabilistic databases with MarkoViews. Proceedings of the
VLDB Endowment, 5 (11), 1160–1171.

Jiang, X., Huang, J., & Guibas, L. (2011). Fourier-information duality in the identity
management problem. In Lecture Notes in Computer Science, Vol. 6912 LNAI, pp.
97–113.

Kang, B., & Kim, K. (2012). Exploiting symmetries for single- and multi-agent Partially
Observable Stochastic Domains. Artificial Intelligence, 182–183, 32 – 57.

Kazemi, S., Kimmig, A., Van den Broeck, G., & Poole, D. (2016). New liftable classes
for first-order probabilistic inference. In Advances in Neural Information Processing
Systems, pp. 3117–3125.

Kazemi, S., Kimmig, A., Van Den Broeck, G., & Poole, D. (2017). Domain Recursion for
Lifted Inference with Existential Quantifiers. In arXiv Preprint arXiv:1707.07763.

Kazemi, S., & Poole, D. (2014). Elimination ordering in lifted first-order probabilistic
inference. In Proceedings of the National Conference on Artificial Intelligence, Vol. 2,
pp. 863–870.

Kersting, K. (2012). Lifted Probabilistic Inference. In Proceedings of the 20th European
Conference on Artificial Intelligence, Vol. 242, pp. 33–38. IOS Press.

Kersting, K., Ahmadi, B., & Natarajan, S. (2009). Counting belief propagation. In Pro-
ceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pp. 277–284.

Kersting, K., & De Raedt, L. (2001). Adaptive Bayesian Logic Programs. In Inductive Logic
Programming, Vol. 2157, pp. 104–117. Springer Berlin Heidelberg, Berlin, Heidelberg.

Kersting, K., & De Raedt, L. (2007). 1 Bayesian Logic Programming: Theory and Tool.
MIT Press.

Kersting, K., De Raedt, L., & Raiko, T. (2006). Logical Hidden Markov Models.. Journal
of Artificial Intelligence Research, 25, 425–456.

Kersting, K., El Massaoudi, Y., Hadiji, F., & Ahmadi, B. (2010). Informed Lifting for
Message-Passing.. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence.

841



Lüdtke, Schröder, Krüger, Bader, & Kirste

Kersting, K., Van Otterlo, M., & De Raedt, L. (2004). Bellman goes relational. In Pro-
ceedings of the Twenty-First International Conference on Machine Learning, p. 59.
ACM.

Khardon, R., & Sanner, S. (2017). Stochastic planning and lifted inference. arXiv preprint,
arXiv:1701.01048.

Khot, T., Natarajan, S., Kersting, K., & Shavlik, J. (2011). Learning Markov Logic Networks
via Functional Gradient Boosting. In 2011 IEEE 11th International Conference on
Data Mining, pp. 320–329, Vancouver, BC, Canada. IEEE.

Kiddon, C., & Domingos, P. (2010). Leveraging ontologies for lifted probabilistic inference
and learning. In AAAI Workshop - Technical Report, Vol. WS-10-06, pp. 40–45.

Kiddon, C., & Domingos, P. (2011). Coarse-to-fine inference and learning for first-order
probabilistic models. In Proceedings of the National Conference on Artificial Intelli-
gence, Vol. 2, pp. 1049–1056.

Kimmig, A., Mihalkova, L., & Getoor, L. (2015). Lifted graphical models: A survey. Machine
Learning, 99 (1), 1–45.

Kisyński, J., & Poole, D. (2009a). Constraint processing in lifted probabilistic inference.
In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pp.
293–302.

Kisyński, J., & Poole, D. (2009b). Lifted aggregation in directed first-order probabilistic
models. In Proceedings of the Twenty-First International Joint Conference on Artifi-
cial Intelligence, pp. 1922–1929.

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. In Keele University
Technical Report TR/SE-0401.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Tech-
niques. MIT press.

Koller, D., & Pfeffer, A. (1997). Object-oriented Bayesian networks. In Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence, pp. 302–313. Morgan
Kaufmann Publishers Inc.

Kondor, R., Howard, A., & Jebara, T. (2007). Multi-object tracking with representations
of the symmetric group. Journal of Machine Learning Research, 2, 211–218.

Krishnamurthy, E., Murthy, V., & Krishnamurthy, V. (2004). Biologically inspired rule-
based multiset programming paradigm for soft-computing. In Proceedings of the 1st
Conference on Computing Frontiers, pp. 140–149.

Kwiatkowska, M., Norman, G., & Parker, D. (2006). Symmetry reduction for probabilistic
model checking. In Lecture Notes in Computer Science, Vol. 4144 LNCS, pp. 234–248.

Leven, W., & Lanterman, A. (2004). Multiple target tracking with symmetric measurement
equations using unscented Kalman and particle filters. In Proceedings of the Thirty-
Sixth Southeastern Symposium on System Theory, pp. 195–199. IEEE.

Leven, W., & Lanterman, A. (2009). Unscented Kalman Filters for Multiple Target Tracking
With Symmetric Measurement Equations. IEEE Transactions on Automatic Control,
54 (2), 370–375.

842



State-Space Abstractions for Probabilistic Inference

Mahler, R. (2003). Multitarget Bayes filtering via first-order multitarget moments. IEEE
Transactions on Aerospace and Electronic systems, 39 (4), 1152–1178.

Marinescu, R., Dechter, R., & Ihler, A. (2015). Pushing Forward Marginal MAP with
Best-First Search. In Proceedings of the International Joint Conference on Artificial
Intelligence.

Mateus, P., Pacheco, A., & Pinto, J. (2002). Observations and the probabilistic situa-
tion calculus. In Proceedings of the Eighth International Conference on Principles of
Knowledge Representation and Reasoning, pp. 327–340.

Mateus, P., Pacheco, A., Pinto, J., Sernadas, A., & Sernadas, C. (2001). Probabilistic
situation calculus. Annals of Mathematics and Artificial Intelligence, 32 (1), 393–431.

Maus, C., Rybacki, S., & Uhrmacher, A. (2011). Rule-based multi-level modeling of cell
biological systems. BMC Systems Biology, 5 (1), 166.

Meert, W., Van Den Broeck, G., & Darwiche, A. (2014). Lifted Inference for Probabilistic
Logic Programs. In Workshop on Probabilistic Logic Programming.

Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., & Kaelbling, L. (2008). Lifted proba-
bilistic inference with counting formulas. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence, pp. 1062–1068.

Mittal, H., Goyal, P., Gogate, V., & Singla, P. (2014). New rules for domain independent
lifted MAP inference. In Advances in Neural Information Processing Systems, pp.
649–657.

Mladenov, M., Ahmadi, B., & Kersting, K. (2012). Lifted Linear Programming.. In Inter-
national Conference on Artificial Intelligence and Statistics, pp. 788–797.

Mladenov, M., Globerson, A., & Kersting, K. (2014a). Efficient lifting of MAP LP relax-
ations using k-locality. Journal of Machine Learning Research, 33, 623–632.

Mladenov, M., Globerson, A., & Kersting, K. (2014b). Lifted Message Passing as
Reparametrization of Graphical Models.. In Proceedings of the Thirtieth Conference
on Uncertainty in Artificial Intelligence, pp. 603–612.

Mladenov, M., & Kersting, K. (2013). Lifted inference via k-locality. In AAAI Workshop -
Technical Report, Vol. WS-13-16, pp. 25–30.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D., Prisma Group, & others (2009). Preferred
reporting items for systematic reviews and meta-analyses: The PRISMA statement.
PLoS med, 6 (7), e1000097.

Natarajan, S., Bui, H., Tadepalli, P., Kersting, K., & Wong, W. (2008). Logical Hierarchical
Hidden Markov models for modeling user activities. In Lecture Notes in Computer
Science, Vol. 5194 LNAI, pp. 192–209.

Nath, A., & Domingos, P. (2010a). Efficient Belief Propagation for Utility Maximization
and Repeated Inference.. In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, Vol. 4, p. 3.

Nath, A., & Domingos, P. (2010b). Efficient lifting for online probabilistic inference. In
AAAI Workshop - Technical Report, Vol. WS-10-06, pp. 64–69.

843



Lüdtke, Schröder, Krüger, Bader, & Kirste

Ng, K., & Lloyd, J. (2009). Probabilistic reasoning in a classical logic. Journal of Applied
Logic, 7 (2), 218–238.

Ng, K., Lloyd, J., & Uther, W. (2008). Probabilistic modelling, inference and learning using
logical theories. Annals of Mathematics and Artificial Intelligence, 54 (1-3), 159–205.

Niepert, M. (2012). Markov chains on orbits of permutation groups. In Uncertainty in
Artificial Intelligence - Proceedings of the 28th Conference, pp. 624–633.

Niepert, M. (2013). Symmetry-aware marginal density estimation. In Proceedings of the
27th AAAI Conference on Artificial Intelligence, pp. 725–731.

Niepert, M., & Van den Broeck, G. (2014). Tractability through exchangeability: A new
perspective on efficient probabilistic inference. In Proceedings of the 28th AAAI Con-
ference on Artificial Intelligence, Québec City, Québec, Canada.

Nitti, D., De Laet, T., & De Raedt, L. (2013). A particle filter for hybrid relational domains.
In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
2764–2771. IEEE.

Nitti, D., De Laet, T., & De Raedt, L. (2014). Relational object tracking and learning. In
IEEE International Conference on Robotics and Automation, pp. 935–942.

Nitti, D., De Laet, T., & De Raedt, L. (2016). Probabilistic logic programming for hybrid
relational domains. Machine Learning, 103 (3), 1–43.

Oh, S., Russell, S., & Sastry, S. (2004). Markov chain Monte Carlo data association for
general multiple-target tracking problems. In Proceedings of the 43rd IEEE Conference
on Decision and Control, Vol. 1, pp. 735–742. IEEE.

Oury, N., & Plotkin, G. (2013). Multi-level modelling via stochastic multi-level multiset
rewriting. Mathematical Structures in Computer Science, 23 (02), 471–503.

Papai, T., Kautz, H., & Stefankovic, D. (2012). Slice normalized dynamic markov logic
networks. In Advances in Neural Information Processing Systems, pp. 1907–1915.

Paun, G. (2012). Membrane Computing: An Introduction. Springer Science & Business
Media.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.

Peled, D. (1993). All from one, one for all: On model checking using representatives. In
International Conference on Computer Aided Verification, pp. 409–423. Springer.

Pescini, D., Besozzi, D., Mauri, G., & Zandron, C. (2006). Dynamical probabilistic P
systems. International Journal of Foundations of Computer Science, 17 (01), 183–
204.

Poole, D. (2003). First-order probabilistic inference. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, pp. 985–991.

Poole, D., Bacchus, F., & Kisynski, J. (2011). Towards completely lifted search-based
probabilistic inference. arXiv preprint, arXiv:1107.4035.

Poon, H., Domingos, P., & Sumner, M. (2008). A General Method for Reducing the Com-
plexity of Relational Inference and its Application to MCMC.. In Proceedings of the
23rd National Conference on Artificial Intelligence, Vol. 8, pp. 1075–1080.

844



State-Space Abstractions for Probabilistic Inference

Puterman, M. (2014). Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons.

Reid, D. (1979). An Algorithm for Tracking Multiple Targets. IEEE Transactions on
Automatic Control, 24 (6).

Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In Artificial Intelligence and
Mathematical Theory of Computation, pp. 359–380. Academic Press Professional, Inc.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62 (1-2
SPEC. ISS.), 107–136.

Sanner, S., & Abbasnejad, E. (2012). Symbolic Variable Elimination for Discrete and Con-
tinuous Graphical Models. In AAAI.

Sanner, S., & Boutilier, C. (2009). Practical solution techniques for first-order MDPs.
Artificial Intelligence, 173 (5-6), 748–788.

Sanner, S., & McAllester, D. (2005). Affine algebraic decision diagrams (AADDs) and their
application to structured probabilistic inference. In IJCAI, Vol. 2005, pp. 1384–1390.

Sarkhel, S., & Gogate, V. (2013). Lifting WALKSAT-based local search algorithms for MAP
inference. In AAAI Workshop - Technical Report, Vol. WS-13-16, pp. 64–67.

Sarkhel, S., Venugopal, D., Singla, P., & Gogate, V. (2014). Lifted MAP Inference for
Markov Logic Networks.. In Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics, pp. 859–867.

Särkkä, S. (2013). Bayesian Filtering and Smoothing, Vol. 3. Cambridge University Press.

Sato, T., & Kameya, Y. (2001). Parameter Learning of Logic Programs for Symbolic-
Statistical Modeling. Journal of Artificial Intelligence Research, 15, 391–454.

Schumitsch, B., Thrun, S., Bradski, G., & Olukotun, K. (2005). The information-form data
association filter. In NIPS, pp. 1193–1200.

Sen, P., Deshpande, A., & Getoor, L. (2008). Exploiting shared correlations in probabilistic
databases. Proceedings of the VLDB Endowment, 1 (1), 809–820.

Sen, P., Deshpande, A., & Getoor, L. (2009). Bisimulation-based approximate lifted in-
ference. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pp. 496–505. AUAI Press.

Shenoy, P., & West, J. (2011). Inference in hybrid Bayesian networks using mixtures of
polynomials. International Journal of Approximate Reasoning, 52 (5), 641–657.

Singla, P., & Domingos, P. (2006). Memory-efficient inference in relational domains. In
Proceedings of the 21st National Conference on Artificial Intelligence, Vol. 6, pp. 488–
493.

Singla, P., & Domingos, P. (2008). Lifted first-order belief propagation. In Proceedings of
the National Conference on Artificial Intelligence, Vol. 2, pp. 1094–1099.

Singla, P., Nath, A., & Domingos, P. (2010). Approximate Lifted Belief Propagation.. In
AAAI Workshop - Technical Report, pp. 92–97.

845



Lüdtke, Schröder, Krüger, Bader, & Kirste

Singla, P., Nath, A., & Domingos, P. (2014). Approximate Lifting Techniques for Belief
Propagation.. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pp. 2497–2504.

Suciu, D., Olteanu, D., Ré, C., & Koch, C. (2011). Probabilistic Databases. Synthesis
Lectures on Data Management, 3 (2), 1–180.

Taghipour, N., Davis, J., & Blockeel, H. (2014). Generalized counting for lifted variable
elimination. In 23rd International Conference on Inductive Logic Programming, Vol.
8812, pp. 107–122.

Taghipour, N., Fierens, D., Davis, J., & Blockeel, H. (2012). Lifted variable elimination
with arbitrary constraints. Journal of Machine Learning Research, 22, 1194–1202.

Taghipour, N., Fierens, D., Davis, J., & Blockeel, H. (2013a). Lifted variable elimination:
Decoupling the operators from the constraint language. Journal of Artificial Intelli-
gence Research, 47, 393–439.

Taghipour, N., Fierens, D., Van Den Broeck, G., Davis, J., & Blockeel, H. (2013b). Com-
pleteness results for lifted variable elimination. In Proceedings of the Sixteenth Inter-
national Conference on Artificial Intelligence and Statistics.

Taghipour, N., Fierens, D., Van Den Broeck, G., Davis, J., & Blockeel, H. (2013c). On the
completeness of lifted variable elimination. In AAAI Workshop - Technical Report,
Vol. WS-13-16, pp. 74–80.

Takiyama, F., & Cozman, F. (2014). Inference with Aggregation Parfactors: Lifted Elimi-
nation with First-Order d-Separation. In Proceedings of the Brazilian Conference on
Intelligent Systems, pp. 384–389.

Thon, I., Landwehr, N., & De Raedt, L. (2011). Stochastic relational processes: Efficient
inference and applications. Machine Learning, 82 (2), 239–272.

Torti, L., Wuillemin, P., & Gonzales, C. (2010). Reinforcing the object-oriented aspect
of probabilistic relational models. In European Workshop on Probabilistic Graphical
Models, pp. 273–280.

Toussaint, M., & Storkey, A. (2006). Probabilistic inference for solving discrete and con-
tinuous state Markov Decision Processes. In Proceedings of the 23rd International
Conference on Machine Learning, pp. 945–952. ACM.

Valmari, A. (1989). Stubborn sets for reduced state space generation. In International
Conference on Application and Theory of Petri Nets, pp. 491–515. Springer.

Van Den Broeck, G. (2011). On the completeness of first-order knowledge compilation
for lifted probabilistic inference. In 25th Annual Conference on Neural Information
Processing Systems.

Van Den Broeck, G., Choi, A., & Darwiche, A. (2012). Lifted relax, compensate and then
recover: From approximate to exact lifted probabilistic inference. In Proceedings of
the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, pp. 131–141.

Van Den Broeck, G., & Darwiche, A. (2013). On the complexity and approximation of
binary evidence in lifted inference. In Advances in Neural Information Processing
Systems, pp. 2868–2876.

846



State-Space Abstractions for Probabilistic Inference

Van Den Broeck, G., & Davis, J. (2012). Conditioning in first-order knowledge compila-
tion and lifted probabilistic inference. In Proceedings of the National Conference on
Artificial Intelligence, Vol. 3, pp. 1961–1967.

Van Den Broeck, G., Meert, W., & Darwiche, A. (2014). Skolemization for weighted first-
order model counting. In Proceedings of the 14th International Conference on Prin-
ciples of Knowledge Representation and Reasoning.

Van Den Broeck, G., & Niepert, M. (2015). Lifted probabilistic inference for asymmetric
graphical models. In Proceedings of the National Conference on Artificial Intelligence,
Vol. 5, pp. 3599–3605.

Van Den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L. (2011). Lifted
probabilistic inference by first-order knowledge compilation. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence, pp. 2178–
2185.

Van Haaren, J., b Van den Broeck, G., Meert, W., & Davis, J. (2016). Lifted generative
learning of Markov logic networks. Machine Learning, 103 (1), 27–55.

Venugopal, D., & Gogate, V. (2012). On lifting the Gibbs sampling algorithm. In Advances
in Neural Information Processing Systems, Vol. 3, pp. 1655–1663.

Venugopal, D., & Gogate, V. (2014a). Evidence-based clustering for scalable inference in
Markov logic. In Lecture Notes in Computer Science, Vol. 8726 LNAI, pp. 258–273.

Venugopal, D., & Gogate, V. (2014b). Scaling-up importance sampling for Markov logic
networks. In Advances in Neural Information Processing, Vol. 4, pp. 2978–2986.

Venugopal, D., Sarkhel, S., & Cherry, K. (2016). Non-parametric domain approximation for
scalable Gibbs sampling in MLNs. In 32nd Conference on Uncertainty in Artificial
Intelligence, pp. 745–754.

Venugopal, D., Sarkhel, S., & Gogate, V. (2015). Just count the satisfied groundings:
Scalable local-search and sampling based inference in MLNs. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Vol. 5, pp. 3606–3612.

Vlasselaer, J., Kimmig, A., Dries, A., Meert, W., & De Raedt, L. (2016). Knowledge Com-
pilation and Weighted Model Counting for Inference in Probabilistic Logic Programs.
In Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.

Wang, C., Joshi, S., & Khardon, R. (2008). First order decision diagrams for relational
MDPs. Journal of Artificial Intelligence Research, 31, 431–472.

Warnke, T., Helms, T., & Uhrmacher, A. (2015). Syntax and Semantics of a Multi-Level
Modeling Language. In Proceedings of the 3rd ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, pp. 133–144. ACM Press.

Weiss, Y. (2000). Correctness of local probability propagation in graphical models with
loops. Neural computation, 12 (1), 1–41.

Yue, S., Jiao, P., Zha, Y., & Yin, Q. (2015a). A Logical Hierarchical Hidden Semi-Markov
Model for team intention recognition. Discrete Dynamics in Nature and Society, 2015.

847



Lüdtke, Schröder, Krüger, Bader, & Kirste

Yue, S., Xu, K., Qin, L., & Yin, Q. (2015b). Filtering states with partial observations for
the Logical hidden Markov model. In IEEE International Conference on Mechatronics
and Automation, pp. 65–69.

Zettlemoyer, L., Pasula, H., & Kaelbling, L. (2008). Logical particle filtering. In Dagstuhl
Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Zhang, N. L., & Poole, D. (1994). A simple approach to Bayesian network computations.
In Proceedings of the Tenth Canadian Conference on Artificial Intelligence.

848


