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Abstract

There is an increasing need to derive semantics from real-world observations to facilitate
natural information sharing between machine and human. Conceptual spaces theory is a
possible approach and has been proposed as mid-level representation between symbolic
and sub-symbolic representations, whereby concepts are represented in a geometrical space
that is characterised by a number of quality dimensions. Currently, much of the work has
demonstrated how conceptual spaces are created in a knowledge-driven manner, relying
on prior knowledge to form concepts and identify quality dimensions. This paper presents
a method to create semantic representations using data-driven conceptual spaces which
are then used to derive linguistic descriptions of numerical data. Our contribution is a
principled approach to automatically construct a conceptual space from a set of known
observations wherein the quality dimensions and domains are not known a priori. This
novelty of the approach is the ability to select and group semantic features to discriminate
between concepts in a data-driven manner while preserving the semantic interpretation
that is needed to infer linguistic descriptions for interaction with humans. Two data sets
representing leaf images and time series signals are used to evaluate the method. An
empirical evaluation for each case study assesses how well linguistic descriptions generated
from the conceptual spaces identify unknown observations. Furthermore, comparisons are
made with descriptions derived on alternative approaches for generating semantic models.

1. Introduction

Artificial intelligence systems that interact with humans in natural language must be able
to form concepts either directly from observations or indirectly from other concepts. New
applications within several domains, such as cognitive robotics, will increasingly need to rely
on automatic methods to form concepts directly from sensor data. Different approaches to
creating the representational models necessary for concept formation have been described
in the literature of artificial intelligence (AI). Symbolic approaches use explicit symbols as
primitives to perform symbol manipulation in order to model high-level abstract concepts
(Sun, 1999; Minsky, 1991). Sub-symbolic approaches focus often on the categorisation tasks
per se, and process the activation patterns of concepts in the perceptual level using inter-
nally connected units (Sun, 1999; Gärdenfors, 1997). Neither approach is fully satisfactory
(Gärdenfors, 1995). Generally, symbolic approaches do not perform the task of inductive
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inference or concept learning, which is the process of performing a generalisation from a
limited number of observations (Sun, 1999). On the other hand, sub-symbolic approaches
often neglect the issue of explainability or interpretability, that is, the process of inferring
meaningful descriptions from a set of (semantically enriched) representations. For instance,
connectionist approaches are often not able to explain what the emerging learnt model
represents (Aisbett & Gibbon, 2001).

Consequently, the theory of conceptual spaces was introduced by Gärdenfors (2000) as a
mid-level representation between symbolic and sub-symbolic approaches (Aisbett & Gibbon,
2001) to address both concept learning and semantic inference (Aisbett & Gibbon, 2001;
Holender, Nagi, Sudit, & Rickard, 2007). Conceptual spaces theory presents a framework
consisting of a set of quality dimensions (i.e. cognitively meaningful attributes) in various
domains within a geometrical structure in order to model, categorise, and represent the
concepts in a multi-dimensional space (Gärdenfors, 2000). Concepts in a conceptual space
are represented by their properties as regions within the domains. Criticism on the theory
of conceptual spaces, an open question is how to automatically construct a conceptual
space from numerical data (Keßler, 2006). In the literature, conceptual spaces have been
principally derived in a knowledge-driven manner and operate on the assumption that there
is prior knowledge from perceptual mechanisms or experts to manually initialise the elements
of the conceptual space (i.e., domains, quality dimensions, and concepts’ regions) (Agostaro,
Augello, Pilato, Vassallo, & Gaglio, 2005; Rickard, Aisbett, & Gibbon, 2007).

This paper presents a data-driven approach to automatically construct conceptual spaces
and perform concept formation based on input observations (i.e., exemplars) in a numerical
data set. Instead of initialising domains and dimensions from a priori knowledge or forming
concepts in a rule-based manner, the proposed data-driven construction process automat-
ically determines the relevant domains and dimensions based on the ability to distinguish
between exemplars of different concepts. We further propose a semantic inference process
for the built conceptual space to provide explainability of new and unknown observations
in natural language descriptions.

The remainder of the paper is structured as follows. Section 2 provides background on
conceptual spaces and related work. In Section 3 we introduce our approach of automati-
cally constructing conceptual spaces from observations. Afterwards, we present the process
of inferring semantic descriptions for a set of unknown observation via the constructed con-
ceptual space in Section 4. In Section 5 we present two case studies where our proposed
approach is exploited. The output descriptions from the case studies are then assessed in
Section 6 based on an empirical evaluation designed to show the advantages of our proposed
framework. Finally, in Sections 7 and 8 we discuss the method and the obtained results
and draw our conclusion.

2. Background and Related Work

In this section, we provide background on the theory of conceptual spaces. We then discuss
related work focusing on two areas: First, we describe the role of the conceptual spaces
theory in the field of AI, and the necessity of revising its definitions based on AI needs.
Second, we present a brief review of the relevant semantic inference and linguistic descrip-
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tion approaches, followed by a discussion of the advantage of using conceptual spaces as a
semantic representation.

2.1 On the Theory of Conceptual Spaces

The theory of conceptual spaces was introduced as a knowledge representation framework
which relies on the paradigm of cognitive semantics (Gärdenfors, 2000). This theory explores
how various types of information can be represented, both from a psychological perspective
and for developing an artificial system (Gärdenfors, 2004). A conceptual space is a geo-
metrical structure which is defined by a set of quality dimensions. The quality dimensions
present the features of objects in the space based on their measured quality values. One
conceptual space can consist of multiple domains. A domain in the conceptual space is
represented as a set of interdependent quality dimensions which are logically integrated. A
typical example of a domain is colour that is defined by the quality dimensions hue, satu-
ration, and brightness. Other examples of perceptual domains are shape, size, and weight
(Gärdenfors, 2000).

Concepts in a conceptual space are represented as a set of regions through multiple
domains. A concept is described based on its different properties in various domains. Prop-
erties are the convex regions in a single domain expressing a particular attribute of the
domain. For example, green is a property corresponding to a region in the colour domain.
An instance of a concept is defined as a set of points in the conceptual space, in which
each point is located within a property region of that concept in one of the domain. As
an example, in a conceptual space of fruits including the domains colour, taste, and size,
the concept of apple can be represented as a set of regions within these domains (LeBlanc,
2010). In this conceptual space, one instance (object) of the concept of apple can take place
in the properties of green, medium, and sweet, which are geometrical regions within the
domains colour, size, and taste, respectively.

The metric definition of domains allows depicting the notion of similarity in a concep-
tual space. Measuring the similarity robustly eases the consideration of cognitive tasks such
as concept formation, semantic inferences, induction, and concept learning (Holender et al.,
2007). In concept representation, it is possible to assign weights to the domains or dimen-
sions in order to distinguish between similar concepts in different contexts (Gärdenfors,
2004), which includes the notion of context into the conceptual spaces theory. Various for-
malisations of the conceptual spaces theory have been proposed in the literature (Aisbett &
Gibbon, 2001; Rickard et al., 2007; Raubal, 2004; Holender et al., 2007), which attempted
to mathematically formalise how to construct and perform induction in conceptual spaces.

2.2 Related Work on Conceptual Spaces and AI

As mentioned in the introduction, from the AI point of view, the aim of representing knowl-
edge in a conceptual space is to develop an intuitive interpretation of the relationship be-
tween symbolic and sub-symbolic information (Gärdenfors, 2000; Aisbett & Gibbon, 2001).
Gärdenfors has discussed thoroughly the role of conceptual spaces as a knowledge repre-
sentation framework in AI systems (Gärdenfors, 2004), focusing on the tasks of induction
and reasoning (Gärdenfors & Williams, 2001; Gärdenfors, 2005). Recently, Lieto et. al.
(2017) have detailed the need for a conceptual representation as a knowledge representation
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level in-between the symbolic and the sub-symbolic one. This offers cognitive architectures
a common language enabling the interaction between different types of representations.
Schockaert and Prade (2013) have focused on the problem of interpolative and extrapola-
tive inference for different properties and concepts with the help of conceptual spaces. In
addition to the theoretical AI problems, the feasibility of using conceptual spaces has been
studied in various application domains of AI, such as geographical measurement (Schwer-
ing & Raubal, 2005; Adams & Raubal, 2009a), cognitive robotics (LeBlanc, 2010; Cubek,
Ertel, & Palm, 2015; Chella, Frixione, & Gaglio, 2003), object recognition (Brezolin, Fior-
ini, de Borba Campos, & Bordini, 2015), and visual perception (Chella, Frixione, & Gaglio,
1997). A recent review (Zenker & Gärdenfors, 2015) discusses further applications in diverse
research areas (semantic spaces, computing meanings, and philosophical perspectives).

Concept formation tightly connects the theory of conceptual spaces to the induction (and
particularly learning) problem. The aim of many learning systems is a general description
of a category of observations as concepts (Luger, 2005). If the input of a learning algorithm
takes the form of instances, attributes, and concepts, then the process of learning is called
concept description. Instance-based learning refers to a class of learning algorithms which
predicate the labels for the unseen instances based on their similarity to the nearest training
instances (Keogh, 2011). This model requires a similarity function to perform the task
of concept descriptions. However, in instance-based learning, the similarity functions are
usually applied within a single-domain full feature space (Aha, Kibler, & Albert, 1991).

A comparison of practicality and effectiveness in instance-based learning and conceptual
spaces was presented by Lee and Portier (2007). Yet the authors did not include the
model construction process in their discussion. In this paper, we propose an instance-based
approach for concept formation that considers the role of the involved features to derive a
multi-domain space and represent the concepts in such a space.

Involving data mining approaches in the process of deriving conceptual spaces has been
seldom studied. Keßler (2006) outlined the idea of using conceptual spaces to describe
data, with some discussions on the possibility of automatically generating such spaces from
databases. Lee (2005) proposed a data mining method coupled with conceptual space, which
addresses cognitive tasks such as concept formation using, e.g., clustering techniques. The
main drawback of these approaches is that, in order to directly set up the domains, they rely
on knowing about the semantics of the field beforehand. However, an essential challenge
is to automatically provide interpretable features as integrated quality dimensions. This
work attempts to identify a meaningful set of features out of predefined features in the data
set, relying on the hypothesis that most discriminative features of concepts (classes) are the
most representative quality dimensions in the conceptual space.

An open question in the field of conceptual spaces is how quality dimensions are iden-
tified (Gärdenfors, 2000). Once the process of constructing a conceptual space starts, as
Quine (1969) noted, some innate quality dimensions are needed to make concept learning
possible. However, there is no standard way to specify which set of initiated dimensions are
cognitively sufficient to characterise the concepts to be learned. In many developed exam-
ples of conceptual spaces, determining the set of quality dimensions relies on the background
knowledge, which comes from human perceptual or sensory dimensions. This question is
more challenging when there is no prior knowledge to explain the semantics of dimensions,
or there is a lack of knowledge about relevant quality dimensions (Gärdenfors, 2004). This
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specific challenge motivates our investigation on how to derive the domains and quality
dimensions in a data-driven manner.

Enabling data-driven domain creation for conceptual spaces extends their usefulness to
problems they are not typically used for. However, keeping in mind the issues of induction
and semantic inference in AI, the proposed approach particularly has the ability to deal with
a class of learning problems that need a transparent interpretation for the overall model
(not only interpretability of the decisions made).

2.3 Related Work on Semantic Inferences and Linguistic Descriptions

Revealing a semantic representation of unknown information connects linguistic description
approaches to the present study, in a sense that one solution to determine content for data-
driven information is to semantically model descriptive features of non-linguistic information
and infer meaningful descriptions from the proposed model (Matthiessen, 1990).

Linguistic descriptions are the results of a natural language characterisation that covers
the understandable information derived from the input data. This process is dependent
on the semantic level of the informative features (attributes) that characterise and explain
the data. This information can be obtained from various sources such as observations,
sensor measurements, mathematical analysis or visual perceptions (Batyrshin, Sheremetov,
& Herrera-Avelar, 2007). Importing descriptive features to computational systems includes
the possibility of operating with linguistic information (Batyrshin et al., 2007).

The field of linguistic description of data (LDD) has emerged from the use of fuzzy
set theory and soft computing to perform linguistic computations on data, which studies
the methods for automatically describing numeric data sets by employing a set of linguistic
terms (Ramos-Soto, Bugaŕın, & Barro, 2016). Fuzzy set theory is a well-studied approach to
bridge between numeric and linguistic information, specifically in perception-based systems
(Batyrshin et al., 2007; Kacprzyk & Zadrożny, 2010). The basic idea of linguistic descrip-
tions comes from the works of Zadeh (2001) and Yager (1982) on computing with words,
and later, computational theory of perception paradigms (Zadeh, 2000, 1996) to express the
ability of computing systems in a linguistic manner (Diaz-Hermida, Pereira-Fariña, Vidal,
& Ramos-Soto, 2016; Trivino & Sugeno, 2013). Within these paradigms, the promising
tools are based on fuzzy quantification models to generate simple linguistic summaries of
variables, such as “most of the temperatures are hot” (Delgado, Ruiz, Sánchez, & Vila,
2014). The fuzzy granulation provides propositions like low, increasing, significant, near
future for the numerical features (Zadeh, 1997).

The studies on linguistic description also encompass the field of natural language gen-
eration (NLG). An NLG system generates human-readable natural language (Reiter, Dale,
& Feng, 2000) from non-linguistic information. Content determination is the most relevant
aspect of NLG for the linguistic characterisation of numeric data (Yu, Reiter, Hunter, & Mel-
lish, 2007; Reiter, Sripada, & Robertson, 2003), which is the task of deriving interpretable
information from the data to allow the system to reason symbolically instead of numerically
(Reiter, 2007). Determining suitable content is mostly addressed using knowledge-driven
approaches in order to comply with the domain or user requirements (Yu et al., 2007). Fur-
thermore, Gkatzia (2015) reports that rule-based methods are dominant for current content
selection approaches. However, when the content determination is performed in a data-
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driven manner, as in this work, it is possible to reveal unknown information, which can
be beyond the user requirements, though still meaningful to represent (Banaee & Loutfi,
2014).

Since conceptual spaces are developed to model the attributes of concepts for further
reasoning, it can be employed as a robust framework to perform content determination using
semantic inferences. The problem of modelling natural language using conceptual spaces
is seldom investigated in the literature (Agostaro et al., 2005; Derrac & Schockaert, 2015).
Aisbett, Rickard and Gibbon (2015) recently investigated the integration of conceptual
spaces theory with the topic of computing with words by introducing a fuzzy representation
of conceptual spaces’ elements. Domains and dimensions in their work, however, are crisp
elements with no role concerning the qualification of objects within the space. Also, Derrac
and Schockaert (2015) attempted to derive the semantic relations within conceptual spaces
built upon text documents. However, to the best of our knowledge, there is no study on the
conceptual spaces to derive natural language descriptions for the numeric inputs through
a conceptual representation. The advantage of using conceptual spaces over the fuzzy set
theory (as the primary approach for linguistic description) is in the content determination
task, where the inference of linguistic descriptions for unknown observations can be easily
modelled. This description will include both similar concepts and representative features
from a multi-domain space, while in the learned fuzzy rules, the linguistic description of
observations includes the fuzzy linguistic labels (Aisbett et al., 2015).

3. Data-Driven Construction of Conceptual Spaces

This section presents how to automatically construct a conceptual space from a numeric
data set. Our approach to constructing conceptual spaces is called data-driven because it is
automatically constructed by processing the data matrix of the observations based on the
variable values and class labels. This way of construction is in contrast with the knowledge-
driven conceptual spaces that have to be manually constructed using psychologically or
scientifically pre-defined knowledge about the relations between quality dimensions, domains
and the concepts’ regions (Gärdenfors, 2004; Agostaro et al., 2005).

The process of constructing a conceptual space is about determining its essential ele-
ments. According to Aisbett and Gibbon (2001), and Raubal (2004), the definition of a
conceptual space is as follows:

Definition 1. A conceptual space S is defined as a 4-tuple 〈Q,∆, C,Γ〉, where Q is a set of
quality dimensions, ∆ is a set of domains, C is a set of concepts in the space S, and Γ is a
set of instances representing the concepts.

The representations of the elements are rigorously explained in further definitions (from
2 to 5). In order to automate the process of constructing conceptual spaces, the definitions
of the conceptual spaces’ elements are slightly modified compared to previous formulations
(Adams & Raubal, 2009b; Rickard et al., 2007). These modifications consider the fact that
the constructed conceptual space will be utilised as a semantic representation model for
further inferences.

To start the constructing process, we assume that a given data set M contains a set of
possible class labels, a set of predefined features, and the input observations with known
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class labels, which are characterised by feature values. Formally, given a set of class labels
Y = {y1, . . . , ym} and a set of features F = {X1, . . . , Xn}, let D be the set of known
observations, denoted by D = {oi : (xoi , yoi)}, where oi consists of a n-dimensional feature
vector xoi = [x1, . . . , xn], and an output label yoi ∈ Y. The component xj (j = 1, . . . n) in
the vector xoi is the measured value of the corresponding feature Xj ∈ F .

Here, each feature X is defined as a couple of values X : 〈HX , IX〉, where HX indicates
the linguistic name of the feature, and IX is either a numeric interval or a categorical set
that presents the possible range of values for X.

Example 1. Consider the leaf data set (Silva, Marcal, & da Silva, 2013) which is a set
of photographed leaf samples (observation set Dl) from various plant species (classes) such
as: Y = { yqr : ‘Quercus Robur’, yap : ‘Acer Palmatum’, yno : ‘Nerium Oleander’, ytt :
‘Tilia Tomentosa’, . . .}. This data set includes a set of measurable features to characterise
the features of each leaf sample, such as: F = { Xel : elongation, Xlo : lobedness,
Xco : convexity, Xro : roundness, Xso : solidity, Xin : indentation, . . .}. So, an
observed leaf such as oi ∈ Dl that is labelled by ytt takes the feature values as: oi : (xoi , ytt),
where xoi = [xel, xlo, xco, xro, xso, xin].

The goal of this section is to find a mapping from the elements of a data set M to
various elements needed to define a conceptual space S. In short, this mapping is achieved
by performing the following steps:

• Initialise the primitive known concepts using the class labels. Consequently, the con-
ceptual space S, which models the data set M, will consist of a set of concepts
C = {C1, . . . , Cm}, where |C| = |Y|. Thus, the notation Cy indicates the concept
which corresponds to the class label y ∈ Y.1

• Specify the quality dimensionsQ and domains ∆. The quality dimensions are specified
via selecting a subset of the features such thatQ ⊂ F , and the domains are determined
based on ranking and grouping the set of selected features as the quality dimensions
(Section 3.1).
• Form the representation of each concept Cy within the derived domains ∆, based on

the known corresponding instances (Section 3.2).

Figure 1 illustrates the steps of constructing a conceptual space from a set of numeric
data, which are explained in the following sections.

3.1 Domain and Quality Dimension Specification: A Feature Selection
Approach

A data-driven approach to build a conceptual space makes no prior assumption about the
domains. Rather, the known labelled observations and features are the inputs from which
the quality dimensions and domains will be extracted. This approach aims to propose a
set of observation-based associations between classes of data as concepts and the grouped
subsets of features as domains. As a domain is an integrated subset of quality dimensions,

1. This approach follows that any semantic modelling needs an innate set of knowledge (Quine, 1969).
Learning the concepts from scratch is not the scope of this work.
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Figure 1: Illustration of the main steps for constructing a conceptual space from a set of
numeric data. The domain and dimension specification is explained in Section 3.1, and the
concept representation is described in Section 3.2.

and the quality dimensions are the subset of the initialised features, the first step is to
determine a subset of informative features. This determination is performed by applying
feature selection methods. Before explaining these methods, we recall the formal definitions
of a quality dimension and a domain. As mentioned before, these definitions are reshaped
in a novel manner to be utilised in the task of semantic inference.

Definition 2. A quality dimension qX ∈ Q is a triple 〈Hq, Iq, µq〉, which corresponds to
a selected feature X ∈ F . Hq is the linguistic name of the quality dimension qX , which
is equal to HX and Iq indicates the range of possible values for the quality dimension qX ,
which is equal to IX . µq is defined as a family of fuzzy membership functions2 to map the
subintervals of Iq onto a set of linguistic terms.

Definition 3. A domain δ is a triple 〈Q(δ), C(δ), ωδ〉, where Q(δ) ⊂ Q is the set of integral
quality dimensions involved in δ, C(δ) ⊂ C is the set of concepts that are represented in δ,
and ω(δ) is a weight function3 presenting the assigned salient weight between a concept and
a quality dimension in δ.

Example 2. Consider the leaf data set from Example 1, suppose that a quality dimension
is elongation, which is defined as qel = 〈 ‘elongation’, [0, 1], µel〉, and another one is
lobedness, defined as qlo = 〈 ‘lobedness’, (0, inf), µlo〉. One can conceptualise the leaves
in various domains such as Shape, Texture, Colour, etc. Then, both elongation and lobedness
quality dimensions can belong to the shape domain. Moreover, µel can return the linguistic
labels for elongation as: ‘circular ’, ‘elliptical ’, ‘elongated ’.

Since we construct the domains in a data-driven way without involving prior knowl-
edge, it can be difficult to assign a semantic interpretation to the constructed domains,
which reflects human perception. However, the provided space is counted as a conceptual
space because of its ability to represent the concept formation and the semantic similarities
between concepts and instances across the domains. Thus, within the proposed model, the
set of quality dimensions of a domain is an integral subset of all quality dimensions which
are analytically relevant or dependent to each other.

2. More details on the fuzzy membership functions µ, which quantify the changes in the values of a feature
by assigning linguistic labels to the subintervals of dimension, will be given in Section 4.2.1.

3. The weight function ω(δ) is further explained in Section 3.1.2.
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Identifying the most characteristic features of the data from the initialised set of fea-
tures is an essential task, which is generally performed by feature extraction approaches
(Bengio, Courville, & Vincent, 2013). There are two principal ways to extract informative
features: feature transformation and feature selection (Guyon, Gunn, Nikravesh, & Zadeh,
2008). The first approach finds a projection from the original feature space into a lower
dimensional feature space. Transforming the original features into this lower dimensional
space usually alters any associated descriptive attributes connected to the features. There-
fore, the semantic meaning of the resulting features is often difficult, if not impossible, to
assess (Guyon & Elisseeff, 2003). The second approach selects a subset of original features
by keeping relevant features and discarding the irrelevant ones. The retained features are
not altered, and the original semantic meaning of those features stays intact. Since our goal
is to exploit external knowledge of the original features, we apply feature subset selection
techniques.

Both relevance and redundancy are essential criteria to consider in feature selection. A
subset of features is optimal if the relevance between selected features and the target classes
is maximal, and the redundancy among the selected features is minimal. These two criteria
guarantee that the selected features are adequate to distinguish the classes of data with the
smallest number of features (Duch, 2006).

The proposed approach employs feature selection methods to specify the quality dimen-
sions and domains in two phases: feature subset ranking and feature subset grouping. The
feature subset ranking phase determines which features are most representative for every
single target class, independent from other classes. Since a concept can rather be repre-
sented by one or several groups of features as domains, the feature subset grouping phase
categorises the ranked features in a way to recognise what features are most related to each
other based on their relevancy to the concepts. The following subsections show the two
phases of the proposed solution, (1) feature subset ranking and (2) feature subset grouping,
in order to specify the suitable quality dimensions within a set of domains.

3.1.1 Feature Subset Ranking

Feature subset selection algorithms are categorised as either filter methods or wrapper meth-
ods (Witten & Frank, 2005). Filter methods determine the subset of features based on the
statistical characteristics of the input data set without referring to the used classifier. Wrap-
per methods are dependent on the learning algorithm (i.e., target classifier) that evaluates
the selected subset of features based on the performance of the used learning algorithm.
In the present work, the aim is to identify the meaningful set of understandable attributes
out of predefined features, but not to classify the input data. So, filter methods are chosen
to be used for feature selection, since this category of methods is independent of the final
classifier approach and it derives an informative subset of features with respect to the input
data set labels.

Filter methods rank the features using a scoring function, usually by employing a sta-
tistical or information theoretical measure to quantify relevance and redundancy. The top
scored features are kept as selected features (or low scored ones are removed from the re-
sulting subset). In this work, mutual information, one of the commonly employed scoring
functions, is used (Brown, 2009). One such technique is MIFS (mutual information-based
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feature selection) (Battiti, 1994). For an input set of features F and 2-class labelled data
D, MIFS adds the feature Xi ∈ F to the already chosen subset of features F ′, in order to
maximise

I(D, Xi)− β
∑
Xj∈F ′

I(Xi, Xj), (1)

where I(Y,X) is the mutual information4 between the variables Y and X (Torkkola, 2008).
The first term in equation 1 attempts to maximise the relevance of feature Xi to target
labelled data, and the second term tries to minimise the redundancy between Xi and the
already selected features in F ′ (using a balancing parameter β). In our work, the term
I(Y,X) is estimated via histograms, but other estimation methods are applicable as well
(Schaffernicht, Kaltenhaeuser, Verma, & Gross, 2010). The MIFS technique is generally
a heuristic approximation since there is no independent assessment of the joint mutual
information to determine when a feature is relevant to the class labels (Torkkola, 2008).
The proposed method is not dependent on the use of the MIFS algorithm. It can be
substituted by other approximations of the joint mutual information (Fleuret, 2004; Peng,
Long, & Ding, 2005; Brown, Pocock, Zhao, & Luján, 2012). It is notable that different filter
methods do not necessarily produce the same ranking of the features. However, the focus
here is to reach to a good enough set of features representing the data classes with high
relevance and low redundancy (Webb, 2003).

The proposed method for feature subset ranking starts with defining a new set of input
data for each target label y, wherein the data set of known observations D is split into
two classes: class y including all the observations labelled by class y, denoted by Dy, and
class y = {Y\y} including the rest of observations labelled by other classes than class y,
denoted by Dy. Then the MIFS procedure is applied to the feature set F considering the
generated 2-class data set Dyy = {Dy ∪Dy}. By separating one class (concept) of data from
the other classes, the output of the feature ranking algorithm will return the features that
individually characterise the observations of this concept and separate it from the rest. The
output of the filter method for each label is a sorted list of features with a score for each
feature. Formally, the output for a class y is a ranked list of features with the highest scores
according to y, as

R(y) = { (X,wy,X) | X ∈ F , wy,X ∈ [0, 1] } (2)

where wy,X is the normalised weight (or the score) that is assigned to the relation of feature
X and label y. The features in R(y) are the k most relevant features of the class label y.
From a conceptual point of view, these k features of R(y) are the suitable candidates to
be the quality dimensions that distinguish the concept Cy from the other concepts. The
score wy,X determines the importance of the selected feature X to represent the class label
y. From the conceptual space point of view, the scores indicating the weights show the
significance of the chosen quality dimensions for Cy.

Algorithm 1 shows the steps for finding the ranked scored list of features for each label
y. The output of the algorithm is then a set of filter method results for all the class labels,
denoted by R = {R(y1), . . . ,R(ym)}. In this algorithm, F ′ is the set of all features that

4. This mutual information is defined based on the probability density functions, denoted: I(X,Y ) =∫
x

∫
y
p(x, y) log p(x,y)

p(x)p(y)
dydx (Cover & Thomas, 2006).
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Algorithm 1: Feature Subset Ranking

Function FeatureRanking(D,Y,F)
R,F ′ ← ∅
foreach y ∈ Y do

// Define 2-class data set

Dy = {oi : (xi, yi) ∈ D | yi = y}
Dy = {oi : (xi, yi) ∈ D | yi 6= y}
Dyy ← Dy ∪ Dy
// Find the list of top scored features (X,wy,X)
R(y)←MIFS(Dyy,F)
F ′ ← F ′ ∪ {X | ∃ (X,wy,X) ∈ R(y) ∧X ∈ F , w ∈ [0, 1]}

return R, F ′

appeared (at least once) in the ranked features:

F ′ =
⋃
y∈Y
{X| ∃ (X,wy,X) ∈ R(y) ∧X ∈ F , wy,X ∈ [0, 1]}, (3)

where F ′ ⊂ F . The set of features F ′ is the set of features to become quality dimensions.
However, in feature grouping, some of these features may be filtered out from the target set
of quality dimensions. Note that the time complexity of the feature subset ranking (MIFS)
is quadratic (Bollacker & Ghosh, 1996) depending on the number of initial features.

Example 3. Continuing of the leaf data set in Example 1, suppose that after applying the
MIFS method, elongation, lobedness, and roundness are selected as the top features for ytt,
R(ytt) = { (Xel, wytt,Xel), (Xlo, wytt,Xlo), (Xro, wytt,Xro)}. Also, elongation, roundness, and
indentation are selected for yno, R(yno) = { (Xel, wyno,Xel), (Xro, wyno,Xro), (Xin, wyno,Xin)}.
Then, F ′ = {Xel, Xlo, Xro, Xin}.

3.1.2 Feature Subset Grouping

Based on the definitions in conceptual space theory, a quality dimension usually appears in
a single domain along other relevant dimensions to represent a specific aspect of conceptu-
alised observations (Gärdenfors, 2000; Zenker & Gärdenfors, 2015). It might be possible to
have the same dimension in various domains, but this requires a priori knowledge (Banaee &
Loutfi, 2014). Moreover, repeating dimensions in a multi-domain space increases the redun-
dancy, and consequently decreases the distinction of the domains for a meaningful concept
representation. Therefore, the selected features are divided into distinct partitions of fea-
tures as target domains, in order to avoid either creating a single domain of full features,
or repeating features in all of the constructed domains.

Here we propose a heuristic method to detect distinct subsets of features, where the
features in each subset are highly representative of the most relevant classes. The output
setR in Algorithm 1 is a set of ranked features for each label. It is obvious that some features
might be repeated in the ranked set of different class labels in R. From the information
in set R, the goal is to extract those subsets of features that are associated to each other
based on their co-appearance in the ranked features of each class. We first introduce a
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y1 y2 yi ym

X1 X2 X3 Xj Xn

. . . . . .

. . . . . .

wy1,X1
wyi,Xj wym,Xn

Figure 2: A weighted bipartite graph with two sets of vertices from the labels Y and the
selected features F ′. Also, an example of a biclique shown in the highlighted edges.

graph representation of the label-feature relation, and then derive the correlated features
using a greedy search on this graph. More specifically, we build up a bipartite graph and
search for the bicliques that identify the most associated feature subsets (i.e., domains).

Let G = (VY ∪ VF ′ , E, w) be a bipartite graph with two sets of vertices VY and VF ′ , a
set of edges E, and w : VY × VF ′ → IR as a weight function for the edges. The vertex set
VY denotes the class labels in Y. The vertex set VF ′ denotes the top-ranked features in F ′.
A vertex vy ∈ VY is connected to a vertex vX ∈ VF ′ if X ∈ F ′ has been selected for y ∈ Y
in Algorithm 1. In other words, for each pair (X,wy,X) ∈ R(y) a new edge vyvX is added
to the edge set E of bipartite graph G between vertices vy and vX , where the weight of
the edge vyvX is denoted by w(vyvX) = wy,X . Figure 2 is an illustration of such weighted
bipartite graph G.

The idea of grouping features is to find the maximal connected subgraphs in G. More
precisely, a subset of features which are all connected to the same set of classes is a suitable
subset of features for feature grouping. A biclique Ĝ ⊂ G is a special bipartite graph where
every vertex in one part of vertices is connected to all the vertices in the other part of the
vertices. The highlighted edges in Figure 2 depicts an example of a biclique in the given
bipartite graph. Let Ĝ be a biclique denoted by Ĝ = (V̂Y ∪ V̂F ′ , Ê, w), where V̂Y ⊂ VY ,
V̂F ′ ⊂ VF ′ . In this biclique, assume |V̂Y | = m̂, |V̂F ′ | = n̂, thus |Ê| = m̂× n̂. The proposed
approach is looking for a biclique with the highest score as Ĝmax among all the bicliques
in G. The score of a biclique Ĝ is calculated using a scoring function ScoreĜ, based on the
weights of its edges, as follows:

ScoreĜ =
∑
vy∈V̂Y

( ∏
vX∈V̂F′

w(vyvX)
)
/ n̂ (4)

This scoring function calculates the average of the weights associated in the biclique.
Generally, this scoring function will return higher values for the bicliques with a higher
number of class labels and lower number of features.

In the selected biclique (Ĝmax), the involved features V̂F ′ then will be the subset of
features as the quality dimensions of a domain δ. To identify the next domain, the set of
features V̂F ′ is eliminated from the graph G, since these features are already assigned to a
domain. After that, the process of finding the best biclique repeats on the updated graph G
to find the next maximal biclique. Algorithm 2 shows the steps of determining the domains
with feature subset grouping. In general, the problem of finding maximum edge biclique
in a bipartite graph is an NP-complete problem (Shaham, Yu, & Li, 2016). However, the
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Algorithm 2: Feature Subset Grouping

Function FeatureGrouping(R, F ′, Y)
∆, Q← ∅
// Build bipartite graph

VY ← Y
VF ′ ← F ′
foreach (X,wy,X) ∈ R(y) : y ∈ Y do

E ← E ∪ vyvX
w(vyvX)← wy,X

G = (VY ∪ VF ′ , E, w)
// Find max cliques as domains

do

Ĝmax(V̂Y ∪ V̂F ′ , Ê, w)←MaxBiclique(G)

if Ĝmax = ∅ then
break

δ : 〈 Q(δ), C(δ), ωδ 〉 ← 〈V̂F ′ , V̂Y , w〉
∆← ∆ ∪ δ
Q ← Q∪Q(δ)
// Update bipartite graph

G←
(
VY ∪ (VF ′\V̂F ′), (E\Ê), w

)
until (Q = F ′)

return ∆, Q

developed approximation method for feature grouping approach has polynomial time com-
plexity (depending on the number of classes, not features) due to the fact that the degree
of the class vertices in the constructed bipartite graph is a constant number (k). Thus, by
scaling the features size or the class size, the approach is still computationally feasible.

As stated in Definition 3, a domain δ is a triple 〈 Q(δ), C(δ), ωδ 〉. The weight function
ωδ = C(δ) × Q(δ) → IR is a function presenting the assigned salient weight between a
concept Cy ∈ Y(δ) and a quality dimension qX ∈ Q(δ). For a chosen biclique Ĝmax = (V̂Y ∪
V̂F ′ , Ê, w), we can construct a domain δ as a triple 〈 Q(δ), C(δ), ωδ 〉 = 〈 V̂F ′ , V̂Y , w 〉. More
specifically, for a constructed domain δ = 〈 Q(δ), C(δ), ωδ 〉, the set of quality dimensions
is Q(δ) = {qX | vX ∈ V̂F ′}. Also, the set of concepts related to δ is defined as C(δ) =
{Cy | vy ∈ V̂Y}. Then ωδ(Cy, qX) = w(vyvX).

It is worth noting that for the next iteration of finding bicliques, the vertices with the
labels V̂Y of a chosen biclique are not eliminated while updating the bipartite graph, because
a class label can be involved in other bicliques in further iterations. From a conceptual space
point of view, it is also meaningful, since a concept can be represented in several domains.

Example 4. The corresponding bipartite graph to the ranked features from Example 3
is illustrated in Figure 3. In this bipartite graph, one biclique is highlighted, which can
potentially be the best biclique. If so, then the features elongation and roundness will
become the quality dimensions of a new domain δ as: Q(δ) = {qel, qro} and C(δ) =
{Ctt, Cno}.
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ytt yno

Xin Xel Xlo Xro

Figure 3: A bigraph graph and one selected biclique (blue edges) for the leaf example
(explained in Example 4).

3.2 Concept Representation: An Instance-Based Approach

The essential concern to represent a concept in a conceptual space is to decide which are the
most relevant quality dimensions and consequently most relevant domains. A concept may
be represented in one domain or in several domains. The important point is that a concept is
not necessarily associated with a certain subset of domains, but usually, one domain or a few
numbers of domains are prominent to represent a concept (Gärdenfors, 2000). In Section
3.1, the selected features are grouped into a set of domains out of the extracted bicliques.
Using the fact that each class label will be involved in at least one selected biclique, then the
corresponding concept is assigned to (or associated with) a certain number of domains (at
least one). With the output of Algorithm 2 we already know which concepts are associated
with which domains.

It is possible that one concept appears in two bicliques, which means the concept is
relevant to both specified domains. This fact is consistent with the conceptual spaces theory
since a concept is not always represented within a single domain. The typical example is the
concept of ‘apple’ which is represented with more than a single domain, such as colour, taste,
size, etc. A concept with merely one related domain is called property (Gärdenfors, 2000).
In fact, a property is a special form of a concept defined in a single domain (Gärdenfors &
Warglien, 2012). For example, the colour ‘green’ is a property which is represented only in
the colour domain. Thus, a concept can be specified as a single property within a single
domain (e.g., green), or as a collection of properties within several domains (e.g., apple).
Depending on the domain specification process, a class label in the input data set might
be represented either as a property in one domain or as a concept in several domains. The
problem of deriving the domains in a data-driven manner is that for a concept represented
in several domains, there is no trivial interpretation for the meaning of its properties within
the domains. This issue comes from the fact that the interpretation of the data-driven
domains themselves is also tricky.

For a set of concepts C = {Cy1 , . . . , Cyn}, the problem is how to formulate the geometrical
representation of concepts in the conceptual space with the extracted set of domains ∆. In
general, a natural concept is a collection of regions across one or more domains along with
a set of salient weights to the domains (Gärdenfors, 2000). For a concept Cy, let ∆(y) ∈ ∆
be a subset of domains that contain concept Cy in their concept sets, as ∆(y) = {δi| δi ∈
∆ ∧ Cy ∈ C(δi)}, assuming that |∆(y)| = k. The concept Cy is presented by a collection of
sub-concepts, denoted: Cy = {c1

y, . . . , c
k
y}, where each ciy is the representation of Cy within

the domain δi ∈ ∆(y).
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Algorithm 3: Concept Representation

Input: Dy ⊂ D: set of observations that are labelled by y ∈ Y and ∆(y) ⊆ ∆: domains that
contain Cy in their concept sets.

Output: A Concept Cy = {c1y, . . . , cky}, representing label y in the conceptual space.

foreach o ∈ Dy do
γo ← V ectorise(o,∆(y),Q) // determine p1γ , . . . , p

k
γ in δ1, ..., δk

Γ(y)← Γ(y) ∪ γo
foreach δi ∈ ∆(y) // δi = 〈Q(δi), C(δi), ωδi〉 , 1 ≤ i ≤ k
do

ciy ← ∅
foreach γ ∈ Γ(y) do

P iy ← P iy ∪ {piγ}
η ← ConvexHull(P iy)

φ← {ωδi(Cy, qi)|Cy ∈ C(δi), qi ∈ Q(δi)}
ciy ← 〈η, φ〉
Cy ← Cy ∪ ciy

Definition 4. A sub-concept ciy, representing the concept Cy in the domain δi, is defined as
a tuple 〈η, φ〉, where η is the region representing the geometrical area of Cy in the domain
δi, and φ is a set of weights indicating the assigned degrees of salience between Cy and each
quality dimension q ∈ Q(δi).

In order to represent a concept, we define the representation of its sub-concepts. The
following two subsections describe the way to formally represent a concept, by defining its
regions and its set of weights, respectively. Algorithm 3 shows the steps of the concept
representation, with the required parameters to represent a concept Cy.

3.2.1 Convex Regions of Concepts

The identification of the geometrical regions of concepts is based on the location of the
known observations. The concept Cy ∈ C is represented using the subset of observations
Dy = {o1, o2, . . . , ony} which are labelled with y ∈ Y. We define Γ(y) as the set of instances
related to the observations in Dy, denoted by Γ(y) = {γ1, γ2, . . . , γny}. These instances
then specify the geometrical representation of the concept Cy as a set of regions within the
domains. The set of all instances Γ in a conceptual space S is defined as: Γ =

⋃
y∈Y Γ(y).

Definition 5. An instance γ related to the concept Cy is a finite set of n-dimensional points
γ = {p1

γ , . . . , p
k
γ} with a one-to-one mapping from the instance points to the domains ∆(y),

where |∆(y)| = |Cy| = k.

An instance γo ∈ Γ(y) is the representation of the observation o ∈ Dy. The points of γo
are the values of the associated quality dimensions, which are stored in the feature vector
xo. Formally, each point piγ ∈ γo in a domain δi ∈ ∆(y) is a numeric vector of the values of
the quality dimensions in δi, denoted: piγ =< q1(γo), . . . , q|Q(δi)|(γo) >, which is a sub-vector
of the feature vector xo that includes the features associated with the quality dimensions
in Q(δi). This process of determining the points of an instance γo using the feature vector
of the observation o is called vectorisation.
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Since all the instances with the label y have a point pi in domain δi ∈ ∆(y), to identify
the convex region η of a sub-concept ciy, we need to know the location of all these points in
the domain. Let P iy be the collection of all the points which their corresponding instances
are labelled by y, and these points are located in domain δi. So, P iy = {piγ1 , p

i
γ2 , . . . , p

i
γny
},

where piγj ∈ γj , γj ∈ Γ(y), and j = 1...ny.

Example 5. Figure 4a consists of two domains δa and δb with two and three quality
dimensions, respectively. Assume a concept Cy has two sub-concepts cay and cby within these

domains. So, each instance γj ∈ Γ(y) includes two points paj and pbj located in the domains.

Figure 4a depicts the set of points P ay and P by , which will be used to represent sub-concepts

cay and cby, respectively.

The convexity, connectedness, and betweenness are the geometrical criteria required
to define a region for a concept in the theory of conceptual spaces (Gärdenfors, 2000).
The convexity of concepts is crucial to facilitate the learnability of concepts through the
instances (Gärdenfors, 2014). A convex region is a geometric structure within a multidi-
mensional domain which satisfies convexity and connectedness criteria. There are various
approaches to identify the convex region covering a set of giving points, such as convex hull
and Voronoi tessellations algorithms, or defining an ellipsoid around the points (Gärdenfors,
2000; Adams & Raubal, 2009b). For our purpose, the convex hull (CH) is a more convenient
choice among others because it also satisfies the betweenness criterion. Since the concepts’
regions are formed by its instances, both ellipsoid and Voronoi regions assign some points
of the space to a concept’s region, which are not necessarily between the concept’s known
instances. For a sub-concept ciy, the convex region η is defined as the convex hull (i.e.,
convex polytope) of the points in P iy, as: η(ciy) = CH(P iy).

Example 6. Figure 4b shows the convex regions of the sub-concepts cay and cby. The convex

hull η(cay) is a 2D polygon in δa, and η(cby) is a 3D polytope in δb. These convex hulls are

calculated based on the points P ay and P by from the instances in Γ(y) in Figure 4a.

3.2.2 Context-Dependent Weights of Concepts

Depending on the context, the salience given to various aspects of a concept may vary
(Gärdenfors, 2000). In the example of the apple concept, in one context the taste domain
might be more prominent, but in another context, shape domain can be salient. In contrast,
in such examples of concepts that there is no common knowledge about the salience of the
domains in various concepts, the data itself determines the salience of domains and quality
dimensions and defines the context-based weights for the concepts. In other words, the
observations from different contexts define which domain and quality dimensions are more
important to represent the given concepts.

Example 7. For the example of leaf data set, suppose that shape and colour are the
domains and suppose that we want to differ between the contexts of Swedish leaves and
Japanese leaves. Knowing the common-sense knowledge about these contexts might be
useless to determine the weights of the domains and dimensions. However, based on the
observed data in each of these contexts, one can realise that e.g., the quality dimensions in
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(a) Instances in Γ(y) and their corresponding set of points, P ay and P by .

(b) Convex regions of the sub-concepts cay and cby.

Figure 4: A concept representation example in a conceptual space with domains δa and δb.

the shape domain are more salient rather than the colour domain to represent the Swedish
leaves, but this inference may not be necessarily valid for Japanese leaves.

These relative degrees of salience assigned to the dimensions of the domains implicitly
represent the notion of context. Here, the context-dependent weights are already embedded
in the representation by calculating the relevance of quality dimensions to the concepts (i.e.,
the weights of the bipartite graph) while specifying the domains. The salient weights φ for
a sub-concept ciy come from the assigned weights ωδi in δi between Cy ∈ C(δi) and any
quality dimension in Q(δi). Formally:

φ(ciy) = {ωδi(Cy, q
i) | Cy ∈ C(δi), qi ∈ Q(δi)}. (5)

So, each sub-concept has its own set of weights in relation to the domain’s quality
dimensions. This point individualises the definition of context-dependent weights from the
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definition of context weights in other developed conceptual spaces. In other conceptual
spaces, a set of overall weights is assigned to the domains without considering the role.
However, here, for two independent sub-concepts, the assigned weights in the same domain
might vary.

4. Semantic Inference in Conceptual Spaces

This section aims to design an inference approach in order to provide a semantic charac-
terisation for a new set of unknown observations. The focus of this section is on solving
two main questions: (1) how a new (unknown) observation is represented in a conceptual
space, and (2) how this representation enables the inference of semantic descriptions for
the observation. The first question refers to the problem of induction in conceptual spaces
theory (Gärdenfors, 2005). To develop such inductions in a conceptual space, it is impor-
tant to realise which concepts represent a new observed instance. Due to the geometrical
representation of the conceptual space, the similarity between the instances in the space
enables us to define the notion of inclusion as an operator to measure the similarity of
new observations to the specified concepts within the metric domains. The second question
refers to the problem of symbol grounding in the conceptual space theory (Aisbett & Gib-
bon, 2001). The inference of a semantic representation for any input observation in natural
language is enabled by defining a symbol space.

In general, the proposed inference in a conceptual space consists of the following steps:

• Defining the symbol space , based on the prior knowledge for linguistic character-
isation of the concepts and quality dimensions,
• Inferring linguistic descriptions, for each new unknown observation, based on

the inclusion of its corresponding instance in the concepts:

– Inference in conceptual space : specifying the geometrical location of a new
instance within the conceptual space, examining the inclusion of the instance,
and determining the linguistic labels in the symbol space from the associated
concepts and dimensions,

– Inference in symbol space : annotating and characterising the instance based
on the provided set of symbolic terms, and generating linguistic descriptions.

Example 8. Consider the concepts and quality dimensions of the leaf conceptual space
in Example 4. A new observed leaf can be either linguistically represented by a known
concept (e.g., Cno) where “The new observation is a Nerium leaf.”, or by a set of related
quality dimensions (e.g., qel and qro), such as “The new observation is an elongated and
lance-shaped leaf.”

Figure 5 illustrates the step of inferring linguistic descriptions for an unknown observa-
tion through the constructed conceptual spaces and its corresponding symbol space. The
details of each component are explained in Section 4.2, after formally defining the symbol
space in Section 4.1.
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Figure 5: Illustration of the steps of inferring linguistic descriptions for an unknown ob-
servation via the constructed conceptual spaces and its corresponding symbol space. The
details of the semantic inference step are explained in Section 4.2.

4.1 Symbol Space Definition

According to a general formulation proposed by Aisbett and Gibbon (2001), a conceptual
space can be augmented with a symbol space. This extension provides an internal mapping
between geometrical elements in conceptual space (such as concepts, dimensions, domains,
etc.) and the symbolic labels (typically words) in symbol space.

Definition 6. A symbol space S of size n is a space containing n symbol dimensions LS ,
wherein each concept and quality dimension in the conceptual space is linked to a symbol
dimension. Symbol dimensions are isomorphic to the real number interval [0, 1].

Based on the definition of Aisbett and Gibbon, the symbol dimensions need to be named
by the primitive input labels of the associated concepts (classes) and quality dimensions
(features). The construction of the symbol space is a knowledge-based process, wherein the
prior knowledge is encoded (Aisbett & Gibbon, 2001). The prior knowledge specifies the
symbolic expressions in natural language form, related to the elements of conceptual space
S.

We propose a two-layer symbol space containing the symbol dimensions of the concepts,
LC =

[
dC1 , dC2 , . . .

]
, as concept layer, and the symbol dimensions of quality dimensions,

LQ =
[
dq1 , dq2 , . . .

]
, as quality layer. So, for every concept Cy ∈ C, there is a symbol

dimension in the concept layer, and for each quality dimension q ∈ Q, there is a symbol
dimension in the quality layer. Figure 6 shows the associations between the elements in a
conceptual space and the two-layer symbol dimensions in a symbol space.

Any instance in a conceptual space is associated with a point in the symbol space, namely
a symbol vector. For a given instance γ, the associated symbol vector Vγ in S specifies the
applicability of the symbol dimensions for γ in the range 0 to 1 for each dimension (Aisbett
& Gibbon, 2001). The symbol vector Vγ is a concatenation of two vectors Vγ :< VCγ ,VQγ >,
one vector in the concept layer and one vector in the quality layer, respectively. Thus,
|VCγ | = |LC |, and |VQγ | = |LQ|.

Example 9. Consider the conceptual space of leaves Sl in Example 4. For a new leaf
sample as an instance γ, the symbol vector Vγ is defined as a 4-dimensional vector with the
concatenation of VCγ =< vdtt , vdno >, and ,VQγ =< vdel , vdro >.
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Conceptual Space

C = {C1, C2 . . .}

Q = {q1, q2 . . .}

Symbol Space

Concept Layer
LC =

[
dC1 , dC2 , . . .

]
Quality Layer

LQ =
[
dq1 , dq2 , . . .

]
Figure 6: Schematic of a conceptual space and the coupled symbol space.

The symbol vector is defined as a two-element vector, wherein each vi ∈ Vγ consists of
a pair of values vi = (label, value). The label shows the related symbolic term, and the
value shows how representative is the instance to the dimension di (either how similar to its
concepts or how related to the quality dimensions). The notion VCγ (Cy) = vdCy indicates the
value of the symbol vector in the concept layer for the dimension related to the concept Cy,
and similarly, VQγ (qj) = vdqj indicates the value of the symbol vector in the quality layer
for the dimension related to the quality dimension qj . The further sections explain how the
elements of a symbol vector for a new instance are assigned values based on the inclusion
of the instance within the domains.

4.2 Inferring Linguistic Descriptions for Unknown Observations

For any given unknown observation, the goal is to infer a semantic description in natural
language form. The core of the inference process is to cope with the notion of similarity
in conceptual spaces. In order to place the new instances in the space and choose the best
concepts that include (or are similar enough to) an observation (Rickard et al., 2007). The
metric structure of a geometrical conceptual space enables the model to measure the se-
mantic similarity of concepts and instances in the space (Adams & Raubal, 2009b). The
proposed construction of the conceptual space in Section 3 facilitates these measurements
since the representations of concepts and instances span across domains using the geometric
elements i.e., convex regions and points. From the point of view of NLG, inferring linguistic
descriptions for unknown observations covers the main tasks of an NLG pipeline for generat-
ing natural language text out of non-linguistic data: Content determination, Microplanning
(including lexicalisation), and Realisation (Reiter et al., 2000). This phase employs various
developed methods for linguistic descriptions (i.e., fuzzy set theory, see Ramos-Soto et al.,
2016) in order to ease the process of quantifying the location of unknown samples within a
conceptual space, and infer the proper linguistic terms.

The process of inferring linguistic descriptions for an instance γ′ is presented in two
following phases.

• Phase A: Inference in Conceptual Space, that first determines the inclusion of the new
instance γ′ in the concepts within the domains ∆(γ′) using semantic similarity, and
then sets the values of symbol vector Vγ′ , (performing content determination).
• Phase B: Inference in Symbol Space, that verbalises the symbol vector Vγ′ into a set

of lexical items which are human-readable descriptions, (performing lexicalisation and
realisation).
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For a given set of new observations D′ = {o′i : (xo′i)}, let γ′ be the corresponding instance
to the unknown observation o′ ∈ D′ which is not assigned to any of the known class labels
of Y. Also, let ∆(γ′) ⊆ ∆ be a set of domains that γ′ has corresponding points in each of
them5, where |∆(γ′)| = k′. The details of the phases A and B are explained in the following
sections.

4.2.1 Phase A: Inference in Conceptual Space

In this phase, we first compare the new instance with each of the concepts using the simi-
larity measure to check whether it is included within concept regions or not. Then, based
on the result of this inclusion, we initialise a symbol vector and set its values in both con-
cept layer and quality layer. From the NLG perspective, this performs the task of content
determination (Reiter, 2007), that decides which set of information is required to charac-
terise a new observation in the final description. The process of checking the inclusion is
a simple fuzzy extension of an instance-based method that measures the membership of
the new instance to the nearest labelled region of instances. Although it can be done by
any classification approach, we formulate the process with respect to the definitions of the
introduced conceptual space.

For an instance γ′, the symbol vector Vγ′ is calculated based on the inclusion of the
instance points pγ′ in different regions within the domains. As defined before, γ′ is repre-
sented with a set of points γ′ = {p1

γ′ , . . . , p
k′
γ′}. In general, with placing a new instance in

a conceptual space, four cases can occur. Without losing generality, assume γ′ consists of
two points in two domains δa and δb, denoted by γ′ = {paγ , pbγ}. Also assume that there are
two concepts Cy1 and Cy2 that have been represented in one or both of these two domains.
Figure 7 shows the four different cases concerning various positions of the points pa and pb,
and their relations to the sub-concepts’ regions within the domains. One instance can be
located in the space differently as follows:

1. Totally included in a concept within all the domains (case one, Figure 7a),
2. Partially included in just a concept (case two, Figure 7b),
3. Partially included in two distinct concepts (case three, Figure 7c),
4. Not included in any concept (case four, Figure 7d).

5. It is notable that a new observation is not necessarily defined in all domains since there might be no
calculated values for some of the features/quality dimensions. So, the corresponding instance may not
have points in all the provided domains.
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(a) Case one: γ′ is totally included in concept Cyi (in all the domains).

(b) Case two: γ′ is partially included in concept Cyi (in one domain).
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(c) Case three: γ′ is partially included in two concepts Cyi and Cyj .

(d) Case four: γ′ is not included in any concept.

Figure 7: An illustration of four different cases concerning the various positions of an
instance points γ′ = {pa, pb} within two domains δa and δb, along with the assigned values
to symbol vector Vγ′ , according to the inclusion of the points in the presented sub-concepts.

In order to assign a concept to γ′, it is necessary to check the inclusion of the instance
points in the concept’s regions within ∆(γ′) using a similarity measure. Within a single
domain, two states need to be considered: 1) If the instance point is included in a region,
then the region’s concept will be assigned to γ′. So, the corresponding symbol dimension of
the concept will be activated in the symbol vector of γ′ (in the concept layer). 2) If there
is no region that the instance belongs to, then no concept will be assigned to γ′ within that
domain. The symbol dimensions related to the quality dimensions of the domain will be
activated in the symbol vector of γ′ (in the quality layer). Formally, the symbol vector Vγ′
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Algorithm 4: Inference in Conceptual Space (set symbol vectors)

Function ConceptualSpaceInference(γ′,Q,∆, C)
foreach δi ∈ ∆(γ′) do

p← piγ′ ∈ γ′

// Set the symbol vector in concept layer

foreach c ∈ δi do
simγ′,Cy

= max(simγ′,Cy
,G(p, c)) // Cy 3 c

if simγ′,Cy
6= 0 // cases 1 and 3 (and partially 2)

then
labelγ′,Cy

= label(Cy)
else

labelγ′,Cy = ∅
VCγ′(Cy) = (labelγ′,Cy

, simγ′,Cy
)

// Set the symbol vector in quality layer

if VCγ′(Cy) == (∅, 0) // case 4 (and partially 2)

then
foreach q ∈ δi do

degreeγ′,q = H(p, q)

labelγ′,q = label(Abestγ′,q )

VQγ′(qi)← (labelγ′,q, degreeγ′,q)

return Vγ′ : 〈 VCγ′ ,VQγ′ 〉

gets the values in each domain δi ∈ ∆(γ′) as follows: We first define a Graded Membership
function, G(piγ′ , c

i), as an inclusion operator to determine the similarity degree of a point

piγ′ to the region of a sub-concept ci ∈ δi within δi. If piγ′ is similar enough to the convex

region of the sub-concept with a certain membership degree, then the value of G(piγ′ , c
i) is

set to VCγ′(Cy), where Cy 3 ci. Moreover, we define a Graded Quality function, H(piγ′ , q
i), to

measure to what degree piγ′ belongs to a quality dimension qi ∈ Q(δi). If piγ′ is not included

in any of the sub-concepts, then the value of H(piγ′ , q
i) is set to VQγ′ (q

i).

Algorithm 4 shows the steps to set the symbol vector values while iterating through all
the involved domains ∆(γ′). Both graded membership function and graded quality function
are formally defined in the following sections.

Graded Membership Function

The problem of inclusion has been studied in the literature of the conceptual spaces theory
with various definitions such as inclusion operator (Adams & Raubal, 2009b), graded simi-
larity (Gärdenfors & Williams, 2001), and graded membership (Hampton, 2007; Decock &
Douven, 2014), which calculate the similarity of the instance points to the regions based
on their geometrical distances, with or without considering the gradedness of membership.
Here, since the convex regions of concepts are constructed based on the observed instances,
it does not make sense to rigidly adhere to the crisp boundaries of the calculated regions.
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So, a point which is not certainly inside the calculated boundaries a region, but is similar
enough to the region, can be counted as a member of the region’s concept.

The Graded Membership function G(p, c) is defined as an inclusion operator between a
given point p and a defined sub-concept c : 〈ηc, φc〉. This function shows how similar is
p to the convex region ηc of c with the certain set of weights φc within a metric domain
δ. The graded membership is calculated by applying geometrical algorithms that consider
whether an n-dimensional point is included in the n-dimensional convex hull or not. If point
p is included in the region ηc, then G(p, c) is equal to one. But if p is outside the region,
then the similarity of point p to the region is defined as a monotonic decreasing function
(Decock & Douven, 2014) which is measured using a fuzzy membership function of distance
sim(p, c) = f [d(p, c)]. This similarity takes values between [0, 1] and expresses the graded
degree of inclusion of p in c. From the experiments on similarity cognition, the similarity
can be measured as an exponential decay function of the distance: sim(d) = e−rd (Shepard
et al., 1987) (where r is a constant factor). Using a fuzzy membership function to measure
the similarity has the advantage of using notions from the fuzzy set theory that provide
linguistic descriptions for the fuzzy output degrees (Rickard, 2006).

Several methods have been proposed to compute the distance of a point p to a convex
region ηc. The Hausdorff distance dH(p, ηc) (Aisbett & Gibbon, 2001) relies on the defini-
tion of a distance measure between two n-dimensional points (namely Weighted Minkowski
Metric). As a function of the similarity measure, we define a graded membership function,
inspired by Hampton’s definition (Hampton, 2007) in which a determinate boundary region
of membership is assumed. For the points inside the region, the membership value is one.
For the points out of the region, with a given lower-bound threshold θL for each concept’s
region, if d(p, ηc) ≤ θL, then p is similar enough to be counted as a member of c, and if
d(p, ηc) > θL, then p is far to be counted as an instance of c (Rickard, 2006)6.

Definition 7. The graded membership function G : δ → [0, 1] is the similarity measure
between a point p and a sub-concept c ∈ Cy as:

G(p, c) =


1 if p ∈ ηc
e−rd

H(p,ηc) if p /∈ ηc & dH(p, ηc) ≤ θL
0 if p /∈ ηc & dH(p, ηc) > θL

(6)

The symbol vector of a new instance in the concept layer (VCγ′) is set by the graded
membership function by measuring the similarity of an instance point to each of the sub-
concept’s regions within the domain (Algorithm 4). As we mentioned in 4.1, each vi ∈ Vγ
consists of a pair of values vi = (label, value). The similarity values greater than zero
will lead to assigning a non-empty label to the corresponding concept’s index in symbol
vector. Formally, for a given γ′ and Cy, two elements (label, value) are calculated as:
VCγ′(Cy) = (labelγ′,Cy , simγ′,Cy), where

simγ′,Cy = maxpi∈γ′,cj∈Cy(G(pi, cj)), (7)

6. The usual definition of graded membership function (Hampton, 2007; Decock & Douven, 2014) is slightly
different, where it is based on three thresholds to define the lower, upper, and the middle level of the
boundary regions. However, similar to these studies, the lower-bound threshold varies for each sub-con-
cept’s region depending on the density and the size of the region.
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and

labelγ′,Cy =

{
label(Cy) if simγ,Cy > 0

∅ o.w
(8)

Example 10. Figs. 7a, 7b, and 7c show the example values of the graded membership
function (G) calculated for the points pa and pb based on their positions and distances to
the convex regions of the sub-concepts in the space. For example in Figure 7c, suppose in
δa, G(paγ′ , c

a
yj ) = 0.9. Then, the elements of VCγ′(Cyj ) are set to (label(Cyj ), 0.9).

Graded Quality Function

According to Algorithm 4, if a point p in a domain δ is not similar enough to any sub-
concept within δ, then the values of the symbol vector in the quality layer will be set based
on the graded value of p for each quality dimension of δ. Recall from Section 3, a quality
dimension q : 〈Hq, Iq, µq〉 contains a family of membership functions µq, representing the
linguistic terms related to graded values of q. In particular, this function is defined as a
fuzzy granulation in order to exploit the linguistic characterisation of feature values, which
are identified by prior knowledge. To formalise µq, we define fuzzy membership functions
for a set of pre-defined label classes which forms a fuzzy partition of the interval Iq (Novák,
2016). Suppose Ai is a class (label) acquired for q (e.g., linguistic label tall for feature
height). The corresponding fuzzy set is defined as: Ai = {(x, µAi) | x ∈ Iq}, where µAi
is a sigmoidal membership function with certain parameters to define the lower and upper
boundaries of the function.

Example 11. Consider the elongation, described in Example 2. A set of label classes to
describe the elongation is { Acir =‘circular ’, Aelp =‘elliptical ’, and Aeld =‘elongated ’}.
Then the family of membership functions for qel is µqel = {µAcir , µAelp , µAeld}.

This linguistic mapping grounds a symbolic representation of numeric interval values of
the quality dimensions. The graded quality value of an instance γ′ for a quality dimension
q is calculated based on the quality dimension value of the instance point as pq = pγ′(q),
where pq ∈ Iq. Using the defined fuzzy membership functions, we map pq into the fuzzy set
best matching the given value. Using the functions in µ, we are able to set the values of
the symbol vector in the quality layer. Recall p = 〈pq1 , . . . , pq|Q(δ)|〉 as the vector of quality
dimension values for the point p in δ.

Definition 8. Graded quality function H : Iq → [0, 1] is the degree of membership, wherein
for a quality dimension q, it returns the maximum degree of membership of pq using the
membership functions in µq, as:

H(p, q) = maxµAi∈µq µAi(pq) (9)

The symbol vector of a new instance in the quality layer (VQγ′ ) is filled with the values of
the graded quality function (Algorithm 4). Similar to the concept layer, each vi ∈ Vγ consists
of a pair of values vi = (label, value). The value of the graded quality function, which is the
maximum degree of membership of vi, assigns the best match fuzzy subset (i.e., symbolic
label) to the corresponding quality dimension’s index in symbol vector. Formally, for a given
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Algorithm 5: Inference in Symbol Space (set linguistic terms)

Function SymbolSpaceInference(Vγ′)
// Annotation in the concept layer

foreach Cy ∈ C do
if Vγ′,C(Cy) 6= (∅, 0) then
C(γ′)← C(γ′) ∪ {Cy}

OC(γ′)← OrderConceptLabels(C(γ′))
TC(γ′)← Annotate(OC(γ′),Vγ′,C) // in concept layer

// Characterisation in the quality layer

foreach δ /∈ ∆(C(γ′)) do
Q(γ′)← Q(γ′) ∪ {Q(δ)}

OQ(γ′)← OrderQualityLabels(Q(γ′)) TQ(γ′)← Characterise(Q(γ′),Vγ′,Q) // in

quality layer

// Linguistic Realisation

Tγ′ ← Realise(TC(γ′), TQ(γ′))

return Tγ′

γ′ and Cy, two elements (label, value) of are calculated as: VQγ′ (q) = (labelγ′,q, degreeγ′,q),
where

degreeγ′,q = H(p, q), (10)

and

labelγ′,q = label(Abestγ′,q ). (11)

Here, Abestγ′,q is the fuzzy subset with the maximum degree of membership such that
µAbest

γ′,q
∈ µq and ∀(µAi ∈ µq) : µAbest

γ′,q
(pq) ≥ µAi(pq).

Example 12. Figs. 7b and 7d show the example values of the graded quality function (H)
calculated for the points pa and pb based on their values related to the quality dimensions
of the two domains. For example in Figure 7b, suppose pa is not included in any region
in δa. Then, two vector indices of the symbol vector in the quality layer get values as:
VQγ′ (q

a
1) = (label(Abestγ′,qa1

), 0.7) and VQγ′ (q
a
2) = (label(Abestγ′,qa2

), 0.6).

4.2.2 Phase B: Inference in Symbol Space

In this phase, the aim is to infer linguistic descriptions from the symbol vector of an unknown
instance, which is to identify lexical items that suitably map to the symbol vector elements.
From the NLG perspective, this is the task of lexicalisation, that decides which linguistic
terms (i.e., natural words) should be selected from the determined content (Reiter, 2007).
This task can be done by verbalising the linguistic labels that are calculated and stored in
the symbol vector. The verbalisation is done either with annotating a new instance via the
concept labels or with characterising the instance via the quality dimension labels. The
tasks of annotation and characterisation will assign a set of lexical items to an unknown
observation. This set of linguistic terms is then turned to the natural language phrases (i.e.,
sentences) using the realisation tools in NLG systems. Algorithm 5 shows the steps of the
tasks in phase B.
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Annotation in the Concept Layer

Annotation for an instance γ′ is to annotate a set of linguistic labels which are derived from
the associated concepts in the concept layer of symbol vector Vγ′,C . Each Cy is included in
the set of associated concepts of the instance, C(γ′), if the corresponding element in Vγ′,C
is not empty. Formally, Cy ∈ C(γ′) ⇐⇒ Vγ′,C(Cy) 6= (∅, 0).

Example 13. Considering Figs. 7a and 7b, γ′ is associated with only one concept Cyi .
So, C(γ′) = {Cyi}. In Figure 7c, γ′ is associated with two concepts Cyi and Cyj . So,
C(γ′) = {Cyi , Cyj}. Finally, in Figure 7d, there are no associated concepts. So, C(γ′) = ∅.

After determining C(γ′), if γ′ is associated with two or more distinct concepts as C(γ′) =
{Cyi , Cyj , . . .}, then γ′ is an instance of all the associated concepts. In this case, an extra
process is needed to sort and combine the concept labels to annotate γ′ with a new set of
linguistic labels. The task of concept combination is discussed widely in the literature of
conceptual space theory (Rickard, 2006; Gärdenfors, 2000; Lewis & Lawry, 2016). What
is important for our inference is to distinguish which concept labels are the modifiers and
which are the modified concepts. This distinction leads to order the labels in the final
linguistic expression (Adams & Raubal, 2009b). In particular, we define an ordered set7

of the associated concepts, OC(γ′) = {C ′1, C ′2, . . .} to prioritise the modifier concepts over
modified ones. Since there is no background knowledge to define the semantic order of the
associated concepts, the ordering process relies based on the graded membership values that
can be retrieved from Vγ′,C . The set of annotations for γ′ then is defined as an ordered set of
lexical items TC(γ′) = {label(C ′1), label(C ′2), . . .}. These annotations are the corresponding
linguistic terms to the ordered concepts in OC(γ′), which are retrieved from the labels in
Vγ′,C for the concepts in C(γ′).

Example 14. For the conceptual space of leaves presented in Example 4, suppose an
unknown leaf sample γ′ is associated with both known concepts Tilia and Nerium. As-
sume that Vγ′,C(Ctt) = (label(Ctt), 0.5) and Vγ′,C(Cno) = (label(Cno), 0.9). Then TC(γ′) =
{label(Cno) = ‘Nerium’, label(Ctt) = ‘somewhat Tilia’}.

Characterisation in the Quality Layer

Characterisation for γ′ is to assign the linguistic descriptions of the associated quality di-
mension based on the values in the quality layer of the symbol vector Vγ′,Q. The motivation
behind the characterisation comes from the lack of the concept annotation in the cases with
no associated concept within the domains (like case four and partially case two in Figure
7). This is especially important for those instances that are completely unknown for the
systems and are not representable by any of the defined concepts, but still are explainable
with their quality dimensions’ values.

According to Algorithm 4, if γ′ within a domain does not belong to any sub-concept,
then Vγ′,Q gets values from the domain’s quality dimensions. Obviously, if γ′ has even one
associated concept within the domain, there is no need to involve the quality dimensions of
that domain in the characterisation process. For the calculated Vγ′,Q, each quality dimension

7. In the set theory, an ordered set is defined as a set of elements, plus a relation ≤ between each pair of
elements, that presents the order of them (Weisstein, 2016).
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q is included in the set of associated quality dimensions Q(γ′), if the corresponding elements
in the Vγ′,Q are not empty. Formally, q ∈ Q(γ′) ⇐⇒ Vγ′,Q(q) 6= (∅, 0).

Example 15. Considering Figure 7b, γ′ is not associated with any concepts within δa.
So, Q(γ′) = {qa1 , qa2}. Also, in Figure 7d, there are no associated concepts in any of the
domains. So, Q(γ′) = {qa1 , qa2 , qb1, qb2, qb3}. In Figs. 7a and 7c, Q(γ′) = ∅.

Similar to the process of annotation, a sorting operation is needed to derive the order of
quality dimension labels in the final linguistic descriptions. Relying on the graded quality
values in Vγ′,Q, we define an ordered set of the associated quality dimensions, OQ(γ′) =
{q′1, q′2, . . .}. The characterisation set for γ′ then is simply defined as an ordered set of lexical
items TQ(γ′) = {label(Abestγ′,q′1

), label(Abestγ′,q′2
), . . .}. These characterisations are retrieved from

the corresponding labels in Vγ′.Q, for the quality dimensions in Q(γ′).

Example 16. Considering Example 15, suppose γ′ is not associated with any known con-
cepts. Assume that for the quality dimensions elongation and roundness, Vγ′,Q(qel) =
(label(Aeld), 0.9) and Vγ′,Q(qro) = (label(Aro), 0.7) (referring to Example 11). Then, TQ(γ′)
= {label(Aeld) = ‘elongated ’, label(Aro) = ‘lanced shape’}.

Linguistic Realisation

Linguistic realisation is the process of applying a set of rules to abstract representations
of the lexical items in order to specify well-formed sentences in natural language, which
are syntactically and morphologically correct. Some of the linguistic realisations represent
sentences by template-like structures when only limited syntactic variability is needed in
the output description (Reiter & Dale, 1997). One instance of an output format for the
sentences to describe the observations is as follows:

“This [Obs.] [be/be not/be like] [a con.label1] [and [a con.label2] and ...],
[but/also] it [be/have] [dim.label1] [and/with [dim.label2] and/with ... ].”

As this descriptive sentence is linguistically formed in a simple format, applying any
realisation technique (e.g., SimpleNLG engine, see Gatt & Reiter, 2009) will produce gram-
matically correct sentences as the output text.

Example 17. Consider the set of annotations and characterisations from Examples 14 and
16. Then, the output of realisation will be a message like:

“This unknown leaf observation is like Nerium leaves and somewhat Tilia leaves, but it is
an elongated and a lance-shaped leaf.”

5. Case Studies

This section presents a validation of the formal methods described in the previous sections.
Two case studies are investigated to show the feasibility and the plausibility of the proposed
approach in real-world applications. For both case studies, the primitive set of features
is initialised by expert-oriented questionnaires or domain-oriented background knowledge.
These semantically interpretable features are described in natural language and are able to
distinguish the known classes from each other perceptually.
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5.1 Leaf Data Set

The leaf data set (Silva et al., 2013) is a set of photographed leaf samples from different
plant species. Here, we selected six species as the labelled data set (See Figure 8), and the
rest of the species are used as unlabelled data. The leaf data set is a good first example,
as it provides a tangible example of physical objects while the vocabulary used to describe
the leaves is not necessarily familiar to non-specialists.

5.1.1 Constructing a Conceptual Space of Leaves

The leaf data set includes 72 known leaf samples that are categorised in six species. For-
mally, Dl = {o1, . . . , o72} and Y l = { ysa :‘Salix Atrocinera’, yqr :‘Quercus Robur’,
yia :‘Ilex Aquifolium’, yno :‘Nerium Oleander’, ytt :‘Tilia Tomentosa’, yap :‘Acer Palmatum’
}. Figure 8 shows the prototypical samples of leaf species for the leaf labels in Y, along
with their popular names. 8 According to the set of class labels Y l, the set of concepts
is defined as Cl = {Cia, Ctt, Cno, Cqr, Cap, Csa}. Here, the concepts are initiated, but the
representation of each concept will be formally presented later.

Figure 8: Six species as the known leaves in the leaf data set. The first row of labels shows
the scientific names (Silva et al., 2013), and the second row of labels shows the common
names (Wu et al., 2007).

The first step to build the conceptual space of leaves is to specify the initial set of
features that characterise the leaves. The main criterion while initialising the features
is how descriptive or interpretable the chosen features are in the linguistic form. In other
words, we are looking for such features that are representable in the human natural language
with a perceptual interpretation. For example, the values of the area and the perimeter
features might be useful for statistical analysis or classification tasks, but these features
do not carry meaningful information to describe and distinguish the leaf observations. In
contrast, a feature like elongation meaningfully describes a perceptual feature of a leaf
observation.

Besides the leaf samples in different species, Silva et. al. (2013) have provided a set
of attributes that describe the shape and texture features of leaves. Among the semantic

8. Note that in the model, we applied the scientific names of the leaves as labels that have been used in
the original data set. However, in the final descriptions for the evaluation, we used the common names
of leaves (Wu, Bao, Xu, Wang, Chang, & Xiang, 2007) which were more familiar to the general users.
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attributes, the following features are used in our model as the initial set of features F l =
{Xi : 〈HXi , IXi〉}:
Xec : 〈‘Eccentricity’, [0, 1]〉 (eccentricity of the ellipse),
Xar : 〈‘Aspect Ratio’, [1, inf)〉 (values close to 1 indicate an elongated shape),
Xel : 〈‘Elongation’, [0, 1]〉 (minimum is achieved for a circular region),
Xso : 〈‘Solidity’, (0, 1)〉, (how well the leaf fits a convex shape),
Xif : 〈‘Isoperimetric Factor’, [1, inf)〉 (curvy intertwined contours yield low values),
Xlo : 〈‘Lobedness’, (0, inf)〉 (characterises how lobed a leaf is),
Xmi : 〈‘Maximal Indentation Depth’, (0, 1)〉, (how deep are the indentations),
Xsc : 〈‘Stochastic Convexity’, [0, 1]〉 , (probability of a random segment in a leaf to be
fully contained).

Domain Specification for Leaf Data Set The values of these features for every ob-
servation are acquired from the work of Silva et. al. (2013). After that, we have applied
the conceptual space construction approach with the inputs of labelled observations Dl,
label set Y l, and feature set F l. The algorithm first applies the feature filtering approach,
i.e. MIFS (Algorithm 1) to provide a ranking matrix which shows the mutual relations
of features and labels. Then, using Algorithm 2, a feature subset grouping is performed.
Figure 9 illustrates the created bipartite graph, which leads to determining the domains
and quality dimensions.

ysa yqr yia yno ytt yap

Xar Xec Xel Xif Xlo Xmi Xso Xsc

Figure 9: The bipartite graph, presenting the relevance of the features and the labels in the
leaf data set. Also, three chosen bicliques (as the domains) are highlighted with blue, red,
and grey edges.

The chosen bicliques (with the highest scores) determine the three domains ∆l =
{δ1, δ2, δ3}, where each domain is specified as follows:

• Domain δ1 = 〈Q(δ1), C(δ1), ωδ1〉, wherein Q(δ1) = {qar, qel, qec} and C(δ1) =
{Cia, Ctt, Cno}.
• Domain δ2 = 〈Q(δ2), C(δ2), ωδ2〉, wherein Q(δ2) = {qso, qif} and C(δ2) = {Cqr, Cap}.
• Domain δ3 = 〈Q(δ3), C(δ3), ωδ3〉, wherein Q(δ3) = {qlo} and C(δ3) = {Csa, Cap}.

Figure 10 depicts a graphical presentation of the determined domains with the cor-
responding quality dimensions and concepts. As an example, domain δ2 is specified by
two quality dimensions ‘solidity’ and ‘isoperimetric factor’, and is associated with
two concepts ‘Quercus’ and ‘Acer’. An example of calculated weights in a domain is
ωδ2(Cap, qso) = 0.61, which shows the salience of the relation between leaf concept ‘Acer’
and quality dimension ‘solidity’ within δ2. Although the process of deriving the domains
is data-driven, there may be an interpretation for each specified domain. For instance, one
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Figure 10: The conceptual space of leaf data set: a graphical presentation of the determined
domains with the corresponding quality dimensions and concepts.

can say that δ1 illustrates the convexity of the known leaves, while δ2 shows the indentation
of the known leaves (see Figure 10).

As an output of the domain specification phase for the conceptual space of leaves, the
set of quality dimensions is Ql = {qar, qel, qec, qso, qif, qlo}, and the set of instances is
Γl = ∪y∈Y Γ(y), where |Γl| = |Dl|. Each γ ∈ Γl corresponds to a known leaf sample o ∈ Dl,
and consists of three points (one in each domain).

Concept Representation for Leaf Concepts According to the output of concept rep-
resentation, each leaf concept in Cl appears in only one domain and thus has exactly one
sub-concept, except concept Cap which has two sub-concepts in two different domains. Using
Algorithm 3, the elements of the sub-concepts for each known leaf concept in C is calculated
as follows.

• Leaf concepts ‘Ilex’, ‘Tilia’, and ‘Nerium’ are represented in δ1 as, respectively:
Cia = {c1

ia : 〈η1
ia, φ

1
ia〉}, Ctt = {c1

tt : 〈η1
tt, φ

1
tt〉}, and Cno = {c1

no : 〈η1
no, φ

1
no〉}.

• Leaf concept ‘Acer’ is represented in two domains δ2 and δ3 as:
Cap = {c2

ap : 〈η2
ap, φ

2
ap〉, c3

ap : 〈η3
ap, φ

3
ap〉}.

• Leaf concept ‘Quercus’ is represented in δ2 as: Cqr = {c2
qr : 〈η2

qr, φ
2
qr〉}.

• Leaf concept ‘Salix’ is represented in δ3 as: Csa = {c3
sa : 〈η1

sa, φ
1
sa〉}.

In these representations, for example, η2
qr shows the 2D convex polygon of leaf con-

cept ‘Quercus’ within δ2 (see Figure 10). Also, as an example for the weights, φ2
qr =

{ωδ2(Cqr, qso), ωδ2(Cqr, qif)} shows the salience between leaf concept ‘Quercus’ and two
quality dimensions ‘solidity’ and ‘isoperimetric factor’ within δ2. In Figure 10, the
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graphical presentation of leaf concepts is shown by illustrating the convex hulls of their
corresponding sub-concepts.

Now, with the provided elements, the conceptual space of the leaf data set is presented
as: Sleaf = 〈 Ql, ∆l, Cl, Γl 〉.

5.1.2 Semantic Inference for Unknown Leaf Samples

The inference step aims to derive a semantic description for unknown observations using
the developed conceptual space. We present the utility of the conceptual space of leaves
using a set of unknown leaf samples from the plant species. Figure 11 presents the selected
set of unknown leaf samples to be represented. Here, we show how to apply the inference
approach to one of the samples (e.g., leaf (a) in Figure 11). According to Algorithms 4 and
5, the unknown observation (a) is firstly vectorised to an instance γa. Then a linguistic
description for a is inferred in two phases: setting symbol vectors by inferring in conceptual
space and setting the lexical items by inferring in symbol space. Instance γa is a set of
points within the domains ∆l(γa), denoted: γa = {p1

γa , p
2
γa , p

3
γa}, where the numeric values

of each point are the feature values of (a) for each quality dimension in Sleaf . For example
in δ2, p2

γa=〈qso(a), qif(a)〉=〈0.86, 0.45〉.

Inference in Conceptual Space of Leaves Here we determine whether γa is included
in any defined concept’s regions, and then infer the semantic labels based on the inclusion
of the instance to the regions. Considering the leaf sample (a) in Figure 11, γa belongs
to the sub-concept c1

tt in δ1, however, it does not belong to any sub-concept in δ2 and
δ3. Thus, based on Algorithm 4, the symbol vector for γa is set as follows: In the con-
cept layer, using the graded membership function (defined in definition 7): Vγa,C(Ctt) =
(‘Tilia Tomentosa’, 0.85). In the quality layer, for the quality dimensions of δ2 and δ3, using
the graded quality function (defined in definition 8): Vγa,Q(q2

if ) = (‘tipped/toothed’, 0.75),

Vγa,Q(q2
so) = (‘smooth edges/entire’, 0.86), and Vγa,Q(q3

lo) = (‘low lobedness’, 0.6).

Inference in Symbol Space of Leaves By retrieving the information of the sym-
bol vector V(γa), we are able to verbalise the elements of symbol vectors into a set of
natural language descriptions. As mentioned in Section 4.2.2, we annotate γa using the
values of Vγa,C , and characterise it by the values of Vγa,Q. In particular, the annota-
tion set is TC(γa) = {‘Tilia Tomentosa’}, and the characterisation set will be TQ(γa) =
{ ‘tipped’, ‘smooth edges’, ‘low lobedness’ }. Then the realisation for γa is as fol-
lows: Tγa = ‘like Tilia Tomentosa(Silver Lime), also with smooth and tipped edges,
and low lobedness’.

The same approach is applicable to other unknown leaf samples (shown in Figure 11)
to describe them in natural language. Table 1 presents the generated descriptions derived
from the semantic inference.

5.2 Physiological Time Series Data Set

In the field of time series data mining, the perception-based analysis of patterns attempts
to formalise knowledge and simulate human reasoning (Batyrshin et al., 2007). The per-
ceptions can be represented by linguistic descriptions (i.e. words such as low, increasing,
most of the time, etc.) of time series patterns. A time series pattern is a subsequence of a
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Figure 11: A set of unknown leaf samples.

Leaves Linguistic Description

Fig. 11(a) This leaf is like Grey Willow, but it is round with a slightly serrated
margin.

Fig. 11(b) This leaf is like Japanese Maple, but it is oval with lobed margin.

Fig. 11(c) This leaf is like Silver Lime, but it is tipped with a slightly toothed margin.

Fig. 11(d) This leaf is not like any known leaf species, but it is linear and elongated
with entire margin.

Fig. 11(e) This leaf is like Grey Willow, but it is round and tipped.

Fig. 11(f) This leaf is not like any known leaf species, but it is oval and tipped with
toothed margin.

Fig. 11(g) This leaf is like Silver Lime, also it is tipped with low lobed and toothed
margin.

Fig. 11(h) This leaf is not like any known leaf species, but it is round with toothed and
lobed margin.

Fig. 11(i) This leaf is like English Holly, but it is tipped with serrated margin.

Fig. 11(j) This leaf is like Oleander, and it is also tipped.

Table 1: The linguistic descriptions derived for the unknown leaf samples in Figure 11.

univariate time series containing a meaningful behaviour or trend of the data. Many stud-
ies consider the problem of qualitative analysis of time series patterns and its manipulation
with linguistic information (Yu et al., 2007; Kacprzyk, Wilbik, & Zadrożny, 2008; Banaee
& Loutfi, 2015; Batyrshin & Sheremetov, 2008; Novák, 2016). However, in most of them,
the required linguistic information is limited by the expert or domain knowledge. In other
words, the developed systems are designed to cover specific trends and shapes of patterns
with a certain set of the requested linguistic characterisations as the generic vocabulary.
The major drawback of such a system is that any other observation (pattern) which is
not matched with the provided vocabulary cannot be described and reported in the final
summary.
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5.2.1 Constructing a Conceptual Space of Time Series Patterns

Assume that we have a set of time series patterns with varying lengths, which are labelled
with a set of linguistic terms (See Figure 12). We use a data set of patterns, gathering
from physiological sensor data. The time series patterns are exploited from heart rate
and respiration rate records in several clinical conditions (Banaee & Loutfi, 2015). This
data set includes 78 patterns as known observations with varying time durations, which
are categorised in four known classes: increasing, decreasing, spike, and oscillation. These
class labels of time series patterns are acquired from the common behavioural labels used in
the literature of mining and linguistic characterisation of shapes and trends in time series
data (Yu, Hunter, Reiter, & Sripada, 2003; Batyrshin et al., 2007; Novák, 2016; Gregory
& Shneiderman, 2012). Formally, Dp = {o1, . . . , o78} and Yp = { yin : ‘Increasing’, yde :
‘Decreasing’, ysp : ‘Spike’, yos : ‘Oscillation’ }.

Although there many other types of behaviours for time series patterns, these four
classes are chosen in order to simplify the process of conceptualising the patterns. Figure
12 shows the typical examples of such patterns for each of the mentioned classes of the data
set. Regarding the set of class labels Yp, the set of concepts is defined as: Cp = {Cin, Cde,
Csp, Cos}.

Figure 12: Four set of time series patterns, presenting the known classes of patterns in the
data set.

Initialising the primitive set of characteristic features is another input to build the con-
ceptual space of time series patterns. There are many characteristic features for analysing
and modelling time series data, from simple statistical features to frequency related ones.
As mentioned for the leaf data set, the criterion is how describable or interpretable the
features are in linguistic form. For example, in the data set of time series patterns, the
values of integral or mean features can be useful for analytical tasks in time series mining,
but these values are meaningless to the end user of the system in order to visualise or distin-
guish it from other patterns. In contrast, a feature like the slope of a pattern is perceptually
interpretable for the user in natural language. Among the various features in the literature
of feature-based time series data mining (Fulcher & Jones, 2014; Shumway & Stoffer, 2010;
Gregory & Shneiderman, 2012; Nanopoulos, Alcock, & Manolopoulos, 2001), the following
features have been chosen as the initial set of features Fp = {Xi = 〈HXi , IXi〉}:

725



Banaee, Schaffernicht, & Loutfi

Xα : 〈‘Slope’, (−π, π)〉 (the slope of the pattern),
X∆mm : 〈‘Min− Max Diff’, [0, inf)〉 (the absolute difference between min and max values),
X∆se : 〈‘Start− End Diff’, [0, inf)〉 (the difference between start and end values),
X∆t : 〈‘Time interval’, (0, inf)〉 (time duration of pattern),
Xen : 〈‘Entropy’, [0, inf)〉 (how chaotic is the pattern),
Xfft : 〈‘Frequency’, [0, 1]〉9,
X∂x : 〈‘First Derivative’, [0, 1]〉,
X∂∂x : 〈‘Second Derivative’, [0, 1]〉,
Xσ : 〈‘Standard Deviation’, [0, inf)〉.

Domain Specification for Time Series Pattern Data Set After calculating all these
features for every known observation, we have applied the conceptual space construction
approach with the inputs of known labelled observationsDp, label set Yp, and feature set Fp.
Figure 13 illustrates the created bipartite graph, which presents the specified domains and
quality dimensions. Two selected maximum bicliques determine two domains ∆ = {δ1, δ2},
where each domain is specified as follows:

yin yde ysp yos

Xα X∆mmX∆seX∆t Xen XfftX∂xX∂∂x Xσ

Figure 13: The bipartite graph presenting the relevance of the features and the labels in
data set of time series patterns. Also, two chosen bicliques (as the domains) are highlighted
with the blue and red edges.

• Domain δ1 = 〈Q(δ1), C(δ1), ωδ1〉, wherein Q(δ1) = {qα, q∆se} and C(δ1) = {Cin, Cde}.
• Domain δ2 = 〈Q(δ2), C(δ2), ωδ2〉, wherein Q(δ2) = {q∆t, q∆mm, qfft} and C(δ2) =
{Csp, Cos}.

Figure 14 depicts a graphical presentation of the determined domains with the cor-
responding quality dimensions and concepts for the known time series patterns. As an
example, δ1 is specified by two quality dimensions ‘start− end diff’ and ‘slope’, and is
associated with two concepts ‘Increasing’ and ‘Decreasing’. An example of the calcu-
lated weights in a domain is ωδ1(Cin, qα) = 0.62, which shows the salience of the relation
between pattern concept ‘Increasing’ and quality dimension ‘slope’ within δ1. Similar to
the leaf conceptual space, although the process of specifying the domains is data-driven,
there may be an interpretation for each determined domain. Here, the interpretation of
perceived domains is more sensible. For instance, one can say that δ1 illustrates the trend
direction of the known patterns, while δ2 shows the shape of the known patterns (see Figure

9. For some features, Ii needs to be set manually based on a mapping function from feature’s values to
one value in an interval. For example, the outputs of the Fourier transform (fft) function of a pattern is
mapped to the values in the interval [0.1], likewise for first and second derivatives.
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Figure 14: The conceptual space of time series pattern data set: a graphical presentation
of the determined domains with the corresponding quality dimensions and concepts.

10). As the output of the domain specification phase for the conceptual space of patterns,
the set of quality dimensions will be Qp = {qα, q∆se, q∆t, q∆mm, qfft}. Moreover, the set
of instances is defined as: Γp = ∪y∈Y Γ(y), where |Γp| = |Dp|.

Concept Representation for Pattern Concepts Regarding the output of the domain
specification process, each concept in Cp appears in only one domain (has exactly one sub-
concept), as Cy = {cy}. By applying Algorithm 3, the elements of the sub-concept for each
concept in Cp is derived as follows.

• Pattern concepts ‘Increasing’ and ‘Decreasing’ are represented in δ1 as, respec-
tively: Cin = {c1

in : 〈η1
in, φ

1
in〉} and Cde = {c1

de : 〈η1
de, φ

1
de〉}.

• Pattern concepts ‘Spike’ and ‘Oscillation’ are represented in δ1 as, respectively:
Csp = {c2

sp : 〈η2
sp, φ

2
sp〉} and Cos = {c2

os : 〈η2
os, φ

2
os〉}.

In these representations, for example, η2
inc shows the 3D convex polytope of pattern

concept ′Spike′ within δ2 (see Figure 14). Also, as an example for the weights, φ2
sp =

{ωδ2(Csp, q∆t), ωδ2(Csp, q∆mm), ωδ2(Csp, qfft)} shows the salience between pattern concept
‘Spike’ and three quality dimensions ‘time interval’, ‘min− max diff’, and ‘frequency’
within δ2. In Figure 14, the graphical presentation of time series pattern concepts is shown
by illustrating the convex hulls of their corresponding sub-concepts.

Now, with the provided elements, the conceptual space of the time series pattern data
set is presented as: Spatterns = 〈 Qp, ∆p, Cp, Γp 〉.

5.2.2 Semantic Inference for Unknown Pattern Samples

The aim is to derive a linguistic description for unknown time series patterns. Figure
15 shows a number of examples of unknown patterns that are chosen to be considered.
According to Algorithms 4 and 5, an unknown pattern sample (e.g., pattern (a) in Figure
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15) is first vectorised to an instance γa. Then, a linguistic description for (a) is inferred
in two phases: set the values of symbol vector and set the lexical items, by inferring in
conceptual space and symbol space, respectively. γa is a set of points within ∆p(γa) as:
γa = {p1

γa , p
2
γa}, where the numeric values of each point are the feature value of (a) for each

quality dimension. For example, in δ1: p2
γa=〈qα(a), q∆se(a)〉=〈0.34, 0.28〉.

Inference in Conceptual Space of Patterns Considering the pattern sample (a)
in Figure 12, γa belongs to the sub-concept c1

de in δ1, but it does not belong to any
sub-concept in δ2. Based on Algorithm 4, the symbol vector for γa is set as follows:
In the concept layer, using the graded membership function (defined in Definition 7):
Vγa,C(Cde) = (‘Decreasing’, 1). In the quality layer, for the quality dimensions of δ2,
using the graded quality function (defined in Definition 8): Vγa,Q(q2

∆t) = (‘long’, 0.75),
Vγa,Q(q2

∆mm) = (‘medium range’, 0.62), and Vγa,Q(q2
fft) = (‘fluctuate’, 0.7).

Inference in Symbol Space of Patterns By retrieving the information of symbol
vector V(γa), we are able to verbalise the elements of symbol vectors into a set of natu-
ral language descriptions. As mentioned in Section 4.2.2, we annotate γa using the val-
ues of Vγa,C , and we characterise it by the values of Vγa,C . In particular, the annota-
tion set is TC(γa) =‘Decreasing’, and the characterisation set will be TQ(γa) = { ‘long’,
‘medium range’, ‘fluctuate’ }. Then the realisation for γa is as follows: Tγa = ‘Decreasing,
also fluctuates and it is long with medium range’.

Table 2 present more results derived from the semantic inference in the conceptual space
for the time series patterns shown in Figure 15.

Figure 15: A set of unknown samples of time series patterns.
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Patterns Linguistic Description

Fig. 15(a) This pattern is an Increasing pattern, but it is smooth and very short,
within a medium range of values.

Fig. 15(b) This pattern is like a Spike pattern, but it is noisy with a sharp decreasing
trend in a high range of values.

Fig. 15(c) This pattern is an Oscillation pattern, within a very short range of values.

Fig. 15(d) This pattern is an Increasing pattern, but it fluctuates in a very long
duration, within a large range of values.

Fig. 15(e) This pattern is an Increasing pattern, but it fluctuates within a medium
range of values.

Fig. 15(f) This pattern is not like any known pattern, but it fluctuates within a high
range of values.

Fig. 15(g) This pattern is an Increasing pattern, but it is long, within a medium
range of values.

Fig. 15(h) This pattern is like Decreasing Spike pattern, in a short duration.

Fig. 15(i) This pattern is like a Spike pattern, but it has a sharp rise and fluctuation,
within a medium range of values.

Fig. 15(j) This pattern is a Decreasing pattern, but it fluctuates in a long duration,
within a medium range of values.

Fig. 15(k) This pattern is a Spike pattern, with the same start and end values.

Fig. 15(l) This pattern is like a Spike pattern, but it has a smooth and slow increasing
trend, within a medium range of values.

Fig. 15(m) This pattern is not like any known pattern, but it wavy within a medium
range, and very long duration. Also, it has the same start and end
values.

Fig. 15(n) This pattern is not like any known pattern, but it has a normal decreasing
trend in a very long duration. Also, it is very fluctuating in a large
range of values.

Fig. 15(o) This pattern is like Decreasing Oscillation pattern.

Fig. 15(p) This pattern is like a Spike pattern, but it is very short and smooth, within
a high range of values

Fig. 15(q) This pattern is like Spike and Decreasing patterns.

Table 2: The linguistic descriptions derived for the unknown samples of time series patterns
in Figure 15.

6. Empirical Evaluation

Assessing the benefits of the proposed conceptual space representation is not a straightfor-
ward task. Instead, we evaluated the usefulness of the constructed conceptual spaces for
the case studies in Section 5 via the linguistic descriptions derived from such spaces. The
experiment evaluates the following aims: (1) to measure the feasibility of deriving accurate
descriptions to distinguish unknown observations, and (2) to assess the goodness of the
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descriptions derived from conceptual spaces in comparison to the descriptions derived from
other base-line models. To these ends, we conducted a survey, in which participants were
asked to

1. identify specific leaf or pattern based on their linguistic description derived from the
conceptual space, and

2. rate the goodness of descriptions produced by different models on a Likert scale.

6.1 Survey: Design and Procedure

The survey was conducted online10. The participants first had the choice between the leaf
and the pattern data set. After an introduction to the used vocabulary, the participant
self-evaluated their familiarity with the terminology. The main body of the survey was
composed of two parts.

The first part is designed as a set of 4 multiple choice questions wherein we asked the
participants to read the conceptual space description of a randomly selected sample (among
15 leaves or 17 patterns) and to choose the corresponding image of the leaf or pattern from
four shown options. The three incorrect options were also randomly selected from a pool of
unknown examples. This task-based (or extrinsic) evaluation (Reiter & Belz, 2009) allowed
us not only to measure how well the participants can connect a description of an unknown
sample to its correct image but to investigate the incorrectly identified examples and their
relation in the conceptual space.

For the second part, we have designed a set of rating scale questions, again using four
questions per participant. In each question, an image of one unknown observation is ran-
domly selected and shown to the participants, along with the three generated descriptions
for that observation from three different models. Participants then are asked to rate each
text from 1 to 5 (Likert-scale scoring) regarding how well each of the descriptions helps them
to refer to the image. This simultaneous human-rating (or intrinsic) evaluation (Reiter &
Belz, 2009) of descriptions enables us to compare the approaches relative to each other, as
well as to evaluate the absolute goodness of each approach.

We received 207 responses11, out of which 102 valid responses have been considered for
the leaf data set and 98 valid responses for the pattern data set. The survey was publicly
distributed online to anyone who was interested in participating. The outcome of the de-
mographic questions showed that most of the participants were in the range of 25-44 years
old and they are mostly educated in computer science or equivalent. Besides, most of the
participants were fluent in English speaking. About the expertise level of the participants,
the results show that the participants were more familiar with the terminology that have
been used for pattern data set, rather than leaf. For the leaf data, 20% knew none of the
lexical items, 70% knew few or some of them, and 10% almost all of them. However, for the
pattern data, 30% knew few or some of them, 43% knew most of them, and 27% knew all

10. The survey can be accessed at https://survey.bana.ee
11. We do not know the exact number of individuals since each participant could decide to perform one

of the data sets each time or even redo it with a new set of random questions. Assuming that each
person performed both of data sets but just once, the upper bound for the number of participants will
be approximately 100 people.
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Figure 16: The description of leaf (a) was shown 31 times to the participants. In 19 re-
sponses, the correct image of leaf (a) is chosen by the participants (61%). The most common
misidentified example (7 responses, 23%) was the image of leaf (x), which subjectively is
quite similar, and interestingly, it is the closest instance to the leaf (a) in the conceptual
space. However, the closest instance to leaf (a) in the full feature space is leaf (y) that its
image is rarely misidentified by the participants (only 1 response, 3%).

the introduced terminology. This evidence means that the lexicon used in the descriptions
of the patterns was more familiar to the participants.

6.2 Results: Identifying Observations from Linguistic Descriptions

Participants were able to successfully identify all the unknown observations (15 leaves and
17 patterns) with the help of the corresponding conceptual space descriptions. The success
rate to identify the correct image for each description in the leaf data set was 73%± 13%,
and the success rate in the pattern data set was 79%±11%. It is reasonable to assume that
the higher familiarity of participants with the pattern data set is a possible explanation for
the better success rates.

For further investigation of the incorrectly identified (i.e., misidentified) examples, we
calculated the geometrical similarity of these answers to the correct one in the conceptual
space (multi-domain). According to Gärdenfors (2000), the similarity in conceptual spaces
can be calculated by applying Euclidean distance with the domains and applying city-block
distance between them. To asses the similarities in conceptual space, we also calculated the
geometrical similarity of the same instances but in a full feature space (single-domain) by
applying Euclidean distance. We obtained two interesting results: First, the misidentified
examples are not uniformly distributed between all possible choices, but instead, partici-
pants tended to make similar mistakes. Second, the common misidentified examples are
most of the times (73% leaves, 76% patterns) the closest instance to the correct one in the
conceptual space. In the full feature space, this was only occasionally true (46% leaves, 29%
patterns). This result shows that the confused examples with each other are commonly the
nearest instances within the multi-domain conceptual space, which is mostly not the case
in the full feature space. One example regarding to this outcome is illustrated in Figure 16.

The results from the first part of the survey show that the proposed conceptual space
representation a) is applicable in order to derive semantic descriptions for unknown obser-
vations, and b) is suitable in order to represent the cognitively similar observations among
the multiple domains.
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6.3 Results: Rating Various Linguistic Descriptions for an Observation

In the results of the rating scale questions, we compare the description derived from the con-
ceptual space model with the descriptions derived from the two models of concept formation
within the full feature space, one using a generative model and the other a discriminative
model (Jebara, 2012; Ng & Jordan, 2016). The generative model forms the concepts by
modelling the distribution of individual classes (i.e., bound each of them with a convex
region). Then, a new observation either belongs to one class or none of them. On the other
hand, the discriminative model forms the concepts by learning the (hard or soft) boundary
between classes (i.e., divide them to Voronoi regions). Hence, a new observation always
belongs to at least one class label.

Concerning these two models of concept formation, we have developed two base-line
approaches to generate linguistic descriptions. Inspired by the idea of fuzzy sets for linguistic
description of data (Ramos-Soto, Bugarin, Barro, & Taboada, 2015; Ramos-Soto et al.,
2016), we have extended the generative and discriminative models to quantify the inclusion
of new observations. This extension will allow us to verbalise the numeric output of the
models with linguistic descriptions in the inference process. In the generative model, fuzzy
sets are employed to quantify the numeric values of the features within the full-feature
space. We applied the same semantic inference algorithm (Section 4) on this model to
derive such descriptions that most likely involves only the quantified terms of the features.
In the discriminative model, with the help of fuzzy sets, the model is extended to multi-
label classification (Sorower, 2010), which quantifies the membership of the instances only
to their associated concepts. We applied the inference algorithm on this model to derive
descriptions that involve only the assigned labels of concepts with quantification on their
membership degrees.

Example 18. For leaf (a) in Figure 11, here are the output descriptions from three various
approaches:
- Conceptual: “This leaf is like Grey Willow, but it is round with slightly serrated margin.”
- Generative: “This leaf is round, wide, connected and entire, with a smooth margin and no
indentation.”
- Discriminative: “This leaf is similar to English Holly, also has some similarity to Grey
Willow.”

Table 3 shows the statistical summary of the rating scores received for the descriptions
derived from each of the approaches in each data set. Also, these scores are depicted in the
form of box plots in Figure 17.

Table 3: The overall scores calculated from the rating responses to the different models in
each data set. The numbers show the average scores (and standard deviations) in the range
of 1 to 5.

leaf data set pattern data set

Conceptual 3.62 (1.19) 3.76 (1.07)
Generative 3.27 (1.33) 3.18 (1.29)

Discriminative 2.72 (1.24) 3.36 (1.22)
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(a) leaf data set (b) pattern data set

Figure 17: The box plots of the rating scores received for each of the models deriving
descriptions in (a) leaf data set and (b) pattern data set.

Table 4: Summary of the one-way ANOVA and Wilcoxon tests for the rating scores with
respect to the models deriving descriptions.

leaf data set pattern data set

ANOVA Test
Conceptual vs.

Generative & Discriminative
F (2, 1221)=52.82,

p<10−21
F (2, 1173)=23.72,

p<10−13

Wilcoxon Test
Conceptual vs. Generative p<10−4 p<10−12

Conceptual vs. Discriminative p<10−23 p<10−07

Generative vs. Discriminative p<10−07 p>0.05 (∗)

We have applied an ANOVA test to show that the conceptual space description (Concep-
tual) is significantly preferable rated than the two alternatives (Generative and Discrimina-
tive). Here, we used the Likert-scale scores as the dependent variable and the models as the
independent variables (groups). We used a post hoc Tukey test to identify the significant
difference between the models. The one-way ANOVA test showed a significant effect of the
models on the scores. For both data sets, Conceptual has the mean significantly different
from Generative and Discriminative, p < .0001 (two-tailed). The details of the test have
been shown in Table 4.

Moreover, since the ratings are ordinal, we also carried out a non-parametric test (i.e.,
Wilcoxon Test) to identify the significant differences between ratings by comparing each
pair of the scores. Table 4 shows the p-values of this method for each pair of models. The
output showed that for both data sets, Conceptual is significantly different from Genera-
tive and Discriminative (p < .0001). Besides the significant difference of the conceptual
model, an interesting outcome of the tests is the scores of Generative and Discriminative
for two data sets. In the leaf data set, participants have given higher scores to Generative
than Discriminative (p < .0001). However, in the pattern data set, there is no significant
difference between these two models (p > .05).

Overall, the results from this part of the survey show that the proposed conceptual space
representation a) is an appropriate semantic inference model to derive linguistic descrip-
tions for unknown observations, and b) successfully derives descriptions (from multi-domain
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space) that are naturally preferred by participants, in comparison to the other alternative
models (from single-domain space).

7. Discussion

This work has demonstrated how to generate a conceptual model with which it is possible
to create semantic interpretations of new observations. Keßler (2006) states that any data-
driven approach to generating conceptual spaces cannot be fully automated and require
at some point external (symbolic) information, and the presented approach relies to some
degree on pre-defined concepts related to the input data set, too. In the following, we
discuss a number of issues inherent to our data-driven approach.

7.1 Interpretation of Features

One important issue to address is to determine how interpretable the selected features
are for representing the concepts (Section 3). Inherently, the quality dimensions capture
the attributes that can cognitively categorise the concepts (Gärdenfors & Williams, 2001).
Thus, it makes sense that the feature selection considers the separability between concepts
when generating conceptual spaces in a data-driven manner. At the same time, a data-
driven approach cannot be completely separated from meaningful semantics. Hence, a
further implicit selection criterion has been to select features that can be expressed in natural
language, or as stated by Gärdenfors (2000), features which can be given a meaningful
perceptual interpretation. The interpretability of feature is indeed context dependent and
occurs in different levels of feature abstractness (Spalding & Ross, 2000). As an example,
for a given leaf sample, a large or small area of a leaf is not informative whereas knowing
the elongation or wideness enables us to depict a more meaningful description.

7.2 Semantics of Domains

Another issue is how to form the domains in a conceptual space without human perception
(Section 3.1). While the quality dimensions can be mapped to the feature selection methods,
the domains which are formed by grouping the features should be semantically meaningful.
In our approach, grouping features is based on how well a subset of the features distinctly
represents the various concepts. However, there still exists the problem of verifying the
semantic dependency of the quality dimensions within a domain to realise what quality
dimensions are integral and what are separable without necessarily involving background
knowledge. While we do not present a solution to this problem, it has been discussed in the
literature. For example, Gärdenfors suggests that the verification of deciding whether two
quality dimensions are integral or not can be done by empirical testing based on the subject
judgements such as the domain experts, and not necessarily using statistical or analytical
techniques (Gärdenfors, 2000). It is seemingly difficult, if not impossible, to realise the
semantic dependency of the features analytically. For example, by looking at the values of
RGB as the dimensions of the colour domain for a set of observations, there is no indication
to realise their semantic relations. At the very least in our approach, with relying on the
associations between the observations and features, we consider quality dimensions to be
integral if they have high relevance to each other that measured by their high relevance
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to the concepts. Indeed, solving the issue of how to derive a grouping of features for
domain specification, can lead to forming a general solution to the problem of determining
an evaluation criterion to choose between the competing conceptual spaces, an issue raised
by Gärdenfors (2005).

7.3 Quality and Quantity of Known Instances

On concept representation (Section 3.2), convex regions and the salient weights are induced
in a data-driven way by considering the observations as the instances of the concepts. Still,
these representations suppose that there are sufficient known instances that are represen-
tative of the concepts to determine geometric regions and the weights. This assumption is
a crucial point that is inherent in all data-driven methods. In the literature of conceptual
spaces, the knowledge-driven approaches have used pure thresholds or cutoffs to determine
the regions, as illustrated in the definition of the regions for the mountain and hill concepts
described by Adams and Raubal (2009a). However, in such systems like the leaf data set, it
is not trivial to initialise in advance the specific geometric boundaries for the categories of
the leaf species as the concepts, or the precise salient weights the provided domains. So, in
a data-driven approach it is essential to have an adequate set of the known instances of the
concepts, and thus an area that is worth to study is to determine on how to dynamically
adjust a conceptual space when a set of new observations emerge.

7.4 Concepts as Nouns or Adjectives

One point related to the lexicalisation and the realisation (Section 4) is that from the
natural language point of view, the concepts in a conceptual space typically represent the
nouns while the sub-concepts or properties are related to the adjectives. Our approach to
determining linguistic descriptions does not make the distinction between adjectives and
nouns, and consequently, between the properties and concepts for the class labels from the
input learning data set12. Rather, one region within a domain is considered as a concept or
sub-concept that can be both nouns or adjectives, and be used to describe an observation.
For example, descriptions of an object in a conceptual space of fruits can be either “the
object is an apple” or “the object is red”. In the former, the label refers to the concept apple
as a noun, and in the latter one, the label refers to the sub-concept red as an adjective.
We assumed that all the linguistic terms of the quality dimensions are considered as the
adjectives. For instance, if weight is involved in the description of an object, the term heavy
is considered as the adjective in such descriptions like “the object is heavy”.

7.5 Generalisation

While the proposed approach has been tested on two case studies in order to verify its
plausibility (Section 5), it would be necessary to identify a general class of problems that

12. The reason is that from machine learning point of view, there is no linguistic distinction between the
different types of the classes, in a sense that the learning problem is to classify whether the noun
concepts, adjective concepts, or even verb concepts. For example, in Iris data set the classes are nouns,
as each class refers to a name of iris plant (Lichman, 2013), however, in Wine quality data set the classes
are adjectives, as each class refers to the quality level of wines from excellent to poor quality (Cortez,
Cerdeira, Almeida, Matos, & Reis, 2009).
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the proposed approach can address. Many AI problems dealing with numeric data as the
input of learning systems require semantic interpretation for these data, which is needed
for interaction with humans. However, in most of the cases, there is no a priori or expert
knowledge to explain the aspects of the input observations. This lack of knowledge is
more problematic when connectionist approaches are applied, since they cannot explain
what the learnt emerging model represents. Hence, the introduced framework to construct
and utilise conceptual spaces is generally applicable for those AI applications wherein: (1)
there is a need for concept learning and concept description only based on the known
available observations, and (2) there is a lack of interpretability while creating a learning
model, as well as the lack of explainability while testing the model by completely unknown
observations.

8. Conclusions

This paper presented an automatic approach to map numerical observations into concep-
tual representations, which is increasingly important in many applications involving human
interaction. We have addressed concept learning and semantic interpretation in AI by deriv-
ing conceptual spaces as a semantic model. We have introduced a data-driven construction
of conceptual spaces from known observations in a given numeric data set. The derived
conceptual space is then extended as a semantic inference model to generate linguistic
descriptions for further unknown observations in natural language.

The framework we proposed employed machine learning algorithms for the task of iden-
tifying relevant features and concepts in a numerical data set, in order to shape the domains
and quality dimensions of conceptual space. We have argued that the selected and grouped
features providing discrimination between concepts are adequate to specify the domains
and dimensions while preserving the semantic interpretation of the features and concepts.
Then, we have shown an instance-based approach for the task of concept formation within
the derived conceptual space. A key finding from the data-driven construction of conceptual
space is that it provides a generalisation for concept representation, where the model can be
constructed or extend by different types of input instances. With regard to the construction
of the conceptual spaces, we have further proposed a semantic inference mechanism to derive
linguistic descriptions for new observations. We have shown that linking a symbol space to
the conceptual space facilitates the process of inferring linguistic characterisations of the
unknown observations. One advantage of such an inference model is that the proposed
approach concerns which interpretable aspects of the provided contents can be exploited to
describe a phenomenon.

We demonstrated the feasibility of our approach in two case studies of real-world numer-
ical data sets. By performing an empirical evaluation, we have assessed how well linguistic
descriptions that are generated based on the derived conceptual space enable human users
first to identify the unknown observations. This identification is then followed by a com-
parison between different semantic models of generating linguistic descriptions to show how
well human users prefer the descriptions from the conceptual space model to refer to un-
known observations. The evaluation results indicate that a multi-domain representation of
concepts (i.e., conceptual spaces) can lead to a better presentation of output descriptions in
comparison to a single-domain representation, since the multi-domain spaces preserve the

736



Data-Driven Conceptual Spaces

various semantic aspects of the attributes for a concept, while the others combine all the
attributes into a single space.

Extending the presented data-driven approach to other cognitive tasks such as concept
combination, inductive inference, and property reasoning is a very promising research di-
rection, especially when it comes to data-driven representations in cognitive architectures.
Another direction for the future work would be to assess the quality of the automatically de-
rived domains and dimensions. As Gärdenfors (2005) discussed, there is a need to determine
the evaluation criteria to choose among competing conceptual spaces. Our framework has
the potential to address this need by defining statistical measures to compare the specified
domains in a data-driven manner.
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Kacprzyk, J., & Zadrożny, S. (2010). Computing with words is an implementable paradigm:
fuzzy queries, linguistic data summaries, and natural-language generation. Fuzzy Sys-
tems, IEEE Transactions on, 18 (3), 461–472.

Keogh, E. (2011). Instance-based learning. In Encyclopedia of Machine Learning, pp. 549–
550. Springer.

Keßler, C. (2006). Conceptual spaces for data descriptions. In The cognitive approach to
modeling environments (CAME), workshop at GIScience, pp. 29–35.

739



Banaee, Schaffernicht, & Loutfi

LeBlanc, K. (2010). Cooperative anchoring: sharing information about objects in multi-
robot systems..

Lee, I. (2005). Data mining coupled conceptual spaces for intelligent agents in data-rich
environments. In International Conference on Knowledge-Based and Intelligent In-
formation and Engineering Systems, pp. 42–48. Springer.

Lee, I., & Portier, B. (2007). An empirical study of knowledge representation and learning
within conceptual spaces for intelligent agents. In Computer and Information Science,
2007. ICIS 2007. 6th IEEE/ACIS International Conference on, pp. 463–468. IEEE.

Lewis, M., & Lawry, J. (2016). Hierarchical conceptual spaces for concept combination.
Artificial Intelligence, 237, 204–227.

Lichman, M. (2013). UCI machine learning repository..

Lieto, A., Chella, A., & Frixione, M. (2017). Conceptual spaces for cognitive architectures:
A lingua franca for different levels of representation. Biologically Inspired Cognitive
Architectures, 19, 1–9.

Luger, G. F. (2005). Artificial intelligence: structures and strategies for complex problem
solving. Pearson education.

Matthiessen, C. (1990). Two approaches to semantic interfaces in text generation. In
Proceedings of the 13th conference on Computational linguistics-Volume 2, pp. 322–
329. Association for Computational Linguistics.

Minsky, M. L. (1991). Logical versus analogical or symbolic versus connectionist or neat
versus scruffy. AI magazine, 12 (2), 34.

Nanopoulos, A., Alcock, R., & Manolopoulos, Y. (2001). Feature-based classification of
time-series data. International Journal of Computer Research, 10 (3), 49–61.

Ng, A. Y., & Jordan, M. I. (2016). On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes..

Novák, V. (2016). Linguistic characterization of time series. Fuzzy Sets and Systems, 285,
52–72.

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on pattern analysis and machine intelligence, 27 (8), 1226–1238.

Quine, W. V. O. (1969). Ontological relativity and other essays. No. 1. Columbia University
Press.
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