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Abstract
Linear temporal logic (LTL) is a modal logic where formulas are built over temporal operators

relating events happening in different time instants. According to the standard semantics, LTL for-
mulas are interpreted on traces spanning over an infinite timeline. However, applications related to
the specification and verification of business processes have recently pointed out the need for defin-
ing and reasoning about a variant of LTL, which we name LTLp, whose semantics is defined over
process traces, that is, over finite traces such that, at each time instant, precisely one propositional
variable (standing for the execution of some given activity) evaluates true.

The paper investigates the theoretical underpinnings of LTLp and of a related logic formalism,
named LTLf , which had already attracted attention in the literature and where formulas have the
same syntax as in LTLp and are evaluated over finite traces, but without any constraint on the num-
ber of variables simultaneously evaluating true. The two formalisms are comparatively analyzed,
by pointing out similarities and differences. In addition, a thorough complexity analysis has been
conducted for reasoning problems about LTLp and LTLf , by considering arbitrary formulas as well
as classes of formulas defined in terms of restrictions on the temporal operators that are allowed.
Finally, based on the theoretical findings of the paper, a practical reasoner specifically tailored for
LTLp and LTLf has been developed by leveraging state-of-the-art SAT solvers. The behavior of the
reasoner has been experimentally compared with other systems available in the literature.

1. Introduction

Linear temporal logic, denoted by LTL, is a modal logic introduced in the seventies as a formal tool
for verifying the correctness of computer programs and reactive systems (Pnueli, 1977, 1981). Since
then, it found applications in several fields of artificial intelligence and computer science, including
planning (Bacchus & Kabanza, 1998; Calvanese, De Giacomo, & Vardi, 2002; De Giacomo &
Vardi, 1999; Patrizi, Lipovetzky, De Giacomo, & Geffner, 2011; Bacchus & Kabanza, 2000; Baier
& McIlraith, 2006; Bienvenu, Fritz, & McIlraith, 2006, 2011; Sohrabi, Baier, & McIlraith, 2011),
robotics and control theory (Bobadilla, Sanchez, Czarnowski, Gossman, & LaValle, 2011; Fagin,
Halpern, Moses, & Vardi, 1995; Ding, Smith, Belta, & Rus, 2014; Kloetzer & Belta, 2008; Kwon
& Agha, 2008), and business process management (Maggi, Montali, Westergaard, & van der Aalst,
2011a; Maggi, Westergaard, Montali, & van der Aalst, 2011c). In addition, there are other, closely
related linear logics—see the work of Rozier (2011) for a survey—and several extensions of LTL
have been proposed and studied to enhance its basic expressiveness, among which Metric Temporal
Logic (Alur & Henzinger, 1990) is a noticeable example where modalities can be annotated with
real intervals representing timing constraints.

LTL formulas are built on top of propositional logic by allowing the use of temporal operators,
such as next (X), always (G), eventually (F), until (U), and release (R), in order to relate events
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happening in different time instants. In particular, formulas are interpreted over infinite traces,1 that
is, sequences of time instants each one describing the events, modeled as propositional variables,
occurring there.

Example 1 Assume that {a, b, c} is a set of propositional variables, and consider the LTL formula
ϕ = F(c)∧G(¬a∨¬b)∧G(¬a∨X(b))∧G(¬b∨X(a)). The formula prescribes the existence of some
time instant where c holds (because of the conjunct F(c)). In addition, at each time instant, it cannot
happen that a and b are both true (because of G(¬a ∨ ¬b)). And, finally, whenever a (respectively,
b) holds at some given time instant, then b (respectively, a) actually holds at the subsequent time
instant (because of G(¬a ∨ X(b)) ∧ G(¬b ∨ X(a))). Consider then the trace π = π0, π1, π2, ...,
where πi = {a, c} (respectively, πi = {b, c}) is the state associated with each odd (respectively,
even) time instant i ≥ 0. It can be checked that π satisfies the requirements prescribed by ϕ, and
we say that π is a model of ϕ. Another model of ϕ is the trace π′ = {c}, {c}, {c}, ..., consisting of
the state {c} being repeated infinitely often. �

Despite the wide spectrum of applicability of LTL, there are certain applications where its se-
mantics interpreted over infinite traces is not appropriate. For instance, in the context of reasoning
problems related to the specification and verification of business processes, in particular when deal-
ing with declarative constraint-based workflow management systems (Pesic, Bosnacki, & van der
Aalst, 2010; Pesic, Schonenberg, & van der Aalst, 2007; van derAalst, Pesic, & Schonenberg, 2009),
it has been observed that a more natural choice is to focus on interpretations over finite traces. In-
deed, a temporal logic having the same syntax as LTL and equipped with this semantics, denoted
by LTLf , has been recently proposed and studied in the literature (De Giacomo & Vardi, 2013).
Furthermore, a reasoner for LTLf formulas, which takes advantage of the finite-trace semantics by
simplifying classical decision procedures for LTL, is available (Li, Zhang, Pu, Vardi, & He, 2014a).

Example 2 Consider the LTLf formulaϕ′ whose syntax is the same as the LTL formulaϕ discussed
in Example 1, that is, ϕ′ = F(c) ∧G(¬a ∨ ¬b) ∧G(¬a ∨ X(b)) ∧G(¬b ∨ X(a)).

Being an LTLf formula, ϕ′ is interpreted over finite traces. In particular, any finite trace obtained
by truncating the sequence π′ = {c}, {c}, {c}, ... at some time instant is a finite model of ϕ′. By
contrast, consider the trace π = π0, π1, π2, ..., where πi = {a, c} (respectively, πi = {b, c}) is the
state associated with each odd (respectively, even) time instant i ≥ 0. Then, no finite prefix of π
satisfies the formula ϕ′, due to the LTLf subformula ψ′ = G(¬a ∨ X(b)) ∧ G(¬b ∨ X(a)), which
always calls for a subsequent time instant. In fact, note that the LTLf formula ψ′ is unsatisfiable,
while the LTL formula having the same syntax as ψ′ is satisfiable (for instance, by the trace π).

Eventually, to gain some more insight about the different behavior of the two formalisms, note
that while negation-free formulas are always satisfiable in LTL, this is not the case for LTLf . An
example of this kind is given by a ∧ G(X(a)): Interpreted over finite traces (hence, as an LTLf
formula) a ∧ G(X(a)) is not satisfiable, while interpreted over infinite traces (hence, as an LTL
formula) it is satisfiable by the trace where the state {a} is repeated infinitely often. �

Actually, in applications related to the specification and verification of business processes, linear
temporal logic is very often interpreted over traces that are not only finite, but for which exactly one

1. The term “computation” is frequently adopted in classical studies about LTL instead of the term “trace” we shall
use hereinafter. Indeed, “computation” is less standard than “trace” in the specific literature related to this paper—in
particular, when the logic formalism is used in the context of specification and verification of business processes.
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propositional variable holds at each time instant (standing for the execution of some given activity).
Traces of this kind are hereinafter called process traces. As an example, the use of process traces is
rather popular in the context of process mining applications (IEEE Task Force on Process Mining,
2011), whose goal is to automatically derive a process schema that can explain all the episodes
recorded in an event log related to the execution of the activities of an underlying process. Indeed,
process mining algorithms often deal with an abstract view of a log, by just focusing on the order
of the execution of the various activities registered by a transactional information system.

Example 3 The finite trace π′′ = π′′0 defined as a sequence consisting of one state only such that
π′′0 = {c} is a process trace, because the cardinality |π′′0 | of the state π′′0 is such that |π′′0 | = 1.

Note that π′′ is a finite model of the formula ϕ′ in Example 2. However, there are LTLf formulas
that can be satisfied by some finite trace, but for which no process trace is a model. This is, for
instance, the case for the formula a ∧ b. �

Hereinafter, we denote by LTLp the temporal logic whose syntax is precisely the same as LTLf ,
and which is however interpreted over process traces, that is, over finite traces under the additional
constraint that exactly one propositional variable holds at each time instant. Rather surprisingly,
despite the above mentioned applications (which will be further discussed in Section 2.2) and dif-
ferently from LTLf , the logic LTLp has not been systematically studied in the literature, so far.

1.1 Complexity of LTL, LTLf , and LTLp Fragments

The study of the complexity of LTL has been a central topic of research since the seminal paper
by Sistla and Clarke (1985). In particular, they showed that the satisfiability problem for LTL for-
mulas, i.e., deciding whether they admit some model, is PSPACE-complete in general, while more
favorable complexity results (NP-completeness results) can be obtained by avoiding the interplay
of certain temporal operators.

Moving from these foundational results, the complexity of LTL fragments has been studied by
many researchers. In particular, further NP-complete fragments defined by restricting the set of
temporal operators that are allowed have been singled out by Schobbens and Raskin (1999) and
by Ono and Nakamura (1980). Markey (2004) analyzed the complexity as a function of the use of
negation, of the temporal operators, and of their nesting, by identifying NP- or PSPACE-complete
fragments. Chen and Lin (1993) showed that the complexity of deciding satisfiability remains un-
changed if the input is restricted to propositional temporal Horn formulas. Demri and Schnoebe-
len (2002) studied the complexity of fragments built according to three parameters (the temporal
operators allowed, the number of nested temporal operators, and the number of propositional vari-
ables) by obtaining tractable, NP-complete, and PSPACE-complete fragments. Dixon, Fisher, and
Konev (2007) identified tractable classes of LTL formulas by combining XOR fragments. Artale,
Kontchakov, Ryzhikov, and Zakharyaschev (2013) defined a number of fragments of LTL in terms
of the available temporal operators and the structure of the clausal normal form, by determining
when deciding satisfiability is tractable or not. Hemaspaandra (2001) proved that modal satisfiabil-
ity becomes tractable if only conjunction, atomic negation, F, and G are considered. In addition,
restrictions over the Boolean connectives derived from the Post’s lattice of closed sets of Boolean
functions (Post, 1941) combined with restrictions on the temporal operators have been studied,
too (Bauland, Schneider, Schnoor, Schnoor, & Vollmer, 2009). Further related results have been
derived by Halpern (1995) and Bauland, Hemaspaandra, Schnoor, and Schnoor (2006). A thorough
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analysis for LTL combined with spatial logics has been conducted by Gabelaia, Kontchakov, Ku-
rucz, Wolter, and Zakharyaschev (2005), discussing in particular the effect on the complexity and
on the expressiveness of the resulting formalism, by varying the temporal operators that are allowed.

Finally, note that in this classical setting where traces are infinite, a logic that is a combination
of the standard linear time temporal logic with cardinality constraints restricting the numbers of
literals that can be satisfied at any time instant has been studied by Dixon, Konev, Fisher, and
Nietiadi (2013). From the results derived by these authors, it follows that LTL satisfiability is
feasible in polynomial time when precisely one variable is required to hold at each time instant
and when LTL formulas are given in the so-called separated normal form (Fisher, 1991). In fact,
the algorithm proposed by Dixon et al. (2013) exhibits an exponential behavior with respect to the
number of unconstrained variables, and translating an arbitrary LTL formula into an equivalent one
in separated normal form requires the introduction of linearly-many fresh, unconstrained variables.

While several deep and useful results have been derived for LTL, less effort has been spent
to analyze the complexity of LTLf . For this logic, satisfiability is known to remain PSPACE-
complete (De Giacomo & Vardi, 2013) and, of course, the basic NP-hard “lower bound” (deriving
from the NP-hardness of deciding the satisfiability of a propositional formula, i.e., without temporal
operators) still holds. However, no systematic study has been conducted so far over fragments de-
fined with respect to the temporal operators occurring in the formulas. Furthermore, no analysis has
been proposed in the literature to assess whether islands of tractability can be defined by possibly
restricting the Boolean connectives that are allowed.

Similarly, no study of the computational complexity of LTLp has been conducted in the litera-
ture, so far. In fact, while for formulas in separated normal form a polynomial-time algorithm for
satisfiability could be defined by adapting the approach by Dixon et al. (2013) to finite traces, the
picture remains unclear for general LTLp formulas; indeed, as pointed out above, the satisfiabil-
ity algorithm of Dixon et al. exhibits an exponential dependence with respect to the linearly-many
auxiliary variables that are needed, in general, for transforming an arbitrary formula into one in
separated normal form. Moreover, in addition to the lack of knowledge for specific syntactic frag-
ments, results in the literature do not even clarify whether satisfiability remains PSPACE-complete
for LTLp without syntactic restrictions. In particular, the computational properties of LTLp are dif-
ferent from those of LTLf and it is not always possible to generalize to LTLp known computational
results about LTLf . As an example, it is easy to observe that, in absence of temporal operators, sat-
isfiability for LTLp is no longer NP-hard; indeed, we are still given a propositional formula, but now
the goal is to check the existence of a model where precisely one variable evaluates true—which is
clearly feasible in polynomial time, by testing all the possible candidate models.

1.2 Contributions

The main goal of this paper is to study the logics LTLp and LTLf , by characterizing their distin-
guishing features and their relationships. Towards a fine-grained analysis, the study is conducted in
a way that is parametric with respect to the temporal operators that are allowed.

In more detail, for any given set T of temporal operators, we define 〈T 〉-LTLp (respectively,
〈T 〉-LTLf ) as the class of all LTLp (respectively, LTLf ) formulas where only operators in T can be
used and where negation is allowed in atomic form only.2 Then, we analyze all such classes built

2. The requirement is meant to avoid that operators outside T can be trivially simulated by syntactic manipulations—this
requirement frequently occurs when the focus is on analyzing syntactic fragments (Sistla & Clarke, 1985).
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over the classical LTL operators X, G, F, U, and R, plus the weak next Xw operator, which is specific
for LTL over finite traces (De Giacomo & Vardi, 2013), and we provide the following contributions:

I We identify those classes of formulas for which satisfiability is always witnessed by models
whose length is linear in the size of the formula—we say that these classes enjoy the linear-
length model property. In particular, we show that for each of the classes we consider, either
the linear-length model property holds, or satisfiable formulas can be exhibited for which no
model exists whose length is polynomially bounded. From the technical viewpoint, in order
to establish some of these results on LTLp, we first exhibit a general method that, over cer-
tain fragments, can be used to reformulate LTLf formulas into “equivalent” (more formally,
satisfiability preserving) LTLp ones. Then, we provide the corresponding results over LTLf .

I We perform a systematic study of the complexity of 〈T 〉-LTLp and 〈T 〉-LTLf . For each
possible fragment, satisfiability emerged to be either PSPACE-complete, or NP-complete,
or feasible in polynomial time. Technical efforts have been spent, in particular, to derive
the results related to those fragments for which the reformulation mentioned above cannot
be applied. In order to single out further islands of tractability, the picture is completed by
studying fragments defined by also considering restrictions on the Boolean connectives that
are allowed. Notably, all tractability results are established via constructive polynomial-time
algorithms that either compute a model or check that the given formula is not satisfiable.

In addition to such theoretical results, we provide the following more practical contributions:

I We present a reasoner, called LTL2SAT, for LTLp and LTLf formulas.3 For the classes on
which satisfiability is feasible in polynomial time, LTL2SAT implements ad-hoc efficient so-
lution approaches. For the other classes, LTL2SAT encodes the temporal formula into a propo-
sitional one and uses a state-of-the-art SAT solver to compute a model. The encoding is
parametric with respect to the length of the models, which we derive from our theoretical
analysis. In particular, for the classes of formulas that enjoy the linear-length model prop-
erty, we can guarantee that the size of the resulting propositional formula is polynomially
bounded. Hence, the approach implemented by LTL2SAT can be viewed as combining ideas
taken from bounded LTL model checking methods (e.g., Biere, Heljanko, Junttila, Latvala,
& Schuppan, 2006; Cimatti, Clarke, Giunchiglia, Giunchiglia, Pistore, Roveri, Sebastiani, &
Tacchella, 2002) with some early termination strategies and with methods that are specific to
deal with process traces.

I We discuss results of an experimental evaluation we conducted over LTL2SAT and of its com-
parison with Aalta (Li et al., 2014a), which was the only reasoner so far available for LTLf
formulas and which has been shown to outperform existing LTL reasoners adapted to deal
with finite traces (Edelkamp, 2006; Gerevini, Haslum, Long, Saetti, & Dimopoulos, 2009;
Pesic & van der Aalst, 2006a), and with NuSMV 2.6 (Cimatti et al., 2002), a state-of-the-art
bounded model checker for LTL. Experiments are conducted over standard benchmarks avail-
able in the literature. Notably, many of the syntactic fragments studied in the paper (isolating
NP or even tractable classes of formulas) frequently occur in them, thereby confirming the
practical relevance of our theoretical complexity classification.

3. The reasoner is available at http://ltl2sat.wordpress.com/
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We point out that some of the results discussed above appeared, in a preliminary form, in the
proceedings of the AAAI’16 conference (Fionda & Greco, 2016). In particular, it is worthwhile
noticing that Fionda and Greco only discussed proof sketches for some results over X, G, and F and
illustrated some exploratory experimental evaluation. The analysis of the operators Xw, U, and R
(and of their interplay with X, F, and G) are entirely novel contributions of this paper.

Organization. The rest of the paper is organized as follows. The syntax and the semantics of LTLp
and LTLf are formalized in Section 2, while in Section 3 some relationships existing between LTLp
and LTLf are disclosed. The linear-length model property is discussed in Section 4. Complexity
results are illustrated in Section 5, and islands of tractability for the satisfiability problem are singled
out in Section 6. Implementation issues and experimental results are discussed in Section 7. A few
final remarks and avenues for further research are illustrated in Section 8.

2. LTL on Finite and Process Traces

In this section, we present the syntax and the semantics of LTLf and LTLp, by also discussing
application scenarios where focusing on process traces is more appropriate than just focusing on
general finite traces. The section eventually presents some basic properties of LTLp (and LTLf ),
which will be used in the rest of the paper.

2.1 Preliminaries on LTL on Finite Traces

Syntax. Assume that a universe V of propositional variables is given. An LTLf formula ϕ is
built over the propositional variables in V , by using the Boolean connectives “∧”, “∨”, and “¬”,
plus a number of temporal operators. In the paper, we focus on the temporal operators “X” (next),
“Xw” (weak next), “G” (always), “F” (eventually), “U” (until), and “R” (release). We assume that
negation in ϕ is atomic in the sense that it is directly applied to propositional variables only. More
formally, ϕ is built according to the following grammar:

ϕ ::= x | ¬x | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | X(ϕ) | Xw(ϕ) | G(ϕ) | F(ϕ) | (ϕ U ϕ)| (ϕ R ϕ),

where x is any variable in V . The formula ϕ is said to be negation-free if no negation occurs in it.
More generally, note that we are dealing with formulas ϕ given in the so-called negation normal
form. In fact, all results derived in the paper apply to arbitrary formulas, provided they are rewritten
beforehand in negation normal form. Later in the section, we shall observe that this rewriting can be
always performed by pushing negation to propositional variables. Similarly, observe that the above
grammar does not include the classical implication and equivalence Boolean connectives, which
can be simulated as usual via “∧”, “∨”, and “¬” (first using negation that is not atomic and then
pushing such negation to propositional variables).

The temporal height4 of a formula ϕ with respect to any operator O ∈ {X,Xw,G,F,U,R},
denoted by th(ϕ,O), is the maximum number of nested operators O in ϕ. The temporal size with
respect to O, denoted by ts(ϕ,O), is the overall number of occurrences of O in ϕ, The size of
ϕ, denoted by ||ϕ||, is the total number of symbols (temporal operators, Boolean connectives and
propositional variables) it contains. The set of all the variables occurring in ϕ is denoted by Vϕ.

4. The notion of temporal height we use in the paper does not coincide with the (standard) notion of height of a formula
that deals with the nesting of the operators independently of their types. In fact, the results we shall establish in terms
of the temporal height still holds—but would be weaker if reformulated—over that more standard notion.
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Example 4 For the LTLf formula ϕ = ((a∧¬b)∧(F((c∧G(a)))∧X(b))), we have: Vϕ = {a, b, c};
th(ϕ,X) = th(ϕ,F) = th(ϕ,G) = 1; ts(ϕ,X) = ts(ϕ,F) = ts(ϕ,G) = 1; and ||ϕ|| = 13. �

Throughout the paper, we consider classes of LTLf formulas defined by imposing syntactic
restrictions on the allowed operators. Formally, for any set T ⊆ {X,Xw,G,F,U,R}, we define
〈T 〉-LTLf as the class of all LTLf formulas where only temporal operators in T can be used.

Semantics. A finite trace over variables in V is a sequence π = π0, π1, ..., πn−1 associating to
each i ∈ {0, ..., n − 1} a state πi ⊆ V , consisting of the set of all propositional variables that are
assumed to hold at the instant i. The number of instants over which π is defined is its length, and is
denoted by len(π).

Given a finite trace π, we define when an LTLf formula ϕ is true in π at the instant i ∈
{0, ..., len(π)-1}, denoted by π, i |= ϕ, by inductively considering subformulas as follows:

π, i |= x iff x ∈ πi;
π, i |= ¬x iff x 6∈ πi;
π, i |= (ϕ1 ∧ ϕ2) iff π, i |= ϕ1 and π, i |= ϕ2;
π, i |= (ϕ1 ∨ ϕ2) iff π, i |= ϕ1 or π, i |= ϕ2;
π, i |= X(ϕ′) iff i < len(π)-1 and π, i+ 1 |= ϕ′;
π, i |= Xw(ϕ′) iff i < len(π)-1 and π, i+ 1 |= ϕ′, or i = len(π)-1;
π, i |= G(ϕ′) iff ∀j with i ≤ j < len(π) it holds that π, j |= ϕ′;
π, i |= F(ϕ′) iff ∃j with i ≤ j < len(π) such that π, j |= ϕ′;
π, i |= (ϕ1 U ϕ2) iff ∃j with i ≤ j < len(π) such that π, j |= ϕ2 and

∀k with i ≤ k < j it holds that π, k |= ϕ1;
π, i |= (ϕ1 R ϕ2) iff ∀i ≤ j < len(π) it holds that π, j |= ϕ2; or

∃j with i ≤ j < len(π) such that π, j |= ϕ1 and
∀k with i ≤ k ≤ j it holds that π, k |= ϕ2;

Whenever π, 0 |= ϕ holds, we say that π is a model of ϕ. In this case, the formula ϕ is said to
be satisfiable. Note that if ϕ does not contain temporal operators, then π is a propositional formula
and π, 0 |= ϕ reduces to the notion of satisfiability for propositional logic. Moreover, note that, by
inspecting the above definition, it follows that every satisfiable LTLf formula ϕ admits a model π
such that πi ⊆ Vϕ, for each i ∈ {0, ..., len(π)-1}.

Example 5 Consider the formula ϕ of Example 4 and the model π of ϕ with len(π) = 6 and such
that π0={a}, π1={b}, π2={a, c}, π3={a}, π4={a, c}, π5={a}, and π6={a}. Figure 1 shows the
subformulas required to hold based on the inductive definition of satisfiability.

At the top-most level, we have π, 0 |= (a ∧ ¬b) and π, 0 |= (F((c ∧ G(a))) ∧ X(b)). From the
former condition, we derive a ∈ π0 and b /∈ π0. From the latter, we get that π, 0 |= F((c∧G(a))) and
π, 0 |= X(b). In its turn, π, 0 |= F((c ∧G(a))) implies the existence of a time instant j ∈ {0, ..., 6}
such that π, j |= (c ∧ G(a)). It can be checked that the property holds for j = 2 and j = 4: The
figure illustrates the case π, 4 |= (c∧G(a)), which implies π, 4 |= c, i.e., c ∈ π4, and π, 4 |= G(a),
i.e., a ∈ πj for all j ∈ {4, 5, 6}. Finally, π, 0 |= X(b) implies π, 1 |= b and, therefore, b ∈ π1. �

To keep notation simple, in some cases, parenthesis will be omitted when this does not originate
ambiguities in the application of the definition of satisfiability. In particular, we shall assume as
usual that, in the evaluation of Boolean expressions, conjunction has precedence over disjunction.
Furthermore, we often just write π |= ϕ whenever π, 0 |= ϕ holds.
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( F((c ^ G(a)) ^ X(b) )( F((c ^ G(a)) ^ X(b) )

⇡⇡
0 1 2 3 4 5 60 1 2 3 4 5 6

{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 0 |= (F((c ^ G(a)) ^ X(b))⇡, 0 |= (F((c ^ G(a)) ^ X(b))

( a ^ ¬b )( a ^ ¬b )

⇡⇡
0 1 2 3 4 5 60 1 2 3 4 5 6

{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 0 |= (a ^ ¬b)⇡, 0 |= (a ^ ¬b)

( c ^ G(a) )( c ^ G(a) )

⇡⇡
0 1 2 3 4 5 60 1 2 3 4 5 6

{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 0 |= F(c ^ G(a))⇡, 0 |= F(c ^ G(a))

bb

⇡⇡
0 1 2 3 4 5 60 1 2 3 4 5 6

{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 0 |= X(b)⇡, 0 |= X(b)

a 2 ⇡0a 2 ⇡0

0 1 2 3 4 5 60 1 2 3 4 5 6
{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 0 |= a⇡, 0 |= a

b /2 ⇡0b /2 ⇡0

0 1 2 3 4 5 60 1 2 3 4 5 6
{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 0 |= ¬b⇡, 0 |= ¬b

c 2 ⇡4c 2 ⇡4

⇡⇡
0 1 2 3 4 5 60 1 2 3 4 5 6

{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 4 |= c⇡, 4 |= c

b 2 ⇡1b 2 ⇡1

⇡⇡
0 1 2 3 4 5 60 1 2 3 4 5 6

{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 1 |= b⇡, 1 |= b

aa

⇡⇡
0 1 2 3 4 5 60 1 2 3 4 5 6

{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 4 |= G(a)⇡, 4 |= G(a)
a 2 ⇡5a 2 ⇡5

⇡⇡
0 1 2 3 4 5 60 1 2 3 4 5 6

{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 5 |= a⇡, 5 |= a

a 2 ⇡6a 2 ⇡6

⇡⇡
0 1 2 3 4 5 60 1 2 3 4 5 6

{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 6 |= a⇡, 6 |= a

a 2 ⇡4a 2 ⇡4

0 1 2 3 4 5 60 1 2 3 4 5 6
{a} {b}{a,c}{a}{a,c}{a} {a}{a} {b}{a,c}{a}{a,c}{a} {a}

⇡, 4 |= a⇡, 4 |= a

⇡⇡

⇡⇡

⇡⇡

Figure 1: An LTLf formula ϕ, a trace π, and the graphical representation of the application of the
inductive rules of the semantics for π, 0 |= ϕ.

2.2 From Finite Traces to Process Traces

LTL on Process Traces. A finite trace π is said to be a process trace if, for each time instant
i ∈ {0, ..., len(π)-1}, πi is a set consisting of one element only, i.e., |πi| = 1.

In addition to LTLf our goal is to study the logic LTLp, whose syntax coincides with the syntax
of LTLf and whose semantics differs only in the fact that satisfiability (denoted by |=p) is defined
with respect to process traces only. In the following, a process trace that is a model of an LTLp
formula is called a PT-model. For each T ⊆ {X,Xw,G,F,U,R}, the class 〈T 〉-LTLp is defined
analogously to the class 〈T 〉-LTLf .

Example 6 The model π of the formula ϕ in Example 5 is not a process trace. In fact, note that the
LTLp formula c ∧G(a) admits no PT-model, because it prescribes that, at the initial time instant, a
and c must simultaneously hold. �

An important application scenario for LTLp is in the context of the declarative specification
and verification of business processes. Indeed, nowadays, process management systems (PMSs)
represent a key technological infrastructure for developing advanced applications, where actors in-
teract with each other while carrying out a number of activities according to certain business rules.
PMSs provide support for designing the static aspects of the process, such as specifying prece-
dence relationships among activities, and controlling their actual execution. However, to benefit of
this support, designers are traditionally asked to define the process via some procedural language,
where all scenarios and paths of execution have to be explicitly considered. Clearly, this is time
consuming and might be even impossible when the process knowledge is incomplete or when the
underlying schema is loosely structured, as it happens in knowledge-intensive applications (Di Ci-
ccio, Marrella, & Russo, 2015). Moving from the above observation, recent research focused on
developing declarative platforms for process management, which are more flexible in that any pos-
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LTLp formula name of the DECLARE template

ϕ1 = F(a) ∧ G(¬a ∨ Xw(G(¬a))) exactly1(a)
ϕ2 = (¬s U a) ∨ G(¬s) precedence(a, s)
ϕ3 = (¬l U s) ∨ G(¬l) precedence(s, l)
ϕ4 = (¬o U s) ∨ G(¬o) precedence(s, o)
ϕ5 = (F(l) ∨ F(o)) ∧ (G(¬l) ∨ G(¬o)) exclusive-choice(l, o)
ϕ6 = G(¬l ∨ F(n)) response(l, n)
ϕ7 = G(¬o ∨ F(n)) response(o, n)

Table 1: The LTLp formulas associated with the constraints discussed in Example 7.

sible enactment is allowed unless a constraint, expressed in some formal logic, is known to hold and
explicitly forbids it.

A noticeable example of a logic-based language used to declaratively specify and reason about
business processes is DECLARE (Pesic & van der Aalst, 2006b). The language is based on a set
of templates, each prescribing a constraint among the activities over which it is defined. Each con-
straint is formalized through an LTL formula interpreted on finite traces. In particular, DECLARE
adopts an abstraction, which is rather popular in the business process and process mining commu-
nities, and according to which logs produced by transactional systems are just viewed as sequences
of activities. Accordingly, DECLARE assumes that, at each point in time, one and only one task
is executed, so that a process specification can be viewed as a set of LTLp formulas prescribing the
temporal properties that are required to hold over the allowed process traces.

Example 7 Consider the process for gastric cancer surgical treatments discussed by Rovani, Maggi,
de Leoni, and van der Aalst (2015). The process involves 5 activities, shortly denoted as a, s, l, o,
and n, on which the following constraints are defined: (1) the activity “First Hospital Admission”
(a), consisting of the registration of the data of the patient, must be performed exactly once; (2) a is
a prerequisite to subsequently proceed with the “Preoperative Screening” (s); (3 and 4) in its turn, s
must be performed before any surgical treatment, either “Laparoscopic Gastrectomy” (l) or “Open
Gastrectomy” (o); (5) only one of these two surgery treatments can be executed, and at least one of
them is required; (6 and 7) after a treatment is performed, a “Nursing” (n) period will be eventually
needed in order to monitor the patient.

Each of the above constraints, say i ∈ {1, ..., 7}, is equipped in DECLARE with an LTLp for-
mula ϕi defining its formal semantics, and a process trace complies with the whole declarative
specification if, and only if, it is a model of the conjunction Φ =

∧7
i=1 ϕi. For the sake of complete-

ness, the formulas associated with the constraints discussed above are reported in Table 1, together
with the name of the corresponding DECLARE template. �

An important advantage of DECLARE compared to classical procedural languages for business
processes is that, by reasoning on top of the logic specification, analysts can gain some useful insight
about important properties of the specifications. For instance, the problem of verifying whether a
given set of DECLARE constraints is consistent, i.e., whether there exists a process trace satisfying
all the given constraints, just reduces to the satisfiability problem for LTLp.

Example 8 Consider again the specification discussed in Example 7 and its associated formula
Φ =

∧7
i=1 ϕi. Observe that the specification is consistent. This is witnessed, for instance, by the
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process trace {a}, {s}, {l}, {n} which is a PT-model of Φ. Another process trace satisfying Φ is
{a}, {s}, {l}, {s}, {l}, {n}; in particular, note that in this case activities s and l occur more than
once. Similarly, {a}, {s}, {o}, {n}, {o}, {n} and {a}, {s}, {o}, {o}, {n} are two PT-models of Φ.
On the other hand, the trace {a}, {s}, {l}, {o}, {n} is not a PT-model of Φ, since it violates the
constraint defined by ϕ5 prescribing that l and o are mutually exclusive. �

It is worthwhile noticing that DECLARE constraints are designed in a way that focusing on
PT-models is crucial to preserve the intended semantics of the process specification. This clearly
emerges by looking at the above exemplification: If we interpret the formula Φ as an LTLf formula
(rather than as an LTLp formula), then the trace π with len(π) = 1 and π0 = {a, s, l, n} would
be allowed as a model, despite it completely flattens the temporal precedences that are arise in the
application at hand. It might even happen that a logic formula associated to a given specification
is satisfiable when interpreted over finite traces, but does not admit any model according to the
semantics of DECLARE. This is likely to occur when using DECLARE templates that involve the
next or the weak next operators, as illustrated below.

Example 9 Recall from the work of Pesic and van der Aalst (2006b) that chain-response(α, β)
is a DECLARE template prescribing that, whenever the activity α is executed, then the activity β
must be executed next. Its formal semantics can be given by the formula G(¬α ∨ X(β)).

Consider now a DECLARE specification consisting of the constraints exactly1(a), chain-
response(a, b) and chain-response(a, c)—the formula associated with the former constraint is
reported in Table 1. This specification is inconsistent according to DECLARE, since a is required
to hold at some time instant, and then b and c are simultaneously required to hold in the subsequent
time instant. On the other hand, a finite model satisfying the specification is just given by the trace
π = π0, π1 such that π0 = {a} and π1 = {b, c}. �

As it emerged from the above discussion, investigating the theoretical underpinnings of LTLp
and developing reasoning engines specifically tailored for that logic (rather than in general for LTLf )
would find prompt applications in the context of the growing body of literature related to the declar-
ative specification of business processes. In the following subsection, we start our study of LTLp by
focusing on some simple, yet useful properties.

2.3 Basic Properties of LTLp
This section analyses some basic properties of LTLp that will be exploited in some of the results

reported later in the paper.

2.3.1 NEGATION-FREE LTLp FORMULAS

An important peculiarity of LTLp is that, by focusing on PT-models, it might happen that we need to
consider variables outside the “active domain” Vϕ when we look for the satisfiability of a formula
ϕ. For instance, if π is a PT-model of the formula ¬a, then we must have |π0| = 1 and a 6∈
π0. However, the following result shows that if an LTLp formula ϕ is satisfiable, then we are
guaranteed about the existence of a PT-model π′ of ϕ such that the set of propositional variables
it contains is either a subset of Vϕ or it includes at most one variable, say p, outside Vϕ; that is,
(
⋃len(π′)-1
i=0 π′i \ Vϕ) ⊆ {p} always holds. To establish the result, we need a technical lemma which

is, however, interesting on its own, as it shows that negation does not increase the expressiveness of
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LTLp formulas. Formally, we exhibit a polynomial-time satisfiability preserving translation ξp from
arbitrary LTLp formulas to negation-free ones.

Lemma 10 Let ϕ be an LTLp formula and let V̂ = Vϕ∪{p} be a set of variables where p ∈ V \Vϕ.
For each variable x ∈ Vϕ, consider the formula φx consisting of the disjunction of all the variables
in V̂ excluding x, that is, φx =

∨
y∈V̂\{x} y. Let ξp(ϕ) be the negation-free LTLp formula obtained

from ϕ by applying the polynomial-time translation function ξp inductively defined as follows over
subformulas ψ of ϕ:

• If ψ = x for some variable x ∈ Vϕ, then ξp(ψ) = x;

• If ψ = ¬x for some variable x ∈ Vϕ, then ξp(ψ) = φx;

• If ψ = (ψ ∨ ψ′′), then ξp(ψ) = (ξp(ψ
′) ∨ ξp(ψ′′));

• If ψ = (ψ ∧ ψ′′), then ξp(ψ) = (ξp(ψ
′) ∧ ξp(ψ′′));

• If ψ = X(ψ′), then ξp(ψ) = X(ξp(ψ
′));

• If ψ = Xw(ψ′), then ξp(ψ) = Xw(ξp(ψ
′));

• If ψ = F(ψ′), then ξp(ψ) = F(ξp(ψ
′));

• If ψ = G(ψ′), then ξp(ψ) = G(ξp(ψ
′)).

• If ψ = (ψ′ U ψ′′), then ξp(ψ) = (ξp(ψ
′) U ξp(ψ

′′)).

• If ψ = (ψ′ R ψ′′), then ξp(ψ) = (ξp(ψ
′) R ξp(ψ

′′)).

Then, the following properties hold:

(1) Assume that π is a PT-model of ϕ. Then, a PT-model π′ of ξp(ϕ) can be built from π

in polynomial time such that len(π′) = len(π) and
⋃len(π′)-1
i=0 π′i ⊆ V̂ . That is, π′ is

defined over the variables in Vϕ possibly including the additional variable p.
(2) Assume that π′′ is a PT-model of ξp(ϕ). Then, π′′ is also a PT-model of ϕ.

Proof. We start by proving (1). The statement is not trivial when ϕ is satisfiable, so that we can take
some PT-model π of ϕ. Based on π, let us build the finite process trace π′, with len(π) = len(π′),
as follows: For each i ∈ {0, ..., len(π)-1}, we set π′i = πi if πi ⊆ Vϕ, while we set π′i = {p} if
πi ⊆ V \ Vϕ. Note that π′ is well-defined, since |πi| = 1 holds, for each i ∈ {0, ..., len(π)-1}. An
example of this construction is reported in Figure 2.

We now show that π′ is a PT-model of ξp(ϕ). To this end, consider any subformula ψ of ϕ and
any time instant i ∈ {0, ..., len(π)-1} such that π, i |=p ψ. We show that π′, i |=p ξp(ψ) holds, too.
This will entail that π′, 0 |=p ξp(ϕ). We proceed by structural induction on the subformulas ψ.

Base case. If ψ = x for some variable x ∈ Vϕ, then πi = {x} must hold. By construction, we
have that π′i = πi = {x} and ξp(ψ) = x. It follows that π′, i |=p ξp(ψ).

On the other hand, if ψ = ¬x, then x does not belong to πi and ξp(ψ) = φx =
∨
y∈V̂\{x} y. We

distinguish two cases. If πi ⊆ Vϕ, then we have π′i = πi = {y} for some y ∈ Vϕ \ {x}. If πi 6⊆ Vϕ,
then we have πi = {p} ⊆ V̂ \ Vϕ. In both cases, we conclude that π′, i |=p ξp(ψ) holds.

Inductive step. Assume that the property holds over each subformula of ψ and assume that i is
a time instant such that π, i |=p ψ. We show that π′, i |=p ξp(ψ) holds, too.
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{c}{c} {d}{d}' = (¬a ^ ¬b) ^ X(¬a ^ ¬b) ^ F(b)' = (¬a ^ ¬b) ^ X(¬a ^ ¬b) ^ F(b)

'̂ = ((b _ p) ^ (a _ p)) ^ X((b _ p) ^ (a _ p)) ^ F(b)'̂ = ((b _ p) ^ (a _ p)) ^ X((b _ p) ^ (a _ p)) ^ F(b)

⇡ =⇡ =

⇡0=⇡0=

⇠p⇠p

{b}{b}

{p}{p}{p}{p} {b}{b}

Figure 2: An LTLp formula ϕ, a model π, the LTLp formula ξp(ϕ), and the model π′ built according
to the construction in the proof of Lemma 10. Note that Vϕ = {a, b}, π0 = {c} ⊆ V \Vϕ
and π1 = {d} ⊆ V \ Vϕ, so that π′0 = π′1 = {p} holds.

• If ψ = (ψ′ ∨ ψ′′), then ξp(ψ) = (ξp(ψ
′) ∨ ξp(ψ′′)). By the inductive hypothesis on the

subformulas ψ′ and ψ′′, we know that π′, i |=p ξp(ψ
′) holds whenever π, i |=p ψ′; and

that π′, i |=p ξp(ψ
′′) holds whenever π, i |=p ψ

′′. Hence, we can derive π′, i |=p ξp(ψ).
The same line of reasoning applies to the case where ψ = (ψ′ ∧ ψ′′), after noticing that
ξp(ψ) = (ξp(ψ

′) ∧ ξp(ψ′′)) holds in that case.

• If ψ = X(ψ′), then π, i |=p ψ means that π, i+ 1 |=p ψ
′. By the inductive hypothesis on the

subformula ψ′, we know that π′, (i+1) |=p ξp(ψ
′). Hence, we derive that π′, i |=p X(ξp(ψ

′)).
By definition of ξp, this entails that π′, i |=p ξp(X(ψ′)).

• If ψ = Xw(ψ′), then π, i |= ψ means that either π, i + 1 |=p ψ′ and i < len(π)-1, or
i = len(π)-1. The first case is similar to that of X. As for the second one, the result follows
directly by the observation that len(π′) = len(π).

• If ψ = F(ψ′), then π, i |=p ψ implies the existence of a time instant i′ ∈ {i, ..., len(π)-1}
such that π, i′ |= ψ′. By the inductive hypothesis, we know that π′, i′ |=p ξp(ψ

′). Hence,
π′, i |=p F(ξp(ψ

′)). By definition of ξp, this entails that π′, i |=p ξp(F(ψ′)).

• If ψ = G(ψ′), then π, i |=p ψ implies that for each time instant i′ ∈ {i, ..., len(π)-1}, we
have that π, i′ |= ψ′. By the inductive hypothesis, we know that π′, i′ |=p ξp(ψ

′) holds, and
we conclude that π′, i |=p G(ξp(ψ

′)). By definition of ξp, this entails that π′, i |=p ξp(G(ψ′)).

• If ψ = (ψ′ U ψ′′), then π, i |=p ψ implies that there is a time instant i′ ≥ i such that π, i′ |=
ψ′′ and for each time instant i′′ ∈ {i, ..., i′-1} we have that π, i′′ |= ψ′. By the inductive
hypothesis, we know that π′, i′ |=p ξp(ψ

′′) and π′, i′′ |=p ξp(ψ
′), for each i′′ ∈ {i, ..., i′-1},

hold. Hence, we conclude that π′, i |=p (ξp(ψ
′) U ξp(ψ

′′)) holds. By definition of ξp, this
entails that π′, i |=p ξp(ψ

′ U ψ′′).

• If ψ = (ψ′ R ψ′′), then π, i |=p ψ implies either that π, i′ |=p ψ
′′ for all i′ ≥ i, or there is

a time instant i′′′ ≥ i such that π, i′′′ |=p ψ
′ and for each time instant i′′ ∈ {i, ..., i′′′} we

have that π, i′′ |=p ψ
′′. In the first case, by the inductive hypothesis, we know that π′, i′ |=p

ξp(ψ
′′) holds for each i′ ≥ i and, hence, we conclude that π′, i |=p (ξp(ψ

′) R ξp(ψ
′′))

holds. In the second case, by the inductive hypothesis, we know that π′, i′′′ |=p ξp(ψ
′) and

π′, i′′ |=p ξp(ψ
′′), for each i′′ ∈ {i, ..., i′′′}, hold. Hence, again, we conclude that π′, i |=p

(ξp(ψ
′) R ξp(ψ

′′)) holds. By definition of ξp, this entails that π′, i |=p ξp(ψ
′ R ψ′′).
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Let us now move to show (2). Note that combined with (1), the result will imply that ϕ is satis-
fiable if, and only if, ξp(ϕ) is satisfiable. Assume that π′′ is a PT-model of ξp(ϕ). We have to show
that π′′ is also a PT-model of ϕ. We proceed again by structural induction by considering, this time,
every subformula ξp(ψ) of ξp(ϕ) and by showing that, for each time instant i ∈ {0, ..., len(π′′)-1}
such that π′′, i |=p ξp(ψ), we have that π′′, i |=p ψ. Eventually, this will entail that π′′, 0 |=p ϕ, as
we know that π′′, 0 |=p ξp(ϕ).

Base case. If ξp(ψ) = x for some variable x ∈ Vϕ, then π′′i = {x} and ψ = x must hold. It
follows that π′′, i |=p ψ. On the other hand, if ξp(ψ) = φx =

∨
y∈V̂\{x} y, then either π′′i = {y},

for some variable y ∈ Vϕ \ {x} or π′′i = {p}; indeed, note that given our focus on process traces,
the whole disjunction φx actually behaves as an exclusive choice among the variables on which it is
defined. Since ψ = ¬x, then π′′, i |=p ψ holds.

Inductive step. Assume that the property holds over each subformula of ξp(ψ) and assume that
i is a time instant such that π′′, i |=p ξp(ψ). We show that π′′, i |=p ψ holds, too.

• If ξp(ψ) = ξp(ψ
′ ∨ ψ′′), then we have that ξp(ψ) = (ξp(ψ

′) ∨ ξp(ψ′′)), by definition of ξp.
Hence, π′′, i |=p ξp(ψ) directly entails, by induction on ψ′ and ψ′′, that π′′, i |=p ψ

′ ∨ ψ′′.
The same reasoning applies to the case where ξp(ψ) = ξp(ψ

′ ∧ ψ′′).

• If ξp(ψ) = ξp(X(ψ′)), then we have that ξp(ψ) = X(ξp(ψ
′)), by definition of ξp. Hence,

π′′, i |=p ξp(ψ) implies that π′′, (i + 1) |=p ξp(ψ
′). By the inductive hypothesis, we know

that π′′, (i+ 1) |=p ψ
′. Hence, we derive that π′′, i |=p X(ψ′).

• If ξp(ψ) = ξp(Xw(ψ′)), then we have that ξp(ψ) = Xw(ξp(ψ
′)), by definition of ξp. Hence,

π′′, i |=p ξp(ψ) means that either π′′, (i+1) |=p ξp(ψ
′) and i < len(π′′)-1, or i = len(π′′)-1.

In the latter case, the result is immediate. In the former case, the result can be proven with
the same line of reasoning used when analyzing X.

• If ξp(ψ) = ξp(F(ψ′)), then we have that ξp(ψ) = F(ξp(ψ
′)), by definition of ξp. Hence,

π′′, i |=p ξp(ψ) implies the existence of a time instant i′ ∈ {i, ..., len(π′′)-1} such that
π′′, i′ |=p ξp(ψ

′). By the inductive hypothesis, we know that π′′, i′ |=p ψ
′. Hence, we derive

that π′′, i |=p F(ψ′).

• If ξp(ψ) = ξp(G(ψ′)), then we have that ξp(ψ) = G(ξp(ψ
′)), by definition of ξp. Hence,

π′′, i |=p ξp(ψ) implies that for each time instant i′ ∈ {i, ..., len(π′′)-1}, we have that
π′′, i′ |=p ξp(ψ

′). By the inductive hypothesis, we know that π′′, i′ |=p ψ
′ holds and, we

conclude that π′′, i |=p G(ψ′).

• If ξp(ψ) = ξp(ψ
′ U ψ′′), then we actually have that ξp(ψ) = (ξp(ψ

′) U ξp(ψ
′′)), by definition

of ξp. Hence, π′′, i |=p ξp(ψ) implies that there is a time instant i′ ≥ i such that π′′, i′ |=p

ξp(ψ
′′) and, for each time instant i′′ ∈ {i, ..., i′-1}, we have that π′′, i′′ |=p ξp(ψ

′). By the
inductive hypothesis, we know that π′′, i′ |=p ψ

′′ and π′′, i′′ |=p ψ
′, for each i′′ ∈ {i, ..., i′-1},

hold. Hence, we conclude that π′′, i |=p (ψ′ U ψ′′) holds.

• If ξp(ψ) = ξp(ψ
′ R ψ′′), then we actually have that ξp(ψ) = (ξp(ψ

′) R ξp(ψ
′′)), by definition

of ξp. Hence, π′′, i |=p ξp(ψ) implies either that that π′′, i′ |=p ξp(ψ
′′) for each time instant

i′ ≥ i, or that there is a time instant i′′′ ≥ i such that π′′, i′′′ |=p ξp(ψ
′) and, for each time

instant i′′ ∈ {i, ..., i′′′}, we have that π′′, i′′ |=p ξp(ψ
′′). In the first case, by the inductive
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hypothesis, we know that π′′, i′ |=p ψ
′′ for each i′ ≥ i, holds. In the second case, by the

inductive hypothesis, we know that π′′, i′′′ |=p ψ
′ and π′′, i′′ |=p ψ

′′, for each i′′ ∈ {i, ..., i′′′},
hold. Hence, we conclude that π′′, i |=p (ψ′ R ψ′′) holds. 2

We have already noticed in the proof of the above result that ϕ is satisfiable if, and only if, ξp(ϕ)
is satisfiable. In fact, by combining points (1) and (2) in Lemma 10, it directly follows the desired
characterization on the PT-models of LTLp formulas.

Corollary 11 Letϕ be an LTLp formula and let V̂ = Vϕ∪{p} be a set of variables where p ∈ V\Vϕ.
If ϕ is satisfiable, then there exists a PT-model π′ of ϕ such that

⋃len(π′)-1
i=0 π′i ⊆ V̂ .

2.3.2 LTL FORMULAS AND NEGATION NORMAL FORM

We leave the section by recalling that, throughout the paper, we shall consider (LTLf and LTLp)
formulas ϕ in negation normal form. This is done without loss of generality. Indeed, assume that a
formula ϕ is given where subformulas having the form ¬ϕ′ are allowed, with the intended meaning
that π, i |= ¬ϕ′ holds if, and only if, π, i |= ϕ′ does not hold. Then, the following properties—that
directly follow by the semantics—can be used to transform ϕ into an equivalent formula in negation
normal form:

π, i |= ¬(ϕ1 ∧ ϕ2) iff π, i |= (¬ϕ1) ∨ (¬ϕ2);
π, i |= ¬(ϕ1 ∨ ϕ2) iff π, i |= (¬ϕ1) ∧ (¬ϕ2);
π, i |= ¬(X(ϕ′)) iff π, i |= Xw(¬ϕ′);
π, i |= ¬(Xw(ϕ′)) iff π, i |= X(¬ϕ′);
π, i |= ¬(G(ϕ′)) iff π, i |= F(¬ϕ′);
π, i |= ¬(F(ϕ′)) iff π, i |= G(¬ϕ′);
π, i |= ¬(ϕ1 U ϕ2) iff π, i |= (¬ϕ1)R(¬ϕ2);
π, i |= ¬(ϕ1 R ϕ2) iff π, i |= (¬ϕ1)U(¬ϕ2);

3. Useful Relationships between LTLp and LTLf
In this section, we study mechanisms to “reformulate” certain LTLp fragments in terms of LTLf for-
mulas, and vice versa. More formally, all reformulations are actually polynomial-time satisfiability
preserving translations. The results are of interest in their own, as they shed lights on relationships
that exist between LTLp and LTLf . Furthermore, they will play a key role to simplify our subsequent
elaborations and, in particular, the complexity analysis of LTLp.

3.1 From LTLp to LTLf
Let us first address the question of whether there exists a polynomial-time satisfiability preserving
translation from LTLp to LTLf . With this respect, for any negation-free LTLp formula ϕ, the reader
might immediately notice that the following LTLf formula

ϕ ∧G(
∨
y∈Vϕ

(y ∧
∧

y′∈Vϕ\{y}

¬y′))

precisely encodes the semantics of process traces.
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Dealing with an arbitrary LTLp formula ϕ is slightly more complex. Indeed, we have to exploit
the properties pointed out in Section 2.3 and, in particular, Corollary 11, guaranteeing that, as far
as the satisfiability is concerned, we have to additionally consider one variable, say p, not contained
in Vϕ. The result below incorporates this observation and exhibits a polynomial-time satisfiability
preserving translation ξpf , which moreover is not based on the use of the temporal operator G.

Theorem 12 Let ϕ be an LTLp formula and let V̂ = Vϕ∪{p} be a set of variables where p ∈ V\Vϕ.
For each literal ` ∈ {x,¬x}, where x is any variable in Vϕ, consider the following formula:

φ` = ` ∧

∨
y∈V̂

(y ∧
∧

y′∈V̂\{y}

¬y′)

 .

Let ξpf (ϕ) be the LTLf formula obtained from ϕ by applying the polynomial-time translation func-
tion ξpf inductively defined as follows over subformulas ψ of ϕ:

• If ψ = x for some variable x ∈ Vϕ, then ξpf (ψ) = φx;

• If ψ = ¬x for some variable x ∈ Vϕ, then ξpf (ψ) = φ¬x;

• If ψ = (ψ ∨ ψ′′), then ξpf (ψ) = (ξpf (ψ′) ∨ ξpf (ψ′′));

• If ψ = (ψ ∧ ψ′′), then ξpf (ψ) = (ξpf (ψ′) ∧ ξpf (ψ′′));

• If ψ = X(ψ′), then ξpf (ψ) = X(ξpf (ψ′));

• If ψ = Xw(ψ′), then ξpf (ψ) = Xw(ξpf (ψ′));

• If ψ = F(ψ′), then ξpf (ψ) = F(ξpf (ψ′));

• If ψ = G(ψ′), then ξpf (ψ) = G(ξpf (ψ′)).

• If ψ = (ψ′ U ψ′′), then ξpf (ψ) = (ξpf (ψ′) U ξpf (ψ′′)).

• If ψ = (ψ′ R ψ′′), then ξpf (ψ) = (ξpf (ψ′) R ξpf (ψ′′)).

Then, the following properties hold:

(1) Assume that π′ is a PT-model of ϕ (by Corollary 11, without loss of generality) such that⋃len(π′)-1
i=0 π′i ⊆ V̂ . Then, π′ is a model of ξpf (ϕ).

(2) Assume that π′′ is a model of ξpf (ϕ). Then, a PT-model π′′′ of ϕ can be built from π′′ in
polynomial time such that len(π′′′) = len(π′′).

Proof. The statement can be proven with arguments that are similar to those used in the proof of
Lemma 10—details are provided below, for the sake of completeness.

We start by proving (1). Assume that π′ is a PT-model of ϕ. We have to show that π′ is also a
model of ξpf (ϕ). We proceed by structural induction by considering every subformula ψ of ϕ and
by showing that, for each time instant i ∈ {0, ..., len(π′)-1} such that π′, i |=p ψ, we have that
π′, i |= ξpf (ψ). This will entail that π′, 0 |= ξpf (ϕ).
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Base case. If ψ = x for some variable x ∈ Vϕ, then we have ξpf (ψ) = x ∧ ∨y∈V̂(y ∧∧
y′∈V̂\{y} ¬y′). Since π′, i |=p ψ holds, we have that π′i = {x}. Thus, π′, i |= ξpf (ψ).

If ψ = ¬x, then we have ξpf (ψ) = ¬x ∧ ∨y∈V̂(y ∧ ∧y′∈V̂\{y} ¬y′). Since π′, i |=p ψ holds,
we have that π′i = {z}, for some variable z ∈ Vϕ ∪ {p} \ {x}. Thus, π′, i |= ξpf (ψ).

Inductive step. Assume that the property holds over each subformula of ψ and assume that i is
a time instant such that π′, i |=p ψ. We show that π′, i |= ξpf (ψ) holds, too.

• If ψ = ψ′∨ψ′′, then we have that ξpf (ψ) = (ξpf (ψ′)∨ξpf (ψ′′)), by definition of ξpf . Hence,
π′, i |=p ψ directly entails, by induction on ψ′ and ψ′′, that π′, i |= (ξpf (ψ′) ∨ ξpf (ψ′′)). The
same reasoning applies to the case where ψ = ψ′ ∧ ψ′′.

• If ψ = X(ψ′), then we have that ξpf (ψ) = X(ξpf (ψ′)), by definition of ξpf . Hence, π′, i |=p

ψ implies that π′, (i + 1) |=p ψ
′. By the inductive hypothesis, we know that π′, (i + 1) |=

ξpf (ψ′). Hence, we derive that π′, i |= X(ξpf (ψ′)) and, thus, π′, i |= ξpf (X(ψ′)).

• If ψ = Xw(ψ′), then we have that ξpf (ψ) = Xw(ξpf (ψ′)), by definition of ξpf . Hence,
π′, i |=p ψ means that either π′, (i + 1) |=p ψ

′ and i < len(π′)-1, or i = len(π′)-1. In the
latter case, the result directly follows. In the former case, the result can be proven with the
same line of reasoning used when analyzing X.

• If ψ = F(ψ′), then we actually have that ξpf (ψ) = F(ξpf (ψ′)), by definition of ξpf . Hence,
π′, i |=p ψ implies the existence of a time instant i′ ∈ {i, ..., len(π′)-1} such that π′, i′ |=p ψ

′.
By the inductive hypothesis, we know that π′, i′ |= ξpf (ψ′). Hence, we derive that π′, i |=
F(ξpf (ψ′) and, thus, π′, i |= ξpf (F(ψ′)).

• If ψ = G(ψ′), then we have that ξpf (ψ) = G(ξpf (ψ′)), by definition of ξpf . Hence, π′, i |=p

ψ implies that for each time instant i′ ∈ {i, ..., len(π′)-1}, we have that π′, i′ |=p ψ
′. By

the inductive hypothesis, for such time instants i′, we know that π′, i′ |= ξpf (ψ′) holds. We
conclude that π′, i |= G(ξpf (ψ′)) and, thus, π′, i |= ξpf (G(ψ′)).

• If ψ = (ψ′ U ψ′′), then we have that ξpf (ψ) = (ξpf (ψ′) U ξpf (ψ′′)), by definition of ξpf .
Hence, π′, i |=p ψ implies that there is a time instant i′ ≥ i such that π′, i′ |=p ψ

′′ and, for
each time instant i′′ ∈ {i, ..., i′-1}, we have that π′, i′′ |=p ψ

′. By the inductive hypothesis,
we know that π′, i′ |= ξpf (ψ′′) and π′, i′′ |= ξpf (ψ′), for each i′′ ∈ {i, ..., i′-1}, hold. Hence,
we conclude that π′, i |= (ξpf (ψ′) U ξpf (ψ′′)) holds and, thus, π′, i |= ξpf (ψ′ U ψ′′).

• If ψ = (ψ′ R ψ′′), then we have that ξpf (ψ) = (ξpf (ψ′) R ξpf (ψ′′)), by definition of ξpf .
Now, π′, i |=p ψ implies that either π′, i′ |=p ψ

′′ for each time instant i′ ≥ i, or there is
a time instant i′′′ ≥ i such that π′, i′′′ |=p ψ

′ and, for each time instant i′′ ∈ {i, ..., i′′′},
we have that π′, i′′ |=p ψ′′. In the first case, by the inductive hypothesis, we know that
π′, i′ |= ξpf (ψ′′), for each i′ ≥ i, holds. In the second case, by the inductive hypothesis, we
know that π′, i′′′ |= ξpf (ψ′) and π′, i′′ |= ξpf (ψ′′), for each i′′ ∈ {i, ..., i′′′}, hold. Hence, we
conclude that π′, i |= (ξpf (ψ′) R ξpf (ψ′′)) holds and, thus, π′, i |= ξpf (ψ′ R ψ′′).

Now, we move to prove (2). Let π′′ be a model of ξpf (ϕ) and let π′′′ = π′′′0 , ..., π
′′′
len(π′′)-1 be the

trace such that π′′′i = π′′i if |π′′i | = 1 and π′′′i = {p} if |π′′i | 6= 1, for each i ∈ {0, ..., len(π′′)−1}. We
proceed by structural induction by considering every subformula ξpf (ψ) of ξpf (ϕ) and by showing
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that, for each time instant i ∈ {0, ..., len(π′′)-1} such that π′′, i |= ξpf (ψ), we have that π′′′, i |=p ψ.
This will entail that π′′′, 0 |=p ϕ.

Base case. If ξpf (ψ) = x ∧ ∨y∈V̂(y ∧ ∧y′∈V̂\{y} ¬y′) holds for some variable x ∈ Vϕ, then
ψ = x. Since π′′, i |= ξpf (ψ), we have π′′i = {x} and, hence, π′′′i = {x}. Thus, π′′′, i |=p ψ.

If ξpf (ψ) = ¬x ∧ ∨y∈V̂(y ∧ ∧y′∈V̂\{y} ¬y′), then ψ = ¬x. Since π′′, i |= ξpf (ψ) holds, we
can have two cases: either π′′i = {z} for some variable z ∈ Vϕ \ {x}, or π′i = {p}. In both cases
π′′′i = π′′i and we can conclude that π′′′, i |=p ¬x holds.

Inductive step. Assume that the property holds over each subformula of ξpf (ψ) and assume that
i is a time instant such that π′′, i |= ξpf (ψ). We show that π′′, i |=p ψ holds, too.

• If ξpf (ψ) = ξpf (ψ′ ∨ ψ′′), then we have that ξpf (ψ) = (ξpf (ψ′) ∨ ξpf (ψ′′)), by definition of
ξpf . Hence, π′′, i |= ξpf (ψ) directly entails, by induction on ψ′ and ψ′′, that π′′′, i |=p ψ

′∨ψ′′.
The same reasoning applies to the case where ξpf (ψ) = ξpf (ψ′ ∧ ψ′′).

• If ξpf (ψ) = ξpf (X(ψ′)), then we have that ξpf (ψ) = X(ξpf (ψ′)), by definition of ξpf . Hence,
π′′, i |= ξpf (ψ) implies that π′′, (i + 1) |= ξpf (ψ′). By the inductive hypothesis, we know
that π′′′, (i+ 1) |=p ψ

′. Hence, we derive that π′′′, i |=p X(ψ).

• If ξpf (ψ) = ξpf (Xw(ψ′)), then we have that ξpf (ψ) = Xw(ξpf (ψ′)), by definition of ξpf .
Hence, π′′, i |= ξpf (ψ) means that either π′′, (i + 1) |= ξpf (ψ′) and i < len(π′′)-1, or
i = len(π′′)-1. In the latter case, the result directly follows. In the former case, the result can
be proven with the same line of reasoning used when analyzing X.

• If ξpf (ψ) = ξpf (F(ψ′)), then we have that ξpf (ψ) = F(ξpf (ψ′)), by definition of ξpf . Hence,
π′′, i |= ξpf (ψ) implies the existence of a time instant i′ ∈ {i, ..., len(π′′)-1} such that
π′′, i′ |=p ξpf (ψ′). By the inductive hypothesis, we know that π′′′, i′ |=p ψ

′. Hence, we
derive that π′′′, i |=p F(ψ′).

• If ξpf (ψ) = ξpf (G(ψ′)), then we have that ξpf (ψ) = G(ξpf (ψ′)), by definition of ξpf .
Hence, π′′, i |= ξpf (ψ) implies that for each time instant i′ ∈ {i, ..., len(π′′)-1}, we have
that π′′, i′ |= ξpf (ψ′). By the inductive hypothesis, we know that π′′′, i′ |=p ψ

′ holds and, we
conclude that π′′′, i |=p G(ψ′).

• If ξpf (ψ) = ξpf (ψ′ U ψ′′), then we have that ξpf (ψ) = (ξpf (ψ′) U ξpf (ψ′′)), by definition
of ξpf . Hence, π′′, i |= ξpf (ψ) implies that there is a time instant i′ ≥ i such that π′′, i′ |=
ξpf (ψ′′) and, for each time instant i′′ ∈ {i, ..., i′-1}, we have that π′′, i′′ |= ξpf (ψ′). By
the inductive hypothesis, we know that π′′′, i′ |=p ψ′′ and π′′′, i′′ |=p ψ′, for each i′′ ∈
{i, ..., i′-1}, hold. Hence, we conclude that π′′′, i |=p (ψ′ U ψ′′) holds.

• If ξpf (ψ) = ξpf (ψ′ R ψ′′), then we have that ξpf (ψ) = (ξpf (ψ′) R ξpf (ψ′′)), by definition
of ξpf . Hence, π′′, i |= ξpf (ψ) implies that either π′′, i′ |= ξpf (ψ′′) for each time instant
i′ ≥ i, or there is a time instant i′′′ ≥ i such that π′′, i′′′ |= ξpf (ψ′) and, for each time instant
i′′ ∈ {i, ..., i′′′}, we have that π′′, i′′ |= ξpf (ψ′′). In the first case, by the inductive hypotesis,
we know that π′′′, i′ |=p ψ

′′, for each i′ ≥ i, holds. In the second case, by the inductive
hypothesis, we know that π′′′, i′′′ |=p ψ

′′ and π′′′, i′′ |=p ψ
′, for each i′′ ∈ {i, ..., i′′′}, hold.

Hence, we conclude that π′′′, i |=p (ψ′ R ψ′′) holds.
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2

Note that the above result immediately provides us with upper bounds on the complexity of rea-
soning about LTLp, as soon as the complexity of reasoning about LTLf is known. In particular, the
following is immediate after the work of De Giacomo and Vardi (2013), showing that satisfiability
of LTLf formulas is in PSPACE.

Corollary 13 Satisfiability of LTLp formulas is in PSPACE.

In addition, for all fragments defined with T ⊆ {X,Xw,G,F,U,R}, upper bounds on the com-
plexity of 〈T 〉-LTLp formulas will derive after we establish in Section 5 the corresponding results
for LTLf restricted on the same syntactic fragment defined by T . In fact, the translation ξpf of
Theorem 12 produces an LTLf formula where negation occurs, whereas we know from Lemma 10
that negation can be removed from LTLp formulas without altering their expressiveness (and com-
plexity). This suggests that LTLp and LTLf might behave in a completely different way if restricted
over negation-free fragments—this will be confirmed by our analysis in Section 5 (see Figure 4).

3.2 From LTLf to LTLp
We now look for polynomial-time satisfiability preserving translations from LTLf to LTLp. The
goal is to assess whether we can establish lower bounds on the complexity of reasoning about LTLp,
based on the knowledge of the complexity of LTLf . Combined with Theorem 5 such lower bounds
would immediately characterize the complexity of LTLp in terms of that of LTLf . As a matter of
fact, however, in the analysis that follows we are able to exhibit translations only for certain syntactic
fragments defined in terms of the temporal operators that are allowed. In Section 5, we shall show
that this is not by chance, since it will emerge that the two logics have different computational
properties on some fragments (see, again, Figure 4).

We start by considering classes of LTLp formulas where the operator X is allowed. In this
case, we can exhibit a polynomial-time satisfiability preserving translation ξfp that, given an LTLf
formula ϕ, returns the LTLp formula ξfp(ϕ) that forces each state of any finite model of ϕ to
be encoded as a succession of m states each one being univocally associated with one of the m
variables on which ϕ is defined. The translation is more complex than those discussed so far (in
Lemma 10 and Theorem 12), so that we just state its existence in the statement of the result below,
while deferring the details of its construction to the proof.

Theorem 14 A polynomial-time (satisfiability preserving) translation ξfp exists that, given a 〈T 〉-
LTLf formula ϕ, returns a negation-free 〈T ∪ {X}〉-LTLp formula ξfp(ϕ) enjoying the following
properties:

(1) Assume that π is a model of ϕ. Then, a PT-model π′ of ξfp(ϕ) can be built from π in
polynomial time such that len(π′) = len(π)× (|Vϕ|+ 1);

(2) Assume that π′′ is a PT-model of ξfp(ϕ). Then, a model π′′′ of ϕ can be built from π′′ in
polynomial time such that len(π′′′) ≤ len(π′′).

Proof. Let ϕ be a 〈T 〉-LTLf formula with Vϕ = {x1, ..., xm}. Based on ϕ, we build a negation-free
〈T ∪ {X}〉-LTLp formula ξfp(ϕ) over the set of variables

Vξfp(ϕ) = {xj , x̄j | 1 ≤ j ≤ m} ∪ {t}.
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Intuitively, each variable xj is associated with its overlined version x̄j , standing for its negation.
In addition, t is a special variable that will keep track of the time instants for the models of ϕ.

Consider the 〈T ∪{X}〉-LTLp formula A that enforces the distinguished variable t to hold at the
current time instant, and that enforces either xj or x̄j to hold at the j-th time instant following the
current one, with j ∈ {1, ...,m}:

A = t ∧∧m
j=1 Xj(xj ∨ x̄j),

where Xj(ϕ′) denotes the repeated application of X on a formula ϕ′ for a total of j applications.
Note that if πA is a trace such that πA |=p A, then we have πA0 = {t} and |πAj ∩ {xj , x̄j}| = 1,

for each j ∈ {1, ...,m}. Hence, πA can be intuitively meant to encode a truth assignment for the
variables in {x1, ..., xm} such that xj evaluates true in the assignment if, and only if, πAj |= xj .

Equipped with the above notation, we can now move to detail the construction of ξfp(ϕ). For-
mally, we define ξfp(ϕ) as the formulaA∧τ(ϕ), where τ is the function inductively built as follows
over subformulas ψ of ϕ:

• If ψ = xj for some variable xj ∈ Vϕ, then τ(ψ) = Xj(xj);

• If ψ = ¬xj for some variable xj ∈ Vϕ, then τ(ψ) = Xj(x̄j);

• If ψ = (ψ′ ∧ ψ′′), then τ(ψ) = (τ(ψ′) ∧ τ(ψ′′));

• If ψ = (ψ′ ∨ ψ′′), then τ(ψ) = (τ(ψ′) ∨ τ(ψ′′));

• If ψ = X(ψ′), then τ(ψ) = Xm+1(A ∧ τ(ψ′));

• If ψ = Xw(ψ′), then τ(ψ) = XmXw(A ∧ τ(ψ′));

• If ψ = F(ψ′), then τ(ψ) = F(A ∧ τ(ψ′));

• If ψ = G(ψ′), then τ(ψ) = G(
∨
x∈Vξfp(ϕ)\{t}

x ∨ (A ∧ τ(ψ′))).

• If ψ = (ψ′ U ψ′′), then τ(ψ) = ((
∨
x∈Vξfp(ϕ)\{t}

x ∨ (A ∧ τ(ψ′))) U (A ∧ τ(ψ′′))).

• If ψ = (ψ′ R ψ′′), then τ(ψ) = ((
∨
x∈Vξfp(ϕ)\{t}

x ∨ (A ∧ τ(ψ′))) R (A ∧ τ(ψ′′))).

Note that ξfp(ϕ) can be built in polynomial time. In particular, note that the size of ξfp(ϕ) is at
most quadratic in the size of ϕ. Then, to conclude we show that the two properties pointed out in
the statement hold.

Proof of (1). Let π be a model of ϕ, and consider the trace π′ with len(π′) = len(π)×(m+1)
defined as follows. For each time instant i ∈ {0, ..., len(π)-1}, if xj is a variable in πi (respectively,
is not in πi), then xj (respectively, x̄j) is in π′i×(m+1)+j . No further variable is in πi×(m+1)+j .
For each time instant i ∈ {0, ..., len(π)-1}, the variable t is in π′i×(m+1). No further variable
is in π′i×(m+1). Note that, by construction, π′, i × (m + 1) |= A holds, for each time instant
i ∈ {0, ..., len(π)-1}. We will show that π′ is a PT-model of ξfp(ϕ). To this end, consider any
subformula ψ of ϕ that is required to hold (in the recursive definition of satisfiability for ϕ) at some
time instant i ∈ {0, ..., len(π)-1}, i.e., π, i |= ψ. Then, we shall show that π′, i × (m + 1) |=p

A ∧ τ(ψ) holds. This will entail that π′, 0 |=p ξfp(ϕ). We proceed by structural induction.
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Base case. If ψ = xj (respectively, ψ = ¬xj), then xj belongs (respectively, does not belong)
to πi. Hence, by construction, we have that π′, i × (m + 1) |=p A ∧ Xj(xj) (respectively, π′, i ×
(m+ 1) |=p A ∧ Xj(x̄j)).

Inductive step. Assume that the property holds over each subformula of ψ. If ψ = (ψ′ ∧ ψ′′) or
ψ = (ψ′ ∨ ψ′′), then the property clearly holds on ψ, too.

If ψ = X(ψ′), then π, i |= ψ means that π, i + 1 |= ψ′. By the inductive hypothesis, we know
that π′, (i+1)×(m+1) |=p A∧τ(ψ′). Hence, we derive that π′, i×(m+1) |=p Xm+1(A∧τ(ψ′)).

Ifψ = Xw(ψ′), then π, i |= ψ means that either π, i+1 |= ψ′ and i < len(π)-1, or i = len(π)-1.
The first case is similar to that of X. As for the second one, we know that len(π′) = len(π)×(m+1)
and thus, if i = len(π)-1 then i×(m+1)+m is the last time instant of π′ and π′, i×(m+1)+m |=p

Xw(A ∧ τ(ψ′)). Hence, we derive that π′, i× (m+ 1) |=p XmXw(A ∧ τ(ψ′))).
If ψ = F(ψ′), then π, i |= ψ implies the existence of a time instant i′ ∈ {i, ..., len(π)-1} such

that π, i′ |= ψ′. By the inductive hypothesis, we know that π′, i′ × (m+ 1) |=p A ∧ τ(ψ′). Hence,
π′, i× (m+ 1) |=p F(A ∧ τ(ψ′)).

If ψ = G(ψ′), then π, i |= ψ implies that for each time instant i′ ∈ {i, ..., len(π)-1}, we have
that π, i′ |= ψ′. By the inductive hypothesis, we know that π′, i′ × (m+ 1) |=p A ∧ τ(ψ′) holds. If
i′′ ∈ {i×(m+1), ...., len(π′)-1} is a time instant for which there is no i′ ≥ 0 with i′′ = i′×(m+1),
then π′i′′ contains at least one variable in Vξfp(ϕ) \ {t}. So, π′, i′′ |=p

∨
x∈Vξfp(ϕ)\{t}

x. And, we

conclude that π′, i× (m+ 1) |=p G(
∨
x∈Vξfp(ϕ)\{t}

x ∨ (A ∧ τ(ψ′))).

If ψ = (ψ′ U ψ′′), then π, i |= ψ implies that there is a time instant i′ ≥ i such that π, i′ |= ψ′′

and for each time instant i′′ ∈ {i, ..., i′-1} we have that π, i′′ |= ψ′. By the inductive hypothesis, we
know that π′, i′×(m+1) |=p A∧τ(ψ′′) and π′, i′′×(m+1) |=p A∧τ(ψ′), for each i′′ ∈ {i, ..., i′-1},
hold. If j ∈ {i× (m+ 1), ...., i′ × (m+ 1)− 1} is a time instant for which there is no j′ ≥ 0 with
j = j′×(m+1), then π′j contains at least one variable in Vξfp(ϕ)\{t}. So, π′, j |=p

∨
x∈Vξfp(ϕ)\{t}

x.

Hence, π′, i× (m+ 1) |=p ((
∨
x∈Vξfp(ϕ)\{t}

x ∨ (A ∧ τ(ψ′))) U (A ∧ τ(ψ′′))).

If ψ = (ψ′ R ψ′′), then π, i |= ψ implies that either π, i′ |= ψ′′ for each i′ ≥ i, or there is
a time instant i′′′ ≥ i such that π, i′′′ |= ψ′ and for each time instant i′′ ∈ {i, ..., i′′′} we have
that π, i′′ |= ψ′′. In the first case, by the inductive hypothesis, we know that π′, i′ × (m + 1) |=p

A∧τ(ψ′′), for each i′ ≥ i, holds. If j ≥ i×(m+1) is a time instant for which there is no j′ ≥ 0 with
j = j′×(m+1), then π′j contains at least one variable in Vξfp(ϕ)\{t}. So, π′, j |=p

∨
x∈Vξfp(ϕ)\{t}

x.

In the second case, by the inductive hypothesis, we know that π′, i′′′ × (m+ 1) |=p A ∧ τ(ψ′) and
π′, i′′× (m+ 1) |=p A∧ τ(ψ′′), for each i′′ ∈ {i, ..., i′′′}, hold. If j ∈ {i× (m+ 1), ...., i′′′× (m+
1) − 1} is a time instant for which there is no j′ ≥ 0 with j = j′ × (m + 1), then π′j contains at
least one variable in Vξfp(ϕ) \ {t}. So, again, π′, j |=p

∨
x∈Vξfp(ϕ)\{t}

x. Hence, in both cases, we

can conclude that π′, i× (m+ 1) |=p ((
∨
x∈Vξfp(ϕ)\{t}

x ∨ (A ∧ τ(ψ′))) R (A ∧ τ(ψ′′))) holds.

Proof of (2). Let π′′ be a PT-model of ξfp(ϕ). Let us define σ as the function that, given
π′′ and a time instant i such that π′′, i |=p A, returns the set σ(π′′, i) of propositional variables
σ(π′′, i) = {xj | π′′, i + j |=p xj}. Note that σ(π′′, i) ⊆ Vϕ. In particular, we may view σ(π′′, i)
as encoding a truth assignment for the variables in {x1, ..., xm} such that xj evaluates true in the
assignment if, and only if, xj belongs to σ(π′′, i). Let c0, ..., c`-1 be the set of all time instants
of π′′, in ascending order, such that π′′, ci |=p A, for each i ∈ {0, ..., `-1}. Note that c0 = 0,
since ξfp(ϕ) = A ∧ τ(ϕ) holds, by construction. Then, consider the trace π′′′ = π′′′0 , ..., π

′′′
`-1 such
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that π′′′i = σ(π′′, ci), for each i ∈ {0, ..., `-1}. We will show that π′′′ is a model of ϕ. To this
end, consider any subformula τ(ψ) of ξfp(ϕ) that is required to hold (in the recursive definition of
satisfiability for ξfp(ϕ)) at some time instant ci ∈ {c0, ..., c`-1}. So, π′′, ci |=p A ∧ τ(ψ). We shall
show that π′′′, i |= ψ holds. This will entail that π′′′, 0 |= ϕ, since we know that π′′, c0 |= A∧ τ(ϕ).
We proceed by structural induction on the subformulas ψ over which the function τ can be applied.

Base case. If ψ = xj (respectively, ψ = ¬xj), then π′′, ci |=p A ∧ Xj(xj) (respectively,
π′′, ci |=p A ∧ Xj(x̄j)) implies that xj belongs (respectively, does not belong) to σ(π′′, ci). There-
fore, π′′′, i |= xj (respectively, π′′′, i |= ¬xj).

Inductive step. Assume that the property holds over each subformula of ψ. If ψ = (ψ′ ∧ ψ′′) or
ψ = (ψ′ ∨ ψ′′), then the property clearly holds on ψ, too.

If ψ = X(ψ′), then we have π′′, ci |=p A ∧ Xm+1(A ∧ τ(ψ′)). That is, π′′, ci+1 |=p A ∧ τ(ψ′).
By the inductive hypothesis, we know that π′′′, i+ 1 |= ψ′. Hence, π′′′, i |= X(ψ′) holds.

If ψ = Xw(ψ′), then we have π′′, ci |=p A ∧ XmXw(A ∧ τ(ψ′)). We distinguish two cases. If
i < `− 1, then we actually have that π′′, ci |=p A ∧ Xm+1(A ∧ τ(ψ′)). Hence, we apply the same
line of reasoning used for X, in order to derive that π′′′, i |= X(ψ′); so, π′′′, i |= Xw(ψ′). Consider
now the case where i = `− 1. In this case, i is the last time instant of π′′′ and π′′′, i |= Xw(ψ′′′), for
whatever formula ψ′′′. Hence, π′′′, i |= Xw(ψ′) holds.

If ψ = F(ψ′), then π′′, ci |=p A ∧ F(A ∧ τ(ψ′)) implies the existence of a time instant ci′ ∈
{ci, ..., c`-1} such that π′′, ci′ |=p A∧τ(ψ′). By the inductive hypothesis, we know that π′′′, i′ |= ψ′.
Hence, π′′′, i |= F(ψ′).

If ψ = G(ψ′), then π′′, ci |=p A ∧G(
∨
x∈Vξfp(ϕ)\{t}

x ∨ (A ∧ τ(ψ′))). In particular, for each

time instant ci′ ∈ {ci, ..., c`-1}, since we have that π′′, ci′ |= A holds (which implies that π′′ci′ =
{t}), we have that π′′, ci′ |= A∧τ(ψ′) holds. By the inductive hypothesis, we know that π′′′, i′ |= ψ′

holds, for each i′ ∈ {i, ..., `-1}. Hence, π′′′, i |= G(ψ′).
If ψ = (ψ′ U ψ′′), then π′′, ci |=p A ∧ ((

∨
x∈Vξfp(ϕ)\{t}

x ∨ (A ∧ τ(ψ′))) U (A ∧ τ(ψ′′)))

implies the existence of a time instant ci′′ ∈ {ci, ..., c`-1} such that π′′, ci′′ |= A∧τ(ψ′′). Moreover,
by using the same line of reasoning used for G, we can derive that, for each ci′ ∈ {ci, ..., ci′′-1},
π′′, ci′ |= A∧τ(ψ′). By the inductive hypothesis, we know that π′′′, i′′ |= ψ′′ and π′′′, i′ |= ψ′ hold,
for i′′ and each i′ ∈ {i, ..., i′′-1}. So, π′′′, i |= (ψ′ U ψ′′).

If ψ = (ψ′ R ψ′′), then π′′, ci |=p A ∧ ((
∨
x∈Vξfp(ϕ)\{t}

x ∨ (A ∧ τ(ψ′))) R (A ∧ τ(ψ′′))) im-

plies either that π′′, ci′ |= A∧τ(ψ′′) for all ci′ ∈ {ci, ..., c`−1}, or the existence of a time instant
ci′′ ∈ {ci, ..., c`-1} such that π′′, ci′′ |= (A∧τ(ψ′)) and for each time instant ci′′′ ∈ {ci, ..., ci′′} we
have that π, ci′′′ |= (A∧τ(ψ′′)). Moreover, by using the same line of reasoning used for G, in the
first case by the inductive hypothesis we derive that π′′′, i′ |= ψ′′ holds, for i′ ∈ {i, ..., `-1}. In the
second case, by the inductive hypothesis, we derive that π′′′, i′′ |= ψ′ and π′′′, i′′′ |= ψ′′ hold, for
each i′′′ ∈ {i, ..., i′′}. In both cases, we conclude that π′′′, i |= (ψ′ R ψ′′) holds. 2

A simple consequence of the above result is that the complexity of reasoning over LTLp frag-
ments including X is a lower bound on the complexity of reasoning about LTLf over the same
fragments. Thus, the following characterization for the complexity of the whole logic LTLp derives
after the results by De Giacomo and Vardi (2013).

Corollary 15 Satisfiability of LTLp formulas is PSPACE-hard.

577



FIONDA & GRECO

In addition, lower bounds on the complexity of specific fragments 〈T ∪ {X}〉-LTLp will derive
immediately, after we shall establish in Section 5 the corresponding results for LTLf restricted on
the same syntactic fragment defined by T . With this respect, it is relevant to note that the encoding
discussed in the proof of the above result can be adapted to the case where each 〈T 〉-LTLf formula
is translated into a negation-free 〈T ∪ {Xw,F}〉-LTLp formula, by using, in place of the formula A,
the formula A′ ∧ F(xm ∨ x̄m) where A′ is obtained from A by replacing each occurrence of X with
Xw. Indeed, in any PT-model, A′ ∧ F(xm ∨ x̄m) guarantees the existence of m + 1 time instants
following the one where A′ holds. This suffices to preserve the properties discussed in the proof of
Theorem 14, so that the following derives by its inspection.

Theorem 16 A polynomial-time satisfiability preserving translation exists which maps 〈T 〉-LTLf
formulas into negation-free 〈T ∪ {Xw,F}〉-LTLp formulas.

We leave this section by pointing out one further useful relationship between LTLp and LTLf .
In particular, we consider formulas built with the until temporal operator.

Theorem 17 A polynomial-time (satisfiability preserving) translation ξU exists that, given a 〈U〉-
LTLf formulaϕ, returns a negation-free 〈U〉-LTLp formula ξU (ϕ) enjoying the following properties:

(1) Assume that π is a model of ϕ. Then, a PT-model π′ of ξU (ϕ) can be built from π in
polynomial time such that len(π′) = 2× len(π)× (|Vϕ|+ 1)− 1;

(2) Assume that π′′ is a PT-model of ξU (ϕ). Then, a model π′′′ of ϕ can be built from π′′ in
polynomial time such that len(π′′′) ≤ len(π′′).

Proof. According to Theorem 14, whatever 〈{U}〉-LTLf formula ϕ can be rewritten into an equiv-
alent negation-free 〈{X,U}〉-LTLp formula ξfp(ϕ). The line of the proof is then to show that, over
such formulas, the X operator can be simulated by using the U operator. To this end, if φ is any
given negation-free 〈{X,U}〉-LTLp formula, then we first build a negation-free 〈{U}〉-LTLp formula
δ(φ) over the set of variables Vδ(φ) = Vφ ∪ {•}, where • is a special variable that will keep track of
the time instants required by the X operators in the models of φ. Formally, δ is inductively defined
as follows over subformulas ψ of φ:

• If ψ = xj for some variable xj ∈ Vφ, then δ(ψ) = xj ;

• If ψ = (ψ′ ∧ ψ′′), then δ(ψ) = (δ(ψ′) ∧ δ(ψ′′));

• If ψ = (ψ′ ∨ ψ′′), then δ(ψ) = (δ(ψ′) ∨ δ(ψ′′));

• If ψ = X(ψ′), then δ(ψ) =
∨
xk∈Vφ (xk ∧ (xk U (• ∧ (• U δ(ψ′)))));

• If ψ = (ψ′ U ψ′′), then δ(ψ) = (δ(ψ′) ∨ •) U (δ(ψ′′)).

Eventually, we just define ξU (ϕ) as the result of the application of δ over ξfp(ϕ), i.e., ξU (ϕ) =

δ(ξfp(ϕ)). Now, we show that the two properties pointed out in the statement hold.
Proof of (1). We prove a general result related to the application of δ to negation-free 〈{X,U}〉-

LTLp formulas. The required property will then follow by specializing the result to ξfp(ϕ).
Let φ be a satisfiable negation-free 〈{X,U}〉-LTLp formula and let π̄ be a PT-model of it. Con-

sider the trace π′ with len(π′) = 2× len(π̄)− 1 defined as follows: π′2×i = π̄i and π′2×i+1 = {•},
for each i ∈ {0, ..., len(π̄)-2}; π′2×(len(π̄)-1) = π̄len(π̄)-1. We claim that π′ is a PT-model of δ(φ).
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To prove this claim, consider any subformula ψ of φ that is required to hold (in the recursive defini-
tion of satisfiability) at some time instant i ∈ {0, ..., len(π̄)-1}, i.e., π̄, i |=p ψ. We shall show that
π′, 2× i |=p δ(ψ) holds. This will entail that π′, 0 |=p δ(φ). We proceed by structural induction on
the subformulas ψ.

Base case. If ψ = xj , then π̄i = {xj}. Hence, by construction, we have that π′, 2× i |=p xj .

Inductive step. Assume that the property holds over each subformula of ψ. If ψ = (ψ′ ∧ ψ′′) or
ψ = (ψ′ ∨ ψ′′), then the property clearly holds on ψ, too.

If ψ = X(ψ′), then π̄, i |=p ψ means that π̄, i + 1 |=p ψ
′. Then, by inductive hypothesis, we

know that π′, 2× (i+ 1) |=p δ(ψ
′). By construction, we have that π′, 2× i+ 1 |= •. Thus, we have

that π′, 2 × i + 1 |=p • ∧ (• U δ(ψ′)). Furthermore, π̄i = {xk} holds, for some variable xk ∈ Vφ.
Then, we have that π′2×i = {xk} and we derive π′, 2× i |=p xk ∧ (xk U (• ∧ (• U δ(ψ′)))).

If ψ = (ψ′ U ψ′′), then π̄, i |=p ψ implies that there is a time instant i′ ≥ i such that π̄, i′ |=p ψ
′′

and, for each time instant i′′ ∈ {i, ..., i′-1}, we have that π̄, i′′ |=p ψ
′. By the inductive hypothesis,

we know that π′, 2× i′ |=p δ(ψ
′′) and π′, 2× i′′ |=p δ(ψ

′), for each i′′ ∈ {i, ..., i′-1}. By construc-
tion, we also know that π′, 2 × i′′ + 1 |=p •, for each i′′ ∈ {i, ..., i′-1}. Thus, we conclude that
π′, 2× i |=p (δ(ψ′) ∨ •) U (δ(ψ′′)) holds.

As we have anticipated, the first property in the statement follows by specializing the above
result to the case where φ = ξfp(ϕ) and by recalling that if π is a model of ϕ, then a PT-model π̄ of
ξfp(ϕ) can be built from π in polynomial time with len(π̄) = len(π)×(|Vϕ|+1) (cf. Theorem 14).

Proof of (2). Assume that π′′ is a PT-model of ξU (ϕ). Based on π′′, we shall build a model π′′′

of ϕ such that len(π′′′) ≤ len(π′′), by using intermediate transformations via traces π0 and π̂.

From π′′ to π0. For each i ∈ {0, ..., len(π′′)− 1}, consider the trace πi obtained from π′′ by re-
moving all consecutive duplicate states starting from the state i. We shall show that π0 is a PT-model
of ξU (ϕ). To this end, for every subformula δ(ψ) of ξU (ϕ) and time instant i ∈ {0, ..., len(π′′)−1},
we claim that π′′, i |=p δ(ψ) implies πi, i |=p δ(ψ). We proceed by induction on i.

Base case. If i = len(π′′)− 1, then we have i = len(πi)− 1 and πi = π′′. Hence, we trivially
have that πi, i |=p δ(ψ) if, and only if, π′′, i |=p δ(ψ), for every formula δ(ψ).

Inductive step. Assume that the property holds on all j > i. We proceed by a nested induction
over the subformulas δ(ψ), in order to show that the property holds on i, too. In the base case where
δ(ψ) = xk, for some variable xk, after noticing that πii = π′′i holds by construction of πi, we derive
that π′′, i |=p δ(ψ) if, and only if, πi, i |=p δ(ψ). Moving to the inductive step, note first that the
property trivially holds on δ(ψ), if δ(ψ) = (δ(ψ′) ∧ δ(ψ′′)) or δ(ψ) = (δ(ψ′) ∨ δ(ψ′′)).

Assume now that π′′, i |=p δ(ψ), where δ(ψ) =
∨
xk

(xk ∧ (xk U (• ∧ (• U δ(ψ′))))) . So,
there is a variable xk and two time instants i′, i′′ such that: π′′j = {xk}, for each i ≤ j < i′;
π′′j = {•}, for each i′ ≤ j < i′′; and π′′, i′′ |=p δ(ψ

′). By construction of πi, this entails that
πii = {xk} and πii+1 = {•}. Moreover, by inductive hypothesis, we know that π′′, i′′ |=p δ(ψ

′)

implies πi
′′
, i′′ |=p δ(ψ

′). Now, let π∗ be the trace derived from πi
′′

by considering all time instants
from i′′ onwards. We have two possibilities: either π∗ coincides with the trace derived from πi by
considering all time instants from i + 1 onwards, or it coincides with the trace derived from πi by
considering all time instants from i+ 2 onwards (depending on whether π′′i′′ = {•} or π′′i′′ 6= {•}).
Therefore, in the former case we have πi, i+1 |=p δ(ψ

′), whereas in the latter we have πi, i+2 |=p

δ(ψ′). In both cases, we conclude that πi, i |=p δ(ψ).
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Finally, consider the case where δ(ψ) = ((δ(ψ′)∨•) U δ(ψ′′)). Note that π′′, i |=p δ(ψ) implies
that either π′′, i |=p δ(ψ

′′), or we have π′′, i |=p (δ(ψ′) ∨ •) and π′′, i + 1 |=p δ(ψ). In the former
case, we conclude that πi, i |=p δ(ψ

′′), because of the inductive hypothesis; hence, πi, i |=p δ(ψ).
In the latter case, note that πi+1, i+1 |=p δ(ψ) holds, again, by the inductive hypothesis. Define π∗

as the trace derived from πi+1 by considering all time instants from i+ 1 onwards. If π∗ coincides
with the trace derived from πi by considering all time instants from i onwards, then we immediately
conclude that πi, i |=p δ(ψ). Otherwise, we have that π∗ coincides with the trace derived from πi

by considering all time instants from i + 1 onwards, so that πii+1 = πi+1
i+1 . Now, if π′′i = {•}, then

the fact that πi+1, i+ 1 |=p δ(ψ) implies that πi, i |=p δ(ψ). Eventually, if π′′, i |=p δ(ψ
′), then we

get by the inductive hypothesis that πi, i |=p δ(ψ
′); hence, we derive again πi, i |=p δ(ψ).

From π0 to π̂. Let c0, ..., c`-1 be the set of all time instants of π0, in ascending order, such that
π0
ci 6= {•}, for each i ∈ {0, ..., `-1}. Consider the trace π̂ = π̂0, ..., π̂`-1 such that π̂i = π0

ci , for each
i ∈ {0, ..., `-1}. Consider any subformula δ(ψ) of ξU (ϕ) that is required to hold (in the recursive
definition of satisfiability for ξU (ϕ)) at some time instant ci ∈ {c0, ..., c`-1}. We shall show that
π̂, i |=p ψ holds. This will entail that π̂, 0 |=p ξfp(ϕ). We proceed by structural induction on the
subformulas ψ over which the function δ can be applied.

Base case. If ψ = xk holds for some variable xk (so that δ(ψ) = ψ), then π0, ci |=p δ(ψ)
implies that π0

ci = π̂i = {xk}. Therefore, we clearly have that π̂, i |= xk.

Inductive step. Assume that the property holds over each subformula of ψ. If ψ = (ψ′ ∧ ψ′′) or
ψ = (ψ′ ∨ ψ′′), then the property clearly holds on ψ.

If ψ = X(ψ′), then we have π0, ci |=p
∨
xk

(xk ∧ (xk U (• ∧ (• U δ(ψ′))))). Observe that,
since π0 does not contain consecutive time instants in which the same variable evaluates true, it must
be the case that π0, ci + 1 |=p • and π0, ci + 2 |=p δ(ψ

′) and π0
ci+2 6= {•}. Hence, ci+1 = ci + 2

and we have that π0, ci+1 |=p δ(ψ
′). By the inductive hypothesis, we know that π̂, i + 1 |= ψ′ and

we can conclude that π̂, i |= X(ψ′).
If ψ = (ψ′ U ψ′′), then we have that π0, ci |=p (δ(ψ′) ∨ •) U (δ(ψ′′)). We can consider two

cases. The first case happens if π0, ci |=p δ(ψ
′′) holds. By the inductive hypothesis, we have that

π̂, i |= ψ′′ and, thus, we can conclude that π̂, i |= ψ. In the second case, there exists a time instant
i′′ > ci such that π0, i′′ |= δ(ψ′′) holds and, for each time instant i′ ∈ {ci, ..., i′′-1}, we have that
either π0, i′ |= δ(ψ′) or π0, i′ |= •. Thus, we have that π0, cj |= δ(ψ′) holds (and by the inductive
hypothesis π̂, j |= ψ′ holds) in all the time instants cj ∈ {c0, ..., cl−1} with ci ≤ cj < i′′, since
by construction π0

cj 6= {•}. To conclude, note that, because of the definition of the function δ, we
can assume, w.l.o.g., that π0

i′′ 6= {•}. Hence, i′′ is a time instant, say ch, in {c0, ..., cl−1}. By the
inductive hypothesis, it follows that π̂, h |= ψ′′ and we conclude that π̂, i |= (ψ′ U ψ′′).

From π̂ to π′′′. Recall that π̂ is a model of ξfp(ϕ) and note that len(π̂) ≤ len(π′′). The result
then follows because, according to Theorem 14, we can build in polynomial time from π̂ a model
π′′′ of ϕ such that len(π′′′) ≤ len(π̂). 2

4. Linear-Length Model Property

In this section, we analyze all fragments of LTLf and LTLp obtained by constraining the allowed
temporal operators with the aim of identifying those formulas ϕ enjoying the linear-length model
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h{G, F}i
<latexit sha1_base64="frm054tOcquRa2rqiEZINmdoMCw=">AAACPXicbVA9T8MwEL2Ur1K+AowsES0SQqhKusBYCQkYi0Q/pCaqHNdprTpOZDuIKuofY+E/sLGxMIAQKxvgph1Ky0lnv3vvTvY9P2ZUKtt+NnJLyyura/n1wsbm1vaOubvXkFEiMKnjiEWi5SNJGOWkrqhipBULgkKfkaY/uBjrzTsiJI34rRrGxAtRj9OAYqQ0FZkn3z9QAhcYIODQ0zfRVapTaXSvTwmBrq9gBKcL7KVm3SzFzHypYxbtsp2FtQicKSjCNGod88ntRjgJCVeYISnbjh0rL0VCUczIqOAmksQID1CPtDXkKCTSS7PtR9aRZrpWEAmdXFkZOzuRolDKYejrzhCpvpzXxuR/WjtRwbmXUh4ninA8eShImKUia2yl1aWCYMWGGiAsqP6rhftIIKy04QVtgjO/8iJoVMqOXXZuKsWqPbUjDwdwCMfgwBlU4RpqUAcMD/ACb/BuPBqvxofxOWnNGdOZffgTxtcvUoyh+w==</latexit><latexit sha1_base64="IgjjjpffLXusp0ygwwp1XdNnYRk=">AAACEnicbZBNS8NAEIY39bt+VT16CbaCgpTEix4FQT0q2A9oStlsJ+3SzSbsTsQS8hu8+Fe8eFDEqydv/hu3aQVtHVh4eN8ZZuf1Y8E1Os6XVZibX1hcWl4prq6tb2yWtrbrOkoUgxqLRKSaPtUguIQachTQjBXQ0BfQ8AfnI79xB0rzSN7iMIZ2SHuSB5xRNFKndFjxBJU9AV7qIdyjDtLL7OgHLzIv81TuVzqlslN18rJnwZ1AmUzqulP69LoRS0KQyATVuuU6MbZTqpAzAVnRSzTElA1oD1oGJQ1Bt9P8pMzeN0rXDiJlnkQ7V39PpDTUehj6pjOk2NfT3kj8z2slGJy2Uy7jBEGy8aIgETZG9igfu8sVMBRDA5Qpbv5qsz5VlKFJsWhCcKdPnoX6cdV1qu7NcfnMmcSxTHbJHjkgLjkhZ+SKXJMaYeSBPJEX8mo9Ws/Wm/U+bi1Yk5kd8qesj29KsZ5q</latexit>

h{G}i
<latexit sha1_base64="m51pLA2W75dj1O4gHPPD/vYJAsQ=">AAACJ3icbVBNTwIxEJ3FL8SvVY8ebAQTT2SXix5JPOgRE/lIgJBu6UJDt7tpu0ay4d948a94MVFj9OgfUbuwBwQnmfbNezNp53kRZ0o7zqeVW1ldW9/Ibxa2tnd29+z9g4YKY0lonYQ8lC0PK8qZoHXNNKetSFIceJw2vdFlqjfvqFQsFLd6HNFugAeC+YxgbajQPv7+gRJ0gAMGAQNzU1MlJrVB9+ZU4Jv6CiaGS1POdZZ6dtEpO9NAy8DNQBGyqPXsl04/JHFAhSYcK9V2nUh3Eyw1I5xOCp1Y0QiTER7QtoECB1R1k+meE3RqmD7yQ2lSaDRl5ycSHCg1DjzTGWA9VItaSv6ntWPtX3QTJqJYU0FmD/kxRzpEqWmozyQlmo8NwEQy81dEhlhioo21BWOCu7jyMmhUyq5Tdm8qxaqT2ZGHIziBM3DhHKpwDTWoA4EHeIJXeLMerWfr3fqYteasbOYQ/oT19QsoQ5zG</latexit><latexit sha1_base64="r1Nnxm11Ygh6jDehGO9adkK0DUw=">AAACB3icbVBNS8NAEN34WetX1aMgwVbwVJJe9FjwoMcK9gOaUDbbSbt0swm7E7GE3rz4V7x4UMSrf8Gb/8Ztm4O2Phh4vDfDzLwgEVyj43xbK6tr6xubha3i9s7u3n7p4LCl41QxaLJYxKoTUA2CS2giRwGdRAGNAgHtYHQ19dv3oDSP5R2OE/AjOpA85IyikXqlk4onqBwI8DIP4QF1mF1PvImnZmKlVyo7VWcGe5m4OSmTHI1e6cvrxyyNQCITVOuu6yToZ1QhZwImRS/VkFA2ogPoGippBNrPZn9M7DOj9O0wVqYk2jP190RGI63HUWA6I4pDvehNxf+8borhpZ9xmaQIks0XhamwMbanodh9roChGBtCmeLmVpsNqaIMTXRFE4K7+PIyadWqrlN1b2vlupPHUSDH5JScE5dckDq5IQ3SJIw8kmfySt6sJ+vFerc+5q0rVj5zRP7A+vwBb9+ZmA==</latexit>

h{G}i
<latexit sha1_base64="m51pLA2W75dj1O4gHPPD/vYJAsQ=">AAACJ3icbVBNTwIxEJ3FL8SvVY8ebAQTT2SXix5JPOgRE/lIgJBu6UJDt7tpu0ay4d948a94MVFj9OgfUbuwBwQnmfbNezNp53kRZ0o7zqeVW1ldW9/Ibxa2tnd29+z9g4YKY0lonYQ8lC0PK8qZoHXNNKetSFIceJw2vdFlqjfvqFQsFLd6HNFugAeC+YxgbajQPv7+gRJ0gAMGAQNzU1MlJrVB9+ZU4Jv6CiaGS1POdZZ6dtEpO9NAy8DNQBGyqPXsl04/JHFAhSYcK9V2nUh3Eyw1I5xOCp1Y0QiTER7QtoECB1R1k+meE3RqmD7yQ2lSaDRl5ycSHCg1DjzTGWA9VItaSv6ntWPtX3QTJqJYU0FmD/kxRzpEqWmozyQlmo8NwEQy81dEhlhioo21BWOCu7jyMmhUyq5Tdm8qxaqT2ZGHIziBM3DhHKpwDTWoA4EHeIJXeLMerWfr3fqYteasbOYQ/oT19QsoQ5zG</latexit><latexit sha1_base64="r1Nnxm11Ygh6jDehGO9adkK0DUw=">AAACB3icbVBNS8NAEN34WetX1aMgwVbwVJJe9FjwoMcK9gOaUDbbSbt0swm7E7GE3rz4V7x4UMSrf8Gb/8Ztm4O2Phh4vDfDzLwgEVyj43xbK6tr6xubha3i9s7u3n7p4LCl41QxaLJYxKoTUA2CS2giRwGdRAGNAgHtYHQ19dv3oDSP5R2OE/AjOpA85IyikXqlk4onqBwI8DIP4QF1mF1PvImnZmKlVyo7VWcGe5m4OSmTHI1e6cvrxyyNQCITVOuu6yToZ1QhZwImRS/VkFA2ogPoGippBNrPZn9M7DOj9O0wVqYk2jP190RGI63HUWA6I4pDvehNxf+8borhpZ9xmaQIks0XhamwMbanodh9roChGBtCmeLmVpsNqaIMTXRFE4K7+PIyadWqrlN1b2vlupPHUSDH5JScE5dckDq5IQ3SJIw8kmfySt6sJ+vFerc+5q0rVj5zRP7A+vwBb9+ZmA==</latexit>

h{X}i
<latexit sha1_base64="0JSN9rBRNF+s8j8lGQRW3pMr0wU=">AAACJ3icbVA9T8MwEL3wWcpXgJGBiBaJqUq6wFiJhbFI9ENqo8pxndaqY0e2g6ii/hsW/goLEiAEI38EcNoMpeWks9+9dyf7XhAzqrTrflorq2vrG5uFreL2zu7evn1w2FQikZg0sGBCtgOkCKOcNDTVjLRjSVAUMNIKRleZ3rojUlHBb/U4Jn6EBpyGFCNtKGGffP9AGbrAAAGHgbmJqVKT2qB7cyoITd2GieGylHOd5Z5dcivuNJxl4OWgBHnUe/ZLty9wEhGuMUNKdTw31n6KpKaYkUmxmygSIzxCA9IxkKOIKD+d7jlxzgzTd0IhTXLtTNn5iRRFSo2jwHRGSA/VopaR/2mdRIeXfkp5nGjC8eyhMGGOFk5mmtOnkmDNxgYgLKn5q4OHSCKsjbVFY4K3uPIyaFYrnlvxbqqlmpvbUYBjOIVz8OACanANdWgAhgd4gld4sx6tZ+vd+pi1rlj5zBH8CevrF0N9nNc=</latexit><latexit sha1_base64="vIxYLNxOyC+Gp/Y6xZQPhcRahHU=">AAACB3icbVBNS8NAEN3Ur1q/qh4FCbaCp5L0oseCF48V7Ac0oWy2k3bpZhN2J2IJvXnxr3jxoIhX/4I3/43bNgdtfTDweG+GmXlBIrhGx/m2CmvrG5tbxe3Szu7e/kH58Kit41QxaLFYxKobUA2CS2ghRwHdRAGNAgGdYHw98zv3oDSP5R1OEvAjOpQ85Iyikfrl06onqBwK8DIP4QF1mHWn3tRTc7HaL1ecmjOHvUrcnFRIjma//OUNYpZGIJEJqnXPdRL0M6qQMwHTkpdqSCgb0yH0DJU0Au1n8z+m9rlRBnYYK1MS7bn6eyKjkdaTKDCdEcWRXvZm4n9eL8Xwys+4TFIEyRaLwlTYGNuzUOwBV8BQTAyhTHFzq81GVFGGJrqSCcFdfnmVtOs116m5t/VKw8njKJITckYuiEsuSYPckCZpEUYeyTN5JW/Wk/VivVsfi9aClc8ckz+wPn8Ail6ZqQ==</latexit>

h{X}i
<latexit sha1_base64="0JSN9rBRNF+s8j8lGQRW3pMr0wU=">AAACJ3icbVA9T8MwEL3wWcpXgJGBiBaJqUq6wFiJhbFI9ENqo8pxndaqY0e2g6ii/hsW/goLEiAEI38EcNoMpeWks9+9dyf7XhAzqrTrflorq2vrG5uFreL2zu7evn1w2FQikZg0sGBCtgOkCKOcNDTVjLRjSVAUMNIKRleZ3rojUlHBb/U4Jn6EBpyGFCNtKGGffP9AGbrAAAGHgbmJqVKT2qB7cyoITd2GieGylHOd5Z5dcivuNJxl4OWgBHnUe/ZLty9wEhGuMUNKdTw31n6KpKaYkUmxmygSIzxCA9IxkKOIKD+d7jlxzgzTd0IhTXLtTNn5iRRFSo2jwHRGSA/VopaR/2mdRIeXfkp5nGjC8eyhMGGOFk5mmtOnkmDNxgYgLKn5q4OHSCKsjbVFY4K3uPIyaFYrnlvxbqqlmpvbUYBjOIVz8OACanANdWgAhgd4gld4sx6tZ+vd+pi1rlj5zBH8CevrF0N9nNc=</latexit><latexit sha1_base64="vIxYLNxOyC+Gp/Y6xZQPhcRahHU=">AAACB3icbVBNS8NAEN3Ur1q/qh4FCbaCp5L0oseCF48V7Ac0oWy2k3bpZhN2J2IJvXnxr3jxoIhX/4I3/43bNgdtfTDweG+GmXlBIrhGx/m2CmvrG5tbxe3Szu7e/kH58Kit41QxaLFYxKobUA2CS2ghRwHdRAGNAgGdYHw98zv3oDSP5R1OEvAjOpQ85Iyikfrl06onqBwK8DIP4QF1mHWn3tRTc7HaL1ecmjOHvUrcnFRIjma//OUNYpZGIJEJqnXPdRL0M6qQMwHTkpdqSCgb0yH0DJU0Au1n8z+m9rlRBnYYK1MS7bn6eyKjkdaTKDCdEcWRXvZm4n9eL8Xwys+4TFIEyRaLwlTYGNuzUOwBV8BQTAyhTHFzq81GVFGGJrqSCcFdfnmVtOs116m5t/VKw8njKJITckYuiEsuSYPckCZpEUYeyTN5JW/Wk/VivVsfi9aClc8ckz+wPn8Ail6ZqQ==</latexit>

h{F}i
<latexit sha1_base64="xSD+Zu+wlfJkDOOG+6Y6N0q2ghU=">AAACJ3icbVBNSwMxEJ2tX7V+rXr0YLAVPJXdXvRYEMRjBfsBbSnZNNuGZrNLkhXL0n/jxb/iRVARPfpH1Gy7h9o6MMmb92ZI5nkRZ0o7zqeVW1ldW9/Ibxa2tnd29+z9g4YKY0lonYQ8lC0PK8qZoHXNNKetSFIceJw2vdFlqjfvqFQsFLd6HNFugAeC+YxgbajQPv7+gRJ0gAMGAQNzU1MlJrVB9+ZU4Jv6CiaGS1POdZZ6dtEpO9NAy8DNQBGyqPXsl04/JHFAhSYcK9V2nUh3Eyw1I5xOCp1Y0QiTER7QtoECB1R1k+meE3RqmD7yQ2lSaDRl5ycSHCg1DjzTGWA9VItaSv6ntWPtX3QTJqJYU0FmD/kxRzpEqWmozyQlmo8NwEQy81dEhlhioo21BWOCu7jyMmhUyq5Tdm8qxaqT2ZGHIziBM3DhHKpwDTWoA4EHeIJXeLMerWfr3fqYteasbOYQ/oT19QsmqZzF</latexit><latexit sha1_base64="+/u1VeC1OPJYJDH8AQx2PJqLE0Y=">AAACB3icbVBNS8NAEN34WetX1aMgwVbwVJJe9FgQxGMF+wFNKJvtpF262YTdiVhCb178K148KOLVv+DNf+O2zUFbHww83pthZl6QCK7Rcb6tldW19Y3NwlZxe2d3b790cNjScaoYNFksYtUJqAbBJTSRo4BOooBGgYB2MLqa+u17UJrH8g7HCfgRHUgeckbRSL3SScUTVA4EeJmH8IA6zK4n3sRTM7HSK5WdqjODvUzcnJRJjkav9OX1Y5ZGIJEJqnXXdRL0M6qQMwGTopdqSCgb0QF0DZU0Au1nsz8m9plR+nYYK1MS7Zn6eyKjkdbjKDCdEcWhXvSm4n9eN8Xw0s+4TFIEyeaLwlTYGNvTUOw+V8BQjA2hTHFzq82GVFGGJrqiCcFdfHmZtGpV16m6t7Vy3cnjKJBjckrOiUsuSJ3ckAZpEkYeyTN5JW/Wk/VivVsf89YVK585In9gff4AblCZlw==</latexit>

h{F}i
<latexit sha1_base64="xSD+Zu+wlfJkDOOG+6Y6N0q2ghU=">AAACJ3icbVBNSwMxEJ2tX7V+rXr0YLAVPJXdXvRYEMRjBfsBbSnZNNuGZrNLkhXL0n/jxb/iRVARPfpH1Gy7h9o6MMmb92ZI5nkRZ0o7zqeVW1ldW9/Ibxa2tnd29+z9g4YKY0lonYQ8lC0PK8qZoHXNNKetSFIceJw2vdFlqjfvqFQsFLd6HNFugAeC+YxgbajQPv7+gRJ0gAMGAQNzU1MlJrVB9+ZU4Jv6CiaGS1POdZZ6dtEpO9NAy8DNQBGyqPXsl04/JHFAhSYcK9V2nUh3Eyw1I5xOCp1Y0QiTER7QtoECB1R1k+meE3RqmD7yQ2lSaDRl5ycSHCg1DjzTGWA9VItaSv6ntWPtX3QTJqJYU0FmD/kxRzpEqWmozyQlmo8NwEQy81dEhlhioo21BWOCu7jyMmhUyq5Tdm8qxaqT2ZGHIziBM3DhHKpwDTWoA4EHeIJXeLMerWfr3fqYteasbOYQ/oT19QsmqZzF</latexit><latexit sha1_base64="+/u1VeC1OPJYJDH8AQx2PJqLE0Y=">AAACB3icbVBNS8NAEN34WetX1aMgwVbwVJJe9FgQxGMF+wFNKJvtpF262YTdiVhCb178K148KOLVv+DNf+O2zUFbHww83pthZl6QCK7Rcb6tldW19Y3NwlZxe2d3b790cNjScaoYNFksYtUJqAbBJTSRo4BOooBGgYB2MLqa+u17UJrH8g7HCfgRHUgeckbRSL3SScUTVA4EeJmH8IA6zK4n3sRTM7HSK5WdqjODvUzcnJRJjkav9OX1Y5ZGIJEJqnXXdRL0M6qQMwGTopdqSCgb0QF0DZU0Au1nsz8m9plR+nYYK1MS7Zn6eyKjkdbjKDCdEcWhXvSm4n9eN8Xw0s+4TFIEyeaLwlTYGNvTUOw+V8BQjA2hTHFzq82GVFGGJrqiCcFdfHmZtGpV16m6t7Vy3cnjKJBjckrOiUsuSJ3ckAZpEkYeyTN5JW/Wk/VivVsf89YVK585In9gff4AblCZlw==</latexit>

h{X, F}i
<latexit sha1_base64="hUVESB4EPdfvTXnQfoAZUevgI8I=">AAACPXicbVBNS8NAEJ34WetX1KOXYCuISEl60WNBEI8V7Ac0oWy2m3bpZhN2N2IJ/WNe/A/evHnxoIhXb+o2zaG2Dszum/dm2J3nx4xKZdvPxtLyyuraemGjuLm1vbNr7u03ZZQITBo4YpFo+0gSRjlpKKoYaceCoNBnpOUPLyd6644ISSN+q0Yx8ULU5zSgGClNRebp9w+UwQUGCDj09U10lepUGt3rU0Kg6zaM4WyBvdKsm6WYmS93zZJdsbOwFoGTgxLkUe+aT24vwklIuMIMSdlx7Fh5KRKKYkbGRTeRJEZ4iPqkoyFHIZFemm0/to4107OCSOjkysrY2YkUhVKOQl93hkgN5Lw2If/TOokKLryU8jhRhOPpQ0HCLBVZEyutHhUEKzbSAGFB9V8tPEACYaUNL2oTnPmVF0GzWnHsinNTLdXs3I4CHMIRnIAD51CDa6hDAzA8wAu8wbvxaLwaH8bntHXJyGcO4E8YX79vPKIM</latexit><latexit sha1_base64="g2PiGEIneXOCgdO0LFcYLaA5FdU=">AAACEnicbZDLSsNAFIYnXmu9VV26CbaCgpSkG10WBHFZwV6gKWUyPWmHTiZh5kQsIc/gxldx40IRt67c+TZOL4K2Hhj4+P9zOHN+PxZco+N8WUvLK6tr67mN/ObW9s5uYW+/oaNEMaizSESq5VMNgkuoI0cBrVgBDX0BTX94Ofabd6A0j+QtjmLohLQvecAZRSN1C6clT1DZF+ClHsI96iBtZWc/eJV5macmfqlbKDplZ1L2IrgzKJJZ1bqFT68XsSQEiUxQrduuE2MnpQo5E5DlvURDTNmQ9qFtUNIQdCednJTZx0bp2UGkzJNoT9TfEykNtR6FvukMKQ70vDcW//PaCQYXnZTLOEGQbLooSISNkT3Ox+5xBQzFyABlipu/2mxAFWVoUsybENz5kxehUSm7Ttm9qRSrziyOHDkkR+SEuOScVMk1qZE6YeSBPJEX8mo9Ws/Wm/U+bV2yZjMH5E9ZH99l6557</latexit>

h{X, F}i
<latexit sha1_base64="hUVESB4EPdfvTXnQfoAZUevgI8I=">AAACPXicbVBNS8NAEJ34WetX1KOXYCuISEl60WNBEI8V7Ac0oWy2m3bpZhN2N2IJ/WNe/A/evHnxoIhXb+o2zaG2Dszum/dm2J3nx4xKZdvPxtLyyuraemGjuLm1vbNr7u03ZZQITBo4YpFo+0gSRjlpKKoYaceCoNBnpOUPLyd6644ISSN+q0Yx8ULU5zSgGClNRebp9w+UwQUGCDj09U10lepUGt3rU0Kg6zaM4WyBvdKsm6WYmS93zZJdsbOwFoGTgxLkUe+aT24vwklIuMIMSdlx7Fh5KRKKYkbGRTeRJEZ4iPqkoyFHIZFemm0/to4107OCSOjkysrY2YkUhVKOQl93hkgN5Lw2If/TOokKLryU8jhRhOPpQ0HCLBVZEyutHhUEKzbSAGFB9V8tPEACYaUNL2oTnPmVF0GzWnHsinNTLdXs3I4CHMIRnIAD51CDa6hDAzA8wAu8wbvxaLwaH8bntHXJyGcO4E8YX79vPKIM</latexit><latexit sha1_base64="g2PiGEIneXOCgdO0LFcYLaA5FdU=">AAACEnicbZDLSsNAFIYnXmu9VV26CbaCgpSkG10WBHFZwV6gKWUyPWmHTiZh5kQsIc/gxldx40IRt67c+TZOL4K2Hhj4+P9zOHN+PxZco+N8WUvLK6tr67mN/ObW9s5uYW+/oaNEMaizSESq5VMNgkuoI0cBrVgBDX0BTX94Ofabd6A0j+QtjmLohLQvecAZRSN1C6clT1DZF+ClHsI96iBtZWc/eJV5macmfqlbKDplZ1L2IrgzKJJZ1bqFT68XsSQEiUxQrduuE2MnpQo5E5DlvURDTNmQ9qFtUNIQdCednJTZx0bp2UGkzJNoT9TfEykNtR6FvukMKQ70vDcW//PaCQYXnZTLOEGQbLooSISNkT3Ox+5xBQzFyABlipu/2mxAFWVoUsybENz5kxehUSm7Ttm9qRSrziyOHDkkR+SEuOScVMk1qZE6YeSBPJEX8mo9Ws/Wm/U+bV2yZjMH5E9ZH99l6557</latexit>

h;i
<latexit sha1_base64="uTeuvfONvw1GlOWbUO7In0YOUHk=">AAACHXicbVC7TgJBFL2LL8QXaqfNRjCxIrs0WpLYWGIijwQImR0uMGF2djNz14QQfsTGX7Gx0BgLG+PPqMOjQPAkkzlzzr25c08QS2HI876c1Nr6xuZWejuzs7u3f5A9PKqaKNEcKzySka4HzKAUCiskSGI91sjCQGItGFxP/No9aiMidUfDGFsh6ynRFZyRlaLsyfcP5KEJEhgo6Nkb7QshhBgIhmAsJ6voBT/fzua8gjeFu0r8OcnBHOV29qPZiXgSoiIumTEN34upNWKaBJc4zjQTgzHjA9bDhqWKhWhao+l2Y/fcKh23G2l7FLlTdbFjxEJjhmFgK0NGfbPsTcT/vEZC3avWSKg4IVR8NqibSJcidxKV2xEaOcmhJYxrYf/q8j7TjJMNNGND8JdXXiXVYsH3Cv5tMVfy5nGk4RTO4AJ8uIQS3EAZKsDhAZ7gBV6dR+fZeXPeZ6UpZ95zDH/gfP4CFmCaVQ==</latexit><latexit sha1_base64="sNW40SPsrQBdT6q1NKUZqzbgN9k=">AAACAnicbVA9SwNBEN3zM8avUyuxWUwEq3CXRsuAjWUE8wG5EPY2c8mSvb1jd04IIdj4V2wsFLH1V9j5b9xcUmjig4G3782wMy9MpTDoed/O2vrG5tZ2Yae4u7d/cOgeHTdNkmkODZ7IRLdDZkAKBQ0UKKGdamBxKKEVjm5mfusBtBGJusdxCt2YDZSIBGdopZ57Wg4kUwMJAcQpjg1goPN3ueeWvIqXg64Sf0FKZIF6z/0K+gnPYlDIJTOm43spdidMo+ASpsUgM5AyPmID6FiqWAymO8lPmNILq/RplGhbCmmu/p6YsNiYcRzazpjh0Cx7M/E/r5NhdN2dCJVmCIrPP4oySTGhszxoX2jgKMeWMK6F3ZXyIdOMo02taEPwl09eJc1qxfcq/l21VPMWcRTIGTknl8QnV6RGbkmdNAgnj+SZvJI358l5cd6dj3nrmrOYOSF/4Hz+AFu0l1Q=</latexit>

h;i
<latexit sha1_base64="uTeuvfONvw1GlOWbUO7In0YOUHk=">AAACHXicbVC7TgJBFL2LL8QXaqfNRjCxIrs0WpLYWGIijwQImR0uMGF2djNz14QQfsTGX7Gx0BgLG+PPqMOjQPAkkzlzzr25c08QS2HI876c1Nr6xuZWejuzs7u3f5A9PKqaKNEcKzySka4HzKAUCiskSGI91sjCQGItGFxP/No9aiMidUfDGFsh6ynRFZyRlaLsyfcP5KEJEhgo6Nkb7QshhBgIhmAsJ6voBT/fzua8gjeFu0r8OcnBHOV29qPZiXgSoiIumTEN34upNWKaBJc4zjQTgzHjA9bDhqWKhWhao+l2Y/fcKh23G2l7FLlTdbFjxEJjhmFgK0NGfbPsTcT/vEZC3avWSKg4IVR8NqibSJcidxKV2xEaOcmhJYxrYf/q8j7TjJMNNGND8JdXXiXVYsH3Cv5tMVfy5nGk4RTO4AJ8uIQS3EAZKsDhAZ7gBV6dR+fZeXPeZ6UpZ95zDH/gfP4CFmCaVQ==</latexit><latexit sha1_base64="sNW40SPsrQBdT6q1NKUZqzbgN9k=">AAACAnicbVA9SwNBEN3zM8avUyuxWUwEq3CXRsuAjWUE8wG5EPY2c8mSvb1jd04IIdj4V2wsFLH1V9j5b9xcUmjig4G3782wMy9MpTDoed/O2vrG5tZ2Yae4u7d/cOgeHTdNkmkODZ7IRLdDZkAKBQ0UKKGdamBxKKEVjm5mfusBtBGJusdxCt2YDZSIBGdopZ57Wg4kUwMJAcQpjg1goPN3ueeWvIqXg64Sf0FKZIF6z/0K+gnPYlDIJTOm43spdidMo+ASpsUgM5AyPmID6FiqWAymO8lPmNILq/RplGhbCmmu/p6YsNiYcRzazpjh0Cx7M/E/r5NhdN2dCJVmCIrPP4oySTGhszxoX2jgKMeWMK6F3ZXyIdOMo02taEPwl09eJc1qxfcq/l21VPMWcRTIGTknl8QnV6RGbkmdNAgnj+SZvJI358l5cd6dj3nrmrOYOSF/4Hz+AFu0l1Q=</latexit>

h{X, G}i
<latexit sha1_base64="f24mWFFXkQAgqyViFHgI9aWyuGk=">AAACPXicbVA9T8MwEL3wWcpXgJElokVCCFVJFxgrMcBYJPohNVHluE5r1XEi20FUUf8YC/+BjY2FAYRY2QA3zVBaTjr73Xt3su/5MaNS2fazsbS8srq2Xtgobm5t7+yae/tNGSUCkwaOWCTaPpKEUU4aiipG2rEgKPQZafnDy4neuiNC0ojfqlFMvBD1OQ0oRkpTkXn6/QNlcIEBAg59fRNdpTqVRvf6lBDoug1jOFtgrzTrZilm5stds2RX7CysReDkoAR51Lvmk9uLcBISrjBDUnYcO1ZeioSimJFx0U0kiREeoj7paMhRSKSXZtuPrWPN9KwgEjq5sjJ2diJFoZSj0NedIVIDOa9NyP+0TqKCCy+lPE4U4Xj6UJAwS0XWxEqrRwXBio00QFhQ/VcLD5BAWGnDi9oEZ37lRdCsVhy74txUSzU7t6MAh3AEJ+DAOdTgGurQAAwP8AJv8G48Gq/Gh/E5bV0y8pkD+BPG1y9w1qIN</latexit><latexit sha1_base64="0gqRKcD5vMxA4ou4cTClGd2trX0=">AAACEnicbZDLSsNAFIYnXmu9VV26CbaCgpSkG10WXOiygr1AU8pketIOnUzCzIlYQp7Bja/ixoUibl25822cXgRtPTDw8f/ncOb8fiy4Rsf5spaWV1bX1nMb+c2t7Z3dwt5+Q0eJYlBnkYhUy6caBJdQR44CWrECGvoCmv7wcuw370BpHslbHMXQCWlf8oAzikbqFk5LnqCyL8BLPYR71EHays5+8CrzMk9N/FK3UHTKzqTsRXBnUCSzqnULn14vYkkIEpmgWrddJ8ZOShVyJiDLe4mGmLIh7UPboKQh6E46OSmzj43Ss4NImSfRnqi/J1Iaaj0KfdMZUhzoeW8s/ue1EwwuOimXcYIg2XRRkAgbI3ucj93jChiKkQHKFDd/tdmAKsrQpJg3IbjzJy9Co1J2nbJ7UylWnVkcOXJIjsgJcck5qZJrUiN1wsgDeSIv5NV6tJ6tN+t92rpkzWYOyJ+yPr4BZ3qefA==</latexit>

h{X, G}i
<latexit sha1_base64="f24mWFFXkQAgqyViFHgI9aWyuGk=">AAACPXicbVA9T8MwEL3wWcpXgJElokVCCFVJFxgrMcBYJPohNVHluE5r1XEi20FUUf8YC/+BjY2FAYRY2QA3zVBaTjr73Xt3su/5MaNS2fazsbS8srq2Xtgobm5t7+yae/tNGSUCkwaOWCTaPpKEUU4aiipG2rEgKPQZafnDy4neuiNC0ojfqlFMvBD1OQ0oRkpTkXn6/QNlcIEBAg59fRNdpTqVRvf6lBDoug1jOFtgrzTrZilm5stds2RX7CysReDkoAR51Lvmk9uLcBISrjBDUnYcO1ZeioSimJFx0U0kiREeoj7paMhRSKSXZtuPrWPN9KwgEjq5sjJ2diJFoZSj0NedIVIDOa9NyP+0TqKCCy+lPE4U4Xj6UJAwS0XWxEqrRwXBio00QFhQ/VcLD5BAWGnDi9oEZ37lRdCsVhy74txUSzU7t6MAh3AEJ+DAOdTgGurQAAwP8AJv8G48Gq/Gh/E5bV0y8pkD+BPG1y9w1qIN</latexit><latexit sha1_base64="0gqRKcD5vMxA4ou4cTClGd2trX0=">AAACEnicbZDLSsNAFIYnXmu9VV26CbaCgpSkG10WXOiygr1AU8pketIOnUzCzIlYQp7Bja/ixoUibl25822cXgRtPTDw8f/ncOb8fiy4Rsf5spaWV1bX1nMb+c2t7Z3dwt5+Q0eJYlBnkYhUy6caBJdQR44CWrECGvoCmv7wcuw370BpHslbHMXQCWlf8oAzikbqFk5LnqCyL8BLPYR71EHays5+8CrzMk9N/FK3UHTKzqTsRXBnUCSzqnULn14vYkkIEpmgWrddJ8ZOShVyJiDLe4mGmLIh7UPboKQh6E46OSmzj43Ss4NImSfRnqi/J1Iaaj0KfdMZUhzoeW8s/ue1EwwuOimXcYIg2XRRkAgbI3ucj93jChiKkQHKFDd/tdmAKsrQpJg3IbjzJy9Co1J2nbJ7UylWnVkcOXJIjsgJcck5qZJrUiN1wsgDeSIv5NV6tJ6tN+t92rpkzWYOyJ+yPr4BZ3qefA==</latexit> h{XW, G}i

<latexit sha1_base64="uQjhnsf7bKkeT1AGiaeDOT5eGEE=">AAACU3icbZFNSwMxEIZn16q1Wq169LLYCh6k7BZEjwUPeqxgP6AtJZtm22A2uyRZsSz9jyJ48I94EazTbQ+1dWCSN8/M5GPix4Jr47qflr2V297Zze8V9g+Kh0el45OWjhJFWZNGIlIdn2gmuGRNw41gnVgxEvqCtf3nu3m8/cKU5pF8MpOY9UMykjzglBhEUen6ZwYV6IEAAhJGODNcpegG1SuOGgJcd2AKgw3aRnq1Qe+R9jJXK7tWBqWyW3UzczaFtxRlWFpjUHrvDSOahEwaKojWXc+NTT8lynAq2LTQSzSLCX0mI9ZFKUnIdD/NejJ1LpAMnSBS6NI4GV2tSEmo9ST0MTMkZqzXY3P4X6ybmOC2n3IZJ4ZJujgoSIRjImfeYGfIFaNGTFAQqjje1aFjogg1+A0FbIK3/uRN0apVPbfqPdbKdXfZjjycwTlcggc3UIcHaEATKLzBF8wssD6sb9u2c4tU21rWnMIfs4u/B+ijig==</latexit><latexit sha1_base64="PblizCPDZHUvO7nSd1k6b8c1liw=">AAACHXicbZDLSsNAFIYn3q23qks3wVZwISUpgi4FF7qsYC/QhDCZnrSDk0mYORFLyIu48VXcuFDEhRvxbZzWCN5+GPj4zzmcOX+YCq7Rcd6tmdm5+YXFpeXKyura+kZ1c6ujk0wxaLNEJKoXUg2CS2gjRwG9VAGNQwHd8Op0Uu9eg9I8kZc4TsGP6VDyiDOKxgqqh3VPUDkU4OUewg3qKO8VwRd2i4MvPCu8wlPT1npQrTkNZyr7L7gl1EipVlB99QYJy2KQyATVuu86Kfo5VciZgKLiZRpSyq7oEPoGJY1B+/n0usLeM87AjhJlnkR76n6fyGms9TgOTWdMcaR/1ybmf7V+htGxn3OZZgiSfS6KMmFjYk+isgdcAUMxNkCZ4uavNhtRRRmaQCsmBPf3yX+h02y4TsO9aNZOnDKOJbJDdsk+cckROSHnpEXahJFbck8eyZN1Zz1Yz9bLZ+uMVc5skx+y3j4A4vijkg==</latexit>

h{XW, G}i
<latexit sha1_base64="uQjhnsf7bKkeT1AGiaeDOT5eGEE=">AAACU3icbZFNSwMxEIZn16q1Wq169LLYCh6k7BZEjwUPeqxgP6AtJZtm22A2uyRZsSz9jyJ48I94EazTbQ+1dWCSN8/M5GPix4Jr47qflr2V297Zze8V9g+Kh0el45OWjhJFWZNGIlIdn2gmuGRNw41gnVgxEvqCtf3nu3m8/cKU5pF8MpOY9UMykjzglBhEUen6ZwYV6IEAAhJGODNcpegG1SuOGgJcd2AKgw3aRnq1Qe+R9jJXK7tWBqWyW3UzczaFtxRlWFpjUHrvDSOahEwaKojWXc+NTT8lynAq2LTQSzSLCX0mI9ZFKUnIdD/NejJ1LpAMnSBS6NI4GV2tSEmo9ST0MTMkZqzXY3P4X6ybmOC2n3IZJ4ZJujgoSIRjImfeYGfIFaNGTFAQqjje1aFjogg1+A0FbIK3/uRN0apVPbfqPdbKdXfZjjycwTlcggc3UIcHaEATKLzBF8wssD6sb9u2c4tU21rWnMIfs4u/B+ijig==</latexit><latexit sha1_base64="PblizCPDZHUvO7nSd1k6b8c1liw=">AAACHXicbZDLSsNAFIYn3q23qks3wVZwISUpgi4FF7qsYC/QhDCZnrSDk0mYORFLyIu48VXcuFDEhRvxbZzWCN5+GPj4zzmcOX+YCq7Rcd6tmdm5+YXFpeXKyura+kZ1c6ujk0wxaLNEJKoXUg2CS2gjRwG9VAGNQwHd8Op0Uu9eg9I8kZc4TsGP6VDyiDOKxgqqh3VPUDkU4OUewg3qKO8VwRd2i4MvPCu8wlPT1npQrTkNZyr7L7gl1EipVlB99QYJy2KQyATVuu86Kfo5VciZgKLiZRpSyq7oEPoGJY1B+/n0usLeM87AjhJlnkR76n6fyGms9TgOTWdMcaR/1ybmf7V+htGxn3OZZgiSfS6KMmFjYk+isgdcAUMxNkCZ4uavNhtRRRmaQCsmBPf3yX+h02y4TsO9aNZOnDKOJbJDdsk+cckROSHnpEXahJFbck8eyZN1Zz1Yz9bLZ+uMVc5skx+y3j4A4vijkg==</latexit>

h{XW}i
<latexit sha1_base64="tlgbIqTA8Ph9dj5u2cj578w03pU=">AAACQXicbVA7TwJBEJ7DF+ILtbS5CCYWhtzRaEliY4mJPBIgZG/Zgw17e5fdPSO58Nds/Ad29jYWGmNrog5wBQKTzO433zezj8+LBNfGcV6szNr6xuZWdju3s7u3f5A/PKrrMFaU1WgoQtX0iGaCS1Yz3AjWjBQjgSdYwxteT/TGPVOah/LOjCLWCUhfcp9TYpAK8xc/v1CENgggIKGPO8MqwTSIHnDV4GPdhDF0V/AN5MfITlLNnVHs5gtOyZmGvQzcFBQgjWo3/9zuhTQOmDRUEK1brhOZTkKU4VSwca4daxYROiR91kIoScB0J5k6MLbPkOnZfqgwpbGn7PxEQgKtR4GHnQExA72oTchVWis2/lUn4TKKDZN0dpEfC9uE9sROu8cVo0aMEBCqOL7VpgOiCDVoeg5NcBe/vAzq5ZLrlNzbcqHipHZk4QRO4RxcuIQK3EAVakDhEV7hHT6sJ+vN+rS+Zq0ZK505hn9hff8BOpujbg==</latexit><latexit sha1_base64="BiKXNZw2UKBEgNLhIkiOKCS6CB0=">AAACFHicbVDLSsNAFJ34rPUVdekm2AqCUJJudFlw47KCfUBTymR60w6dTMLMjVhCPsKNv+LGhSJuXbjzb5w+EG09MHA451zu3BMkgmt03S9rZXVtfWOzsFXc3tnd27cPDps6ThWDBotFrNoB1SC4hAZyFNBOFNAoENAKRlcTv3UHSvNY3uI4gW5EB5KHnFE0Us8+L/uCyoEAP/MR7lGHWTvv/fBWnvu5r6aJcs8uuRV3CmeZeHNSInPUe/an349ZGoFEJqjWHc9NsJtRhZwJyIt+qiGhbEQH0DFU0gh0N5selTunRuk7YazMk+hM1d8TGY20HkeBSUYUh3rRm4j/eZ0Uw8tuxmWSIkg2WxSmwsHYmTTk9LkChmJsCGWKm786bEgVZWh6LJoSvMWTl0mzWvHcindTLdXceR0FckxOyBnxyAWpkWtSJw3CyAN5Ii/k1Xq0nq03630WXbHmM0fkD6yPb7iAn8s=</latexit>

h{XW}i
<latexit sha1_base64="tlgbIqTA8Ph9dj5u2cj578w03pU=">AAACQXicbVA7TwJBEJ7DF+ILtbS5CCYWhtzRaEliY4mJPBIgZG/Zgw17e5fdPSO58Nds/Ad29jYWGmNrog5wBQKTzO433zezj8+LBNfGcV6szNr6xuZWdju3s7u3f5A/PKrrMFaU1WgoQtX0iGaCS1Yz3AjWjBQjgSdYwxteT/TGPVOah/LOjCLWCUhfcp9TYpAK8xc/v1CENgggIKGPO8MqwTSIHnDV4GPdhDF0V/AN5MfITlLNnVHs5gtOyZmGvQzcFBQgjWo3/9zuhTQOmDRUEK1brhOZTkKU4VSwca4daxYROiR91kIoScB0J5k6MLbPkOnZfqgwpbGn7PxEQgKtR4GHnQExA72oTchVWis2/lUn4TKKDZN0dpEfC9uE9sROu8cVo0aMEBCqOL7VpgOiCDVoeg5NcBe/vAzq5ZLrlNzbcqHipHZk4QRO4RxcuIQK3EAVakDhEV7hHT6sJ+vN+rS+Zq0ZK505hn9hff8BOpujbg==</latexit><latexit sha1_base64="BiKXNZw2UKBEgNLhIkiOKCS6CB0=">AAACFHicbVDLSsNAFJ34rPUVdekm2AqCUJJudFlw47KCfUBTymR60w6dTMLMjVhCPsKNv+LGhSJuXbjzb5w+EG09MHA451zu3BMkgmt03S9rZXVtfWOzsFXc3tnd27cPDps6ThWDBotFrNoB1SC4hAZyFNBOFNAoENAKRlcTv3UHSvNY3uI4gW5EB5KHnFE0Us8+L/uCyoEAP/MR7lGHWTvv/fBWnvu5r6aJcs8uuRV3CmeZeHNSInPUe/an349ZGoFEJqjWHc9NsJtRhZwJyIt+qiGhbEQH0DFU0gh0N5selTunRuk7YazMk+hM1d8TGY20HkeBSUYUh3rRm4j/eZ0Uw8tuxmWSIkg2WxSmwsHYmTTk9LkChmJsCGWKm786bEgVZWh6LJoSvMWTl0mzWvHcindTLdXceR0FckxOyBnxyAWpkWtSJw3CyAN5Ii/k1Xq0nq03630WXbHmM0fkD6yPb7iAn8s=</latexit>

h{XW, F}i
<latexit sha1_base64="ij70V7FVuSR6kGWt75XMFcC5m94=">AAACU3icbZFNSwMxEIZn16q1Wq169LLYCh6k7BZEjwVBPFawH9CWkk2zbTCbXZKsWJb+RxE8+Ee8CNbptofaOjDJm2dm8jHxY8G1cd1Py97Kbe/s5vcK+wfFw6PS8UlLR4mirEkjEamOTzQTXLKm4UawTqwYCX3B2v7z3TzefmFK80g+mUnM+iEZSR5wSgyiqHT9M4MK9EAAAQkjnBmuUnSD6hVHDQGuOzCFwQZtI73aoPdIe5mrlV0rg1LZrbqZOZvCW4oyLK0xKL33hhFNQiYNFUTrrufGpp8SZTgVbFroJZrFhD6TEeuilCRkup9mPZk6F0iGThApdGmcjK5WpCTUehL6mBkSM9brsTn8L9ZNTHDbT7mME8MkXRwUJMIxkTNvsDPkilEjJigIVRzv6tAxUYQa/IYCNsFbf/KmaNWqnlv1HmvlurtsRx7O4BwuwYMbqMMDNKAJFN7gC2YWWB/Wt23buUWqbS1rTuGP2cVfBk6jiQ==</latexit><latexit sha1_base64="vh881U93fRM/dNsRkQxSywbKZrI=">AAACHXicbZDLSsNAFIYn3q23qks3wVZwISUpgi4FQVxWsBdoQphMT9rBySTMnIgl5EXc+CpuXCjiwo34Nk5rBG8/DHz85xzOnD9MBdfoOO/WzOzc/MLi0nJlZXVtfaO6udXRSaYYtFkiEtULqQbBJbSRo4BeqoDGoYBueHU6qXevQWmeyEscp+DHdCh5xBlFYwXVw7onqBwK8HIP4QZ1lPeK4Au7xcEXnhVe4alpaz2o1pyGM5X9F9wSaqRUK6i+eoOEZTFIZIJq3XedFP2cKuRMQFHxMg0pZVd0CH2Dksag/Xx6XWHvGWdgR4kyT6I9db9P5DTWehyHpjOmONK/axPzv1o/w+jYz7lMMwTJPhdFmbAxsSdR2QOugKEYG6BMcfNXm42oogxNoBUTgvv75L/QaTZcp+FeNGsnThnHEtkhu2SfuOSInJBz0iJtwsgtuSeP5Mm6sx6sZ+vls3XGKme2yQ9Zbx/haaOR</latexit>

h{XW, F}i
<latexit sha1_base64="ij70V7FVuSR6kGWt75XMFcC5m94=">AAACU3icbZFNSwMxEIZn16q1Wq169LLYCh6k7BZEjwVBPFawH9CWkk2zbTCbXZKsWJb+RxE8+Ee8CNbptofaOjDJm2dm8jHxY8G1cd1Py97Kbe/s5vcK+wfFw6PS8UlLR4mirEkjEamOTzQTXLKm4UawTqwYCX3B2v7z3TzefmFK80g+mUnM+iEZSR5wSgyiqHT9M4MK9EAAAQkjnBmuUnSD6hVHDQGuOzCFwQZtI73aoPdIe5mrlV0rg1LZrbqZOZvCW4oyLK0xKL33hhFNQiYNFUTrrufGpp8SZTgVbFroJZrFhD6TEeuilCRkup9mPZk6F0iGThApdGmcjK5WpCTUehL6mBkSM9brsTn8L9ZNTHDbT7mME8MkXRwUJMIxkTNvsDPkilEjJigIVRzv6tAxUYQa/IYCNsFbf/KmaNWqnlv1HmvlurtsRx7O4BwuwYMbqMMDNKAJFN7gC2YWWB/Wt23buUWqbS1rTuGP2cVfBk6jiQ==</latexit><latexit sha1_base64="vh881U93fRM/dNsRkQxSywbKZrI=">AAACHXicbZDLSsNAFIYn3q23qks3wVZwISUpgi4FQVxWsBdoQphMT9rBySTMnIgl5EXc+CpuXCjiwo34Nk5rBG8/DHz85xzOnD9MBdfoOO/WzOzc/MLi0nJlZXVtfaO6udXRSaYYtFkiEtULqQbBJbSRo4BeqoDGoYBueHU6qXevQWmeyEscp+DHdCh5xBlFYwXVw7onqBwK8HIP4QZ1lPeK4Au7xcEXnhVe4alpaz2o1pyGM5X9F9wSaqRUK6i+eoOEZTFIZIJq3XedFP2cKuRMQFHxMg0pZVd0CH2Dksag/Xx6XWHvGWdgR4kyT6I9db9P5DTWehyHpjOmONK/axPzv1o/w+jYz7lMMwTJPhdFmbAxsSdR2QOugKEYG6BMcfNXm42oogxNoBUTgvv75L/QaTZcp+FeNGsnThnHEtkhu2SfuOSInJBz0iJtwsgtuSeP5Mm6sx6sZ+vls3XGKme2yQ9Zbx/haaOR</latexit>

h{X, XW}i
<latexit sha1_base64="kiONDaw5h8mG/QN5MGBeyuAn2fI=">AAACU3icbVFNS8NAEJ3EqrVajXr0EmwFD1KSguix4MVjBfsBTSib7aZd3GzC7kYsof9RBA/+ES+CdZvmUNsOzO6bNzP78SZIGJXKcb4Mc6e0u7dfPqgcHlWPT6zTs66MU4FJB8csFv0AScIoJx1FFSP9RBAUBYz0gpeHRb73SoSkMX9W04T4ERpzGlKMlKZi6/Z3DnXwgAECDmO9Ex1l2pVGb3qVEOq4DzO42coON9ieZr3cxcqp9aFVcxpObvYmcAtQg8LaQ+vDG8U4jQhXmCEpB66TKD9DQlHMyKzipZIkCL+gMRloyFFEpJ/lmszsK82M7DAW2rmyc3a1I0ORlNMo0JURUhO5nluQ23KDVIX3fkZ5kirC8fKiMGW2iu2FwPaICoIVm2qAsKD6rTaeIIGw0mOoaBHc9S9vgm6z4ToN96lZazmFHGW4gEu4BhfuoAWP0IYOYHiHb5gbYHwaP6ZplpalplH0nMM/M6t/Htajmw==</latexit><latexit sha1_base64="swudNO4PXIS1njmg6VDEp3UmhjQ=">AAACHXicbZDLSsNAFIYnXmu9VV26CbaCCylJEXRZcOOygr1AU8pketIOnUzCzIlYQl7Eja/ixoUiLtyIb+P0ImrrDwMf/zmHM+f3Y8E1Os6ntbS8srq2ntvIb25t7+wW9vYbOkoUgzqLRKRaPtUguIQ6chTQihXQ0BfQ9IeX43rzFpTmkbzBUQydkPYlDzijaKxu4azkCSr7ArzUQ7hDHaSt7PQHu9/YzLzMU5PWUrdQdMrORPYiuDMokplq3cK714tYEoJEJqjWbdeJsZNShZwJyPJeoiGmbEj70DYoaQi6k06uy+xj4/TsIFLmSbQn7u+JlIZaj0LfdIYUB3q+Njb/q7UTDC46KZdxgiDZdFGQCBsjexyV3eMKGIqRAcoUN3+12YAqytAEmjchuPMnL0KjUnadsntdKVadWRw5ckiOyAlxyTmpkitSI3XCyD15JM/kxXqwnqxX623aumTNZg7IH1kfX/tRo6M=</latexit>

h{X, XW}i
<latexit sha1_base64="kiONDaw5h8mG/QN5MGBeyuAn2fI=">AAACU3icbVFNS8NAEJ3EqrVajXr0EmwFD1KSguix4MVjBfsBTSib7aZd3GzC7kYsof9RBA/+ES+CdZvmUNsOzO6bNzP78SZIGJXKcb4Mc6e0u7dfPqgcHlWPT6zTs66MU4FJB8csFv0AScIoJx1FFSP9RBAUBYz0gpeHRb73SoSkMX9W04T4ERpzGlKMlKZi6/Z3DnXwgAECDmO9Ex1l2pVGb3qVEOq4DzO42coON9ieZr3cxcqp9aFVcxpObvYmcAtQg8LaQ+vDG8U4jQhXmCEpB66TKD9DQlHMyKzipZIkCL+gMRloyFFEpJ/lmszsK82M7DAW2rmyc3a1I0ORlNMo0JURUhO5nluQ23KDVIX3fkZ5kirC8fKiMGW2iu2FwPaICoIVm2qAsKD6rTaeIIGw0mOoaBHc9S9vgm6z4ToN96lZazmFHGW4gEu4BhfuoAWP0IYOYHiHb5gbYHwaP6ZplpalplH0nMM/M6t/Htajmw==</latexit><latexit sha1_base64="swudNO4PXIS1njmg6VDEp3UmhjQ=">AAACHXicbZDLSsNAFIYnXmu9VV26CbaCCylJEXRZcOOygr1AU8pketIOnUzCzIlYQl7Eja/ixoUiLtyIb+P0ImrrDwMf/zmHM+f3Y8E1Os6ntbS8srq2ntvIb25t7+wW9vYbOkoUgzqLRKRaPtUguIQ6chTQihXQ0BfQ9IeX43rzFpTmkbzBUQydkPYlDzijaKxu4azkCSr7ArzUQ7hDHaSt7PQHu9/YzLzMU5PWUrdQdMrORPYiuDMokplq3cK714tYEoJEJqjWbdeJsZNShZwJyPJeoiGmbEj70DYoaQi6k06uy+xj4/TsIFLmSbQn7u+JlIZaj0LfdIYUB3q+Njb/q7UTDC46KZdxgiDZdFGQCBsjexyV3eMKGIqRAcoUN3+12YAqytAEmjchuPMnL0KjUnadsntdKVadWRw5ckiOyAlxyTmpkitSI3XCyD15JM/kxXqwnqxX623aumTNZg7IH1kfX/tRo6M=</latexit>

h{X, XW, G}i
<latexit sha1_base64="ug7oACaDK7XdszZOyHi0ufNpl7Q="></latexit><latexit sha1_base64="+68Yr3sTB6L8pJ1y92kV7c87mtA=">AAACKHicbZBNS8NAEIY3flu/oh69BKvgQUrSi94UPOixgrWFpoTNdtIu3WzC7kQsIT/Hi3/Fi4givfpL3NaIny8sPLwzw+y8YSq4RtcdWzOzc/MLi0vLlZXVtfUNe3PrWieZYtBkiUhUO6QaBJfQRI4C2qkCGocCWuHwbFJv3YDSPJFXOEqhG9O+5BFnFI0V2Cd7vqCyL8DPfYRb1FHeLg6/MPjE1pd7XviFr6ZTe4FddWvuVM5f8EqoklKNwH7yewnLYpDIBNW647kpdnOqkDMBRcXPNKSUDWkfOgYljUF38+mhhbNvnJ4TJco8ic7U/T6R01jrURyazpjiQP+uTcz/ap0Mo+NuzmWaIUj2sSjKhIOJM0nN6XEFDMXIAGWKm786bEAVZWiyrZgQvN8n/4Xres1za95lvXrqlnEskR2ySw6IR47IKbkgDdIkjNyRB/JMXqx769F6tcYfrTNWObNNfsh6ewc+qqh2</latexit>

h{X, XW, G}i
<latexit sha1_base64="ug7oACaDK7XdszZOyHi0ufNpl7Q="></latexit><latexit sha1_base64="+68Yr3sTB6L8pJ1y92kV7c87mtA=">AAACKHicbZBNS8NAEIY3flu/oh69BKvgQUrSi94UPOixgrWFpoTNdtIu3WzC7kQsIT/Hi3/Fi4givfpL3NaIny8sPLwzw+y8YSq4RtcdWzOzc/MLi0vLlZXVtfUNe3PrWieZYtBkiUhUO6QaBJfQRI4C2qkCGocCWuHwbFJv3YDSPJFXOEqhG9O+5BFnFI0V2Cd7vqCyL8DPfYRb1FHeLg6/MPjE1pd7XviFr6ZTe4FddWvuVM5f8EqoklKNwH7yewnLYpDIBNW647kpdnOqkDMBRcXPNKSUDWkfOgYljUF38+mhhbNvnJ4TJco8ic7U/T6R01jrURyazpjiQP+uTcz/ap0Mo+NuzmWaIUj2sSjKhIOJM0nN6XEFDMXIAGWKm786bEAVZWiyrZgQvN8n/4Xres1za95lvXrqlnEskR2ySw6IR47IKbkgDdIkjNyRB/JMXqx769F6tcYfrTNWObNNfsh6ewc+qqh2</latexit>

h{XW, G, R}i
<latexit sha1_base64="Zd+1JyOEAuk5I8O46MPP1451tFM="></latexit><latexit sha1_base64="e/JW3q8tA6o6Zj3EmGoDJeYbNw4=">AAACKHicbZBNS8NAEIY3ftb6VfXoJVgFD1KSXvRmwYMeq1hbaELZbCft4mYTdidiCfk5XvwrXkQU8eovcRsravWFhYd3ZpidN0gE1+g4b9bM7Nz8wmJpqby8srq2XtnYvNJxqhi0WCxi1QmoBsEltJCjgE6igEaBgHZwfTKut29AaR7LSxwl4Ed0IHnIGUVj9SrHu56gciDAyzyEW9Rh1sl7X9jOD77w9Bsvci/3VDG126tUnZpTyP4L7gSqZKJmr/Lk9WOWRiCRCap113US9DOqkDMBedlLNSSUXdMBdA1KGoH2s+LQ3N4zTt8OY2WeRLtwf05kNNJ6FAWmM6I41NO1sflfrZtieORnXCYpgmSfi8JU2Bjb49TsPlfAUIwMUKa4+avNhlRRhibbsgnBnT75L1zVa65Tc8/r1YYziaNEtskO2ScuOSQNckaapEUYuSMP5Jm8WPfWo/VqvX22zliTmS3yS9b7Bza7qHA=</latexit>

h{XW, G, R}i
<latexit sha1_base64="Zd+1JyOEAuk5I8O46MPP1451tFM="></latexit><latexit sha1_base64="e/JW3q8tA6o6Zj3EmGoDJeYbNw4=">AAACKHicbZBNS8NAEIY3ftb6VfXoJVgFD1KSXvRmwYMeq1hbaELZbCft4mYTdidiCfk5XvwrXkQU8eovcRsravWFhYd3ZpidN0gE1+g4b9bM7Nz8wmJpqby8srq2XtnYvNJxqhi0WCxi1QmoBsEltJCjgE6igEaBgHZwfTKut29AaR7LSxwl4Ed0IHnIGUVj9SrHu56gciDAyzyEW9Rh1sl7X9jOD77w9Bsvci/3VDG126tUnZpTyP4L7gSqZKJmr/Lk9WOWRiCRCap113US9DOqkDMBedlLNSSUXdMBdA1KGoH2s+LQ3N4zTt8OY2WeRLtwf05kNNJ6FAWmM6I41NO1sflfrZtieORnXCYpgmSfi8JU2Bjb49TsPlfAUIwMUKa4+avNhlRRhibbsgnBnT75L1zVa65Tc8/r1YYziaNEtskO2ScuOSQNckaapEUYuSMP5Jm8WPfWo/VqvX22zliTmS3yS9b7Bza7qHA=</latexit>

h{X, XW, G, R}i
<latexit sha1_base64="9zuLaBLyBbCZzroZCu9YEHAX3iU="></latexit><latexit sha1_base64="0YuCL8ofQS+z+Wt2tp+8Mfkefns=">AAACM3icbZDLSsNAFIYnXmu9VV26CVbBhZTEjS4FF4qrKvYCTSmT6UkdnEzCzIlYQt7JjS/iQhAXirj1HZymkXr7YeDjP+fMzPn9WHCNjvNkTU3PzM7NlxbKi0vLK6uVtfWmjhLFoMEiEam2TzUILqGBHAW0YwU09AW0/OvjUb11A0rzSF7iMIZuSAeSB5xRNFavcrbtCSoHArzUQ7hFHaTtbG+CvS9sTdyTCV5kXuap/ILtXqXq1Jxc9l9wC6iSQvVe5cHrRywJQSITVOuO68TYTalCzgRkZS/REFN2TQfQMShpCLqb5jtn9o5x+nYQKXMk2rn7fSKlodbD0DedIcUr/bs2Mv+rdRIMDrspl3GCINn4oSARNkb2KEC7zxUwFEMDlClu/mqzK6ooQxNz2YTg/l75LzT3a65Tc8/3q0dOEUeJbJItsktcckCOyCmpkwZh5I48khfyat1bz9ab9T5unbKKmQ3yQ9bHJ8RirVQ=</latexit>

h{X, XW, G, R}i
<latexit sha1_base64="9zuLaBLyBbCZzroZCu9YEHAX3iU="></latexit><latexit sha1_base64="0YuCL8ofQS+z+Wt2tp+8Mfkefns=">AAACM3icbZDLSsNAFIYnXmu9VV26CVbBhZTEjS4FF4qrKvYCTSmT6UkdnEzCzIlYQt7JjS/iQhAXirj1HZymkXr7YeDjP+fMzPn9WHCNjvNkTU3PzM7NlxbKi0vLK6uVtfWmjhLFoMEiEam2TzUILqGBHAW0YwU09AW0/OvjUb11A0rzSF7iMIZuSAeSB5xRNFavcrbtCSoHArzUQ7hFHaTtbG+CvS9sTdyTCV5kXuap/ILtXqXq1Jxc9l9wC6iSQvVe5cHrRywJQSITVOuO68TYTalCzgRkZS/REFN2TQfQMShpCLqb5jtn9o5x+nYQKXMk2rn7fSKlodbD0DedIcUr/bs2Mv+rdRIMDrspl3GCINn4oSARNkb2KEC7zxUwFEMDlClu/mqzK6ooQxNz2YTg/l75LzT3a65Tc8/3q0dOEUeJbJItsktcckCOyCmpkwZh5I48khfyat1bz9ab9T5unbKKmQ3yQ9bHJ8RirVQ=</latexit>

h{XW, G, F}i
<latexit sha1_base64="tAs3c/dV+xVp07UPemVMULqZ9BI="></latexit><latexit sha1_base64="dbY47zYeFVgcOENCkCyIIts6rME=">AAACKHicbZDLSsNAFIYnXmu9RV26CVbBhZTEje4UBHVZwV6gCWUyPamDk0mYORFLyOO48VXciCjSrU/i9IbXHwY+/nMOZ84fpoJrdN2BNTM7N7+wWFoqL6+srq3bG5sNnWSKQZ0lIlGtkGoQXEIdOQpopQpoHApohrdnw3rzDpTmibzGfgpBTHuSR5xRNFbHPtn1BZU9AX7uI9yjjvJW0ZlisziY4sUXnhd+4avR1G7HrrhVdyTnL3gTqJCJah37xe8mLItBIhNU67bnphjkVCFnAoqyn2lIKbulPWgblDQGHeSjQwtnzzhdJ0qUeRKdkft9Iqex1v04NJ0xxRv9uzY0/6u1M4yOg5zLNEOQbLwoyoSDiTNMzelyBQxF3wBlipu/OuyGKsrQZFs2IXi/T/4LjcOq51a9q8PKqTuJo0S2yQ7ZJx45IqfkktRInTDyQJ7IK3mzHq1n690ajFtnrMnMFvkh6+MTJAeoZA==</latexit>

h{XW, G, F}i
<latexit sha1_base64="tAs3c/dV+xVp07UPemVMULqZ9BI="></latexit><latexit sha1_base64="dbY47zYeFVgcOENCkCyIIts6rME=">AAACKHicbZDLSsNAFIYnXmu9RV26CVbBhZTEje4UBHVZwV6gCWUyPamDk0mYORFLyOO48VXciCjSrU/i9IbXHwY+/nMOZ84fpoJrdN2BNTM7N7+wWFoqL6+srq3bG5sNnWSKQZ0lIlGtkGoQXEIdOQpopQpoHApohrdnw3rzDpTmibzGfgpBTHuSR5xRNFbHPtn1BZU9AX7uI9yjjvJW0ZlisziY4sUXnhd+4avR1G7HrrhVdyTnL3gTqJCJah37xe8mLItBIhNU67bnphjkVCFnAoqyn2lIKbulPWgblDQGHeSjQwtnzzhdJ0qUeRKdkft9Iqex1v04NJ0xxRv9uzY0/6u1M4yOg5zLNEOQbLwoyoSDiTNMzelyBQxF3wBlipu/OuyGKsrQZFs2IXi/T/4LjcOq51a9q8PKqTuJo0S2yQ7ZJx45IqfkktRInTDyQJ7IK3mzHq1n690ajFtnrMnMFvkh6+MTJAeoZA==</latexit>

[21][24]

[19][24]

Classes enjoying the 
linear-length model property

Classes do not enjoying
the linear-length model property

h{R}i
<latexit sha1_base64="+Oo5vx+1JWIG6bsCYkz0zKXIxms=">AAACJ3icbVBNTwIxEJ3FL8SvVY8ebAQTT2SXix5JvHhEIx8JENItXWjodjdt10g2/Bsv/hUvJmqMHv0jahf2gOAk0755bybtPC/iTGnH+bRyK6tr6xv5zcLW9s7unr1/0FBhLAmtk5CHsuVhRTkTtK6Z5rQVSYoDj9OmN7pM9eYdlYqF4laPI9oN8EAwnxGsDRXax98/UIIOcMAgYGBuaqrEpDbo3pwKfFPfwMRwacq5zlLPLjplZxpoGbgZKEIWtZ790umHJA6o0IRjpdquE+lugqVmhNNJoRMrGmEywgPaNlDggKpuMt1zgk4N00d+KE0Kjabs/ESCA6XGgWc6A6yHalFLyf+0dqz9i27CRBRrKsjsIT/mSIcoNQ31maRE87EBmEhm/orIEEtMtLG2YExwF1deBo1K2XXK7nWlWHUyO/JwBCdwBi6cQxWuoAZ1IPAAT/AKb9aj9Wy9Wx+z1pyVzRzCn7C+fgE54ZzR</latexit><latexit sha1_base64="RG0XnKGq+BbiVXOUhXomYPpSnRo=">AAACB3icbVBNS8NAEN34WetX1aMgwVbwVJJe9Fjw4rGK/YAmlM120i7dbMLuRCwhNy/+FS8eFPHqX/Dmv3H7cdDWBwOP92aYmRckgmt0nG9rZXVtfWOzsFXc3tnd2y8dHLZ0nCoGTRaLWHUCqkFwCU3kKKCTKKBRIKAdjK4mfvselOaxvMNxAn5EB5KHnFE0Uq90UvEElQMBXuYhPKAOs9vcyz01FSu9UtmpOlPYy8SdkzKZo9ErfXn9mKURSGSCat11nQT9jCrkTEBe9FINCWUjOoCuoZJGoP1s+kdunxmlb4exMiXRnqq/JzIaaT2OAtMZURzqRW8i/ud1Uwwv/YzLJEWQbLYoTIWNsT0Jxe5zBQzF2BDKFDe32mxIFWVooiuaENzFl5dJq1Z1nap7UyvXnXkcBXJMTsk5cckFqZNr0iBNwsgjeSav5M16sl6sd+tj1rpizWeOyB9Ynz+BBJmj</latexit>

h{R}i
<latexit sha1_base64="+Oo5vx+1JWIG6bsCYkz0zKXIxms=">AAACJ3icbVBNTwIxEJ3FL8SvVY8ebAQTT2SXix5JvHhEIx8JENItXWjodjdt10g2/Bsv/hUvJmqMHv0jahf2gOAk0755bybtPC/iTGnH+bRyK6tr6xv5zcLW9s7unr1/0FBhLAmtk5CHsuVhRTkTtK6Z5rQVSYoDj9OmN7pM9eYdlYqF4laPI9oN8EAwnxGsDRXax98/UIIOcMAgYGBuaqrEpDbo3pwKfFPfwMRwacq5zlLPLjplZxpoGbgZKEIWtZ790umHJA6o0IRjpdquE+lugqVmhNNJoRMrGmEywgPaNlDggKpuMt1zgk4N00d+KE0Kjabs/ESCA6XGgWc6A6yHalFLyf+0dqz9i27CRBRrKsjsIT/mSIcoNQ31maRE87EBmEhm/orIEEtMtLG2YExwF1deBo1K2XXK7nWlWHUyO/JwBCdwBi6cQxWuoAZ1IPAAT/AKb9aj9Wy9Wx+z1pyVzRzCn7C+fgE54ZzR</latexit><latexit sha1_base64="RG0XnKGq+BbiVXOUhXomYPpSnRo=">AAACB3icbVBNS8NAEN34WetX1aMgwVbwVJJe9Fjw4rGK/YAmlM120i7dbMLuRCwhNy/+FS8eFPHqX/Dmv3H7cdDWBwOP92aYmRckgmt0nG9rZXVtfWOzsFXc3tnd2y8dHLZ0nCoGTRaLWHUCqkFwCU3kKKCTKKBRIKAdjK4mfvselOaxvMNxAn5EB5KHnFE0Uq90UvEElQMBXuYhPKAOs9vcyz01FSu9UtmpOlPYy8SdkzKZo9ErfXn9mKURSGSCat11nQT9jCrkTEBe9FINCWUjOoCuoZJGoP1s+kdunxmlb4exMiXRnqq/JzIaaT2OAtMZURzqRW8i/ud1Uwwv/YzLJEWQbLYoTIWNsT0Jxe5zBQzF2BDKFDe32mxIFWVooiuaENzFl5dJq1Z1nap7UyvXnXkcBXJMTsk5cckFqZNr0iBNwsgjeSav5M16sl6sd+tj1rpizWeOyB9Ynz+BBJmj</latexit>

h{XW, R}i
<latexit sha1_base64="/vn0y+byRnH8WIia3qPC/6N5PxM=">AAACV3icbZFLTwIxEMdnF1TEF+jRy0Yw8WDILhc8knjxiEYeCRDSLV1o6HY3bddINnxJ44Wv4kEcHgcEJpn239/M9DH1Y8G1cd25ZWeyR8cnudP82fnF5VWheN3SUaIoa9JIRKrjE80El6xpuBGsEytGQl+wtj95XsbbH0xpHsl3M41ZPyQjyQNOiUEUFWq/CyhDDwQQkDDCmeEqRTeoPnHUEOC6AzMYHOBt5DN43ONvSHsrV1s7lweFkltxV+bsC28jSrCxxqDw1RtGNAmZNFQQrbueG5t+SpThVLBZvpdoFhM6ISPWRSlJyHQ/XfVl5twjGTpBpNClcVZ0uyIlodbT0MfMkJix3o0t4aFYNzHBUz/lMk4Mk3R9UJAIx0TOssnOkCtGjZiiIFRxvKtDx0QRavAr8tgEb/fJ+6JVrXhuxXutluruph05uIU7eAAPalCHF2hAEyh8w4+VsbLW3FrYx3ZunWpbm5ob+Gd28Q9fLKO0</latexit><latexit sha1_base64="KUMzqiV2AaXMvIsCx20n5f82foo=">AAACH3icbZDLSsNAFIYn9VbrrerSTbAKLqQkXajLghuXKvYCTQiT6UkdOpmEmROxhLyJG1/FjQtFxJ1v4/SiePth4OM/53Dm/GEquEbHebdKc/MLi0vl5crK6tr6RnVzq62TTDFosUQkqhtSDYJLaCFHAd1UAY1DAZ1weDqud25AaZ7IKxyl4Md0IHnEGUVjBdWjPU9QORDg5R7CLeoo7xbBF3eK4vCTLwuv8NSkeS+o1py6M5H9F9wZ1MhM50H1zesnLItBIhNU657rpOjnVCFnAoqKl2lIKRvSAfQMShqD9vPJfYW9b5y+HSXKPIn2xP0+kdNY61Ecms6Y4rX+XRub/9V6GUYnfs5lmiFINl0UZcLGxB6HZfe5AoZiZIAyxc1fbXZNFWVoIq2YENzfJ/+FdqPuOnX3olFrOrM4ymSH7JID4pJj0iRn5Jy0CCN35IE8kWfr3nq0XqzXaWvJms1skx+y3j8A5b+kqQ==</latexit>

h{XW, R}i
<latexit sha1_base64="/vn0y+byRnH8WIia3qPC/6N5PxM=">AAACV3icbZFLTwIxEMdnF1TEF+jRy0Yw8WDILhc8knjxiEYeCRDSLV1o6HY3bddINnxJ44Wv4kEcHgcEJpn239/M9DH1Y8G1cd25ZWeyR8cnudP82fnF5VWheN3SUaIoa9JIRKrjE80El6xpuBGsEytGQl+wtj95XsbbH0xpHsl3M41ZPyQjyQNOiUEUFWq/CyhDDwQQkDDCmeEqRTeoPnHUEOC6AzMYHOBt5DN43ONvSHsrV1s7lweFkltxV+bsC28jSrCxxqDw1RtGNAmZNFQQrbueG5t+SpThVLBZvpdoFhM6ISPWRSlJyHQ/XfVl5twjGTpBpNClcVZ0uyIlodbT0MfMkJix3o0t4aFYNzHBUz/lMk4Mk3R9UJAIx0TOssnOkCtGjZiiIFRxvKtDx0QRavAr8tgEb/fJ+6JVrXhuxXutluruph05uIU7eAAPalCHF2hAEyh8w4+VsbLW3FrYx3ZunWpbm5ob+Gd28Q9fLKO0</latexit><latexit sha1_base64="KUMzqiV2AaXMvIsCx20n5f82foo=">AAACH3icbZDLSsNAFIYn9VbrrerSTbAKLqQkXajLghuXKvYCTQiT6UkdOpmEmROxhLyJG1/FjQtFxJ1v4/SiePth4OM/53Dm/GEquEbHebdKc/MLi0vl5crK6tr6RnVzq62TTDFosUQkqhtSDYJLaCFHAd1UAY1DAZ1weDqud25AaZ7IKxyl4Md0IHnEGUVjBdWjPU9QORDg5R7CLeoo7xbBF3eK4vCTLwuv8NSkeS+o1py6M5H9F9wZ1MhM50H1zesnLItBIhNU657rpOjnVCFnAoqKl2lIKRvSAfQMShqD9vPJfYW9b5y+HSXKPIn2xP0+kdNY61Ecms6Y4rX+XRub/9V6GUYnfs5lmiFINl0UZcLGxB6HZfe5AoZiZIAyxc1fbXZNFWVoIq2YENzfJ/+FdqPuOnX3olFrOrM4ymSH7JID4pJj0iRn5Jy0CCN35IE8kWfr3nq0XqzXaWvJms1skx+y3j8A5b+kqQ==</latexit>

h{G, R}i
<latexit sha1_base64="40D/nvQg+q7aiYMvefOSMaN2Ug4=">AAACEnicbZBNS8NAEIY39bt+VT16CbaCgpTEix4FD3pUsR/QlLLZTtqlm03YnYgl5Dd48a948aCIV0/e/Ddu0wraOrDw8L4zzM7rx4JrdJwvqzA3v7C4tLxSXF1b39gsbW3XdZQoBjUWiUg1fapBcAk15CigGSugoS+g4Q/OR37jDpTmkbzFYQztkPYkDzijaKRO6bDiCSp7ArzUQ7hHHaQX2dEP3mRe5qncr3RKZafq5GXPgjuBMpnUVaf06XUjloQgkQmqdct1YmynVCFnArKil2iIKRvQHrQMShqCbqf5SZm9b5SuHUTKPIl2rv6eSGmo9TD0TWdIsa+nvZH4n9dKMDhtp1zGCYJk40VBImyM7FE+dpcrYCiGBihT3PzVZn2qKEOTYtGE4E6fPAv146rrVN3r4/KZM4ljmeySPXJAXHJCzsgluSI1wsgDeSIv5NV6tJ6tN+t93FqwJjM75E9ZH99dZZ52</latexit><latexit sha1_base64="40D/nvQg+q7aiYMvefOSMaN2Ug4=">AAACEnicbZBNS8NAEIY39bt+VT16CbaCgpTEix4FD3pUsR/QlLLZTtqlm03YnYgl5Dd48a948aCIV0/e/Ddu0wraOrDw8L4zzM7rx4JrdJwvqzA3v7C4tLxSXF1b39gsbW3XdZQoBjUWiUg1fapBcAk15CigGSugoS+g4Q/OR37jDpTmkbzFYQztkPYkDzijaKRO6bDiCSp7ArzUQ7hHHaQX2dEP3mRe5qncr3RKZafq5GXPgjuBMpnUVaf06XUjloQgkQmqdct1YmynVCFnArKil2iIKRvQHrQMShqCbqf5SZm9b5SuHUTKPIl2rv6eSGmo9TD0TWdIsa+nvZH4n9dKMDhtp1zGCYJk40VBImyM7FE+dpcrYCiGBihT3PzVZn2qKEOTYtGE4E6fPAv146rrVN3r4/KZM4ljmeySPXJAXHJCzsgluSI1wsgDeSIv5NV6tJ6tN+t93FqwJjM75E9ZH99dZZ52</latexit>

h{G, R}i
<latexit sha1_base64="40D/nvQg+q7aiYMvefOSMaN2Ug4=">AAACEnicbZBNS8NAEIY39bt+VT16CbaCgpTEix4FD3pUsR/QlLLZTtqlm03YnYgl5Dd48a948aCIV0/e/Ddu0wraOrDw8L4zzM7rx4JrdJwvqzA3v7C4tLxSXF1b39gsbW3XdZQoBjUWiUg1fapBcAk15CigGSugoS+g4Q/OR37jDpTmkbzFYQztkPYkDzijaKRO6bDiCSp7ArzUQ7hHHaQX2dEP3mRe5qncr3RKZafq5GXPgjuBMpnUVaf06XUjloQgkQmqdct1YmynVCFnArKil2iIKRvQHrQMShqCbqf5SZm9b5SuHUTKPIl2rv6eSGmo9TD0TWdIsa+nvZH4n9dKMDhtp1zGCYJk40VBImyM7FE+dpcrYCiGBihT3PzVZn2qKEOTYtGE4E6fPAv146rrVN3r4/KZM4ljmeySPXJAXHJCzsgluSI1wsgDeSIv5NV6tJ6tN+t93FqwJjM75E9ZH99dZZ52</latexit><latexit sha1_base64="40D/nvQg+q7aiYMvefOSMaN2Ug4=">AAACEnicbZBNS8NAEIY39bt+VT16CbaCgpTEix4FD3pUsR/QlLLZTtqlm03YnYgl5Dd48a948aCIV0/e/Ddu0wraOrDw8L4zzM7rx4JrdJwvqzA3v7C4tLxSXF1b39gsbW3XdZQoBjUWiUg1fapBcAk15CigGSugoS+g4Q/OR37jDpTmkbzFYQztkPYkDzijaKRO6bDiCSp7ArzUQ7hHHaQX2dEP3mRe5qncr3RKZafq5GXPgjuBMpnUVaf06XUjloQgkQmqdct1YmynVCFnArKil2iIKRvQHrQMShqCbqf5SZm9b5SuHUTKPIl2rv6eSGmo9TD0TWdIsa+nvZH4n9dKMDhtp1zGCYJk40VBImyM7FE+dpcrYCiGBihT3PzVZn2qKEOTYtGE4E6fPAv146rrVN3r4/KZM4ljmeySPXJAXHJCzsgluSI1wsgDeSIv5NV6tJ6tN+t93FqwJjM75E9ZH99dZZ52</latexit>

h{F, R}i
<latexit sha1_base64="EeY6+97DeqY25yYvTe6/Z88cTk8=">AAACPXicbVA9T8MwEL2Ur1K+AowsES0SQqhKusBYCQkxFkQ/pCaqHNdprTpOZDuIKuofY+E/sLGxMIAQKxvgph1Ky0lnv3vvTvY9P2ZUKtt+NnJLyyura/n1wsbm1vaOubvXkFEiMKnjiEWi5SNJGOWkrqhipBULgkKfkaY/uBjrzTsiJI34rRrGxAtRj9OAYqQ0FZkn3z9QAhcYIODQ0zfRVapTaXSvTwmBri9hBKcL7I1m3SzFzHypYxbtsp2FtQicKSjCNGod88ntRjgJCVeYISnbjh0rL0VCUczIqOAmksQID1CPtDXkKCTSS7PtR9aRZrpWEAmdXFkZOzuRolDKYejrzhCpvpzXxuR/WjtRwbmXUh4ninA8eShImKUia2yl1aWCYMWGGiAsqP6rhftIIKy04QVtgjO/8iJoVMqOXXauK8WqPbUjDwdwCMfgwBlU4QpqUAcMD/ACb/BuPBqvxofxOWnNGdOZffgTxtcvZBSiBg==</latexit><latexit sha1_base64="AuZtnYPCp1+ze7HQPO1yXqZi4A8=">AAACEnicbZBNS8NAEIY39bt+VT16CbaCgpTEix4FQTyq2A9oStlsJ+3SzSbsTsQS8hu8+Fe8eFDEqydv/hu3aQVtHVh4eN8ZZuf1Y8E1Os6XVZibX1hcWl4prq6tb2yWtrbrOkoUgxqLRKSaPtUguIQachTQjBXQ0BfQ8AfnI79xB0rzSN7iMIZ2SHuSB5xRNFKndFjxBJU9AV7qIdyjDtKL7OgHbzIv81TuVzqlslN18rJnwZ1AmUzqqlP69LoRS0KQyATVuuU6MbZTqpAzAVnRSzTElA1oD1oGJQ1Bt9P8pMzeN0rXDiJlnkQ7V39PpDTUehj6pjOk2NfT3kj8z2slGJy2Uy7jBEGy8aIgETZG9igfu8sVMBRDA5Qpbv5qsz5VlKFJsWhCcKdPnoX6cdV1qu71cfnMmcSxTHbJHjkgLjkhZ+SSXJEaYeSBPJEX8mo9Ws/Wm/U+bi1Yk5kd8qesj29by551</latexit>

h{F, R}i
<latexit sha1_base64="EeY6+97DeqY25yYvTe6/Z88cTk8=">AAACPXicbVA9T8MwEL2Ur1K+AowsES0SQqhKusBYCQkxFkQ/pCaqHNdprTpOZDuIKuofY+E/sLGxMIAQKxvgph1Ky0lnv3vvTvY9P2ZUKtt+NnJLyyura/n1wsbm1vaOubvXkFEiMKnjiEWi5SNJGOWkrqhipBULgkKfkaY/uBjrzTsiJI34rRrGxAtRj9OAYqQ0FZkn3z9QAhcYIODQ0zfRVapTaXSvTwmBri9hBKcL7I1m3SzFzHypYxbtsp2FtQicKSjCNGod88ntRjgJCVeYISnbjh0rL0VCUczIqOAmksQID1CPtDXkKCTSS7PtR9aRZrpWEAmdXFkZOzuRolDKYejrzhCpvpzXxuR/WjtRwbmXUh4ninA8eShImKUia2yl1aWCYMWGGiAsqP6rhftIIKy04QVtgjO/8iJoVMqOXXauK8WqPbUjDwdwCMfgwBlU4QpqUAcMD/ACb/BuPBqvxofxOWnNGdOZffgTxtcvZBSiBg==</latexit><latexit sha1_base64="AuZtnYPCp1+ze7HQPO1yXqZi4A8=">AAACEnicbZBNS8NAEIY39bt+VT16CbaCgpTEix4FQTyq2A9oStlsJ+3SzSbsTsQS8hu8+Fe8eFDEqydv/hu3aQVtHVh4eN8ZZuf1Y8E1Os6XVZibX1hcWl4prq6tb2yWtrbrOkoUgxqLRKSaPtUguIQachTQjBXQ0BfQ8AfnI79xB0rzSN7iMIZ2SHuSB5xRNFKndFjxBJU9AV7qIdyjDtKL7OgHbzIv81TuVzqlslN18rJnwZ1AmUzqqlP69LoRS0KQyATVuuU6MbZTqpAzAVnRSzTElA1oD1oGJQ1Bt9P8pMzeN0rXDiJlnkQ7V39PpDTUehj6pjOk2NfT3kj8z2slGJy2Uy7jBEGy8aIgETZG9igfu8sVMBRDA5Qpbv5qsz5VlKFJsWhCcKdPnoX6cdV1qu71cfnMmcSxTHbJHjkgLjkhZ+SSXJEaYeSBPJEX8mo9Ws/Wm/U+bi1Yk5kd8qesj29by551</latexit>

h{X, R}i
<latexit sha1_base64="x09+/3b0eiWHOSR+DDl+8x/5oGU=">AAACPXicbVA9T8MwEL3wWcpXgJElokVCCFVJFxgrsTAWRD+kJqoc12mtOk5kO4gq6h9j4T+wsbEwgBArG+CmGUrLSWe/e+9O9j0/ZlQq2342lpZXVtfWCxvFza3tnV1zb78po0Rg0sARi0TbR5IwyklDUcVIOxYEhT4jLX94OdFbd0RIGvFbNYqJF6I+pwHFSGkqMk+/f6AMLjBAwKGvb6KrVKfS6F6fEgJdt2EMZwvsjWbdLMXMfLlrluyKnYW1CJwclCCPetd8cnsRTkLCFWZIyo5jx8pLkVAUMzIuuokkMcJD1CcdDTkKifTSbPuxdayZnhVEQidXVsbOTqQolHIU+rozRGog57UJ+Z/WSVRw4aWUx4kiHE8fChJmqciaWGn1qCBYsZEGCAuq/2rhARIIK214UZvgzK+8CJrVimNXnOtqqWbndhTgEI7gBBw4hxpcQR0agOEBXuAN3o1H49X4MD6nrUtGPnMAf8L4+gWCdKIY</latexit><latexit sha1_base64="BufRVB2I5LdsDbtW/PsEtb8nQRw=">AAACEnicbZDLSsNAFIYnXmu9VV26CbaCgpSkG10W3LisYi/QlDKZnrRDJ5MwcyKWkGdw46u4caGIW1fufBunF0FbDwx8/P85nDm/Hwuu0XG+rKXlldW19dxGfnNre2e3sLff0FGiGNRZJCLV8qkGwSXUkaOAVqyAhr6Apj+8HPvNO1CaR/IWRzF0QtqXPOCMopG6hdOSJ6jsC/BSD+EedZC2srMfvMm8zFMTv9QtFJ2yMyl7EdwZFMmsat3Cp9eLWBKCRCao1m3XibGTUoWcCcjyXqIhpmxI+9A2KGkIupNOTsrsY6P07CBS5km0J+rviZSGWo9C33SGFAd63huL/3ntBIOLTsplnCBINl0UJMLGyB7nY/e4AoZiZIAyxc1fbTagijI0KeZNCO78yYvQqJRdp+xeV4pVZxZHjhySI3JCXHJOquSK1EidMPJAnsgLebUerWfrzXqfti5Zs5kD8qesj294n56H</latexit>

h{X, R}i
<latexit sha1_base64="x09+/3b0eiWHOSR+DDl+8x/5oGU=">AAACPXicbVA9T8MwEL3wWcpXgJElokVCCFVJFxgrsTAWRD+kJqoc12mtOk5kO4gq6h9j4T+wsbEwgBArG+CmGUrLSWe/e+9O9j0/ZlQq2342lpZXVtfWCxvFza3tnV1zb78po0Rg0sARi0TbR5IwyklDUcVIOxYEhT4jLX94OdFbd0RIGvFbNYqJF6I+pwHFSGkqMk+/f6AMLjBAwKGvb6KrVKfS6F6fEgJdt2EMZwvsjWbdLMXMfLlrluyKnYW1CJwclCCPetd8cnsRTkLCFWZIyo5jx8pLkVAUMzIuuokkMcJD1CcdDTkKifTSbPuxdayZnhVEQidXVsbOTqQolHIU+rozRGog57UJ+Z/WSVRw4aWUx4kiHE8fChJmqciaWGn1qCBYsZEGCAuq/2rhARIIK214UZvgzK+8CJrVimNXnOtqqWbndhTgEI7gBBw4hxpcQR0agOEBXuAN3o1H49X4MD6nrUtGPnMAf8L4+gWCdKIY</latexit><latexit sha1_base64="BufRVB2I5LdsDbtW/PsEtb8nQRw=">AAACEnicbZDLSsNAFIYnXmu9VV26CbaCgpSkG10W3LisYi/QlDKZnrRDJ5MwcyKWkGdw46u4caGIW1fufBunF0FbDwx8/P85nDm/Hwuu0XG+rKXlldW19dxGfnNre2e3sLff0FGiGNRZJCLV8qkGwSXUkaOAVqyAhr6Apj+8HPvNO1CaR/IWRzF0QtqXPOCMopG6hdOSJ6jsC/BSD+EedZC2srMfvMm8zFMTv9QtFJ2yMyl7EdwZFMmsat3Cp9eLWBKCRCao1m3XibGTUoWcCcjyXqIhpmxI+9A2KGkIupNOTsrsY6P07CBS5km0J+rviZSGWo9C33SGFAd63huL/3ntBIOLTsplnCBINl0UJMLGyB7nY/e4AoZiZIAyxc1fbTagijI0KeZNCO78yYvQqJRdp+xeV4pVZxZHjhySI3JCXHJOquSK1EidMPJAnsgLebUerWfrzXqfti5Zs5kD8qesj294n56H</latexit>

[25] [25]

h{X, XW, F}i
<latexit sha1_base64="jHup3dWgY7OaU+kmmvKu2wfpszo="></latexit><latexit sha1_base64="JoSdrucL85gHwDf34+OyQXhI2Vg=">AAACKHicbZBNS8NAEIY3flu/oh69BKvgQUrSi94UBPFYwdpCU8JmO2mXbjZhdyKWkJ/jxb/iRUSRXv0lbmvEzxcWHt6ZYXbeMBVco+uOrZnZufmFxaXlysrq2vqGvbl1rZNMMWiyRCSqHVINgktoIkcB7VQBjUMBrXB4Nqm3bkBpnsgrHKXQjWlf8ogzisYK7JM9X1DZF+DnPsIt6ihvF4dfGHxi68s9L/zCV9OpvcCuujV3KucveCVUSalGYD/5vYRlMUhkgmrd8dwUuzlVyJmAouJnGlLKhrQPHYOSxqC7+fTQwtk3Ts+JEmWeRGfqfp/Iaaz1KA5NZ0xxoH/XJuZ/tU6G0XE35zLNECT7WBRlwsHEmaTm9LgChmJkgDLFzV8dNqCKMjTZVkwI3u+T/8J1vea5Ne+yXj11yziWyA7ZJQfEI0fklFyQBmkSRu7IA3kmL9a99Wi9WuOP1hmrnNkmP2S9vQM9G6h1</latexit>

h{X, XW, F}i
<latexit sha1_base64="jHup3dWgY7OaU+kmmvKu2wfpszo=">AAACaXicbVFNTwIxEJ1dvxBRQaMxetm4mHgwZJeLHklMjEdM5CMBQrqlCw3ddtN2jWTDn/TmH/Dif1DLwgGBSabz5s1Mpn0NYkaV9rxPy97a3tndy+3nDwqHR8fF0klTiURi0sCCCdkOkCKMctLQVDPSjiVBUcBIKxg/zuqtNyIVFfxVT2LSi9CQ05BipA0lirWfXyhDFxgg4DA0kZgsNa4NejengtDkbZjC3Ua2v8a2NvY+GbabuVzaVe4XXa/iZeasA38BXFhYvV/86A4ETiLCNWZIqY7vxbqXIqkpZmSa7yaKxAiP0ZB0DOQoIqqXZkpNnRvDDJxQSONcOxm7PJGiSKlJFJjOCOmRWq3NyE21TqLDh15KeZxowvF8UZgwRwtnJrszoJJgzSYGICypuauDR0girM3n5I0I/uqT10GzWvG9iv9SdWveQo4cXME13IIP91CDZ6hDAzB8WQXrzDq3vu2SfWFfzlttazFzCv/Mdv8AmnGl0w==</latexit><latexit sha1_base64="JoSdrucL85gHwDf34+OyQXhI2Vg=">AAACKHicbZBNS8NAEIY3flu/oh69BKvgQUrSi94UBPFYwdpCU8JmO2mXbjZhdyKWkJ/jxb/iRUSRXv0lbmvEzxcWHt6ZYXbeMBVco+uOrZnZufmFxaXlysrq2vqGvbl1rZNMMWiyRCSqHVINgktoIkcB7VQBjUMBrXB4Nqm3bkBpnsgrHKXQjWlf8ogzisYK7JM9X1DZF+DnPsIt6ihvF4dfGHxi68s9L/zCV9OpvcCuujV3KucveCVUSalGYD/5vYRlMUhkgmrd8dwUuzlVyJmAouJnGlLKhrQPHYOSxqC7+fTQwtk3Ts+JEmWeRGfqfp/Iaaz1KA5NZ0xxoH/XJuZ/tU6G0XE35zLNECT7WBRlwsHEmaTm9LgChmJkgDLFzV8dNqCKMjTZVkwI3u+T/8J1vea5Ne+yXj11yziWyA7ZJQfEI0fklFyQBmkSRu7IA3kmL9a99Wi9WuOP1hmrnNkmP2S9vQM9G6h1</latexit>

[22]h{X, F, R}i
<latexit sha1_base64="6C8yfemsuzFtNtEjQVNSbvqejNI=">AAACU3icbVFNS8NAEJ3EqrVajXr0EmwFD1KSguixIIjHKvYDmlA22027uNmE3Y1YQv+jCB78I14E6zbtobYdmN03b2b2402QMCqV43wZ5lZhe2e3uFfaPygfHlnHJ20ZpwKTFo5ZLLoBkoRRTlqKKka6iSAoChjpBC93s3znlQhJY/6sxgnxIzTkNKQYKU3F1vXvFKrgAQMEHIZ6JzrKtCuN3vQqIdRxFyZwtcbeb2SfNOvlLpZOrfatilNzcrPXgbsAFVhYs299eIMYpxHhCjMkZc91EuVnSCiKGZmUvFSSBOEXNCQ9DTmKiPSzXJOJfaGZgR3GQjtXds4ud2QoknIcBboyQmokV3MzclOul6rw1s8oT1JFOJ5fFKbMVrE9E9geUEGwYmMNEBZUv9XGIyQQVnoMJS2Cu/rlddCu11yn5j7WKw1nIUcRzuAcLsGFG2jAAzShBRje4RumBhifxo9pmoV5qWksek7hn5nlP6Mho1E=</latexit><latexit sha1_base64="x8f+ArMkcB41cUpmite2IXzae7M=">AAACHXicbZDLSsNAFIYnXmu9VV26CVbBhZREBF0KgrisYi/QhDKZntTBySTMnIgl5EXc+CpuXCjiwo34Nk7Tipf6w8DHf87hzPmDRHCNjvNhTU3PzM7NlxbKi0vLK6uVtfWmjlPFoMFiEat2QDUILqGBHAW0EwU0CgS0guuTYb11A0rzWF7iIAE/on3JQ84oGqtbOdj2BJV9AV7mIdyiDrN2vveFp994kXu5p4rW7W6l6tScQvYkuGOokrHq3cqb14tZGoFEJqjWHddJ0M+oQs4E5GUv1ZBQdk370DEoaQTaz4rrcnvHOD07jJV5Eu3C/TmR0UjrQRSYzojilf5bG5r/1Tophkd+xmWSIkg2WhSmwsbYHkZl97gChmJggDLFzV9tdkUVZWgCLZsQ3L8nT0Jzv+Y6Nfd8v3rsjOMokU2yRXaJSw7JMTkjddIgjNyRB/JEnq1769F6sV5HrVPWeGaD/JL1/gmFaqNZ</latexit>

h{X, F, R}i
<latexit sha1_base64="6C8yfemsuzFtNtEjQVNSbvqejNI=">AAACU3icbVFNS8NAEJ3EqrVajXr0EmwFD1KSguixIIjHKvYDmlA22027uNmE3Y1YQv+jCB78I14E6zbtobYdmN03b2b2402QMCqV43wZ5lZhe2e3uFfaPygfHlnHJ20ZpwKTFo5ZLLoBkoRRTlqKKka6iSAoChjpBC93s3znlQhJY/6sxgnxIzTkNKQYKU3F1vXvFKrgAQMEHIZ6JzrKtCuN3vQqIdRxFyZwtcbeb2SfNOvlLpZOrfatilNzcrPXgbsAFVhYs299eIMYpxHhCjMkZc91EuVnSCiKGZmUvFSSBOEXNCQ9DTmKiPSzXJOJfaGZgR3GQjtXds4ud2QoknIcBboyQmokV3MzclOul6rw1s8oT1JFOJ5fFKbMVrE9E9geUEGwYmMNEBZUv9XGIyQQVnoMJS2Cu/rlddCu11yn5j7WKw1nIUcRzuAcLsGFG2jAAzShBRje4RumBhifxo9pmoV5qWksek7hn5nlP6Mho1E=</latexit><latexit sha1_base64="x8f+ArMkcB41cUpmite2IXzae7M=">AAACHXicbZDLSsNAFIYnXmu9VV26CVbBhZREBF0KgrisYi/QhDKZntTBySTMnIgl5EXc+CpuXCjiwo34Nk7Tipf6w8DHf87hzPmDRHCNjvNhTU3PzM7NlxbKi0vLK6uVtfWmjlPFoMFiEat2QDUILqGBHAW0EwU0CgS0guuTYb11A0rzWF7iIAE/on3JQ84oGqtbOdj2BJV9AV7mIdyiDrN2vveFp994kXu5p4rW7W6l6tScQvYkuGOokrHq3cqb14tZGoFEJqjWHddJ0M+oQs4E5GUv1ZBQdk370DEoaQTaz4rrcnvHOD07jJV5Eu3C/TmR0UjrQRSYzojilf5bG5r/1Tophkd+xmWSIkg2WhSmwsbYHkZl97gChmJggDLFzV9tdkUVZWgCLZsQ3L8nT0Jzv+Y6Nfd8v3rsjOMokU2yRXaJSw7JMTkjddIgjNyRB/JEnq1769F6sV5HrVPWeGaD/JL1/gmFaqNZ</latexit>

h{G, F, R}i
<latexit sha1_base64="1IYkZUlPoHgxlqEx6Zzs/P28r50=">AAACU3icbVFNS8NAEJ3EqrVajXr0EmwFD1KSguixIKjHKvYDmlI22027dLMJuxuxhP5HETz4R7wI1m2bQ207MLtv3szsxxs/ZlQqx/kyzK3c9s5ufq+wf1A8PLKOT5oySgQmDRyxSLR9JAmjnDQUVYy0Y0FQ6DPS8kd3s3zrlQhJI/6ixjHphmjAaUAxUpqKrOvfKZTBAwYIOAz0TnSUalcavelVQqDjB5jA1Rp7v5F91qw3d7F0arlnlZyKMzd7HbgZKEFm9Z714fUjnISEK8yQlB3XiVU3RUJRzMik4CWSxAiP0IB0NOQoJLKbzjWZ2Bea6dtBJLRzZc/Z5Y4UhVKOQ19XhkgN5WpuRm7KdRIV3HZTyuNEEY4XFwUJs1VkzwS2+1QQrNhYA4QF1W+18RAJhJUeQ0GL4K5+eR00qxXXqbhP1VLNyeTIwxmcwyW4cAM1eIQ6NADDO3zD1ADj0/gxTTO3KDWNrOcU/plZ/AOE+6NA</latexit><latexit sha1_base64="vAdYvfhpkaoe8AeTFQtmN+s4z1Q=">AAACHXicbZBNS8NAEIY3ftb6FfXoJdgKHqQkRdBjQVCPVawKTSib7aQubjZhdyKWkD/ixb/ixYMiHryI/8ZtrfhRX1h4eGeG2XnDVHCNrvtuTUxOTc/MlubK8wuLS8v2yuqZTjLFoMUSkaiLkGoQXEILOQq4SBXQOBRwHl7tD+rn16A0T+Qp9lMIYtqTPOKMorE69k7VF1T2BPi5j3CDOsoPi+0vPPjGk8IvfDVsrXbsiltzh3LGwRtBhYzU7NivfjdhWQwSmaBatz03xSCnCjkTUJT9TENK2RXtQdugpDHoIB9eVzibxuk6UaLMk+gM3Z8TOY217seh6YwpXuq/tYH5X62dYbQX5FymGYJkn4uiTDiYOIOonC5XwFD0DVCmuPmrwy6pogxNoGUTgvf35HE4q9c8t+Yd1ysNdxRHiayTDbJFPLJLGuSINEmLMHJL7skjebLurAfr2Xr5bJ2wRjNr5Jestw9pdaNI</latexit>

h{G, F, R}i
<latexit sha1_base64="1IYkZUlPoHgxlqEx6Zzs/P28r50=">AAACU3icbVFNS8NAEJ3EqrVajXr0EmwFD1KSguixIKjHKvYDmlI22027dLMJuxuxhP5HETz4R7wI1m2bQ207MLtv3szsxxs/ZlQqx/kyzK3c9s5ufq+wf1A8PLKOT5oySgQmDRyxSLR9JAmjnDQUVYy0Y0FQ6DPS8kd3s3zrlQhJI/6ixjHphmjAaUAxUpqKrOvfKZTBAwYIOAz0TnSUalcavelVQqDjB5jA1Rp7v5F91qw3d7F0arlnlZyKMzd7HbgZKEFm9Z714fUjnISEK8yQlB3XiVU3RUJRzMik4CWSxAiP0IB0NOQoJLKbzjWZ2Bea6dtBJLRzZc/Z5Y4UhVKOQ19XhkgN5WpuRm7KdRIV3HZTyuNEEY4XFwUJs1VkzwS2+1QQrNhYA4QF1W+18RAJhJUeQ0GL4K5+eR00qxXXqbhP1VLNyeTIwxmcwyW4cAM1eIQ6NADDO3zD1ADj0/gxTTO3KDWNrOcU/plZ/AOE+6NA</latexit><latexit sha1_base64="vAdYvfhpkaoe8AeTFQtmN+s4z1Q=">AAACHXicbZBNS8NAEIY3ftb6FfXoJdgKHqQkRdBjQVCPVawKTSib7aQubjZhdyKWkD/ixb/ixYMiHryI/8ZtrfhRX1h4eGeG2XnDVHCNrvtuTUxOTc/MlubK8wuLS8v2yuqZTjLFoMUSkaiLkGoQXEILOQq4SBXQOBRwHl7tD+rn16A0T+Qp9lMIYtqTPOKMorE69k7VF1T2BPi5j3CDOsoPi+0vPPjGk8IvfDVsrXbsiltzh3LGwRtBhYzU7NivfjdhWQwSmaBatz03xSCnCjkTUJT9TENK2RXtQdugpDHoIB9eVzibxuk6UaLMk+gM3Z8TOY217seh6YwpXuq/tYH5X62dYbQX5FymGYJkn4uiTDiYOIOonC5XwFD0DVCmuPmrwy6pogxNoGUTgvf35HE4q9c8t+Yd1ysNdxRHiayTDbJFPLJLGuSINEmLMHJL7skjebLurAfr2Xr5bJ2wRjNr5Jestw9pdaNI</latexit>

h{X, XW, R}i
<latexit sha1_base64="ty4eyWUeMazri6E31y0xBVcR4Ms="></latexit><latexit sha1_base64="oFSFbPIS1Fj0kmSb1paj/9+N9kM=">AAACKHicbZBNS8NAEIY3flu/qh69BKvgQUrSi94UvHisYj+gKWGzndTFzSbsTsQS8nO8+Fe8iCjSq7/EbRupVl9YeHhnhtl5g0RwjY4ztObmFxaXlldWS2vrG5tb5e2dpo5TxaDBYhGrdkA1CC6hgRwFtBMFNAoEtIK7i1G9dQ9K81je4CCBbkT7koecUTSWXz478ASVfQFe5iE8oA6zdn48Rf8bW1P3OvdyT42nDvxyxak6Y9l/wS2gQgrV/fKr14tZGoFEJqjWHddJsJtRhZwJyEteqiGh7I72oWNQ0gh0NxsfmtuHxunZYazMk2iP3Z8TGY20HkSB6Ywo3urZ2sj8r9ZJMTztZlwmKYJkk0VhKmyM7VFqdo8rYCgGBihT3PzVZrdUUYYm25IJwZ09+S80a1XXqbpXtcq5U8SxQvbIPjkiLjkh5+SS1EmDMPJInskbebeerBfrwxpOWuesYmaX/JL1+QVPz6iB</latexit>

h{X, XW, R}i
<latexit sha1_base64="ty4eyWUeMazri6E31y0xBVcR4Ms="></latexit><latexit sha1_base64="oFSFbPIS1Fj0kmSb1paj/9+N9kM=">AAACKHicbZBNS8NAEIY3flu/qh69BKvgQUrSi94UvHisYj+gKWGzndTFzSbsTsQS8nO8+Fe8iCjSq7/EbRupVl9YeHhnhtl5g0RwjY4ztObmFxaXlldWS2vrG5tb5e2dpo5TxaDBYhGrdkA1CC6hgRwFtBMFNAoEtIK7i1G9dQ9K81je4CCBbkT7koecUTSWXz478ASVfQFe5iE8oA6zdn48Rf8bW1P3OvdyT42nDvxyxak6Y9l/wS2gQgrV/fKr14tZGoFEJqjWHddJsJtRhZwJyEteqiGh7I72oWNQ0gh0NxsfmtuHxunZYazMk2iP3Z8TGY20HkSB6Ywo3urZ2sj8r9ZJMTztZlwmKYJkk0VhKmyM7VFqdo8rYCgGBihT3PzVZrdUUYYm25IJwZ09+S80a1XXqbpXtcq5U8SxQvbIPjkiLjkh5+SS1EmDMPJInskbebeerBfrwxpOWuesYmaX/JL1+QVPz6iB</latexit>

h{XW, F, R}i
<latexit sha1_base64="aLm0/MS7tRRceWnMUPlip4ItbZs="></latexit><latexit sha1_base64="BoXo/0+IkzSZfX+EhXTdriFievc=">AAACKHicbZBNS8NAEIY3ftb6VfXoJVgFD1KSXvRmQRCPVawtNKFstpN2cbMJuxOxhPwcL/4VLyKKePWXuI0VtfrCwsM7M8zOGySCa3ScN2tmdm5+YbG0VF5eWV1br2xsXuk4VQxaLBax6gRUg+ASWshRQCdRQKNAQDu4PhnX2zegNI/lJY4S8CM6kDzkjKKxepXjXU9QORDgZR7CLeow6+S9L2znB194+o0XuZd7qpja7VWqTs0pZP8FdwJVMlGzV3ny+jFLI5DIBNW66zoJ+hlVyJmAvOylGhLKrukAugYljUD7WXFobu8Zp2+HsTJPol24PycyGmk9igLTGVEc6una2Pyv1k0xPPIzLpMUQbLPRWEqbIztcWp2nytgKEYGKFPc/NVmQ6ooQ5Nt2YTgTp/8F67qNdepuef1asOZxFEi22SH7BOXHJIGOSNN0iKM3JEH8kxerHvr0Xq13j5bZ6zJzBb5Jev9AzUhqG8=</latexit>

h{XW, F, R}i
<latexit sha1_base64="aLm0/MS7tRRceWnMUPlip4ItbZs="></latexit><latexit sha1_base64="BoXo/0+IkzSZfX+EhXTdriFievc=">AAACKHicbZBNS8NAEIY3ftb6VfXoJVgFD1KSXvRmQRCPVawtNKFstpN2cbMJuxOxhPwcL/4VLyKKePWXuI0VtfrCwsM7M8zOGySCa3ScN2tmdm5+YbG0VF5eWV1br2xsXuk4VQxaLBax6gRUg+ASWshRQCdRQKNAQDu4PhnX2zegNI/lJY4S8CM6kDzkjKKxepXjXU9QORDgZR7CLeow6+S9L2znB194+o0XuZd7qpja7VWqTs0pZP8FdwJVMlGzV3ny+jFLI5DIBNW66zoJ+hlVyJmAvOylGhLKrukAugYljUD7WXFobu8Zp2+HsTJPol24PycyGmk9igLTGVEc6una2Pyv1k0xPPIzLpMUQbLPRWEqbIztcWp2nytgKEYGKFPc/NVmQ6ooQ5Nt2YTgTp/8F67qNdepuef1asOZxFEi22SH7BOXHJIGOSNN0iKM3JEH8kxerHvr0Xq13j5bZ6zJzBb5Jev9AzUhqG8=</latexit>

h{X, G, R}i
<latexit sha1_base64="qrC2noDnK5EPs0OV/gfDUJrrb9Q=">AAACU3icbVFNS8NAEJ3EqrVajXr0EmwFD1KSguix4EGPVewHNKFstpt2cbMJuxuxhP5HETz4R7wI1m3aQ207MLtv3szsx5sgYVQqx/kyzK3C9s5uca+0f1A+PLKOT9oyTgUmLRyzWHQDJAmjnLQUVYx0E0FQFDDSCV7uZvnOKxGSxvxZjRPiR2jIaUgxUpqKrevfKVTBAwYIOAz1TnSUaVcavelVQqjjLkzgao2938g+adbLXSydWu1bFafm5GavA3cBKrCwZt/68AYxTiPCFWZIyp7rJMrPkFAUMzIpeakkCcIvaEh6GnIUEelnuSYT+0IzAzuMhXau7Jxd7shQJOU4CnRlhNRIruZm5KZcL1XhrZ9RnqSKcDy/KEyZrWJ7JrA9oIJgxcYaICyofquNR0ggrPQYSloEd/XL66Bdr7lOzX2sVxrOQo4inME5XIILN9CAB2hCCzC8wzdMDTA+jR/TNAvzUtNY9JzCPzPLf6TRo1I=</latexit><latexit sha1_base64="ktldnIXXSZW++iCLHzzj08jGcz8=">AAACHXicbZDLSsNAFIYnXmu9VV26CVbBhZREBF0KLnRZxV6gCWUyPamDk0mYORFLyIu48VXcuFDEhRvxbZymFS/1h4GP/5zDmfMHieAaHefDmpqemZ2bLy2UF5eWV1Yra+tNHaeKQYPFIlbtgGoQXEIDOQpoJwpoFAhoBdcnw3rrBpTmsbzEQQJ+RPuSh5xRNFa3crDtCSr7ArzMQ7hFHWbtfO8LT7/xIvdyTxWt291K1ak5hexJcMdQJWPVu5U3rxezNAKJTFCtO66ToJ9RhZwJyMteqiGh7Jr2oWNQ0gi0nxXX5faOcXp2GCvzJNqF+3Mio5HWgygwnRHFK/23NjT/q3VSDI/8jMskRZBstChMhY2xPYzK7nEFDMXAAGWKm7/a7IoqytAEWjYhuH9PnoTmfs11au75fvXYGcdRIptki+wSlxySY3JG6qRBGLkjD+SJPFv31qP1Yr2OWqes8cwG+SXr/ROHBKNa</latexit>

h{X, G, R}i
<latexit sha1_base64="qrC2noDnK5EPs0OV/gfDUJrrb9Q=">AAACU3icbVFNS8NAEJ3EqrVajXr0EmwFD1KSguix4EGPVewHNKFstpt2cbMJuxuxhP5HETz4R7wI1m3aQ207MLtv3szsx5sgYVQqx/kyzK3C9s5uca+0f1A+PLKOT9oyTgUmLRyzWHQDJAmjnLQUVYx0E0FQFDDSCV7uZvnOKxGSxvxZjRPiR2jIaUgxUpqKrevfKVTBAwYIOAz1TnSUaVcavelVQqjjLkzgao2938g+adbLXSydWu1bFafm5GavA3cBKrCwZt/68AYxTiPCFWZIyp7rJMrPkFAUMzIpeakkCcIvaEh6GnIUEelnuSYT+0IzAzuMhXau7Jxd7shQJOU4CnRlhNRIruZm5KZcL1XhrZ9RnqSKcDy/KEyZrWJ7JrA9oIJgxcYaICyofquNR0ggrPQYSloEd/XL66Bdr7lOzX2sVxrOQo4inME5XIILN9CAB2hCCzC8wzdMDTA+jR/TNAvzUtNY9JzCPzPLf6TRo1I=</latexit><latexit sha1_base64="ktldnIXXSZW++iCLHzzj08jGcz8=">AAACHXicbZDLSsNAFIYnXmu9VV26CVbBhZREBF0KLnRZxV6gCWUyPamDk0mYORFLyIu48VXcuFDEhRvxbZymFS/1h4GP/5zDmfMHieAaHefDmpqemZ2bLy2UF5eWV1Yra+tNHaeKQYPFIlbtgGoQXEIDOQpoJwpoFAhoBdcnw3rrBpTmsbzEQQJ+RPuSh5xRNFa3crDtCSr7ArzMQ7hFHWbtfO8LT7/xIvdyTxWt291K1ak5hexJcMdQJWPVu5U3rxezNAKJTFCtO66ToJ9RhZwJyMteqiGh7Jr2oWNQ0gi0nxXX5faOcXp2GCvzJNqF+3Mio5HWgygwnRHFK/23NjT/q3VSDI/8jMskRZBstChMhY2xPYzK7nEFDMXAAGWKm7/a7IoqytAEWjYhuH9PnoTmfs11au75fvXYGcdRIptki+wSlxySY3JG6qRBGLkjD+SJPFv31qP1Yr2OWqes8cwG+SXr/ROHBKNa</latexit>

h{X, G, F, R}i
<latexit sha1_base64="djzLAP5s2e6jH3moaTaO1jb5tY4="></latexit><latexit sha1_base64="QAbhzwV0N+tUqHI5imP32B5q9+E=">AAACKHicbZBNS8NAEIY3ftb6VfXoJdgKHqQkvejNgqAeq1gtNKFstpO6uNmE3YlYQn6OF/+KFxFFvPpL3NaIWn1h4eGdGWbnDRLBNTrOmzU1PTM7N19aKC8uLa+sVtbWL3ScKgZtFotYdQKqQXAJbeQooJMooFEg4DK4PhzVL29AaR7Lcxwm4Ed0IHnIGUVj9SoHNU9QORDgZR7CLeow6+S7X3j8jUffeJZ7uafGU7VeperUnbHsv+AWUCWFWr3Kk9ePWRqBRCao1l3XSdDPqELOBORlL9WQUHZNB9A1KGkE2s/Gh+b2tnH6dhgr8yTaY/fnREYjrYdRYDojild6sjYy/6t1Uwz3/YzLJEWQ7HNRmAobY3uUmt3nChiKoQHKFDd/tdkVVZShybZsQnAnT/4LF42669Td00a16RRxlMgm2SI7xCV7pElOSIu0CSN35IE8kxfr3nq0Xq23z9Ypq5jZIL9kvX8AxRioLA==</latexit>

h{X, G, F, R}i
<latexit sha1_base64="djzLAP5s2e6jH3moaTaO1jb5tY4="></latexit><latexit sha1_base64="QAbhzwV0N+tUqHI5imP32B5q9+E=">AAACKHicbZBNS8NAEIY3ftb6VfXoJdgKHqQkvejNgqAeq1gtNKFstpO6uNmE3YlYQn6OF/+KFxFFvPpL3NaIWn1h4eGdGWbnDRLBNTrOmzU1PTM7N19aKC8uLa+sVtbWL3ScKgZtFotYdQKqQXAJbeQooJMooFEg4DK4PhzVL29AaR7Lcxwm4Ed0IHnIGUVj9SoHNU9QORDgZR7CLeow6+S7X3j8jUffeJZ7uafGU7VeperUnbHsv+AWUCWFWr3Kk9ePWRqBRCao1l3XSdDPqELOBORlL9WQUHZNB9A1KGkE2s/Gh+b2tnH6dhgr8yTaY/fnREYjrYdRYDojild6sjYy/6t1Uwz3/YzLJEWQ7HNRmAobY3uUmt3nChiKoQHKFDd/tdkVVZShybZsQnAnT/4LF42669Td00a16RRxlMgm2SI7xCV7pElOSIu0CSN35IE8kxfr3nq0Xq23z9Ypq5jZIL9kvX8AxRioLA==</latexit>

h{X, XW, G, F}i
<latexit sha1_base64="lqYPZgWMfyjlP9ohKzDuZOOim5Q="></latexit><latexit sha1_base64="a177qPHtpd/bASeIoZ/iEuAXddk=">AAACM3icbZDLSsNAFIYnXmu9RV26CVbBhZTEjS4FQcVVBXuBppTJ9KQOTiZh5kQsIe/kxhdxIYgLRdz6Dk7TSr39MPDxn3Nm5vxBIrhG132ypqZnZufmSwvlxaXllVV7bb2h41QxqLNYxKoVUA2CS6gjRwGtRAGNAgHN4Pp4WG/egNI8lpc4SKAT0b7kIWcUjdW1z7d9QWVfgJ/5CLeow6yV702w+4XNiXs6wZPcz31VXLDdtStu1S3k/AVvDBUyVq1rP/i9mKURSGSCat323AQ7GVXImYC87KcaEsquaR/aBiWNQHeyYufc2TFOzwljZY5Ep3C/T2Q00noQBaYzonilf9eG5n+1dorhYSfjMkkRJBs9FKbCwdgZBuj0uAKGYmCAMsXNXx12RRVlaGIumxC83yv/hcZ+1XOr3sV+5cgdx1Eim2SL7BKPHJAjckZqpE4YuSOP5IW8WvfWs/VmvY9ap6zxzAb5IevjE7GurUg=</latexit>

h{X, XW, G, F}i
<latexit sha1_base64="lqYPZgWMfyjlP9ohKzDuZOOim5Q="></latexit><latexit sha1_base64="a177qPHtpd/bASeIoZ/iEuAXddk=">AAACM3icbZDLSsNAFIYnXmu9RV26CVbBhZTEjS4FQcVVBXuBppTJ9KQOTiZh5kQsIe/kxhdxIYgLRdz6Dk7TSr39MPDxn3Nm5vxBIrhG132ypqZnZufmSwvlxaXllVV7bb2h41QxqLNYxKoVUA2CS6gjRwGtRAGNAgHN4Pp4WG/egNI8lpc4SKAT0b7kIWcUjdW1z7d9QWVfgJ/5CLeow6yV702w+4XNiXs6wZPcz31VXLDdtStu1S3k/AVvDBUyVq1rP/i9mKURSGSCat323AQ7GVXImYC87KcaEsquaR/aBiWNQHeyYufc2TFOzwljZY5Ep3C/T2Q00noQBaYzonilf9eG5n+1dorhYSfjMkkRJBs9FKbCwdgZBuj0uAKGYmCAMsXNXx12RRVlaGIumxC83yv/hcZ+1XOr3sV+5cgdx1Eim2SL7BKPHJAjckZqpE4YuSOP5IW8WvfWs/VmvY9ap6zxzAb5IevjE7GurUg=</latexit>

h{X, XW, G, F, R}i
<latexit sha1_base64="SmPrgF6VFCWt/VWslB79lyKd7YU="></latexit><latexit sha1_base64="z7KYJYA0Z2KW2/tRYU7IwBuWUSE=">AAACPnicbZBLS8NAFIUnPmt9VV26CVbBhZTEjS4FQV1WMW2hKWUyvamDk0mYuRFLyC9z429w59KNC0XcunSaVurrwMDHuffOzD1BIrhGx3m0pqZnZufmSwvlxaXlldXK2npDx6li4LFYxKoVUA2CS/CQo4BWooBGgYBmcH08rDdvQGkey0scJNCJaF/ykDOKxupWvG1fUNkX4Gc+wi3qMGvlexPsfmFz4p5O8GSCF7mf+6q4a7tbqTo1p5D9F9wxVMlY9W7lwe/FLI1AIhNU67brJNjJqELOBORlP9WQUHZN+9A2KGkEupMV6+f2jnF6dhgrcyTahft9IqOR1oMoMJ0RxSv9uzY0/6u1UwwPOxmXSYog2eihMBU2xvYwS7vHFTAUAwOUKW7+arMrqihDk3jZhOD+XvkvNPZrrlNzz/erR844jhLZJFtkl7jkgByRM1InHmHkjjyRF/Jq3VvP1pv1PmqdssYzG+SHrI9PaLOyJg==</latexit>

h{X, XW, G, F, R}i
<latexit sha1_base64="SmPrgF6VFCWt/VWslB79lyKd7YU=">AAAClXicbZFLTwIxEMdn1xfiC/HgwctGNPFgyC4XuZjgI+hNNPJIWEK6pQsN3e6m7RrJhi/pzS+jFtgDwk4y7X9+M03bGS9iVCrb/jbMjc2t7Z3cbn5v/+DwqHBcbMkwFpg0cchC0fGQJIxy0lRUMdKJBEGBx0jbGz/M8u0PIiQN+buaRKQXoCGnPsVIaRQWWj+/cAEuMEDAYah3oqNEu9LqU68SfB13YArXmbS/RtuZtU+ZtJ5J3zR15y6W3nXRL5Tssj03a104qShBao1+4csdhDgOCFeYISm7jh2pXoKEopiRad6NJYkQHqMh6WrJUUBkL5l3dWpdajKw/FBo58qa0+UTCQqknASergyQGsnV3Axm5bqx8qu9hPIoVoTjxUV+zCwVWrMRWQMqCFZsogXCguq3WniEBMJKDzKvm+CsfnldtCplxy47r5VSzU7bkYMzOIcrcOAGavAMDWgCNopG1bgz7s1T89Z8NOuLUtNIz5zAPzNf/gBxnq5M</latexit><latexit sha1_base64="z7KYJYA0Z2KW2/tRYU7IwBuWUSE=">AAACPnicbZBLS8NAFIUnPmt9VV26CVbBhZTEjS4FQV1WMW2hKWUyvamDk0mYuRFLyC9z429w59KNC0XcunSaVurrwMDHuffOzD1BIrhGx3m0pqZnZufmSwvlxaXlldXK2npDx6li4LFYxKoVUA2CS/CQo4BWooBGgYBmcH08rDdvQGkey0scJNCJaF/ykDOKxupWvG1fUNkX4Gc+wi3qMGvlexPsfmFz4p5O8GSCF7mf+6q4a7tbqTo1p5D9F9wxVMlY9W7lwe/FLI1AIhNU67brJNjJqELOBORlP9WQUHZN+9A2KGkEupMV6+f2jnF6dhgrcyTahft9IqOR1oMoMJ0RxSv9uzY0/6u1UwwPOxmXSYog2eihMBU2xvYwS7vHFTAUAwOUKW7+arMrqihDk3jZhOD+XvkvNPZrrlNzz/erR844jhLZJFtkl7jkgByRM1InHmHkjjyRF/Jq3VvP1pv1PmqdssYzG+SHrI9PaLOyJg==</latexit>

h{XW, G, F, R}i
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Figure 3: Summary of results in Section 4 for 〈T 〉-LTLf formulas. The figure evidences all sets of
operators T⊆{X,Xw,G,F,R} for which the corresponding classes of formulas enjoy the
linear-length model property—the classes corresponding to all supersets T⊇{U} do not
enjoy the linear-length model property. Precisely the same results hold for 〈T 〉-LTLp and
negation-free 〈T 〉-LTLp formulas.

property, i.e., such that satisfiability can be always witnessed by models π whose length, len(π),
is linear in the size of the formula ||ϕ||. It will emerge that, for each T ⊆ {X,Xw,G,F,U,R},
either 〈T 〉-LTLf (respectively, 〈T 〉-LTLp) enjoys the linear-length model property, or it contains
satisfiable formulas ϕ having no model (respectively, PT-model) whose length is polynomial with
respect to ||ϕ||.

In particular, we shall observe that the linear-length model property holds on all classes of
negation-free LTLf formulas. By contrast, for arbitrary LTLf formulas (i.e., if negation is allowed),
a more complex picture will emerge. Results for such formulas will incidentally coincide with the
results for LTLp formulas, but with the absence of negation being immaterial in this latter case (see
Lemma 10). A summary of these results is reported in Figure 3, in terms of the Hasse diagram built
over the subsets of {X,Xw,G,F,R}. The sets containing U are not reported in the figure since even
the class of formulas where only U is allowed does not enjoy the linear-length model property.

4.1 Formulas Enjoying the Linear-Length Model Property

We start the illustration of the results by considering LTLf formulas defined without any restriction
on the temporal operators that are allowed, but forbidding negation. The result is shown by standard
structural induction, and the proof is reported for the sake of completeness, only.

Theorem 18 Every satisfiable negation-free 〈{X,Xw,G,F,U,R}〉-LTLf formula ϕ has a model π
such that len(π) ≤ th(ϕ,X) + th(ϕ,Xw) + 1.

Proof. Let ϕ be a satisfiable negation-free formula in 〈{X,Xw,G,F,U}〉-LTLf . We shall show,
by structural induction, that ϕ admits a model π, said ϕ-canonical, such that len(π) ≤ th(ϕ,X) +
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th(ϕ,Xw) + 1. In particular, such canonical models π have the additional property that πi = Vϕ,
for each i ∈ {0, ..., len(π)-1}. Let ψ be any subformula of ϕ.

Base case. If ψ = x, then ψ is satisfiable by the trace π having length 1 and such that π0 = Vϕ.
Clearly, π is a ψ-canonical model.

Inductive step. Assume that, for each subformula ϕ̄ of ψ, if ϕ̄ is satisfiable, then ϕ̄ admits
a ϕ̄-canonical model π̄, i.e., such that len(π̄)≤th(ϕ̄,X) + th(ϕ̄,Xw) + 1 and π̄i=Vϕ, for each
i ∈ {0, ..., len(π̄)-1}. We show that if ψ is satisfiable, then it admits a ψ-canonical model. Indeed,

• If ψ = (ϕ′ ∨ ϕ′′), then one of the two subformulas, say ϕ′, is satisfiable. So, we can take a
ϕ′-canonical model π′, and observe that π′ |= ψ. Since len(π′) ≤th(ϕ′,X) + th(ϕ′,Xw) +
1≤th(ψ,X) + th(ψ,Xw) + 1, we conclude that π′ is ψ-canonical.

• If ψ = (ϕ′ ∧ ϕ′′), then both ϕ′ and ϕ′′ are satisfiable and, by inductive hypothesis, we can
take a ϕ′-canonical (respectively, ϕ′′-canonical) model π′ (respectively, π′′). W.l.o.g., assume
len(π′) ≤ len(π′′). Then it can be checked that π′′ |= ψ, and it directly follows that π′′ is
ψ-canonical.

• If ψ = F(ϕ′), then ϕ′ is satisfiable and it admits a ϕ′-canonical model π′. Indeed, π′ is
trivially a ψ-canonical model, too.

• If ψ = G(ϕ′), then ϕ′ is satisfiable. Moreover, ϕ′ must actually admit a ϕ′-canonical model
π′ having length 1, for otherwise ψ cannot be satisfied by a finite trace. Then π′ |= ψ and π′

is trivially ψ-canonical.

• If ψ = X(ϕ′) or ψ = Xw(ϕ′), then ϕ′ is satisfiable and hence it admits a ϕ′-canonical model
π′. Then ψ can be satisfied by a model π such that len(π) = len(π′) + 1 ≤ th(ϕ′,X) +
th(ϕ′,Xw) + 2 ≤ th(ψ,X) + th(ψ,Xw) + 1. In particular, π0 = Vϕ and πi = π′i−1, for each
i ∈ {0, ..., len(π′)-1}. Hence, π is ψ-canonical, too.

• If ψ = (ϕ′ U ϕ′′), then ϕ′′ is satisfiable by a ϕ′′-canonical model π′′. It can be checked that
π′′ |= ψ and that π′′ is ψ-canonical.

• If ψ = (ϕ′ R ϕ′′), then we can have two cases. If ϕ′′ is satisfiable by a ϕ′′-canonical model π′′

having length 1, then it can be checked that π′′ |= ψ and that π′′ is ψ-canonical. Otherwise,
both ϕ′ and ϕ′′ are satisfiable and, by inductive hypothesis, we can take a ϕ′-canonical (re-
spectively, ϕ′′-canonical) model π′ (respectively, π′′). W.l.o.g., assume len(π′) ≤ len(π′′).
Then, it can be checked that π′′ |= (ϕ′∧ϕ′′) and, thus π′′ |= ψ. Eventually, it directly follows
that π′′ is ψ-canonical.

2

By considering LTLf formulas with negation, a finer-grained analysis is needed. First, we
analyze formulas where the next (X) operator is forbidden. The idea is to reuse known bounds
for LTL formulas (Sistla & Clarke, 1985), by taking care of subtle semantic issues that arise when
moving from standard LTL to LTL over finite traces (De Giacomo & Vardi, 2013; De Giacomo,
De Masellis, & Montali, 2014b). The result holds on LTLp formulas, too.

Theorem 19 Every satisfiable 〈{G,F}〉-LTLf (respectively, 〈{G,F}〉-LTLp) formulaϕ has a model
(respectively, PT-model) π such that len(π) ≤ ts(ϕ,F) + ts(ϕ,G) + 6.
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Proof. Let ϕ be a satisfiable formula in 〈{G,F}〉-LTLf . Let us consider the transformation rules
(for arbitrary LTLf formulas) discussed by De Giacomo et al. (2014b), which based on ϕ produce
an LTL formula ϕ̄ over Vϕ ∪ {end}, where end is a fresh Boolean variable. In particular, the
properties of the transformation are stated below—and follow by inspecting and specializing the
results of De Giacomo et al. (see, also, De Giacomo & Vardi, 2013) to formulas containing only F
and G as temporal operators.

Claim 20 (cf. De Giacomo et al., 2014b) For each 〈{G,F}〉-LTLf formula ϕ, there is an LTL
formula ϕ̄, where negation is not necessarily atomic, such that:

(1) there is no temporal operator in ϕ̄ but F;

(2) if π is a finite model of ϕ, then ω(π) is a model of ϕ̄, where ω(π) is the infinite trace
obtained from π by appending the state {end} indefinitely;

(3) if π′ is a model of ϕ̄, then there is a finite model π of ϕ such that π′ = ω(π); and

(4) ts(ϕ̄,F) = ts(ϕ,F) + ts(ϕ,G) + 4.

Proof. Consider the formula ϕ̃ = Φ1 ∧ Φ2 ∧ Φ3 ∧ Φ4 ∧ t(ϕ) such that: Φ1 = ¬end , meaning
that end is false at the initial time instant; Φ2 = F(end), meaning that end will eventually hold at
some time instant; Φ3 = G(¬end ∨G(end)), meaning that once end becomes true, then it always
remains true; Φ4 = G(¬end ∨∧x∈Vϕ ¬x), meaning that all variables in Vϕ must be false as soon
as end is true. Define t(ϕ) recursively as follows: t(x) = x, for each x ∈ Vϕ; t(¬ϕ) = ¬t(ϕ);
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2); t(ϕ1 ∨ ϕ2) = t(ϕ1) ∨ t(ϕ2); t(F(ϕ)) = F(t(ϕ) ∧ ¬end); and
t(G(ϕ)) = G(t(ϕ) ∨ end). Now, observe that, for each formula ϕ′, G(ϕ′)=¬F(¬ϕ′). That is, ϕ̃
can be rewritten in terms of F and arbitrary negation, leading to an equivalent formula ϕ̄; so (1)
holds. Then the fact that (2) and (3) hold on ϕ̃, hence on ϕ̄, has been observed by De Giacomo et al.
(2014b) (see, also, De Giacomo & Vardi, 2013). Eventually,

∑4
i=1 ts(Φi,F)+

∑4
i=1 ts(Φi,G) = 4,

and we get ts(ϕ̄,F) = ts(t(ϕ),F) + ts(t(ϕ),G) + 4 = ts(ϕ,F) + ts(ϕ,G) + 4. Hence, (4) holds.
�

Consider now the formula ϕ̄ built as discussed above. By Theorem 3.4 in the the work of Sistla
and Clarke (1985)—which holds on LTL formulas defined over F only—and given that all models of
ϕ̄ have the form ω(π) because of (3), it is guaranteed the existence of a model ω(π∗) of ϕ̄ such that
len(π∗) ≤ ts(ϕ̄,F) + 1. In addition, we know that π∗ |= ϕ and we get len(π∗) ≤ ts(ϕ̄,F) + 1 =
ts(ϕ,F) + ts(ϕ,G) + 4 + 1 = ts(ϕ,F) + ts(ϕ,G) + 5.

The above result can be easily extended to deal with PT-models (by using the approach dis-
cussed in the introduction to Section 3.1). Assume that ϕ is satisfiable by a PT-model. Define ϕ̂ as
the following formula: ϕ∧G(

∨
y∈Vϕ(y ∧∧y′∈Vϕ\{y} ¬y′)). Note that ϕ̂ is satisfiable and that, if π

is a model of ϕ̂, then it is a PT-model of ϕ. Now, we have already shown that ϕ̂ has a model π∗ such
that len(π∗) ≤ ts(ϕ̂,F) + ts(ϕ̂,G) + 5. Since ts(ϕ̂,F) = ts(ϕ,F) and ts(ϕ̂,G) = ts(ϕ,G) + 1,
we have len(π∗) ≤ ts(ϕ,F) + ts(ϕ,G) + 6. 2

Note that the above result provides a bound of ts(ϕ,G) + 6 for a formula ϕ containing only G
as temporal operator. However, in this special case, it can be checked that if π is a model of ϕ, then
π, i |= ϕ actually holds, for each time instant i ∈ {0, ..., len(π)-1}. So, the trace consisting of the
initial state π0 only is a model, too. It is also easy to see that this property still holds in the presence
of Xw and R as further temporal operators. In particular, note that if ϕ is a formula having the form
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(ϕ′ R ϕ′′) and π is a finite model of ϕ, then π, 0 |= ϕ′′ necessarily holds. Thus, again, the trace
consisting of the initial state π0 only is a finite model of ϕ.

Fact 21 Every satisfiable 〈{Xw,G,R}〉-LTLf (respectively, 〈{Xw,G,R}〉-LTLp) formula ϕ has a
model (respectively, PT-model) π such that len(π) = 1.

We now discuss the case where the temporal operators G and U are forbidden. Note that we
cannot reuse the approach discussed in the proof of Theorem 19, because the transformation rules
introduced by De Giacomo et al. (2014b) and De Giacomo and Vardi (2013) do require the use of
G.

Theorem 22 Every satisfiable 〈{X,Xw,F}〉-LTLf (respectively, 〈{X,Xw,F}〉-LTLp) formula ϕ has
a model (respectively, PT-model) π such that len(π) ≤ ts(ϕ,X) + ts(ϕ,F) + ts(ϕ,Xw) + 1.

Proof. Let ϕ be a satisfiable formula in 〈{X,Xw,F}〉-LTLf (respectively, 〈{X,Xw,F}〉-LTLp). Let
π be a model (respectively, PT-model) of ϕ. Let ϕ′′ be a subformula of ϕ and let i be a time instant
such that π, i |= ϕ′′ (respectively, π, i |=p ϕ

′′). We recursively associate with ϕ′′ and i a set of time
instants Cϕ′′,i as follows. If ϕ′′ = F(ϕ′), then we define Cϕ′′,i as the set {j} ∪ Cϕ′,j , where j is the
maximum time instant with i ≤ j < len(π) and such that π, j |= ϕ′. If ϕ′′ = X(ϕ′), then we define
Cϕ′′,i as the set {i+ 1} ∪ Cϕ′,i+1. If ϕ′′ = Xw(ϕ′) and i < len(π)-1, then we define Cϕ′′,i as the set
{i+ 1} ∪ Cϕ′,i+1. Finally, in all other cases, we define Cϕ′′,i = {}.

Define now C = {0} ∪ Cϕ,0 as the set of critical time instants of ϕ. According to the recursive
definition of satisfiability reported in Section 2, only time instants in C are required to exist in the
model for having π, 0 |= ϕ (respectively, π, 0 |=p ϕ). Therefore, the finite trace π̄ derived from π
by removing each state associated with a time instant that is not critical still satisfies ϕ. The result
follows since the length of π̄ is at most ts(ϕ,X) + ts(ϕ,F) + ts(ϕ,Xw) + 1. 2

4.2 Models of Exponential Length

So far, we have singled out a number of classes of formulas enjoying the linear-length model prop-
erty. Now, we provide a general upper bound on the length of the models.

Theorem 23 For each T ⊆ {X,Xw,G,F,U,R}, every satisfiable 〈T 〉-LTLf (respectively, 〈T 〉-
LTLp) formula ϕ has a model (respectively, PT-model) π such that len(π) ≤ 2O(||ϕ||).

Proof. Consider again the proof of Claim 20, showing that every 〈T 〉-LTLf formula ϕ, with
T ⊆ {G,F}, can be translated into an LTL formula ϕ̄ (preserving the satisfiability) by exploit-
ing the transformation t(ϕ) defined in the work of De Giacomo et al. (2014b). In order to deal
with the temporal operators not used there, we have just to consider the additional translation rules
t(X(ϕ)) = X(t(ϕ)∧¬end), t(Xw(ϕ)) = X(t(ϕ)∨end), t((ϕ1 U ϕ2)) = (t(ϕ1) U (t(ϕ2)∧¬end)),
and t((ϕ1 R ϕ2)) = ((t(ϕ1) ∧ ¬end) R (t(ϕ2) ∨ end)). With this extension, properties (2) and (3)
in Claim 20 directly follows from the arguments by De Giacomo et al. (2014b).

To conclude the proof, recall that according to the work of Sistla and Clarke (1985, Thm. 4.7),
whenever the LTL formula ϕ̄ is satisfiable, it can be satisfied by a periodic trace such that the length
of the prefix preceding the infinite periodic suffix has length l ≤ 2||ϕ̄||. In particular, by property (2)
in Claim 20, if ϕ is satisfiable, the finite prefix of each model of ϕ̄ is the satisfying model of ϕ and

584



LTL ON FINITE AND PROCESS TRACES: COMPLEXITY RESULTS AND A PRACTICAL REASONER

the infinite periodic suffix consists of the infinite repetition of end. Thus, we can conclude that if ϕ
is satisfiable, then it can be satisfied by that prefix, say π, such that len(π) ≤ 2||ϕ̄|| = 2O(||ϕ||).

Finally, by using similar arguments as those in the proof of Theorem 19, it can be checked that
the result holds for LTLp formulas, too. 2

In the rest of the section we show that this exponential bound is met over all classes of LTLf
and LTLp formulas that are not covered by the analysis in Section 4.1. Proofs for LTLf formulas
are based on the standard approach of encoding a n-bits counter, which counts from 0 to 2n − 1
over consecutive time instants of models. Even if such an approach has been already used in the
literature (see, e.g., Lange, 2004), the lack of some temporal operators makes encodings somewhat
complex, and worth being illustrated.

Theorem 24 There are satisfiable 〈{U}〉-LTLf , 〈{Xw,G,F}〉-LTLf , and 〈{X,G}〉-LTLf (respec-
tively, negation-free 〈{U}〉-LTLp, 〈{Xw,G,F}〉-LTLp, and 〈{X,G}〉- LTLp) formulas ϕ for which
there is no model whose length is polynomial with respect to ||ϕ||.

Proof. In the following we will construct a formula ϕ over the set Vϕ = {x1, ..., xn, cont} of
variables and belonging to the class 〈{X,G}〉-LTLf , encoding the behavior of an n-bits counter. In
order to improve the readability, we shall use the implication connectives “→” and “↔”. For their
semantics, recall that α→ β is equivalent to ¬α∨β and α↔ β is equivalent to (α∨¬β)∧(¬α∨β).
Note that by rewriting the implications in the specific formula ϕ we are going to define, the size of
the resulting formula is linearly bounded by the size of ϕ.

Formally, define ϕ = Φ1 ∧ Φ2 ∧G(¬cont ∨ Φinc), where:

• Φ1 = (
∧n
i=1 ¬xi ∧ cont) encodes the initial state of the counter; intuitively, x1, ..., xn are

variables one-to-one corresponding to the bits of the counter and, initially, all of them are
false;

• Φ2 = G(¬cont ↔ ∧n
i=1 xi), combined with Φ1, encodes the fact that the variable cont is

forced to be true until the counter reaches the maximum value;

• Φinc =
∨n

i=1

(
¬xi ∧ X(xi) ∧

∧j<i
j=1(xj ∧ X(¬xj)) ∧

∧n
j=i+1((xj → X(xj)) ∧ (¬xj → X(¬xj)))

)
encodes the behavior of the counter for moving from one number to the successive one; Φinc

combined with Φ2 implies the existence of a subsequent time instant in all time instants, but
the one where the counter reaches the maximum value and the variable cont becomes false;

Consider now a model π of ϕ. Initially, we have π0 = {cont}. For each time instant h, let the
value associated with h be defined as val(h) =

∑
xi∈πh 2i−1.

Consider a time instant h ≥ 0 with πh ∩ {x1, ..., xn} 6= {x1, ..., xn}, and let i be the minimum
index such that xi 6∈ πh and xj ∈ πh, for each j ∈ {1, ..., i − 1}. That is, πh ∩ {x1, ..., xi} =
{x1, ..., xi−1}. Let us analyze the time instant h + 1. First, observe that due to Φ2 and Φinc, this
time instant is guaranteed to exist since we have cont ∈ πh. Second, because of the formula Φinc

which is enforced to hold at the time instant h, for each k ∈ {i + 1, ..., n}, xk ∈ πh+1 if, and only
if, xk ∈ πh and thus, πh ∩{xi+1, ..., xn} = πh+1 ∩{xi+1, ..., xn}. In addition, because of Φinc, we
have that πh+1 ∩ {x1, ..., xi} = {xi} and, hence, val(h + 1) = val(h) + 1; that is, πh+1 encodes
the next configuration of the counter with respect to the configuration encoded by πh.
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Eventually, given the subformula G(¬cont ∨ Φinc) and since we focus on finite traces, a time
instant h∗ is guaranteed to exist such that πh∗ = {x1, ..., xn}, i.e., val(h∗) = 2n−1. By combining
this value with the above expressions relating the values of subsequent time instants, we conclude
that h∗ = 2n− 1. Hence, len(π) > h∗ = 2n− 1. Thus, all models have at least exponential length.
Note that the formula is actually satisfiable; for instance, we can take the model π with len(π) = 2n

and such that val(h) = h+ 1, for each h ∈ {0, ..., len(π)− 1}.
The above arguments have shown that the result holds over 〈{X,G}〉-LTLf formulas. By just

replacing X with Xw and Φ1 with Φ′1 = (
∧n
i=1 ¬xi ∧ cont) ∧ F(

∧n
i=1 xi), it can be checked that

the result holds over 〈{Xw,G,F}〉-LTLf formulas. In particular, note that given the subformulas
F(
∧n
i=1 xi) and G(¬cont ∨ Φinc), the subformula Φinc exhibits the same behavior when X is re-

placed with Xw. Eventually, note that the above encoding can be easily adapted to work with formu-
las of the fragment 〈{U}〉-LTLf by replacing X and G with U as follows: ϕ = Φ′′1∧(Φ′incU

∧n
i=1 xi),

where Φ′′1 =
∧n
i=1 ¬xi and Φ′inc =

∨n
i=1((¬xi∧

∧j<i
j=1 xj) U (xi∧

∧j<i
j=1 ¬xj)∧

∧n
k=i+1((xk U (xi∧∧j<i

j=1 ¬xj ∧ xk)) ∨ (¬xk U (xi ∧
∧j<i
j=0 ¬xj ∧ ¬xk))).

In order to conclude the proof, note that the results for negation-free 〈{U}〉-LTLp, 〈{Xw,G,F}〉-
LTLp, and 〈{X,G}〉- LTLp) formulas follow by combining the above proof with Theorem 14, The-
orem 16 and Theorem 17. 2

By exploiting the above result, we can moreover single out two LTLf and two LTLp fragments
involving the R operator and which do not enjoy the linear-length model property.

Corollary 25 There are satisfiable 〈{F,R}〉-LTLf and 〈{X,R}〉-LTLf (respectively, negation-free
〈{F,R}〉-LTLp and 〈{X,R}〉-LTLp) formulas ϕ for which there is no model whose length is poly-
nomial with respect to ||ϕ||.
Proof. Let us first focus on LTLf . Note that G and U can be rewritten in terms of R and F:

(1) G(ϕ) = ((f ∧ ¬f) R ϕ), where f is a fresh variable not in Vϕ;

(2) (ϕ1 U ϕ2) = F(ϕ2) ∧ (ϕ2 R (ϕ1 ∨ ϕ2)).

Indeed, by inspecting rule (1), one can notice that the subformula (f ∧¬f) is not satisfiable and,
thus, according to the semantics of R, the formula ϕmust remain true until the end of the trace. This
behavior encodes exactly the semantics of the G operator. By looking at (2), note instead that the
subformula F(ϕ2) guarantees the existence of a time instant in which ϕ2 becomes true. Moreover,
according to the semantics of R, the subformula (ϕ1∨ϕ2) must be true until and including the time
instant in which ϕ2 becomes true. This translates in the fact that ϕ1 must be true until ϕ2 becomes
true, encoding exactly the semantics of the U operator.

Consider now negation-free LTLp. Rule (2) clearly holds on this logic, too. Moreover, (1) can
be modified as G(ϕ) = ((f1 ∧ f2) R ϕ), where f1 and f2 are two fresh variables not in Vϕ. Clearly
enough, the modification preserves the semantics of G over process traces.

The result eventually follows by combining the rewritings discussed above with Theorem 24. 2

5. Complexity of Satisfiability over Finite Traces

In this section, we study the computational complexity of reasoning problems related to LTLp and
LTLf . In fact, it is easily seen that the problem of checking whether a trace is a model of a for-
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Fragments negation-free LTLp negation-free LTLf LTLp LTLf
{Xw} {G} {F} {R} {Xw,G}
{Xw,R} {G,R} {Xw,G,R}

in P [Th. 35] in P [Th. 31] in P [Th. 35]
NP-complete

[Th. 27]
{X} {X,Xw} {X,F}

{Xw,F} {G,F} {X,Xw,F}
NP-complete

[Th. 34] in P [Th. 31]
NP-complete

[Th. 34]
NP-complete

[Th. 27]
{U} {X,G} {X,U} {X,R}
{Xw,U} {G,U} {F,U} {F,R}
{U,R} {X,Xw,G} {X,Xw,U}
{X,Xw,R} {X,G,F} {X,G,U}
{X,G,R} {X,F,U} {X,F,R}
{X,U,R} {Xw,G,F} {Xw,G,U}
{Xw,F,U} {Xw,F,R} {Xw,U,R}
{G,F,U} {G,F,R} {G,U,R}
{F,U,R} {X,Xw,G,F}
{X,Xw,G,U} {X,Xw,G,R}
{X,Xw,F,U} {X,Xw,F,R}
{X,Xw,U,R} {X,G,F,U}
{X,G,F,R} {X,G,U,R}
{X,F,U,R} {Xw,G,F,U}
{Xw,G,F,R} {Xw,G,U,R}
{Xw,F,U,R} {G,F,U,R}

{X,Xw,G,F,U} {X,Xw,G,F,R}
{X,G,F,U,R} {X,Xw,F,U,R}
{X,Xw,G,U,R} {Xw,G,F,U,R}

{X,Xw,G,F,U,R}

PSPACE-complete
[Th. 32,Th 33] in P [Th. 31]

PSPACE-complete
[Th. 32,Th 33]

PSPACE-complete
[Th. 28,Th. 29,

Th. 30]

Figure 4: Summary of complexity results. For the sake of readability, all fragments enjoying the
same computational properties are grouped together (even though the corresponding re-
sults required different proofs).

mula provided as input5 is feasible in polynomial time, by using standard dynamic programming
algorithms for (computation tree logic) model checking (Clarke & Schlingloff, 2001)—where the
given trace is viewed as Kripke structure and, hence, branching is immaterial. For the sake of com-
pleteness, note that a direct proof of the result will be given in Section 7.2, where we shall present
a method and some data structures used in our prototype implementation.

Theorem 26 Checking whether a finite trace π is a model of an LTLf (respectively, LTLp) formula
ϕ is feasible in polynomial time.

After the above observation, we now move to study the satisfiability problem of deciding
whether a given formula admits a model. In particular, we consider the complexity of this prob-
lem over various fragments of LTLp and LTLf defined on the basis of the temporal operators being
allowed. Our results are summarized in Figure 4.

A useful insight can be gained by contrasting the entries in the table with Figure 3. Indeed,
it emerges that satisfiability is PSPACE-complete on all classes of formulas that do not enjoy the
linear-length model property. By contrast, it is NP-complete on the remaining classes, except for
〈{Xw,G,R}〉-LTLp and 〈{F}〉-LTLp formulas on which it is tractable—on 〈{Xw,G,R}〉-LTLf and
〈{F}〉-LTLf , the problem remains NP-complete, as it inherits the NP-hardness of propositional
logic. Note also that, in order to shed further lights on the differences between LTLp and LTLf ,

5. Hence, we are considering a combined complexity setting where neither the trace nor the formula is fixed.
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we have also analyzed their complexity over formulas where negation is not allowed. On negation-
free LTLf formulas, satisfiability is always tractable independently on the allowed operators. By
contrast, negation is transparent as far as LTLp formulas are concerned.

The rest of the section illustrates proofs of these results.

5.1 Complexity of LTLf
Let us start by considering the satisfiability problem for LTLf formulas. Combining the results in
the previous section with those in Section 4.1, the following is easily established.

Theorem 27 Assume that T ⊆ {G,F}, or T ⊆ {Xw,G,R}, or T ⊆ {X,Xw,F}. Then satisfiability
of 〈T 〉-LTLf formulas is NP-complete.

Proof. Observe first that the given classes of 〈T 〉-LTLf formulas enjoy the linear-length model
property—see Section 4.1. Therefore, given a formula ϕ belonging to one of these classes, a non-
deterministic Turing Machine can guess a trace π such that len(π) is linear in ||ϕ|| (precise bounds
on the length can be found in Section 4.1) and then check in polynomial time (cf. Theorem 26)
that π |= ϕ. Note that, for such formulas ϕ, representing π takes polynomial space only, because
in the worst case each state of π contains all the variables over which ϕ is defined. It follows that
satisfiability is in NP over these classes.

In order to conclude, note that NP-hardness directly follows from the NP-hardness of the satis-
fiability for propositional logic. 2

For classes that do not enjoy the linear-length model property, a complexity blow up occurs.
This is illustrated in the following two results.

Theorem 28 Assume that T ⊇ {X,G} or T ⊇ {Xw,G,F}. Then satisfiability of 〈T 〉-LTLf formu-
las is PSPACE-complete.

Proof. Membership in PSPACE for LTLf was shown by De Giacomo and Vardi (2013).
We show that satisfiability of 〈{X,G}〉-LTLf formulas is PSPACE-hard by exhibiting a reduc-

tion from the propositional STRIPS planning problem with one effect only, which is known to be
PSPACE-hard (Bylander, 1994). We have a set P of propositional variables and a set Act of possi-
ble actions. Each actionA ∈ Act is a pair (ϕA, EA) where ϕA (the precondition) is a conjunction of
literals built over P and EA (the effect) is a literal. We are given a goal ϕg defined as a conjunction
of literals, and a set I ⊆ P of variables that hold in the initial situation. The problem asks whether,
starting from the initial situation, there is a sequence of actions that can be executed leading to reach
a situation where the goal is achieved. In particular, an action A can be executed if its associated
precondition holds in the current situation, and the effect of its execution is to build a novel situation
where EA holds and the truth value of the other variables remains unchanged. This semantics can
be formally encoded via the formula ϕ = Φ1 ∧ Φ2 ∧

∧
A∈Act(Φ

i
A ∧ Φii

A ∧ Φiii
A ) defined over the

variables P ∪Act (i.e., actions are transparently viewed as variables) such that:

• Φ1 =
∧
c∈I c ∧

∧
c∈P\I ¬c is a subformula encoding the initial situation;

• Φ2 = G((ϕg ∨
∨
A∈Act X(A))∧ (ϕg ∨

∧
A,A′∈Act,A 6=A′(X(¬A)∨X(¬A′)))) is a subformula

encoding that either the goal is reached or exactly one action is executed in the next time
instant;
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• Φi
A = G(ϕg ∨X(

∨
A′∈Act,A′ 6=AA

′)∨ϕA) is a subformula encoding (combined with Φ2) that
an action A can be executed in the next time instant only when the associated precondition
ϕA currently holds;

• Φii
A = G(ϕg ∨X(

∨
A′∈Act,A′ 6=AA

′)∨X(EA)) is a subformula encoding that the execution of
an action A causes that the associated effect EA must hold;

• Φiii
A = G(ϕg ∨ X(

∨
A′∈Act,A′ 6=AA

′) ∨∧c∈P,c6=EA((¬c ∨ X(c)) ∧ (c ∨ X(¬c)))) is a subfor-
mula encoding that the value of variables not affected by the execution of an action remains
unchanged.

It can be checked that ϕ is satisfiable if, and only if, there is a sequence of actions that can be
executed leading to reach a situation where ϕg holds. Details are omitted as the STRIPS encoding
approach is standard for LTL (and also for LTLf , see De Giacomo & Vardi, 2013).

The result for 〈{Xw,G,F}〉-LTLf formulas can be derived by adapting the above encoding. In-
deed, given the formula ϕ, we build the formula ϕ̄ = ϕ′ ∧ F(ϕg), where ϕ′ is obtained from ϕ by
substituting X with Xw. Clearly, ϕ̄ is satisfiable if, and only if, ϕ is satisfiable. 2

Theorem 29 Assume that T ⊇ {U}. Then satisfiability of 〈T 〉-LTLf formulas is PSPACE-complete.

Proof. Membership in PSPACE for LTLf was shown by De Giacomo and Vardi (2013). We
show that satisfiability of 〈{U}〉-LTLf formulas is PSPACE-hard by adapting the reduction from
the propositional STRIPS planning problem with one effect only of the proof of Theorem 28. In
particular, it is possible to rewrite the formula ϕ into the formula ϕ̄ = Φp∧ Φ̄1∧ Φ̄2∧

∧
A∈Act(Φ̄

i
A∧

Φ̄ii
A ∧ Φ̄iii

A ) defined over the variables P ∪Act ∪ {p} as follows:

• Φp = ((p U ¬p)∧ (¬p U p)) U ϕg is a subformula encoding the different time instants of the
trace;

• Φ̄1 = p ∧∧c∈I c ∧
∧
c∈P\I ¬c is a subformula encoding the initial situation;

• Φ̄2 = (((pU (¬p∧∨A∈ActA))∨(¬pU (p∧∨A∈ActA))) Uϕg)∧(((pU (¬p∧∧A,A′∈Act,A 6=A′
(¬A ∨ ¬A′))) ∨ (¬p U (p ∧∧A,A′∈Act,A 6=A′(¬A ∨ ¬A′)))) U ϕg) is a subformula encoding
that either the goal is reached or exactly one action is executed in the next time instant;

• Φ̄i
A = (ϕA ∨ (p U (¬p ∧ (

∨
A′∈Act,A′ 6=AA

′))) ∨ (¬p U (p ∧ (
∨
A′∈Act,A′ 6=AA

′)))) U ϕg) is
a subformula encoding (combined with Φ̄2) that an action A can be executed in the next time
instant only when the associated precondition ϕA currently holds;

• Φ̄ii
A = ((pU (¬p∧(EA∨

∨
A′∈Act,A′ 6=AA

′)))∨(¬pU (p∧(EA∨
∨
A′∈Act,A′ 6=AA

′)))) U ϕg)
is a subformula encoding that the execution of an action A causes that the associated effect
EA must hold;

• Φ̄iii
A =

∧
c∈P,c6=EA((p∧cU (¬p∧(

∨
A′∈Act,A′ 6=AA

′∨c)))∨(p∧¬cU (¬p∧(
∨
A′∈Act,A′ 6=AA

′∨
¬c))) ∨ (¬p ∧ c U (p ∧ (

∨
A′∈Act,A′ 6=AA

′ ∨ c))) ∨ (¬p ∧ ¬c U (p ∧ (
∨
A′∈Act,A′ 6=AA

′ ∨
¬c)))) U ϕg) is a subformula encoding that the value of variables not affected by the execu-
tion of an action remains unchanged.
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It can be checked that ϕ̄ is satisfiable if, and only if, there is a sequence of actions that can be
executed leading to reach a situation where ϕg holds. 2

Classes of formulas involving the R operator are next analyzed.
Theorem 30 Assume that T ⊇ {X,R} or T ⊇ {F,R}. Then satisfiability of 〈T 〉-LTLf formulas is
PSPACE-complete.

Proof. Membership in PSPACE for LTLf derives from the work of De Giacomo and Vardi
(2013). In the light of the rewriting rules discussed in the proof of Corollary 25, hardness results
for 〈{X,R}〉-LTLf and 〈{F,R}〉-LTLf formulas are a direct consequence of the hardness results
reported in Theorem 28 and Theorem 29, respectively. 2

We leave the section by illustrating a tractable case for LTLf .

Theorem 31 Deciding the satisfiability of negation-free 〈{X,Xw,G,F,U,R}〉-LTLf formulas and
computing a model, if any exists, are feasible in polynomial time.

Proof. Let ϕ be a negation-free 〈{X,Xw,G,F,U,R}〉-LTLf formula. By Theorem 18, if ϕ is
satisfiable, then it admits a model of length at most th(ϕ,X) + th(ϕ,Xw) + 1. In particular, by
inspection in the proof, the model π is such that πi = Vϕ, for each i ∈ {0, ..., len(π)-1}. Thus, the
result directly follows by Theorem 26. 2

5.2 Complexity of LTLp
We now analyze the complexity of LTLp formulas. In this setting, a number of results can be estab-
lished by using the complexity results for LTLf and the mechanisms to “translate” LTLf formulas
into LTLp formulas provided in Section 3.

Theorem 32 The following properties hold:

• Assume that T ⊆ {X,Xw,F}, with {X} ⊆ T or {Xw,F} ⊆ T . Then satisfiability of 〈T 〉-LTLp
formulas is NP-complete. Hardness results hold even over negation-free formulas.

• Assume that T ⊇ {U}, or T ⊇ {Xw,G,F}, or T ⊇ {X,G}. Then satisfiability of 〈T 〉-LTLp
formulas is PSPACE-complete. Hardness results hold even over negation-free formulas.

Proof. Assume that T ⊆ {X,Xw,F}. Recall from Section 4.1 that the classes considered in the
statement enjoy the linear-length model property. So, membership in NP is established as in the
proof of Theorem 27. Since satisfiability of 〈{}〉-LTLf (that is, of propositional formulas) is NP-
hard, we conclude, by Theorem 14 and Theorem 16, that satisfiability of negation-free 〈{X}〉-LTLp
and negation-free 〈{Xw,F}〉-LTLp formulas is NP-hard, too.

Assume that T ⊇ {U}, or T ⊇ {Xw,G,F}, or T ⊇ {X,G}. The fact that satisfiability is in
PSPACE follows by Corollary 13. As for the lower bound, it is enough to note that satisfiability
of negation-free 〈{U}〉-LTLp, 〈{Xw,G,F}〉-LTLp, and 〈{X,G}〉-LTLp formulas is PSPACE-hard
as a direct consequence of Theorem 14, Theorem 16, and Theorem 17 combined with the hardness
results reported in Theorem 28 and Theorem 29. 2

Then, we analyze the classes of formulas involving the R operator.
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Theorem 33 Assume that T ⊇ {X,R}, or T ⊇ {F,R}. Then satisfiability of 〈T 〉-LTLp formulas is
PSPACE-complete. Hardness results hold even over negation-free formulas.

Proof. The fact that satisfiability is in PSPACE follows by Corollary 13. As for the lower bound,
note that satisfiability of negation-free 〈{X,R}〉-LTLp and negation-free 〈{F,R}〉-LTLp formulas
is PSPACE-hard because of the hardness results reported in Theorem 32 and the rewriting rules
discussed in the proof of Corollary 25. 2

After the above results, it remains to consider the complexity of satisfiability over (sub-)classes
of 〈{G,F}〉-LTLp and 〈{Xw,G,R}〉-LTLp formulas. Concerning the first case, observe that we
already know that satisfiability is NP-hard over the corresponding LTLf fragments. However, we do
not have a general tool to translate this result over LTLf—just check that Theorem 14, Theorem 16
and Theorem 17 do not apply here. Therefore, an ad-hoc analysis is in order, which is provided by
the following two results.

Theorem 34 Satisfiability of 〈{G,F}〉-LTLp formulas is NP-complete. Hardness holds even over
negation-free formulas.

Proof. From the fact that the class 〈{G,F}〉-LTLp of formulas enjoy the linear-length model prop-
erty, membership in NP is established as in the proof of Theorem 27. For the hardness, we ex-
hibit a reduction from the NP-hard ONE-IN-THREE POSITIVE 3-SAT problem (Garey & Johnson,
1979). Let φ be a propositional formula in conjunctive normal form φ = C1 ∧ · · · ∧ Cm over
the set {x1, ..., xn} of variables, where each clause Cj has the form Cj = xj1 ∨ xj2 ∨ xj3 with
xj1 , xj2 , xj3 ∈ {x1, ..., xn}. Based on φ, we build a negation-free 〈{G,F}〉-LTLp formula ϕφ over
the set {x1, ..., xn} of variables. In particular, ϕφ =

∧m
j=1(F(Cj) ∧

∧3
h=1 G(ηj,h)) where

ηj,h =
∨
r∈{1,...,n}\{jh} xr ∨G

(∨
r∈{1,...,n}\({j1,j2,j3}\{jh}) xr

)
.

We now claim that: there is a truth assignment over {x1, ..., xn} such that, for each clause of φ,
precisely one variable evaluates true if, and only if, ϕφ is satisfiable.

(if part) Assume that π is a PT-model of ϕφ. Consider the truth assignment σ such that xi, for
each i ∈ {1, ..., n}, evaluates true in σ if, and only if, there is a time instant w ∈ {0, ..., len(π)-1}
such that πw = {xi}. First, we show that σ is satisfying. Indeed, for each clause Cj , because
π, 0 |=p F(Cj), we are guaranteed about the existence of a time instant wj where πwj = {xr} holds
with xr ∈ {xj1 , xj2 , xj3}. Now, let w∗j be the minimum index enjoying this property and assume,
without loss of generality, that πw∗j = {xj1}. Then the fact that π,w∗j |=p G(ηj,j1) holds, implies
that, for each time instant w′ ≥ w∗j , it is the case that πw′ ∩ {xj2 , xj3} = ∅. Given the choice of w∗j ,
this holds even for the time instants w′ antecedent to w∗j . Therefore, xj2 and xj3 evaluate false in σ.
It follows that, for each clause Cj , precisely one variable evaluates true in σ.

(only-if part) Consider a truth assignment σ such that, for each clause of φ, precisely one vari-
able evaluates true. Let {xi0 , ..., xiq-1} be the set of all variables evaluating true in σ, and consider
the finite trace π such that len(π) = q and, for each r ∈ {0, ..., q-1}, πir = {xir}. In particu-
lar, note that π is a process trace. It can be checked that, for each j ∈ {1, ...,m}, the condition
π,w |=p Cj holds at the time instant w associated with the (unique) variable xiw ∈ {xj1 , xj2 , xj3}
occurring in Cj and evaluating true in σ. Note that if it were the case that π, 0 6|=p G(ηj,h), for
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some j ∈ {1, ...,m} and h ∈ {1, 2, 3}, then there would be two time instants w and w′ such that
πw = {xjh}, πw′ = {xjh′}, with {xjh , xj′h} ⊂ {xj1 , xj2 , xj3} and h 6= h′. But, this would entail
that two variables, xjh and xjh′ , belonging to the clause Cj evaluate true in σ, which is impossible.
Therefore, π |=p ϕφ holds.

The claim above established the NP-hardness of satisfiability for negation-free 〈{G,F}〉-LTLp
formulas, because ϕφ can be built in polynomial time. 2

Finally, we leave the section by isolating two tractable classes of formulas.

Theorem 35 Assume that either T ⊆ {Xw,G,R} or T ⊆ {F}. Then satisfiability of 〈T 〉-LTLp
formulas is feasible in polynomial time.

Proof. Let ϕ be a 〈{Xw,G,R}〉-LTLp formula. If ϕ is satisfiable, then it is satisfiable by a trace
of length 1 (cf. Fact 21). So, we can build all possible traces π such that π = π0 and |π0| = 1, by
considering all variables in ϕ plus one further variable in V \Vϕ (cf. Lemma 10). The result follows
since there are linearly-many candidate traces and since, for each of them, checking whether the
formula is satisfied is feasible in polynomial time (see Theorem 26).

Now, let ϕ be a 〈{F}〉-LTLp formula. Without loss of generality, assume that the Boolean
constants true and false are allowed in the syntax of ϕ, with their usual intended semantics.
Consider the following algorithm that tries to build a PT-model π of ϕ. We start with an empty trace
π, i.e., such that len(π) = 0. At the generic step, we take an arbitrary subformula F(ϕ′) such that
ϕ′ is a propositional formula (without any temporal operator). Note that deciding whether a propo-
sitional formula ϕ′ admits a PT-model π′ (and compute one, if any) is feasible in polynomial time.
We distinguish two cases: (i) if ϕ′ is not satisfiable by a PT-model, then we replace the formula
F(ϕ′) with the constant false; (ii) if π′ is a PT-model of ϕ′ (with len(π′) = 1), then we replace
the formula F(ϕ′) with the constant true and we modify π by inserting π′0 as the initial state. The
above procedure is repeatedly applied till we end up with a propositional formula ϕ̄, i.e., till all
subformulas involving a temporal operator have been processed. It can be checked that if ϕ̄ does
not have a PT-model (which can be again checked in polynomial time), then ϕ is not satisfiable.
Otherwise, we build a PT-model π̄ of ϕ̄, and we further modify π by inserting π̄0 as the initial state.
Then note that the resulting trace π is a PT-model of ϕ. 2

6. Further Syntactic Restrictions and Islands of Tractability

The complexity analysis carried out in the previous section evidenced that satisfiability is intractable
over most of the classes of LTLf and LTLp formulas we have considered. Motivated by these bad
news, we propose an analysis where formulas can be restricted also based on the Boolean connec-
tives being allowed. In many cases, our analysis identifies precisely the border of tractability, that
is, the maximal combinations of Boolean connectives and temporal operators leading to tractability.
As a subject of further research, it would be interesting to trace completely the border and to provide
a finer-grained analysis of the tractable classes with the aim of assessing the precise complexity of
the tractable fragments (e.g., in terms of circuit complexity).

A summary of the complexity results derived in this section is in Figure 5. Note that the border
of tractability is completely charted over X,Xw,G,F, and U. Moreover, note that all tractability
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Logics Fragments Complexity

negation-free LTLf T with T ⊆ {X,Xw,G,F,U,R} in P [Th. 31]

LTLf
LTLp

T without conjunctions, with T ⊆ {X,Xw,G,F,U}
T without disjunctions, with T ⊆ {X,F} or

T ⊆ {X,Xw,G} or T ⊆ {G,F}
in P [Th. 36, Th. 39, Th. 40, Th. 41]

LTLf
negation-free LTLp

T without conjunctions, with T ⊇ {X,R}
T without disjunctions, with T ⊇ {X,G,F} or

T ⊇ {Xw,F} or T ⊇ {U}

NP-hard [Th. 37, Th. 38, Th. 42, Th. 43, Th. 44,
Th. 45]

Figure 5: Summary of complexity results of Section 6. For the sake of readability, all fragments
enjoying the same computational property are grouped together (even though the corre-
sponding results required different proofs).

results we derive are established via constructive polynomial-time algorithms that either compute
a (PT-) model or check that the given formula ϕ is not satisfiable. In particular, algorithms work
on the parse tree pt(ϕ) = (V,E, λ) of ϕ, which is a rooted tree (V,E) with a labeling function
λ : V → {∧,∨,X,Xw,G,F,U,R} ∪ {x,¬x | x ∈ Vϕ} inductively defined as follows:

• For any literal ` ∈ {x,¬x} with x ∈ Vϕ, pt(`) = ({r}, ∅, λ) and λ(r) = `.

• If pt(ϕi) = (Vi, Ei, λi), with i ∈ {1, 2}, is a parse tree rooted at vertex ri ∈ Vi and if
O ∈ {∧,∨} is a Boolean connective or O ∈ {U,R}, then pt(ϕ1 O ϕ2) = ({r} ∪ V1 ∪
V2, {(r, r1), (r, r2)} ∪ E1 ∪ E2, λ) is the parse tree rooted at the fresh node r, having r1 and
r2 as its two children, and where λ is such that λ(r) = O and its restriction over Vi coincides
wit λi.

• If pt(ϕ′) = (V ′, E′, λ′) is a parse tree rooted at r′ and if O ∈ {X,Xw,G,F} is a temporal
operator, then pt(O(ϕ′)) = ({r} ∪ V ′, {(r, r′)} ∪E′, λ) is the tree rooted at the fresh node r
whose only child is r′, and where λ is such that λ(r) = O and its restriction over V ′ coincides
with λ′.

6.1 Formulas without Conjunctions

We start with the case where conjunction is not allowed. In this case, we can establish tractability
results for both LTLf and LTLp, by do not allowing R as a temporal operator.

Theorem 36 Satisfiability of 〈{X,Xw,G,F,U}〉-LTLf and 〈{X,Xw,G,F,U}〉-LTLp formulas with-
out conjunctions is feasible in polynomial time.

Proof. Let ϕ be a 〈{X,Xw,G,F,U}〉-LTLf formula without conjunctions, let pt(ϕ) = (V,E, λ)
be its parse tree, and let r be the root of pt(ϕ)—a similar line of reasoning applies to the case of
〈{X,Xw,G,F,U}〉- LTLp formulas. Consider an algorithm that processes pt(ϕ) bottom-up, i.e.,
from the leaves to the root, by equipping each vertex v ∈ V with a label f(v) encoding either a
trace or the special symbol ⊥. In particular, if v is the vertex that is currently processed and v is a
leaf with λ(v) = x (respectively, λ(v) = ¬x), then we set f(v) = {x} (respectively, f(v) = ∅).
So, for all leaves, the labels consist of traces having length 1. By contrast, if v is an internal vertex
(and its child/children have been already processed and have been equipped by the algorithm with
a label), then we distinguish two cases:
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• Assume that v has one child only, say c.

– if λ(v) = X and f(c) 6= ⊥, then f(v) is defined as the trace obtained by concatenating
the empty set ∅ (as the initial state) with the trace f(c);

– if λ(v) = X and f(c) = ⊥, then f(v) = ⊥;

– if λ(v) = Xw, then f(v) = ∅;
– if λ(v) = F, then f(v) = f(c);

– if λ(v) = G and len(f(c)) > 1, then f(v) = ⊥;

– if λ(v) = G and len(f(c)) = 1, then f(v) = f(c).

• Assume that v has two children, say c1 and c2.

– if λ(v) = ∨ and f(c1) = f(c2) = ⊥, then f(v) = ⊥;

– if λ(v) = ∨ and f(c1) = ⊥ and f(c2) 6= ⊥, then f(v) = f(c2);

– if λ(v) = ∨ and f(c2) = ⊥ and f(c1) 6= ⊥, then f(v) = f(c1);

– if λ(v) = ∨ and f(c1) 6= ⊥ and f(c2) 6= ⊥, then f(v) is defined as the trace having the
minimum length between f(c1) and f(c2);

– if λ(v) = U, then f(v) = f(c2);

Now, for each vertex v ∈ V , let ϕv denote the subformula whose associated parse tree is given
by the one rooted at v. By structural induction on the parse tree (again, from the leaves to the root),
it can be checked that f(v) = ⊥ holds if, and only if, ϕv is not satisfiable; in particular, if f(v) 6= ⊥,
then f(v) |= ϕv and there is no trace π′ with len(π′) < len(f(v)) such that π′ |= ϕv. Therefore,
in order to check the satisfiability of ϕ, we can apply the above algorithm and then look at the label
f(r) of the root. The result follows as the algorithm is clearly feasible in polynomial time. 2

Indeed, we can show an intractability result for R, actually coupled with X.

Theorem 37 Satisfiability of 〈T 〉-LTLf formulas without conjunctions, with T ⊇ {X,R}, is NP-
hard.

Proof. We exhibit a reduction from the 3-SAT problem (Garey & Johnson, 1979). Let φ be a
propositional formula in conjunctive normal form φ = C1 ∧ · · · ∧ Cm over the set {x1, ..., xn} of
variables, where each clause Cj has the form Cj = lj1 ∨ lj2 ∨ lj3 with each lji having the form xk
or ¬xk, with xk ∈ {x1, ..., xn}. Based on φ, we build the 〈{X,R}〉-LTLf formula ϕφ, over the set
{x1, ..., xn} of variables, as follows. Let s be a variable not occurring in φ, and define C̄j = Cj R s,
for each j ∈ {1, ...,m}. Then, let ϕφ = (...((C̄1 R C̄2) R C̄3)...R C̄m) R (s R X(¬s)).

We claim that: there is a truth assignment over {x1, ..., xn} such that, for each clause of φ, at
least one variable evaluates true if, and only if, ϕφ is satisfiable.

(if part) Assume that π is a finite model of ϕφ. Consider the subformula (s R X(¬s)), and note
that, according to the semantics of R, since its right hand involves one X operator, there must
actually exist some time instant l where both s and X(¬s) hold. Moreover, if l > 0, then
X(¬s) must hold for each time instant l′ with 0 ≤ l′ < l. This clearly implies that l = 0 and
π, 0 |= s while π, 1 |= ¬s. Then, because C̄j , for each j ∈ {1, ...,m}, includes s in its right
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hand side, it must be the case that π, 0 |= Cj , for each j ∈ {1, ...,m}. Therefore, the truth
assignment σ such that xi, for each i ∈ {1, ..., n}, evaluates true in σ if, and only if, π, l |= xi
holds, is satisfying.

(only-if part) Consider any truth assignment σ such that, for each clause of φ at least one of its
literals evaluates true. Consider the finite trace π such that len(π) = 2, π1 = ∅ and π0

includes s and all the variables evaluating true in σ. It can be easily checked that π |= ϕφ.

As the formula ϕφ can be built in polynomial time, the NP-hardness follows. 2

Theorem 38 Satisfiability of negation-free 〈T 〉-LTLp formulas without conjunctions, with T ⊇
{X,R}, is NP-hard.

Proof. We exhibit again a reduction from the 3-SAT problem (Garey & Johnson, 1979). Let φ be
a propositional formula in conjunctive normal form φ = C1 ∧ · · · ∧Cm over the set {x1, ..., xn} of
variables, where each clause Cj has the form Cj = lj1 ∨ lj2 ∨ lj3 with each lji having the form xk or
¬xk with xk ∈ {x1, ..., xn}. Based on φ, we build a negation-free 〈{X,R}〉-LTLp formula ϕφ, over
the set {s, x1, ..., xn}∪{s̄, x̄1, ..., x̄n} of variables, as follows. For each variable xk ∈ {x1, ..., xn},
we define the two formulas ϕxk=Xk+1xk and ϕ¬xk=Xk+1x̄k. Moreover, for each clause Cj with
j ∈ {1, ...,m} we define ϕCj = (ϕlj1 ∨ ϕlj2 ∨ ϕlj3 ) R s. Then, we have that

ϕφ = (...((ϕC1 R ϕC2) R ϕC3)...R ϕCm) R (s R X(s̄)).

We claim that: there is a truth assignment over {x1, ..., xn} such that, for each clause of φ, at
least one variable evaluates true if, and only if, ϕφ is satisfiable.

(if part) Assume that π is PT-model of ϕφ. By using the same line of reasoning as in the proof of
Theorem 37 and the fact that s and s̄ cannot be simultaneously true, we derive that π, 1 |=p s̄
and π, 0 |=p s ∧ ϕC1 ∧ ... ∧ ϕCm . Therefore, the truth assignment σ such that xi, for each
i ∈ {1, ..., n}, evaluates true in σ if, and only if, π, i+1 |=p xi holds, is satisfying.

(only-if part) Consider any satisfying truth assignment σ. Let Q be the set of variables evaluating
true in σ, and consider the finite trace π such that len(π) = n+2, π0 = {s}, π1 = {s̄}, and
πi+1 = {xi} if xi ∈ Q and πi+1 = {x̄i} if xi /∈ Q, for each i ∈ {1, ..., n}. It can be easily
checked that π |=p ϕφ.

As the formula ϕφ can be built in polynomial time, the NP-hardness follows. 2

6.2 Formulas without Disjunctions: Tractable Cases

Let us then move to the case where disjunctions are not allowed. In this case, we are able to
identify three tractable classes.

Theorem 39 Satisfiability of 〈{X,F}〉-LTLf and 〈{X,F}〉-LTLp formulas without disjunctions is
feasible in polynomial time.
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Proof. Let ϕ be a 〈{X,F}〉-LTLf formula without disjunctions. Observe first that ϕ can be rewritten
in polynomial time according to the following grammar:

ϕ ::= ϕB | X(ϕ) | F(ϕ) | (ϕ′ ∧ ϕ′) | (ϕB ∧ X(ϕ)) | (ϕB ∧ (X(ϕ) ∧ ϕ′))| (X(ϕ) ∧ ϕ′) | (ϕB ∧ ϕ′)
ϕ′ ::= F(ϕ) | (ϕ′ ∧ ϕ′)
ϕB ::= x | ¬x | (ϕB ∧ ϕB)

Consider then the parse tree pt(ϕ) = (V,E, λ) and, for each vertex v ∈ V , let ϕv denote the
subformula whose associated parse tree is given by the one rooted at v. Let V ′ ⊆ V be the set of
all vertices v for which ϕv is a maximal subformula without temporal operators. With each vertex
v ∈ V ′, let us associate a setMv containing all variables occurring positively in ϕv. If some variable
occurring negated in ϕv also occurs in Mv, then ϕv is not satisfiable (and ϕ is not satisfiable, too).

Let us then consider the case where the above test fails over all vertices in V ′. In this case, Mv

is a minimal model of ϕv, for each v ∈ V ′. Moreover, note that such minimal models are built
in polynomial time. Now, based on such models Mv, we build a model of ϕ in polynomial time.
To this end, we start by associating with each vertex v ∈ V ′ a trace πv with len(πv) = 1 and
πv0 = Mv. Then, we process the parse tree pt(ϕ) from the vertices in V ′ to the root by associating a
trace πv with each vertex v. In particular, depending on the expression in the above grammar which
generates ϕv, the trace πv is built as follows:

[ϕv ::= X(ϕ)] Assume that c is the child of v. Then, πv is obtained from πc by inserting the state
∅ as the initial state;

[ϕv ::= F(ϕ)] Assume that c is the child of v. Then, πv = πc;

[ϕv ::= (ϕ′ ∧ ϕ′)] Assume that c1 and c2 are the children of v. Then, πv is obtained by appending
πc2 to the trace πc1 ;

[ϕv ::= (ϕB ∧ (X(ϕ) ∧ ϕ′))] Assume that c1 and c2 are the children of v and that c1 is the child
such that c1 ∈ V ′. Then, πv is obtained from πc2 by replacing its initial state (in fact, note
that πc20 = ∅) with M c1 ;

[ϕv ::= (ϕB ∧ X(ϕ))] Assume that c1 and c2 are the children of v and that c1 is the child such that
c1 ∈ V ′. Then, πv is obtained from πc2 by replacing its initial state (in fact, note that πc20 = ∅)
with M c1 ;

[ϕv ::= (X(ϕ) ∧ ϕ′)] Assume that c1 and c2 are the children of v and that c1 is the child such that
λ(c1) = X. Then, πv is obtained by appending πc2 to the trace πc1 ;

[ϕv ::= (ϕB ∧ ϕ′)] Assume that c1 and c2 are the children of v and that c1 is the child such that
c1 ∈ V ′. Then, πv is obtained by inserting M c1 before the first time instant of πc2 .

By structural induction on the subformulas of ϕ, we can easily check that πv is a model of ϕv,
for each vertex v. So, if r is the root of the parse tree, then πr is a model of ϕ.

The result for LTLp formulas follows by first checking after the above procedure that, for each
vertex v ∈ V ′, |Mv| ≤ 1 holds. If this is not the case, then there is no PT-model. Otherwise, on the
resulting trace πr, we just replace each state πri such that πri = ∅ with the state {p}, with p being a
fresh variable not in Vϕ (cf. Lemma 10). 2
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Figure 6: Example modification of the parse tree used in the proof of Theorem 40—nX indicates
the number of vertices having label X in the path connecting the given vertex to the root.

Theorem 40 Satisfiability of 〈{X,Xw,G}〉-LTLf and 〈{X,Xw,G}〉-LTLp formulas without dis-
junctions is feasible in polynomial time.

Proof. Let ϕ be a 〈{X,Xw,G}〉-LTLf formula without disjunctions—the same line of reasoning
applies to 〈{X,Xw,G}〉-LTLp formulas. We assume that the alphabet of the propositional language
is naturally extended with the Boolean constant true, with the usual intended semantics. Hence,
we next show a tractability result slightly more general than the one reported in the statement.

Note first that X, Xw and G distribute over ∧ and we can assume, w.l.o.g., that if O(ϕ′) is a
subformula of ϕ with O ∈ {X,Xw,G}, then either ϕ′ is a propositional formula (i.e., without tem-
poral operators) or has the form O(ϕ′′) with O ∈ {X,Xw,G}. We can rewrite ϕ so that G operators
are never applied to Xw subformulas by exploiting the equivalences G(Xw(ϕ′)) = Xw(G(ϕ′)) and
G(G(ϕ′)) = G(ϕ′). After the rewriting, if ϕ has a subformula G(ϕ′) and, in its turn, ϕ′ has the
form X(ϕ′′), then ϕ is not satisfiable. This condition can be trivially checked in polynomial time.
Hence, we consider in the following the remaining case where if G(ϕ′) is a subformula of ϕ, then
ϕ′ is actually a propositional formula.

Let pt(ϕ) be the parse tree of ϕ with root r and let us indicate by n the maximum number of
consecutive vertices having label X among all the paths connecting r to either a vertex having label
G or Xw or to a vertex associated with a literal. We modify ϕ in three steps, which are next presented
in terms of modifications made on the associated parse tree pt(ϕ). In the first step, we reduce the
number of vertices labeled Xw by substituting them with vertices labeled X. Let W be the set of
vertices r′ of pt(ϕ) that satisfy the following three conditions: (i) r′ has label Xw; (ii) there is no
other vertex having label Xw in the path between r and r′; and (iii) the number h of vertices having
label X in the path connecting r to r′ is lower that n. Then, we set the label of all the nodes in W to
X, and we repeat the process by computing the new value of n and the associated set W , until this
set is empty. Note that because of property (iii), we are guaranteed that the semantics of the formula
after the modification is not altered.

At the end of the first step, all vertices r′ in pt(ϕ) labeled as Xw are such that the number h
of vertices having label X in the path connecting r′ to r is such that h ≥ n. Due to the semantics
of Xw, this means that we can replace the subtree rooted at r′ with a vertex true as a child of the
parent of r′, or just return true if r = r′. Note that at the end of the second step, the current parse
tree pt(ϕ) has vertices labeled only as X, G, ∧ and literals, while being completely equivalent to
the original parse tree provided as input.
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For the final step, let pt(G(ϕ′)) be any subtree of pt(ϕ) such that its root r′ has label G, and
let h be the number of vertices having label X in the path connecting r′ to r. By recalling that
ϕ′ is actually a propositional formula, we modify pt(ϕ) by performing the following steps—see
Figure 6, for an illustration:

1. remove the subtree pt(G(ϕ′)), and append pt(ϕ′) as a child of the parent of r′ (or just return
pt(ϕ′), if r = r′);

2. for each subtree pt(X(ϕ′′)) whose root r′′ is labeled as X and such that there are at least h
vertices labeled X in the path connecting r′′ to r: add as a child of r′′ a new vertex v̄ labeled
as ∧; append as a child of v̄ the subtree pt(ϕ′); append as the other child of v the subtree
pt(ϕ′′).

Note that the modified parse tree encodes a formula where the semantics of the subformula
G(ϕ′) is made explicit. Accordingly, we can repeatedly apply the above transformation, until we
end up with a formula in 〈{X}〉-LTLf without disjunctions. Therefore, we have shown that satisfia-
bility of 〈{X,Xw,G}〉-LTLf formulas without disjunctions can be solved by means of a polynomial-
time preprocessing ending up with equivalent 〈{X}〉-LTLf formulas without disjunctions. The result
then follows because of Theorem 39. 2

Theorem 41 Satisfiability of 〈{G,F}〉-LTLf and 〈{G,F}〉-LTLp formulas without disjunctions is
feasible in polynomial time.

Proof. We shall show that satisfiability is feasible in polynomial time over fragments that are
actually larger than those reported in the statement. Indeed, we shall exhibit a polynomial-time
satisfiability algorithm for LTLf and LTLp formulas ϕ built without disjunctions, where G and F
are the only allowed temporal operators, and where the Boolean constant true can be additionally
used (as in the proof of Theorem 40). So, let ϕ be a formula of this kind. More formally, observe
that ϕ can be rewritten in polynomial time according to the following grammar:

ϕ ::= ϕB | (ϕB ∧G(ϕB)) | (ϕB ∧ ϕ′) | (ϕB ∧ (G(ϕB) ∧ ϕ′))
ϕ′ ::= F(ϕ) | (ϕ′ ∧ ϕ′)
ϕB ::= x | ¬x | (ϕB ∧ ϕB) | true

In order to assess the correctness of the grammar, note first that G(ϕ′ ∧ ϕ′′) = G(ϕ′) ∧G(ϕ′′)
and G(G(ϕ)) = G(ϕ) hold. Thus, we can assume, without loss of generality, that G operators
are applied either to propositional formulas or to F subformulas. And, to conclude, we just ob-
serve that formulas having the form G(F(ϕ′)) can be safely replaced by F(G(ϕ′))—hence, we can
furthermore assume that G operators are applied to propositional formulas only. Indeed, if π is a
(PT-)model of G(F(ϕ′)), then ϕ′ must hold in particular at the last time instant and, hence, π is a
(PT-)model of F(ϕ′) and of F(G(ϕ′)), too. On the other hand, if π is a (PT-)model of F(G(ϕ′)),
then there exists a time instant from which ϕ′ always holds. In particular, ϕ′ holds at the last time
instant and, hence, π is a (PT-)model of F(ϕ′) and of G(F(ϕ′)), too.

Consider the parse tree pt(ϕ) = (V,E, λ) rooted at the vertex r ∈ V . For each vertex v ∈ V ,
let ϕv denote the subformula whose associated parse tree is given by the one rooted at v. Each
vertex v is also associated with a pair (Ω+

v ,Ω
−
v ) where Ω+

v (respectively, Ω−v ) is the set containing
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all variables x for which a leaf node c occurs in the subtree rooted at v with λ(c) = x (respectively,
λ(c) = ¬x). Note that, for all v such that ϕv is a propositional formula, ϕv is satisfiable if, and only
if, Ω+

v ∩ Ω−v = ∅. In particular, M |= ϕv if, and only if, M ⊇ Ω+
v and M ∩ Ω−v = ∅.

Let L be the set of all nodes ` ∈ V such that ϕ` is a maximal Boolean (sub-)formula such that
either ` = r or the parent p of ` is such that λ(p) 6= G. Let G be the set of all nodes g ∈ V such that
ϕg is a maximal Boolean (sub-)formula and such that the parent of g is p and we have λ(p) = G.
With each node ` ∈ L, we associate a pair (Λ+

` ,Λ
−
` ) as follows. For each ` ∈ L and g ∈ G, let

root(`, g) be their minimum common ancestor. If there is g ∈ G for which each vertex v′ 6= g in the
path between root(`, g) and g is such that λ(v′) ∈ {∧,G}, then Λ+

` (respectively, Λ−` ) is defined
as Ω+

g (respectively, Ω−g ). Note that there can be at most one vertex g ∈ G satisfying the above
condition. Whenever a node g ∈ G of this kind does not exist, then we set Λ+

` = ∅ and Λ−` = ∅.
By construction, if there is a node ` ∈ L such that (Ω+

` ∪ Λ+
` ) ∩ (Ω−` ∪ Λ−` ) 6= ∅, then the

formula ϕ is not satisfiable. Indeed, in the recursive definition of satisfiability of ϕ, all variables
in Λ+

l (respectively, Λ−l ) must necessarily evaluate true (respectively, false) in all time instants
coinciding with and following the one where ϕ` evaluates true. So, in the following, we consider
the remaining case where (Ω+

` ∪ Λ+
` ) ∩ (Ω−` ∪ Λ−` ) = ∅, for each ` ∈ L. In particular, equipped

with the notions introduced above, consider the set F of edges over L built as follows:

1. for each pair of distinct vertices `, `′ in L such that ` is a child of a vertex p, and p is an
ancestor of `′, the edge (`, `′) is in F ; note that in this case, there is at least one vertex v′ in
the path between p and `′ such that λ(v′) = F;

2. for each pair of distinct vertices `, `′ in L such that (Λ+
` ∪Ω+

` ∪Λ+
`′ )∩ (Λ−` ∪Ω−` ∪Λ−`′ ) 6= ∅,

the edge (`, `′) is in F ;

3. no further edge is in F .

Note that the construction is feasible in polynomial time. In order to illustrate it, consider the
formula ϕ = a ∧ (F(b ∧G(¬a)) ∧ (F(true ∧G(¬b)) built over the variables in {a, b}. The parse
tree is shown in Figure 7 (a). In this case, we have L = {`0, `1, `2} and G = {g0, g1}. Figure 7 (b)
reports for each `i, with i ∈ {0, 1, 2} the sets Ω+

`i
,Ω−`i ,Λ

+
`i
,Λ−`i . Note that, for example, Ω+

`1
= {b}

and Λ−`1 = Ω−g0 = {a} since root(`1, g0) = v and all the nodes in the path from v to g0 have
label ∧ or G. Finally, Figure 7 (c) reports the graph (L,F ), where each edge is associated with the
indication about whether it has been inserted because of rule (1) or (2). As an example, the edge
(`1, `2) has been inserted because (Λ+

`1
∪Ω+

`1
∪Λ+

`2
)∩ (Λ−`1 ∪Ω−`1 ∪Λ−`2) = {b}∩{a, b} = {b} 6= ∅.

For the correctness of the approach, suppose first that (L,F ) is acyclic. Assume that `0, ..., `m-1

is a topological order of (L,F ). We claim that the trace π such that π` = Ω+
` ∪

⋃
`′≤` Λ+

`′ is a model
of ϕ. In particular, we claim that the formula ϕi corresponding to the node `i ∈ L can be required
to hold at the time instant i, in the recursive definition of satisfiability (see Section 2). Consider two
subformulas of ϕ, F(ϕi ∧ Ψi) and F(ϕj ∧ Ψj), where ϕi and ϕj are propositional formulas and
where Ψi and Ψj are the (possibly empty) remaining conjunctions. If ϕj is nested in Ψi, according
to the recursive definition of satisfiability, ϕj must be satisfied in a time instant j greater than or
equal to i. In fact, we shall show that j > i holds. Indeed, according to the rule (1) above, the edge
(`i, `j) is added to F and, thus, in the topological order, `i precedes `j . Assume now that neither
ϕi is nested in Ψj nor ϕj is nested in Ψi. Then, the satisfaction of ϕj (in the time instant j) is
forced to follow the satisfaction of ϕi (in the time instant i) in all the models of ϕ, if Ψj contains a
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Figure 7: Example construction of the graph (L,F ) of Theorem 41.

subformula G(ϕk) such that the satisfaction of ϕk implies that a literal x must be true (respectively,
false) and ϕi requires the same literal to be false (respectively, true). In that case, we have again to
show that j > i. Indeed, according to rule (2) above, the edge (`i, `j) is added to F , and thus, in the
topological order, `i precedes `j .

On the other hand, assume that (L,F ) contains a cycle. Note that the edges generated by the
application of rule (1) alone can never generate cycles. Since we have preprocessed the instance by
ensuring that (Ω+

` ∪Λ+
` )∩ (Ω−` ∪Λ−` ) = ∅, for each ` ∈ L, F contains at least one edge generated

by rule (2). So, consider the cycle `i1 , ..., `ik−1
, `ik , with `i1 = `ik . Let (`ij , `ij+1) be an edge in

this cycle and let ϕij and ϕij+1 be the formulas corresponding to `ij and `ij+1 , respectively. If the
edge is generated by rule (1), then the time instant where ϕij+1 is required to hold (in the recursive
definition of satisfiability) cannot occur before the time instant where ϕij is required to hold. If
the edge is generated by rule (2), then there is a literal that is required to hold by the subformula
G(ϕB) of ϕij+1 and whose opposite is required to hold by ϕij . Thus, ϕij has to be satisfied in a
time instant that precedes the time instant where ϕij+1 is required to hold. This reasoning applies
to all the edges of the cycle and we know that there is one edge that is generated by a rule of kind
(2). Consider, without loss of generality, that such an edge is (`ik−1

, `ik = `i1). This means that the
time instant ik−1 in which ϕik−1

is satisfied can never follow or be equal to i1. However, due to the
precedence relations introduced by the other edges in the cycle we have also that the time instant
ik−1 cannot occur before i1, thus generating a contradiction. This means that there is no model that
can accommodate the corresponding requirements.

Finally, observe that the above algorithm can be extended to deal with 〈{G,F}〉-LTLp formulas
without disjunctions, by preprocessing the instance to ensure that |Ω+

` ∪ Λ+
` | ≤ 1 holds, for each

` ∈ L, and by adding further edges (`, `′) in F whenever |(Ω+
` ∪ Λ+

`′ )| > 1 or |(Λ+
` ∪ Λ+

`′ )| > 1.
The first kind of edges are required to take into account the fact that all the subformulas requiring
some variable to be true from the time instant in which they are satisfied onwards must follow those
subformulas requiring some literal to hold. This is necessary to fulfill the PT-model requirement.
The second kind of edges results in the addition of cycles of length two between those pairs of
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subformulas both requiring some variable to be true from the time instant in which they are satisfied
onwards. Indeed, in this case there is no PT-model that can satisfy the formula since all the models
require to have at least one time instant (the last one) where more than one variable is true. At the
end of the computation, we have just to check that the trace π derived from any (arbitrarily chosen)
topological order of the nodes in L is such that |π`| ≤ 1, for each ` ∈ {0, ...,m-1}—if |π`| = 0, the
state π` has to be replaced by {p}, with p 6∈ Vϕ (cf. Lemma 10). 2

6.3 Formulas without Disjunctions: Hard Cases

Moving to the discussion of the intractable fragments for formulas without disjunctions, we start
by analyzing the logic LTLf .

Theorem 42 Satisfiability of 〈T 〉-LTLf formulas without disjunctions, with T ⊇ {X,G,F} or T ⊇
{Xw,F}, is NP-hard.

Proof. We exhibit a reduction from the ONE-IN-THREE POSITIVE 3-SAT problem (Garey &
Johnson, 1979). Let φ = C1∧· · ·∧Cm be a propositional formula in conjunctive normal form over
the set {x1, ..., xn} of variables, whereCj = xj1∨xj2∨xj3 , for each j ∈ {1, ...,m}. Based on φ, we
build the 〈{X,G,F}〉-LTLf formula ϕφ = ϕ1∧· · ·∧ϕm∧ψ over the set {x1, ..., xn}∪{y1, ..., ym}
of variables such that ϕj = κ′j ∧ κ′′j ∧ κ′′′j ∧ %j , for each Cj = xj1 ∨ xj2 ∨ xj3 , where

• κ′j = yj ;

• κ′′j = X2×j−1(yj ∧
∧
j′ 6=j ¬yj′), where Xα denotes α repeated applications of X;

• κ′′′j = X2×j(yj ∧
∧
j′ 6=j ¬yj′);

• %j = F(yj ∧ xj1 ∧ ¬xj2 ∧ ¬xj3) ∧ F(yj ∧ ¬xj1 ∧ xj2 ∧ ¬xj3) ∧ F(yj ∧ ¬xj1 ∧ ¬xj2 ∧ xj3);

and where ψ = X2×m+1(G(
∧m
j=1 ¬yj)).

We now claim that: there is a truth assignment over {x1, ..., xn} such that, for each clause of φ,
precisely one variable evaluates true if, and only if, ϕφ is satisfiable.

(if part) Assume that π is a model of ϕφ. For each j ∈ {1, ...,m}, because of the subformula κ′j
which is required to hold in π at the initial time instant, we have that π0 ⊇ {yj}. Hence, π0 ⊇
{y1, ..., ym}. Because of the subformulas κ′′j and κ′′′j , we have that π2×j−1 ∩ {y1, ..., ym} =
π2×j ∩ {y1, ..., ym} = {yj}. Finally, because of the subformula ψ, for each j′ > 2 × m,
we have πj′ ∩ {y1, ..., ym} = ∅. Therefore, for each clause Cj , there are precisely three time
instants where yj evaluates true, and one of them is the initial time instant 0. Now, consider
the subformula %j , and note that its three conjuncts built over F must be mapped to time
instants where yj holds. Hence, one of them must evaluate true in the initial time instant.
This means that, for each clause Cj , |π0 ∩ {xj1 , xj2 , xj3}| = 1 holds. Therefore, the truth
assignment σ for φ such that xi, with i ∈ {1, ..., n}, evaluates true if, and only if, xi ∈ π0

holds is satisfying. In particular, for each clause of φ, precisely one variable evaluates true.

(only-if part) Consider a truth assignment σ such that, for each clause of ϕφ, precisely one variable
evaluates true. Assume, without loss of generality, that for each clause Cj = xj1 ∨ xj2 ∨ xj3 ,
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the variable xj1 evaluates true in σ, while xj2 and xj3 evaluate false. Consider the trace π
with len(π) = 2 ×m + 2 built as follows: π0 = {y1, ..., ym} ∪ {xj1 | j ∈ {1, ...,m}}; for
each j ∈ {1, ...,m}, π2×j−1 = {yj , xj2} and π2×j = {yj , xj3}; π2×m+1 = {}. It follows
directly that π |= ϕφ.

Because of the above property and since the reduction is feasible in polynomial time, we con-
clude that satisfiability of 〈{X,G,F}〉-LTLf formulas without disjunction is NP-hard. In fact, minor
modifications to the encoding can be used to show that satisfiability of 〈{Xw,F}〉-LTLf formulas
without disjunction is NP-hard, too. Basically, given ϕφ, we build a formula ϕ′φ by replacing
each occurrence of X with Xw, and by replacing the subformula ψ = X2×m+1(G(

∧m
j=1 ¬yj)) with

Xw
2×m(Xw(y1 ∧ ¬y1)). Note that all models of the resulting formula ϕ′φ have length at most

2×m+1. By following the same line of reasoning as in the proof of the above claim, it can be then
checked that there is a truth assignment over {x1, ..., xn} such that, for each clause of φ, precisely
one variable evaluates true if, and only if, ϕ′φ is satisfiable. 2

Theorem 43 Satisfiability of 〈T 〉-LTLf formulas without disjunctions, with T ⊇ {U}, is NP-hard.

Proof. Consider the class of 〈{U}〉-LTLf formulas without disjunction. We exhibit a reduction
from the 3-SAT problem (Karp, 1972). Let φ = C1 ∧ · · · ∧ Cm be a propositional formula in
conjunctive normal form over the set {x1, ..., xn} of variables, where Cj = wj1 ∨ wj2 ∨ wj3 , for
each j ∈ {1, ...,m}, and wj1 ,wj2 , and wj3 are literals. Consider the 〈{U}〉-LTLf formula without
disjunction ϕφ over the set {x1, ..., xn} ∪ {end} of variables such that ϕφ = ¬end ∧ φ′, where φ′

is obtained from φ by rewriting each clause Cj as the formula (wj1 U (wj2 U (wj3 U end))).
We claim that: there is a truth assignment over {x1, ..., xn} such that φ evaluates true if, and

only if, ϕφ is satisfiable.

(if part) Assume that π is a model of ϕφ. For each clause Cj , since the subformula (wj1 U (wj2 U
(wj3 U end))) is required to hold in π at the initial time instant and we have that π |= ¬end,
we can derive that π0 |= wj1 ∨ wj2 ∨ wj3 . Therefore, the truth assignment σ for φ such that
xi, with i ∈ {1, ..., n}, evaluates true if, and only if, xi ∈ π0 holds is satisfying.

(only-if part) Assume that σ is a satisfying truth assignment for φ. Consider the trace π with
len(π) = 2 built as follows: π0 = {xi | xi evaluates true in σ} and π1 = {end}. It is easy to
check that π |= ϕφ.

The result eventually follows since ϕφ can be built in polynomial time. 2

We now discuss hardness results for LTLp in absence of disjunction. Note that, given the syn-
tactic fragment we are considering, it is not possible to exploit the results derived in Section 3.
Moreover, note that, as usual, negation is immaterial on process traces.

Theorem 44 Satisfiability of negation-free 〈T 〉-LTLp formulas without disjunctions, with T ⊇
{X,G,F} or T ⊇ {Xw,F}, is NP-hard.

Proof. NP-hardness is shown again by a reduction from the ONE-IN-THREE POSITIVE 3-SAT
problem (Garey & Johnson, 1979). Let φ = C1∧· · ·∧Cm be a propositional formula in conjunctive
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Figure 8: Example construction in the proof of Theorem 44.

normal form over the set {x1, ..., xn} of variables. We adapt the reduction exhibited in the proof of
Theorem 42: Based on φ, we build the negation-free 〈{X,G,F}〉-LTLp formula without disjunction
ϕ̄φ = ϕ̄1∧· · ·∧ ϕ̄m∧ ψ̄ over the set {x1, x̄1, ..., xn, x̄n}∪{y1, ȳ1, ..., ym, ȳm}∪{b, e} of variables.
In particular, for each Cj = xj1 ∨ xj2 ∨ xj3 , we have that ϕ̄j = κ̄′j ∧ κ̄′′j ∧ κ̄′′′j ∧ %̄j , where

• κ̄′j =
∧n
α=0 Xα(b) ∧ Xn+α(yj) ∧

∧n
α=0 X2×n+m+α(e);

• κ̄′′j = X(2×j−1)×(m+3×n+2)(κ̄′j ∧
∧
j′ 6=j Xn+j′(ȳj));

• κ̄′′′j = X(2×j)×(m+3×n+2)(κ̄′j ∧
∧
j′ 6=j Xn+j′(ȳj));

•
%j = F(κ̄′j ∧ Xm+n+1+j1(xj1) ∧ Xm+n+1+j2(x̄j2) ∧ Xm+n+1+j3(x̄j3))∧

F(κ̄′j ∧ Xm+n+1+j1(x̄j1) ∧ Xm+n+1+j2(xj2) ∧ Xm+n+1+j3(x̄j3))∧
F(κ̄′j ∧ Xm+n+1+j1(x̄j1) ∧ Xm+n+1+j2(x̄j2) ∧ Xm+n+1+j3(xj3)).

and where ψ̄ = X(2×m+1)×(m+3×n+2)(G(b)).
We claim that: there is a truth assignment over {x1, ..., xn} such that, for each clause of φ,

precisely one variable evaluates true if, and only if, ϕ̄φ is satisfiable.

(if part) Assume that π is a PT-model of ϕ̄φ. Consider any clause Cj . Note that there are at least
three time instants where the subformula κ̄′j holds, namely, the initial time instant 0 plus
(2× j − 1)× (m+ 3× n+ 2) and (2× j)× (m+ 3× n+ 2). In particular, because of κ′′j
and κ′′′j , in the latter two time instants, it actually holds the subformula κ̄′j ∧

∧
j′ 6=j Xn+j′(ȳj),

which we denote hereinafter as ζ̄j .

Let w be a time instant such that π,w |=p ζ̄j . In order to help the intuition, Figure 8
illustrates the structure of the time instants in the range {w, ..., w + m + 3 × n + 2}, which
are those playing a role in the inductive definition of satisfiability for the subformula ζ̄j . Let
w′ > w be another time instant such that π,w′ |= ζ̄j′ holds, for a clause Cj′ not necessarily
different from Cj . Observe that, for each i ∈ {0, ..., n}, πw+i = πw′+i = {b}. Furthermore,
πw+n+j = {yj} and b 6∈ πw+n+i holds, for each i ∈ {1, ...,m}, because π,w |=p ζ̄j .
By contrast, for each i ∈ {1, ...,m} \ {j}, yj 6∈ πw′+n+i holds because π,w′ |=p ζ̄j′ . Thus,
w′ ≥ w+m+n+1. Now, recall that πw′+n = {b}. However, since π,w |=p ζ̄j , we know that
πw+m+2×n+i = {e}, for each i ∈ {1, ..., n}. Therefore, we derive thatw′ ≥ w+m+2×n+1.
Finally, by recalling again that πw′ = {b}, we actually derive w′ ≥ w +m+ 3× n+ 2.

Observe now that for each time instant w′ > (2 × m + 1) × (m + 3 × n + 2), it holds
that πw′ = {b} because of Ψ̄. Furthermore, observe that, for each h ∈ {1, ..., 2 × m},
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h × (m + 3 × n + 2) is a time instant where precisely one subformula having the form ζ̄j
holds, and recall that for each clauseCj , there are two time instants of this kind where ζ̄j holds
(for h = 2× j − 1 and h = 2× j). Combined with the inequality w′ ≥ w +m+ 3× n+ 2
relating any two time instants w′ > w over which subformulas ζ̄j and ζ̄j′ hold for clauses not
necessarily distinct, we conclude that, for each clause Cj , the subformula κ̄′j holds only at the
time instant 0 plus the two time instants (2×j−1)×(m+3×n+2) and (2×j)×(m+3×n+2).

Finally, for each clause Cj , consider the subformula %̄j , and note that its three conjuncts
built over F must be mapped to time instants where κ̄′j holds. Hence, one of them must
evaluate true in the initial time instant. This means that, for each clause Cj , there is pre-
cisely one variable, say without loss of generality xj1 , such that πm+n+1+j1 = {xj1}; and,
πm+n+1+j2 = {x̄j2} and πm+n+1+j3 = {x̄j3}. Therefore, the truth assignment σ for φ such
that xi, with i ∈ {1, ..., n}, evaluates true if, and only if, xi ∈ πm+n+1+i holds is satisfying.
In particular, for each clause of φ, precisely one variable evaluates true.

(only-if part) Consider a truth assignment σ such that, for each clause of ϕφ, precisely one variable
evaluates true. Assume, without loss of generality, that for each clause Cj = xj1 ∨ xj2 ∨ xj3 ,
the variable xj1 evaluates true in σ, while xj2 and xj3 evaluate false. Consider the traces in
the set {π̄0, ..., π̄2×m} all of them having length m+ 3× n+ 2 and such that:

• π̄0 |= κ̄′1 ∧ · · · ∧ κ̄′m; and, for each j ∈ {1, ...,m}, π̄0
m+n+1+j1

= {xj1}; π̄0
m+n+1+j2

=

{x̄j2} and π̄0
m+n+1+j3

= {x̄j3};
• for each j ∈ {1, ...,m},

– π̄2×j−1 |= κ̄′j ∧
∧
j′ 6=j Xn+j′(ȳj); π̄2×j−1

m+n+1+j2
= {xj2} and π̄2×j

m+n+1+i = {x̄i}, for
each i ∈ {1, ..., n} \ {j2};

– π̄2×j |= κ̄′j ∧
∧
j′ 6=j Xn+j′(ȳj); π̄2×j

m+n+1+j3
= {xj3} and π̄2×j

m+n+1+i = {x̄i}, for
each i ∈ {1, ..., n} \ {j3};

Note that the traces above are well-defined. In particular, π̄0 is well-defined because σ is
a truth assignment such that, for each clause, precisely one variable evaluates true. Then,
consider the trace π such that len(π) = (2×m+1)× (m+3×n+2)+1, which is obtained
by concatenating π̄0, ..., π̄2×m and where the last time instant is such that πlen(π)-1 = {b}.
We claim that π |=p ϕ̄φ. Indeed, by construction, for each clause Cj , we have:

• π, 0 |=p κ̄
′
j ,

• π, (2× j − 1)× (m+ 3× n+ 2) |=p κ̄
′
j ∧
∧
j′ 6=j Xn+j′(ȳj), and

• π, (2× j)× (m+ 3× n+ 2) |=p κ̄
′
j ∧
∧
j′ 6=j Xn+j′(ȳj).

Therefore, π, 0 |=p κ̄
′
j ∧ κ̄′′j ∧ κ̄′′′j . In fact, the three conjuncts built over F in the subformula

%̄j hold in π only respectively at these times instants, i.e., at 0, (2× j− 1)× (m+ 3×n+ 2),
and (2× j)× (m+ 3× n+ 2). Therefore, π, 0 |=p %̄j . Finally, π, 0 |=p Ψ̄ follows because
of the last time instant of π, and hence we conclude that ϕ̄φ is satisfiable.

Because of the above property and since the reduction is feasible in polynomial time, we
conclude that satisfiability of negation-free 〈{X,G,F}〉-LTLp formulas without disjunction is NP-
hard. Minor modifications to the encoding can be used to show that satisfiability of negation-free
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〈{Xw,F}〉-LTLp formulas without disjunction is NP-hard, too. Basically, given ϕφ, we build a
formula ϕ′φ by replacing each occurrence of X with Xw, and by replacing the subformula ψ̄ =

X(2×m+1)×(m+3×n+2)(G(b)) with ψ̄ =′ Xw
(2×m+1)×(m+3×n+2)−1(Xw(b∧ e)). Note that all models

of the resulting formula ϕ′φ have length at most (2×m+ 1)× (m+ 3× n+ 2). By following the
same line of reasoning as in the proof of the above claim, it can be then checked that there is a truth
assignment over {x1, ..., xn} such that, for each clause of ϕ, precisely one variable evaluates true
if, and only if, ϕ′φ is satisfiable. 2

Below, we analyze the fragment for which only the U operator is allowed.

Theorem 45 Satisfiability of negation-free 〈T 〉-LTLp formulas without disjunctions, with T ⊇ {U},
is NP-hard.

Proof. We exhibit a reduction from the ONE-IN-THREE POSITIVE 3-SAT problem (Garey & John-
son, 1979). Let φ be a propositional formula in conjunctive normal form φ = C1 ∧ · · · ∧ Cm over
the set {x1, ..., xn} of variables, where each clause Cj has the form Cj = xj1 ∨ xj2 ∨ xj3 with
xj1 , xj2 , xj3 ∈ {x1, ..., xn}. Based on φ, we build a negation-free 〈{U}〉-LTLp formula ϕφ, over
the set {begin, end1, x1, ..., xn, end2} of variables, as follows. For each j ∈ {1, ...m} and h ∈
{1, 2, 3}, let V<j,h = {begin, end1, x1, ..., xjh} and Vj,h = {begin, end1, xjh} ∪ {xα | α 6=
jh and xα does not occur in some clause with xjh .}Moreover, consider the following formulas:

• %j,h = (begin U (end1 U (x1 U (...U xjh)))), where in particular variables in the set
{x1, ..., xjh} are nested within until operators according to the order induced by their indices;

• ηj,h = begin U (end1 U (αβ1 U (...U αβk(U end2))))), where in particular all variables in
the set {αβ1 , ..., αβk} = Vj,h \ {begin, end1} are nested within until operators according to
the order induced by their indices (β1 < β2 < · · · < βk);

Then, consider the following formula

ϕφ = begin ∧ (begin U end1) ∧
m∧
j=1

((%j,1 ∧ ηj,1) U ((%j,2 ∧ ηj,2) U ((%j,3 ∧ ηj,3) U end2))).

We claim that: there is a truth assignment over {x1, ..., xn} such that, for each clause of φ, precisely
one variable evaluates true if, and only if, ϕφ is satisfiable.

(if part) Assume that π is a PT-model of ϕφ. Let j be an index in {1, ...,m} and note that there
is an index h(j) ∈ {1, 2, 3} such that π, 0 |=p %j,h(j) ∧ ηj,h(j). Indeed, π0 = {begin} while
π, 0 |=p ((%j,1 ∧ ηj,1) U ((%j,2 ∧ ηj,2) U ((%j,3 ∧ ηj,3) U end2))). Now, given the form of
%j,h(j), we are guaranteed about the existence of a time instant where xjh(j) holds; let k(j) be
the first time instant of this kind. Consider then the set K of all such time instants defined
over all possible clauses, i.e., K = {k(1), ..., k(m)} and note that |K| ≤ m, because in
principle such instants are not necessarily pairwise distinct. Assume, w.l.o.g., that k(1) ≤
k(2) ≤ · · · ≤ k(m). Note that all time instants ` ∈ {0, ...k(m)} are such that π` 6= {end2}.
In particular, note that π, 0 |= %m,h(m) implies that jh(j) ≤ j′h(j′) if, and only if, j ≤ j′.
Now, consider the truth assignment σ such that xi, for each i ∈ {1, ..., n}, evaluates true in
σ if, and only if, there is a time instant in wi ∈ {k(1), ..., k(m)} such that π,wi |=p xi.
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By construction, σ is trivially satisfying. Indeed, just observe that, for each j ∈ {1, ...,m},
xjh(j) is a variable occurring in Cj and evaluating true in σ. Then, let j be an index in
{1, ...,m}. We show that there is no variable in Cj , but xjh(j) , evaluating true in σ. Assume,
by contradiction, that xjα is another variable in Cj evaluating true in σ. Hence, there is some
time instant k ∈ {k(1), ..., k(m)} with π, k |=p xjα . Consider the case where k > k(j)
and let j′ be the clause such that k = k(j′). Note that j′h(j′) > jh(j) holds. This contradicts
π, 0 |=p ηj,h(j), since this formula forces that the variable xj′

h(j′)
conflicting with xjh(j) does

not occur in some time instant following k(j) and preceding the first occurrence of end2. It
remains to be considered the case where k < k(j). Let j′ be the clause such that k = k(j′);
the variable xj′

h(j′)
(with j′h(j′) < jh(j)) evaluates true in σ and π, 0 |=p %j′,h(j′) ∧ ηj′,h(j′).

However, π, 0 |=p ηj′,h(j′) implies that xjh(j) cannot occur in some time instant following
k(j′) and preceding the first occurrence of end2, which is impossible.

(only-if part) Consider any truth assignment σ such that, for each clause of φ, precisely one vari-
able evaluates true. Let {xi1 , ..., xiq} be the set of all variables evaluating true in σ or-
dered such that ir < ir+1 for all r ∈ {1, ..., q-1}, and consider the finite trace π such that
len(π) = q+3, π0 = {begin}, π1 = {end1} and πq+2 = {end2} and, for each j ∈ {1, ..., q},
πr+1 = {xir}. In particular, note that π is a process trace. It can be easily checked that, for
each j ∈ {1, ...,m}, the condition π, 0 |=p %j,h holds where xjh is the (unique) variable
xih ∈ {xj1 , xj2 , xj3} occurring in Cj and evaluating true in σ. Moreover, note that if it were
the case that π, 0 6|=p ηj,h, then there would be a time instant w such that πw = {xj′h}, with
xl′h ∈ {xj1 , xj2 , xj3} and h′ 6= h. But, this would entail that two variables, xjh and xjh′ ,
belonging to the clause Cj evaluate true in σ, which is impossible. Therefore, π |=p ϕφ.

The NP-hardness of satisfiability of negation-free 〈{U}〉-LTLp formulas without disjunction
follows because ϕφ can be built in polynomial time. 2

7. A Practical Reasoner for LTL on Finite and Process Traces

In this section we discuss a reasoner (for both LTLf and LTLp) we built upon our findings, called
LTL2SAT, and we illustrate results of its experimental comparison with Aalta (Li et al., 2014a), the
only reasoner available in the literature that specifically targets LTL on finite traces (but not LTLp
formulas), and NuSMV (Cimatti et al., 2002), a bounded model checker for LTL6 (whose evaluation
strategy is close in the spirit to the one LTL2SAT implements). For the evaluation, we used both a
benchmark dataset already used by Li et al. and a dataset taken from the business process domain
(hence, more specific for LTLp).

7.1 Conceptual Architecture of LTL2SAT

LTL2SAT implements the algorithms discussed in the paper to target the tractable classes, plus a
SAT rewriting technique sharing the spirit of (incremental) bounded LTL model checking (BMC)
methods based on SAT rewritings (Biere et al., 2006). Hence, LTL2SAT can be conceptually clas-
sified as a BMC solver that, for several LTLf and LTLp fragments, implements early termination

6. For a comparison of Aalta and NuSMV on standard LTL satisfiability, the reader is referred to the work of Li, Yao,
Pu, Zhang, and He (2014b).
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Figure 9: Architecture of the LTL2SAT reasoner.

conditions based on the linear-length model property (see Section 4). Moreover, as a distinguishing
feature, it natively supports LTLp satisfiability checking via a specialized SAT rewriting that focuses
on process traces only.

The architecture of LTL2SAT is reported in Figure 9. The first component is the Parser that
builds the parse tree pt(ϕ) associated to the input formula ϕ, which is then used to check whether
ϕ belongs to a class for which the satisfiability checking emerged to be tractable in our analysis. If
it is the case, then the corresponding polynomial algorithm is run. If not, then a SAT rewriting is
applied. The SAT rewriting technique rewrites the input formula ϕ into an equivalent propositional
formula Φϕ,m that is satisfiable if, and only if, ϕ can be satisfied by a model of length at most m.

In order to check whether Φϕ,m is satisfiable, LTL2SAT uses glucose (Audemard & Simon,
2009), a state-of-the-art SAT solver. In particular, pt(ϕ) is given as input to the Encoder module
that produces a SAT translation of the formula by initially considering a model length m = 1. Then
every time no model of Φϕ,m is found, m is doubled and the process is repeated until m exceeds
the upper bound n given as input to the Encoder. This bound is set, by default, as the theoretical
bound as studied in Section 4. If glucose finds a model σ for a SAT formula Φϕ,m, then the Decoder
module translates σ into a trace π satisfying ϕ.

Finally, note that the user is allowed to modify the bound n in order to be less than the mini-
mum theoretical one, so that LTL2SAT might also act as a sound, while not complete, solver. How-
ever, in our experimental campaign, n has been always set to the prescribed theoretical bound, so
that LTL2SAT always reported correct answers. In fact, the correctness of the results provided by
LTL2SAT has been checked on all the experiments we shall next describe: On the one hand, since
LTL2SAT has been designed to return a model of each formula identified as satisfiable, for such
formulas we simply run a checker and verified that the models returned by LTL2SAT were actu-
ally correct; on the other hand, manual inspection confirmed that no model exists for the formulas
identified as unsatisfiable by LTL2SAT.

Finally, it is relevant to point out that, by exploiting the architecture discussed above, for the
formulas on which LTL2SAT was unable to decide the satisfiability (in the given time limit we shall
fix for running the experiments), LTL2SAT still provided us with the length up to which a satisfying
trace does not exist—namely, the value of m reached in the last iteration performed before the
termination. This is a feature that might be rather appealing in practical applications.

7.2 Encoding Approach

Let ϕ be a formula and let pt(ϕ) = (V,E, λ) be its parse tree. In order to explain the encoding
approach used by LTL2SAT to build Φϕ,m, we preliminary observe that, given a trace π, each node
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v ∈ V of the parse tree pt(ϕ) = (V,E, λ) can be easily equipped with the set sat(v, π) of all time
instants where the subformula ϕv associated with the vertex v holds:7

• If λ(v) = x or λ(v) = ¬x, then sat(v, π) = {i | π, i |= λ(v)};

• If λ(v) = ∧ (respectively, λ(v) = ∨), then sat(v, π) = sat(v1, π) ∩ sat(v2, π) (respectively,
sat(v, π) = sat(v1, π) ∪ sat(v2, π)) where v1 and v2 are the two children of v in pt(ϕ);

• If λ(v) = X, then sat(v, π) = {i-1 | i > 0 and i ∈ sat(v′, π)} with v′ being the only child of v
in pt(ϕ);

• If λ(v) = Xw, then sat(v, π) = {len(π)-1}∪{i-1 | i > 0 and i ∈ sat(v′, π)} with v′ being the
only child of v in pt(ϕ);

• If λ(v) = G, then sat(v, π) = {j ∈ {1, ..., len(π)-1} | ∀i ∈ {j, ..., len(π)-1}, i ∈ sat(v′, π)}
with v′ being the only child of v in pt(ϕ).

• If λ(v) = F, then sat(v, π) = {j | ∃i ∈ sat(v′, π) such that 0 ≤ j ≤ i} with v′ being the only
child of v in pt(ϕ);

• If λ(v) = U, then sat(v, π)={j∈{1, ..., len(π)-1} | j∈sat(v2, π) or ∃ k∈{j+1, ..., len(π)-1}
such that k∈sat(v2, π) and i∈sat(v1, π), ∀i ∈ {j,..., k-1}}where v1 and v2 are the two children
of v in pt(ϕ);

• If λ(v) = R, then sat(v, π) = {j∈{1, ..., len(π)-1} | j∈sat(v1, π) ∩ sat(v2, π) or ∃ k∈{j+1,
..., len(π)-1} such that k∈sat(v1, π) ∩ sat(v2, π) and i∈sat(v2, π), ∀i ∈ {j, ..., k-1}} where
v1 and v2 are the two children of v in pt(ϕ);

Example 46 Consider again the LTLf formula ϕ discussed in Example 4. Its parse tree is reported
in Figure 10, where each vertex v is also equipped with the set sat(v, π) for the model π discussed
in Example 5. Note that, for each vertex v, sat(v, π) precisely consists of all time instants where
the subformula associated with the parse tree rooted at v hold in π. �

Now, the basic idea we used to built the formula Φϕ,m is to mimic the construction of the sets
sat(v, π). Formally, we first define the variables `[0], ..., `[m− 1] which will be used to encode the
last time instant of the model. Intuitively, Φϕ,m will be defined in a way that there exists an index
i ∈ {0, ...,m − 1}, such that `[j] evaluates true (respectively, false) whenever j ≥ i (respectively,
j < i). The instant i is meant to denote the last time instant of a model of ϕ—more formally,
whenever Φϕ,m is satisfiable, there exists a model of ϕ having length i ≤ m.

Then, we associate to each node v of pt(ϕ) the variables sv[0], ..., sv[m-1]. Intuitively, sv[i]
is meant to check whether the formula encoded in the parse tree rooted at v holds at the instant i.
Moreover, in the expressions that follow, we use one further variable, sv[m], whose value will be
actually a constant that will be fixed depending on the node v.

Finally, we set8 Φϕ,m =
∧
v∈V Φv ∧ sroot[0] ∧ `[m-1] ∧ ∧m−2

i=0 (`[i]→`[i+1]) and, for each v,
Φv =

∧m−1
i=0 (sv[i]↔ Φi

v), where:

7. Since the whole construction is feasible in polynomial time, we incidentally get a direct proof of Theorem 26. The
crucial observation is that if r is the root of the parse tree, then it is easy to check that: 0 ∈ sat(r, π) holds if, and
only if, π is a model of ϕ—if |πi| = 1 holds, for all i ∈ {0, ..., len(π)-1}, then π is actually a PT-model.

8. Actually, Φϕ,m is rewritten (in polynomial time) in conjunctive normal form, before it is passed to the solver.
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Figure 10: The parse tree of the LTLf formula ϕ (of Example 4). Given the model π, the set
sat(v, π) is reported next to the vertex v. Time instants that are propagated from each
vertex to its parent are highlighted in gray.

• if λ(v) ∈ {x,¬x}, then Φi
v =

∧
v′∈V,λ(v′)≡¬λ(v) ¬sv′ [i] ∧

∧
v′∈V,λ(v′)≡λ(v) sv′ [i];

• if λ(v) = ∧ or λ(v) = ∨, then Φi
v = sv1 [i]λ(v)sv2 [i], where v1 and v2 are the left and right

children of v;

• if λ(v) = X (respectively, λ(v) = Xw), then Φi
v = sv′ [i+1] ∧ ¬`[i], where v′ is the child of v

and sv[m] is the constant false (respectively, true);

• if λ(v) = F, then Φi
v = sv′ [i] ∨ sv[i+1] ∧ ¬`[i] , where v′ is the child of v and sv[m] is the

constant false;

• if λ(v) = G, then Φi
v = sv′ [i] ∧ (sv[i+1] ∨ `[i])), where v′ is the child of v and sv[m] is the

constant true;

• if λ(v) = U, then Φi
v = sv2 [i] ∨ (sv1 [i] ∧ sv[i+ 1] ∧ ¬`[i]), where v1 and v2 are the left and

right children of v and sv[m] is the constant false;

• if λ(v) = R, then Φi
v = (sv1 [i] ∧ sv2 [i]) ∨ (sv2 [i] ∧ (sv[i + 1] ∨ `[i])), where v1 and v2 are

the left and right children of v and sv[m] is the constant true.

By construction, the following can be established.

Theorem 47 Φϕ,m is satisfiable if, and only if, ϕ can be satisfied by a model π with len(π) ≤ m.

Note that with simple modifications in the above formulas we can focus the attention to PT-
models only, by requiring that at each time instant precisely one variable evaluates true. In more
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Dataset #formulas LTLf NP or P class description

C1 (Rozier & Vardi, 2007, 2010, 2011) 999 neg-free〈{G,F}〉 C1(n) =
∨n
i=1 G(F pi)

C2 (Rozier & Vardi, 2007, 2010, 2011) 999 neg-free〈{G,F}〉 C2(n) =
∧n
i=1 G(F pi)

E (Rozier & Vardi, 2007, 2010, 2011) 999 neg-free〈{F}〉 E(n) =
∧n
i=1 F(pi)

Q (Rozier & Vardi, 2007, 2010, 2011) 249 neg-free〈{G,F}〉 Q(n) =
∧n
i=1(F pi ∨ G pi+1)

R (Rozier & Vardi, 2007, 2010, 2011) 249 neg-free〈{G,F}〉 R(n) =
∧n
i=1(G(F pi) ∨ F(G pi+1))

S (Rozier & Vardi, 2007, 2010, 2011) 999 neg-free〈{G}〉 Q(n) =
∧n
i=1 G pi

U (Rozier & Vardi, 2007, 2010, 2011) 999 neg-free〈{U}〉 U(n) = (...(p1Up2)U...)Upn
U2 (Rozier & Vardi, 2007, 2010, 2011) 999 neg-free〈{U}〉 U2(n) = p1U(p2U(...(pn−1Upn)...))
Counter (Rozier & Vardi, 2007, 2010, 2011) 20 - Formulas describing n-bit binary counters

Rnd (Rozier & Vardi, 2007, 2010, 2011) 20000 - Randomly-generated varying the number
of variables and length of the formula

RndConj. (Rozier & Vardi, 2007, 2010, 2011) 9999 - Randomly-generated as the conjunction
of randomly selected small patterns

Acacia (Schuppan & Darmawan, 2011) 140 - Arbiters and traffic light controllers
Alaska-lift (De Wulf et al., 2008) 272 - Elevator specifications
Alaska-szy (De Wulf et al., 2008) 8 〈{G,F}〉 Mutual exclusion protocol
Anzu (Schuppan & Darmawan, 2011) 222 - Buffer architecture
Forobots (Schuppan & Darmawan, 2011) 76 - Model of a robot with properties
Schuppan-O1 (Schuppan & Darmawan, 2011) 54 - Expon. behavior in some solvers
Schuppan-O2 (Schuppan & Darmawan, 2011) 54 〈{G,F}〉 Expon. behavior in some solvers
Schuppan-phltl (Schuppan & Darmawan, 2011) 36 - Temporal variant of pigeonhole

Trp-N5x (Hustadt & Schmidt, 2002) 480 - Obtained by lifting propositional CNF
into fixed temporal structure

Trp-N5y (Hustadt & Schmidt, 2002) 280 - Obtained by lifting propositional CNF
into fixed temporal structure

Trp-N12x (Hustadt & Schmidt, 2002) 499 - Obtained by lifting propositional CNF
into fixed temporal structure

Trp-N12y (Hustadt & Schmidt, 2002) 380 - Obtained by lifting propositional CNF
into fixed temporal structure

Figure 11: Characteristics of the benchmark in Section 7.3.1.

details, in order for LTL2SAT to look only at PT-models, the encoding formula becomes Φ′ϕ,m =

Φϕ,m∧
∧m−1
i=0 Φi where, for each i ∈ {0, ...,m−1}, the subformula Φi = `[i]∨(

∨
v∈V,λ(v)=x(sv[i]→

(
∧
v∈V,λ(v)=x′,x′ 6=x ¬sv′ [i]))∧

∨
v∈V,λ(v)=x sv[i]) forces exactly one variable to evaluate true at each

time instant. Indeed, LTL2SAT natively supports reasoning about LTLp formulas and it also supports
negation that is not atomic (again with simple modifications to the above encoding).

7.3 Experimental Results

Performances of LTL2SAT have been compared to those of Aalta (Li et al., 2014a), which is the only
existing reasoner that specifically targets the finite trace case, and those of NuSMV (Cimatti et al.,
2002) implementing a bounded model checking strategy for LTL—in our experiments, NuSMV has
been invoked with the -bmc length option set to the theoretical bounds on the length of the
models we obtain via our analysis (which of course are exploited in LTL2SAT, too).

Concerning the experiments on LTLf , no pre/post-processing was needed with Aalta. Instead,
NuSMV does not support this logic and in order to check the satisfiability of LTLf formulas ϕ, we
invoked it to find counterexamples9 to the LTL formula ¬(ϕ′) over a universal SMV model and
where ϕ′ is the encoding (from LTLf to LTL) discussed in the work of De Giacomo et al. (2014b).
Hence, ϕ′ = t(ϕ) ∧ ¬end ∧ F(end) ∧ G(¬end ∨ G(end)) ∧ G(¬end ∨ ∧x∈Vϕ ¬x), while the
transformation function t is such that:

9. Such counterexamples are infinite models π′ ofϕ′, and they one-to-one correspond to finite models π ofϕ. Indeed, π′

is composed by the finite prefix π, plus an infinite suffix where the state {end} is repeated indefinitely (cf. Claim 20).

610



LTL ON FINITE AND PROCESS TRACES: COMPLEXITY RESULTS AND A PRACTICAL REASONER

t(x) = x, for each x ∈ Vϕ t(F(ϕ)) = F(t(ϕ) ∧ ¬end)
t(¬ϕ) = ¬t(ϕ) t(G(ϕ)) = G(t(ϕ) ∨ end)
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2) t(ϕ1Uϕ2) = t(ϕ1)U(t(ϕ2) ∧ ¬end)
t(ϕ1 ∨ ϕ2) = t(ϕ1) ∨ t(ϕ2) t(ϕ1Rϕ2) = (t(ϕ1) ∧ ¬end) R (t(ϕ2) ∨ end)
t(X(ϕ)) = X(t(ϕ) ∧ ¬end) t(Xw(ϕ)) = X(t(ϕ) ∨ end)

Concerning the experiments on LTLp, it must be observed that neither Aalta nor NuSMV na-
tively support satisfiability over process traces. Accordingly, experiments have been performed by
explicitly adding the constraint that at each time instant, precisely one activity must be executed. In
particular, in the light of the arguments discussed in Section 3.1, for each formula ϕ, the formula
ϕ ∧ G(

∨
y∈Vϕ∪{p}(y ∧

∧
y′∈Vϕ∪{p}\{y} ¬y′)) has been provided as input to Aalta, where p is an

additional fresh variable not contained in Vϕ. Eventually, when dealing with NuSMV, the resulting
formula is further processed as discussed above (with the ideas of De Giacomo et al., 2014b) to
simulate the evaluation over finite models only.

Experiments have been carried out on a PC Intel Core i5 2,4 GHz, 8GB RAM and times are the
average of five runs. Two groups of datasets have been considered, which are discussed below.

7.3.1 LTLf BENCHMARK

Description of the datasets. The first group of datasets we have considered is the one used by Li
et al. (2014a), where Aalta has been shown to outperform LTL reasoners adapted to deal with finite
traces (cf. Edelkamp, 2006; Gerevini et al., 2009; Pesic & van der Aalst, 2006a). The benchmark
consists of 23 datasets with different characteristics. As summarized in Figure 11: (i) datasets C1,
C2, E, Q, R, S, U, U2, Counter, Rnd and RndConj have been published and discussed by Rozier
and Vardi (2007, 2010, 2011); (ii) Alaska-lift and Alaska-szy have been originally used by De Wulf
et al. (2008); (iii) Acacia, Anzu, Forobots, Schuppan-O1, Schuppan-O2 and Schuppan-phltl have
been posted by Schuppan and Darmawan (2011); (iv) Trp-N5x, Trp-N5y, Trp-N12x and Trp-N12y
have been introduced by Hustadt and Schmidt (2002).

For all the benchmarks discussed above, we directly used the formulas posted and made avail-
able to the community by the authors. In particular, even for randomly generated benchmarks, we
did not create novel datasets by using the generation procedure the authors have described. In fact,
some of the datasets are randomly generated (i.e, C1, C2, E, Q, R, S, U, U2, Rnd, RndConj) and
others encode the behavior or properties of some system (i.e., Counter, Acacia, Alaska-lift, Alaska-
szy, Anzu, Forobots, Schuppan-O1, Schuppan-O2, Schuppan-phltl, Trp-N5x, Trp-N5y, Trp-N12x,
Trp-N12y). In more detail, the characteristics of the benchmarks are illustrated in Figure 11, which
reports for each dataset, its description, the number of formulas it contains, and the information
about whether such formulas fall in one of the syntactic fragments we have considered in our anal-
ysis. Note that 10 out of 23 datasets (i.e., C1, C2, E, Q, R, S, U, U2, Alaska-szy and Shuppan-O2)
consist of formulas belonging to classes enjoying the linear-length model property, and 8 of them
(i.e., C1, C2, E, Q, R, S, U and U2) actually refer to classes for which satisfiability is tractable.

Comparison with Aalta. In a first series of experiments, we evaluated the datasets discussed
above with respect to LTLf satisfiability by using both LTL2SAT and Aalta and by setting a time-
out limit of 5 minutes for solving each instance. In more detail, for each formula, we compared
the answer returned by LTL2SAT when checking LTLf satisfiability and that returned by Aalta. A
summary of the result is reported in Figure 12.
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Dataset LTL2SAT and Aalta are comparable
LTL2SAT goes in timeout, while
Aalta reports the corrrect answer

C1 100% 0%
C2 100% 0%
E 100% 0%
Q 100% 0%
R 100% 0%
S 100% 0%
U 100% 0%
U2 100% 0%
Counter 0% 100%
Rnd 92% 2%
RndConj. 86% 9%
Acacia 84% 8%
Alaska-lift 48% 26%
Alaska-szy 100% 0%
Anzu 58% 0%
Forobots 49% 51%
Schuppan-O1 55% 45%
Schuppan-O2 83% 17%
Schuppan-phltl 46% 51%
Trp-N5x 50% 34%
Trp-N5y 84% 16%
Trp-N12x 50% 39%
Trp-N12y 81% 19%
Total 90% 5%

Figure 12: Percentage of the type of results given by LTL2SAT and Aalta.

As it can be noted by inspecting the summary, LTL2SAT and Aalta provide the same correct
answer over the ∼90% of the formulas by actually spending the same amount of time (up to 30ms
of tolerance); that is, the two systems perform quite similarly on most of the given datasets and
formulas. On the other hand, over the ∼5% of the formulas, LTL2SAT terminates in timeout while
Aalta reports the correct answers, which emerged—in all the given formulas in this percentage—
to be unsat. This is not by chance and it witnesses that some of the methods implemented in
Aalta to identify unsatisfiable formulas (Li et al., 2014a) are rather effective in practice. Of course,
LTL2SAT might well implement these methods (e.g., by just using Aalta as an external heuristic
for unsatisfiability checking), hence becoming comparable to Aalta on these set of formulas, too—
however, in order to shed lights on the intrinsic differences between the two systems, this strategy
is not adopted and all results that are discussed below refer to LTL2SAT used in isolation. Finally,
on the remaining formulas (∼5%), the answers reported by the two systems are different and we do
not discuss time comparison for them.

Comparison with NuSMV. In a second series of experiments, we used the datasets discussed
above to compare the performances of LTL2SAT and NuSMV, again with respect to LTLf satisfia-
bility. We run both tools on every formula in the dataset by using a timeout of 5 minutes. On these
formulas (as well as on the other ones we shall introduce in the following section), NuSMV always
reported correct answers—precisely as LTL2SAT (see again Section 7.1).

Overall, both systems terminated in timeout on the 6% of formulas, LTL2SAT was faster than
NuSMV on the 20% of formulas, and the two tools were comparable on the 79% of instances. Given
that the strategy of LTL2SAT is inspired by bounded model checking (and the fact that NuSMV
is invoked with the same theoretical bounds we used for LTL2SAT), the better performances of
LTL2SAT compared to those of NuSMV are likely due to its native support for LTLf and to the
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Figure 13: Ratio LTL2SAT/NuSMV on execution times, over the LTLf benchmark.

greater flexibility and generality of NuSMV (which can be used for LTL model checking) contrasted
to the focused implementation of LTL2SAT tailored to LTLf and LTLp satisfiability (i.e., model
checking universal models only). In particular, towards a fine-grained analysis, for each formula,
we measured the ratio between the time required by LTL2SAT to check LTLf satisfiability and that
required by NuSMV. The obtained results are reported in Figure 13.

The figure reports the results as percentage stacked bar charts for each dataset, where only the
formulas for which at least one of the two systems produced a result are considered. White bars
represent the percentages of instances where the two systems behave identically up to 30ms of
tolerance, whereas bars on the left (resp., right) of the white bars are associated with ratio values
less (resp., greater) than 1, so that LTL2SAT (resp., NuSMV) is faster. Note that the Counter dataset
is not reported in the figure, as both systems reached the time-limit for all the formulas in it.

7.3.2 BUSINESS PROCESS MANAGEMENT DATASETS

Description of the setting. The second group of datasets we have considered is taken from the
domain of declarative process management. This is an emerging area of research focusing on
the definition of declarative approaches to process design, where logic-based languages are used
to formalize a number of constraints each possible enactment of the process has to comply with.
In these contexts, each enactment is associated with a finite trace where propositional variables
transparently encode the activities of the underlying process.

The most noticeable example of these approaches is the DECLARE framework (Pesic & van der
Aalst, 2006b), already introduced in Section 2.2. DECLARE constraints are reported in Figure 14.
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Class shorthand fragment

Existence

existence(x) neg-free 〈{F}〉
existence(n, x) neg-free〈{X,F}〉
absence(x) 〈{G}〉
absence(n, x) 〈{Xw,G}〉
exactly(x) 〈{Xw,G,F}〉
exactly(n, x) 〈{X,Xw,G,F}〉
init(x) 〈∅〉

Choice choice(x, y) neg-free 〈{F}〉
exlusive-choice(x, y) 〈{G,F}〉

Relation

responded-existence(x, y) 〈{G,F}〉
coexistence(x, y) 〈{G,F}〉
response(x, y) 〈{G,F}〉
precedence(x, y) 〈{G,U}〉
succession(x, y) 〈{G,F,U}〉
alternate-response(x, y) 〈{X,G,U}〉
alternate-precedence(x, y) 〈{X,G,U}〉
alternate-succession(x, y) 〈{X,G,U}〉
chain-response(x, y) 〈{X,G}〉
chain-precedence(x, y) 〈{Xw,G}〉
chain-succession(x, y) 〈{X,Xw,G}〉

Negation
not-coexistence(x, y) 〈{G}〉
neg-succession(x, y) 〈{G}〉
neg-chain-succession(x, y) 〈{Xw,G}〉

Figure 14: DECLARE constraints organized in classes according to the specifications discussed
by Maggi et al. (2011b). In the formulas, x and y stand for any pair of activities.

Dataset #formulas description

Loan Application 4 4 variants of a simple loan application process
Review Example 1 Event log of a reviewing process for a journal
Artificial 1 Event log generated randomly from 30 activities
isbpm2013 1 Benchmark dataset to test conformance algorithms
book 26 Benchmark logs provided with the ProM framework
Business Process Drift 72 A benchmark used to test concept drift in loan application
Digital Photo 1 Event log generated by simulation of a digital photo copier
bpm2013 benchmark 4 Proposed for testing Conformance Checking
Bank Transaction-BkT 2 Event logs of transaction bank processes

112

Figure 15: Characteristics of the benchmark in Section 7.3.2.

In particular, they are grouped into four classes: existence constraints, stating that some activity
must/cannot be executed (a certain amount of times); choice constraints, modeling choice of exe-
cution; relation constraints, modeling that whenever the source activity is executed, then the tar-
get activity must also be executed (possibly with additional requirements); negation constraints,
modeling that whenever the source activity is executed, then the target activity cannot be executed
(possibly with additional restrictions). Each constraint has been formalized in the literature in terms
of an LTLp formula, so that a set of DECLARE constraints gives rise to a formula obtained as the
conjunction of the basic formulas associated with them. While for the encoding associated to the
various constraints we refer to the work by Pesic and van der Aalst (2006b), we stress here that such
formulas are not given in the so-called separated normal form (Fisher, 1991) (and, transforming a
whole specification in this form might well take exponential time—see Section 1.1).
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Dataset LTL2SAT (LTLf ) Aalta (LTLf ) LTL2SAT (LTLp) Aalta (LTLp)

Loan Application 4 0 4 0
Review Example 1 0 1 0
Artificial 1 1 1 0
isbpm2013 0 0 1 0
book 26 0 26 0
Business Process Drift 72 0 72 0
Digital Photo 1 0 1 0
bpm2013 benchmark 4 0 4 0
Bank Transaction-BkT 2 0 2 0

112 1 112 0

Figure 16: Number of formulas over which the system are capable to find a model with the time-
limit of 5 minutes.

The datasets of DECLARE formulas used in our experimentation have been obtained by mining
all DECLARE constraints that hold on a number of logs made available by the IEEE Task-Force
on Process Mining, an organization aiming at promoting the research, development, education and
understanding of process mining (see http://datacentrum.3tu.nl/). In more detail, these
logs consist of process traces taken from some specific application domain. On each process trace,
we used the open libraries available in the well-known ProM platform (van Dongen, de Medeiros,
Verbeek, Weijters, & van der Aalst, 2005) to generate the set of DECLARE constraints that hold
on it (see, e.g., Maggi, 2013; Maggi, Mooij, & van der Aalst, 2011). At a conceptual level,10

such constraints can be discovered (i) by first instantiating the patters shown in Figure 14 with all
possible names of activities occurring in the process trace given at hand and (ii) by subsequently
checking whether the instantiated patters actually hold on that process trace. The conjunction of
all the instantiated patters that hold on the process trace is then returned as output. Note that, by
construction, this conjunction is an LTLp formula that is satisfied precisely by the process trace from
which it has been mined. Therefore, by processing the 112 datasets we have considered in the logs
made available by the IEEE Task-Force on Process Mining, we were capable of producing 112 LTLp
satisfiable formulas, which we used for our experimental activity. Figure 15 reports some statistics
on the datasets.

Comparison with Aalta. Over the DECLARE dataset of satisfiable formulas discussed above,
we focused on LTLf satisfiability checking and compared the performances of LTL2SAT and Aalta.
Results are summarized in the second and third column of Figure 16 in terms of the number of
formulas for each dataset for which the tools correctly identified the existence of a finite model
within the timeout of 5 minutes. Then, we used LTL2SAT to check the LTLp satisfiability of each
formula and results are reported in the fourth column of Figure 16.

Experiments related to LTLp satisfiability have been repeated over Aalta. From the results, it
clearly emerges that LTL2SAT outperforms Aalta on all the datasets. Indeed, while LTL2SAT was
able to find a model for all the 112 formulas, Aalta was able just to correctly identify 1 satisfiable
formula for the LTLf case and no satisfiable formulas for the LTLp case.

Comparison with NuSMV. The DECLARE dataset discussed above has been also used to
compare LTL2SAT and NuSMV over LTLp formulas. The results are reported in Figure 17.

10. Practical mining algorithms exploit ad-hoc pruning and inference methods in order to speed-up the computation.
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DECLARE formulas

< 1/10 71
1/10− 1/5 15
1/5− 1 26
1 0
1− 5 0
5− 10 0
> 10 0

112

Figure 17: Ratio LTL2SAT/NuSMV, on execution time on the DECLARE LTLp benchmark.

Datasets #formulas LTLf sat LTLf sat LTLp sat LTLp sat Comparable Comparable %
faster faster % faster faster %

Loan Application 4 0 0% 0 0% 4 100%
Review Example 1 0 0% 0 0% 1 100%
Artificial 1 0 0% 0 0% 1 100%
isbpm2013 1 1 100% 0 0% 0 0%
book 26 0 0% 2 7% 24 93%
Business Process Drift 72 1 1% 0 0% 71 99%
Digital Photo 1 1 100% 0 0% 0 0%
bpm2013 benchmark 4 4 100% 0 0% 0 0%
Bank Transaction-BkT 2 1 50% 1 50% 0 0%

112 8 7% 3 3% 101 90%

Figure 18: Statistics on execution time of LTLf and LTLp satisfiability checking.

As it can be noticed, LTL2SAT is faster than NuSMV on all the 112 formulas considered in
our experimentation. In particular, LTL2SAT was able to correctly identify as satisfiable all the
formulas in the DECLARE dataset, while NuSMV terminated in timeout on 5 formulas—as usual,
the timeout limit was fixed in 5 minutes. Moreover, it is significant to observe that in the 63% of
the formulas LTL2SAT emerged to be at least 10 times faster than NuSMV.

LTLf vs LTLp. In our subsequent analysis and in the light of the above findings, we performed
further experiments on LTL2SAT only. In particular, we first compared the behavior of the system
when it reasons about LTLp and when it reasons about LTLf . From Figure 16, it can be easily noted
that LTL2SAT finds a model for all the formulas under both semantics. As summarized in Figure 18,
timings for LTLf satisfiability checking are better than timings for LTLp satisfiability checking in
∼7% of the formulas, while the performance of LTL2SAT for two semantics are comparable in the
∼90% of the formulas. From these results, we can conclude that the overhead to reason on process
traces is negligible in most of the cases. This comes with no surprise, as the careful reader might
have already checked that the formulas discussed in Section 7.2 can be smoothly adapted for LTLp,
without any significant blow-up of the encoding.

Unsatisfiable formulas. In a further set of experiments, we investigated the behavior of our
tool LTL2SAT when dealing with unsatisfiable formulas. Differently from Section 7.3.1 where we
dealt with arbitrary formulas, we now focus on formulas belonging to some P or NP fragment. To
this end, starting from the DECLARE constraints (see Table 14), we created a synthetic dataset
containing 2110 unsatisfiable formulas belonging to the fragments 〈{G,F}〉 (1050 formulas) and
〈{Xw,G}〉 (1050 formulas). For the generation of the dataset, we considered a number of vari-
ables that varies between 10 and 100 (with step 10) and a number of constraints that varies between
50 and 1000 (with step 50). In particular, for each combination ‘number n of variables, number
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m of constraints’, we generated 5 formulas in the class (n,m) by inserting the two constraints
existence(x) (respectively, init(x)) and absence(x) over the same variable x (that make the for-
mula unsatisfiable) for the class 〈{G,F}〉 (respectively, 〈{Xw,G}〉) and by selecting randomly the
DECLARE constraint type of the m-2 remaining constraints and by picking randomly, from the
pool of n variables, the variables to instantiate it. For the fragment 〈{Xw,G}〉 we considered
the constraint types: absence(x), absence(2, x), absence(3, x), init(x), chain-precedence(x, y),
not-coexistence(x, y), neg-succession(x, y) and neg-chain-succession(x, y). Instead, for the
fragment 〈{G,F}〉 we considered the set of constraint types: existence(x), absence(x), init(x),
choice(x, y), exlusive-choice(x, y), coexistence(x, y), response(x, y), not- coexistence(x, y),
responded-existence(x, y), neg-succession(x, y). In the experiments, we measured the time re-
quired by LTL2SAT to check the LTLp satisfiability of each formula and computed the average time
over all the formulas in the same fragment having the same number of variables and the same
number of constraints. The results are shown in Figure 19 as multiple line graphs. In particu-
lar, Figures 19 (a) and 19 (c) report the time required to solve 〈{Xw,G}〉 and 〈{G,F}〉 formulas,
respectively, where the data series correspond to the number of variables and the horizontal axis re-
ports the number of constraints. On the contrary, Figures 19 (b) and 19 (d) report the time required
to solve 〈{Xw,G}〉 and 〈{G,F}〉 formulas, respectively, where the data series correspond to the
number of constraints, and the number of variables is reported on the horizontal axis. As it can be
noted, the time required by LTL2SAT to check satisfiability of the formulas in the P fragment (i.e.,
the 〈{Xw,G}〉 fragment) is less than 120 ms (see Figures 19 (a) and 19 (b)). The time required to
check the satisfiability of the formulas in the NP fragment (i.e., the 〈{G,F}〉 fragment) is higher
but LTL2SAT is able to identify all the formulas as unsatisfiable except for few cases (i.e., when the
number of variables is 100 and the number of constraints is higher than 800) where it terminates in
timeout (see Figures 19 (c) and 19 (d)). In all the cases, it can be noted that the time required by
LTL2SAT for LTLp satisfiability checking grows with the number of variables or constraints. Note,
however, that the system exhibited a rather nice scaling, with the scaling for the P fragment being
(as expected) better than the one exhibited for the NP fragment.

To gain some further insight on the behavior of the system in the unsatisfiable cases, we per-
formed some additional analysis by considering formulas belonging to the NP-fragment 〈{G,F}〉.
In particular, for the formulas belonging to the classes (10, 50) (i.e., 10 variables and 50 constraints),
(10, 250), (10, 500), (10, 800) and (10, 1000), we run LTL2SAT to check LTLp satisfiability of each
formula ϕ several times, each time imposing a different fixed model length m. Actually, for these
tests, we performed the first run by setting m = 1 and we doubled the length m at each of the sub-
sequent runs, without stopping the process when m exceeded the theoretical bound on the length,
but only when the timeout of 600 seconds has been reached in some run.

Results are depicted in Figure 20, where time is reported in seconds on the y-axis and the length
is reported on the x-axis in logarithmic scale. The vertical dashed line in each chart represents the
theoretical model length computed according to Theorem 19 by exploiting the peculiarity of the
given fragment. On the other hand, the theoretical exponential bound prescribed by the general
analysis of Theorem 23 is not reported, since it is much bigger than the length at which the timeout
of 600 seconds is reached. For instance, for the class (10, 50) the model length computed according
to Theorem 19 is 109, while the theoretical upper bound is ∼ 1098 since the length of the formula
is 327 and the timeout is reached at length ∼ 106. By looking at the figures, it clearly emerges that
our analysis focused on the identification of fragments enjoying favorable computational properties
leaded to a practical strategy for unsatisfiability checking over them.

617



FIONDA & GRECO

200 400 600 800 1000
0

30

60

90

120

150

E
xe

cu
tio

n
tim

e
(m

se
c)

a) 〈{Xw,G}〉 Time vs # Constraints10 vars 20 vars
30 vars 40 vars
50 vars 60 vars
70 vars 80 vars
90 vars 100 vars

20 40 60 80 100

b) 〈{Xw,G}〉 Time vs # Vars50 constraints 100 constraints
150 constraints 200 constraints
250 constraints 300 constraints
350 constraints 400 constraints
450 constraints 500 constraints
550 constraints 600 constraints
650 constraints 700 constraints
750 constraints 800 constraints
850 constraints 900 constraints
950 constraints 1000 constraints

200 400 600 800 1000
0

30

60

90

120

150

E
xe

cu
tio

n
tim

e
(s

ec
)

c) 〈{G,F}〉 Time vs # Constraints10 vars
20 vars
30 vars
40 vars
50 vars
60 vars
70 vars
80 vars
90 vars
100 vars

20 40 60 80 100

d) 〈{G,F}〉 Time vs # Vars50 constraints 100 constraints
150 constraints 200 constraints
250 constraints 300 constraints
350 constraints 400 constraints
450 constraints 500 constraints
550 constraints 600 constraints
650 constraints 700 constraints
750 constraints 800 constraints
850 constraints 900 constraints
950 constraints 1000 constraints

Figure 19: Multiple line graphs: execution times of LTL2SAT over process traces on the unsatisfi-
able benchmark datasets.

100 101 102 103 104 105
0

100

200

300

400

500

600

Model length

E
xe

cu
tio

n
tim

e
(s

ec
)

a) (10, 50)− 〈{G,F}〉

100 101 102 103 104 105
0

100

200

300

400

500

600

Model length

b) (10, 250)− 〈{G,F}〉

100 101 102 103 104 105
0

100

200

300

400

500

600

Model length

c) (10, 500)− 〈{G,F}〉

100 101 102 103 104 105
0

100

200

300

400

500

600

Model length

E
xe

cu
tio

n
tim

e
(s

ec
)

d) (10, 800)− 〈{G,F}〉

100 101 102 103 104 105
0

100

200

300

400

500

600

Model length

e) (10, 1000)− 〈{G,F}〉

model length – Th. 19

Figure 20: Execution times of LTL2SAT over process traces on different formulas for different
model lengths.
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8. Conclusion

We have studied satisfiability and model checking problems for LTL over finite traces, by providing
a complete picture of their computational complexity over all the possible syntactic classes obtained
by considering restrictions on the temporal operators (from {X,Xw,G,F,U}) and by considering
also negation-free formulas. We have also considered a semantic variant, where attention is focused
on PT-models, i.e., on models where at each time instant, exactly one distinct propositional variable
evaluates true. All algorithms and techniques proposed in the paper have been implemented and
integrated into a prototype system, leveraging state-of-the-art SAT solvers.

Our results pave the way for further investigations. First, since our analysis has considered the
temporal operators X, Xw, G, F, U, and R looking at the future, a natural avenue of further research
is to analyze the complexity when other temporal operators looking at the past are allowed, such as
since and has always been. From the practical viewpoint, our results related to LTLp formulas might
be applied in the context of the specification and verification of processes and in the context of pro-
cess mining, especially within frameworks for constraint-based representation of processes (Pesic
& van der Aalst, 2006b). This is an active area of research where different kinds of formal methods
have already been proven to be effective, including planning methods (Hoffmann, Weber, & Kraft,
2012). In this context, our prototype system can be used to provide operational decision support to
running business processes and to check on-the-fly whether they comply with constraints and rules
(as done by De Giacomo, De Masellis, Grasso, Maggi, & Montali, 2014a). Furthermore, following
the perspective of Greco, Guzzo, Lupia, and Pontieri (2014), the prototype can support process min-
ing tasks, in settings where learning methods (automatically derive a process model that can explain
all the episodes recorded in an event log) can benefit of background knowledge expressed in LTLf .
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