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Abstract

Classification of description logic (DL) ontologies is a key computational problem in
modern data management applications, so considerable effort has been devoted to the devel-
opment and optimisation of practical reasoning calculi. Consequence-based calculi combine
ideas from hypertableau and resolution in a way that has proved very effective in practice.
However, existing consequence-based calculi can handle either Horn DLs (which do not
support disjunction) or DLs without number restrictions. In this paper, we overcome this
important limitation and present the first consequence-based calculus for deciding concept
subsumption in the DL ALCHIQ+. Our calculus runs in exponential time assuming unary
coding of numbers, and on ELH ontologies it runs in polynomial time. The extension to
disjunctions and number restrictions is technically involved: we capture the relevant conse-
quences using first-order clauses, and our inference rules adapt paramodulation techniques
from first-order theorem proving. By using a well-known preprocessing step, the calcu-
lus can also decide concept subsumptions in SRIQ—a rich DL that covers all features
of OWL 2 DL apart from nominals and datatypes. We have implemented our calculus in
a new reasoner called Sequoia. We present the architecture of our reasoner and discuss
several novel and important implementation techniques such as clause indexing and redun-
dancy elimination. Finally, we present the results of an extensive performance evaluation,
which revealed Sequoia to be competitive with existing reasoners. Thus, the calculus and
the techniques we present in this paper provide an important addition to the repertoire of
practical implementation techniques for description logic reasoning.

1. Introduction

Description logics (DLs) (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003)
are a prominent family of knowledge representation formalisms. They can describe key
entities of a domain of interest using concepts (i.e., unary predicates) and the relationships
between entities using roles (i.e., binary predicates). An ontology is a formal description of
a domain of interest, and it consists of first-order sentences constructed from concepts and
roles. Subsumption is the problem of determining whether each instance of one concept is
also an instance of another concept in all models of an ontology, and ontology satisfiability is
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the problem of determining whether an ontology admits a model. For expressive DLs, both
problems are interreducible and are of high worst-case complexity, ranging from ExpTime
(Sattler & Vardi, 2001) up to N2ExpTime (Kazakov, 2008). DLs provide the logical foun-
dation for the OWL 2 DL ontology language, which is used nowadays in numerous practical
applications. Consequently, many different DL reasoning calculi have been developed since
the 1980s, and they provide the basis for several practically effective reasoners.

Tableau calculi (Baader & Sattler, 2001) comprise a prominent group of reasoning calculi
that try to construct a finite representation of a canonical model of the ontology disproving
a postulated subsumption. Various blocking techniques (Motik, Shearer, & Horrocks, 2009)
are used to prevent infinite model expansion and thus ensure termination. Traditional
tableau calculi are not worst-case optimal, but they incorporate numerous optimisations
such as absorption that facilitate processing of large ontologies expressed in rich DL lan-
guages. Such calculi provide the foundation for several widely known reasoners such as
FaCT++ (Tsarkov & Horrocks, 2006), Pellet (Sirin, Parsia, Cuenca Grau, Kalyanpur, &
Katz, 2007), and RacerPro (Haarslev, Hidde, Möller, & Wessel, 2012). Analogously to the
hypertableau calculus for first-order logic (Baumgartner, Furbach, & Niemelä, 1996), the
hypertableau calculus for DLs (Motik et al., 2009) incorporates many optimisations into its
core that reduce don’t-know nondeterminism during reasoning, and it provides the foun-
dation for the HermiT reasoner (Glimm, Horrocks, Motik, Stoilos, & Wang, 2014). The
aforementioned systems can successfully process numerous ontologies, but sometimes they
may construct very large model representations, which is a source of performance problems.
Such problems are further exacerbated by the large number of subsumption tests often
required to classify an ontology. More recently, tableau calculi have been extended with
global caching techniques that ensure worst-case optimal behaviour (Goré & Nguyen, 2007,
2013; Nguyen, 2013; Nguyen & Golińska-Pilarek, 2014; Nguyen, 2014). To the best of our
knowledge, such techniques have been implemented only in prototypes such as TGC2.1

Another large group of reasoning calculi for DLs and their extensions are based on pa-
rameterisations of first-order resolution (Bachmair & Ganzinger, 2001). Such procedures
can be broadly subdivided into two subgroups. The first subgroup consists of procedures
that essentially simulate (hyper)tableau techniques in a resolution framework; Hustadt and
Schmidt (1999) call this decidability by selection. To ensure termination, these techniques
either restrict the ontology so that model construction terminates naturally (e.g., by disal-
lowing terminological cycles), or they stop model construction using techniques analogous
to blocking (Georgieva, Hustadt, & Schmidt, 2003). The second subgroup consists of pro-
cedures that, rather than constructing finite model representations, parameterise resolution
in a way that ensures that the calculus can derive only a finite number of clauses given
a finite signature; Hustadt and Schmidt (1999) call this decidability by ordering. Such
approaches can usually handle ontologies with terminological cycles, and they have been
developed for DLs such as ALB (de Nivelle, Schmidt, & Hustadt, 2000; Hustadt & Schmidt,
2002; Schmidt & Hustadt, 2013) and SHIQ (Hustadt, Motik, & Sattler, 2008), and their
generalisations such as the guarded fragment (Ganzinger & de Nivelle, 1999). The KAON2
reasoner (Hustadt et al., 2008) implements such a technique for the DL SHIQ.

1. http://www.mimuw.edu.pl/~nguyen/TGC2/index.html
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A breakthrough in DL reasoning came in the form of consequence-based calculi. The
polynomial-time reasoning algorithm by Baader, Brandt, and Lutz (2005) for the lightweight
DL EL can be seen as the first such calculus. This algorithm was later significantly improved
and extended to the DL Horn-SHIQ (Kazakov, 2009), which allowed the CB reasoner to
be the first to classify the full version of the GALEN ontology (Solomon, Roberts, Rogers,
C.J., & Rector, 2000) and thus solve a long-standing open problem in DL reasoning. This
calculus was later extended to the DLs ALCH (Simanč́ık, Kazakov, & Horrocks, 2011)
and ALCI (Simanč́ık, Motik, & Horrocks, 2014) that support concept disjunction, but not
number restrictions. Recently, Vlasenko, Daryalal, Haarslev, and Jaumard (2016) presented
a calculus for the DL ELQ that combines consequence-based reasoning with integer linear
programming in order to efficiently reason with number restrictions, and Karahroodi and
Haarslev (2017) presented a similar approach for the DL SHOQ. All of these calculi can
intuitively be seen as combining ideas from resolution and hypertableau (see Section 3):
as in resolution, they systematically derive certain consequences in order to describe a
class of ontology models that can be constructed in a specific way from a saturated set of
consequences; and as in (hyper)tableau, they construct in a goal-directed fashion an outline
of an ontology model. They are also not only refutationally complete, but can check several
subsumptions in a single run, which can considerably reduce the overall work for higher-
level reasoning tasks such as ontology classification. Finally, similarly to resolution-based
decision procedures, consequence-based calculi are typically worst-case optimal.

Although many consequence-based calculi are known, none of them can handle DLs with
both disjunctions and number restrictions. This drawback has so far been addressed using
hybrid reasoning approaches. The Konclude reasoner (Steigmiller, Liebig, & Glimm, 2014)
is based on a tableau calculus, but it also uses a sound but incomplete consequence-based
calculus to speed up the derivation of certain consequences. The MORe reasoner (Armas
Romero, Cuenca Grau, & Horrocks, 2012) classifies an ontology by extracting a fragment of
the ontology that can be processed more efficiently with a consequence-based calculus and
delegating the rest of the ontology to a hypertableau reasoner. While such combinations
often perform well in practice, they are not worst-case optimal. Hence, developing worst-
case optimal consequence-based calculi that can handle expressive DLs remains an open
problem that is interesting from both a practical and a theoretical perspective.

As we discuss in detail in Section 3, handling both disjunctions and number restrictions
poses a key new challenge: number restrictions require equality reasoning, which, together
with disjunctions, can impose complex constraints on an ontology model; however, it is
unclear whether such constraints can be captured using the syntax of DLs themselves. This
is different from the known consequence-based calculi, where the derived consequences can
be represented as DL axioms. Hence, extending a framework such as the one by Simanč́ık
et al. (2014) to number restrictions and disjunctions is technically challenging.

In Section 4 we present the first consequence-based calculus for subsumption in the DL
ALCHIQ+, which supports all Boolean connectives on concepts, self-restrictions, number
restrictions, role hierarchies, and inverse and reflexive roles; we do not consider ABoxes since
we focus on subsumption. Following the ideas from the aforementioned resolution-based de-
cision procedures, we encode the calculus’ consequences as first-order clauses of a specific
form, and we handle equality using a variant of ordered paramodulation (Nieuwenhuis &
Rubio, 1995; Bachmair & Ganzinger, 1998)—a state-of-the-art calculus for equational theo-
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rem proving used in modern theorem provers such as SPASS (Weidenbach, Gaede, & Rock,
1996), E (Schulz, 2002), and Vampire (Riazanov & Voronkov, 2002). Our calculus runs
in exponential time assuming unary coding of numbers. By applying the encoding of role
inclusion axioms (Demri & de Nivelle, 2005; Schmidt & Hustadt, 2007; Simanč́ık, 2012) in
a preprocessing step, our calculus can also handle SRIQ, which covers all of OWL 2 DL
except for nominals and datatypes. On ELH (Baader et al., 2005) ontologies our calculus
runs in polynomial time; moreover, we have carefully constrained the inference rules so
that, on EL ontologies, the calculus mimics existing calculi and thus exhibits pay-as-you-go
behaviour. As a result, one can expect good performance on ‘mostly-EL’ ontologies.

We have implemented our calculus in a new reasoner called Sequoia.2 In Section 5
we present the system’s architecture and discuss several techniques that we found critical
for performance, such as clause indexing and implementing the saturation process. We
also discuss redundancy elimination techniques that can simplify or even eliminate certain
clauses from saturation. Such techniques play a key role in of first-order theorem proving
(Riazanov & Voronkov, 2003; Hustadt, Motik, & Sattler, 2007; Schulz, 2004; Bachmair &
Ganzinger, 2001), and we found them equally important in DL reasoning as well.

In Section 6 we present the results of our performance evaluation in which we compared
Sequoia with FaCT++, Pellet, HermiT, and Konclude on classifying a corpus consisting
of 777 description logic ontologies. Sequoia typically outperforms FaCT++, Pellet, and
HermiT and it often exhibits comparable performance to Konclude. Moreover, we have
also compared Sequoia with EL reasoners jcel (Mendez, 2012), Snorocket (Metke-Jimenez
& Lawley, 2013), and ELK (Kazakov, Krötzsch, & Simanč́ık, 2014) on the appropriate subset
of the test ontologies. Even though it implements a more complex logic, the performance
of Sequoia was comparable to Snorocket and ELK, which we take as empirical confirmation
of the pay-as-you-go property. Thus, the techniques we present in this paper provide an
important addition to the repertoire of practical implementation techniques for DLs.

This is an extension of our earlier work published at the KR 2016 conference (Bate,
Motik, Cuenca Grau, Simanč́ık, & Horrocks, 2016). New material includes the addition
of self-reflexivity (which considerably changes the calculus and the completeness proofs),
a description of Sequoia’s architecture and the relevant implementation techniques (see
Section 5), and an updated evaluation and comparison with EL reasoners (see Section 6).

2. Preliminaries

In this section we recall well-known definitions of many-sorted clausal equational logic (Sec-
tion 2.1), encoding of predicates by function symbols in an equational theory (Section 2.2),
term orders (Section 2.3), and description logics (Section 2.4).

2.1 Many-Sorted Clausal Equational Logic

We first recall the definitions of many-sorted clausal equational logic (Walther, 1987). We
assume in our presentation that equality is the only predicate. This is without loss of
generality since it is well known that one can encode ordinary atoms using only the equality
predicate (Nieuwenhuis & Rubio, 2001); we discuss this in detail in Section 2.2.

2. http://www.cs.ox.ac.uk/isg/tools/Sequoia/
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First-order clauses are constructed using the symbols of a many-sorted signature, which
is a pair Σ =

(
ΣO,ΣF

)
where ΣO is a nonempty set of sorts, and ΣF is a countable set of

function symbols. Each function symbol f ∈ ΣF is associated with a symbol type, which is
an expression of the form o1 × · · · × on → o where n ≥ 0 and {o1, . . . , on, o} ⊆ ΣO are sorts;
such f is of arity n and of sort o, and it is a constant if n is zero. Given a sort o, set ΣF

o

contains precisely all symbols in ΣF of sort o. We assume that, for each sort o ∈ ΣO, there
exists a distinct, countable set of variables of sort o. The set of terms, each associated with
a sort in ΣO, is the smallest set such that (i) each variable x of sort o is a term of sort o, and
(ii) for each function symbol f ∈ ΣF with symbol type o1 × · · · × on → o and for all terms
t1, . . . , tn where ti is of sort oi for i ≤ i ≤ n, expression f(t1, . . . , tn) is a term of sort o. A
term of sort o is also called an o-term. Finally, the signature Σ must ensure that, for each
sort o ∈ ΣO, there exists at least one variable-free term of sort o.

An equality is an expression of the form t1 ≈ t2 where t1 and t2 are terms of the same
sort. An inequality is the negation of an equality ¬(t1 ≈ t2), and it is typically written
as t1 6≈ t2. We assume that ≈ and 6≈ are implicitly symmetric—that is, for ./ ∈ {≈, 6≈},
expressions t1 ./ t2 and t2 ./ t1 are one and the same. A literal is an equality or an inequality.
A clause is a formula of the form ∀~x.[Γ→ ∆] where Γ is a conjunction of equalities called
the body, ∆ is a disjunction of literals called the head, and ~x contains all variables occurring
in the clause; quantifier ∀~x is usually left implicit. It is common practice to assume that
clause heads contain equalities only; however, in this paper it will be convenient to consider
clauses whose heads contain both equalities and inequalities since this will be needed for
the inference rules of our calculus. We often treat conjunctions and disjunctions as sets
(i.e., they are unordered and without repetition) and use them in standard set operations.
We write the empty conjunction (resp. disjunction) as > (resp. ⊥). A term, literal, clause,
or a set thereof is ground if it does not contain a variable.

A substitution σ is a mapping of variables to terms such that (i) for each variable x, the
sort of x and σ(x) are the same, and (ii) the set of variables {x | σ(x) 6= x } is finite. We
often write substitutions as σ = {x1 7→ t1, . . . , xk 7→ tk}—that is, we list all nonidentity
mappings. The result of applying a substitution σ to a term or a formula α, written ασ, is
obtained by replacing in α each free occurrence of a variable x with σ(x). The domain of
σ is the set containing each variable x such that σ(x) 6= x. Moreover, σ is ground if σ(x) is
ground for each variable x in the domain of σ.

A position is a finite sequence of positive integers and it is written i1.i2 . . . in; the empty
sequence is written ε. Let p be a position and let t be a term. The subterm of t at position p
is defined inductively as follows: t|ε = t and, if t = f(t1, . . . , tn), then t|i.p = ti|p if 1 ≤ i ≤ n
(and it is undefined if i > n). A position p is proper in a term t if t|p 6= t. Finally, s[t]p is
the term obtained by replacing the subterm of s at position p with t, provided that terms
s|p and t are of the same sort (and it is undefined otherwise).

Clauses are commonly interpreted using Herbrand interpretations, where each constant
is interpreted by itself and an application of a function symbol f to ground arguments
t1, . . . , tn is interpreted as the ground term f(t1, . . . , tn). Formally, the Herbrand universe
for Σ is the set HU of all ground terms constructed using the symbols of Σ (while re-
specting the sort restrictions). A Herbrand equality interpretation I is a set of ground
equalities that satisfies the usual properties of equality—that is, ≈ is reflexive, symmetric,
and transitive in I, {s1 ≈ t1, . . . , sn ≈ tn} ⊆ I implies f(s1, . . . , sn) ≈ f(t1, . . . , tn) ∈ I for
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each function symbol f and terms s1, . . . , sn and t1, . . . , tn in HU of appropriate sorts, and
{s ≈ t, s ≈ s′, t ≈ t′} ⊆ I implies s′ ≈ t′ ∈ I for all terms s, s′, t, and t′ in HU. For α a
ground conjunction, ground disjunction, (not necessarily ground) clause, or a set thereof,
satisfaction of α in a Herbrand equality interpretation I, written I |= α, is defined as usual,
but with the difference that each variable of sort o quantifies only over the terms in HU of
sort o (instead of quantifying over all of HU). Note that a ground disjunction of literals
∆ may contain inequalities so I |= ∆ does not necessarily imply I ∩∆ 6= ∅. Let O be a
set of clauses. A Herbrand equality interpretation I satisfies O (i.e., I is a model of O) if
I |= O; moreover, O is satisfiable if it admits a model; finally, O entails a clause Γ→ ∆ if
I |= Γ→ ∆ holds for each model I of O.

To understand how the presence of sorts affects the semantics of first-order logic, let O
be the set containing clauses → x1 ≈ x2 and → c1 6≈ c2. Set O is unsatisfiable if variables
x1 and x2 are of the same sort as constants c1 and c2; otherwise, O is satisfiable because
variables x1 and x2 then do not range over the constants c1 and c2.

2.2 Encoding Predicates by Function Symbols

Herbrand equality interpretations can be conveniently represented using rewrite systems
(see Appendix B), in which case it is convenient to assume that equality is the only pred-
icate. This is without loss of generality since, as we discuss next, each formula containing
predicates other than equality can be transformed into an equisatisfiable formula of multi-
sorted first-order logic where equality is the only predicate.

In the rest of this paper, we assume that p ∈ ΣO is a distinct predicate sort whose use is
restricted such that, for each type o1 × · · · × on → p of a symbol in the signature Σ, we have
oi 6= p for each 1 ≤ i ≤ n. We also assume that true is a distinct constant of sort p. Then,
an atom of the form P (t1, . . . , tn) where P is a predicate other than equality is transformed
into P (t1, . . . , tn) ≈ true, where P is a function symbol of sort p. For example, given a
function symbol P of sort p and a function symbol f of a different sort, both f(P (x)) and
P (P (x)) are not well-formed, whereas P (f(x)) is a well-formed p-term. It is well known
that this transformation preserves formula satisfiability and entailment (Nieuwenhuis &
Rubio, 2001). Whenever the intended meaning is clear from the context, we abbreviate
P (t1, . . . , tn) ≈ true as just P (t1, . . . , tn), and we call an equality of that form an atom.

2.3 Term and Literal Orders

A strict order � on a domain set Ω is an irreflexive, asymmetric, and transitive relation on
Ω; and � is the partial order induced by �. A strict order � is total if, for all a, b ∈ Ω, we
have a � b, b � a, or a = b. Given an element b ∈ Ω, a subset S ⊆ Ω, and for ◦ equal to �
of �, the notation S ◦ b abbreviates ∃a ∈ S : a ◦ b.

A multiset M on a domain set Ω is a function assigning to each element a ∈ Ω a non-
negative integer M(a). Multiset M is finite if the set { a ∈ Ω |M(a) 6= 0 } is finite, and we
often write such multisets as sets where an element a is repeated M(a) times. The difference
M \N of multisets M and N on Ω is defined by (M \N)(a) = max(0,M(a)−N(a)) for
each element a ∈ Ω. The multiset extension �mul of an order � on Ω is the order defined
on all finite multisets M and N over Ω as follows: M �mul N if and only if M 6= N and,
for each n ∈ N \M , there exists m ∈M \N such that m � n.
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Table 1: Translating Normalised ALCHIQ+ Ontologies into DL-Clauses

DL1
d

1≤i≤n

Bi v
⊔

n+1≤i≤m

Bi  
∧

1≤i≤n

Bi(x)→
∨

n+1≤i≤m

Bi(x)

DL2 B1 v >nS.B2  
B1(x)→ S(x, fi(x)) for 1 ≤ i ≤ n
B1(x)→ B2(fi(x)) for 1 ≤ i ≤ n
B1(x)→ fi(x) 6≈ fj(x) for 1 ≤ i < j ≤ n

DL3 ∃S.B1 v B2  S(z1, x) ∧B1(x)→ B2(z1)

DL4 B1 v 6nS.B2  
S(z1, x) ∧B2(x)→ SB2(z1, x) SB2 is fresh and

B1(x) ∧
∧

1≤i≤n+1

SB2(x, zi)→
∨

1≤i<j≤n+1

zi ≈ zj unique for S and B2

DL5 B v ∃S.Self  B(x)→ S(x, x)

DL6 ∃S.Self v B  S(x, x)→ B(x)

DL7 S1 v S2  S1(z1, x)→ S2(z1, x)

DL8 S1 v S−2  S1(z1, x)→ S2(x, z1)

DL9 Disjoint(S1, S2)  S1(z1, x) ∧ S2(z2, x)→ ⊥

Note: B(i) are atomic concepts, S(i) are atomic roles, and n is a nonnegative integer.

A term order � is a strict order on the set of all terms. As usual in resolution-based
equational theorem proving (Nieuwenhuis & Rubio, 2001), we extend � to literals by iden-
tifying each s 6≈ t with the multiset {s, s, t, t} and each s ≈ t with the multiset {s, t}, and
by comparing the result using the multiset extension of �. We reuse the symbol � for the
induced literal order since the intended meaning should be clear from the context.

2.4 Description Logics

We next introduce the description logic ALCHIQ+ that we consider in this paper. A DL
signature consists of atomic concepts and atomic roles. A role is an expression of the form
S or S−, for S an atomic role. The set of concepts is inductively defined as containing
all atomic concepts, > and ⊥, and concepts ¬C, C1 u C2, C1 t C2, ∃R.C, ∀R.C, ∃R.Self,
>nR.C, and 6nR.C for R a role, C, C1, and C2 concepts, and n a nonnegative integer. An
ontology is a finite set of axioms of the form C1 v C2, R1 v R2, or Disjoint(R1, R2), where
Ci are concepts and Ri are roles. Using a normalisation process analogous to the structural
transformation (Nonnengart & Weidenbach, 2001) from first-order theorem proving, each
ontology can be transformed in polynomial time into a normalised ontology containing
axioms only of the form shown on the left-hand side of Table 1 while preserving all ontology
consequences; this process is well understood (Motik et al., 2009; Hustadt & Schmidt, 2002)
so we do not discuss it further. Ontologies are interpreted using a first-order semantics.

Our DL reasoning calculus is based on resolution, so it requires ontologies to be rep-
resented using first-order clauses. Thus, we next redefine the notions of DL axioms and
ontologies in a way that is more suitable to our work. Ontologies are constructed using a
signature Σ =

(
ΣO,ΣF

)
where ΣO contains the predicate sort p and the abstract sort a.

Set ΣF contains atomic concepts Bi of type a→ p, atomic roles Si of type a× a→ p, and
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successor functions fj of type a→ a. A term of the form fj(t) is an fj-successor of t, and t
is the predecessor of fj(t). We distinguish a distinct central variable x from the remaining
neighbour variables zj , all of which are of sort a. A DL-a-term is of the form zj , x, or
fj(x). A DL-p-term is of the form Bi(zj), Bi(x), Bi(fj(x)), Si(zj , x), Si(x, zj), Si(x, x),
Si(fj(x), x), or Si(x, fj(x)). A DL-literal is either an atom of the form A ≈ true where A is
a DL-p-term (which we often abbreviate as just A), or of the form l ./ r where l and r are
DL-a-terms and ./ ∈ {≈, 6≈}. A DL-clause contains only atoms of the form Bi(x), Si(x, x),
Si(zj , x), and Si(x, zj) in the body and only DL-literals in the head, and each variable zj
occurring in the clause also occurs in the body. Unless stated otherwise, in the rest of this
paper we assume that an ontology O is given as a finite set of DL-clauses.

In this paper we consider the problem of deciding whether O |= Γ→ ∆ holds for a given
ontology O and a query clause Γ→ ∆—that is, a DL-clause where all literals are atoms of
the form Bi(x) or Si(x, x). We can also check whether O is inconsistent by checking whether
O |= > → ⊥ holds. This provides us with the basic building block for implementing ontology
classification as outlined in Section 4.3.

Each normalised ALCHIQ+ axiom can be transformed into DL-clauses as shown in
Table 1. This step is polynomial if numbers are coded in unary, and it is exponential
otherwise. It uses the well-known correspondence between DL axioms and clauses (Schmidt
& Hustadt, 2007): an axiom is first translated into a first-order sentence (Baader et al.,
2003), existential quantifiers (if any) are skolemised, and the result is converted into clauses
using de Morgan laws. For B1 v 6nS.B2, the standard translation produces

B1(x) ∧
∧

1≤i≤n+1

[
S(x, zi) ∧B2(zi)

]
→

∨
1≤i<j≤n+1

zi ≈ zj . (1)

Our calculus, however, requires atoms of the form B2(zi) to not occur in clause bodies. To
transform (1) to a DL-clause, we introduce a fresh role SB2 uniquely associated with S and
B2 and apply the structural transformation S(x, z1) ∧B2(z1): we introduce a DL-clause
S(z1, x) ∧B2(x)→ SB2(z1, x) and replace each S(x, zi) ∧B2(zi) in (1) with SB2(x, zi).

The description logic ELH (Baader et al., 2005) is the restriction of ALCHIQ+ where
all roles are required to be atomic, and all concepts are required to be of the form B,
C1 u C2, ∃S.C, ⊥, or >. Normalised ELH axioms are of type DL1 with n ≤ m ≤ n+ 1,
DL2 with n = 1 and DL3, and DL7 from Table 1, and so an ELH ontology O contains
DL-clauses of the corresponding types. Moreover, the description logic EL is obtained from
ELH by disallowing axioms of the form DL7.

The DL SRIQ (Horrocks & Sattler, 2004) extends ALCHIQ+ with role inclusion
axioms of the form S1 ◦ · · · ◦ Sn v S, where S(i) are roles. Unrestricted use of such axioms
leads to undecidability, but, under certain global restrictions, such axioms can be encoded by
DL-clauses without affecting the entailed query clauses (Demri & de Nivelle, 2005; Schmidt
& Hustadt, 2007; Simanč́ık, 2012). By combining this transformation with our algorithm,
we obtain an optimal reasoning procedure for SRIQ, assuming unary coding of numbers.

DL-clauses can capture axioms outside ALCHIQ+. For example, (2) captures rela-
tivized role inclusion, and (3) is a safe role expression (Tobies, 2001). As in other approaches
that translate DL axioms into clauses (Hustadt et al., 2008; Motik et al., 2009), such DL-
clauses can be included in ontologies and will be correctly handled by our algorithm.

S1(z1, x) ∧B(x)→ S2(z1, x) (2)
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Ontology O1

Bi v ∃S1.Bi+1  
Bi(x)→ S1(x, fi+1(x)) (4)

 for 0 ≤ i < n
Bi(x)→ Bi+1(fi+1(x)) (5)

Bi v ∃S2.Bi+1  
Bi(x)→ S2(x, gi+1(x)) (6)
Bi(x)→ Bi+1(gi+1(x)) (7)

Bn v Cn  Bn(x)→ Cn(x) (8)

∃S1.Ci+1 v Ci  S1(z1, x) ∧ Ci+1(x)→ Ci(z1) (9)
}

for 0 ≤ i < n

∃S2.Ci+1 v Ci  S2(z1, x) ∧ Ci+1(x)→ Ci(z1) (10)

C0 u · · · u Cn v ⊥  C0(x) ∧ · · · ∧ Cn(x)→ ⊥ (11)

Figure 1: Example Ontology O1

S1(x, z1) ∧ S2(z1, x)→ S3(x, z1) ∨ S4(z1, x) (3)

3. Motivation

In this section we motivate consequence-based calculi and present an outline of our approach.
In Section 3.1 we discuss certain inefficiencies of existing DL calculi. In Section 3.2 we
discuss the main ideas of consequence-based reasoning. Finally, in Section 3.3 we discuss
the difficulties in extending the framework to disjunctions and number restrictions.

3.1 Why Consequence-Based Calculi?

Let O1 be the EL ontology shown in Figure 1; one can check that O1 6|= Bi(x)→ ⊥ holds for
0 ≤ i ≤ n. We next discuss how both (hyper)tableau and resolution—DL calculi commonly
used in practice—draw irrelevant conclusions while proving this.

To prove O1 6|= B0(x)→ ⊥, a (hyper)tableau calculus tries to construct a model of O
and B0(a) by applying the DL-clauses (4)–(10) in a forward-chaining manner. Specifically,
DL-clauses (4)–(8) construct a tree-shaped model of depth n and a fanout of two where
nodes at depth i are labelled by Bi, and then DL-clauses (8)–(10) ensure that nodes at
depth i are also labelled by Ci. Forward chaining ensures that reasoning is goal-oriented.
However, all nodes labelled with Bi are equivalent in the sense that they participate in
exactly the same concepts and roles, revealing a weakness of (hyper)tableau calculi: the
constructed models can be large (exponential in our example) and highly redundant, which
leads to inefficiency in practice and often prevents (hyper)tableau calculi from being worst-
case optimal. Since O1 is an EL ontology, multiple existential restrictions can satisfied using
the same object, and so a polynomially-sized model can be constructed using the algorithm
by (Baader et al., 2005); however, number restrictions, inverse roles, or disjunctions make
such an approach unsound for expressive DLs such as ALCHIQ+. Techniques such as
caching (Goré & Nguyen, 2007) or anywhere blocking (Motik et al., 2009) can sometimes
constrain the model construction. Nevertheless, the resulting model representations tend to
be large, which is a key problem for (hyper)tableau reasoners (Motik et al., 2009). Models
can also be constructed in a resolution framework (Hustadt & Schmidt, 1999), but such
procedures suffer from essentially the same drawbacks.
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Instead of constructing a model explicitly, resolution can decide the satisfiability of a
theory by deriving clauses that ‘summarise’ a model that we call canonical (i.e., a model
that can be constructed in from a saturated set of clauses as described in Appendix C). As
mentioned in Section 1, a worst-case optimal DL reasoning procedure can often be obtained
by parameterising resolution so only finitely many clauses can be derived (de Nivelle et al.,
2000; Hustadt & Schmidt, 2002; Schmidt & Hustadt, 2013; Hustadt et al., 2008). All
such parameterisations we are aware of ensure that inferences take place only with atoms
containing all variables of a clause, and that ‘deepest’ such atoms are preferred. On O1,
regardless of the ordering, resolution derives (12) for each i with 0 ≤ i ≤ n. Moreover, clause
(11) leads to the derivation of clauses of the form (13) and (14); which of these clauses are
derived depends on the exact ordering of the atoms on the clauses.

Bi(x)→ Ci(x) (12)

C0(fi(x)) ∧ · · · ∧ Ci−1(fi(x)) ∧Bi−1(x) ∧ Ci+1(fi(x)) ∧ · · · ∧ Cn(fi(x))→ ⊥ (13)

C0(gi(x)) ∧ · · · ∧ Ci−1(ii(x)) ∧Bi−1(x) ∧ Ci+1(gi(x)) ∧ · · · ∧ Cn(gi(x))→ ⊥ (14)

Note, however, that clause (11) is irrelevant: we can construct in a goal-directed fashion
(e.g., using hypertableau) a model of O1 in which no domain element participates in all Ci.
All consequences of (11), such as (13) and (14), are thus irrelevant as well. Deriving such
clauses can be problematic if O1 were extended with further axioms since each irrelevant
clause can then produce further irrelevant clauses.

3.2 Main Ideas of Consequence-Based Reasoning

Consequence-based calculi addresses the issues from Section 3.1 by combining ideas from
(hyper)tableau and resolution with the goal of restricting inferences. Although the tech-
nical details and the terminology vary considerably in the literature, we next identify four
characteristics that, we believe, lie at the core of consequence-based reasoning.

The first characteristic of consequence-based calculi is that they are not just complete for
refutation, but they actively derive all ontology consequences of a certain form. They usually
target concept subsumption and can determine all relevant subsumption relationships in just
one run of the algorithm, which greatly benefits the performance of ontology classification
in practice. For example, our calculus can decide in a single run as many entailments of the
form O |= Γ→ ∆ as required, for Γ→ ∆ a query clause—that is, a clause where Γ and ∆
consist of atoms of the form B(x) and S(x, x). Please note that > → ⊥ is a query clause,
so our calculus can also decide ontology satisfiability.

The second characteristic is closely connected to the first one: reasoning proceeds by
deriving universally quantified consequences, rather than by explicitly constructing an on-
tology model. Many existing calculi represent the relevant consequences using DL-style
axioms, possibly complemented by other axioms such as (non)emptiness constraints. For
example, Kazakov (2009) represents Horn-SHIQ consequences as DL axioms of the form
M v B, M v ⊥, M v ∀R.B, M v 6 1R.B, and M v ∃R.N , where M and N are (possibly
empty) conjunctions of atomic concepts, R is a role, and B is an atomic concepts. Similarly,
Simanč́ık et al. (2014) represent ALCI consequences as axioms of the form (15), where Bi,
Bj , Bk, and B` are atomic concepts, and Rk and R` are (not necessarily atomic) roles:

l
Bi v

⊔
Bj t

⊔
∃Rk.Bk t

⊔
∀R`.B` (15)
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A similar approach was used for ALCH (Simanč́ık et al., 2011). Baader et al. (2005) han-
dle ontologies in extensions of EL by constructing a graph-like structure where nodes and
edges are labelled with atomic concepts and atomic roles, respectively, but an S-labelled
edge from node B1 to node B2 encodes a consequence B1 v ∃S.B2. In contrast, the cal-
culus by Kazakov et al. (2014) represents such consequences directly as DL-style axioms.
Despite these differences, the consequences in all these approaches can succinctly describe
a canonical ontology model: instead of describing identical model elements separately as is
done in (hyper)tableau calculi, consequences are universally quantified so they describe all
identical model elements ‘at once’. This can often overcome the problem of constructing
large repetitive models outlined in Section 3.1, and it is similar to resolution, which can
prove the satisfiability of a theory without explicitly constructing a model.

The third characteristic of consequence-based calculi is a fine degree of control of inter-
action between consequences. For example, instead of keeping all derived consequences in
a single set, the ALCI calculus by Simanč́ık et al. (2014) constructs a graph-like structure
called a context structure, where each node is called a context and is associated with a set of
consequences. The calculus by Baader et al. (2005) also constructs a graph-like structure;
and conjunctions on the left-hand sides of DL axioms correspond to contexts in the calculi
by Kazakov (2009) and Simanč́ık et al. (2011). In all of these cases, contexts encode an
outline of a canonical ontology model, and they can be constructed in a goal-driven fashion
reminiscent of hypertableau calculi. For example, a canonical model in our work is obtained
by unfolding a context structure, so each element from the model’s domain is obtained from
the clauses associated with one context; we often informally say that a context represents
the domain elements obtained from the context during such unfolding. A key benefit of
contexts is that they ‘localise’ consequences to parts of a canonical model, which can be
used to restrict inferences. For example, assume that an ontology contains a DL-clause
α = B1(x) ∧B2(x)→ B3(x), and that consequences β1 = > → B1(x) and β2 = > → B2(x)
have been derived. In standard resolution (Bachmair & Ganzinger, 2001), all consequences
are kept in a single set, so whether γ = > → B3(x) is derived from α, β1, and β2 can be
controlled only via the resolution parameters such as the atom ordering and the selection
function. In contrast, resolution is possible in our calculus only if β1 and β2 belong to the
same context, and γ is then derived only in that context. Thus, assigning consequences
to contexts can restrict inferences much more than what is possible in standard resolution.
After introducing our calculus formally, in Section 4.4.1 we show how this prevents the
derivation of clauses (13) and (14) on the example ontology O1 from Figure 1.

The fourth characteristic of many consequence-based calculi is that they provide a degree
of control in determining which contexts represent which elements from a canonical model.
In the ALCI calculus by Simanč́ık et al. (2014) and the work presented in this paper, each
context is labelled by a conjunction of atoms called the core, which determines the atoms
that hold for all elements represented by the context. A calculus parameter called the
expansion strategy determines how cores are initialised, which can make contexts more or
less specific: larger cores will typically make contexts represent more similar elements of
a domain model (i.e., elements that participate in similar concepts and roles), which will
usually lead to the derivation of fewer and/or simpler consequences spread across a larger
number of contexts. We discuss these issues in more detail in Section 4.2. A similar level
of control is possible in the calculus for ALCH (Simanč́ık et al., 2011, Section 5).
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Ontology O2

B0 v ∃S−.B1  
B0(x)→ S(f1(x), x) (16)
B0(x)→ B1(f1(x)) (17)

B1 v ∃S.B2  
B1(x)→ S(x, f2(x)) (18)
B1(x)→ B2(f2(x)) (19)

B1 v ∃S.B3  
B1(x)→ S(x, f3(x)) (20)
B1(x)→ B3(f3(x)) (21)

B2 v B4  B2(x)→ B4(x) (22)

B3 v B4  B3(x)→ B4(x) (23)

B2 uB3 v ⊥  B2(x) ∧B3(x)→ ⊥ (24)

B1 v ≤2.S  B1(x) ∧ S(x, z1) ∧ S(x, z2) ∧ S(x, z3)→ z1 ≈ z2 ∨ z1 ≈ z3 ∨ z2 ≈ z3 (25)

Figure 2: Example Ontology O2

3.3 Extending the Framework to ALCHIQ+

The main challenge in extending these ideas to ALCHIQ+ is in devising a representation
of the consequences that can ensure completeness and termination. While existing calculi
typically use DL-style axioms for that purpose, number restrictions and disjunctions can
impose conditions that, we believe, cannot be represented using ALCHIQ+ axioms.

LetO2 be the ontology shown in Figure 2; please note that (16)–(17) are DL-clauses, even
through the corresponding axiom in the DL notation contains an inverse role and is thus not
normalised according to Table 1. In standard resolution, to prove O2 |= B0(x)→ B4(x),
we extend O2 with facts B0(a) and ¬B4(a) for a fresh constant a and apply the resolu-
tion inference rules. Then, clauses (16) and (17) derive S(f1(a), a) and B1(f1(a)); clauses
(18) and (19) derive S(f1(a), f2(f1(a))) and B2(f2(f1(a))); and clauses (20) and (21) de-
rive S(f1(a), f3(f1(a))) and B3(f3(f1(a))). Next, clause (22) derives B4(f2(f1(a))), and
so clause (23) derives B4(f3(f1(a))). Moreover, clause (25) derives clause (26). Disjunct
f3(f1(a)) ≈ f2(f1(a)) of (26) cannot be satisfied since it is incompatible with the derived
atoms B2(f2(f1(a))) and B3(f3(f1(a))) and clause (24). Thus, several further inferences
derive (27), so B4(a) is derived regardless of which disjunct in the head of (27) holds.

f2(f1(a)) ≈ a ∨ f3(f1(a)) ≈ a ∨ f3(f1(a)) ≈ f2(f1(a)) (26)

f2(f1(a)) ≈ a ∨ f3(f1(a)) ≈ a (27)

Our calculus will need to represent (26) and (27), but this can be difficult to do using
DL-style axioms: ALCHIQ+ axioms from Section 2.4 cannot talk about specific successors
of a model element and so they cannot express (27), which essentially says ‘either the
second or the third successor of f1(a) are equal to a’. To address this issue, we represent
consequences using context clauses—first-order clauses of a restricted shape where variable
x represents domain elements represented by a context, and variable y and terms fi(x)
provide names for the predecessor and the successors of the elements represented by x. We
can thus capture (26) and (27) using context clauses (28) and (29), respectively.

f2(x) ≈ y ∨ f3(x) ≈ y ∨ f3(x) ≈ f2(x) (28)
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f2(x) ≈ y ∨ f3(x) ≈ y (29)

As we discuss in Section 4, the rules of consequence-based calculi must be considerably
modified to handle such clauses. In particular, context clauses contain equalities, which are
not handled by the inference rules found in the consequence-based calculi known thus far.
To handle equality, we have adapted the approaches of paramodulation calculi (Bachmair
& Ganzinger, 1998) to the consequence-based framework. An important challenge was to
ensure that our calculus mimics the inferences of the calculus by Baader et al. (2005) on EL
ontologies. Thus, our calculus exhibits pay-as-you-go behaviour, and we intuitively believe
that should ensure good performance on ‘mostly-EL’ ontologies.

4. Formalising the Algorithm

We now formally define our consequence-based algorithm for ALCHIQ+, discuss its formal
properties, and complete the presentation of the examples from Section 3.

4.1 Definitions

As we have explained in Section 3.2, a key aspect of our calculus is that consequences are
not kept in a single set, but are associated with contexts—that is, vertices of a directed
labelled graph called a context structure that summarises a canonical model in a particular
way. Consequences assigned to a context are called context clauses and are constructed
from context terms and context literals as described in Definition 1. We restrict context
clauses to contain only variables x and y, which have a special meaning in our setting:
variable x represents a ground term t from a canonical Herbrand model of an ontology,
and y represents the predecessor of t; this naming convention is important for the inference
rules of our calculus. This is different to the DL-clauses of an ontology, which can contain
variables x and zi, and where zi refer to either the predecessor or a successor of x.

Unless stated otherwise, in the rest of this section B is an atomic concept of type a→ p,
S is an atomic role of type a× a→ p, and f is a successor function of type a→ a. Moreover,
please remember that true is a special constant used in the encoding of predicate symbols as
function symbols, and that we often abbreviate atoms A ≈ true as just A (see Section 2.2).

Definition 1. A context a-term is a term of the form y, x, or f(x); a context p-term is a
term of the form B(y), B(x), B(f(x)), S(x, y), S(y, x), S(x, x), S(x, f(x)), S(f(x), x), or
the constant true; and a context term is a context a-term or a context p-term. A context
atom is an equality of the form A ≈ true where A is a context p-term other than true; and
a context literal is a context atom or a literal of the form l ./ r where l and r are context
a-terms and ./ ∈ {≈, 6≈}. A context clause contains only context atoms of the form B(x),
S(x, x), S(y, x), and S(x, y) in the body and only context literals in the head.

For a given ontology O, sets Su(O) and Pr(O) from Definition 2 identify the information
that must be exchanged between adjacent contexts in a context structure. We explain the
intuition behind these sets after formally introducing the notion of context structure.

Definition 2. The set Su(O) of successor triggers of an ontology O is the smallest set of
atoms such that, for each DL-clause Γ→ ∆ ∈ O,
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• B(x) ∈ Γ implies B(x) ∈ Su(O),

• S(x, zi) ∈ Γ implies S(x, y) ∈ Su(O), and

• S(zi, x) ∈ Γ implies S(y, x) ∈ Su(O).

The set Pr(O) of predecessor triggers of O is defined as the set of literals

Pr(O) = {A{x 7→ y, y 7→ x} | A ∈ Su(O) } ∪ {B(y) | B occurs in O} ∪ {x ≈ y}.

As in standard resolution (Bachmair & Ganzinger, 2001), we order clause literals using
a term order � and allow only maximal literals to participate in inferences. Definition 3
specifies the conditions that such � must satisfy. The term order will need not be the same
for all contexts of a context structure. In particular, a-terms will have to be compared
in the same way in all contexts; we ensure this by basing � on a total oder m on all
function symbols of sort a, and m will be global for all contexts. In contrast, for reasons we
discuss in Section 4.3, we will allow p-terms to be compared differently in different contexts.
Conditions 1 through 4 ensure that, if we ground the order by mapping x to a term t and y
to the predecessor of t, we obtain a simplification order (Baader & Nipkow, 1998). Finally,
condition 5 ensures that atoms that might be propagated to a predecessor of a context are
smallest in the ordering; we discuss in Section 4.4 why this is important for completeness.

Definition 3. Let m be a total, well-founded order on function symbols of sort a. A context
term order � w.r.t. m is a strict order on context terms satisfying the following conditions:

1. for each context p-term A with A 6= true, we have A � x � y � true;

2. for all f, g ∈ ΣF
a with f m g, we have f(x) � g(x);

3. for all context terms s1 and s2 such that s2 � s1, we have t[s2]p � t[s1]p for each
context term t and each position p in t;

4. for each context term s and each proper position p in s, we have s � s|p; and

5. for each atom A ≈ true ∈ Pr(O) and each context term s 6∈ {x, y, true}, we have A 6� s.

Each term order is extended to a literal order, also written �, as described in Section 2.3.

We can obtain a context term order � as follows. We fix a total, well-founded order m
on the symbols of sort a, and we extend it (arbitrarily) to also compare all symbols of sort
p, and variables x and y. Next, we let � be the lexicographic path order (LPO) (Baader &
Nipkow, 1998) over context a- and p-terms induced by m, where we treat variables x and
y as constants of sort a. Order m is total on all symbols occurring in context terms, so
xm y and the well-known properties of LPOs ensure that � is a total simplification order
on all context terms that satisfies conditions 1 through 4 of Definition 3. To also satisfy
condition 5, we relax � by dropping all A � s where A ≈ true ∈ Pr(O) and s 6∈ {x, y, true}.
Condition 5 is clearly satisfied after this step; conditions 1 and 2 remain satisfied because
the relaxation step does not change the order between p-terms and x, y, and true, or between
functional a-terms; and conditions 3 and 4 remain satisfied because no new pairs are added
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to the order and the eliminated pairs are not of the form t[s2]p � t[s1]p or s � s|p for some
terms t, s, s1, s2, and nonempty position p.

Effective redundancy elimination techniques are critical to efficiency of resolution calculi,
and Definition 4 defines a notion compatible with our framework.

Definition 4. A set of clauses U contains a clause Γ→ ∆ up to redundancy, written
Γ→ ∆ ∈̂ U , if

1. s ≈ s ∈ ∆ or {s ≈ s′, s 6≈ s′} ⊆ ∆ for some terms s and s′, or

2. Γ′ ⊆ Γ and ∆′ ⊆ ∆ for some clause Γ′ → ∆′ ∈ U .

If U contains Γ→ ∆ up to redundancy, then adding Γ→ ∆ to U does not modify the
constraints that U represents because either Γ→ ∆ is a tautology (the first case) or U
contains a stronger clause (the second case). Note that clauses A→ A are not redundant:
they specify that atom A may hold in a context. Moreover, the inference rules that we
present shortly will ensure that, whenever a clause of the form Γ ∧A→ ∆ ∨A is derived in
a context v, then v will have been initialised with > → A or A→ A, and so Γ ∧A→ ∆ ∨A
will be redundant by condition 2 of Definition 4. The usual tautology elimination rules apply
to clause heads; hence, clauses Γ→ ∆ ∨ s ≈ s and Γ→ ∆ ∨ s ≈ s′ ∨ s 6≈ s′ can both be
eliminated. Proposition 5 shows that we can remove from U each clause C that is contained
in U \ {C} up to redundancy, which our calculus uses to support backward redundancy
elimination via the Elim rule (see Table 2).

Proposition 5. Given a set of clauses U and clauses C and C ′ such that C ∈̂ U \ {C} and
C ′ ∈̂ U , we have C ′ ∈̂ U \ {C}.

Definition 6 formalises the notion of a context structure as a directed graph whose edges
are labelled by function symbols. Intuitively, each context (i.e., a graph vertex) v represents
one or more terms from a canonical Herbrand model of an ontology, and it is associated
with a set Sv of context clauses, a conjunction of atoms corev, and a term order �v used to
restrict the inferences involving the clauses of Sv. To ensure that a-terms are ordered in the
same way in all contexts, each term order �v is defined w.r.t. a global order m on function
symbols of sort a. Conjunction corev determines the ‘type’ of context v—that is, it specifies
atoms that necessarily hold for all terms in a canonical model that are represented by v,
and so it indirectly determines which terms of a canonical model are represented by v. We
discuss this shortly after introducing the Succ inference rule, as well as in Section 4.2.

Definition 6 also specifies conditions that ensure that a context structure only represents
the consequences of an ontology. Since corev holds implicitly for each term in a model of O
represented by context v, conjunction corev is not included in the bodies of the clauses in
Sv. Then, condition S1 of Definition 6 says that each clause in Sv extended with corev in the
body must be a consequence of O; please note that Γ and/or ∆ can be empty. Moreover,
condition S2 ensures that each context clause derived by the Pred rule of our calculus (to
be defined shortly) is indeed a consequence of O.

Definition 6. A context structure for an ontology O is a tuple D = 〈V, E ,S, core,m,�〉,
where V is a finite set of contexts; E ⊆ V × V × ΣF

a is a finite set of edges each of which
is labelled by a function symbol; function core assigns to each context v ∈ V a conjunction
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corev of atoms of the form B(x), S(x, x), S(x, y), or S(y, x); function S assigns to each
context v ∈ V a finite set Sv of context clauses; m is a total, well-founded order on function
symbols of sort a; and function � assigns to each context v ∈ V a context term order �v
w.r.t. m. A context structure D is sound for O if the following conditions both hold.

S1. For each context v ∈ V and each clause Γ→ ∆ ∈ Sv, we have O |= corev ∧ Γ→ ∆.

S2. For each edge 〈u, v, f〉 ∈ E, we have O |= coreu → corev{x 7→ f(x), y 7→ x}.

There is considerable freedom in determining what terms are represented by a context.
We can make contexts more specific (i.e., make them represent fewer terms); this will usually
lead to the derivation of fewer consequences in each context, but the number of contexts
might increase. We can also make contexts less specific; this will usually reduce the number
of contexts, but the number of consequences in each context might increase. Simanč́ık et al.
(2014) show that there is an inherent tension between these two tendencies, and they discuss
how this affects the computational complexity of reasoning. We next introduce the notion
of an expansion strategy—a parameter of our calculus that determines when and how to
create/reuse contexts. We present several concrete and practically relevant strategies in
Section 4.2. We discuss the intuition behind this definition shortly.

Definition 7. An expansion strategy is a polynomial-time function strategy that takes as
arguments a function symbol f , a finite set of atoms K ⊆ Su(O), and a context structure
D = 〈V, E ,S, core,m,�〉 for O. The result of strategy(f,K,D) is a triple 〈v, core′,�′〉 where

• core′ is a subset of K;

• either v /∈ V is a fresh context not occurring in D, or v ∈ V is an existing context from
D such that corev = core′ and �′⊆ �; and

• �′ is a context term order w.r.t. m.

Table 2 shows the inference rules of our calculus. A rule can introduce an edge, introduce
and initialise a context, derive a clause, or delete a clause. Inferences are restricted to the
clause literals that are maximal under the relevant context term order. We next discuss
the high-level intuition behind different rules. We discuss various issues in more detail
Section 4.4, where we apply the calculus to ontologies O1 and O2 from Section 3.

The Core rule ensures that all atoms from a context’s core indeed hold for the terms
represented by the context.

The Hyper rule implements hyperresolution between the DL-clauses of the ontology and
the clauses of one context. The main difference to standard hyperresolution is that x must
match to x, the importance of which we discuss in detail in Section 4.4.

The Eq, Ineq, and Factor rules implement equality reasoning by adapting analogous rules
from first-order equational calculi (Bachmair & Ganzinger, 1998).

The Elim rule eliminates redundant clauses, which is possible due to Proposition 5. This
rule is not strictly needed for completeness, but it plays a critical role in practice. Thus,
for the sake of completeness, we present this rule together with the other rules.

The Succ rule extends the context structure so that each context has the relevant suc-
cessor contexts. Set Su(O) of successor triggers determines which information must be
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Table 2: Rules of the Consequence-Based Calculus

C
or
e If A ∈ corev,

and > → A 6∈̂ Sv,
then add > → A to Sv.

H
yp

er

If
∧n
i=1Ai → ∆ ∈ O,

σ is a substitution such that σ(x) = x,
Γi → ∆i ∨Aiσ ∈ Sv with ∆i 6�v Aiσ for 1 ≤ i ≤ n,
and

∧n
i=1 Γi → ∆σ ∨

∨n
i=1 ∆i 6∈̂ Sv,

then add
∧n
i=1 Γi → ∆σ ∨

∨n
i=1 ∆i to Sv.

E
q

If Γ1 → ∆1 ∨ s1 ≈ t1 ∈ Sv with s1 �v t1 and ∆1 6�v s1 ≈ t1,
Γ2 → ∆2 ∨ s2 ./ t2 ∈ Sv with ./ ∈ {≈, 6≈} and s2 �v t2 and ∆2 6�v s2 ./ t2,
p is a position such that s2|p = s1 and s2|p is not a variable,
and Γ1 ∧ Γ2 → ∆1 ∨∆2 ∨ s2[t1]p ./ t2 6∈̂ Sv,

then add Γ1 ∧ Γ2 → ∆1 ∨∆2 ∨ s2[t1]p ./ t2 to Sv.

In
eq

If Γ→ ∆ ∨ t 6≈ t ∈ Sv,
and Γ→ ∆ 6∈̂ Sv,

then add Γ→ ∆ to Sv.

F
ac
to
r If Γ→ ∆ ∨ s ≈ t ∨ s ≈ t′ ∈ Sv with ∆ ∪ {s ≈ t} 6�v s ≈ t′ and s �v t′,

and Γ→ ∆ ∨ t 6≈ t′ ∨ s ≈ t′ 6∈̂ Sv,
then add Γ→ ∆ ∨ t 6≈ t′ ∨ s ≈ t′ to Sv.

E
lim

If Γ→ ∆ ∈ Sv and
Γ→ ∆ ∈̂ Sv \ {Γ→ ∆},

then remove Γ→ ∆ from Sv.

P
re
d

If 〈u, v, f〉 ∈ E ,∧m
i=1Ai →

∨m+n
i=m+1 Li ∈ Sv,

Γi → ∆i ∨Aiσ ∈ Su with ∆i 6�u Aiσ for 1 ≤ i ≤ m,
Li ∈ Pr(O) for each m+ 1 ≤ i ≤ m+ n,

and
∧m
i=1 Γi →

∨m
i=1 ∆i ∨

∨m+n
i=m+1 Liσ 6∈̂ Su,

then add
∧m
i=1 Γi →

∨m
i=1 ∆i ∨

∨m+n
i=m+1 Liσ to Su;

where σ = {x 7→ f(x), y 7→ x}.

S
u
cc

If Γ→ ∆ ∨A ∈ Su where ∆ 6�u A and A contains f(x), and
no edge 〈u, v, f〉 ∈ E exists such that A′ → A′ ∈̂ Sv for each A′ ∈ K2 \ corev,

then let 〈v, core′,�′〉 := strategy(f,K1,D);
if v 6∈ V, then add v to V and let corev := core′, �v := �′, and Sv := ∅;
if 〈u, v, f〉 6∈ E , then add 〈u, v, f〉 to E ; and
add A′ → A′ to Sv for each A′ ∈ K2 \ corev;

where σ = {x 7→ f(x), y 7→ x},
K1 = {A′ ∈ Su(O) | > → A′σ ∈ Su }, and
K2 = {A′ ∈ Su(O) | Γ′ → ∆′ ∨A′σ ∈ Su and ∆′ 6�u A′σ }.
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propagated to such contexts. Assume that a context structure contains an f -labelled edge
from context u to context v; hence, if u represents a term t in a model I of O, then v
represents the term f(t). Now assume that context u contains a context clause containing
B(f(x)) in its head, and that a DL-clause of an ontology contains a body atom B(x). The
context clause in u can require B(f(t)) to hold in I; however, the Hyper rule must be ap-
plied to the DL-clause in context v because that context is responsible for describing the
conditions on the part of I that involves f(t), its predecessor t, and the successors of f(t).
Thus, while atom B(f(t)) from I is represented as B(f(x)) in context u, the atom must also
be reflected in context v as B(x) to allow correct application of the Hyper rule. To that end,
Su(O) contains B(x) as a signal that B(f(x)) in context u should be propagated as B(x)
to context v. Set Su(O) contains only atoms that can participate in an inference in v and
are thus relevant for v, which prevents unnecessary propagation of information from u to v.
Based on these observations, the Succ rule is applicable in context u if a function symbol f
occurs in a maximal head literal of a context clause, but there is no appropriate f -labelled
edge from u: set K1 identifies the atoms of Su(O) that are known to hold in the successor
context, and set K2 identifies the atoms of Su(O) that can, but are not certain to hold in
the successor context; note that K1 ⊆ K2 always holds. The rule consults the expansion
strategy, which can reuse an existing context or introduce a new one; in the latter case, the
strategy also designates a subset of K1 as the core of the new context and determines its
term order. Based on the strategy’s output, the Succ rule extends the context structure by
adding a context and/or edge as needed and initialising the context with the relevant atoms
from K2 \ corev; atoms in corev are excluded as they are initialised by the Core rule.

The Pred rule can be understood as hyperresolution between a context v and a pre-
decessor context u. Clause C =

∧m
i=1Ai →

∨m+n
i=m+1 Li plays the role of the main premise,

and from the perspective of context u it ‘looks like’ Cσ =
∧m
i=1Aiσ →

∨m+n
i=m+1 Liσ for σ

as specified in the inference. Set Pr(O) of predecessor triggers contains literals that are
of interest to u. Atom B(y) in context v is represented as atom B(x) in u, so Pr(O)
contains B(y) to indicate that consequences containing B(y) in context v should be prop-
agated to context u as B(x). Note that all elements of Pr(O) are of the form B(y) ≈ true,
S(x, y) ≈ true, S(y, x) ≈ true, or x ≈ y. Note also that Su(O) does not contain x ≈ y: such
atoms need not be propagated to a successor context since they cannot be matched to a
DL-clause body. Based on these observations, Li ∈ Pr(O) for m+ 1 ≤ i ≤ m+ n ensures
that all atoms from the head of Cσ are relevant to and can be captured in context u. Thus,
the Pred rule hyperresolves each atom Aiσ by a clause Γi → ∆i ∨Aiσ from context u.

4.2 Expansion Strategies

Simanč́ık et al. (2014) presented three natural and practically relevant strategies. We can
adapt their discussion to the ALCHIQ+ setting as follows.

• The trivial strategy introduces just one context v> with the empty core—that is,
corev> = >. All consequences then belong to a single set. Nevertheless, the calculus
is still different to the known resolution-based procedures: the Hyper, Succ, and Pred
ensure completeness without deriving terms of unbounded depth.
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• The eager strategy returns for each K1 the context vK1 with core K1. Then vK1 rep-
resents fewer ground terms, which is likely to reduce the number of clauses associated
with vK1 ; however, the number of contexts can be exponential in the size of O.

• The cautious strategy examines the function symbol f : if f occurs in O in exactly
one atom of the form B(f(x)) and if B(x) ∈ K1, then the result is the context vB
with core B(x); otherwise, the result is the ‘trivial’ context v> with the empty core.
Contexts are then less constrained than with the eager strategy, but the number of
contexts is at most linear in the size of O. This strategy captures how contexts are
created in consequence-based calculi for EL, where all existential restrictions of the
form ∃S.B are satisfied in a single context vB.

Simanč́ık et al. (2014) discuss the relative merits of these strategies; even though their
discussion is based on ALCI, their conclusions apply to our setting as well. They show
that the eager strategy is generally most effective at reducing unnecessary inferences: it
produces more fine-grained contexts, which generally leads to the derivation of fewer and
shorter clauses. On some ontologies, however, the eager strategy can produce a large number
of contexts, so the cautious strategy is more appropriated when memory is limited. Finally,
a reasoner can start with the eager strategy, but switch to the cautious one if it starts
running out of memory. Both strategies are almost always superior to the trivial one.

4.3 Consequence-Based Algorithm and Its Properties

We can obtain a sound and complete DL reasoning algorithm by applying the inference
rules from Table 2 to an appropriately initialised context structure. Towards this goal,
Theorem 8 captures two important properties: applying an inference rule from Table 2 to
a context structure produces a context structure (i.e., the result satisfies Definition 6), and
the derived clauses are indeed entailed by the ontology (but please remember that each
consequence is relative to the core of its context). The theorem is proved in Appendix A.

Theorem 8 (Soundness). For an arbitrary expansion strategy, applying an inference rule
from Table 2 to an ontology O and a context structure D that is sound for O produces a
context structure that is sound for O.

Theorem 9 shows that our inference rules are complete in the following sense. Assume
that we wish to check O |= ΓQ → ∆Q for ΓQ → ∆Q a query clause—that is, ΓQ and ∆Q

consist of atoms of the form B(x) and S(x, x). If a context structure D is saturated under
the inference rules from Table 2, and if D contains a context q that is initialised according
to conditions C2 and C3 of Theorem 9, then O |= ΓQ → ∆Q implies ΓQ → ∆Q ∈̂ Sq—that
is, unless ΓQ → ∆Q is a tautology according to condition 1 of Definition 4, a stronger clause
Γ′ → ∆′ with Γ′ ⊆ Γ and ∆′ ⊆ ∆ is derived in context q. Condition C2 requires all atoms
of ∆Q to be minimal in the term order �q of context q (apart from the atoms that contain
variable y, which are necessarily smaller). This is analogous to the answer literal technique
(Green, 1969) from first-order theorem proving, which can be used to derive all answers to a
query in ordered resolution. Condition C2 applies only to context q; thus, since Definition 6
allows the term order to vary across contexts, we can use a stronger order in contexts other
than q and thus possibly restrict inferences. Condition C3 requires q to be initialised with
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each atom from ΓQ. This is analogous to how a (hyper)tableau calculus would be initialised
to check the satisfiability of ΓQ. The theorem is proved in Appendix C.

Theorem 9 (Completeness). Let O be an ontology, and let D = 〈V, E ,S, core,m,�〉 be a
context structure such that no inference rule from Table 2 is applicable to O and D. Then,
for each query clause ΓQ → ∆Q and each context q ∈ V such that conditions C1 through C3
are satisfied, ΓQ → ∆Q ∈̂ Sq holds.

C1. O |= ΓQ → ∆Q.

C2. For each context atom A ≈ true ∈ ∆Q and each context atom A′ ≈ true not containing
variable y such that A �q A′, we have A′ ≈ true ∈ ∆Q.

C3. For each context atom A ≈ true ∈ ΓQ, we have ΓQ → A ≈ true ∈̂ Sq.

Theorem 9 just requires D to be saturated, and the preconditions of the Succ rule do not
mention an expansion strategy; thus, our claim is independent from the expansion strategy
that is used to saturate D. This is analogous to the formal development of resolution
(Bachmair & Ganzinger, 2001): any saturated set of clauses that does not contain the
empty clause is satisfiable, regardless of the strategy used to construct this set.

Algorithm 1 provides us with a concrete procedure for checking entailment of a query
clause. The algorithm selects an expansion strategy and initialises D to an empty context
structure. The algorithm then introduces a context q into the context structure whose core is
initialised to ΓQ (so the Core rule eventually ensures condition C3 of Theorem 9), and whose
order �q satisfies condition C2 of Theorem 9 (which can be obtained by relaxing an order as
described after Definition 3). The algorithm then saturates D using the rules from Table 2,
after which Theorems 8 and 9 guarantee ΓQ → ∆Q ∈̂ Sq if and only if O |= ΓQ → ∆Q.

This algorithm can be adapted to decide entailment of several query clauses in one run.
First, one can repeat line A2 for each target query clause independently before proceed-
ing to the saturation step. This can be impractical when the number of query clauses is
large (e.g., when classifying an ontology), in which case one can adapt line A2 and satisfy
conditions C2 and C3 of Theorem 9 for multiple query clauses using just one context. For
example, to decide entailment of B(x)→ Bi(x) for 1 ≤ i ≤ n, we can introduce one context
q with coreq = B(x) and initialise �q so that all Bi are incomparable; then, for each i,
B(x)→ Bi(x) ∈̂ Sq holds upon algorithm’s termination if and only if O |= B(x)→ Bi(x).

Algorithm 1 is also well-suited to deciding entailment of query clauses that are generated
incrementally. For example, the algorithm by Glimm, Horrocks, Motik, Shearer, and Stoilos
(2012) can classify an ontology by iteratively checking entailment of query clauses while
trying to minimise the number of such checks. In such a case, it may be helpful to omit
line A1 before each run of Algorithm 1 and incrementally expand the context structure,
thus implicitly reusing in each run the work from all previous runs.

Algorithm 1 may not terminate if a strategy always chooses to introduce a fresh context
(which is possible by Definition 7). By Proposition 10, however, the algorithm terminates
whenever a strategy introduces finitely many contexts, and it becomes worst-case optimal
for ALCHIQ+ if the number of contexts is at most exponential. Since our algorithm takes
as input a set of DL-clauses O, we state this complexity result w.r.t. the size of O. If an
ontology is written using the DL notation from Section 2.4, these results hold if the numbers
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Algorithm 1 Deciding O |= ΓQ → ∆Q

A1. Create an empty context structure D and select an expansion strategy.

A2. Introduce a context q into D, set coreq = ΓQ, and initialise the order �q in a way that
satisfies condition C2 of Theorem 9.

A3. Apply the inference rules from Table 2 to D and O until no inference rule is applicable.

A4. O |= ΓQ → ∆Q holds if and only if ΓQ → ∆Q ∈̂ Sq.

in concepts >nR.C and 6nR.C are coded in unary; otherwise, the transformation into DL-
clauses incurs an exponential blowup. Most decision procedures for DLs based on resolution
or (hyper)tableau follow this assumption.

Proposition 10. Algorithm 1 terminates whenever the expansion strategy introduces finitely
many contexts in the algorithm’s run. The algorithm runs in worst-case exponential time
in the size of O if the number of introduced contexts is at most exponential in the size of O.

Proposition 11 shows that our algorithm is worst-case optimal on ELH ontologies; more-
over, Proposition 12 shows that, on EL ontologies, our calculus with the cautious strategy
simulates the inferences by Baader et al. (2005).

Proposition 11. On ELH ontologies and queries of the form B1(x)→ B2(x), Algorithm 1
runs in polynomial time in the size of O with either the cautious or the eager strategy.

Proposition 12. If the ontology is in EL, the context structure is initialised by a context
vB with corevB = {B(x)} for each atomic concept B, the Hyper rule is applied eagerly, and
the cautious strategy is used, then numbers of inferences in step A3 of Algorithm 1 and of
the calculus by Baader et al. (2005) are in a linear relationship.

The correspondence of inferences in Proposition 12 is due to the definition of Pr(O) and
the shape of EL DL-clauses from Table 1. In particular, if O is an EL ontology, then each
binary atom in O is of the form S(z1, x) or S(x, f(x)), so binary atoms in Su(O) are of the
form S(y, x). Moreover, due to the absence of role hierarchies, whenever a clause of the
form S(y, x)→ S(y, x) or S(y, x)→ B(y) is derived in a context v, there exists a predecessor
context v′ of v that contains > → S(x, f(x)), and these are all possible forms of context
clauses with binary atoms. Therefore, the derivation of a context clause S(y, x)→ B(y)
is always followed by an application the Pred rule, which corresponds to an application
of the rule CR4 by Baader et al. (2005). In fact, on EL, our calculus is closest to the
calculus by Kazakov, Krötzsch, and Simanč́ık (2011), which materialises auxiliary axioms
∃S.B′ v ∃S.B that correspond to context clauses S(y, x)→ B(y) in our calculus.

4.4 Examples

With the calculus formally defined, we now complete our discussion from Sections 3.1 and 3.3
and show how our calculus handles the two examples mentioned there.

645



Bate, Motik, Cuenca Grau, Tena Cucala, Simanč́ık, & Horrocks

Ontology O1

Bi v ∃S1.Bi+1  
Bi(x)→ S1(x, fi+1(x)) (4)

 for 0 ≤ i < n
Bi(x)→ Bi+1(fi+1(x)) (5)

Bi v ∃S2.Bi+1  
Bi(x)→ S2(x, gi+1(x)) (6)
Bi(x)→ Bi+1(gi+1(x)) (7)

Bn v Cn  Bn(x)→ Cn(x) (8)

∃S1.Ci+1 v Ci  S1(z1, x) ∧ Ci+1(x)→ Ci(z1) (9)
}

for 0 ≤ i < n

∃S2.Ci+1 v Ci  S2(z1, x) ∧ Ci+1(x)→ Ci(z1) (10)

C0 u · · · u Cn v ⊥  C0(x) ∧ · · · ∧ Cn(x)→ ⊥ (11)

v0

B0(x)

Core: > → B0(x) (30)
Hyper[4+30]: > → S1(x, f1(x)) (31)
Hyper[5+30]: > → B1(f1(x)) (32)
Hyper[6+30]: > → S2(x, g1(x)) (33)
Hyper[7+30]: > → B1(g1(x)) (34)
Pred[51]: > → C0(x) (53)

v1

B1(x)

Succ[31+32]: S1(y, x)→ S1(y, x) (37)
Succ[33+34]: S2(y, x)→ S2(y, x) (38)
Core: > → B1(x) (39)
Hyper[4+39]: > → S1(x, f2(x)) (40)
Hyper[5+39]: > → B2(f2(x)) (41)
Hyper[6+39]: > → S2(x, g2(x)) (42)
Hyper[7+39]: > → B2(g2(x)) (43)
Pred[. . . ]: > → C1(x) (50)
Hyper[9+37+50]: S1(y, x)→ C0(y) (51)
Hyper[10+38+50]: S2(y, x)→ C0(y) (52)

· · · vn

Bn(x)

Succ[. . . ]: S1(y, x)→ S1(y, x) (44)
Succ[. . . ]: S2(y, x)→ S2(y, x) (45)
Core: > → Bn(x) (46)
Hyper[8+46]: > → Cn(x) (47)
Hyper[9+44+47]: S1(y, x)→ Cn−1(y) (48)
Hyper[10+45+47]: S2(y, x)→ Cn−1(y) (49)

Succ[31+32]: f1 (35)

Succ[33+34]: g1 (36)

Figure 3: Applying the Consequence-Based Calculus to O1

4.4.1 Ontology O1 form Figure 1

Let O1 be the ontology from Figure 1, which, for convenience, we repeat in Figure 3. The
figure shows the inferences of our algorithm needed to prove O1 |= B0(x)→ C0(x) using
the cautious strategy; note that these inferences also prove O1 6|= B0(x)→ ⊥. Please recall
that O1 is an EL ontology. Let I be a canonical Herbrand model of O1.

To satisfy condition C2 of Theorem 9, the context structure is initialised with context v0

whose core is B0(x), and the Core rule then derives (30). Next, the Hyper rule derives (31)
from (4) and (30), and (32) from (5) and (30); and it derives (33) from (6) and (30), and (34)
from (7) and (30). At this point, the standard hyperresolution rule (Bachmair & Ganzinger,
2001) uses (32) and (4) to derive clause > → S1(f1(x), f1(f1(x))), which contains terms of
depth two; such inferences can derive clauses with terms of arbitrary depth, which can
prevent termination. Resolution-based decision procedures typically address this problem
by ordering and selection restrictions mentioned in Section 3.1, but this can lead to the
derivation of irrelevant clauses such as (13) and (14). Our calculus uses hyperresolution to
be more goal oriented and avoid the derivation of irrelevant clauses; however, to derive only
constraints about a term and its predecessor/successors and thus prevent arbitrary term
nesting, variable x of a DL-clause must be matched to the variable x of context clauses.

Now consider an arbitrary term t represented in I by context v0. Clauses (31) through
(34) contain function symbols f1 and g1, so I may contain terms f1(t) and g1(t). These
terms must be represented in the context structure, which is ensured by the Succ rule.
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The Succ rule is first applied to clauses (31) and (32). At this point, the rule has no
option but to introduce a fresh context v1, but it has a choice regarding how to initialise
the context’s core. Clauses (31) and (32) ensure that S1(t, f1(t)) and B1(f1(t)) necessarily
hold in I; since these atoms are represented in context v1 as S1(y, x) and B1(x), the rule
can initialise the core of v1 to any subset of the conjunction S1(y, x) ∧B1(x). The cautious
strategy initialises the core of v1 to B1(x). Thus, B1(t′) necessarily holds in I for each term
t′ represented by x in context v1; however, S1(t′′, t′) for t′′ the predecessor of t′ may or may
not hold in I, and so the Succ rule adds clause (37). Please note that this tautological
clause is not redundant in our calculus: it says that S1(t′′, t′) is possible in I, and the clause
will participate in further inferences that derive our query clause.

The Succ rule is next applied to clauses (33) and (34). At this point, however, there is a
choice: the rule could introduce a fresh context, or it could reuse an existing context whose
core is constructed using atoms S2(y, x) and B1(x). The core of v1 ensures that B1(f1(t))
and B1(g1(t)) necessarily hold in I; thus, the cautions strategy can reuse v1, so the Succ
rule derives clause (38). At this point, context v1 represents both f1(t) and g1(t) in I, which
is possible only because corev1 contains neither S1(y, x) nor S2(y, x). Finally, clauses (37)
and (38) say that S1(t, f1(t)) and S2(t, g1(t)) may hold in I, but they (correctly) do not
require S1(t, g1(t)) and S2(t, f1(t)) to hold in I. If the core of v1 were to contain S1(y, x) and
S2(y, x), then S1(t, g1(t)) and S2(t, f1(t)) would both hold in I, which would be unsound.

Next, the Core rule derives clause (39), which ensures that B1(t) holds in I for each term t
represented by x in context v1. Contexts v2, . . . , vn are then constructed analogously. Next,
clause (47) is derived by hyperresolving (8) and (46); clause (48) is derived by hyperresolving
(9), (44), and (47); and clause (49) is derived analogously. Clause (48) imposes a constraint
on the predecessor context, which is propagated ‘backwards’ using a chain of Pred rule
inferences to derive (50). Moreover, clause (49) participates in analogous inferences, which
also result in deriving (50). Clause (51) is derived by hyperresolving (9), (37), and (50); and
clause (52) is derived analogously. Finally, clauses (51) and (52) are propagated ‘backwards’
using the Pred rule to derive (53). Since the clauses of the context v0 are ‘relative’ to the
core of v0, clause (53) represents O1 |= B0(x)→ C0(x), as required. Finally, clause (50)
in context v1 implies O1 |= B1(x)→ C1(x) and analogously for all O1 |= Bi(x)→ Ci(x) for
0 ≤ i ≤ n, all of which are derived in a single run of our algorithm. We next point out three
important aspects of our algorithm.

First, our context structure is derived in a goal-oriented way that is reminiscent of model
construction by hypertableau. However, unlike the repetitive exponentially-sized model that
can be constructed using hypertableau as discussed in Section 3.1, our context structure is
of polynomial size. This is possible because each context vi and the corresponding context
clauses represents all model elements at depth i.

Second, assigning the derived clauses to contexts considerably restricts the inferences.
Note that each clause > → Ci(x) is derived only in context vi. But then, since clauses from
different contexts cannot participate in an inference with DL-clause (11), our algorithm
avoids the derivation of irrelevant clauses such as (13) and (14). Please note that this be-
haviour is similar to hypertableau, but without constructing an exponential structure. This
property, we believe, is key to good performance of consequence-based calculi in practice.

Third, the names of the variables in DL-clauses determine which inferences are per-
formed. For example, if O1 were extended with DL-clause S1(x, z1)→ D(x), then D(x)
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would be derived from (31) in context v0 using the Hyper rule; this is analogous to reading
the DL-clause as ∃S1.> v D. In contrast, if O1 were extended by a logically equivalent
DL-clause S1(z1, x)→ D(z1), then D(y) would be derived from (37) in context v1 using
the Hyper rule, and it would be propagated as D(x) to context v0 using the Pred rule;
this is analogous to reading the DL-clause as > v ∀S−1 .D. On EL ontologies, this ensures
that our calculus mimics the inferences of the calculus by Baader et al. (2005): our context
structure closely corresponds to the structure constructed by that calculus, axioms B1 v B2

and B1 uB2 v B3 are handled analogously to the Hyper rule, axioms B1 v ∃S.B2 are han-
dled by an inference rule that corresponds to an application of Hyper rule followed by the
Succ rule, and axioms ∃S.B1 v B2 are handled by an inference rule that corresponds to an
application of Hyper rule followed by the Pred rule.

4.4.2 Ontology O2 form Section 3.3

Let O2 be the ontology from Figure 2, which, for convenience, we repeat in Figure 4. The
figure shows how our calculus proves O2 |= B0(x)→ B4(x) using the eager strategy. We
use a context term order according to which the maximal literal of each derived non-Horn
clause is underlined as shown in the figure. Let I be a Herbrand model of O2.

Our calculus again introduces context v0 and initialises its core to B0(x). The Core rule
next initialises v0 with (54), ensuring that I contains a ground term for which B0 holds.
Next, the calculus derives (55) and (56) using the Hyper rules.

The Succ rule next ensures that, due to the function symbol f1 in clauses (55) and
(56), the context structure contains an appropriate successor of context v0. To see which
information is relevant to the successor, note that DL-clause (25) contains atoms B1(x) and
S(x, zi) in its body, and that zi can be mapped to a predecessor or a successor of x; thus, a
context in which hyperresolution is applied to (25) will be interested in information about
its predecessors. This is reflected by adding B1(x) and S(x, y) to the set Su(O), which
determines the information to be propagated to the successor. By the eager strategy, the
Succ rule introduces context v1 and sets its core to S(x, y) ∧B1(x).

The Hyper rule next introduces clauses (60) through (63), at which point there is suffi-
cient information to apply hyperresolution to (25) to derive (64). Please note that clause
(58) is required in this inference step.

Equality f3(x) ≈ f2(x) in clause (64) is handled using paramodulation—that is, occur-
rences of f3(x) are replaced by f2(x). Thus, paramodulating clause (64) into clause (63)
produces clause (65). Moreover, replacing the term f3(x) with the term f2(x) in clause (62)
produces a clause that is redundant due to clause (60), so the inference is not applicable.

Clauses (60), (61), and (65) contain the function symbol f2, so the Succ rule introduces
context v2. Observe that atom B2(f2(x)) occurs in clause (61) as the sole atom, and thus
atom B2(t) holds in I for each ground term t represented by v2. Hence, B2(x) can be added
to the core of v2. In contrast, atom B3(f2(x)) occurs in clause (65) with more disjuncts;
thus, B3(f2(t)) may hold in I, but that is not necessary since other disjuncts might satisfy
clause (65). Atom B3(x) thus cannot be added to the core of v2, so the Succ rule introduces
clause (67), which contains B3(x) in the body. This clause is again not redundant: it says
that B3(f2(t)) may be present in I, which allows the Hyper rule to derive (70) and obtain
further constraints that must be satisfied for f2(t) in case B3(f2(t)) is indeed present.
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Ontology O2

B0 v ∃S−.B1  
B0(x)→ S(f1(x), x) (16)
B0(x)→ B1(f1(x)) (17)

B1 v ∃S.B2  
B1(x)→ S(x, f2(x)) (18)
B1(x)→ B2(f2(x)) (19)

B1 v ∃S.B3  
B1(x)→ S(x, f3(x)) (20)
B1(x)→ B3(f3(x)) (21)

B2 v B4  B2(x)→ B4(x) (22)

B3 v B4  B3(x)→ B4(x) (23)

B2 uB3 v ⊥  B2(x) ∧B3(x)→ ⊥ (24)

B1 v ≤2.S  B1(x) ∧ S(x, z1) ∧ S(x, z2) ∧ S(x, z3)→ z1 ≈ z2 ∨ z1 ≈ z3 ∨ z2 ≈ z3 (25)

v0

B0(x)

Core: > → B0(x) (54)
Hyper[16+54]: > → S(f1(x), x) (55)
Hyper[17+54]: > → B1(f1(x)) (56)
Pred[76]: > → B2(x) ∨B3(x) (77)

Hyper[23+77]: > → B2(x) ∨B4(x) (78)

Hyper[22+78]: > → B4(x) (79)

v1

S(x, y) ∧B1(x)

Core: > → S(x, y) (58)
Core: > → B1(x) (59)
Hyper[18+59]: > → S(x, f2(x)) (60)
Hyper[19+59]: > → B2(f2(x)) (61)
Hyper[20+59]: > → S(x, f3(x)) (62)
Hyper[21+59]: > → B3(f3(x)) (63)
Hyper[25+58+59+60+62]: > → f2(x) ≈ y ∨ f3(x) ≈ y ∨ f3(x) ≈ f2(x) (64)

Eq[63+64]: > → f2(x) ≈ y ∨ f3(x) ≈ y ∨B3(f2(x)) (65)

Pred[65+70]: > → f2(x) ≈ y ∨ f3(x) ≈ y (74)

Eq[63+74]: > → f2(x) ≈ y ∨B3(y) (75)

Eq[61+75]: > → B2(y) ∨B3(y) (76)

v2

S(y, x) ∧B2(x)

Succ[60+61+65]: B3(x)→ B3(x) (67)
Core: > → S(y, x) (68)
Core: > → B2(x) (69)
Hyper[24+67+69]: B3(x)→ ⊥ (70)

v3

S(y, x) ∧B3(x)

Core: > → S(y, x) (72)
Core: > → B3(x) (73)

Succ[55+56]: f1 (57) Succ[60+61+65]: f2 (66)

Succ[62+63]: f3 (71)

Figure 4: Applying the Consequence-Based Calculus to O2

Clause (70) essentially says ‘B3(f2(x)) should not hold in the predecessor’, which the
Pred rule propagates to v1 as clause (74); this can be understood as hyperresolution of (65)
and (70) while observing that f2(x) in context v1 is represented as x in context v2.

Two further paramodulation steps derive clause (76), which essentially says ‘the pre-
decessor must satisfy B2(x) or B3(x)’. Now DL-clauses (22) and (23) contain B2(x) and
B3(x), respectively, in their bodies, which are represented in v1 as B2(y) and B3(y). To
identify these atoms as relevant for predecessors, set Pr(O) contains B2(y) and B3(y), which
in turn allows the Pred rule to derive clause (77).

Two further steps derive clause (79) in context v0. This would not be possible if B4(x)
were maximal in (78); thus, condition C2 of Theorem 9 requires all atoms in the head of a
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Command-Line	Client Protégé	Plugin

OWL	API	Bindings

Sequoia	OWL	Model

Sequoia	Reasoning	Engine

RIA	Encoding Clausification Ontology	Indexing Saturation Taxonomy

Figure 5: The components of the Sequoia reasoner and data flow during classification

query clause to be smallest in the context term order. Similarly, clause (76) is relevant for
context v0, but it could not be derived if atom B3(y) were maximal in (75); thus, condition 5
of Definition 3 requires all atoms from Pr(O) to be smallest in the context term order.

5. Implementation of Sequoia

We implemented our calculus in a new reasoner called Sequoia.3 The system handles the
DL SRIQ and can thus process all constructs of OWL 2 DL apart from nominals and
datatypes; moreover, ABoxes are not supported since the system can currently only decide
concept satisfiability and concept subsumption, as well as classify an ontology. The system
is written in Scala. In this section, we describe the system’s architecture and discuss certain
issues that we identified as critical to the system’s performance.

5.1 System Architecture

Figure 5 shows the architecture of Sequoia. The system can be used on the command
line, as a Protégé plug-in (Knublauch, Fergerson, Noy, & Musen, 2004), or as a library
implementing the OWL API (Horridge & Bechhofer, 2011). The Reasoning Engine is the
core component of Sequoia, and it comprises several steps that communicate as shown by
the arrows in the figure. It is given as input an OWL API ontology. The RIA Encoding
step uses the algorithm by Simanč́ık (2012) to transform role inclusion axioms in the input
into ALCHIQ+ axioms. The Clausification step transforms these axioms into a set of
DL-clauses, which are next indexed in the Ontology Indexing step. The Saturation step
implements the core reasoning algorithm from Section 4, and in the rest of this section
we discuss several implementation techniques. Finally, the Taxonomy step collects the
subsumption information and produces the (transitively reduced) concept hierarchy.

3. http://github.com/andrewdbate/Sequoia/
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5.2 Saturation Implementation

To classify an ontology, Sequoia proceeds as outlined in Section 4.3: it creates a context
structure D that contains, for each atomic concept B, a context with core B(x) where all
atomic concepts are incomparable; it saturates D using the inference rules of the calculus;
and it reads off the subsumptions from the saturated context structure. In this section we
discuss the saturation procedure of Sequoia, which is inspired by the algorithm used by
first-order resolution-based theorem provers Prover9,4 Otter (McCune & Wos, 1997), and
an early version of Vampire (Riazanov & Voronkov, 2003).

The pseudocode of our saturation algorithm is shown in Algorithms 2 and 3. The
procedure is given the input ontology O and the context structure D to be saturated. To
simplify the presentation, we assume that the Succ rule is instantiated for the selected
expansion strategy. For reasons we describe shortly, the Ineq and the Elim rule are applied
as special cases. Moreover, the Hyper, Eq, and Factor rule are said to be local since they
involve context clauses associated with just one context.

For each context v, the procedure uses three sets of unprocessed clauses: Lv accumulates
the clauses derived in context v to which the local rules must be applied, and Pv and Uv
do the same for the Pred and the Succ rule, respectively. Moreover, for each context v, a
Boolean flag Iv records whether the context has been initialised. Finally, for each context
v, set Ev stores tuples of the form 〈u, f〉 for u a context and f a function symbol, indicating
that the Pred rule may need to be applied to an edge 〈u, v, f〉. For each context v, these
sets are initialised in line 2, the calls to Derive(v,D) in line 3 ‘copy’ all clauses from Sv
into Lv, Pv, and Uv, and finally set Sv is emptied in 4; these steps ensure that all inferences
between the clauses in Sv are taken into account.

The algorithm next enters a loop (lines 5 to 34) in which it iteratively applies inferences.
The rules are applied in four stages: (i) Core, (ii) Hyper, Eq, and Factor, (iii) Pred, and
(iv) Succ. All rules in a stage are exhaustively applied to a context before moving on to
the next stage. Our experience has shown that delaying the Pred and Succ rules as long as
possible is often beneficial. Moreover, the Eq and the Factor are not applicable if O is an
EL ontology, so this rule application strategy satisfies the conditions of Proposition 12.

Lines 6 to 9 initialise a context. In particular, line 7 applies the Core rule, and line 8
applies the Hyper rule for the DL-clauses of O whose body is empty.

Lines 10 to 14 apply the local rules according to the earlier mentioned precedence. To
saturate a context v, a clause C is selected and removed from Lv in line 11; in Section 5.2.2
we describe the heuristics that Sequoia uses in this step. Clause C is next added to Sv
(line 12). Next, all local inference rules are applied to C and the clauses in Sv (lines 13
to 14). Since inferences can involve more than one clause and the set Sv can be large, the
participating clauses are identified using indexes that we describe in Section 5.3. Finally,
each conclusion D is passed to the auxiliary procedure Derive which tries to simplify D
and eliminate redundant clauses, and eventually add the conclusion to Lv, Pv, and Uv and
thus schedule it for future processing; we describe this procedure in Section 5.2.1.

Lines 15 to 20 apply the Pred rule in a similar way. Unlike in the previous paragraph,
C need not be added to Sv because C is added to Lv in line 5 and set Lv is processed
fully before processing Pv. Moreover, lines 17 to 18 compute the consequences using edges

4. http://www.cs.unm.edu/~mccune/prover9/
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Algorithm 2 The saturation algorithm of Sequoia

Input: O : the input ontology
D = 〈V, E ,S, core,m,�〉 : the context structure to saturate

1: for each v ∈ V do
2: Lv := Pv := Uv := Ev := ∅, Iv := false
3: for each D ∈ Sv do Derive(v,D)

4: Sv := ∅
5: loop
6: if there exists v ∈ V with Iv = false then
7: for each A ∈ corev do Derive(v,> → A)

8: for each > → ∆ ∈ O do Derive(v,> → ∆)

9: Iv := true
10: else if there exists v ∈ V with Lv 6= ∅ then
11: select and remove a clause C from Lv
12: add C to Sv
13: for each r ∈ {Hyper,Eq,Factor} in that order do
14: for each D ∈ ApplyLocalRule(O,D, r, v, C) do Derive(v,D)

15: else if there exists v ∈ V with Pv 6= ∅ then
16: select and remove a clause C from Pv
17: for each 〈u, v, f〉 ∈ E do
18: for each D ∈ ApplyPredTo(D, u, v, f, C) do Derive(u,D)

19: for each 〈v, u, f〉 ∈ E do
20: for each D ∈ ApplyPredFrom(D, v, u, f, C) do Derive(v,D)

21: else if there exists v ∈ V with Ev 6= ∅ then
22: select and remove a tuple 〈u, f〉 from Ev
23: for each C ∈ Sv do
24: for each D ∈ ApplyPredTo(D, u, v, f, C) do Derive(u,D)

25: else if there exists u ∈ V with Uu 6= ∅ then
26: select and remove a clause C from Uu
27: for each 〈v, f, core′,�′,Clauses〉 ∈ ApplySucc(D, u, C) do
28: if v 6∈ V then
29: add v to V
30: corev := core′, �v:=�′, Lv := Pv := Uv := ∅, Iv := false

31: if 〈u, v, f〉 6∈ E then add 〈u, v, f〉 to E , and also add 〈u, f〉 to Ev

32: for each D ∈ Clauses do Derive(v,D)

33: else
34: return D
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Algorithm 3 Derive(v,D)

1: D := SimplifyClause(D,Sv ∪ Lv)
2: if D 6= null and no D′ ∈ Sv ∪ Lv exists such that Redundant(D,D′) then
3: remove from Sv, Pv, and Uv each D′ ∈ Sv such that Redundant(D′, D)
4: remove from Lv, Pv, and Uv each D′ ∈ Lv such that Redundant(D′, D)
5: add D to Lv, Pv, and Uv

pointing towards v for the case when C plays the role of the clause
∧m
i=1Ai →

∨m+n
i=m+1 Li

from Table 2. Finally, lines 19 to 20 compute the consequences using edges pointing from
v for the case when C plays the role of a clause Γi → ∆i ∨Aiσ from Table 2.

Lines 25 to 32 apply the Succ rule to a clause C. The main difference to the previ-
ous cases is that the rule application may involve extending the context structure. Thus,
ApplySucc(D, u, C) returns a set of tuples of the form 〈v, f, core′,�′,Clauses〉 where v is the
(possibly fresh) context used to satisfy the rule via edge 〈u, v, f〉; core′ and �′ are the core
and the term order of v as returned by the expansion strategy; and Clauses contains clauses
that must be derived in context v. The procedure extends the sets of contexts (lines 28
to 30) and edges (line 31) as needed, and then derives the relevant clauses (line 32). Note
that if the context term order of u ensures that each clause has at most one maximal atom
with a function symbol, then at most one 〈v, f, core′,�′,Clauses〉 is returned in line 27.

To understand the rationale behind lines 21 to 24, assume that a context structure
contains disconnected contexts u and v where Pu and Pv are both empty (i.e., the Pred
rule has been applied exhaustively to both contexts). Now if the Succ rule introduces an
edge from u to v, the Pred rule could become applicable to clauses in Su and Sv; however,
since Pu = Pv = ∅, this inference will not take place in lines 15 to 20. To ensure that such
inferences are not missed, whenever an edge 〈u, v, f〉 is added to E in line 31, 〈u, f〉 is also
added to Ev. Subsequently, such 〈u, f〉 is retrieved from Ev in line 22, and the Pred rule is
applied to the edge 〈u, v, f〉 and each clause C ∈ Sv.

Algorithm 2 can be easily parallelised. Lines 6 to 14 involve just one context v, so they
can be applied on separate threads independently from other contexts. Moreover, when a
thread for context v derives in lines 15 to 32 a clause D that should be added to Lu, Pu, or
Uu for a different context u, the thread for context v can just send a message to the thread
for context u that D has been derived in context u, and then the latter thread can update
Lu, Pu, and Uu without any locking.

5.2.1 Simplification and Redundancy Elimination

Before inserting a conclusion D = Γ→ ∆ ∈ into the target set Sv of context clauses, Algo-
rithm 3 tries to simplify D and eliminate redundant clauses. Since each derived clause is
contained in Sv or Lv, both of these steps are performed w.r.t. the clauses in Sv ∪ Lv.

In the simplification step, line 1 calls SimplifyClause(D,Sv∪Lv), which tries to trans-
form D into a simpler clause using the techniques described below.

• The Ineq rule is applied to D as a simplification rule—that is, each literal of the form
s 6≈ s is deleted from ∆. The result of the Ineq rule always makes the original clause
redundant, which is why the rule is applied in the simplification step.
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• If {s ≈ s′, s 6≈ s′} ⊆ ∆ or s ≈ s ∈ ∆ holds for some terms s and s′, clause D is dis-
carded (by returning null) in accordance with condition 1 of Definition 4.

• A simplified variant of equational literal cutting (Schulz, 2013, 2002) is applied: if
s ≈ t ∈ ∆ and > → s 6≈ t ∈ Sv ∪ Lv, then s ≈ t is deleted from ∆; also, if s 6≈ t ∈ ∆
and> → s ≈ t ∈ Sv ∪ Lv, then s 6≈ t is deleted from ∆. These optimisations are known
in the literature as negative and positive simplify-reflect (Schulz, 2002), respectively,
and they correspond to a combination of the Eq and Elim rules.

Redundancy elimination uses an auxiliary procedure Redundant(Γ1 → ∆1,Γ2 → ∆2),
which returns true if Γ2 ⊆ Γ1 and ∆2 ⊆ ∆1; in such a case, clause Γ2 → ∆2 is said to be
stronger than Γ1 → ∆1, and conversely Γ1 → ∆1 is weaker than Γ2 → ∆2.

Line 2 implements forward redundancy elimination, which involves checking whether set
Sv ∪ Lv contains a clause D′ that is stronger than D. Finally, if the simplified clause is not
forward redundant, backward redundancy elimination (lines 3 and 4) deletes from Sv, Lv,
Pv, and Uv all clauses that are weaker than D. Both forward and backward redundancy
elimination require searching potentially large clause sets so, to optimise this search, Sequoia
maintains redundancy indexes that we describe in Section 5.3.5.

5.2.2 Selecting Clauses

To reduce the number of clauses retained during forward redundancy elimination and
increase the number of clauses removed during backward redundancy elimination, Horn
clauses with empty bodies should be preferred to Horn clauses with nonempty bodies, Horn
clauses should be preferred to non-Horn clauses, and shorter clauses should be preferred to
longer clauses. To implement this policy, each clause C is an assigned an integer priority
according to these rules, and sets Lv, Pv, and Uv are implemented as custom array-based
data structures that are optimised for addition and removal at both ends.

5.2.3 Discussion

Practical experiments have shown that it is beneficial to spend time simplifying and remov-
ing redundant clauses. This can considerably reduce the memory consumption (thus possi-
bly avoiding memory exhaustion) and can lead to important simplifications being applied
earlier (thus reducing the total number of generated clauses). Furthermore, our experience
shows that, for ontologies encountered in practice, the contexts generated by our calculus
are usually satisfiable. Hence, eager simplification and redundancy elimination are both
important because our system usually fully saturates set of clauses in each context.

We could have used a saturation procedure where a clause is simplified or used to sim-
plify clauses only when it is selected in line 11, 16, or 26. This form of delayed simplification
is known as the Discount loop (Riazanov & Voronkov, 2003) and it is used in the KAON2
reasoner (Hustadt et al., 2007). In contrast, the Otter loop (McCune & Wos, 1997; Weiden-
bach et al., 1996) potentially introduces important simplifications earlier and thus spends
much more time in simplifying clauses. Neither variant is uniformly better, so we tested
both and selected the Otter loop since it exhibited the best overall performance.
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5.3 Clause Indexing Data Structures

Like first-order theorem provers, Sequoia uses several indexes to efficiently identify clauses
needed to apply an inference or a simplification rule. Ramakrishnan, Sekar, and Voronkov
(2001) and Graf (1996) present a comprehensive survey of the indexing techniques used in
first-order theorem provers. While these techniques have proved themselves in practice, the
restricted structure of our clauses allow us to use simpler, yet still efficient techniques.

5.3.1 Encoding Names, Terms and Literals using Integers

During clausification (see Figure 5), each atomic concept, atomic role, and term is assigned
a unique integer identifier (UID). UIDs are assigned sequentially, so we can use perfect
hashing in indexes whose keys are names or terms. Moreover, if y and x are assigned the
smallest UIDs, a context term order on a-terms can be obtained by comparing the UIDs.

We represent each literal using a 64-bit integer that contains the type of the literal (a
unary atom, a binary atom, an equality, or an inequality), a flag specifying whether the
literal is occurring in the body or the head of a clause, the identifier of the predicate for
unary and binary atoms, and the terms occurring in the literal. Terms of equalities and
inequalities are sorted according to the term order—that is, s � t holds in s ≈ t and s 6≈ t.

5.3.2 Unification Indexing for the Hyper Rule

To speed up the application of the Hyper rule, Sequoia maintains several indexes that can
quickly identify the clauses that can participate in the rule. To facilitate indexing, we assign
to each atom A a unifier pattern defined as follows:

pattern(A) =


B(x) if A = B(x)
B(∗) if A = B(t) and t 6= x
S(x, x) if A = S(x, x)
S(x, ∗) if A = S(x, t) and t 6= x
S(∗, x) if A = S(t, x) and t 6= x.

This definition enjoys the following property: for all atoms A1 and A2 for which a substi-
tution σ exists such that A1 = A2σ and σ(x) = x (as required by the preconditions of the
Hyper rule), we have pattern(A1) = pattern(A2).

During the ontology indexing phase, ontology O is indexed using two indexes. Index
ontologyIndex1 is a hash table that maps a unifier pattern p to the set of all DL-clauses of
O that contain in their body an atom A whose unifier pattern is p:

ontologyIndex1[p] = {Γ→ ∆ ∈ O | ∃A ∈ Γ such that p = pattern(A) }

Moreover, ontologyIndex2 is the set of all DL-clauses of O whose body is empty:

ontologyIndex2 = {C | C = Γ→ ∆ ∈ O with Γ = >}

Finally, for each context v ∈ V, we index Sv using a hash table hyperIndexv that maps a
unifier pattern p to the set of all clauses of Sv that contain in the head a maximal atom
whose unifier pattern is p:

hyperIndexv[p] = {Γ→ ∆ ∈ Sv | ∃A ∈ ∆ such that p = pattern(A) and ∆ \ {A} 6�v A }
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Indexes ontologyIndex1 and ontologyIndex2 contain the DL-clauses in O and are thus im-
mutable, whereas hyperIndexv must be updated whenever Sv changes.

Index ontologyIndex2 is used in line 8 of Algorithm 2. Moreover, this index is also used
to apply the Hyper rule to a head atom A1 of a clause C in line 13 as follows. First, we
query index ontologyIndex1[pattern(A)] to identify each DL-clause Γ→ ∆ and body atom
A′1 ∈ Γ for which there exists a substitution σ1 such that A1σ1 = A′1 and σ1(x) = x. For
each such match, we consider each atom A′i ∈ Γ \ {A′1} and query hyperIndexv[pattern(A′i)]
to identify all premises containing a head atom Ai for which there exists a substitution σi
such that Aiσi = A′i and σi(x) = x. For each thus obtained set of matching premises where
σi are not contradictory (i.e., variables are mapped by all σi in the same way), we apply
the Hyper rule with the substitution σ =

⋃
i σi and derive the corresponding clause.

Such an approach can be inefficient if a predicate occurs in many DL-clause bodies since
then we iterate over a large set ontologyIndex1[pattern(A)] for each distinct A. Reason-
ers often optimise application of the Hyper rule (Baader, Lutz, & Suntisrivaraporn, 2006;
Sertkaya, 2011; Kazakov et al., 2014) by ensuring that DL-clauses contain at most two body
atoms and then constructing an additional index whose key is a pair of access patterns cor-
responding to the two body atoms; then, if Sv is smaller than ontologyIndex1[pattern(A)],
the Hyper rule is applied by iterating over Sv and identifying the relevant DL-clauses in this
additional index. The main obstacle to applying this approach in our setting is that, due
to number restrictions, DL-clauses cannot be restricted to just two body atoms only; thus,
we leave a further investigation of this technique for our future work.

5.3.3 Context Clause Indexing for the Pred Rule

To speed up the application of the Pred rule, for each context v ∈ V, we index Sv using hash
tables predBodyIndexv and predHeadIndexv that map an atom A to the sets of all clauses of
Sv that contain A in the body and head, respectively:

predBodyIndexv[A] ={Γ→ ∆ ∈ Sv | A ∈ Γ and ∆ ⊆ Pr(O) }
predHeadIndexv[A] ={Γ→ ∆ ∈ Sv | A ∈ ∆ and ∆ \ {A} 6�v A }

These indexes are maintained whenever a clause is added to or removed from Sv. To apply
the Pred rule to a head atom A of a clause C, we query predBodyIndexv[A

′] for atom A′

obtained from A in a way that enables the rule; then, for each clause Γ→ ∆ from this set
and each atom A′′ ∈ Γ, we query predHeadIndexv[A

′′′] where A′′′ is obtained from A′′.

5.3.4 Context Clause Indexing for the Eq Rule

To speed up the application of the Eq rule, for each context v ∈ V, we index Sv using the
hash table eqIndexv that maps a term s to the following set of all clauses of Sv:

eqIndexv[s] = {Γ→ ∆ ∈ Sv | ∃L ∈ ∆ such that ∆ \ {L} 6�v L and
(i) L is an atom, s is of the form f(x), and s occurs in L, or
(ii)L is of the form s ≈ t or s 6≈ t, and s �v t }

Note that a term s in a head atom can participate in the Eq rule only if it is of the form
f(x), so we only index such terms. This index must be maintained whenever Sv changes.
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Figure 6: Example redundancy index

5.3.5 Redundancy Indexes

Redundancy indexes are used in two related problems: given a clause C and a set of clauses
N , forward redundancy elimination determines whether N contains a clause that is stronger
than C, and backward redundancy elimination retrieves all clauses of N that are weaker
than C. Redundancy indexing is difficult since the body and the head of a clause must be
matched to a subset of the body and the head of another clause. There are exponentially
many such subsets, which makes designing an efficient indexing structure challenging. Our
solution is inspired by feature vector indexing from the theorem prover E (Schulz, 2004).
The restricted structure of context clauses allows for perfect indexing, which returns exactly
the required set of clauses; in contrast, feature vector indexes in first-order provers return
a set of candidate clauses that must additionally be subjected to a redundancy test.

Sequoia uses a single index per context v for both types of redundancy elimination.
The index contains all clauses in Sv ∪ Lv. To index a clause C =

∧m
i=1 Li →

∨n
i=m+1 Li, we

construct a sequence of integers k1, . . . , kn where ki is the integer representation of Li (see
Section 5.3.1). We then sort this sequence into ascending order and use it as the key to
insert the clause C into a trie data structure. Since we will always eliminate redundant
clauses, the trie never contains distinct clauses Γ1 → ∆1 and Γ2 → ∆2 such that Γ1 ⊆ Γ2

and ∆1 ⊆ ∆2; consequently, clauses are always stored in the leaf nodes of the trie.
For example, consider clauses (80) to (83) and, for simplicity, assume that each literal

Ai(x) is represented as the integer i. Figure 6 shows the corresponding redundancy index.

C1 = > → A1(x) ∨A2(x) (80)

C2 = > → A2(x) ∨A4(x) ∨A5(x) (81)

C3 = > → A6(x) (82)

C4 = > → A2(x) ∨A3(x) (83)

We next present algorithms that use the redundancy index to support forward and
backward redundancy elimination. The algorithms use the following operations that take a
sequence of integers key = k1, . . . , kn.

• IsEmpty(key) returns true if key is the empty sequence (i.e., if n = 0).
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Algorithm 4 Forward Redundancy Elimination

1: procedure ContainsStronger(node, key)
2: if IsLeaf(node) then
3: return true
4: else if IsEmpty(key) then
5: return false
6: else
7: for each subkey ∈ Suffixes(key) do
8: child := Child(node,Head(subkey))
9: if child 6= null and ContainsStronger(child ,Tail(subkey)) then

10: return true
11: return false

• Suffixes(key) returns the set containing each sequence ki, . . . , kn for 1 ≤ i ≤ n.

• Head(key) returns the integer k1.

• Tail(key) returns the sequence k2, . . . , kn.

Moreover, the algorithms also use the following operations that take a trie node.

• IsLeaf(node) returns true if node is a leaf node.

• Child(node, k) returns the child of node associated with literal integer k, or null if
no such child exists.

• Children(node) returns the set of all children of node.

• Literal(node) returns the literal integer associated with node.

• Clause(node) returns the clause associated with node (assuming the latter is a leaf).

Forward Redundancy Elimination To check whether the redundancy index contains
a clause that is stronger than a clause C, we convert C into a sequence key as described
earlier, and we search the trie by calling ContainsStronger(root , key) for root the root
of the trie as described in Algorithm 4. The crux of the algorithm is in line 7, where, given
a sequence key = k1, . . . , kn, the algorithm attempts to find, for each ki with 1 ≤ i ≤ n, a
child of node labelled with ki, thus skipping over gaps in the clause.

Backward Redundancy Elimination To retrieve from the redundancy index all clauses
that are weaker than a clause C, we convert C into a sequence key as described earlier,
and we search the trie by calling SelectWeaker(root , key) for root the root of the trie
as described in Algorithm 5. If the procedure is called with node and an empty sequence,
in lines 3 to 9 it collects all clauses underneath node. Otherwise, in lines 10 to 14 the
algorithm examines each child of node. If the child is labelled with a literal index larger
than the first element of key , then no clause in the subtree under node is weaker than C. If
the child is labelled with a literal index smaller than the first element of key , then in line 12
the algorithm tries to match key in the subtree under node. Finally, if the child is labelled
with a literal index equal to the first element of key , then in line 14 the algorithm tries to
match the rest of key in the subtree under node.
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Algorithm 5 Backward Redundancy Elimination

1: procedure SelectWeaker(node, key)
2: R := ∅
3: if IsEmpty(key) then
4: if IsLeaf(node) then
5: R := {Clause(node)}
6: else
7: for each child ∈ Children(node) do
8: R := R ∪ SelectWeaker(child , key)

9: else
10: for each child ∈ Children(node) do
11: if Literal(child) < Head(key) then
12: R := R ∪ SelectWeaker(child , key)
13: else if Literal(child) = Head(key) then
14: R := R ∪ SelectWeaker(child ,Tail(key))

15: return R

5.4 Ordering the Context Terms

Definition 3 captures only the conditions on the term order � that are necessary for the
proof of Theorem 9. Hence, there is considerable freedom in choosing the order, which can
significantly affect the performance. For example, we can extend the order m to the symbols
of sort p and then, for atoms B1(t1) and B2(t2) outside Pr(O), we let B1(t1) � B2(t2) if

1. B1 mB2, or B1 = B2 and t1 � t2; or

2. t1 � t2, or t1 = t2 and B1 mB2.

If we chose rule 2, then A(f(x)) � B(x) holds regardless of the relative order of A and B,
whereas this is not the case for rule 1. Rule 2 should typically be preferable to rule 1:
each unary predicate occurring in the body of a DL-clause contains only variable x, and
the substitution σ used in the Hyper rule must satisfy σ(x) = x; hence, rule 2 ensures that
no clause containing an atom of the form A(f(x)) can participate in an inference with the
Hyper rule, which can considerably reduce the number of inferences. This principle can be
applied to all predicates, regardless of their arity. Rule 2 can be enforced by defining m
such that all function symbols are larger than all predicate symbols.

As we discussed in Section 2.4, normalisation of an ontology can introduce fresh atomic
concepts, and it is beneficial to make these concepts smallest in the order m of function
symbols. To see why, let O3 be the ontology containing the following DL-clauses, where
T1, . . . , Tn are fresh predicates introduced during normalisation:

→ T1(x) ∨ . . . ∨ Tn(x) (84)

Ti(x)→ Ai(x) for 1 ≤ i ≤ n (85)

Ti(x)→ Bi(x) for 1 ≤ i ≤ n (86)

Note that fresh predicates occur in both heads and bodies of clauses, as shown in O3.
Assume now that m satisfies A1 mB1 mA2 mB2 m . . .mAn mBn and T1 m T2 m . . .m Tn,

659



Bate, Motik, Cuenca Grau, Tena Cucala, Simanč́ık, & Horrocks

and furthermore assume that we wish to check the consistency of O3; for simplicity, we
assume we use the trivial strategy so all clauses occur in a single context. If we assume
that m satisfies Tn mA1 (i.e., if the fresh predicates introduced during normalisation are
largest in the function symbol order), then our calculus derives 2n clauses. In contrast, if m
satisfies Bn m T1 (i.e., the fresh predicates are smallest in the function symbol order), then
our calculus derives only three clauses and then terminates.

6. Evaluation

We evaluated the performance of ontology classification Sequoia by comparing it with seven
state-of-the-art ontology reasoners. We used the evaluation methodology by Steigmiller
et al. (2014), which we describe before discussing the evaluation results.

We used the Oxford Ontology Repository5 as our source of test data. The expressiveness
of the ontologies in the repository ranges from simple languages such as DL-Lite and EL to
complex languages such as SROIQ(D). Each ontology is uniquely identified by an ID. The
repository also provides a metadata page that for each ontology lists the ontology language
and several measures of ontology size. Seven ontologies in the repository lie outside the
OWL 2 DL profile due to irregular RBoxes; since such axioms make reasoning undecidable in
general, we simply removed all axioms causing profile violations. Moreover, nine ontologies
in the repository could not be parsed by the OWL API due to syntax errors, which we
fixed manually. Finally, Sequoia does not support datatypes, nominals, or ABoxes, so we
replaced all datatypes and nominals with fresh classes, we replaced data properties with
object properties, and we removed all ABox assertions. We thus obtained a test corpus of
703 ontologies, out of which 294 were in ELH.

We tested the latest development version of Sequoia 0.6.1. We used HermiT 1.3.8,
Pellet 2.4.0, FaCT++ 1.6.5, and Konclude 0.6.2 for tests over the entire corpus. Also,
to verify that our algorithm indeed exhibits a pay-as-you-go behaviour, we also compared
our system with ELK 0.4.0, Snorocket 2.8.1, and jcel 0.24.1 on the ELH ontologies of our
test corpus. We used all reasoners in single-threaded mode, apart from Snorocket which
does not provide a single-threaded mode (i.e., the system is hard-coded to use all available
processors). We were thus able to compare the underlying calculi independently of any
orthogonal optimisations such as computation parallelisation. Also, we configured Sequoia
to use the cautious strategy. All systems, ontologies, and test results are available online.6

We run our experiments on a Dell server with 512 GB of RAM and two Intel CPU
E5-2640 V3 2.60 GHz processors with eight cores per processor and two threads per core.
The system was running Fedora release 26, kernel version 4.11.9-300.fc26.x86 64, and Java
1.8.0 update 151. We allocated 100 GB of heap memory to each Java reasoner, and a
maximum private working set of 100 GB for the native code. In order to prevent individual
tests from interfering, for each ontology we started a fresh reasoner process that loaded the
ontology using the OWL API and then classified it four times. Each classification task was
allowed ten minutes to complete, and we measured its wall-clock time; however, since the
Java virtual machine was restarted for each ontology, we discarded the first classification
task as warm-up. Thus, if all four classification tasks succeeded, we report the average of

5. http://www.cs.ox.ac.uk/isg/ontologies/
6. http://krr-nas.cs.ox.ac.uk/2017/JAIR-cb/
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the last three runs; otherwise, we report the entire test as failed. In all tests we excluded the
ontology parsing time in order to analyse the performance of the core reasoning problem.

Figure 7 summarises the classification times for the 703 test ontologies. In particular,
for each reasoner, we sorted the average classification times in the ascending order, and we
present them by a curve where a point (n, t) indicates that the n-th average classification
time from the list is t; the y-axis uses a logarithmic scale and failures are shown as infinity.
Figure 9 summarises analogously the classification times for the ELH ontologies. To further
analyse our results, we partitioned all test ontologies into four disjoint groups: in a profile of
OWL 2 DL (i.e., in OWL 2 EL, QL, or RL), Horn but not in a profile, disjunctive but without
number restrictions (i.e., without equality), and disjunctive and with number restrictions
(i.e., with equality). We determined profile membership using the OWL API, and we
identified the remaining three groups by analysing the DL-clauses after the clausification
step. In addition, for each reasoner, we categorised each ontology as ‘easy’ (< 10 s),
‘medium’ (from 10 s to 10 min), or ‘hard’ (timeout or exception). Figure 8 shows, for each
reasoner and ontology group, a bar subdivided into blocks representing the percentage of
ontologies in each of the three categories of difficulty.

Sequoia could classify 610 out of 703 ontologies in under 10 s, which is in line with other
reasoners. The system was fairly robust and failed only on 32 ontologies; in contrast, HermiT
failed on 38, Pellet on 135, FaCT++ on 80, and Konclude on 5 ontologies. Moreover, Sequoia
succeeded on 8 ontologies on which HermiT, Pellet, and FaCT++ all failed. Finally, all but
four profile ontologies and over 89% of out-of-profile Horn ontologies are easy for Sequoia.
Sequoia timed out largely on ontologies containing both disjunctions and equality, and only
Konclude was able to process more ontologies of that kind.

Complex number restrictions are the main source of difficulty for Sequoia, as can be seen
on the popular Pizza ontology (ID 00799). The ontology contains axioms that link pizza

662



Consequence-Based Reasoning for DLs with Disjunctions and Number Restrictions

types with their toppings (e.g., ‘Margherita has a mozzarella topping and a tomato toping’),
as well as axioms that define broad classes of pizza (e.g., ‘A spicy pizza is precisely a pizza
that has a spicy toping’). Each instance of the ‘pizza’ class can be connected with up to
15 objects representing toppings, many of which are introduced via existential quantifiers
(e.g., for ‘spicy pizza’); however, most of these objects are not necessarily distinct. Finally,
the ontology defines an interesting pizza as having at least three toppings, which introduces
a DL-clause where four body atoms mention the ‘has-topping’ relation. Thus, there are 154

ways to apply this DL-clause to the clauses defining the toppings, each producing a complex
clause that gives rise to numerous other clauses. In contrast, tableaux-based reasoners deal
with equalities by guessing an equality relation on the 15 toppings. Most such guesses are
consistent since most toppings are not necessarily distinct, so a consistent equality relation
can usually be identified quickly. This problem seems inherent in transforming number
restrictions as shown in Table 1, and similar behaviour could be observed in the resolution-
based reasoner KAON2. To address this issue, one could explore techniques for reasoning
with number restrictions using integer linear programming (Haarslev, Timmann, & Möller,
2001) or nondeterministic proof exploration (Kazakov & Klinov, 2014).

On ELH ontologies, Sequoia, ELK, and Snorocket could classify all ontologies apart from
the ‘Phenoscape/HierarchyClosure’ ontology (ID 00757), which is a very large ontology with
more than 1.9 million TBox axioms. In contrast, jcel could not classify 55 ontologies. The
performance of Sequoia was similar to that of ELK and Snorocket (where the latter exhibited
a fixed initialisation overhead of about 200 ms in each test run), and considerably better
than of jcel. Thus, the theoretical pay-as-you-go behaviour described in Proposition 12 can,
we believe, actually be observed in practice.

The reasoners’ performance diverged substantially on the ELH version of the Snomed
ontology (ID 00798): Sequoia classified this ontology in 131.2 seconds, whereas jcel, ELK,
and Snorocket required 56.1, 2.0, and 2.3 seconds, respectively. This significant difference is
due to an interaction between Sequoia’s indexing strategy and the peculiarities of Snomed.
Specifically, Snomed contains several roles (e.g., ‘PartOf’) that occur in a large number of
DL-clauses so, when one of these roles is selected for hyperresolution, Sequoia retrieves a
large number of candidate DL-clauses, and for each body atom of each DL-clause it queries
the hyperIndexv index for potential hyperresolution candidates, as described in Section 5.3.2.
In contrast, other ELH reasoners specifically optimise this case. For example, ELK indexes
context clauses by a pair of a role and a concept (Kazakov et al., 2014), so it can iden-
tify the relevant DL-clauses more efficiently. Adapting this technique to Sequoia is not
straightforward due to a more complex syntactic form of DL-clauses.

In summary, although Sequoia is an early prototype, it outperforms HermiT, Pellet, and
FaCT++ on ontologies whose classification takes at least one second, although Konclude
is best performing. Moreover, the system is competitive on ELH ontologies. Finally, prob-
lematic ontologies seem to mostly contain complex RBoxes or large numbers in cardinality
restrictions, which suggests promising directions for future optimisation.

7. Conclusion and Future Work

We have presented the first consequence-based calculus for expressive DLs that include
both disjunctions and number restrictions. Coupled with well-known preprocessing steps
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(Demri & de Nivelle, 2005; Schmidt & Hustadt, 2007; Simanč́ık, 2012), the calculus can
handle the DL SRIQ, which covers all of OWL 2 DL apart from nominals, datatypes,
and ABox assertions. Our calculus combines ideas from state-of-the-art resolution and
(hyper)tableau calculi, such as the use of ordered paramodulation for equality reasoning.
Despite its increased complexity, the calculus mimics existing calculi on EL ontologies. We
implemented our calculus in a new DL reasoner called Sequoia. Despite being an early
prototype, the system is competitive with several established reasoners.

We are confident that we can extend the calculus to datatypes and ABoxes and thus
handle all of OWL 2 DL except nominals. In contrast, handling nominals seems to be much
more involved. In fact, adding nominals to ALCHIQ+ raises the complexity of reasoning
to NExpTime (Tobies, 2001) so a worst-case optimal calculus must be nondeterministic,
which is quite different from all existing consequence-based calculi we are aware of. Another
important challenge is to effectively deal with large numbers in number restrictions.
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Appendix A. Proof of Theorem 8

In this section we prove Theorem 8, which combines two related claims. The first claim
states that applying an inference rule to a context structure produces a context structure—
that is, all conditions of Definition 6 are satisfied, and in particular all conclusions are
context clauses. This is needed since our calculus depends on the syntactic form of context
clauses. The second claim is that the resulting context structure is sound—that is, all
conclusions are consequences of the ontology. This is shown analogously to the soundness
proof of ordered superposition (Nieuwenhuis & Rubio, 1995; Bachmair & Ganzinger, 1998).

Theorem 8 (Soundness). For an arbitrary expansion strategy, applying an inference rule
from Table 2 to an ontology O and a context structure D that is sound for O produces a
context structure that is sound for O.

Proof. Let O be an ontology and let D = 〈V, E ,S, core,m,�〉 be a context structure that
is sound for O. We next show that applying an inference rule from Table 2 to D using
an arbitrary expansion strategy produces a sound context structure. In particular, we
show that each derived clause is a context clause according to Definition 1 and satisfies
condition S1 of Definition 6. Please note that rules other than Hyper, Eq, and Pred obviously
produce context clauses, so we do not stress this any further in our analysis. In addition,
the Succ rule can introduce an edge into D, so we show that the edge satisfies condition S2
of Definition 6, and it can refine the order �v, so we show that the result is a context term
order. Our proof relies on the soundness of hyperresolution: for arbitrary formulas ω, φi,
ψi, and γi, 1 ≤ i ≤ n, with free variables contained in ~x, we have{

∀~x.
[ n∧
i=1

φi → ω
]}
∪
⋃

1≤i≤n

{
∀~x.
[
γi → ψi ∨ φi

]}
|= ∀~x.

[ n∧
i=1

γi → ω ∨
n∨
i=1

ψi
]
. (87)
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We next consider all inference rules from Table 2.

(Core) For each A ∈ corev, we clearly have O |= corev → A.

(Hyper) Property (88) clearly holds since
∧n
i=1Ai → ∆ ∈ O, and property (89) holds since

context structure D is sound for O. But then, property (88) implies property (90), which,
together with (87) and (89), implies (91), as required for condition S1.

O |=
n∧
i=1

Ai → ∆ (88)

O |= corev ∧ Γi → ∆i ∨Aiσ for 1 ≤ i ≤ n (89)

O |=
n∧
i=1

Aiσ → ∆σ (90)

O |= corev ∧
n∧
i=1

Γi → ∆σ ∨
n∨
i=1

∆i (91)

Finally, substitution σ satisfies σ(x) = x, all premises are context clauses, and O contains
only DL-clauses; thus, the inference rule can only match an atom S(x, x), S(x, zi) or S(zi, x)
in an ontology clause to atoms S(y, x), S(x, y), S(x, x), S(f(x), x), or S(x, f(x)) in the
context clause, and so σ(zi) is y, x, or f(x). Consequently, (91) is a context clause.

(Eq) Since D is sound for O, properties (92) and (93) hold. Now the clause in (94) is a
logical consequence of the clauses in (92) and (93), so property (94) holds, as required.

O |= corev ∧ Γ1 → ∆1 ∨ s1 ≈ t1 (92)

O |= corev ∧ Γ2 → ∆2 ∨ s2 ./ t2 (93)

O |= corev ∧ Γ1 ∧ Γ2 → ∆1 ∨∆2 ∨ s2[t1]p ./ t2 (94)

Finally, the rule requires that s2|p = s1 and that s2|p is not a variable, so therefore s1 is
not a variable either. Consequently, term s1 is always of the form f(x), term t1 is of the
form g(x), x, or y, and term s2 is of the form f(x), B(f(x)), S(x, f(x)), or S(f(x), x); thus,
s2[t1]p is a context term, and so the result is a context clause.

(Ineq) Since D is sound for O, we have O |= corev ∧ Γ→ ∆ ∨ t 6≈ t; but then, we clearly
have O |= corev ∧ Γ→ ∆, as required.

(Factor) Since D is sound for O, property (95) holds. Moreover, the clause in (96) is a
logical consequence of the clause in (95), so property (96) holds, as required.

O |= corev ∧ Γ→ ∆ ∨ s ≈ t ∨ s ≈ t′ (95)

O |= corev ∧ Γ→ ∆ ∨ t 6≈ t′ ∨ s ≈ t′ (96)

(Elim) The resulting context structure contains a subset of the clauses from D, so it is clearly
sound for O.

(Pred) Since D is sound for O, properties (97)–(99) hold. Now the clause in (100) is an
instance of the clause in (97), so property (100) holds. But then, by (87), properties (98)
and (100) imply property (101). Finally, properties (99) and (101) imply property (102).

O |= corev ∧
∧m
i=1Ai →

∨m+n
i=m+1 Li (97)
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O |= coreu ∧ Γi → ∆i ∨Aiσ for 1 ≤ i ≤ m (98)

O |= coreu → corevσ (99)

O |= corevσ ∧
∧m
i=1Aiσ →

∨m+n
i=m+1 Liσ (100)

O |= corevσ ∧ coreu ∧
∧m
i=1 Γi →

∨m
i=1 ∆i ∨

∨m+n
i=m+1 Liσ (101)

O |= coreu ∧
∧m
i=1 Γi →

∨m
i=1 ∆i ∨

∨m+n
i=m+1 Liσ (102)

For each m+ 1 ≤ i ≤ m+ n, we have Li ∈ Pr(O), so Li is of the form B(y), S(x, y), S(y, x),
or x ≈ y; but then, σ = {x 7→ f(x), y 7→ x} ensures that Liσ is of the form B(x), S(f(x), x),
S(x, f(x)), or f(x) ≈ x and so Liσ is a context atom, as required.

(Succ) For each clause A′ → A′ added to Sv, we clearly have O |= corev ∧A′ → A′, as re-
quired for condition S1 of Definition 6. Moreover, assume that the inference rule adds an
edge 〈u, v, fk〉 to E . Then, the definition of K1 ensures > → A′σ ∈ Su for each A′ ∈ K1.
Moreover, D is sound for O, so (103) holds for context u, and it implies (104).

O |= coreu → A′σ for each A′ ∈ K1 (103)

O |= coreu → K1σ (104)

O |= coreu → corevσ (105)

But then, Definition 7 ensures corev ⊆ K1, so property (105) holds, as required for condi-
tion S2 of Definition 6. Clauses added for atoms in K2 are tautologies, and therefore they
trivially verify the properties. Finally, order �′ is a context order w.r.t. m by Definition 7,
and so the order of every freshly introduced context is correctly initialised.

Appendix B. Preliminaries: Rewrite Systems

In the proof of Theorem 9 we construct a model of an ontology, which, as is common in
equational theorem proving, we represent using a ground rewrite system. To make our
proof self-contained, we next recapitulate the definitions of rewrite systems (Nieuwenhuis
& Rubio, 1995; Baader & Nipkow, 1998; Bachmair & Ganzinger, 1998). For simplicity, we
adapt all standard definitions to ground rewrite systems only.

A (ground) rewrite system R is a binary relation on the Herbrand universe HU. Each
pair (s, t) ∈ R is called a rewrite rule and is commonly written as s⇒ t. The rewrite relation
→R for R is the smallest binary relation on HU such that, for all terms s1, s2, t ∈ HU and
each (not necessarily proper) position p in t, if s1 ⇒ s2 ∈ R, then t[s1]p →R t[s2]p. Moreover,
∗→R is the reflexive–transitive closure of →R, and

∗↔R is the reflexive–symmetric–transitive
closure of →R. A term s is irreducible by R if no term t exists such that s →R t; and a
literal, clause, or substitution α is irreducible by R if each term occurring in α is irreducible
by R. Moreover, term t is a normal form of s w.r.t. R if s

∗↔R t and t is irreducible by R.
We consider the following properties of rewrite systems.

• R is terminating if no infinite sequence s1, s2, . . . of terms exists such that, for each i,
we have si →R si+1.

• R is left-reduced if, for each s⇒ t ∈ R, the term s is irreducible by R \ {s⇒ t}.
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• R is Church-Rosser if, for all terms t1 and t2 such that t1
∗↔R t2, a term z exists such

that t1
∗→R z and t2

∗→R z.

If rewrite system R is terminating and left-reduced, then R is Church-Rosser (Baader &
Nipkow, 1998, Theorem 2.1.5 and Exercise 6.7). If R is Church-Rosser, then each term s

has a unique normal form t such that s
∗→R t holds. The Herbrand equality interpretation

induced by a rewrite system R is the set R∗ such that, for all s, t ∈ HU, we have s ≈ t ∈ R∗
if and only if s

∗↔R t.
Term orders can be used to prove termination of rewrite systems. A term order � on

ground terms (i.e., on HU) is a simplification order if the following conditions hold:

1. for all ground terms s1, s2, and t, and each position p in t, we have that s1 � s2

implies t[s1]p � t[s2]p; and

2. for each term s and each proper position p in s, we have s � s|p.

Given a rewrite system R, if a simplification order � exists such that s⇒ t ∈ R implies
s � t, then R is terminating (Baader & Nipkow, 1998, Theorems 5.2.3 and 5.4.8), and, for
all ground terms s and t, we have that s→R t implies s � t.

Appendix C. Proof of Theorem 9

Theorem 9 (Completeness). Let O be an ontology, and let D = 〈V, E ,S, core,m,�〉 be a
context structure such that no inference rule from Table 2 is applicable to O and D. Then,
for each query clause ΓQ → ∆Q and each context q ∈ V such that conditions C1 through C3
are satisfied, ΓQ → ∆Q ∈̂ Sq holds.

C1. O |= ΓQ → ∆Q.

C2. For each context atom A ≈ true ∈ ∆Q and each context atom A′ ≈ true not containing
variable y such that A �q A′, we have A′ ≈ true ∈ ∆Q.

C3. For each context atom A ≈ true ∈ ΓQ, we have ΓQ → A ≈ true ∈̂ Sq.

In this section, we fix an ontology O, a context structure D = 〈V, E ,S, core,m,�〉, a
context q ∈ V, and a query clause ΓQ → ∆Q such that conditions C2 and C3 of Theorem 9
are satisfied, and we show the contrapositive of condition C1: if ΓQ → ∆Q 6∈̂ Sq, then
O 6|= ΓQ → ∆Q. To this end, using a distinguished constant c, the function symbols of sort
a, and the symbols of sort p, we construct a Herbrand model that satisfies all clauses in O,
but not the query clause ΓQ → ∆Q.

Let t be a term. If t is of the form t = f(s), then s is the predecessor of t, and t
is a successor of s; by these definitions, a constant does not have a predecessor. The a-
neighbourhood of t is the following set of a-terms: t, f(t) for each f ∈ ΣF

a , and the predecessor
t′ of t if it exists. The p-neighbourhood of t is the following set of p-terms: B(t), S(t, t),
S(t, f(t)), S(f(t), t), and B(f(t)), and, if t has the predecessor t′, also S(t′, t), S(t, t′), and
B(t′), for each f ∈ ΣF

a , each unary symbol B ∈ ΣF
p , and each binary symbol S ∈ ΣF

p . The
neighbourhood of t is the set containing the a-neighbourhood of t and the p-neighbourhood
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of t. Let σt be the substitution such that σt(x) = t; if t has the predecessor t′, then σt(y) = t′;
and if t is a constant, then σt(y) = y. Finally, we define sets of atoms Prt and Sut as follows:

Sut = {Aσt | A ∈ Su(O) and Aσt is ground } (106)

Prt = {Lσt | L ∈ Pr(O) and Lσt is ground } (107)

Reft = {S(t, t) | S ∈ ΣF
p is a binary symbol } (108)

C.1 Proof Outline

A key concern in constructing Herbrand equality interpretations is to satisfy the standard
properties of equality. For example, if B(f(g(c))) and g(c) ≈ h(c) are true, then B(f(h(c)))
must be true as well. To address this problem, Herbrand equality interpretations are usually
represented using rewrite systems (Nieuwenhuis & Rubio, 1995). For example, given a
rewrite system R = {B(f(g(c)))⇒ true, h(c)⇒ g(c)}, atom B(f(h(c))) is ‘automatically’
satisfied in the induced Herbrand interpretation R∗ induced by R.

Thus, we prove Theorem 9 by constructing a rewrite system R so that R∗ |= O and
R∗ 6|= ΓQ → ∆Q hold. We obtain R by unfolding the context structure D: starting from the
context q, we inductively map each a-term t in HU to a context Xt in D, and we use the
clauses in SXt to construct a model fragment Rt—that is, the part of R that satisfies the
DL-clauses of O when x is mapped to t. We obtain R as the union of all Rt. A key issue is
to ensure compatibility between adjacent model fragments: when moving from a term t′ to
its successor t = f(t′), combining Rt with Rt′ should not affect the truth of the DL-clauses
of O at term t′; in other words, the model fragment constructed at t must respect the
choices made at t′. We represent these choices by a ground clause Γt → ∆t: conjunction
Γt contains atoms that are ‘inherited’ from t′ and so must hold at t, and disjunction ∆t

contains atoms that must not hold at t because t′ relies on their absence. Construction of
the model fragment Rt will ensure

F1. R∗t |= Nt, and

F2. R∗t 6|= Γt → ∆t—that is, all of Γt, but none of ∆t hold in R∗t , and so the model fragment
at t is compatible with the ‘inherited’ constraints.

For the induction base, we set Γc → ∆c = ΓQσc → ∆Qσc; this ensures that R∗c 6|= Γc → ∆c

holds in the initial model fragment, which in turn ensures R∗ 6|= ΓQ → ∆Q. For the induction
step, we shall define Γt → ∆t based on the model fragment Rt′ for the predecessor t′ of t.
To manage the complexity of the proof, we split it into three main parts.

Appendix C.2 deals with the model fragment construction. It takes as input a term t,
a context v = Xt, and a clause Γt → ∆t. Now let Nt be the set of ground clauses obtained
by grounding the context clauses in Sv as follows.

Nt = {Γσt → ∆σt | Γ→ ∆ ∈ Sv, both Γσt and ∆σt are ground, and Γσt ⊆ Γt } (109)

For the construction to work, the following three properties must be satisfied.

L1. Γt → ∆t 6∈̂ Nt.

L2. If t = c, then ∆t = ∆Qσc; and if t 6= c, then we have {t ≈ t′} ⊆ ∆t ⊆ Prt where t′ is
the predecessor of t.
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L3. For each A ∈ Γt, we have Γt → A ∈̂ Nt.

We construct a rewrite system Rt satisfying conditions F1 and F2 by adapting the tech-
niques from paramodulation-based theorem proving. First, we order all clauses in Nt into
a sequence Ci = Γi → ∆i ∨ Li, 1 ≤ i ≤ n, that is compatible with the context term order
�v in a specific way. Next, we initialise Rt to ∅, and then we examine each clause Ci in
this sequence; if Ci does not hold in the model constructed thus far, we make the clause
true by adding Li to Rt. To prove condition F1, we assume for the sake of a contradiction
that a clause Ci with smallest i exists such that R∗t 6|= Ci, and we show that an application
of the Eq, Ineq, or Factor rule to Ci necessarily produces a clause Cj such that R∗t 6|= Cj

and j < i. Conditions L1 through L3 allow us to satisfy condition F2. Due to condition L2
and condition 5 of Definition 3, we can order the clauses in the sequence such that each
clause Ci capable of producing an atom from ∆t comes before any other clause in the se-
quence; and then we use condition L1 to show that no such clause actually exists. Moreover,
condition L3 ensures that all atoms in Γt are actually produced in R∗t .

Appendix C.3 deals with the inductive unfolding of D. We apply the model fragment
construction at each step, and a key issue is to show that conditions L1 through L3 are
satisfied, which in turn ensures that individual model fragments can safely be combined. For
the base case, we map constant c to context Xc = q, and we define Γc = ΓQ and ∆c = ∆Q;
then, conditions L1 and L2 hold by definition, and condition L3 holds by condition C3 of
Theorem 9. For the induction step, we assume that we have already mapped some term t′

to a context u = Xt′ , and we consider the term t = f(t′) for each f ∈ ΣF
a .

• If t does not occur in an atom in Rt′ , we let Rt = {t⇒ c} and thus make t equal to
c. Term t is thus interpreted in exactly the same way as c, so we stop the unfolding.

• If Rt′ contains a rule t⇒ s, then t and s are equal, and so we interpret t exactly as
s; hence, we stop the unfolding.

• In all other cases, the Succ rule ensures that D contains an edge 〈u, v, f〉 such that
v satisfies all preconditions of the rule, so we define Xt = v. Furthermore, we let
Γt = R∗t′ ∩ Sut be the set of atoms that hold at t′ and are relevant to t, and we let
∆t = Prt \R∗t′ be the set of atoms that do not hold at t′ and are relevant to t. We
finally show that such Γt and ∆t satisfy condition L1: if this were not the case, the
Pred rule would derive a clause in Nt′ that is not true in R∗t′ .

We finally define R as the union of all Rt from the above construction. We also prove that
R is a Church-Rosser rewrite system, so each term has a unique normal form w.r.t. R.

Appendix C.4 completes the proof of Theorem 9. To prove R∗ |= O, we consider a DL-
clause Γ→ ∆ ∈ O and a substitution τ that makes the clause ground. Since R is Church-
Rosser, we can consider only τ that are irreducible by R—that is, that do not contain
terms that can we rewritten using the rules in R. Since each model fragment satisfies
condition F2, we can evaluate Γτ → ∆τ in R∗τ(x) instead of R∗. Moreover, we show that

R∗τ(x) |= Γτ → ∆τ holds: if that were not the case, the Hyper rule would derive a clause in

Nτ(x) that violates condition F1. Finally, we analogously show that R∗ 6|= ΓQ → ∆Q holds
as well, which completes our proof.
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C.2 Constructing a Model Fragment

In this section, we show how, given a term t, we can generate a fragment of the model of
O that covers the neighbourhood of t. In the rest of Appendix C.2, we fix the following
parameters for the model fragment generation process:

• t is a ground a-term,

• v is a context in D,

• Γt is a conjunction of atoms, and

• ∆t is a disjunction of atoms.

Let Nt be the as defined in (109), and assume that conditions L1 through L3 hold. We next
construct a rewrite system Rt such that R∗t |= Nt and R∗t 6|= Γt → ∆t holds.

Throughout Appendix C.2, we treat the terms in the a-neighbourhood of t as if they
were independent constants. Thus, even though the rewrite system Rt will contain terms
t and f(t), we will not consider terms with further nesting. This simplifies the formal
treatment in this section as we do not need to worry about how the predecessors or the
successors of t are ordered (e.g., in the proof of Lemma 13), or the possibility that the term
t inside a term f(t) might be reduced by a rewrite rule. Note, however, that conditions 1
through 4 of Definition 3 impose a global order on all context terms, which in turn imposes
a consistent global ordering on all ground a-terms. Moreover, when unfolding the context
structure in Appendix C.3, condition M2 ensures that no subterm of f(t) is ever reduced.
Thus, we can still connect all model fragments into one Church-Rosser rewrite system (see
Lemma 26).

C.2.1 Grounding the Context Order

To construct Rt, we need an order on the terms in the neighbourhood of t that is compatible
with �v. To this end, let >t be a total, strict, simplification order on the set of ground terms
constructed using the terms in the a-neighbourhood of t (which we treat as independent
constants without any subterms) and the symbols of the predicate sort p; for all context
terms s1 and s2 such that s1σt and s2σt are both ground, and for t′ the predecessor of t if
it exists, order >t must satisfy the following conditions.

O1. s1 �v s2 implies s1σt >t s2σt.

O2. s1σt ≈ true ∈ ∆t and s2σt 6∈ {t, t′, true} and s2σt ≈ true 6∈ ∆t imply s2σt >t s1σt.

Lemma 13. There exists at least one order >t that satisfies conditions O1 and O2.

Proof. Note that condition O2 can be equivalently rewritten as follows (∗):

s1σt ≈ true ∈ ∆t and s2σt 6∈ {t, t′, true} and s1σt ≥t s2σt imply s2σt ≈ true ∈ ∆t.

We can construct >t in several steps. First, for all context terms s1 and s2 such that
s1 �v s2 and s1σt and s2σt are both ground, we define s1σt >t s2σt. The result satisfies
condition O1. Now let M = {A | A ≈ true ∈ ∆t } and consider the following two cases.
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• Assume t = c. For arbitrary terms s1σt ∈M and s2σt 6∈ {c, true} with s1σt ≥t s2σt,
term s2 does not contain y (since ∆Q contains only variable x); moreover, s1σt ∈M
implies s1 ≈ true ∈ ∆Q, so condition C2 of Theorem 9 ensures s2 ≈ true ∈ ∆Q; hence,
we have s2σt ∈M , as required for (∗). Furthermore, ∆Q is a query clause, so all terms
in M are of the form B(c) or S(c, c); thus, due to conditions 1 and 4 of Definition 3,
each A ∈M can be ≥t-larger only than c and true. Thus, we can extend >t by totally
ordering all terms of M and placing them immediately after c and true in the ordering.
The result clearly satisfies conditions O1 and O2.

• Assume t 6= c. For arbitrary terms s1σt ∈M and s2σt 6∈ {t, t′, true}, condition ∆t ⊆ Prt
ensures that all terms in M are of the form B(t′), S(t, t′), or S(t′, t) and moreover
s1 ≈ true ∈ Pr(O); in addition, s2σt 6∈ {t, t′, true} ensures s2 6∈ {x, y, true}; but then,
condition 5 of Definition 3 ensures s1 6�v s2, so s1σt 6>t s2σt by the order >t constructed
thus far; thus, the only possibility is s1σt = s2σt, in which case (∗) holds trivially.
Furthermore, due to condition 1 and condition 4, each A ∈M can be ≥t-larger only
than t, t′, and true. Therefore, we can extend >t by totally ordering all terms of
M and placing them immediately after t, t′, and true in the ordering. The result
clearly satisfies conditions O1 and O2. Note that in this section we treat all a-terms
as constants, so we do not need to worry about defining the order on the predecessor
of t′ or on the ancestors of f(t).

Finally, we can arbitrarily extend ≥t to a total order, and the result also satisfies condi-
tions O1 and O2.

We can choose any such >t, and we extend it to ground literals (also written >t) by
associating each s 6≈ t with the multiset {s, s, t, t} and each s ≈ t with the multiset {s, t},
and then comparing the result using the multiset extension of the term order (as defined in
Section 2). Due to condition 1 of Definition 3, we have

A ≈ true >t t 6≈ t >t t ≈ t >t t 6≈ t′ >t t ≈ t′ >t t′ 6≈ t′ >t t′ ≈ t′ >t true ≈ true (110)

for each context atom A of the form B(t), B(t′), S(t, t′), S(t′, t), and S(t, t). Finally, we
further extend >t to disjunctions of ground literals (also written >t) by identifying each
disjunction

∨n
i=1 Li with the multiset {L1, . . . , Ln} and then comparing the result using the

multiset extension of the literal order.

C.2.2 Constructing the Rewrite System Rt

In resolution theorem proving, the head and the body of a clause are usually multisets of
literals (Bachmair & Ganzinger, 2001). However, we treat the head and body as sets (i.e.,
no duplication is possible). This simplifies the formal treatment without loss of generality:
clause Γ→ ∆ ∨ L ∨ L (resp. Γ ∧A ∧A→ ∆) entails Γ→ ∆ ∨ L (resp. Γ ∧A→ ∆), and
the latter clause is always strictly smaller than the former in the clause order.

We arrange all clauses in Nt into a sequence C1, . . . , Cn. Since the body of each Ci is
a subset of Γt, no Ci can have an empty head since that would contradict condition L1.
Moreover, the heads of the clauses in Nt do not contain repetitions. Consequently, we can
assume that each Ci is of the form Ci = Γi → ∆i ∨ Li where Li >t ∆i, literal Li is of the
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form Li = li ./ ri with ./ ∈ {≈, 6≈}, and li ≥t ri. For the rest of Appendix C.2, we reserve
Ci, Γi, ∆i, Li, li, and ri for referring to the (parts of) the clauses in this sequence. Finally,
without loss of generality we assume that, for all 1 ≤ i < j ≤ n, we have ∆j ∨ Lj ≥t ∆i ∨ Li.

We next define the sequenceR0
t , . . . , R

n
t of rewrite systems by settingR0

t = ∅ and defining
each Rit with 1 ≤ i ≤ n inductively as follows:

• Rit = Ri−1
t ∪ {li ⇒ ri} if Li is of the form li ≈ ri such that

R1. (Ri−1
t )∗ 6|= ∆i ∨ li ≈ ri,

R2. li >t r
i,

R3. li is irreducible by Ri−1
t , and

R4. (Ri−1
t )∗ 6|= s ≈ ri for each li ≈ s ∈ ∆i; and

• Rit = Ri−1
t in all other cases.

Finally, let Rt = Rnt ; we call Rt the model fragment for t, v, Γt, and ∆t. Each clause
Ci = Γi → ∆i ∨ li ≈ ri that satisfies the first condition in the above construction is called
generative, and the clause is said to generate the rule li ⇒ ri in Rt.

C.2.3 The Properties of the Model Fragment Rt

Lemma 14. The rewrite system Rt is Church-Rosser.

Proof. To see that Rt is terminating, simply note that, for each rule l⇒ r ∈ Rt, condition R2
ensures l >t r, and that >t is a simplification order.

To see that Rt is left-reduced, consider an arbitrary rule li ⇒ ri ∈ Rt that is added to
Rt in step i of the clause sequence. By condition R3, term li is irreducible by Ri−1

t . Now
consider an arbitrary rule lj ⇒ rj ∈ Rt that is added to Rt at any step j of the construction
where j > i. The definition of the clause order implies lj ≈ rj ≥t li ≈ ri; since lj >t r

j

and li >t r
i by condition R2, by the definition of the literal order we have lj ≥t li. Since

li ⇒ ri ∈ Rj−1
t , condition R3 for j ensures li 6= lj , and so we have lj >t l

i; consequently, lj

is not a subterm of li, and thus term li is irreducible by Rjt \ {li ⇒ ri}.

Lemma 15. For each 1 ≤ i ≤ n and each l 6≈ r ∈ ∆i ∨ Li, we have (Ri−1
t )∗ |= l ≈ r if and

only if R∗t |= l ≈ r.

Proof. Consider an arbitrary clause Ci = Γi → ∆i ∨ Li and an arbitrary inequality l 6≈ r
such that l 6≈ r ∈ ∆i ∨ Li. If (Ri−1

t )∗ |= l ≈ r, then Ri−1
t ⊆ Rt implies R∗t |= l ≈ r, as re-

quired. Now assume that (Ri−1
t )∗ 6|= l ≈ r. Let l′ and r′ be the normal forms of l and r,

respectively, w.r.t. Ri−1
t . Now consider an arbitrary j with i ≤ j ≤ n such that lj ⇒ rj is

generated by Cj . The definitions of the model construction ensure lj ≈ rj ≥t Li >t ∆i. Now
if l 6≈ r = Li, then lj ≈ rj >t l 6≈ r holds because the two literals are different; otherwise,
we have l 6≈ r ∈ ∆i, and so lj ≈ rj >t l 6≈ r holds as well. By the definition of the literal
order, we then have lj >t l ≥t l′ and lj >t r ≥t r′; since >t is a simplification order, lj is a
subterm of neither l′ nor r′. Thus, l′ and r′ are the normal forms of l and r, respectively,
w.r.t. Rjt , and so we have (Rjt )

∗ 6|= l′ ≈ r′; but then, we have (Rjt )
∗ 6|= l ≈ r, as required.

Lemma 16. For each generative clause Γi → ∆i ∨ li ≈ ri, we have R∗t 6|= ∆i.
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Proof. Consider an arbitrary generative clause Ci = Γi → ∆i ∨ li ≈ ri and an arbitrary lit-
eral L ∈ ∆i; condition R1 ensures that (Ri−1

t )∗ 6|= L. We next show that R∗t 6|= L.
Assume that L is of the form l 6≈ r. Since l 6≈ r ∈ ∆i ∨ li ≈ ri, by Lemma 15 we have

R∗t 6|= L, as required.
Assume that L is of the form l ≈ r with l >t r. We show by induction that, for each j

with i ≤ j ≤ n, we have (Rjt )
∗ 6|= L. To this end, we assume that (Rj−1

t )∗ 6|= L. If Cj is not
generative, then Rjt = Rj−1

t , and so (Rjt )
∗ 6|= L. The only remaining possibility is that Cj is

generative, for which we consider the following cases.

• lj = l. We have the following two subcases.

– j = i, and so l = li = lj . Condition R4 ensures (Ri−1
t )∗ 6|= r ≈ ri. Let r′ and r′′ be

the normal forms of r and ri, respectively, w.r.t. Ri−1
t ; we have (Ri−1

t )∗ 6|= r′ ≈ r′′.
Moreover, l >t r ≥t r′ and l >t r

i ≥t r′′ hold; since >t is a simplification order,
l is a subterm of neither r′ nor r′′; therefore, r′ and r′′ are the normal forms
of r and ri, respectively, w.r.t. Rit, and therefore (Rit)

∗ 6|= r′ ≈ r′′. Finally, since
l⇒ ri ∈ Rit, term r′′ is the normal form of l w.r.t. Rit, and so (Rit)

∗ 6|= l ≈ r.
– j > i. But then, lj ≈ rj ≥t li ≈ ri >t l ≈ r implies lj = li = l. Furthermore, Ci

is generative, so we have li ⇒ ri ∈ Rj−1
t . But then, lj is not irreducible by Rj−1

t ,
which contradicts condition R3.

• lj >t l. Let l′ and r′ be the normal forms of l and r, respectively, w.r.t. Rj−1
t . Then,

we have lj >t l ≥t l′ and lj >t r ≥t r′; since >t is a simplification order, lj is a subterm
of neither l′ nor r′. Thus, l′ and r′ are the normal forms of l and r, respectively, w.r.t.
Rjt , and so (Rjt )

∗ 6|= l′ ≈ r′; hence, R∗t 6|= l ≈ r holds.

Lemma 17. Let Γ→ ∆ be a clause such that Γ→ ∆ ∈̂ Nt. Then R∗t |= ∆ holds if there
exists i with 1 ≤ i ≤ n+ 1 such that

1. for each 1 ≤ j < i, we have R∗t |= ∆j ∨ Lj, and

2. if i ≤ n (i.e., i is an index of a clause from Nt), then ∆i ∨ Li >t ∆.

Proof. Assume that Γ→ ∆ ∈̂ Nt holds. If Γ→ ∆ satisfies condition 1 of Definition 4, then
we clearly have R∗t |= ∆. Assume that Γ→ ∆ satisfies condition 2 of Definition 4 due to
some clause Γj → ∆j ∨ Lj ∈ Nt such that Γj ⊆ Γ and ∆j ∪ {Lj} ⊆ ∆ hold; the latter clearly
implies ∆ ≥t ∆j ∨ Lj . Let i be an integer satisfying this lemma’s assumption. If i = n+ 1,
then we clearly have j < i; otherwise, ∆i ∨ Li >t ∆ implies ∆i ∨ Li >t ∆j ∨ Lj , and so we
also have j < i. But then, by the lemma assumption we have R∗t |= ∆j ∨ Lj , which implies
R∗t |= ∆, as required.

Lemma 18. For each clause Γ→ ∆ such that Γσt and ∆σt are ground and Γ→ ∆ ∈̂ Sv
and Γσt ⊆ Γt both hold, we have Γσt → ∆σt ∈̂ Nt.

Proof. Assume that Γ→ ∆ ∈̂ Sv holds. If Γ→ ∆ satisfies condition 1 of Definition 4, then
terms s and s′ exist such that s ≈ s ∈ ∆ or {s ≈ s′, s 6≈ s′} ⊆ ∆; but then, sσt ≈ sσt ∈ ∆σt
or {sσt ≈ s′σt, sσt 6≈ s′σt} ⊆ ∆σt, so Γσt → ∆σt ∈̂ Nt holds. Furthermore, if Γ→ ∆ satisfies
condition 2 of Definition 4, then clause Γ′ → ∆′ ∈ Sv exists such that Γ′ ⊆ Γ and ∆′ ⊆ ∆;
but then, since Γ′σt ⊆ Γσt ⊆ Γt holds and moreover both Γσt and ∆σt are ground, we have
that Γ′σt → ∆′σt ∈ Nt holds, and so Γσt → ∆σt ∈̂ Nt holds as well.
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Lemma 19. For each clause Γ′ → ∆′ ∨ s′ 6≈ s′ ∈ Nt, we have Γ′ → ∆′ ∈̂ Nt.

Proof. Consider an arbitrary clause Γ′ → ∆′ ∨ s′ 6≈ s′ ∈ Nt. By the definition of Nt, a clause
Γ→ ∆ ∨ s 6≈ s ∈ Sv exists such that

Γσt = Γ′ ⊆ Γt, ∆σt = ∆′, and sσt = s′. (111)

By the assumption of Theorem 9, the Ineq rule is not applicable to Γ→ ∆ ∨ s 6≈ s, and so
we have Γ→ ∆ ∈̂ Sv. Since Γσt ⊆ Γt, by Lemma 18 we have Γ′ → ∆′ ∈̂ Nt, as required.

Lemma 20. Both t and t′ (if it exists) are irreducible by Rt.

Proof. Recall that throughout Appendix C.2, both t and t′ are treated as constants, and
that each rule l⇒ r ∈ Rt satisfies l >t r due to condition R2. Now if t = c, then t′ does
not exist and t is the smallest a-term in >t and therefore it cannot occur on the left-hand
side of a rule in Rt, and so the lemma holds; hence, in the rest of this proof we assume
that t 6= c. Condition L2 then ensures t ≈ t′ ∈ ∆t. Moreover, condition 1 of Definition 3
and condition O1 imply t >t t

′, and t′ 6>t s for each a-term s. Therefore, t′ is irreducible;
moreover, to show that t is irreducible, we next prove that t⇒ t′ 6∈ Rt.

For the sake of a contradiction, assume that a clause Γ→ ∆ ∨ t ≈ t′ ∈ Nt exists that
generates the rule t⇒ t′ inRt. By the definition ofNt, we have Γ ⊆ Γt. Since t ≈ t′ >t ∆, we
have ∆ ⊆ {t′ 6≈ t′, t′ ≈ t′}. Since the clause is generative, condition R1 ensures t′ ≈ t′ 6∈ ∆,
and so we have ∆ ⊆ {t′ 6≈ t′}. If ∆ 6= ∅, then Lemma 19 implies Γ→ t ≈ t′ ∈̂ Nt, and
otherwise Γ→ t ≈ t′ ∈̂ Nt holds by our assumption. But then, together with t ≈ t′ ∈ ∆t,
this implies Γt → ∆t ∈̂ Nt, which contradicts condition L1.

Lemma 21. For each Γ→ ∆ ∈ Nt, we have R∗t |= ∆.

Proof. For the sake of a contradiction, choose Ci = Γi → ∆i ∨ Li as the clause in the se-
quence of clauses from Appendix C.2.2 with the smallest i such that R∗t 6|= ∆i ∨ Li; recall
that Li >t ∆i and Li = li ./ ri with ./ ∈ {≈, 6≈}. Due to our choice of i, condition (1) of
Lemma 17 holds for Ci and i. By the definition of Nt, a clause Γ→ ∆ ∨ L ∈ Sv exists where

Γσt = Γi ⊆ Γt, ∆σt = ∆i, Lσt = Li, and ∆ 6�v L. (112)

We next prove the claim of this lemma by considering the possible forms of Li.

Assume Li = li ≈ ri with li = ri. But then, we have R∗t |= Li, which contradicts our
assumption that R∗t 6|= ∆i ∨ Li.

Assume Li = li ≈ ri with li >t r
i. But then, literal L is of the form l ≈ r and it

satisfies lσt ≈ rσt = li ≈ ri. By the definition of >t, we have l �v r. We first show that
(Ri−1

t )∗ 6|= ∆i ∨ Li holds; towards this goal, note that, for each equality s1 ≈ s2 ∈ ∆i ∨ Li,
properties R∗t 6|= s1 ≈ s2 and Ri−1

t ⊆ Rt imply (Ri−1
t )∗ 6|= s1 ≈ s2; and for each inequality

s1 6≈ s2 ∈ ∆i, Lemma 15 and R∗t 6|= s1 6≈ s2 imply (Ri−1
t )∗ 6|= s1 6≈ s2. Thus, clause Ci satis-

fies conditions R1 and R2; however, since R∗t 6|= li ≈ ri, clause Ci is not generative and thus
either condition R3 or condition R4 is not satisfied. We next consider both possibilities.
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• Condition R3 does not hold—that is, li is reducible by Ri−1
t . By the definition of

reducibility, a position p and a clause Cj = Γj → ∆j ∨ lj ≈ rj generating the rule
lj ⇒ rj exist such that j < i and li|p = lj . By Lemma 20, lj is neither t nor t′, and
therefore l|p is neither x nor y. Due to j < i, we have li ≈ ri ≥t lj ≈ rj ; together
with lj ≈ rj >t ∆j , we have that li ≈ ri >t ∆j . Lemma 16 ensures R∗t 6|= ∆j , and the
definition of Nt ensures that a clause Γ′ → ∆′ ∨ l′ ≈ r′ ∈ Sv exists such that

Γ′σt = Γj ⊆ Γt, ∆′σt = ∆j , l′σt = lj , r′σt = rj , ∆′ 6�v l′ ≈ r′, and l′ �v r′.
(113)

By the assumption of Theorem 9, the Eq rule is not applicable to (112) and (113), and
so Γ ∧ Γ′ → ∆ ∨∆′ ∨ l[r′]p ≈ r ∈̂ Sv. Let ∆′′ = ∆i ∨∆j ∨ li[rj ]p ≈ ri. Then clearly
Γσt ∪ Γ′σt ⊆ Γt, so Lemma 18 ensures that Γi ∧ Γj → ∆′′ ∈̂ Nt holds. Set R∗t is a
congruence, so li[rj ]p ≈ ri 6∈ R∗t holds, and therefore R∗t 6|= ∆′′ holds. Finally, >t is a
simplification order, which ensures li ≈ ri >t li[rj ]p ≈ ri; together with li ≈ ri >t ∆i

and li ≈ ri >t ∆j , we have li ≈ ri >t ∆′′. But then, Lemma 17 implies R∗t |= ∆′′,
which is a contradiction.

• Condition R4 does not hold. Then, some term s exists such that li ≈ s ∈ ∆i and
(Ri−1

t )∗ |= s ≈ ri. Due to Ri−1
t ⊆ Rt, we have R∗t |= s ≈ ri, and so R∗t 6|= s 6≈ ri. Fur-

thermore, ∆ ∨ L is of the form ∆′ ∨ l ≈ r ∨ l′ ≈ r′ such that

lσt = li, rσt = s, l′σt = li, and r′σt = ri. (114)

We then have l′ = l. By the assumption of Theorem 9, the Factor rule is not applica-
ble to Γ→ ∆ ∨ L, so Γ→ ∆′ ∨ r 6≈ r′ ∨ l′ ≈ r′ ∈̂ Sv. Let ∆′′ = ∆′σt ∨ s 6≈ ri ∨ li ≈ ri.
But then, Γσt ⊆ Γt and Lemma 18 ensure that Γi → ∆′′ ∈̂ Nt holds. Now ∆′ ⊆ ∆
implies ∆′σt ⊆ ∆i, so we have R∗t 6|= ∆′σt, and therefore R∗t 6|= ∆′′. Moreover, li >t r

i

and li >t s imply li ≈ ri >t s ≈ ri; thus, ∆i ∨ li ≈ ri >t ∆′′ holds. Lemma 17 then
implies R∗t |= ∆′′, which is a contradiction.

Assume Li = li 6≈ ri with li = ri. Then, literal L is of the form l 6≈ r and it satisfies
lσt 6≈ rσt = li 6≈ ri. But then, li = ri implies l = r. By Lemma 19, we have Γi → ∆i ∈̂ Nt.
Clearly, ∆i ∨ li 6≈ ri >t ∆i, and so Lemma 17 implies R∗t |= ∆i, which is a contradiction.

Assume Li = li 6≈ ri with li >t r
i. Lemma 15 ensures (Ri−1

t )∗ 6|= li 6≈ ri; hence, li is
reducible by Ri−1

t so, by the definition of reducibility, a position p and a generative clause
Cj = Γj → ∆j ∨ lj ≈ rj exist such that j < i and li|p = lj . Due to j < i, we have that
li 6≈ ri >t lj ≈ rj >t ∆j . Lemma 16 ensures R∗t 6|= ∆j , and the definition of Nt ensures that
a clause Γ′ → ∆′ ∨ l′ ≈ r′ ∈ Sv exists satisfying (113), as in the first case. Now if term lj

were either t or t′, this would contradict Lemma 20; hence, l|p is neither x nor y. By the
assumption of Theorem 9, the Eq rule is not applicable to clauses (112) and (113), and so
Γ ∧ Γ′ → ∆ ∨∆′ ∨ l[r′]p 6≈ r ∈̂ Sv holds. Let ∆′′ = ∆i ∨∆j ∨ li[rj ]p 6≈ ri. We clearly have
Γσt ∪ Γ′σt ⊆ Γt, so by Lemma 18 we have Γi ∧ Γj → ∆′′ ∈̂ Nt. Since R∗t is a congruence, we
have R∗t 6|= li[lj ]p 6≈ ri, and therefore R∗t 6|= ∆′′ holds. Finally, >t is a simplification order, so
li 6≈ ri >t li[lj ]p; together with li ≈ ri >t ∆i and li ≈ ri >t ∆j , we have li ≈ ri >t ∆′′. But
then, Lemma 17 implies R∗t |= ∆′′, which is a contradiction.
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Lemma 22. For each clause Γ→ ∆ with Γ→ ∆ ∈̂ Nt, we have R∗t |= ∆.

Proof. Apply Lemma 17 for i = n+ 1 and Lemma 21.

Lemma 23. For each generative clause Γi → ∆i ∨ li ≈ ri, disjunction ∆i does not contain
a literal of the form s 6≈ s.

Proof. For the sake of a contradiction, let us assume that clause Ci = Γi → ∆i ∨ li ≈ ri ∈ Nt

is generative and that s 6≈ s ∈ ∆i holds for some term s. By Lemma 19, we have that
Γi →

(
∆i \ {s 6≈ s}

)
∨ li ≈ ri ∈̂ Nt. If this clause satisfies condition 1 of Definition 4, then

Ci cannot be generative due to condition R1; hence, this clause satisfies condition 2 of Defi-
nition 4 and so Γ→ ∆ ∈ Nt holds for some Γ ⊆ Γi and some ∆ ⊆

(
∆i \ {s 6≈ s}

)
∪ {li ≈ ri}.

Now Lemma 16 implies R∗t 6|= ∆i; moreover, by condition R1, we have (Ri−1
t )∗ 6|= ∆i ∨ li ≈ ri.

We have the following two possibilities.

• li ≈ ri ∈ ∆. Let j be the index of clause Γ→ ∆ in the sequence of clauses from
Appendix C.2.2; clearly, j < i, and so (Rj−1

t )∗ ⊆ (Ri−1
t )∗. Consider an arbitrary literal

L ∈ ∆: if L is of the form l ≈ r, then (Ri−1
t )∗ 6|= L clearly implies (Rj−1

t )∗ 6|= L; and if L
is of the form l 6≈ r, then Lemma 15 applied for i ensures R∗t 6|= l 6≈ r, and so Lemma 15
applied again for j ensures (Rj−1

t )∗ 6|= l 6≈ r. Thus, we have (Rj−1
t )∗ 6|= ∆, and so

∆ ⊆ ∆i clearly ensures that Γ→ ∆ generates li ⇒ ri. This, however, contradicts our
assumption that Ci is generative.

• li ≈ ri 6∈ ∆. But then, we have ∆ ⊆ ∆i, and so R∗t 6|= ∆. However, by Lemma 21 we
have R∗t |= ∆, which is a contradiction.

Lemma 24. R∗t 6|= Γt → ∆t.

Proof. For R∗t |= Γt, note that condition L3 ensures Γt → A ∈̂ Nt, and so Lemma 22 ensures
R∗t |= A for each atom A ∈ Γt.

For R∗t 6|= ∆t, assume for the sake of a contradiction that a literal L ∈ ∆t exists such that
R∗t |= L. Then, a generative clause Ci = Γi → ∆i ∨ li ≈ ri ∈ Nt and a position p exist such
that L|p = li; let ∆ = ∆i ∨ li ≈ ri. Since >t is a simplification order and li >t r

i, we have
L ≥t li ≈ ri; but then, since li ≈ ri >t ∆i, we have L ≥t ∆. We next consider an arbitrary
literal l ./ r ∈ ∆ with ./ ∈ {≈, 6≈} and l ≥t r; by the observations made thus far, L ≥t l ./ r
holds. By condition O2, one of the following holds.

1. l ./ r ∈ {t ≈ t, t′ ≈ t′}. But then Ci is not generative by condition R1.

2. l ./ r ∈ {t 6≈ t, t′ 6≈ t′}. But then Ci is not generative by Lemma 23.

3. l ./ r = t ≈ t′. But then t ≈ t′ ∈ ∆t by condition L2.

4. l ./ r = t 6≈ t′. By Lemma 20, both t and t′ are irreducible by Rt, so R∗t |= t 6≈ t′; by
Lemma 15, then (Ri−1

t )∗ |= t 6≈ t′; but then Ci is not generative by condition R1.

5. l ≈ r ∈ ∆t where r = true.

Thus, 3 and 5 are the only possible cases, and they both satisfy l ./ r ∈ ∆t. Since l ./ r was
arbitrarily chosen from ∆t, we have ∆ ⊆ ∆t. But then, Γi ⊆ Γt implies that Γt → ∆t ∈̂ Nt

holds, which contradicts condition L1.
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C.3 Unfolding the Context Structure

We now present the construction of the rewrite system R, which is obtained by unfolding
the context structure D and applying the model fragment construction from Appendix C.2
at each step. We use structural induction over the a-terms of HU. We define several partial
functions: function X maps a term t to a context Xt ∈ V; functions Γ and ∆ assign to a
term t a conjunction of atoms Γt and a disjunction of literals ∆t, respectively; and function
R maps each term into a model fragment Rt for t, Xt, Γt, and ∆t.

M1. For the base case, we consider the constant c.

Xc = q (115)

Γc = ΓQσc (116)

∆c = ∆Qσc (117)

Rc = the model fragment for c, q, Γc, and ∆c (118)

M2. For the inductive step, assume that Xt′ has already been defined, and consider an
arbitrary function symbol f ∈ ΣF

a such that f(t′) is irreducible by Rt′ . Let u = Xt′

and t = f(t′). We have two possibilities.

M2.a. Term t occurs in Rt′ . Then, term t = f(t′) was generated in Rt′ by some
ground clause C = Γ→ ∆ ∨ L ∈ Nt′ such that L >t ∆ and f(t′) occurs in L.
By the definition of Nt, then a clause C ′ = Γ′ → ∆′ ∨ L′ ∈ Su exists such that
C = C ′σt′ and L′ contains f(x); moreover, L >t′ ∆ implies ∆′ 6�u L′. The Succ
and Core rules are not applicable to D, so we can choose a context v ∈ V such
that 〈u, v, f〉 ∈ E and A→ A ∈̂ Sv for each A ∈ K2, where K2 is as in the Succ
rule. We define the following:

Xt = v (119)

Γt = R∗t′ ∩ Sut (120)

∆t = Prt \R∗t′ (121)

Rt = the model fragment for t, v, Γt, and ∆t (122)

M2.b. Term t does not occur in Rt′ . Then, let Rt = {t⇒ c}, and we do not define
any other functions for t.

Finally, let R be the rewrite system defined by R =
⋃
tRt where the union ranges over all

Rt that have been defined above.

Lemma 25. The model fragments Rc and Rt constructed in lines (118) and (122) satisfy
conditions L1 through L3 in Appendix C.2.

Proof. The proof is by induction on the structure of terms t ∈ dom(X). For t = c, if condi-
tion L1 were not satisfied, then v = q due to (115), (116), and (117) all imply ΓQ → ∆Q 6∈̂ Sq,
which contradicts our assumption in Theorem 9. In addition, condition L2 follows trivially
by (117), and condition L3 holds because of (116) and condition C3 of Theorem 9. We next
assume that the lemma holds for some term t′ ∈ dom(X), and we consider an arbitrary term
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t of the form t = f(t′); let u = Xt′ and v = Xt. Note that terms t and t′ are irreducible
by Rt′ due to condition M2. Moreover, Sut contains atoms of the form B(t), S(t, t′), and
S(t′, t), and so each atom in Sut is irreducible by Rt′ . But then, by (120), Γt contains atoms
of R∗t′ that are irreducible by Rt′ ; for convenience, assume that Γt = {A1, . . . , An}, where
subscripts do not necessarily indicate the position of the clause in sequence of clauses from
Appendix C.2.2. Then, each atom Ai ∈ Γt is generated by a clause satisfying (123). By the
definition of Nt′ , then there exists a clause satisfying (124).

Γi → ∆i ∨Ai ∈ Nt′ with Ai >t ∆i (123)

Γ′i → ∆′i ∨A′i ∈ Su Γi = Γ′iσt′ , ∆i = ∆′iσt′ , Ai = A′iσt′ , and ∆′i 6�u A′i (124)

To prove condition L1, assume for the sake of a contradiction that Γt → ∆t ∈̂ Nt holds.
Since ∆t ⊆ Prt holds due to (121), only condition condition 2 of Definition 4 can hold—that
is, set Nt then contains a clause

m∧
i=1

Ai →
m+n∨
i=m+1

Li
with {Ai | 1 ≤ i ≤ m } ⊆ Γt ⊆ R∗t′ ∩ Sut
and {Li | m+ 1 ≤ i ≤ m+ n } ⊆ ∆t ⊆ Prt;

(125)

to simplify indexing, we assume w.l.o.g. that A1, . . . , Am are the first m atoms from Γt. By
the definition of Nt, set Sv contains a clause

m∧
i=1

A′i →
m+n∨
i=m+1

L′i
with Ai = A′iσt for 1 ≤ i ≤ m
and Li = L′iσt and L′i ∈ Pr(O) for m+ 1 ≤ i ≤ m+ n.

(126)

Now each Ai with 1 ≤ i ≤ m is generated by a ground clause (123), and the latter is obtained
from the corresponding nonground clause (124). The Pred rule is not applicable to (124)
and (126) so (127) holds; together with Lemma 18, this ensures (128).

m∧
i=1

Γ′i →
m∨
i=1

∆′i ∨
m+n∨
i=m+1

L′iσ ∈̂ Su for σ = {x 7→ f(x), y 7→ x} (127)

m∧
i=1

Γi →
m∨
i=1

∆i ∨
m+n∨
i=m+1

Li ∈̂ Nt′ (128)

By Lemma 16, we have R∗t′ 6|= ∆i for each 1 ≤ i ≤ m; moreover, (121) ensures R∗t′ 6|= ∆t,
which implies R∗t′ 6|= Li for each m+ 1 ≤ i ≤ m+ n; however, this contradicts (128) and
Lemma 22.

Next we show that condition L2 holds. Since t 6= c, we have ∆t = Prt \R∗t′ by (121), and
hence ∆t ⊆ Prt holds. Furthermore, {t ≈ t′} ⊆ Prt holds by (107); moreover, t is irreducible
by Rt′ by condition M2, and t′ is irreducible by Rt′ since Lemma 20 holds for Rt′ by the
induction hypothesis. Hence, R∗t′ 6|= t ≈ t′ holds, so we have {t ≈ t′} ⊆ ∆t, as required.

Finally, we show that condition L3 holds. Consider an arbitrary atom Ai ∈ Γt, let (123)
be the clause that generates Ai in Rt′ , and let (124) be the corresponding nonground clause.
Since Ai ∈ Sut, atom A′i is of the form A′′i σ, where σ is the substitution from the Succ rule;
but then, A′′i ∈ K2, where K2 is as specified in the Succ rule. In condition M2.a we chose v
so that the Succ rule is satisfied, and therefore A′′i → A′′i ∈̂ Sv; but then, since A′′i σt = Ai,
we have Ai → Ai ∈̂ Nt, as required for condition L3.

678



Consequence-Based Reasoning for DLs with Disjunctions and Number Restrictions

Lemma 26. The rewrite system R is Church-Rosser.

Proof. We show that R is terminating and left-reduced, and thus Church-Rosser. In the
proof of the former, we use a total simplification order B on all ground a- and p-terms
defined as follows. We extend the total order m on function symbols to all a- and p-symbols
in an arbitrary way, but ensuring that constant true is smallest in the order; then, let B be
a lexicographic path order (Baader & Nipkow, 1998) over such m. It is well known that such
B is a simplification order, and that it satisfies the following properties for each a-term t
with predecessor t′ (if it exists), all function symbols f, g ∈ ΣF

a , and each p-term A:

• f(t)B tB t′,

• f m g implies f(t)B g(t), and

• AB true.

Thus, conditions 1 and 2 of Definition 3 and the manner in which context orders are
grounded in Appendix C.2.1 clearly ensure that, for each a-term t ∈ dom(X) and for all
terms s1 and s2 from the a-neighbourhood of t with s1 >t s2, we have s1 B s2.

We next show that R is terminating by arguing that each rule in R is embedded in
B. To this end, consider an arbitrary rule l⇒ r ∈ R. Clearly, a term t ∈ dom(R) exists
such that l⇒ r ∈ Rt. This rule is obtained from a head literal l ≈ r of a clause in Nt, and
condition R2 of the definition of Rt ensures that l >t r. Moreover, l ≈ r is obtained by
grounding a context literal with σt, so we have the following possible forms of l ≈ r.

• Terms l and r are both from the a-neighbourhood of t. Then, l >t r implies l B r.

• We have l ≈ r = A ≈ true for A a p-term. Then, AB true since true is smallest in m.

We next show that R is left-reduced. For the sake of a contradiction, assume that there
exist a term s and a rule l⇒ r ∈ Rs ⊆ R such that l is reducible by R′ = R \ {l⇒ r}. This
rule is generated by an equality in the head of a generative clause, and so it is of the form
A⇒ true where A contains s and/or s′, or of the form f(s)⇒ g(s), f(s)⇒ s, f(s)⇒ s′,
or s⇒ s′, for s′ the predecessor of s (if one exists). Let p be the ‘deepest’ position at
which some rule in R′ reduces l (i.e., no rule in R′ reduces l at position below p), and let
l′ ⇒ r′ ∈ R′ be the rule that reduces l at position p; thus, l′ = l|p. If l′ is a p-term, then
l = l′ = A and r = r′ = true, but then l⇒ r ∈ R′, which contradicts our definition of R′.
Hence, l′ is an a-term and, due to the possible forms of l⇒ r, it is a (not necessarily proper)
subterm of s. By the definition of R, there exists a term t such that l′ ⇒ r′ ∈ Rt. But then,
condition M2 ensures that Rl′ is not defined since l′ is reducible by Rt. Consequently,
rewrite system Rs is not defined either since it contains l′.

Lemma 27. For each term t, each f ∈ ΣF
a , and each atom A ∈ Sut ∪ Prf(t) ∪ Reft such that

A ∈ R∗ and all a-terms in A are irreducible by R, we have R∗t |= A.

Proof. Let t be a term, let f ∈ ΣF
a be a function symbol, and let A ∈ Sut ∪ Prf(t) ∪ Reft be

an atom such that all a-terms in A are irreducible by R; the latter and A ∈ R∗ ensure that
A⇒ true ∈ R. We next consider the possible forms of A.
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Assume A ∈ Sut. By the definition of Sut in (106) and the fact that Su(O) contains
only atoms of the form B(x), S(x, y), and S(y, x), atom A can be of the form B(t), S(t, t′),
or S(t′, t), for t′ the predecessor of t (if it exists). Due to the form of context literals in
Definition 1 and the definition of grounding from Appendix C.2, atom A can occur only in
Nt or Nt′ ; therefore, we have R∗t |= A or R∗t′ |= A. Now assume R∗t′ |= A. Due to A ∈ Sut
and the definition of Γt in (120), we have A ∈ Γt. Lemma 24 ensures that R∗t 6|= Γt → ∆t.
But then, we have R∗t |= A, as required.

Assume A ∈ Prf(t). By the definition of Prf(t) in (107) and the fact that Pr(O) contains
only atoms of the form B(y), S(y, x), and S(x, y), atom A can be of the form, B(t),
S(t, f(t)), or S(f(t), t); note that x ≈ y ∈ Pr(O) is not an atom and is therefore not relevant
to this analysis. Due to the form of context literals in Definition 1 and the definition of
grounding from Appendix C.2, atom A can occur only in Nt or Nf(t); therefore, R∗t |= A
or R∗f(t) |= A. Assume for the sake of a contradiction that R∗t 6|= A, but R∗f(t) |= A. Due to

A ∈ Prf(t) and the definition of ∆f(t) in (121), we have A ∈ ∆f(t); due to Lemma 24, we
have R∗f(t) 6|= Γf(t) → ∆f(t); therefore, we have R∗f(t) 6|= A, which is a contradiction.

Assume A ∈ Reft. Due to the form of context literals in Definition 1 and the definition
of grounding from Appendix C.2, atom A can occur only in Nt, and so R∗t |= A.

Lemma 28. Let s1 and s2 be both DL-a-terms or both DL-p-terms, and let τ be a ground
substitution irreducible by R such that x is in the domain of τ , terms s1τ and s2τ are both
ground, and, for each zi in the domain of τ , term τ(zi) is in the a-neighbourhood of τ(x).
Then, for ./ ∈ {≈, 6≈}, if R∗τ(x) |= s1τ ./ s2τ , then R∗ |= s1τ ./ s2τ .

Proof. Let s1 and s2 and τ be as stated above, let t = τ(x), and let t′ be the predecessor of t
(if it exists). Since t is irreducible by R, rewrite system Rt has been defined in Appendix C.3.
We next consider the possible forms of ./.

• Assume ./ = ≈. But then, Rt ⊆ R and R∗t |= s1τ ≈ s2τ imply R∗ |= s1τ ≈ s2τ .

• Assume ./ = 6≈. Let s′1 and s′2 be the normal forms of s1τ and s2τ , respectively, w.r.t.
Rt. Due to the shape of DL-literals, s1 and s2 can be of the form f(x), x, or zi;
therefore, terms s1τ and s2τ are of the form f(t), t, or t′, and terms s′1 and s′2 are of
the form g(t), t, or t′. Term t is irreducible by R, and thus t′ is irreducible by R as
well. Furthermore, g(t) is irreducible by Rt and Rt is the only rewrite system where
g(t) can occur on the left-hand side of a rewrite rule, so therefore g(t) is irreducible
by R as well. But then, s′1 and s′2 are the normal forms of s1τ and s2τ , respectively,
w.r.t. R; thus, R∗ |= s′1 6≈ s′2, and therefore R∗ |= s1τ 6≈ s2τ holds, as required.

C.4 The Completeness Claim

Lemma 29. For each DL-clause Γ→ ∆ ∈ O, we have R∗ |= Γ→ ∆.

Proof. Consider an arbitrary DL-clause Γ→ ∆ ∈ O of the following form:∧n
i=1Ai → ∆ (129)

Let τ ′ be an arbitrary substitution such that Γτ ′ → ∆τ ′ is ground, and let τ be the substi-
tution obtained from τ ′ by replacing each ground term with its normal form w.r.t. R; by
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Lemma 26, such τ is unique. Since R∗ is a congruence, we have R∗ |= Γτ ′ → ∆τ ′ if and only
if R∗ |= Γτ → ∆τ . We next assume that R∗ |= Γτ , and show that R∗ |= ∆τ holds as well.

Consider an arbitrary atom Ai ∈ Γ. By the definition of DL-clauses, Ai is of the form
B(x), S(x, x), S(x, zj), or S(zj , x). Substitution τ is irreducible by R, and so all a-terms in
Aiτ are irreducible by R; but then, Aiτ ∈ R∗ clearly implies Aiτ ⇒ true ∈ R. Each such rule
is obtained from a generative clause so Aiτ is of the form B(t), S(t, t), S(t, f(t)), S(f(t), t),
S(t, t′), or S(t′, t), where t = τ(x) and t′ is the predecessor of t (if it exists). We next prove
that Aiτ ∈ Sut ∪ Prf(t) ∪ Reft holds by considering the possible forms of Ai.

• Ai = B(x), so Aiτ = B(t). Then, B(x) ∈ Su(O), and so B(t) ∈ Sut holds.

• Ai = S(x, x), so Aiτ = S(t, t). Then, we clearly have S(t, t) ∈ Reft.

• Ai = S(x, zj), so Aiτ is of the form S(t, t′) or S(t, f(t)). Then, S(x, y) ∈ Su(O), and
so S(t, t′) ∈ Sut holds; moreover, S(y, x) ∈ Pr(O), and so S(t, f(t)) ∈ Prf(t) holds.

• Ai = S(zj , x), so Aiτ is of the form S(t′, t) or S(f(t), t). Then, S(y, x) ∈ Su(O), and
so S(t′, t) ∈ Sut holds; moreover, S(x, y) ∈ Pr(O), and so S(f(t), t) ∈ Prf(t) holds.

Lemma 27 then implies Aiτ ∈ Rt, and so Nt contains a generative clause of the form (130).
Now let v = Xt; by the definition of Nt, set Sv contains a clause of the form (131).

Γi → ∆i ∨Ai with Ai >t ∆i and Γi ⊆ Γt (130)

Γ′i → ∆′i ∨A′i with ∆′i 6�v A′i and Γ′iσt = Γi, ∆′iσt = ∆i, and A′iσt = Ai (131)

The Hyper rule is not applicable to (129) and (131), and therefore (132) holds, where σ
is the substitution obtained from τ by replacing each occurrence of t (possibly nested in
another term) with x. Finally, Lemma 18 ensures that (133) holds as well.

n∧
i=1

Γ′i → ∆σ ∨
n∨
i=1

∆′i ∈̂ Sv (132)

n∧
i=1

Γi → ∆τ ∨
n∨
i=1

∆i ∈̂ Nt (133)

Now (133) and Lemma 22 imply R∗t |= ∆τ ∨
∨n
i=1 ∆i, but Lemma 16 implies R∗t 6|= ∆i; there-

fore, we have R∗t |= ∆τ . Finally, Lemma 28 ensures R∗ |= ∆τ , as required.

Lemma 30. R∗ 6|= ΓQ → ∆Q.

Proof. The claim is equivalent to proving R∗ 6|= Γc → ∆c. Lemma 24 implies R∗c 6|= Γc → ∆c,
and so R∗c |= Γc and R∗c 6|= ∆c hold. The former observation and Lemma 28 ensure that
R∗ |= Γc holds. Furthermore, for each atom B(x) ∈ ∆Q, Definition 2 ensures B(y) ∈ Pr(O),
and so B(c) ∈ Prf(c) holds for each f ∈ ΣF

a ; hence, the contrapositive of Lemma 27 ensures
R∗ 6|= B(c). Finally, for each atom S(x, x) ∈ ∆Q, we have S(c, c) ∈ Refc; hence, the contra-
positive of Lemma 27 ensures R∗ 6|= S(c, c). Consequently, R∗ 6|= ∆c holds, as required.
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Appendix D. Proof of Proposition 10

Proposition 10. Algorithm 1 terminates whenever the expansion strategy introduces finitely
many contexts in the algorithm’s run. The algorithm runs in worst-case exponential time
in the size of O if the number of introduced contexts is at most exponential in the size of O.

Proof. Let k be the number of DL-clauses on O, and let m the be the larger of the maximum
number of body atoms of a DL-clause in O and the maximum size of the body of a context
clause; both k and m are linear in O since the number of variables in a context clause is
fixed. The number ℘ of context clauses that can be constructed using the symbols in O is
at most exponential in the size of O.

For the first claim, if the number of contexts is finite, the total number of context
clauses is finite as well. Moreover, once an inference is applied, its preconditions never
become satisfied again. Hence, the number of possible inferences is finite and each inference
is performed just once, so Algorithm 1 terminates.

For the second claim, assume that the strategy can introduce at most n contexts, where
n is exponential in the size of O. The number of possible inferences is bounded as follows.

• The number of distinct inferences by the Hyper rule within each context is bounded
by k · ℘m. Hence, the total number of inferences is bounded by k · ℘m · n, which is
exponential in the size of O.

• The number of clauses participating in each distinct inference by a rule other than
Pred or Succ is constant, so an exponential bound on the number of inferences by
these rules can be obtained analogously to the Hyper rule.

• The Pred rule can be applied to any pair of contexts, and each inference involves one
clause from one context and at most m clauses from the other context. Hence, the
number of distinct inferences is bounded by ℘ · ℘m · n2, which is exponential in the
size of O.

• The Succ rule can be applied to any context. Now consider an application of the
rule to a context u, and let clauses Γ→ ∆ ∨A and Γ′ → ∆′ ∨A′σ play the roles as
specified in Table 2. The preconditions of the Succ rule can become satisfied either
when a clause Γ→ ∆ ∨A is added to Su, or when a clause Γ′ → ∆′ ∨A′σ is added
to Su and thus changes the set K2. Hence, the rule can become applicable at most
℘2 · n times, which is exponential in the size of O.

Appendix E. Proof of Proposition 11

Proposition 11. On ELH ontologies and queries of the form B1(x)→ B2(x), Algorithm 1
runs in polynomial time in the size of O with either the cautious or the eager strategy.

Proof. Consider an ELH ontology represented as a set O of DL-clauses of type DL1 with
n ≤ m ≤ n+ 1, DL2 with n = 1, DL3, and DL7 from Section 2. In addition, assume that
a query is of the form B1(x)→ B2(x), so Algorithm 1 initialises the core of q to B1(x).

We first consider applying Algorithm 1 to O with the cautious strategy. By a straight-
forward induction on the application of the rules from Table 2, one can see that each derived
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context clause is of the form (134)–(139).

> → ⊥ (134)

> → B(x) (135)

> → S(x, f(x)) (136)

> → B(f(x)) (137)

S(y, x)→ B(y) (138)

S(y, x)→ S′(y, x) (139)

Moreover, the cautions strategy introduces at most one context with the core of the form
B(x) for each atomic concept B. Since the number of atomic concepts and roles is linear
in the size of O and the inference rules can be applied in polynomial time, the algorithm
runs in polynomial time.

We next consider applying Algorithm 1 to O with the eager strategy. Again, by a
straightforward induction on the application of the rules from Table 2, one can see that
each derived context clause is of the form (134)–(141).

> → S(y, x) (140)

> → B(y) (141)

Moreover, the cautious strategy introduces at most one context with the core of the form
B(x), S(y, x), or B(x) ∧ S(y, x). Again, the algorithm clearly runs in polynomial time.

Appendix F. Proof of Proposition 12

Proposition 12. If the ontology is in EL, the context structure is initialised by a context
vB with corevB = {B(x)} for each atomic concept B, the Hyper rule is applied eagerly, and
the cautious strategy is used, then numbers of inferences in step A3 of Algorithm 1 and of
the calculus by Baader et al. (2005) are in a linear relationship.

Proof. Consider an EL ontology represented as a set O of DL-clauses of type DL1 with
n ≤ m ≤ n+ 1, DL2 with n = 1 and DL3. Note that each function symbol f occurs in
exactly one pair of DL-clauses of type DL2; we say that f belongs to the atomic role S from
the corresponding DL-clause of type DL2. For simplicity, we slightly abuse the notation
and use O to also denote the ontology written in the description logic syntax.

The algorithm by Baader et al. (2005) computes a mapping S that associates each
atomic concept B with a set S(B) of consisting of atomic concepts and ⊥, and a mapping
R that associates each role S with a set R(S) of pairs of atomic concepts. Mapping S is
initialised by setting S(B) = {B}, and then the inference rules summarised in Table 3 are
applied (since the ontology is in EL, rules CR6–CR11 are never applicable). This procedure
ensures that O |= B v B′ holds for all B and B′ ∈ S(B).

We now show that each application of rules CR1–CR5 corresponds to at most three
applications of the inference rules from Table 2. To this end, we show that there is the
following correspondence between mappings S and R and the context structure for all atomic
concepts B1 and B2 and each atomic role S:
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Table 3: Rules of the EL Calculus by Baader et al. (2005)

CR1
If B1 ∈ S(B), B1 v B2 ∈ O, and B2 6∈ S(B),
then add B2 to S(B).

CR2
If {B1, B2} ⊆ S(B), B1 uB2 v B3 ∈ O, and B3 6∈ S(B),
then add B3 to S(B).

CR3
If B1 ∈ S(B), B1 v ∃S.B2 ∈ O, and 〈B,B2〉 6∈ R(S),
then add 〈B,B2〉 to R(S).

CR4
If 〈B1, B2〉 ∈ R(S), B3 ∈ S(B2), ∃S.B3 v B4 ∈ O, and B4 6∈ S(B1)
then add B4 to S(B1).

CR5
If 〈B1, B2〉 ∈ R(S), ⊥ ∈ S(B2), and ⊥ 6∈ S(B1)
then add ⊥ to S(B1).

• B2 ∈ S(B1) implies > → B2(x) ∈ SvB1
,

• ⊥ ∈ S(B1) implies > → ⊥ ∈ SvB1
, and

• 〈B1, B2〉 ∈ R(S) implies {> → S(x, f(x)),> → B2(f(x))} ⊆ SvB1
, 〈vB1 , vB2 , f〉 ∈ E ,

and S(y, x)→ S(y, x) ∈ SvB2 for some function symbol f that S belongs to.

We prove the claim by induction on the application of the rules CR1–CR5. The context
structure initialisation ensures that these properties hold for the induction base. For the
induction step, we consider all possible applications of the rules CR1–CR5 shown in Table 3.

• An application of the rule CR1 or CR2 corresponds straightforwardly to an application
of the Hyper rule.

• Consider an application of the rule CR3. Then, the Hyper rule adds > → S(x, f(x))
and > → B2(x, f(x)) for SvB1

for f the function symbol from the corresponding DL-
clauses of type DL2; since the Hyper rule is applied eagerly, both clauses are derived
before the Succ rule is applied. Since the cautious strategy is used, the Succ rule next
introduces 〈vB1 , vB2 , f〉 ∈ E , and it adds S(y, x)→ S(y, x) to SvB2

.

• Consider an application of the rule CR4. Then we have > → S(x, f(x)) ∈ SvB1
,

〈vB1 , vB2 , f〉 ∈ E , and {S(y, x)→ S(y, x),> → B3(x)} ⊆ SvB2
for some function sym-

bol f by the induction assumption, so the Hyper rule adds S(y, x)→ B4(y) to SvB2
,

and then the Pred rule adds > → B4(x) to SvB1
.

• Consider an application of the rule CR5. The induction assumption then ensures that
> → S(x, f(x)) ∈ SvB1

, 〈vB1 , vB2 , f〉 ∈ E , and > → ⊥ ∈ SvB2
hold for some function

symbol f . Thus, the Pred rule adds > → ⊥ to SvB1
, as required.

Conversely, we show that, in each sequence of inferences of the rules from Table 2, we can
group the inferences so that each group contains at most three inferences and corresponds
to one application of a rule CR1–CR5. To this end, we also show that there is the following
correspondence between the context structure and the mappings S and R for all atomic
concepts B1 and B2 and each atomic role S:

684



Consequence-Based Reasoning for DLs with Disjunctions and Number Restrictions

• all context clauses derived by the rules from Table 2 are of the form (134)–(138), or
of the form (139) with S = S′,

• S(y, x)→ S(y, x) ∈ SvB1
or S(y, x)→ B2(y) ∈ SvB1

implies that there exist a context
vB3 and function symbol f such that > → S(x, f(x)) ∈ SvB3

and 〈vB3 , vB1 , f〉 ∈ E ,

• > → B2(x) ∈ SvB1
implies B2 ∈ S(B1), and

• 〈vB1 , vB2 , f〉 ∈ E implies 〈B1, B2〉 ∈ R(S) for S the role that f belongs to.

The proof is by induction on the application of the rules from Table 2. The context structure
initialisation ensures that these properties hold for the induction base. For the induction
step, we consider all possible applications of the rules Table 2.

• An application of the Hyper rule to a DL-clause of type DL1 corresponds straightfor-
wardly to an application of the rule CR1 or CR2.

• The Hyper rule can be applied to DL-clauses B1(x)→ S(x, f(x)) or B1(x)→ B2(f(x))
of type DL2 to a context clause> → B1(x) ∈ SvB . The Hyper rule is applied eagerly, so
both > → S(x, f(x)) and > → B2(f(x)) are derived in SvB . Next, since the cautious
strategy is used, the Succ rule ensures 〈vB, vB2 , f〉 ∈ E and S(y, x)→ S(y, x) ∈ SvB2

.
The induction assumption then ensures B1 ∈ S(B), so these inferences correspond to
an application of the rule CR3 that adds 〈B,B2〉 to R(S).

• The Hyper rule can be applied to a DL-clause S(z1, x) ∧B3(x)→ B4(y) of type DL3
to context clauses {S(y, x)→ S(y, x),> → B3(x)} ⊆ SvB2

. The induction assump-
tion ensures that there exists a context B1 such that > → S(x, f(x)) ∈ SvB1

and
〈vB1 , vB2 , f〉 ∈ E , so the Pred rule derives > → B4(x) ∈ SvB1

. The induction assump-
tion then eusre 〈B1, B2〉 ∈ R(S) and B3 ∈ S(B2), so these inferences correspond to an
application of the rule CR4 that adds B4 to S(B1).

• The Pred can be applied to a context clause > → ⊥ ∈ SvB2
and 〈vB1 , vB2 , f〉 ∈ E .

The induction assumption ensures 〈B1, B2〉 ∈ R(S) and ⊥ ∈ S(B2), so this inference
corresponds to an application of the rule CR5 that adds ⊥ to S(B1).

One can verify that the Hyper, Succ, and Pred rules can be applied only as specified above,
and the Core, Eq, Ineq, and Factor rules are never applicable, which implies our claim.
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Kazakov, Y., Krötzsch, M., & Simanč́ık, F. (2014). The Incredible ELK: From Polyno-
mial Procedures to Efficient Reasoning with EL Ontologies. Journal of Automated
Reasoning, 53 (1), 1–61.

Knublauch, H., Fergerson, R. W., Noy, N. F., & Musen, M. A. (2004). The Protégé OWL
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