
Journal of Arti�cial Intelligence Research 63 (2018) 515-555 Submi�ed 04/17; published 11/18

A Complexity Approach for Core-Selecting Exchange under
Conditionally Lexicographic Preferences

Etsushi Fujita fujita@agent.inf.kyushu-u.ac.jp
Kyushu University,
Motooka 744, Fukuoka, Japan

Julien Lesca julien.lesca@dauphine.fr
Université Paris Dauphine, PSL Research University,
CNRS, LAMSADE, Paris, France

Akihisa Sonoda sonoda@agent.inf.kyushu-u.ac.jp
Kyushu University,
Motooka 744, Fukuoka, Japan

Taiki Todo todo@inf.kyushu-u.ac.jp
Kyushu University,
Motooka 744, Fukuoka, Japan

Makoto Yokoo yokoo@inf.kyushu-u.ac.jp
Kyushu University,
Motooka 744, Fukuoka, Japan

Abstract

Core-selection is a crucial property of rules in the literature of resource allocation. It is also
desirable, from the perspective of mechanism design, to address the incentive of agents to cheat
by misreporting their preferences. �is paper investigates the exchange problem where (i) each
agent is initially endowed with (possibly multiple) indivisible goods, (ii) agents’ preferences are
assumed to be conditionally lexicographic, and (iii) side payments are prohibited. We propose an
exchange rule called augmented top-trading-cycles (ATTC), based on the original TTC procedure.
We �rst show that ATTC is core-selecting and runs in polynomial time with respect to the number
of goods. We then show that �nding a bene�cial misreport under ATTC is NP-hard. We �nally
clarify relationship of misreporting with spli�ing and hiding, two di�erent types of manipulations,
under ATTC.

1. Introduction

Designing rules/mechanisms that achieve desirable properties is a central research topic in the
literature of mechanism design and social choice theory. An assignment problem is de�ned by a
set of indivisible goods and a set of agents, and the purpose is to compute an assignment of goods
to agents such that no good is assigned more than once. Such an assignment should prescribe a
socially desirable outcome in the sense that the assignment should re�ect the preferences of the
agents over goods. In this paper we study the exchange problems which is a particular assignment
problem with following properties: (i) each agent is initially endowed with a set of indivisible
goods, (ii) each agent has a strict ordinal preference relation (shortly, a preference) over the set of
possible bundles of goods, and (iii) compensation using monetary transfers is prohibited. �e ex-

©2018 AI Access Foundation. All rights reserved.

Fujita, Lesca, Sonoda, Todo, & Yokoo

change problem has many real applications, such as on-campus university housing markets (Chen
& Sönmez, 2002) and nation-wide kidney exchanges (Roth, Sönmez, & Ünver, 2004).

Core-selection is one of the most well-studied properties that exchange rules are expected to
achieve. An exchange rule is said to be core-selecting if no group of agents has an incentive to make
a cartel and trade their goods among themselves. By de�nition, core-selecting rules encourage
agents to participate in the rules (i.e., implies individual rationality) and result in a Pareto e�cient
trade of goods, which in a sense is a socially optimal outcome. When each agent is assumed to
be initially endowed with a single indivisible good, Gale’s Top-Trading-Cycles (TTC) procedure is
known to be core-selecting (Shapley & Scarf, 1974; Roth & Postlewaite, 1977).

Another common requirement is strategy-proofness, which requires that each agent has no
incentive to misreport her preference. To be more precise, for each agent, submi�ing her true
preference to the exchange rule is a dominant strategy. �is is a quite strong requirement for
agents’ incentives. Actually, Sönmez (1999) showed that, when there is at least one agent who
initially owns more than one good and the agents’ preferences over bundles of goods are strict,
as in our exchange problems, there exists no rule that is simultaneously strategy-proof and core-
selecting in general.

In the wake of this impossibility, we tackle the incentive issue from the perspective of com-
putational complexity. �e idea is as follows: even if an agent is sel�sh and hopes to bene�t by
misreporting, if �nding a bene�cial misreport is hard, e.g., it requires to solve an NP-hard prob-
lem, and its power of computation is limited, then it will refrain from doing such a manipulation.
Under this assumption, in a sense, the NP-hardness of �nding a bene�cial preference misreport
guarantees that agents do not have strong incentive to misreport their preferences. Such a com-
plexity approach for agents’ incentives has a�racted much a�ention from computer scientists,
especially in the literature of computational social choice (Bartholdi, Tovey, & Trick, 1989; Pini,
Rossi, Venable, & Walsh, 2011).

In the exchange problem, agents have preferences over bundles of goods. Describing prefer-
ences by an exhaustive ordering of the bundles may be infeasible whenever the number of goods is
too large. Indeed, the number of bundles growths exponentially with the number of goods. �ere-
fore, compact representations are worth considering for representing preferences of the agents in
our exchange problem. �e lexicographic preferences are a well studied restriction over the pref-
erence domain which allows a compact representation of the preferences (Saban & Sethuraman,
2014; Todo, Sun, & Yokoo, 2014; Aziz, Kalinowski, Walsh, & Xia, 2016). Indeed, under this restric-
tion the preferences over bundles can be fully described by an ordering over goods. Informally
speaking, lexicographic preferences � are de�ned as follows. In order to compare two bundles of
goods, we start by comparing their most preferred goods. If the most preferred good in one bundle
is preferred to the most preferred good in the other bundle then the former bundle is preferred
to the later one. Otherwise, we compare the second most preferred goods of those bundles, and
in case of equality, we compare the third most preferred goods, and so on. Let us consider an
illustrative example with three goods: beef (B), cake (C) and white wine (W). Suppose that B is
preferred to C which is preferred toW . In lexicographic preferences model, the preferences over
bundle is {B, C,W} � {B, C} � {B,W} � {B} � {C,W} � {C} � {W}, where � means that
the le� part is strictly preferred to the right part.

�e drawback of focusing on lexicographic preference domain is that such restriction seems
too strong to re�ect real preferences. In this paper we focus on a larger preference domain over
bundles of goods, called conditionally lexicographic preferences, which was introduced by Booth,

516

A Complexity Approach for Core-Selecting Exchange

Chevaleyre, Lang, Mengin, and Somba�heera (2010). Lexicographic preferences are a special case
of conditionally lexicographic preferences. But the compact representation used to represent con-
ditionally lexicographic preferences is richer in the sense that the ordering over goods may be
conditional to the existence of some more preferred goods in the bundle. Let us change our exam-
ple by replacing white wine with red wine (R). In that case, the preferences of an agent over the red
wine and the cake may be di�erent if she obtains the beef or not. For example, she may preferR to
C if she has B, and otherwise she prefers C toR. In that case, the preferences over bundles would
be the following: {B, C,R} � {B,R} � {B, C} � {B} � {C,R} � {C} � {R}. Note that such
preferences are not lexicographic because C is once preferred to R and R is once preferred to C.
Actually, the number of possible conditionally lexicographic preferences is exponentially larger
than the number of possible lexicographic preferences (Booth et al., 2010).

In this paper, we propose an exchange rule called augmented top-trading-cycles (ATTC) proce-
dure for the exchange problem. �e proposed rule possesses nice properties in terms of quality
of solutions and agents’ incentives. Concerning the quality of solutions, the ATTC procedure is
core-selecting. For agents’ incentives, �nding a bene�cial misreport for a manipulator under the
ATTC procedure is NP-hard. We also consider two di�erent types of manipulations called split-
ting and hiding, and clarify their relationship with preference misreporting. We show that, for any
given spli�ing/hiding manipulation, there exists a corresponding preference misreport that gives
the same bundle of goods to the manipulator, and such a misreport can be computed in polynomial
time.

�e paper is organized as follows. In Section 2, we review several existing works and clarify the
di�erence with our approach. In Section 3, we give the formal model of our exchange problems and
de�ne the conditionally lexicographic preferences. In Section 4, we de�ne the ATTC procedure
and illustrate its behavior by a simple example. In Section 5, we show that the ATTC procedure is
core-selecting. In Section 6, we formalize the problem of �nding a bene�cial misreport under the
ATTC procedure and show that it is NP-hard. In Section 7, we give the de�nitions of spli�ing and
hiding manipulations, and present two algorithms to emulate these manipulations by misreporting
preference. In Section 8, we conclude the paper and give some possible future research directions.

2. Related Works

�e exchange model we deal with in this paper is a generalization of the well-studied housing mar-
ket (Shapley & Scarf, 1974), where each agent initially owns a single house, agents’ preferences
are strict, and monetary transfers are prohibited. In housing market literature, the TTC proce-
dure is characterized by three properties: individual rationality, Pareto e�ciency, and strategy-
proofness (Ma, 1994). Moreover, it always chooses the unique core assignment (Roth & Postle-
waite, 1977). Other properties have been considered in AI, e.g., fairness (Endriss, Maudet, Sadri,
& Toni, 2006; Lesca & Perny, 2010; Lesca, Minoux, & Perny, 2013) and envy-freeness (Chevaleyre,
Endriss, & Maudet, 2007; de Keijzer, Bouveret, Klos, & Zhang, 2009). Constraints on the set of
possible allocations have also been considered, e.g., for exchanges over a social network (Gourvès,
Lesca, & Wilczynski, 2017). On the other hand, when at least one agent initially owns more than
one house, as well as the impossibility result presented in the previous section advents, we can no
longer guarantee the uniqueness of the core assignment (Sönmez, 1999). Cechlárová (2009) studied
the exchange problem for more than one type of goods and show that deciding the nonemptyness

517

Fujita, Lesca, Sonoda, Todo, & Yokoo

of the core is NP-hard even for two types of goods. Furthermore, Cechlárová and Lacko (2012)
studied the core property for the kidney exchange problem.

One common approach for going beyond such an impossibility result is to weaken one of the
requirements. In the literature of exchange with multiple endowments, which is what we are
dealing with in this paper, several strategy-proof rules have been developed by weakening the
core-selecting property (Pápai, 2003, 2007; Todo et al., 2014). Various restriction over the pref-
erence domain have also been considered in the literature, such as binary domain (Luo & Tang,
2015), asymmetric preferences (Sun, Hata, Todo, & Yokoo, 2015), and additive preferences (Sonoda,
Fujita, Todo, & Yokoo, 2014; Aziz, Biró, Lang, Lesca, & Monnot, 2016).

Our approach maintains the core-selecting requirement, but weakens strategy-proofness by
focusing on the computational hardness of bene�cial manipulation. In various mechanism de-
sign/social choice problems, many works consider the computational hardness of bene�cial manip-
ulation, such as voting (Bartholdi et al., 1989), two-sided matching (Teo, Sethuraman, & Tan, 2001;
Pini et al., 2011) and sequential allocation (Aziz, Bouveret, Lang, & Mackenzie, 2017). Although it
has been pointed out that such a computational complexity approach is not always su�cient as a
barrier for agents’ incentives (Faliszewski, Hemaspaandra, & Hemaspaandra, 2010; Faliszewski &
Procaccia, 2010), we believe that discussing complexity of misreporting in exchange problems is
an important �rst step toward the development of useful exchange rules for self-interested agents
in practice.

In this paper we also focus on the conditionally lexicographic preference domain. �is re-
striction leads to compact representations of the agents’ preferences, and makes sense whenever
they are non compensatory (Gigerenzer & Goldstein, 1996). �us such preferences have been well
studied in the AI community and especially in elicitation (Booth et al., 2010) and voting (Conitzer
& Xia, 2012; Lang, Mengin, & Xia, 2012). Responsive preferences are one of the most famous re-
striction over the preference domain in matching theory. Such domain of preferences generalize
both lexicographic and additive preferences. Informally, the requirement for a preference to be
responsive is that, for a given bundle of goods, the marginal contribution of an additional good
only depends on the ordering over goods. Note that, according to the illustrative example provided
earlier, conditionally lexicographic preferences may not be responsive.

Similar exchange rules as ATTC procedure have been studied in recent papers (Sikdar, Adalı,
& Xia, 2017, 2018). Sikdar et al. (2017) consider an exchange problem where goods are partitioned
into types (car, house, and so on). Each agent has initially a single good of each type and receives
at the end of the procedure a single good of each type. �erefore, preferences are over bundles
of goods of same size with one good per type. Agents’ preferences are represented by CP-nets
where vertices represent types. In short, CP-nets are an oriented graphs which represent condi-
tional preferences over types. �e preferences over the goods of a given type will depend on the
other goods allocated whose types are parents in the graph of the type under consideration. In
the paper, the CP-nets considered are lexicographic i.e., there exists a linear order over the types
such that a type can be the ancestor of another one only if the �rst type precedes the second type
in this linear order. �is model somehow extends the one presented by Fujita et al. (2015), where
agent’s preferences over the bundles of goods are lexicographic. However, the model of Sikdar
et al. (2017) impose additional constraint on the admissible allocation (exactly one good per type)
whereas such constraint does not appear in the paper of Fujita et al. (2015). Conditionally lexico-
graphic preferences considered in this paper generalize the model studied by Sikdar et al. (2017)
except that it does not allow indi�erences. On the other hand, the model of preferences considered

518

A Complexity Approach for Core-Selecting Exchange

by Sikdar et al. (2018) generalizes conditionally lexicographic preferences in order to allow indif-
ferences. Sikdar, Adali, and Xia (2017, 2018) show that TTC-like procedures for these two models
of preferences are core-selecting.

�e e�ect of spli�ing manipulations has been studied in several algorithmic/economic en-
vironments, such as scheduling (Moulin, 2008), voting (Conitzer, 2008; Todo, Iwasaki, & Yokoo,
2011), combinatorial auctions (Yokoo, Sakurai, & Matsubara, 2004), two-sided matching (Todo &
Conitzer, 2013; Afacan, 2014), and coalitional games (Aziz, Bachrach, Elkind, & Paterson, 2011;
Yokoo, Conitzer, Sandholm, Ohta, & Iwasaki, 2005; Ohta, Conitzer, Satoh, Iwasaki, & Yokoo, 2008),
some of which are also known as false-name manipulations. Especially for the case of exchange
problem, a class of exchange rules resistant to spli�ing manipulations, as well as to another class
of manipulations called hiding (Atlamaz & Klaus, 2007), has been proposed by Todo et al. (2014),
while they do not satisfy the core-selecting property.

3. Preliminaries

In this section we provide the formal de�nition for the exchange problem with multiple indivisible
goods studied in this paper as well as several properties of exchange rules that have been discussed
in the literature.

3.1 Notation

We consider set of agents N = {1, . . . , n} and �nite set of heterogeneous indivisible goods K
of size m. An assignment x = (x1, . . . , xn) is a partition of K into n subsets, where xi is the
bundle of goods assigned to agent i under assignment x. We denote by X the set of all possible
assignments.

�e assignment of the goods to the agents is made based on their preferences, which are or-
ders/rankings over bundles of goods. In this paper we focus on the domain of conditionally lexico-
graphic preferences, in which a preferences over the bundles of goods are modeled by lexicographic
preference trees (or LP-trees).

De�nition 1 (LP-tree). An LP-tree over K is a rooted tree such that

• every vertex v is labeled with good g(v) belonging to K

• every good appears once, and only once, on any path from the root to a leaf

• every non-leaf vertex v has either one outgoing edge labeled by g(v) ∨ g(v), or two outgoing
edges labeled by g(v) and g(v), respectively.

Figure 1 provides three examples of LP-trees over K = {o1, o2, o3, o4}. Let L be the set of all
possible LP-trees over K . For any vertex v of an LP-tree, let a(v) be the set of goods labeling the
ancestors of v, i.e. the vertices on the path from the root to v. For example, in τ1 described in Figure
1, if we de�ne v as the le�most vertex with label o4 then a(v) = {o1, o3}. An LP-tree τ represents a
preference over bundles in a graphical manner. In order to evaluate a bundleA ⊆ K , we follow the
directed path starting from the root, ending at one of the leaf and containing only edges consistent
with A, i.e. for each vertex v visited by this directed path, an edge consistent with A would be
labeled by either g(v) or g(v) ∨ g(v) if g(v) ∈ A, and by either g(v) or g(v) ∨ g(v) otherwise.
Note that such a path is unique. Let τ(A) denote such a path. For example, τ1({o1, o2}) is the path

519

Fujita, Lesca, Sonoda, Todo, & Yokoo

Figure 1: �ree examples of LP-trees

from the root that reaches the rightmost leaf, and τ3({o2, o3}) is the path that reaches the le�most
leaf. In order to compare two bundles A and B, with A 6= B, we consider the �rst vertex v in the
sequence of vertices visited by both τ(A) and τ(B) and such that g(v) belongs to exactly one of the
two bundles. Let τ(A,B) denote such vertex. For example, τ1({o2, o3}, {o2, o4}) is the le�most
vertex labeled by o3 and with two children in τ1, and τ3({o1, o2, o3}, {o1, o3}) is the rightmost
vertex labeled by o2 and with two children in τ3. More formally, τ(A,B) is the unique vertex that
is visited by both τ(A) and τ(B) and such that a(τ(A,B)) ⊆ A ⊕ B and g(τ(A,B)) 6∈ A ⊕ B,
where A⊕ B = {o ∈ K | o ∈ A ⇔ o ∈ B}. Preferences associated with LP-trees are de�ned as
follows:

De�nition 2. For a given LP-tree τ , let�τ denote the preference over bundles such that, for any two
bundles A,B ⊆ K , A �τ B i� both g(τ(A,B)) ∈ A and g(τ(A,B)) 6∈ B hold.

For example, considering the LP-tree τ1 of Figure 1, we have {o2, o3} �τ1 {o2, o4} because
g(τ1({o2, o3}, {o2, o4})) = o3 and o3 belongs to {o2, o3} but not to {o2, o4}. Note that both �τ1
and �τ3 are not responsive, and �τ2 is lexicographic because τ2 is a path. In order to simplify
notation, we denote by %τ the preference such that for any A,B ⊆ K , A %τ B i� either A �τ B
or A = B holds.

In the rest of this paper, we assume that agent preferences are conditionally lexicographic
and that the preference of each agent is represented by an LP-tree. Using this notation, we de-
�ne an exchange problem (e, τ) by an initial endowment e = (e1, . . . , en) ∈ X and a pro-
�le τ = (τ1, . . . , τn) ∈ Ln of LP-trees, where τi denotes the LP-tree that models the prefer-
ence of agent i. For any i ∈ N and any τ ′i ∈ L, we denote by (τ ′i , τ−i) the preference pro�le
(τ1, . . . , τi−1, τ

′
i , τi+1, . . . , τn). Furthermore, we denote by δ(o) the owner of o in e.

Example 1. Consider the set of goods K = {o1, o2, o3, o4}, the set of agents N = {1, 2, 3}, and
the initial endowments e such that e1 = {o1, o4}, e2 = {o2}, and e3 = {o3}. �e LP-trees τ =
(τ1, τ2, τ3) presented in Figure 1 describe the conditionally lexicographic preferences of agents 1, 2 and
3, respectively. �e pair (e, τ) de�nes an exchange problem.

520

A Complexity Approach for Core-Selecting Exchange

3.2 Exchange Rules and Properties

An exchange rule is a functionϕ : X×Ln → X that maps any exchange problem to an assignment.
Let ϕi(e, τ) denote the bundle assigned to agent i under assignment ϕ(e, τ). In this section,
we provide the formal de�nitions of three properties achievable by an exchange rule, namely
individual rationality, Pareto e�ciency, and core selection. �ese properties have traditionally been
considered as desiderata in the literature of social choice and mechanism design.

De�nition 3 (Individual Rationality). For a given exchange problem (e, τ), an assignment x ∈ X
is individually rational if xi %τi ei holds for any agent i. An exchange rule ϕ is individually rational
(IR) if for any exchange problem (e, τ), ϕ(e, τ) is individually rational.

In other words, for each agent, as long as she truthfully reports her preference, she is never
worse o� by participating in an IR exchange rule. Under such an exchange rule, every agent is
incentivized to participate.

De�nition 4 (Pareto E�ciency). For a given exchange problem (e, τ), an assignment x ∈ X is
Pareto dominated by another y ∈ X if (i) yi %τi xi holds for every i ∈ N , and (ii) yj �τj xj
holds for some j ∈ N . An assignment is Pareto e�cient if it is not Pareto dominated by any other
assignment. An exchange rule ϕ is Pareto e�cient (PE) if for any exchange problem (e, τ), ϕ(e, τ)
is Pareto e�cient.

When an assignment x is Pareto dominated by another assignment y, choosing x is sub-
optimal. �erefore, using a PE exchange rule is socially optimal, in the sense that it never chooses
such sub-optimal assignment.

De�nition 5 (Core Selection). For a given exchange problem (e, τ), a coalition T ⊆ N of agents
blocks an assignment x ∈ X if there exists another assignment y ∈ X such that (i) yi ⊆

⋃
`∈T e`

for every i ∈ T , (ii) yi %τi xi for every i ∈ T , and (iii) yj �τj xj for some j ∈ T . �e core C(e, τ)
is the set of assignments that are not blocked by any coalition. An exchange rule ϕ is core-selecting
(CS) if for any exchange problem (e, τ), ϕ(e, τ) ∈ C(e, τ) holds.

Condition (i) means that a blocking coalition is restricted to the goods initially owned by the
agents in this coalition. Conditions (ii) and (iii) means that, assignment y Pareto dominatesxwhen
we only consider the preferences of the agents belonging to the blocking coalition. Intuitively,
the existence of a coalition T of agents that blocks an assignment means that they jointly have
incentives to form a cartel and get higher utility by leaving behind the set N \ T of all the other
agents. When an exchange rule is CS, one can expect that all agents participate without forming
any such cartel. In this sense, CS can be regarded as a re�nement of IR to any possible coalition
of agents. Furthermore, by se�ing T = N , the de�nition coincides with PE. �us, if an exchange
rule is CS, it is also PE and IR.

Example 2. Consider the exchange problem of Example 1. Assignmentx1 = ({o1, o4}, {o2}, {o3}) =
e is obviously individually rational but it is Pareto dominated by x2 = ({o1, o3}, {o2}, {o4}). On the
other hand, x3 = ({o1, o2}, {o3}, {o4}) is Pareto e�cient but not individually rational, since agent
2 is worse o� than his initial endowment. To see that, observe that τ2({o3}, {o2}) is the unique vertex
with label o2 (see Figure 1), and g(τ2({o3}, {o2})) = o2 belongs to {o2} but not to {o3}. �e assign-
ment x2 is individually rational and Pareto e�cient, but not in the core, because T = {1, 2} ⊂ N is
a blocking coalition with the assignment x4 = ({o1, o2}, {o4}, {o3}). Finally x4 is in the core, and
automatically individually rational and Pareto e�cient.

521

Fujita, Lesca, Sonoda, Todo, & Yokoo

Algorithm 1 �e Augmented Top-Trading-Cycles (ATTC) procedure
Input: exchange problem (e, τ)
Output: assignment ϕ(e, τ)

1: t← 1
2: Vt ← K
3: for each i ∈ N do
4: Xt−1

i ← ∅
5: end for
6: while Vt 6= ∅ do
7: Et ← ∅ . Construction of ATTC graph Gt = (Vt, Et)
8: for each o ∈ Vt do
9: Et ← Et ∪ {(o, g(τδ(o)(X

t−1
δ(o), X

t−1
δ(o) ∪ Vt)))}

10: end for
11: Wt ← ∅
12: for each i ∈ N do . Assignment of goods to agents in each cycle of Gt
13: if exists o ∈ Vt ∩ ei visited by some cycle C in Gt then
14: Let f denote the successor of o in C
15: else
16: Xt

i ← Xt−1
i ∪ {f}

17: Wt ←Wt ∪ {o}
18: end if
19: end for
20: Vt+1 ← Vt \Wt . Removal from Gt+1 of assigned goods
21: t← t+ 1
22: end while
23: return (Xt−1

i)i∈N

Combining the fact that CS property implies both IR and PE properties with the general im-
possibility result by Sönmez (1999), or more straightforwardly with the non-existence of an ex-
change rule that is IR, PE, and strategy-proof under the lexicographic preference domain by Todo
et al. (2014), we can easily conclude that there exists no exchange rule that is CS and strategy-
proof, even under the conditionally lexicographic preference domain. Our purpose in this paper
is therefore to design an exchange rule that is CS and computationally hard to manipulate, while
it is inevitably not strategy-proof.

4. Augmented Top-Trading-Cycles Rule

In this section we propose a new exchange rule, called augmented top-trading-cycles (ATTC), which
is inspired by, and indeed is a natural extension of, the well-known Gale’s Top-Trading-Cycle
(TTC) procedure. Informally, TTC is a stepwise algorithm simulating a market place, where at
each step, the remaining agents point to the most preferred remaining good according to their
preferences. �e agents which are part of a cycle during a step of the algorithm are assigned to
the good they are pointing to and leave the market. ATTC generalizes TTC to exchange problems
where agents may have more than one good by dividing each agent into several atomic agents, each

522

A Complexity Approach for Core-Selecting Exchange

Figure 2: ATTC graph G1 Figure 3: ATTC graph G2 Figure 4: ATTC graph G3

of which is assigned exactly one good from the original agents’ endowments. �en the standard
TTC procedure is applied to these atomic agents. Obviously, when each agent is initially endowed
with a single good, ATTC results in an assignment identical to the one returned by TTC.

In order to apply the TTC procedure to conditionally lexicographic preferences over bundles,
we need to know at each step which good is the best to complete the bundle already assigned
to one agent. Assume that Xt

i is the bundle of goods assigned to agent i during the �rst t steps,
and Vt+1 are the remaining goods in the market. �e best good to complete Xt

i , according to the
preference of agent i, should be the good o labeling the �rst vertex on the path τi(Xt

i) with a label
in Vt+1. For example, assume that Vt+1 = {o2, o3, o4} and Xt

1 = {o1}. In that case, the sequence
of labels on the path τ1({o1}) is (o1, o2, o3, o4). �erefore, o2 is the best good to complete Xt

i . To
see why, one could compare {o1, o2} and {o1, o3, o4} according to agent 1 preference�τ1 , and see
that {o1, o2} is preferred to {o1, o3, o4}. �e vertex we are referring to i.e., the �rst vertex on the
path τi(Xt

i) with a label in Vt+1, is the vertex τi(Xt
i , X

t
i ∪ Vt+1). Algorithm 1 provides a formal

description of ATTC.
In the following, we will refer to the graph Gt as the ATTC graph during step t. Furthermore,

function ϕwill denote the ATTC procedure as described in Algorithm 1. Note that at any step t in
the procedure, the ATTC graph Gt contains at least one cycle, and such a cycle contains at least
one good, from the characterization of the original TTC procedure. �erefore it is clear that the
running-time of ATTC is polynomial with respect to m, the number of goods.

Example 3. Consider once again the exchange problem presented in Example 1, where δ(o1) = 1,
δ(o2) = 2, δ(o3) = 3, and δ(o4) = 1. At the beginning of ATTC, agent 1 is divided into two atomic
agents, say 1′ and 1′′, each of which has the same preference as agent 1, and o1 and o4 are the initial
endowments of 1′ and 1′′, respectively. Furthermore, initiallyX0

1 = X0
2 = X0

3 = ∅. �en the original
TTC is applied for the market with four atomic agents 1′, 1′′, 2 and 3 with initial endowment {o1},
{o4}, {o2} and {o3}, respectively. �e set V1 of vertices of the ATTC graphG1 is {o1, o2, o3, o4}, and
the arrows of E1 are (o1, o1), (o4, o1), (o3, o1), and (o2, o4). �e graph G1 is illustrated in Figure
2. During step 1, vertex o1 is the only vertex included in a cycle, and thus the good o1 is assigned to
agent δ(o1) = 1. Furthermore, a�er this stepW1 = {o1}, X1

1 = {o1} and X1
2 = X1

3 = ∅. A�er
the removal of W1, the set of vertices of the ATTC graph G2 is V2 = {o2, o3, o4}, and the arrows
are (o2, o4), (o3, o4), and (o4, o2). �e graph G2 is illustrated in Figure 3. During step 2, there is a
cycle containing the vertices o2 and o4. �erefore, the good o2 is assigned to agent δ(o4) = 1 and the

523

Fujita, Lesca, Sonoda, Todo, & Yokoo

good o4 is assigned to agent δ(o2) = 2. Furthermore, a�er this stepW2 = {o2, o4}, X2
1 = {o1, o2},

X2
2 = {o4} and X2

3 = ∅. A�er the removal of W2, the set of vertices of the ATTC graph G3

is V3 = {o3}, and the unique arrow is (o3, o3). �e graph G3 is illustrated in Figure 4. Finally
during step 3, the good o3 is assigned to agent δ(o3) = 3. Furthermore, a�er this stepW3 = {o3},
X3

1 = {o1, o2}, X3
2 = {o4} and X3

3 = {o3}. A�er the removal ofW3, V4 = ∅ and the algorithm
terminates. �e �nal assignment is then x = ({o1, o2}, {o4}, {o3}), which is in the core as we
observed in Example 1.

5. Core Selection

We observed, from Example 3, that there is at least one exchange problem for which ATTC returns
an assignment in the core. In this section we generalize this observation and show that ATTC
inherits the CS property from the original TTC procedure under the conditionally lexicographic
preference domain.

In order to introduce this result, we �rst show that the comparison of two bundles, A and B,
with A 6= B, through a conditionally lexicographic preference �τ only depends on the goods
belonging to a(τ(A,B))∪ g(τ(A,B)) i.e., the labels of the vertices visited by both path τ(A) and
path τ(B) before a�aining vertex τ(A,B). Intuitively, we need to show that ifC andD are bundles
which di�er from A and B, respectively, only over the goods outside of a(τ(A,B))∪ g(τ(A,B))
then τ(A,B) and τ(C,D) should refer to the same vertex of τ . �erefore A �τ B i� C �τ D
according to De�nition 2.

Lemma 1. For any τ ∈ L, any A,B ⊆ K and any C,D ⊆ K , with A 6= B and C 6= D, if
a(τ(A,B)) ∪ g(τ(A,B)) ⊆ (A⊕ C) ∩ (B ⊕D) i.e., o ∈ A i� o ∈ C and o ∈ B i� o ∈ D for any
good o ∈ a(τ(A,B)) ∪ g(τ(A,B)), then τ(A,B) = τ(C,D).

Proof. By de�nition of τ(A,B), we know that for any o ∈ a(τ(A,B)) we have o ∈ A ⇔ o ∈ B,
and this implies that o ∈ C ⇔ o ∈ D since o ∈ A⇔ o ∈ C and o ∈ B ⇔ o ∈ D hold. �erefore,
a(τ(A,B)) ⊆ C ⊕D holds, and τ(A,B) is visited by both τ(C) and τ(D).

On the other hand, we know that g(τ(A,B)) ∈ A ⇔ g(τ(A,B)) /∈ B. Hence g(τ(A,B)) ∈
C ⇔ g(τ(A,B)) /∈ D, since g(τ(A,B)) ∈ A ⇔ g(τ(A,B)) ∈ C and g(τ(A,B)) ∈ B ⇔
g(τ(A,B)) ∈ D hold. �is implies that g(τ(A,B)) /∈ C ⊕D. �us, vertex τ(A,B) is visited by
both τ(C) and τ(D), and satis�es both a(τ(A,B)) ⊆ C⊕D and g(τ(A,B)) /∈ C⊕D. �erefore
τ(C,D) coincides with vertex τ(A,B).

Note that during step t of ATTC, all the arrows, from the copies of agent i, are pointing to
the same good labeling vertex τi(Xt−1

i , Xt−1
i ∪ Vt). As discussed earlier, this good is the best to

complete the current bundleXt−1
i of agent i. �e next lemma shows that for any step t, the goods

labeling the ancestors of τi(Xt−1
i , Xt−1

i ∪ Vt) in τi cannot belong to Vt.

Lemma 2. For any step t > 1 and for any agent i ∈ N , a(τi(X
t−1
i , Xt−1

i ∪ Vt)) ⊆ K \ Vt.

Proof. �e bundle Xt−1
i of goods acquired by agent i a�er the �rst t − 1 steps of the procedure

cannot contain any good belonging to Vt. Hence Xt−1
i ⊆ K \ Vt. �is implies that Xt−1

i ⊕
(Xt−1

i ∪ Vt) = K \ Vt. Furthermore, from the de�nition of τi(Xt−1
i , Xt−1

i ∪ Vt), we know that
a(τi(X

t−1
i , Xt−1

i ∪ Vt)) ⊆ Xt−1
i ⊕ (Xt−1

i ∪ Vt). �erefore, we have a(τi(X
t−1
i , Xt−1

i ∪ Vt)) ⊆
K \ Vt.

524

A Complexity Approach for Core-Selecting Exchange

Using these two lemmas, we can show that ATTC is core-selecting:

�eorem 1. ATTC is CS.

Proof. For the sake of contradiction we assume that there exists an exchange problem (e, τ) such
that the assignment ϕ(e, τ) = x, returned by ATTC, is blocked by a coalition T ⊆ N . Let y ∈ X
be an assignment satisfying conditions (i), (ii), and (iii) described in De�nition 5. Let Ut be the
subset of agents that obtain a good during step t, let Tt = T ∩ Ut, and let xti be the good obtained
by agent i ∈ Ut during this step i.e., the unique good contained in Xt

i \ X
t−1
i . Note that such

Xt
i \X

t−1
i is a singleton because the arrows from all the goods belonging to agent i point to the

same good during step t.
Here, for each step t in the procedure, consider the three following properties:

• Ht
1: for any i ∈ Tt, xti ∈ yi holds,

• Ht
2: for any i ∈ Tt and any j ∈ N , xti ∈ ej ⇒ j ∈ T holds,

• Ht
3: for any i ∈ Tt and any o ∈ a(τi(X

t−1
i , Xt−1

i ∪ Vt)), o ∈ xi ⇔ o ∈ yi holds.

If we prove that Ht
1 and Ht

3 are true for any step t, then it will imply that for any i ∈ T , yi = xi
holds, leading to a contradiction with conditions (iii) of De�nition 5 i.e., yj �τj xj holds for some
j ∈ T . �erefore, to conclude the proof it su�ces to show that Ht

1, Ht
2, and Ht

3 hold for any step
t, where Ht

2 is an important property to prove Ht
3. We will show them by mathematical induction

with respect to t.
Base case (t = 1): We show that H1

1 , H1
2 , and H1

3 hold. Let i be an arbitrary agent in T1. By
de�nition of Algorithm 1, we know that x1i labels the root of τi since X0

i = ∅ and V1 = K . If
x1i /∈ y1, g(τi(xi, yi)) = x1i holds, which implies xi �τi yi and contradicts the condition (ii) of
De�nition 5 i.e., yi %τi xi holds for any i ∈ T . �erefore, x1i ∈ y1 and thus H1

1 hold.
Let j ∈ U1 be an arbitrary agent satisfying x1i ∈ ej for some i ∈ T1. Assume by contradiction

that j /∈ T . �erefore, x1i /∈
⋃
`∈T e` must also hold. However, by property H1

1 , we already know
that x1i ∈ yi, which contradicts the condition (i) of De�nition 5 i.e., yi ⊆

⋃
`∈T e` holds. �erefore

H1
2 holds.

Finally, H1
3 is trivially true because τi(∅, V1) is the root of τi, implying a(τi(∅, V1)) = ∅.

Induction step: Assuming thatH l
1,H l

2, andH l
3 hold for any l ∈ {1, . . . , t−1}, we �rst show

that Ht
3 holds. Assume by contradiction that there exist i ∈ Tt and o ∈ a(τi(X

t−1
i , Xt−1

i ∪ Vt))
such that o ∈ xi 6⇔ o ∈ yi. Assume �rst that o ∈ yi and o /∈ xi hold. From the condition (i) of
De�nition 5, we have yi ⊆

⋃
`∈T e`, implying that δ(o) ∈ T . Furthermore, o cannot belong to Gt

because o ∈ a(τi(X
t−1
i , Xt−1

i ∪ Vt)) ⊆ K\Vt, where the inclusion is due to Lemma 2. �erefore,
∃l ∈ {1, . . . , t − 1} and ∃j ∈ Ul such that i 6= j and xlj = o. Since δ(o) ∈ Tl, we obtains j ∈ T
by repeatedly applying H l

2 along the cycle of Gl containing xlj . However, from property H l
1, we

know that o ∈ yj since j ∈ Tl and xlj = o. �us, we have o ∈ yj and o ∈ yi with i 6= j, which
derives a contradiction. So we proved that ∀o ∈ a(τi(X

t−1
i , Xt−1

i ∪ Vt)), o ∈ yi ⇒ o ∈ xi holds.
Now we claim that this also implies o ∈ xi ⇒ o ∈ yi for any o ∈ a(τi(X

t−1
i , Xt−1

i ∪ Vt)). Indeed,
otherwise let v be the �rst vertex on the path from the root of τi to τi(Xt−1

i , Xt−1
i ∪Vt) such that

g(v) ∈ xi and g(v) /∈ yi. For any good o ∈ a(v), we know that o ∈ yi ⇒ o ∈ xi holds because
a(v) ⊆ a(τi(X

t−1
i , Xt−1

i ∪ Vt)). Furthermore, by de�nition of v, we know that o ∈ xi ⇒ o ∈ yi
holds for any o ∈ a(v). Hence a(v) ⊆ xi ⊕ yi. Finally, by de�nition of v, we know that g(v) ∈ xi

525

Fujita, Lesca, Sonoda, Todo, & Yokoo

and g(v) /∈ yi. Hence τ(xi, yi) = v, which implies that xi �τi yi. �is derives a contradiction
with the condition (ii) of De�nition 5.

We then show that Ht
1 holds. Let i ∈ Tt. Assume by contradiction that xti /∈ yi holds. Prop-

erty Ht
3 implies that g(τi(xi, yi)) = xti. �erefore xi �τi yi, which is in contradiction with the

condition (ii) of De�nition 5. Hence xti ∈ yi.
Finally we show that Ht

2 holds. Let i ∈ Tt and j ∈ N such that xti ∈ ej . If j /∈ T , then
xti /∈

⋃
r∈T er . However, from property Ht

1 we know that xti ∈ yi, which leads to a contradiction
with the condition (i) of De�nition 5. �erefore j ∈ T .

�e CS property of ATTC implies that, by utilizing ATTC, it can be checked in polynomial
time whether the initial endowment is Pareto e�cient under a given pro�le of conditionally lexi-
cographic preferences. Indeed, ATTC returns an assignment identical to the initial endowments if
and only if it is Pareto e�cient since �eorem 1 asserts that ATTC returns a PE and IR assignment
and an assignment is PE if no other assignment Pareto dominates it. �is complements the hard-
ness result related to such a veri�cation under the additive preference domain (de Keijzer et al.,
2009), which is a subclass of the responsive preference domain and intersects with the condition-
ally lexicographic preference domain.

Corollary 1. Under the conditionally lexicographic preference domain, it can be checked in polyno-
mial time, with respect to the number m of goods, whether the initial endowment is Pareto e�cient.

6. Complexity of Finding Bene�cial Misreport

In practice, even if an agent is sel�sh and hopes to bene�t by misreporting, her computation power
is limited (Bartholdi et al., 1989). Under this “bounded rationality” assumption, we expect that an
agent will refrain from misreporting, if she needs to solve an NP-hard problem to �nd a bene�cial
manipulation. We show in this section that �nding a bene�cial preference misreport under ATTC
is NP-hard, which gives agents reasonable incentives to report their true preferences.

Note that when we restrict LP-trees to paths, the set of conditionally lexicographic preferences
corresponds to the lexicographic preference domain. In order to simplify the following proofs,
we �rst show that the set of misreport manipulations under consideration can be restricted to
lexicographic preferences. To achieve this aim, we show that for any revealed preference τi by
agent i, there exists an LP-tree τ ′i which is a path and provides the exact same outcome under
ATTC.

Proposition 1. For any exchange problem (e, τ), if agent i reveals τ ′i instead of τi, where τ ′i is the
restriction of LP-tree τi to the path τi(ϕi(e, τ)), then ATTC returns the exact same outcome. More
formally, ϕ(e, τ) = ϕ(e, (τ ′i , τ−i)).

Proof. LetGt = (Vt, Et) (resp.G′t = (V ′t , E
′
t)) denote the ATTC-graph during step twhen τi (resp.

τ ′i = τi(ϕi(e, τ))) is revealed by agent i, and let Xt
j (resp. Y t

j) denote the set of goods assigned
to agent j during the �rst t steps of the procedure. We show, by mathematical induction with
respect to t, that for any t, Gt = G′t and Xt

j = Y t
j for any j ∈ N . �is property would imply that

ϕ(e, τ) = ϕ(e, (τ ′i , τ−i)) holds.
Base case (t = 1): At the �st step of the procedure, we have V ′1 = V1 = K and the sets of

edges, E1 and E′1, only depend on the roots of the revealed LP-trees since τj(∅,K) is the root of
τj for any j ∈ N . For each j ∈ N \ {i}, the revealed LP-trees are exactly the same by de�nition.

526

A Complexity Approach for Core-Selecting Exchange

Furthermore, the good labeling the root of τ ′i is the same as the good labeling the root of τi.
�erefore G1 = G′1, an this implies that X1

j = Y 1
j for any j ∈ N .

Induction step: Assuming that Gt−1 = G′t−1 and Xt−1
j = Y t−1

j for any j ∈ N , we now
consider step t of the procedure. From the de�nition of Algorithm 1, Vt = V ′t holds and implies
that τj(Xt−1

j , Xt−1
j ∪ Vt) = τj(Y

t−1
j , Y t−1

j ∪ V ′t) holds for any j ∈ N \ {i}. In other words, this
means that the outgoing edge of any good belonging to an agent of N \ {i} is exactly the same in
both Gt and G′t. It remains to show that the outgoing edge of any good o belonging to agent i is
the same in both Gt and G′t.

First of all, we claim that vertex τi(Xt−1
i , Xt−1

i ∪ Vt) is visited by path τi(ϕi(e, τ)). Indeed,
assume by contradiction that there exists o ∈ a(τi(X

t−1
i , Xt−1

i ∪Vt)) ⊆ K\Vt, where the inclusion
is due to Lemma 2, such that o 6∈ Xt−1

i and o ∈ ϕi(e, τ) (the case o ∈ Xt−1
i and o 6∈ ϕi(e, τ) is

impossible sinceXt−1
i ⊆ ϕi(e, τ)). But in that case, it is clear that o 6∈ Xt−1

i ∪Vt, and this implies
that agent i cannot obtain o during ATTC and o 6∈ ϕi(e, τ), leading to a contradiction.

We claim now that g(τi(X
t−1
i , Xt−1

i ∪Vt)) = g(τ ′i(Y
t−1
i , Y t−1

i ∪V ′t)). By contradiction assume
that τi(Xt−1

i , Xt−1
i ∪ Vt) and τ ′i(Y

t−1
i , Y t−1

i ∪ V ′t) do not refer to the same vertex on τi(ϕ(e, τ)),
and assume that τi(Xt−1

i , Xt−1
i ∪Vt) is the �rst vertex visited by τi(ϕ(e, τ)). Note that this means

that vertex τi(Xt−1
i , Xt−1

i ∪ Vt) is an ancestor of τ ′i(Y
t−1
i , Y t−1

i ∪ V ′t), and g(τi(X
t−1
i , Xt−1

i ∪
Vt)) belongs to a(τ ′i(Y

t−1
i , Y t−1

i ∪ V ′t)). We know by Lemma 2 that a(τ ′i(Y
t−1
i , Y t−1

i ∪ V ′t)) ⊆
K \ V ′t , and this implies g(τi(X

t−1
i , Xt−1

i ∪ Vt)) does not belong to V ′t . On the other hand,
g(τi(X

t−1
i , Xt−1

i ∪ Vt)) ∈ Vt implies that g(τi(X
t−1
i , Xt−1

i ∪ Vt)) ∈ V ′t because Vt = V ′t , leading
to a contradiction. �e proof is essentially the same when τ ′i(Y

t−1
i , Y t−1

i ∪ V ′t) is the �rst vertex
visited by τi(ϕi(e, τ)).

Finally, by the de�nition of Algorithm 1 we know that the outgoing edge of any good o be-
longing to agent i is the same in both Gt and G′t. Hence we have shown that Gt and G′t are the
same, which implies that Xt

j = Y t
j holds for any j ∈ N .

From Proposition 1, the search for a bene�cial manipulation can be restricted, without loss of
generality, to the lexicographic preference domain. Let P be the subset of L restricted to paths.
We formalize the manipulation problem under ATTC as follows:

De�nition 6 (Beneficial-Misreport).

Instance: exchange problem (e, τ) and agent i ∈ N .

�estion: is there τ ′i ∈ P such that ϕi(e, (τ ′i , τ−i)) �τi ϕi(e, τ)?

Note that the size ofP is exponentially smaller than the size ofL, and thus focusing the search
on P is an advantage. However, �e following theorem shows that it is still computationally hard
even though the search can be restricted. �e proof is provided in Appendix B.

�eorem 2. Beneficial-Misreport is NP-complete.

7. Possible Bene�t by Preference Misreport

One may �nd that the discussion on complexity provided in the previous section only focused on
the worst case behavior of ATTC. Actually, even though the optimization problem is NP-hard, an
agent might �nd the optimal misreport in many cases. In this section we provide an important

527

Fujita, Lesca, Sonoda, Todo, & Yokoo

observation on this issue; the most preferred an agent originally obtains by truth-telling cannot
be improved by any preference misreport.

To be more precise, we introduce some additional notation. Let o∗ denote the �rst good ac-
quired by agent i when she reveals her true preferences τi. Note that o∗ is the most preferred
good acquired by agent i during ATTC i.e., the singleton containing o∗ is preferred by agent i to
any singleton containing a good acquired by her during ATTC when she reveals τi. �e following
proposition shows that o∗ is also the most preferred good that agent i can obtain under ATTC by
misreporting her true preferences. �e proof is provided in Appendix D.

Proposition 2. For any exchange problem (e, τ), any agent i ∈ N and any misreport τ ′i ∈ P , there
is no good o in ϕi(e, (τ ′i , τ−i)) which is strictly preferred by agent i to the most preferred good o∗ of
ϕi(e, τ). More formally, 6 ∃o ∈ ϕi(e, (τ ′i , τ−i)) such that o �τi o∗

Proposition 2 provides another evidence that, under ATTC, agents may have a reasonable in-
centive to report their preferences truthfully. Indeed, under conditionally lexicographic preference
domain, an agent mainly cares about the favorite good in her bundle and considers all the other
goods as extra. Proposition 2 thus guarantees that agents can bene�t only by improving such
extra.

8. Extended Model with Private Endowments

In this section, we consider the situation where each agent can use multiple accounts and the
set of her accounts, as well as her initial endowment, is her private information. Each agent can
deceive the exchange rule by pretending to be multiple agents under di�erent accounts (spli�ing
accounts, or shortly spli�ing). We assume that an agent can declare di�erent preferences under dif-
ferent accounts, implying that spli�ing is more general than misreporting a preference of a single
account. However, to our surprise, it turns out that the sets of possible outcomes by misreporting
and spli�ing coincide under ATTC.

Another type of possible manipulations by an agent in this situation is to withhold some of her
initial endowments (hiding endowments, or shortly hiding), which has already been investigated
in the literature of exchange problems (Atlamaz & Klaus, 2007; Todo et al., 2014). For example,
assume that agent i has two laptops A and B. A suits her working style much be�er than B,
and she also wants a desktop computer C that is owned by another agent j. If i knows that j
accepts to trade C with either A or B, i may have an incentive to withhold A and swap B with C.
We show that for any hiding manipulation, there exists a preference misreport that results in the
same assignment for the manipulator under ATTC.

8.1 Splitting Accounts

Let us �rst formally de�ne spli�ing accounts. Under ATTC, we can assume without loss of gener-
ality that a manipulator i uses as many accounts as the number of goods in her initial endowment,
each of which is endowed with a single good. �e reason not to consider spli�ing manipulation
using less accounts is that, under ATTC, an agent is divided into atomic agents, and therefore
the outcome obtained by using less than |ei| accounts can also be obtained by using exactly |ei|
accounts.

For an agent i ∈ N with initial endowment ei, a spli�ing manipulation si is described as a
pro�le of LP-trees (τo)o∈ei ∈ P |ei|. Here, each τo denotes the LP-tree revealed by the account

528

A Complexity Approach for Core-Selecting Exchange

Algorithm 2Misreport-for-Splitting
Input: exchange problem (e, τ), manipulator i and spli�ing manipulation si ∈ S(ei)
Output: LP-tree τ ′i ∈ P providing the same outcome as si for agent i

1: while Exists o, o′ ∈ ei visited by the same cycle C in ϕ(e, (si, τ−i)). do
2: Let f and o′ be the goods following o and o′ in C, respectively.
3: Let λ and λ′ be arbitrary LP-trees of P with roots labeled by f and f ′, respectively.
4: τo ← λ′

5: τo′ ← λ′

6: end while
7: τ ′i ← ∅
8: R← K
9: while ei ∩R 6= ∅ do

10: Let C be the last cycle visiting a good o of ei in ϕ|R(e, (si, τ−i)).
11: Let B denote the set of goods visited by C, and let f be the good following o in C.
12: τ ′i ← add root(τ ′i , o)
13: R← R \B
14: end while
15: Complete τ ′i arbitrarily by inserting the remaining goods at its tail.

corresponding to the good o of ei. Note that we have restricted the possible manipulations of
the di�erent accounts to lexicographic preferences P . �is is without loss of generality because,
according to Proposition 1, any spli�ing manipulation using conditionally lexicographic prefer-
ence can be replaced by a spli�ing manipulation using only lexicographic preferences and with
the same outcome.

Let S(ei) denote the set of all possible spli�ing manipulations for a given initial endowment
ei. Also, for a given exchange problem (e, τ), an agent i ∈ N , and a spli�ing manipulation
si ∈ S(ei), let ϕi(e, (si, τ−i)) denote the bundle assigned to the accounts owned by agent iwhen
she uses the spli�ing manipulation si.

In the following proposition, we clarify the relationship between misreporting and spli�ing in
the ATTC procedure. Indeed, we show that for any spli�ing manipulation, there exists a preference
misreport that returns the same assignment to the manipulator. �e proof of Proposition 3 is in
Appendix F.

Proposition 3 (Spli�ing→Misreport). For any exchange problem (e, τ), any manipulator i ∈ N ,
and any spli�ing manipulation si ∈ S(ei), Algorithm 2 returns a misreport τ ′i ∈ P such that
ϕi(e, (τ

′
i , τ−i)) = ϕi(e, (si, τ−i)).

By abuse of notation, in Algorithm 2 we denote byϕ(e, (si, τ−i)) the ATTC procedure applied
to the exchange problem (e, (si, τ−i)) i.e., not only the outcome of this procedure, but also the
di�erent steps to obtain this outcome. In the same vein, we denote by ϕ|R(e, (si, τ−i)) the ATTC
procedure applied to the exchange problem restricted to the goods of R (any agent without good
in the restricted problem is removed). Note that, during ATTC, it may be the case that multiple
accounts of the manipulator are involved in the same cycle. �e �rst while loop of Algorithm 2
provides a spli�ing manipulation, under which agent i obtains exactly the same bundle and no two
goods in ei are involved in the same cycle during ATTC. �is part is convenient to ease the proof.

529

Fujita, Lesca, Sonoda, Todo, & Yokoo

�e second while loop constructs an LP-tree τ ′i by adding one by one the goods (more precisely
the vertices labeled by the goods) according to their appearance during the ATTC procedure. �e
construction of τ ′i relies on the procedure add add, which adds a new vertex labeled by a given
good o on top of τ ′i . �e two main ideas behind Algorithm 2 are the following: (i) if an account of
agent i trades its good o for good o′ during ATTC, then changing its preference by pu�ing o′ on
top does not change the outcome because the account owns only o, and (ii) if an account of agent
i is not able to acquire a good o′ (even by misreporting) then changing its preference by pu�ing o′
at the bo�om does not change the outcome.

One can consider the decision problem of checking if a bene�cial spli�ing manipulation exists.
�e de�nition of this problem, called Beneficial-Split, is similar to De�nition 6 except that the
set of available manipulations is the set of spli�ing manipulations S(ei) instead ofP . Proposition 3
implies that, while spli�ing accounts provides much richer manipulations than misreporting pref-
erences (and actually any misreport can be obviously represented as a spli�ing), the spaces of the
possible outcomes by spli�ing and misreporting coincide. From this observation, combined with
the fact that Algorithm 2 runs in polynomial time, we have the following corollary:

Corollary 2. Beneficial-Split is NP-complete.

8.2 Hiding Endowments

We then turn to consider manipulations by hiding endowments. A hiding manipulation hi, op-
erated by a manipulating agent i with initial endowment ei, is represented by a triple (eri , e

w
i , τ

′
i)

such that eri ∪ ewi = ei, eri ∩ ewi = ∅, and τ ′i ∈ P . �e �rst two components eri and ewi indi-
cate the set of goods revealed to ATTC and the set of goods withheld by agent i, respectively. �e
third component τ ′i indicates the preference reported by agent i. Recall that the set of preference
revealed can be restricted to lexicographic preferences without loss of generality.

Let H(ei) denote the set of all possible hiding manipulations by an agent i who initially
owns an endowment ei. Given exchange problem (e, τ), agent i ∈ N , and hiding manipula-
tion hi = (eri , e

w
i , τ

′
i) ∈ H(ei), let ϕi(e, (hi, τ−i)) := ϕi((e

r
i , e−i), (τ

′
i , τ−i)) denote the bundle

assigned to agent i under ATTC when she operates hiding manipulation hi. Note that since the
manipulator is withholding ewi , she �nally obtainsϕi(e, (hi, τ−i))∪ewi . �e following proposition
is the counterpart of Proposition 3 for hiding manipulation.

Proposition 4 (Hiding → Spli�ing). For any exchange problem (e, τ), any manipulator i ∈ N ,
and any hiding manipulation hi ∈ H(ei), Algorithm 3 returns a spli�ing manipulation si such that
ϕi(e, (si, τ−i)) = ϕi(e, (hi, τ−i)) ∪ ewi .

�e proof of this proposition is in Appendix E. Algorithm 3 creates a spli�ing manipulation
by constructing the LP-trees of the di�erent accounts belonging to the manipulator one by one. If
a good was hidden then the corresponding account prefers its good to the others. If a good was
not hidden then the corresponding account has the same preference as the one used in the hiding
manipulation.

One can consider the decision problem of checking if a bene�cial hiding manipulation exists.
�e de�nition of this problem, called Beneficial-Hide, is similar to De�nition 6 except that the
set of available manipulations is the set of hiding manipulations H(ei) instead of P . Note that
hiding is another generalization of misreporting preference because the manipulator is able to
misreport her preferences in addition to hide her endowment. �erefore, combining Proposition 4

530

A Complexity Approach for Core-Selecting Exchange

Algorithm 3 Splitting-for-Hiding
Input: exchange problem (e, τ), manipulator i and hiding manipulation (eri , e

w
i , τ

′
i)

Output: spli�ing manipulation si providing the same outcome for agent i
1: for each o in ei do
2: if o ∈ ewi then
3: Let λ be an arbitrary LP-tree of P with root labeled by o.
4: τo ← λ
5: else
6: τo ← τ ′i
7: end if
8: end for
9: si ← (τo)o∈ei

with Proposition 3, we can see that the space of possible outcomes by hiding also coincides with
the one by misreporting. �erefore, we obtain the following corollary.

Corollary 3. Beneficial-Hide is NP-complete.

9. Conclusions

In this paper we investigated the exchange problem where each agent initially has a set of indi-
visible goods and a conditionally lexicographic preference. We proposed the ATTC rule, which is
core-selecting and runs in polynomial-time. �e ATTC rule may also be used to verify, in polyno-
mial time, if the initial endowment is Pareto e�cient. Concerning agents’ incentives, we showed
that �nding a bene�cial misreport under ATTC is NP-complete, while it is inevitably not strategy-
proof due to Sönmez’s �nding. We also showed that the NP-completeness of �nding a bene�cial
manipulation can be extended to the case where the ownerships of endowments are private, so
that each agent can use spli�ing/hiding manipulations.

A future direction for this work would be to characterize the ATTC rule. Since the core as-
signment is not always unique in our model with multiple endowments, there might be a di�erent
exchange rule that is also core-selecting and runs in polynomial time. For such a characterization,
we must discover unique properties of ATTC. Another possible extension would be to consider a
larger set of preferences than conditionally lexicographic preferences. CP-nets (Boutilier, Brafman,
Domshlak, Hoos, & Poole, 2004) may be used to compactly represent preferences over bundle of
goods, including ones containing indi�erences between bundles. Actually, LP-trees are a subclass
of CP-nets. Contrary to LP-trees, CP-nets can represent any type of preferences over bundles of
goods. It would be interesting to de�ne a subclass of CP-nets, larger than LP-trees, where the
ATTC algorithm can be extended to provide an assignment in the core.

Acknowledgments

A preliminary version of this paper was appeared in the proceeding of the Twenty-Ninth AAAI
Conference on Arti�cial Intelligence (AAAI-15) (Fujita et al., 2015). �is work was partially sup-
ported by JSPS KAKENHI Grant Number JP24220003, JP26730005, JP17H00761, JP17H04695, JSPS

531

Fujita, Lesca, Sonoda, Todo, & Yokoo

Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented
Researchers, and the Okawa Foundation for Information and Telecommunications. We thank
Jérôme Lang for his advice to extend the paper to conditionally lexicographic preferences, as well
as participants in the Warsaw Workshop on Economic and Computational Aspects of Game �e-
ory and Social Choice at University of Warsaw, AAAI-15, and the Meeting of COST Action IC1205
on Computational Social Choice at University of Glasgow. All errors are our own.

Appendix A. Structure of Appendix

In this appendix we provide several technical materials, including some proofs omi�ed in the
main part of the paper. �is appendix is organized as follows: Appendix B provides the proof
of NP-completeness of Beneficial-Misreport. Appendix C provides several lemmas related to
ATTC, which are useful for proving other technical materials. Appendix D contains some lemmas
used to compare the behavior of ATTC for two di�erent pro�les of preferences, and the proof of
Proposition 2. Appendix E provides the proof of Proposition 4. Finally, Appendix F provides the
proof of Proposition 3.

Appendix B. Omitted Proof for Section 6

�e reduction is from the following NP-complete problem (Gold, 1978):

De�nition 7 (Monotone (M) 3SAT).

Instance: set U of variables, collection C = {c1, . . . , cm} of m clauses over U such that each
clause cj has three literals, denoted c1j , c

2
j and c3j , which are either only negated variables or

only un-negated variables.

�estion: is there a truth assignment of the variables satisfying all clauses.

We can assume without loss of generality that clause indices are such that all clauses containing
only un-negated variable precede clauses containing only negated variables.

Proof. Beneficial Misreport is clearly in NP since ATTC runs in polynomial time. �e reduction
from an instance of M3SAT is as follows. For each clause ci, we create 3 goods κi, ξi and ξ′i.
Furthermore, for any literal c`i , we create a good χ`i . To these 9m goods, we add two goods µ and
µ′. Other goods will be introduced later on, but for sake of simplicity we focus �rst on this subset
of goods.

�e initial endowment of the manipulator is composed by the goods χ`i for any i and `, as well
as good µ. �e true preference of the manipulator is

κ1 � ξ1 � ξ′1 � κ2 � ξ2 � ξ′2 � . . . � κm � ξm � ξ′m � µ′ � χ3
m � . . .

�e manipulator will be the only agent owning more than one good. For sake of simplicity,
we identify other agents by their goods. Figure 5 describes the preferences of these agents. Solid-
line edge denotes the most preferred good, dash-line edge the second most preferred good, and
doted-line edge either the third or fourth most preferred good. Furthermore, the doted-circles are
missing goods that will be presented later on. For the time being, we can assume that inner edges
and outer edges of these doted-circles are directly connected.

532

A Complexity Approach for Core-Selecting Exchange

We are now able to present the main idea of the reduction. When the manipulator reveals
his true preferences, he obtains his favorite goods except for µ′. Indeed, during ATTC he �rst
exchanges µ with κ1, and then χ1

1 with ξ1, χ2
1 with ξ′1, χ3

1 with κ2, and so on. At the end, the
manipulator is not able to obtainµ′ since he has already exchangedµwith another good. �erefore,
he keeps his good χ3

m.
Note that the only way for him to be be�er of is to obtain his most preferred goods i.e., µ′

instead of χ3
m. But to obtain such assignment, he must exchange

• µ with µ′

• χ`ii with κi

• χ`
′
i
i with ξi

• χ`
′′
i
i with ξ′i

where for each clause ci, {`i, `′i, `′′i } = {1, 2, 3}. �e good χ`i exchanged with κi will correspond
to the literal rendering true clause ci. We are now ready to introduce the remaining goods.

�e aim of the goods occulted in Figure 5 is to maintain consistency on the choice of literals
rendering true clauses. In other words, we want to avoid a situation where two goods χ`i and χkj ,
corresponding to a variable and its negation, are exchanged by the manipulator in order to obtain
goods κi and κj . To do so, for any pair of literals c`i and ckj , such that c`i is u and ckj is ¬u for some
variable u ∈ U , we introduce goods αi,`j,k, βi,`j,k and γi,`j,k. �e preferences of the owners of αi,`j,k, βi,`j,k
and γi,`j,k are illustrated in Figure 6. In this �gure, the most preferred (resp. second most preferred)
good for the owner of αi,`j,k (resp. γi,`j,k) is αi,`j′,k′ (resp. γi

′,`′

j,k), where αi,`j′,k′ (resp. γi
′,`′

j,k) is one of the
goods introduced because literal ck′j′ (resp. c`′i′) is ¬u (resp. u) and cj′ (resp. ci′) is the latest clause
preceding cj (resp. ck) that contains ¬u (resp. u) as one of its literals. If cj (resp. ci) is the �rst
clause containing ¬u (resp. u) as one of its literals, then the most preferred (resp. second most
preferred) good for the owner of αi,`j,k (resp. γi,`j,k) is χ`i (resp. χkj). Finally, the outgoing edge of
κi (resp. κj), which partially appears in Figure 5, is directed toward the (` + 1)th most preferred
good (resp. (k + 1)th most preferred good) for the owner of κi (resp. κj). �is good is denoted in
Figure 5 by αi,`j′′,k′′ (resp. γi

′′,`′′

j,k), where αi,`j′′,k′′ (resp. γi
′′,`′′

j,k) is one of the good introduced because
literal ck′′j′′ (resp. c`′′i′′) is ¬u (resp. u) and cj′′ (resp. ci′′) is the last clause that contains ¬u (resp. u)
as one of its literals.

To see how this gadget works, assume that the manipulator exchanges χ`i to obtain κi, corre-
sponding to the case where ci is true because of literal c`i (i.e. positive occurrence of variable u).
�is exchange involves a cycle in the ATTC-graph including the goods on the unique path from
κi to χ`i . �is path includes good αi,`j,k which is exchanged. �e owner of βi,`j,k does not belong
to this path, and therefore he keeps his good. Furthermore, the most preferred remaining good
for him a�er this exchange becomes γi,`j,k. Since βi,`j,k is the most preferred good for the owner of
γi,`j,k, the exchange between these two goods is performed at the next step of ATTC. A�er this ex-
change performed, the unique possible path from κj to χkj is broken and the manipulator cannot
use anymore χkj to obtain κj .

533

Fujita, Lesca, Sonoda, Todo, & Yokoo

χ1
1

χ2
1

χ3
1

ξ1

ξ′1

χ1
2

χ2
2

χ3
2

ξ2

ξ′2

χ1
m

χ2
m

χ3
m

ξm

ξ′m

κ1

κ2

χ3
m−1

κm

µ

2nd

3th

4th

2nd

3th

4th

2nd

3th

4th

1st

2nd

3th

3th

2nd

1st

3th

2nd

1st

1st

1st

1st

1st

κ3

µ′

Figure 5: Partial representation of the reduction

On the other hand, assume now that the manipulator wants to use χkj to obtain κj , corre-
sponding to the case where cj is true because of literal ckj (i.e. negative occurrence of variable u).
For this exchange to be possible, it is required for good βi,`j,k to be exchanged with another good

534

A Complexity Approach for Core-Selecting Exchange

χℓ
i αi,ℓ

j,k
κi

βi,ℓ
j,k

χk
j γi,ℓ

j,k
κj

(k+1)th2nd

1st

1st

2nd

2nd

(ℓ+1)th

2nd

1st

2nd

1st1st
αi,ℓ
j′,k′

1st

2nd
γi′,ℓ′

j,k

αi,ℓ
j′′,k′′

1st

2nd
γi′′,ℓ′′

j,k

Figure 6: Goods on the paths from κi to χ`i and from κj to χkj

than γi,`j,k. But in that case, βi,`j,k must be exchanged with αi,`j,k, and thus χ`i cannot be used by the
manipulator to obtain κi.

To conclude the proof, we show that there is a truth assignment satisfying all clauses in the
M3SAT instance i� there is a bene�cial manipulation where the manipulator receives his 3m+ 1
most preferred goods. If there is truth assignment Υ satisfying all clauses in the M3SAT instance
then we construct a bene�cial manipulation step by step as follows. Good µ′ will be at the top
of the preference revealed by the manipulator. �us, the �rst exchange performed during ATTC
will be between µ and µ′. A�er this exchange performed, the most preferred remaining good for
the owner of κ1 changes and a path from κ1 to χ1

1 appears in the ATTC-graph. If literal c11 is true
according to Υ then the second good in the preference revealed by the manipulator is κ1, and
the third and fourth goods are ξ1 and ξ′1, respectively. In that case, κ1 being the most preferred
remaining good according to the preference revealed by the manipulator, there is a cycle including
χ1
1 and the manipulator obtains κ1 in exchange of χ1

1. A�erward, χ2
1 and χ3

1 are exchanged with ξ1
and ξ′1, respectively. Note that in that case, each good α1,2

j,k is exchanged with β1,2j,k since the most
preferred good for the owner of α1,2

j,k is not in the ATTC-graph anymore. For the same reason,
α1,3
j,k is exchanged with β1,3j,k . On the other hand, if c11 is not true according to Υ then the second

good in the preference revealed by the manipulator is ξ1, and χ1
1 is exchanged with ξ1. Note that

in that case, each good α1,1
j,k is exchanged with β1,1j,k . �erefore, the second most preferred good

for the owner of κ1 is removed from the ATTC-graph, and there is a path from κ1 to χ2
1. In that

case, if c21 is true according to Υ then the third and fourth goods in the preference revealed by
the manipulator are κ1 and ξ′1, and both goods are obtained by the manipulator. On the other
hand, if literal c21 is not true according to Υ then literal c31 is true and the third and fourth goods
in the preference revealed by the manipulator are ξ′1 and κ1. We continue in a similar fashion to
construct the rest of the preference pro�le revealed by the manipulator, and it is easy to check that
at the end he obtains his 3m+ 1 most preferred goods.

Assume now that there is a bene�cial manipulation where the manipulator receives his 3m+1
most preferred goods. Note �rst that µ must be exchanged with µ′. Furthermore, for any clause
ci there must be two goods χ`′i and χ`′′i exchanged with goods ξi and ξ′i, because otherwise one
of this good will not be obtained by the manipulator. �erefore, the remaining good, say χ`i , will
be the only one available to obtain good κj for a clause cj possibly di�erent to ci. If ci is a clause

535

Fujita, Lesca, Sonoda, Todo, & Yokoo

containing un-negated variable then χ`i must be exchanged to obtain κi because otherwise the
manipulator will not be able to obtain κi, leading to a contradiction. Indeed, assume by contra-
diction that another good, say χkj is used by the manipulator to obtain κi. By construction, literal
ckj must be a negated occurrence of c`i , because otherwise no path from κi to χkj are possible in
the ATTC-graph. But on the other hand, the path from κi to χkj passes through goods αi,`j,k and
βi,`j,k. �erefore, both goods must be part of the remaining goods in the ATTC-graph. Since αi,`j,k
is the most preferred good according to the preference of the owner of βi,`j,k, the path should stop
with a cycle including αi,`j,k and βi,`j,k, leading to a contradiction. Finally, if ci is a clause containing
negated variable then χ`i must also be exchanged to obtain κi because there is no possible path
in the ATTC-graph from κi to a good χkj corresponding to a negated variable. All in all, for each
clause ci, there is one good χ`i which is used to obtain κi. Furthermore, by construction we know
that no pair of goods χ`i and χkj , corresponding to a variable and its negation, are exchanged by
the manipulator in order to obtain goods κi and κj . �erefore, one can easily construct a truth
assignment of the variables in U such that each literal c`i , corresponding to a good χ`i exchanged
with κi, is true. Such assignment satis�es all clauses of C and this concludes the proof.

Appendix C. Basic Properties of ATTC

We compile in this appendix all the basic lemmas which will be of help to prove more elaborate
results. We start by providing notations which will be used in all appendices. Consider an assign-
ment problem (e, τ) involving a set of agents or identitiesN . In this appendix we do not make any
hypothesis on the existence of manipulators using multiple identities. �ese manipulators may or
may not exist and all the revealed identities are considered as agents belonging toN . Furthermore,
the revealed preference pro�le τ may or may not contain misreport, and this preference pro�le,
as well as the initial endowment e, are just part of the input of the ATTC procedure.

Let Gk = (Vk, Ek) be the ATTC graph during the step k of ATTC applied to (e, τ), and let
Xk
i be the set of goods assigned to agent i a�er the k �rst steps. Note that for any step k and for

any good o belonging to Vk, there exists a unique directed path in Gk which starts from o and
visits various goods of Vk before cycling to one of the goods already visited. Let pk(o) denote
this directed path in Gk, and let Sk(o) be the set of goods visited by pk(o). Figure 7a illustrates
with solid-line edges such path pk(o1) which could appear inGk. In this example, the set of goods
Sk(o1) visited by pk(o1) is {o1, o2, o4, o5, o6, o7}. �e dash-line edges in Figure 7a represents edges
of Ek which are not part of pk(o1). Figure 7b illustrates with solid-line edges directed path pk(o4)
in Gk, which starts from good o4. Note that for any step k of the ATTC procedure and for any
good o belonging to Vk, the directed path pk(o) is unique because the outdegree of any vertex in
Gk is equal to 1.

It can be seen that the directed path pk(o4) is a subpath of pk(o1) (see Figure 7). More generally,
for any good o′ belonging to Sk(o), the directed path pk(o′) is a subpath of pk(o). Furthermore,
set Sk(o4) is included in set Sk(o1). Note also that pk(o4) is a cycle containing goods Sk(o4) =
{o1, o2, o3, o4}. �erefore pk(o5), pk(o6) and pk(o7) correspond to the same cycle as pk(o4), and
Sk(o4) = Sk(o5) = Sk(o6) = Sk(o7) hold.

536

A Complexity Approach for Core-Selecting Exchange

o3

o1 o2 o4

o5

o6

o7

(a) Oriented path pk(o1) in plain edges

o3

o1 o2 o4

o5

o6

o7

(b) Oriented path pk(o4) in plain edges

Figure 7: Example of ATTC graph Gk

Finally for any good o′′ ∈ Sk(o) visited by pk(o), let [pk(o)]
o′′
o be the subpath of pk(o) which

starts from good o and �nishes at good o′′. For example, in Figure 7 [pk(o1)]
o5
o1 is the subpath of

pk(o1) which contains edges (o1, o2), (o2, o4) and (o4, o5).
�e following lemma states that if the most preferred remaining good for agent i in Gk and

Gk+1 are the same then no good can be assigned to agent i during step k.

Lemma 3. For any step k ≥ 1 of Algorithm 1, for any good o belonging to Vk and for any good f
such that (o, f) belongs to Ek, if f belongs to Vk+1 then Xk

δ(o) = Xk−1
δ(o) .

Proof. Note �rst that f ∈ Vk+1 implies that no cycle including f belongs to Gk. Furthermore, by
de�nition of Algorithm 1 we know that for any good o′ belonging to eδ(o)∩Vk, (o′, f) is the unique
outgoing edge from o′ in Gk. �erefore, o′ cannot be visited by a cycle in Gk because otherwise
f would be also visited by that cycle. �us, no good belonging to agent δ(o) is exchanged during
step k, and Xk

δ(o) = Xk−1
δ(o) holds.

�e following lemma shows that if a good labels an ancestor of the current vertex of τi under
consideration during step k then it will also be the case during ulterior steps.

Lemma 4. For any step k ≥ 1 of Algorithm 1 and for any agent i ∈ N , the following inclusion holds:
a(τi(X

k−1
i , Xk−1

i ∪ Vk)) ⊆ a(τi(X
k
i , X

k
i ∪ Vk+1)).

Proof. We know by Lemma 2 that a(τi(X
k−1
i , Xk−1

i ∪ Vk)) ⊆ K \ Vk. Furthermore, by de�-
nition of Algorithm 1 we know that K \ Vk ⊆ K \ Vk+1 and Xk

i ⊆ K \ Vk+1, implying that
Xk
i ⊕ (Xk

i ∪ Vk+1) = K \ Vk+1. Hence, a(τi(X
k−1
i , Xk−1

i ∪ Vk)) ⊆ Xk
i ⊕ (Xk

i ∪ Vk+1)
holds. Moreover, by de�nition of Algorithm 1 we know that Xk−1

i ⊕ (Xk−1
i ∪ Vk) = K \ Vk,

implying that a(τi(X
k−1
i , Xk−1

i ∪ Vk)) ⊆ Xk−1
i ⊕ (Xk−1

i ∪ Vk) holds. On the other hand,
K \ Vk ⊆ Xk−1

i ⊕ Xk
i holds since the only good that may di�er from Xk−1

i to Xk
i should be

part of Vk. All in all, for any o ∈ a(τi(X
k−1
i , Xk−1

i ∪ Vk)), we have o ∈ Xk
i ∪ Vk+1 ⇔ o ∈

Xk
i ⇔ o ∈ Xk−1

i ⇔ o ∈ Xk−1
i ∪ Vk. �is means that τi(Xk−1

i), τi(X
k
i), τi(X

k−1
i ∪ Vk) and

τi(X
k
i ∪Vk+1) have in common the subpath from the root to τi(Xk−1

i , Xk−1
i ∪Vk), and therefore

a(τi(X
k−1
i , Xk−1

i ∪ Vk)) ⊆ a(τi(X
k
i , X

k
i ∪ Vk+1)) holds.

Corollary 4. For any steps t and r of Algorithm 1 such that r ≥ t and for any agent i ∈ N , the
following inclusion holds: a(τi(X

t−1
i , Xt−1

i ∪ Vt)) ⊆ a(τi(X
r−1
i , Xr−1

i ∪ Vr)).

�e following lemma shows that during any step k, any ancestor of τi(Xk−1
i , Xk−1

i ∪ Vk)
which is not assigned to agent i would be preferred by her to any goods of Vk.

537

Fujita, Lesca, Sonoda, Todo, & Yokoo

Lemma 5. For any step k ≥ 1 of Algorithm 1, for any agent i ∈ N and for any set D ⊆ K \Xk−1
i ,

if a(τi(X
k−1
i , Xk−1

i ∪ Vk)) ∩D 6= ∅ then g(τi(X
k−1
i , Xk−1

i ∪ Vk ∪D)) ∈ D \ Vk.

Proof. By contradiction, assume that g(τi(X
k−1
i , Xk−1

i ∪Vk∪D)) 6∈ D\Vk. SinceD ⊆ K \Xk−1
i .

By de�nition of D, we have (Xk−1
i ∪ Vk)⊕ (Xk−1

i ∪ Vk ∪D) = K \ (D \ Vk). Furthermore, by
de�nition of τi we have a(τi(X

k−1
i , Xk−1

i ∪Vk∪D)) ⊆ K \(Vk∪D) ⊆ K \(D\Vk). �is implies
that a(τi(X

k−1
i , Xk−1

i ∪Vk∪D))∪g(τi(X
k−1
i , Xk−1

i ∪Vk∪D)) ⊆ (Xk−1
i ∪Vk∪D)⊕(Xk−1

i ∪Vk)
holds. �erefore, by Lemma 1 we have τi(Xk−1

i , Xk−1
i ∪ Vk ∪ D) = τi(X

k−1
i , Xk−1

i ∪ Vk). But
this means that a(τi(X

k−1
i , Xk−1

i ∪ Vk ∪ D)) = a(τi(X
k−1
i , Xk−1

i ∪ Vk)), which implies that
a(τi(X

k−1
i , Xk−1

i ∪ Vk ∪ D)) ∩ D 6= ∅. �erefore, there is at least one good o belonging to
a(τi(X

k−1
i , Xk−1

i ∪ Vk ∪D)) ∩D. It is clear that o 6∈ Xk−1
i because o ∈ D ⊆ K \Xk−1

i . Hence,
o does not belong to Xk−1

i ⊕ (Xk−1
i ∪ Vk ∪D) = K \ (Vk ∪D), leading to a contradiction with

o ∈ a(τi(X
k−1
i , Xk−1

i ∪ Vk ∪D)).

�e following lemma shows that if the most preferred remaining good in Vk for an agent is
not exchanged during step k then it remains her most preferred good in Vk+1 for her.

Lemma 6. For any step k ≥ 1 of Algorithm 1 and for any edge (o, f) in Ek, if o and f belong to
Vk+1 then (o, f) ∈ Ek+1.

Proof. By Lemma 3, (o, f) ∈ Ek and f ∈ Vk+1 imply that Xk
δ(o) = Xk−1

δ(o) holds. Hence, Xk
δ(o) ⊕

Xk−1
δ(o) = K holds. On the other hand, Lemma 2 implies a(τδ(o)(X

k−1
δ(o) , X

k−1
δ(o) ∪ Vk)) ⊆ K \ Vk.

Moreover, by de�nition of Algorithm 1 we have Vk+1 ⊆ Vk and Xk−1
δ(o) ⊆ K \ Vk, which imply

with Xk
δ(o) = Xk−1

δ(o) that (Xk−1
δ(o) ∪ Vk)⊕ (Xk

δ(o) ∪ Vk+1) = (K \ Vk) ∪ Vk+1 ⊇ K \ Vk holds. All
in all, we obtain a(τδ(o)(X

k−1
δ(o) , X

k−1
δ(o) ∪ Vk)) ⊆ (Xk−1

δ(o) ∪ Vk)⊕ (Xk
δ(o) ∪ Vk+1).

Finally, by de�nition of Algorithm 1 we know that g(τδ(o)(X
k−1
δ(o) , X

k−1
δ(o) ∪ Vk)) = f since

(o, f) ∈ Ek. Furthermore, f belongs to Vk+1 ⊆ Vk. �is implies that Xk
δ(o) ⊕X

k−1
δ(o) and (Xk−1

δ(o) ∪
Vk)⊕(Xk

δ(o)∪Vk+1) are both supersets of g(τδ(o)(X
k−1
δ(o) , X

k−1
δ(o) ∪Vk))∪a(τδ(o)(X

k−1
δ(o) , X

k−1
δ(o) ∪Vk)).

�erefore, Lemma 2 implies that τδ(o)(Xk−1
δ(o) , X

k−1
δ(o) ∪ Vk) = τδ(o)(X

k
δ(o), X

k
δ(o) ∪ Vk+1) holds.

Hence, by de�nition of Algorithm 1 we obtain (o, f) ∈ Ek+1.

�e result of Lemma 6 can be extended from a simple edge into a directed path of the ATTC
graph. For example, Figure 8 illustrates the ATTC graph during two successive steps. �e goods of
B = {o5, o6, o7} belong to a cycle during step k − 1, as illustrated in Figure 8a. Hence, the goods
of B vanish from Gk ,as illustrated in Figure 8b. Figure 8 illustrates that the goods of Sk−1(o1)
belong also to Sk(o1), except for the ones of B which are not in Vk. Furthermore, the sequence
of goods visited by pk−1(o) before reaching the �rst good of B remains the same in pk(o). �e
following lemma formalizes these observations.

Lemma 7. For any step k ≥ 1 of Algorithm 1 and any good o ∈ Vk, we have Sk−1(o)∩Vk ⊆ Sk(o),
and for any good f ∈ Sk−1(o) ∩ Vk, we have [pk−1(o)]

f
o = [pk(o)]

f
o .

Proof. Note �rst that the outgoing edge of the last good visited by pk−1(o) is pointing to a good
of Sk−1(o). �is outgoing edge creates a cycle in pk−1(o). Let B be the subset of Sk−1(o) visited
by this cycle. By de�nition of Algorithm 1, we have B ∩ Vk = ∅ and Sk−1(o) \B ⊆ Vk.

538

A Complexity Approach for Core-Selecting Exchange

o2

o1

o3

o5

o6

o7o8

o4

(a) Directed path pk−1(o1) in Gk−1

o2

o1

o3

o8

o4

(b) Directed path pk(o1) in Gk

Figure 8: Variations of pk−1(o1) a�er one step of Algorithm 1

Let ` be the unique good of Sk−1(o)\B which precedes a good of B in pk−1(o) (such good `
may not exist if Sk−1(o) = B). Let o′ be a good of Sk−1(o)\(B ∪ {`}) and f ′ be the unique good
of Sk−1(o)\B such that (o′, f ′) ∈ Ek−1. Since o′ and f ′ belong to Vk, we know by Lemma 6 that
(o′, f ′) ∈ Ek.

So we have proved that all the edges of subpath [pk−1(o)]
`
o belong toGk. �erefore this directed

path exists also inGk, and all the goods of Sk−1(o)∩Vk are visited by this path. Furthermore, this
path is a subpath of pk(o) since the outdegree of any good in Gk equals 1. Hence, [pk−1(o)]

`
o =

[pk(o)]
`
o holds. �is trivially implies that for any good f belonging to Sk−1(o) ∩ Vk, we have

[pk−1(o)]
f
o = [pk(o)]

f
o .

Corollary 5. For any pair (k, l) of steps of Algorithm 1 such that k ≥ l, and for any good o ∈ Vk,
we have Sl(o) ∩ Vk ⊆ Sk(o), and for any good f ∈ Sl(o) ∩ Vk, we have [pl(o)]

f
o = [pk(o)]

f
o .

�e following lemma states that if pk−1(o) visits at least one good of subset B ⊆ Vk−1 during
step k− 1, and if both o and all the goods of B are part of Gk, then pk(o) should visit at least one
good of B during step k.

Lemma 8. For any step k ≥ 1 of Algorithm 1, for any good o ∈ Vk and for any subset B ⊆ Vk, if
Sk−1(o) ∩B 6= ∅ then Sk(o) ∩B 6= ∅.

Proof. If Sk−1(o) ∩ B 6= ∅ holds then there exists at least one good o′ ∈ Sk−1(o) ∩ B. B ⊆ Vk
implies that o′ belongs to Vk. Furthermore, Lemma 7 implies Sk−1(o) ∩ Vk ⊆ Sk(o). �erefore,
o′ ∈ Sk(o) since o′ ∈ Sk−1(o) ∩ Vk. Hence, o′ ∈ Sk(o) ∩B and Sk(o) ∩B 6= ∅.

Corollary 6. For any step k ≥ 1 of Algorithm 1, for any good o ∈ Vk and for any subset B ⊆ Vk,
if Sk(o) ∩B = ∅ then Sk−1(o) ∩B = ∅.

Appendix D. Relationship of ATTC Outcomes for Two Di�erent Pro�les and
Omitted Proof for Section 7

In this appendix, we study the parallel evolution of the ATTC graphs when two di�erent preference
pro�les τ and τ ′ are revealed by the same set of agents or identitiesN . Note �rst that the lemmas
of Annexe C can be applied both when τ or τ ′ are revealed. Let I be the subset of agents or
identities of N who do not reveal the same LP-trees in τ and τ ′. We denote by G′k = (V ′k, E

′
k)

(resp. Gk = (Vk, Ek)) the ATTC graph during step k of Algorithm 1 in the speci�c case where τ ′

539

Fujita, Lesca, Sonoda, Todo, & Yokoo

(resp. τ) is revealed, and let Y k
i (resp. Xk

i) denote the set of goods assigned to agent i a�er the
k �rst steps in that case. Let p′k(o) (resp. pk(o)) denote the directed path in G′k (resp. Gk) which
starts from good o, and let S′k(o) (resp. Sk(o)) denote the set of goods visited by p′k(o) (resp. pk(o)).
Finally, for any good o′ ∈ S′k(o) (resp. o′′ ∈ Sk(o)), let [p′k]

o′

o (resp. [pk]
o′′

o) denote the subpath of
p′k(o) (resp. pk(o)) which starts from good o and �nishes at good o′ (resp. o′′).

We start by focusing on the similarities in both cases. One could conjecture that if path pr(o)
never visits one of the goods belonging to an agent of I for any step r = 1, . . . , k then path
p′r(o) and path pr(o) should be the same (i.e., visits the same sequence of vertices) for any step
r = 1, . . . , k. �is conjecture seems realistic since the owners of the goods belonging to these
paths did not change their preferences. But in reality, this conjecture may be false if the owner of
one of the goods visited by pk(o) prefers good o′ belonging to an agent of I to all remaining goods
in Vk, and o′ does not belong to Vk but belongs to V ′k . However, the following lemma shows that
this conjecture is true under the condition that all goods belonging to the agents of I are still part
of the ATTC graph.

Lemma 9. For any step k ≥ 1 of Algorithm 1 such that
⋃
i∈I ei ⊆ Vk (i.e., no good of an agent

belonging to I has been assigned), and for any good o ∈ Vk, if Sk(o)∩
⋃
i∈I ei = ∅ (i.e., no good of an

agent belonging to I has been visited by path pk(o)) then o ∈ V ′k , Xk
δ(o) = Y k

δ(o) and p′k(o) = pk(o)
hold.

Proof. We prove this statement by induction on the number of steps k.
Base case: V1 = V ′1 trivially holds since both sets equal K . Let o be a good of V1 such that

S1(o) ∩
⋃
i∈I ei = ∅. For any good o′ ∈ S1(o) and for any good f ′ such that (o′, f ′) ∈ E1, we

know by de�nition of Algorithm 1 that f ′ labels the root of τδ(o′). On the other hand, τδ(o′) and
τ ′δ(o′) are the same since o′ 6∈

⋃
i∈I ei implies δ(o′) 6∈ I . �erefore, the root of τ ′δ(o′) is also labeled

by f ′, and by de�nition of Algorithm 1 we have (o′, f ′) ∈ E′1. �e outdegree of any vertex of V ′1
being equal to 1, we obtain p′1(o) = p1(o).

Let f denote the good labeling the root of τδ(o). By de�nition of Algorithm 1, edge (o, f)
belongs to E1. �is implies that S1(f) is a subset of S1(o), and therefore S1(f) ∩

⋃
i∈I ei = ∅

holds. As it was shown above, this implies that p′1(f) = p1(f) holds. Furthermore, by de�nition
of Algorithm 1 we know that for any good o′′ ∈ eδ(o), the unique outgoing edge of o′′ in V1 is
(o′′, f). Hence, if a good belonging to eδ(o) is part of a cycle in G1 then this cycle should be p1(f).
�erefore, this cycle should appear also inG′1 under the form of p′1(p). On the other hand, if there
is no cycle in G1 including a good of eδ(o) then S1(f) ∩ eδ(o) = ∅ should hold. �erefore, this
implies with p′1(f) = p1(f) that S′1(f) ∩ eδ(o) = ∅ holds and no good of eδ(o) is visited by a cycle
in G′1. So we have proved that X1

δ(o) = Y 1
δ(o).

Induction step: Let k be a step of Algorithm 1 such that
⋃
i∈I ei ⊆ Vk, and let o ∈ Vk such

that Sk(o) ∩
⋃
i∈I ei = ∅. Corollary 6 implies that Sk−1(o) ∩

⋃
i∈I ei = ∅ holds. �erefore, by

induction hypothesis we know that o ∈ V ′k−1, Xk−1
δ(o) = Y k−1

δ(o) and p′k−1(o) = pk−1(o) hold. First,
we show by contradiction that o ∈ V ′k holds. If o 6∈ V ′k then p′k−1(o) is the cycle visiting o inG′k−1.
But this cycle appears also in Gk−1 under the form pk−1(o). �erefore o should not belong to Vk,
leading to a contradiction.

Now, we show by contradiction that p′k(o) = pk(o) holds. Assume that p′k(o) 6= pk(o) and let
f be the �rst good visited by p′k(o) which di�ers from pk(o), and let f ′ be the good visited by pk(o)
instead of f . Let o′ be the good preceding both f in p′k(o) and f ′ in pk(o), and let j = δ(o′) denote

540

A Complexity Approach for Core-Selecting Exchange

o o1 o′

f ′

(a) pk(o) in Gk

o o1 o′

f

(b) p′k(o) in G′k

Figure 9: Di�erences between a path in Gk an G′k

the owner of o′. Figure 9 illustrates the notations. Note that we do not presume the presence
or absence of f ′ and f in V ′k and Vk, respectively. Lemma 2 implies that a(τj(X

k−1
j , Xk−1

j ∪
Vk)) ⊆ K \ Vk holds. �erefore, f cannot belong to both Vk and a(τj(X

k−1
j , Xk−1

j ∪ Vk)), and (i)
f 6∈ a(τj(X

k−1
j , Xk−1

j ∪ Vk)) or (ii) f 6∈ Vk must hold.
Assume �rst that (i) f 6∈ a(τj(X

k−1
j , Xk−1

j ∪ Vk)) holds. In that case, we show that f ′ cannot
belong to V ′k . We know that Sk(o′) ⊆ Sk(o) holds since o′ ∈ Sk(o). �is implies Sk(o′) ∩⋃
i∈I ei = ∅ since Sk(o) ∩

⋃
i∈I ei = ∅ holds by hypothesis. �erefore, Corollary 6 implies

Sk−1(o
′)∩

⋃
i∈I ei = ∅, and we obtain by induction hypothesisXk−1

j = Y k−1
j . In other words, we

haveXk−1
j ⊕Y k−1

j = K . On the other hand, we know by Lemma 2 that a(τj(X
k−1
j , Xk−1

j ∪Vk)) ⊆
K \Vk holds. Hence, for any good o′′ ∈ a(τj(X

k−1
j , Xk−1

j ∪Vk)) there is a step l < k where pl(o′′)
forms a cycle that includes o′′ in Gl. No good of

⋃
i∈I ei are visited by pl(o′′) because otherwise

this good would be missing in Vk, contradicting the assumption that
⋃
i∈I ei ⊆ Vk. �erefore,

Sl(o
′′)∩

⋃
i∈I ei = ∅ holds, implying by induction hypothesis that pl(o′′) = p′l(o

′′). In other words,
the cycle containing o′′ inGl appears also inG′l. �erefore, o′′ 6∈ V ′k since o′′ 6∈ V ′l+1 andV ′k ⊆ V ′l+1.
All in all, this means that a(τj(X

k−1
j , Xk−1

j ∪Vk)) ⊆ K\V ′k holds. As argued above, we also know
that a(τj(X

k−1
j , Xk−1

j ∪ Vk)) ⊆ K \ Vk and Xk−1
j = Y k−1

j . Hence, a(τj(X
k−1
j , Xk−1

j ∪ Vk)) ⊆
(Xk−1

j ∪ Vk)⊕ (Y k−1
j ∪ V ′k) ⊆ K = Xk−1

j ⊕ Y k−1
j holds. Furthermore, g(τj(X

k−1
j , Xk−1

j ∪ Vk))
obviously belongs to Xk−1

j ⊕ Y k−1
j = K . �erefore, if f ′ = g(τj(X

k−1
j , Xk−1

j ∪ Vk)) belongs
to V ′k then f ′ ∈ (Xk−1

j ∪ Vk) ⊕ (Y k−1
j ∪ V ′k) would hold since f ′ ∈ Vk. �is would imply by

Lemma 1 that τj(Xk−1
j , Xk−1

j ∪ Vk) = τj(Y
k−1
j , Y k−1

j ∪ V ′k), leading to a contradiction with
f ′ 6= f = g(τj(Y

k−1
j , Y k−1

j ∪ V ′k)). �erefore, we have proved that f ′ 6∈ V ′k should hold.
Now, f ′ 6∈ V ′k implies that there is a step l < k where p′l(f ′) forms a cycle that includes

f ′ in G′l. By contradiction, assume that Sl(f ′) ∩
⋃
i∈I ei = ∅ holds. By induction hypothesis,

p′l(f
′) = pl(f

′) holds, and f ′ is also contained in a cycle pl(f ′) in Gl. �erefore, f ′ 6∈ Vl+1 holds,
leading to a contradiction since Vk ⊆ Vl+1. Hence, we have shown Sl(f ′) ∩

⋃
i∈I ei 6= ∅. On

the other hand, Corollary 5 implies Sl(f ′) ∩ Vk ⊆ Sk(f
′). �erefore, Sk(f ′) ∩

⋃
i∈I ei 6= ∅ holds

since
⋃
i∈I ei ⊆ Vk. But this implies Sk(o) ∩

⋃
i∈I ei 6= ∅ since Sk(f ′) ⊆ Sk(o) holds, leading to

a contradiction with the assumption that Sk(o) ∩
⋃
i∈I ei = ∅. �erefore, we have proved that (i)

f 6∈ a(τj(X
k−1
j , Xk−1

j ∪ Vk)) does not hold.
Assume now that (ii) f 6∈ Vk holds. �is means that there is a step l < k where pl(f) forms

a cycle that includes f in Gl. By contradiction, assume that Sl(f) ∩
⋃
i∈I ei = ∅ holds. By

induction hypothesis, p′l(f) = pl(f) holds, and f is also contained in a cycle p′l(f) in G′l. �is
implies f 6∈ Vl+1, leading to a contradiction with f ∈ V ′k since V ′k ⊆ V ′l+1. Hence we have shown

541

Fujita, Lesca, Sonoda, Todo, & Yokoo

Sl(f)∩
⋃
i∈I ei 6= ∅. On the other hand, this implies that at least one good o′′ ∈

⋃
i∈I ei is included

in the cycle pl(f), and o′′ 6∈ Vl+1. But this also leads to a contradiction with
⋃
i∈I ei ⊆ Vk since

Vk ⊆ Vl+1. �erefore, we have proved that (ii) f 6∈ Vk does not hold. To summarize, we have
proved that both (i) and (ii) do not hold, leading to a contradiction. �erefore we have proved
p′k(o) = pk(o).

Finally, following the same logic as in the base case, it is easy to prove that the same good is
assigned to δ(o) during step k in both Gk and G′k. Furthermore by induction hypothesis we know
that Xk−1

δ(o) = Y k−1
δ(o) holds. �erefore we have proved that Xk

δ(o) = Y k
δ(o).

�e following lemma extends in a sense Lemma 9 to the �rst step of Algorithm 1 where path
pk(o) reaches a good belonging to an agent of I .

Lemma 10. For any step k ≥ 1 of Algorithm 1 such that
⋃
i∈I ei ⊆ Vk, and for any good o ∈ Vk, if

k is the �rst step such that Sk(o)∩
⋃
i∈I ei 6= ∅, and if f is the �rst good of

⋃
i∈I ei visited by pk(o)

then o ∈ V ′k and [p′k(o)]
f
o = [pk(o)]

f
o hold.

�e proof of this lemma is similar to the induction proof of Lemma 9. Indeed, the proof of
Lemma 10 can be obtained by replacing the edges and goods visited by p′k(o) and pk(o) by the
edges and goods visited by [p′k(o)]

f
o and [pk(o)]

f
o , respectively. Furthermore, the proof of this

lemma does not need to be made by induction because the induction hypothesis used in the proof
of Lemma 9 is replaced by the application of Lemma 9 to step k−1, where pk−1(o) does not reach
a good of

⋃
i∈I ei. �erefore, the proof of this lemma is omi�ed.

Finally, the end of this appendix is dedicated to the proof of Proposition 2. We assume here
that τ is the true preference pro�le and τ ′ is the preference pro�le revealed when agent i tries
to manipulate. Agent i is the only agent who changes her preference from τ to τ ′, and therefore
I = {i}. Let o∗ denote the �rst good acquired by agent i when she reveals her true preference τi.
�e following proposition is a reformulation of Proposition 2.

Proposition 5. For any good o ∈ ϕi(e, τ ′), {o∗} %τi {o} holds.

Proof. By contradiction, assume that there exists o ∈ ϕi(e, τ ′) such that {o} �τi {o∗}. By def-
inition of τi, this means that g(τi({o∗}, {o})) = o and o 6= o∗. Let k denote the step of Al-
gorithm 1 where o∗ is assigned to agent i when she reveals τi. By de�nition of 1, this implies
that g(τi(X

k−1
i , Xk−1

i ∪ Vk)) = o∗ and Sk(o∗) ∩ ei 6= ∅ hold. Furthermore, by de�nition of o∗
we know that no good of K \ Vk is assigned to agent i during the k − 1 �rst steps. �erefore,
Xk−1
i = ∅ holds. We show �rst that o 6∈ Vk. Assume by contradiction that o ∈ Vk. Lemma 2

implies that a(τi(X
k−1
i , Xk−1

i ∪ Vk)) ⊆ K \ Vk holds. Furthermore, o∗ ∈ Vk and o ∈ Vk implies
{o} ⊕Xk−1

i = K \ {o} and {o∗} ⊕ (Xk−1
i ∪ Vk) = K \ (Vk \ {o∗}). �erefore both {o} ⊕Xk−1

i

and {o∗}⊕ (Xk−1
i ∪Vk) are supersets of a(τi(X

k−1
i , Xk−1

i ∪Vk))∪ g(τi(X
k−1
i , Xk−1

i ∪Vk)), and
Lemma 1 implies that τi(Xk−1

i , Xk−1
i ∪ Vk) = τi({o∗}, {o}) holds. But this leads to a contradic-

tion with o 6= o∗ since g(τi(X
k−1
i , Xk−1

i ∪ Vk)) = o∗ and g(τi({o∗}, {o})) = o. �erefore, we
have proved that o 6∈ Vk.

Now, o 6∈ Vk means that there is a step l < k where pl(o) forms a cycle including o in Gl.
But on the other hand, ei ⊆ Vk implies that no good belonging to agent i should be contained in
a cycle in Gl, and Sl(o) ∩ ei = ∅ holds. �is implies by Lemma 9 that o ∈ V ′l and p′l(o) = pl(o)

542

A Complexity Approach for Core-Selecting Exchange

hold. Hence, good o is assigned to the same agent in Gl and G′l, and this agent is not agent i since
Sl(o) ∩ ei = ∅. �is leads to a contradiction with o assigned to agent i when she reveals τ ′i .

Appendix E. Omitted Proof for Subsection 8.2

In this appendix we study the impact of removing set B of goods from the initial endowment in
an assignment problem. �e removal of these goods may be due to hiding manipulation or for the
requirement of some proofs. Furthermore, the goods ofB may belong to the initial endowment of
a single agent or multiples agents. �e results provided in this appendix applies in all these cases.

We assume in this appendix that, from an assignment problem (e, τ), we are able to construct
a truncated assignment problem (e′, τ) on the same set of agents or identities N and with the
same preference pro�le τ , but where the initial endowment e′ results from the removal of the
goods of B from e . We denote by G′k = (V ′k, E

′
k) (resp. Gk = (Vk, Ek)) the ATTC graph during

step k of Algorithm 1 applied to (e′, τ) (resp. (e, τ)), and let Y k
i (resp. Xk

i) denote the set of goods
assigned to agent i a�er the k �rst steps in that case. Let p′k(o) (resp. pk(o)) denote the directed
path inG′k (resp. Gk) which starts from good o, and let S′k(o) (resp. Sk(o)) denote the set of goods
visited by p′k(o) (resp. pk(o)).

Note that the de�nition of e′may lead to an empty endowment for some agents ofN . However,
in that case these agents are ignored during Algorithm 1 applied to (e′, τ), and no good is assigned
to them. Note also that the LP-trees of τ contain vertices labeled by the goods of B. �erefore, in
order to compare sets of goods through these LP-trees, we initially assign the goods of B to the
agents who receive them during Algorithm 1 applied to (e, τ). More formally, we assume that
Y 0
i , which is the set of goods assigned to agent i before the �rst step of Algorithm 1 applied to

(e′, τ), contains the subset of goods of B assigned to agent i during Algorithm 1 applied to (e, τ)
i.e., we have Y 0

i = ϕi(e, τ)∩B for any agent i ∈ N . Hence, by de�nition of Algorithm 1 we have
Y 0
i = ϕi(e, τ) ∩B ⊆ Y k

i for any step k ≥ 1 and for any agent i ∈ N . However, the goods of Y 0
i

are not really assigned to agent i during Algorithm 1 because no agent reveals these goods as part
of her initial endowment in e′.

�e following lemma is similar to Lemma 9, but applied to the context of changes in the initial
endowment rather than changes in the revealed preference pro�le.

Lemma 11. For any step k ≥ 1 of Algorithm 1 such that B ⊆ Vk, and for any good o ∈ Vk, if
Sk(o) ∩B = ∅ then o ∈ V ′k , Xk

δ(o) = Y k
δ(o) \B and pk(o) = p′k(o) hold.

�e proof of this Lemma is essentially the same as the proof of Lemma 9. �erefore, we chose
to omit the proof of this lemma.

�e following lemma shows that if we remove the goods visited by a cycle appearing dur-
ing Algorithm 1 then the sequence of cycles occurring during prior steps is not a�ected by this
removal.

Lemma 12. If B corresponds to the set of goods visited by a cycle C occuring in Gk then any cycle
C′ 6= C, occuring in Gl during step l ≤ k, appears also in G′l. Furthermore, for any good o visited by
C′, τδ(o)(Y l−1

δ(o) , Y
l−1
δ(o) ∪ V

′
l) = τδ(o)(X

l−1
δ(o), X

l−1
δ(o) ∪ Vl) holds.

Proof. Let o be a good visited by cycle C′ 6= C during step l ≤ k. We know that C occurs during
step k and visits all the goods of B. �erefore, B ⊆ Vl since Vk ⊆ Vl. Furthermore, by de�nition

543

Fujita, Lesca, Sonoda, Todo, & Yokoo

of Algorithm 1 no good of B can be visited by C′ = pl(o) since C′ 6= C. �erefore, Sl(o) ∩B = ∅
holds. �is implies by Lemma 11 that pl(o) = p′l(o). �erefore, cycle C ′ occurs in G′l under the
form p′l(o), and we have established the �rst part of the lemma.

As argued above, the sequences of cycles occurring in Algorithm 1 applied to both (e, τ) and
(e′, τ) are the same during the k �rst steps (except for C during step k). �erefore, for any step
l ≤ k, Vl \ B = V ′l holds since V ′1 = V1 \ B. Let o be a good visited by cycle C′ 6= C during step
l ≤ k. We know by Lemma 11 that Y l−1

δ(o) \B = X l−1
δ(o) holds since Sl(o)∩B = ∅ (as shown above).

Hence, K \B ⊆ Y l−1
δ(o) ⊕X

l−1
δ(o) and K \B ⊆ (Y l−1

δ(o) ∪ V
′
l)⊕ (X l−1

δ(o) ∪ Vl) trivially hold. Moreover,
Lemma 2 implies a(τδ(o)(X

l−1
δ(o), X

l−1
δ(o) ∪ Vl)) ⊆ K \ Vl ⊆ K \ B, where the last inclusion is due

to B ⊆ Vk ⊆ Vl. �erefore, both Y l−1
δ(o) ⊕ X

l−1
δ(o) and (Y l−1

δ(o) ∪ V
′
l) ⊕ (X l−1

δ(o) ∪ Vl) are supersets
of a(τδ(o)(X

l−1
δ(o), X

l−1
δ(o) ∪ Vl)). Finally, we know that g(τδ(o)(X

l−1
δ(o), X

l−1
δ(o) ∪ Vl)) 6∈ B holds since

no good of B is visited by C′ (as mentioned above). �erefore, g(τδ(o)(X
l−1
δ(o), X

l−1
δ(o) ∪ Vl)) belongs

to both Y l−1
δ(o) ⊕ X

l−1
δ(o) and (Y l−1

δ(o) ∪ V
′
l) ⊕ (X l−1

δ(o) ∪ Vl). Hence, by Lemma 1 we can assert that
τδ(o)(Y

l−1
δ(o) , Y

l−1
δ(o) ∪ V

′
l) = τδ(o)(X

l−1
δ(o), X

l−1
δ(o) ∪ Vl).

Lemma 12 can be applied to remove the goods visited by a cycle occurring during the last step
of Algorithm 1 without changing the outcome. We will use Lemma 12 to show that we can also
remove the goods visited by a cycle occurring during an arbitrary step of Algorithm 1 without
changing the outcome. �e sketch of proof for a given cycle C occurring during step k is as follow:

• Remove one by one the cycles occurring during the last step of Algorithm 1 until k becomes
the last step of Algorithm 1 applied to the truncated problem (ẽ, τ), where ẽ is the initial
endowment resulting a�er removal,

• Remove from (ẽ, τ) the goods visited by C to obtain assignment problem (e′′, τ),

• Put back one by one the goods of the cycles removed in the �rst bullet until all goods, except
for those removed in the second bullet, are back.

We will show that all these transformations preserve the outcome of Algorithm 1 for the remain-
ing goods. Lemma 12 can be used to show that the outcome of Algorithm 1 is preserved by the
transformations of the �rst and second bullets. But in the third bullet, we insert goods instead of
removing them. �erefore, we need to show that, under some conditions, we can add some goods
in an assignment problem without changing the outcome of Algorithm 1 for the goods which were
already part of the problem.

To be as close as possible to the notations used in the sketch of proof, we assume here that the
assignment problem (e′, τ) results from the assignment problem (e′′, τ) by adding the goods of
a given set D i.e., each good o of D is reassigned to the initial endowment e′δ(o) of its owner δ(o)
in the original problem (e, τ) (where o ∈ eδ(o)). We denote by G′′k = (V ′′k , E

′′
k) the ATTC graph

during step k of Algorithm 1 applied to (e′′, τ), and let Zki denote the set of goods assigned to
agent i a�er the k �rst steps in that case. Let p′′k(o) denote the directed path in G′′k which starts
from good o, and let S′′k (o) denote the set of goods visited by p′′k(o).

Note that during the transformations of the �rst and second bullets, removed goods were as-
signed to agents before the beginning of the ATTC procedure applied to (e′′, τ). We assume that
we keep this initial assignment in (e′, τ) except for the goods of D which are reinjected into the

544

A Complexity Approach for Core-Selecting Exchange

problem. More formally, we assume that for any agent i ∈ N , Y 0
i = Z0

i \ D, where Y 0
i are the

goods assigned before the �rst step of Algorithm 1 applied to (e′, τ). �e following lemma shows
that if for any agent the goods ofD are less worthy than the goods assigned to them by Algorithm
1 applied to (e′′, τ) then the outcome of Algorithm 1 is exactly the same for the goods in common
to e and e′.

Lemma 13. If for any step k ≥ 1 of Algorithm 1 applied to (e′′, τ), and for any agent i such that
e′′i ∩ V ′′k 6= ∅, a(τi(Z

k−1
i , Zk−1i ∪ V ′′k)) ⊆ K \D holds then V ′′l = V ′l \D and E′′l ⊆ E′l holds for

any step l. Furthermore, with the same conditions, for any cycle C′ in G′′l and for any good o visited
by C′, C′ occurs also in G′l and τδ(o)(Z

l−1
δ(o), Z

l−1
δ(o) ∪ V

′′
l) = τδ(o)(Y

l−1
δ(o) , Y

l−1
δ(o) ∪ V

′
l).

Proof. By contradiction let l be the �rst step of Algorithm 1 such that V ′′l 6= V ′l \D or E′′l 6⊆ E′l
hold. �is means that during any ulterior step r < l, V ′′r = V ′r \D andE′′r ⊆ E′r hold. �is implies
that for any good o ∈ V ′′r , p′′r(o) = p′r(o) because S′′r (o) ⊆ V ′r holds and every outgoing edges
of the goods of S′′r (o) are the same in G′l and G′′l . �erefore, V ′′l = V ′l \ D has to hold, and this
implies by assumption that E′′l 6⊆ E′l holds. Furthermore, any good of V ′′r \ V ′′r+1, assigned during
step r < l of the Algorithm 1 procedure applied to (e′′, τ), should be assigned to the same agent
during step r of Algorithm 1 applied to (e′, τ). �erefore, Y l−1

i \ D = Z l−1i \ D holds for any
agent i ∈ N .

Let o be a good of V ′′l such that the outgoing edge from o in E′′l does not belong to E′l , and let
i = δ(o) be the owner of o. By de�nition of Algorithm 1, this means that τi(Z l−1i , Z l−1i ∪ V ′′l) 6=
τi(Y

l−1
i , Y l−1

i ∪ V ′l). We know that g(τi(Z
l−1
i , Z l−1i ∪ V ′′l)) ∈ V ′′l ⊆ K \ D. By assumption

we also know that a(τi(Z
l−1
i , Z l−1i ∪ V ′′l)) ⊆ K \ D. Furthermore, Y l−1

i \ D = Z l−1i \ D and
V ′′l = V ′l \D implies thatK \D ⊆ Y l−1

i ⊕Z l−1i andK \D ⊆ (Z l−1i ∪V ′′l)⊕(Y l−1
i ∪V ′l) hold. All

in all, we have g(τi(Z
l−1
i , Z l−1i ∪ V ′′l))∪ a(τi(Z

l−1
i , Z l−1i ∪ V ′′l)) subset of both Z l−1i ⊕ Y l−1

i and
(Z l−1i ∪V ′′l)⊕ (Y l−1

i ∪V ′l). �is implies by Lemma 2 that τi(Z l−1i , Z l−1i ∪V ′′l) = τi(Y
l−1
i , Y l−1

i ∪
V ′l), leading to a contradiction. Hence, both V ′′l = Vl \D and E′′l ⊆ E′l hold and the �rst part of
Lemma 13 is established.

Let C′ be a cycle occurring in G′′l and let o be a good visited by C′. According to the �rst part
of Lemma 13, we know that V ′′l ⊆ V ′l and E′′l ⊆ E′l . �erefore, the outgoing edge of any good in
S′′l (o) ⊆ V ′′l is the same in G′l and G′′l , and C′ = p′′l (o) = p′l(o) holds. In other words, cycle C′
occurs also in G′l under the form p′k(o). Furthermore, by following the same reasoning as in the
previous paragraph, it is easy to show that τi(Z l−1i , Z l−1i ∪V ′′l) = τi(Y

l−1
i , Y l−1

i ∪V ′l) holds.

We are now ready to prove that the removal ofB, the set of goods visited by a cycle C, does not
change the outcome of Algorithm 1 for the remaining goods. In the following lemma, we assume
that (e, τ) is the initial problem and (e′, τ) is the problem resulting from the removal of B from
(e, τ). We assume also that C occurs during step k of the Algorithm 1 procedure applied to (e, τ).

Lemma 14. If C′ 6= C is a cycle occurring in Gl during step l of Algorithm 1 then C′ occurs also in
G′r during a step r ≤ l. Furthermore, if C′′ 6= C is another cycle appearing in Gs during a step s < l,
and both C′ and C′′ visit goods belonging to the initial endowment of a given agent then C′′ occurs in
G′t during a step t < r.

�e �rst part of the Lemma 14 states that a cycle occurring in Algorithm 1 applied to (e, τ)
occurs also in the Algorithm 1 applied to (e′, τ), and this cycle does not occur later during Algo-
rithm 1 for (e′, τ) than (e, τ). �e second part of Lemma 14 states that the sequence of cycles

545

Fujita, Lesca, Sonoda, Todo, & Yokoo

involving the goods of an agent is the same for Algorithm 1 applied to (e, τ) or (e′, τ), even if
cycles may occurs earlier when Algorithm 1 is applied to the truncated problem (e′, τ). We follow
the sketch of proof presented earlier and its notations.

Proof. In addition to Lemma 14, we show that for any cycle C′ 6= C occurring in Gl and occurring
in G′r during step r ≤ l (as in the statement of Lemma 14) and for any good o visited by C′,
τδ(o)(Y

r−1
δ(o) , Y

r−1
δ(o) ∪ V

′
r) = τδ(o)(X

l−1
δ(o), X

l−1
δ(o) ∪ Vl) holds. Let h denotes the last step of Algorithm

1 applied to (e, τ). �e proof is by induction on h− k.

Base case: When h = k i.e., k is the last step of Algorithm 1, Lemma 12 states that we can
remove the goods of B without changing the behavior of Algorithm 1 for the remaining goods.
Hence, any cycle C′ 6= C occurring in Gl occurs also in G′l. Furthermore, for the same reason
if C′′ 6= C is another cycle appearing in Gs during a step s < l then C′′ appears in G′s, and
s < l. Finally, Lemma 12 states that for any good o visited by C′, τδ(o)(Y l−1

δ(o) , Y
l−1
δ(o) ∪ V

′
l) =

τδ(o)(X
l−1
δ(o), X

l−1
δ(o) ∪ Vl) holds.

Induction step: Assume now that h > k. Let (ẽ, τ) be the assignment problem obtained by
removing the goods of Vh i.e., the goods assigned during the last step of Algorithm 1 applied to
(e, τ). We denote by G̃l = (Ṽl, Ẽl) the ATTC graph during step l of the ATTC procedure applied
to (ẽ, τ), and Z̃il the set of goods assigned to agent i at the end of this step. For any agent i ∈ N , the
set of goods Z̃i0 is the set of goods assigned to agent i before the beginning of Algorithm 1 applied
to (ẽ, τ), and it contains the good of Vh assigned to agent i during the last step of Algorithm 1
applied to (e, τ), if such a good exists. Note that Z̃i0 contains at most one good since at most one
good can be assigned to an agent during one step of Algorithm 1.

By assuming that the goods of Vh were removed cycle by cycle, we can state by Lemma 12
that any cycle C′ occurring in Gl during step l < h occurs also in G̃l, and for any good o visited
by C′, we have τδ(o)(Z̃ l−1δ(o), Z̃

l−1
δ(o) ∪ Ṽl) = τδ(o)(X

l−1
δ(o), X

l−1
δ(o) ∪ Vl). Hence, Algorithm 1 applied to

(ẽ, τ) has exactly h− 1 steps. Now let (e′′, τ) be the assignment problem obtained by removing
the goods of B to the assignment problem (ẽ, τ). �e notations used to describe the di�erent
steps of Algorithm 1 applied to (e′′, τ) are the same than the ones described before Lemma 13.
Note that for any agent i ∈ N , the set of goods Zi0 contains the good of Z̃i0 and the goods of
B assigned to agent i during Algorithm 1 applied to (ẽ, τ), if such good exists. By induction
hypothesis we know that any cycle C′ 6= C, occurring in G̃l (and equivalently in Gl) occurs also
in G′′r during a step r ≤ l. Furthermore, if C′′ 6= C is another cycle appearing in G̃s during
a step s < l (and equivalently in Gs), and both C′ and C′′ visit goods belonging to the initial
endowment of a given agent, then C′′ appears in G′′t during a step t < r. Finally, for any good
o visited by C′, τδ(o)(Zr−1δ(o) , Z

r−1
δ(o) ∪ V

′′
r) = τδ(o)(Z̃

l−1
δ(o), Z̃

l−1
δ(o) ∪ Ṽl) holds. Note that this implies

τδ(o)(Z
r−1
δ(o) , Z

r−1
δ(o) ∪V

′′
r) = τδ(o)(X

l−1
δ(o), X

l−1
δ(o)∪Vl) because we have shown that τδ(o)(Z̃ l−1δ(o), Z̃

l−1
δ(o)∪

Ṽl) = τδ(o)(X
l−1
δ(o), X

l−1
δ(o) ∪ Vl) holds.

We show now that for any step t of Algorithm 1 applied to (e′′, τ) and for any agent i such
that e′′i ∩ V ′′t 6= ∅, a(τi(Z

t−1
i , Zt−1i ∪ V ′′t)) ⊆ K \ Vh holds. By contradiction let t be the �rst

step where there is an agent i with e′′i ∩ V ′′t 6= ∅ and a(τi(Z
t−1
i , Zt−1i ∪ V ′′t)) ∩ Vh 6= ∅. Let

r ≥ t be the earliest step of Algorithm 1 applied to (e′′, τ) such that a good o belonging to e′′i (i.e.,
δ(o) = i) is visited by a cycle C′ in G′′r . By Corollary 4 we know that a(τi(Z

t−1
i , Zt−1i ∪ V ′′t)) ⊆

a(τi(Z
r−1
i , Zr−1i ∪ V ′′r)) holds since r ≥ t. Furthermore, as stated in the previous paragraph

546

A Complexity Approach for Core-Selecting Exchange

we know that there exists a step l ≥ r such that C′ occurs in G̃l (and equivalently in Gl), and
τi(Z

r−1
i , Zr−1i ∪V ′′r) = τi(X

l−1
i , X l−1

i ∪Vl). By de�nition of τi, this implies that a(τi(Z
r−1
i , Zr−1i ∪

V ′′r)) = a(τi(X
l−1
i , X l−1

i ∪Vl)), and therefore a(τi(Z
t−1
i , Zt−1i ∪V ′′t)) ⊆ a(τi(X

l−1
i , X l−1

i ∪Vl))
holds. Hence, we can conclude that a(τi(X

l−1
i , X l−1

i ∪Vl))∩Vh 6= ∅ holds. But on the other hand,
Lemma 2 implies a(τi(X

l−1
i , X l−1

i ∪ Vl)) ⊆ K \ Vl. Furthermore, K \ Vl ⊆ K \ Vh holds since
h > l. �is leads to contradiction with a(τi(X

l−1
i , X l−1

i ∪ Vl)) ∩ Vh 6= ∅.
Note �rst that assignment problem (e′, τ) can be obtained from (e′′, τ) by reinserting the

goods of Vh into the initial endowment of their owners (instead of assigning these goods to their
owner before starting Algorithm 1). Notations used to describe Algorithm 1 applied to (e′, τ)
are the same than the ones used at the beginning of this appendix. �e property shown in the
previous paragraph implies that we can apply Lemma 13. Hence, V ′′r = V ′r \Vh andE′′r ⊆ E′r hold
for any step r, any cycle C′ occurring inG′′r will occur also inG′r , and for any good o visited by C′,
τδ(o)(Z

r−1
δ(o) , Z

r−1
δ(o) ∪V

′′
r) = τδ(o)(Y

r−1
δ(o) , Y

r−1
δ(o) ∪V

′
r) holds. Furthermore, we we have shown earlier

that C′ also occurs in G̃l (and equivalently inGl) during a step l ≥ r, and τδ(o)(Zr−1δ(o) , Z
r−1
δ(o)∪V

′′
r) =

τδ(o)(X
l−1
δ(o), X

l−1
δ(o)∪Vl). To summarize, for any cycle C′ 6= C occuring inGl during a step l < h, C′

occurs in G′r during a step r ≤ l. Furthermore, if C′′ 6= C is another cycle appearing in Gs during
a step s < l and both C′ and C′′ visit goods belonging to the initial endowment of a given agent
then C′′ occurs in G′t during a step t < r since C′′ occurs in G′′t (and therefore in G′t).

It remains to consider the case of goods belonging to Vh. Let o be a good belonging to Vh and
let i = δ(o) be the owner of o. Let l be the step of Algorithm 1 applied to (e′, τ) where o is visited
by a cycle C′ = p′l(o). It is obvious that S′l(o) ⊆ Vh since we have already described all cycles
containing the goods of V \ Vh when Algorithm 1 is applied to (e′, τ) and all of them appear also
during Algorithm 1 applied to (e′′, τ) where no good of Vh are present. �is implies by de�nition
of Algorithm 1 that g(τi(Y

l−1
i , Y l−1

i ∪ V ′r)) ∈ Vh holds. We claim that e′i ∩ V ′l = {o} holds i.e., o
is the last remaining good of agent i in G′l.Assume by contradiction that e′i ∩ V ′l contains another
good o′ 6= o. Note that o′ cannot belong to Vh because no more than one good can be assigned to
agent i during step h of e′i ∩ V ′l = {o} applied to (e, τ). Moreover, it was shown in the previous
paragraph that V ′l \ Vh = V ′′l and E′′l ⊆ E′l hold. Hence, o′ ∈ V ′l \ Vh implies that o′ ∈ V ′′l
holds. Furthermore, the outgoing edge of o′ in G′′l must be the same as the outgoing edge of o′ in
G′l. Let (o′, f ′) be this outgoing edge. By de�nition of Algorithm 1, if (o′, f ′) belongs to E′l then
f ′ = g(τi(Y

l−1
i , Y l−1

i ∪ V ′l)). On the other hand, f ′ does not belong to Vh because (o′, f ′) ∈ E′′l
implies f ′ ∈ V ′′l = V ′l \ Vh. �is leads to a contradiction with g(τi(Y

l−1
i , Y l−1

i ∪ V ′l)) ∈ Vh.
�erefore, we have shown that e′i ∩ V ′l = {o} holds. �is implies that C′ must be the last cycle of
Algorithm 1 applied to (e′, τ) which contains a good belonging to agent i.

�e latest result means that cycles including goods of e′i \ {o} must occur during earlier steps
than l in Algorithm 1 applied to (e′, τ). Furthermore, e′i \ {o} ⊆ K \ Vh implies that these cycles
must also occur during Algorithm 1 applied to (e, τ), and during earlier steps than l. Finally,
any good of B that is assigned to agent i during Algorithm 1 applied to (e, τ) would be part of
Y 0
i . Hence, Y l−1

i = Xh−1
i holds i.e., the same set of goods is assigned to agent i at step l of

Algorithm 1 applied to (e, τ) then at step h − 1 of Algorithm 1 applied to (e′, τ). �is implies
that Y l−1

i ⊕ Xh−1
i = K and K \ ((Vh \ V ′l) ∪ (V ′l \ Vh)) ⊆ (Y l−1

i ∪ V ′l) ⊕ (Xh−1
i ∪ Vh) hold.

We show now by contradiction that a(τi(X
h−1
i , Xh−1

i ∪ Vh)) ∩ (V ′l \ Vh) = ∅. For the sake of
contradiction, assume that a(τi(X

h−1
i , Xh−1

i ∪ Vh)) ∩ (V ′l \ Vh) 6= ∅. �is implies by Lemma 5
that g(τi(X

h−1
i , Xh−1

i ∪Vh ∪V ′l)) ∈ V ′l \Vh since V ′l ⊆ K \Y
l−1
i = K \Xh−1

i . But on the other

547

Fujita, Lesca, Sonoda, Todo, & Yokoo

o

o1

o2

ot

ot−1

Figure 10: Cycle C′ in Gh

hand, we know that K \ (Vh \ V ′l) ⊆ (Xh−1
i ∪ Vh ∪ V ′l)⊕ (Y l−1

i ∪ V ′l) and a(τi(X
h−1
i , Xh−1

i ∪
Vh ∪ V ′l)) ⊆ K \ (Vh ∪ V ′l) hold (proof similar to Lemma 2). All in all, g(τi(X

h−1
i , Xh−1

i ∪ Vh ∪
V ′l)) ∪ a(τi(X

h−1
i , Xh−1

i ∪ Vh ∪ V ′l)) ⊆ (Xh−1
i ∪ Vh ∪ V ′l) ⊕ (Y l−1

i ∪ V ′l) holds. �is implies
by Lemma 1 that τi(Y l−1

i , Y l−1
i ∪ V ′l) = τi(X

h−1
i , Xh−1

i ∪ Vh ∪ V ′l). But this also implies that
g(τi(Y

l−1
i , Y l−1

i ∪ V ′l)) = g(τi(X
h−1
i , Xh−1

i ∪ Vh ∪ V ′l)) belongs to V ′l \ Vh, which contradicts
the fact that g(τi(Y

l−1
i , Y l−1

i ∪V ′l)) ∈ Vh. Hence, we have shown that a(τi(X
h−1
i , Xh−1

i ∪Vh))∩
(V ′l \ Vh) = ∅

A direct consequence of Lemma 2 is that a(τi(X
h−1
i , Xh−1

i ∪Vh)) ⊆ K\Vh holds. �is implies
that a(τi(X

h−1
i , Xh−1

i ∪Vh)) ⊆ (Y l−1
i ∪V ′l)⊕ (Xh−1

i ∪Vh) holds since we have shown that both
a(τi(X

h−1
i , Xh−1

i ∪Vh)) ⊆ K\(V ′l \Vh) andK\((Vh\V ′l)∪(V ′l \Vh)) ⊆ (Y l−1
i ∪V ′l)⊕(Xh−1

i ∪Vh)
hold. If g(τi(X

h−1
i , Xh−1

i ∪ Vh)) ∈ V ′l ∩ Vh was to hold then this would imply by Lemma 1 that
τi(X

h−1
i , Xh−1

i ∪ Vh) = τi(Y
l−1
i , Y l−1

i ∪ V ′l) holds since inclusion g(τi(X
h−1
i , Xh−1

i ∪ Vh)) ∪
a(τi(X

h−1
i , Xh−1

i ∪ Vh)) ⊆ (Y l−1
i ∪ V ′l) ⊕ (Xh−1

i ∪ Vh) would hold. Note that this reasoning
would be true for any agent j that receives a good during the last step of Algorithm 1 applied to
(e, τ). All in all, we have shown that for any good o′ ∈ Vh belonging to the initial endowment ej
of agent j, the following implication holds:

g(τj(X
h−1
j , Xh−1

j ∪ Vh)) ∈ V ′t ∩ Vh ⇒ τj(X
h−1
j , Xh−1

j ∪ Vh) = τj(Y
t−1
j , Y t−1

j ∪ V ′t) (1)

where t is the step of Algorithm 1 applied to (e′, τ) where o′ is visited by a cycle in G′t. Using
this property, we show by contradiction that g(τi(X

h−1
i , Xh−1

i ∪ Vh)) ∈ V ′l holds. We denotes
by o1, o2, . . . , oc the goods of S′l(o) \ {o} visited by C′. C′ is described in Figure 10, where edge
(o′, f ′) means that f ′ is assigned to agent δ(o′) at the end of step h of Algorithm 1 applied to (e, τ),
and therefore g(τδ(o′)(X

h−1
δ(o′), X

h−1
δ(o′) ∪Vh)) = f ′ holds by de�nition of Algorithm 1. We denote by

ij = δ(oj) the owner of oj . By contradiction, assume that g(τi(X
h−1
i , Xh−1

i ∪Vh)) = o1 ∈ Vh\V ′l
holds. �is implies that there exists a step l1 < l such that o1 is visited by a cycle, say C1, in G′l1 .
Consider now step l1 and cycle C1. If o2 6∈ V ′l1 then there must be a step l2 < l1 where o2 is visited
by a cycle, say C2, in G′l2 . On the other hand, if o2 ∈ V ′l1 then g(τi1(Xh−1

i1
, Xh−1

i1
∪ Vh)) = o2 ∈

V ′l1 ∩ Vh holds and (1) implies τi1(Xh−1
i1

, Xh−1
i1
∪ Vh) = τi1(Y l1−1

i1
, Y l1−1

i1
∪ V ′l1). In other words,

C1 visits also o2 in G′l1 . To simplify notation, we assume in that case that l2 = l1 and C2 = C1.
Note that in both cases we have l2 ≤ l1. Consider now step l2 and cycle C2 . . . If ot 6∈ V ′lt−1

then there must be a step lt < lt−1 where ot is visited by a cycle, say Ct, in G′lt . On the other
hand, if ot ∈ V ′lt−1

then g(τit−1(Xh−1
it−1

, Xh−1
it−1
∪ Vh)) = ot ∈ V ′lt−1

∩ Vh holds and (1) implies
τit−1(Xh−1

it−1
, Xh−1

it−1
∪ Vh) = τit−1(Y

lt−1−1
it−1

, Y
lt−1−1
it−1

∪ V ′lt−1
). In other words, Ct−1 visits also ot

548

A Complexity Approach for Core-Selecting Exchange

in G′lt−1
. We assume in that case that lt = lt−1 and Ct = Ct−1. Note that in both cases we have

lt ≤ lt−1. All in all, we have l > l1 ≥ . . . ≥ lt. �is implies that o ∈ V ′lt holds since we have
assumed o ∈ V ′l . �erefore, (1) implies that τit(Xh−1

it
, Xh−1

it
∪ Vh) = τit(Y

lt−1
it

, Y lt−1
it

∪ V ′lt)
holds. But this implies g(τit(Y

lt−1
it

, Y lt−1
it

∪ V ′lt)) = g(τit(X
h−1
it

, Xh−1
it
∪ Vh)) = o, and therefore

we know by de�nition of Algorithm 1 that o is visited Ct in G′lt . �is leads to a contradiction with
o ∈ V ′l since l > lt.

We have shown in the previous paragraph that g(τi(X
h−1
i , Xh−1

i ∪Vh)) ∈ V ′l ∩Vh holds. �is
implies by (1) that τi(Xh−1

i , Xh−1
i ∪ Vh) = τi(Y

l−1
i , Y l−1

i ∪ V ′l) holds. Actually, this property is
true for each good visited by C′ since they all belong to Vh. �erefore, cycle p′l(o) that visits o in
G′l has to be the same as C′. �is concludes the proof since we have already shown that C′ is the
last cycle of the ATTC procedure applied to (e′, τ) visiting a good belonging to agent i.

�e proof of Proposition 4 follows directly from Lemma 14. Let (e′, τ) denote the assignment
problem when the manipulator use hiding manipulation, and let (e, τ) denote the assignment
problem when the manipulator use the spli�ing manipulation computed by Algorithm 3. We can
assume without loss of generality that τ is the preference pro�le computed by Algorithm 3 since it
di�ers from the input preference pro�le only by its components corresponding to the goods of ewi .
Each identity associated with a good of ewi prefers her good to any other good. �erefore, during
the �rst step of Algorithm 1 applied to (e, τ), each good of ewi is assigned to its owner since it
belongs to a cycle of size 1. �erefore, we can state by Lemma 14 that the outcome of Algorithm
1 is the same for both (e, τ) and (e′, τ).

Appendix F. Omitted Proof for Subsection 8.1

�is appendix is dedicated to the study of Algorithm 2. We show that this algorithm is able to
transform any spli�ing manipulation into a misreport manipulation with the same outcome for
the manipulator.

F.1 Initialization

We start our study of Algorithm 2 by the �rst while loop (lines 1–6). We show that modi�cations
performed on preference pro�le τ do not change the outcome of Algorithm 1 for the manipulator.
To this end, we denote by τ and τ ′ the preference pro�les before and a�er one loop i.e., modi�ca-
tion performed in lines 4–5 of Algorithm 2. We denote by G′k = (V ′k, E

′
k) (resp. Gk = (Vk, Ek))

the ATTC graph during step k of Algorithm 1 in the speci�c case where τ ′ (resp. τ) is revealed,
and let Y k

i (resp. Xk
i) denote the set of goods assigned to agent i a�er the k �rst steps in that case.

Let p′k(o) (resp. pk(o)) denote the directed path in G′k (resp. Gk) which starts from good o, and
let S′k(o) (resp. Sk(o)) denote the set of goods visited by p′k(o) (resp. pk(o)). Finally, for any good
o′ ∈ S′k(o) (resp. o′′ ∈ Sk(o)), let [p′k]

o′

o (resp. [pk]
o′′

o) denote the subpath of p′k(o) (resp. pk(o))
which starts from good o and �nishes at good o′ (resp. o′′).

Note that τ ′ only di�ers from τ ′ by its components δ(o) and δ(o′), corresponding to the pref-
erences revealed by the manipulator for goods o and o′, respectively. We denote by io and io′ the
identities used by the manipulator for goods o and o′, respectively. �erefore, I = {io, io′} is the
set of identities that do not reveal the same preferences in τ and τ ′, as de�ned in Annexe D. �e
following lemma shows that replacing τ with τ ′ do not change the outcome of Algorithm 1.

549

Fujita, Lesca, Sonoda, Todo, & Yokoo

Lemma 15. For any agent j ∈ N , ϕj(e, τ) = ϕj(e, τ
′) holds.

Proof. Let k denote the step of Algorithm 1 where f, f ′, o and o′ arel visited by cycle C inGk (these
elements are described in lines 1–2 of Algorithm 2). Let l be the �rst step such that o′ ∈ Sl(o), i.e.,
pl(f) reaches o′ in Gl. Note that such step should exist since o′ ∈ Sk(f) by de�nition. Further-
more, k ≥ l trivially holds, and Corollary 5 implies that [pl(f)]o

′

f = [pk(f)]o
′

f holds. �erefore, o
is not visited by [pl(f)]o

′

f , as illustrated by Figure 11a, and o′ is the �rst good of
⋃
j∈I ej = {o, o′}

visited by pl(f). �is implies by Lemma 10 that f ∈ V ′l and [p′l(f)]o
′

f = [pl(f)]o
′

f hold. Further-
more, we know that (o′, f) ∈ E′l since f labels the root of τ ′δ(o′). �erefore, the concatenation
of [p′l(f)]o

′

f and (o′, f) forms a cycle in G′l, as illustrated in Figure 11c, and f is assigned to δ(o′).
Furthermore, for any good o′′ visited by this cycle, if (o′′, f ′′) belongs to [pl(f)]o

′

f then it also be-
longs to [p′l(f)]o

′

f , and δ(o′′) receives f ′′ as in the case where Algorithm 1 is applied to (e, τ) since
[p′l(f)]o

′

f = [pl(f)]o
′

f holds. By using similar arguments, it is easy to check that f ′ is assigned
to io, and for each other good o′′ visited by [pl′(f

′)]of ′ , where l′ is the �rst step of Algorithm 1
where o ∈ Sl′(f

′), if edge (o′′, f ′′) belongs to [pl′(f
′)]of ′ then it also belongs to [p′l′(f)]o

′

f , and
δ(o′′) receives f ′′ as in the case where Algorithm 1 is applied to (e, τ).

Finally, let B denote the set of goods visited by C. In order to show that the outcome of Algo-
rithm 1 is preserved for the goods outside ofB, we remove the goods ofB from initial endowment
e and assign these goods to their assignee described in the previous paragraph. Let e′ denote the
initial endowment a�er removing the goods of B. We consider now the outcomes of Algorithm
1 applied to both (e′, τ) and (e′, τ ′). Note that the goods of B are assigned before starting Al-
gorithm 1, as described in Appendix E. �is initial assignment ensures that preference pro�le τ
remains consistent a�er removing the goods of B from e. Lemma 14 implies that the outcome of
Algorithm 1 applied to (e, τ) and (e, τ ′) (respectively, applied to (e, τ ′) and (e′, τ ′)) is the same
for the goods of K \ B. �erefore, it is enough to show that the goods of K \ B are assigned to
the same identities for (e′, τ) and (e′, τ ′) to conclude the proof. We have shown in the previous
paragraph that the goods of B \ {f, f ′} are assigned to the same agents by Algorithm 1 applied to
(e, τ) and (e, τ ′). �erefore, these goods are initially assigned to the same agents before applying
Algorithm 1 to (e′, τ) and (e′, τ ′). Furthermore, by assumption on spli�ing manipulations we
know that the initial endowment of identities io and io′ contain only goods o and o′, respectively.
�erefore, their initial endowments are empty in e′ and they are ignored during Algorithm 1 ap-
plied to (e′, τ) and (e′, τ ′). All in all, assignments problems (e′, τ) and (e′, τ ′) only di�er by
the preference revealed by agents io and io′ which are ignored during Algorithm 1. �erefore,
Algorithm 1 provides the same outcome for both (e′, τ) and (e′, τ ′).

As illustrated in Figure 11, cycleC gives rise to two di�erent cycles when τ ′ is revealed instead
of τ . Furthermore, as mentioned in Lemma 14, any other cycle occurring during Algorithm 1 when
τ is revealed will be also occur during Algorithm 1 when τ ′ is revealed. Hence, the number of
cycles including at least of the goods belonging to the manipulator is increased by one a�er each
loop of the initialization phase. �erefore, the while loop stop a�er at most |ei| steps. Lemma 15
means that the spli�ing manipulation obtained at the end of initialization phase provides the same
outcome as to the initial spli�ing manipulation. Furthermore, no cycle containing more than two
goods of the manipulator appears during Algorithm 1 applied to the resulting preference pro�le.

550

A Complexity Approach for Core-Selecting Exchange

o

f

f ′

o′

(a) Cycle C in Vk

o f ′

(b) Cycle C′′ in V ′l′

f o′

(c) Cycle C′ in V ′l

Figure 11: Di�erences between a path in Vk an V ′k

F.2 Main Algorithm

Let τ denote the preference pro�le obtained at the end of initialization phase, and let τ ′ denote
the preference pro�le where the manipulator reveals the misreport manipulation τ ′i computed by
Algorithm 2. For sake of simplicity, we assume in (e, τ ′) that the manipulator use her �ctitious
identities when she reveals her preferences. �is is without loss of generality because τ ′i is a path,
and therefore the corresponding preferences are not conditional to the goods assigned to the ma-
nipulator during Algorithm 1. All other notations remain the same as in the previous subsection,
with respect to the new de�nition of τ and τ ′. �e following lemma shows that the outcome of
Algorithm 1 is the same for the manipulator when τ ′ is revealed instead of τ .

Lemma 16. �e goods assigned to the identities of the manipulator during Algorithm 1 are the same
when τ ′ is revealed instead of τ .

Proof. We prove this statement by induction on the number of identities used by the manipulator
i.e., on the size of the initial endowment of the manipulator.

Base case: Assume �rst that ei contains a single good o and I = {i}. Let f be the good assigned
to the manipulator when τ is revealed, and l be the �rst step of Algorithm 1 when o belongs to
Sl(f), i.e. o is reached by the directed path pl(f). We know by Lemma 10 that f ∈ V ′l and
[p′l(f)]of = [pl(f)]of . Furthermore, we know that (o, f) belongs to E′l because f labels the root of
τ ′i . �erefore, during step l of Algorithm 1 when τ ′ is revealed, the concatenation of [p′l(f)]of and
(o, f) forms a cycle containing o. Hence, the same good f is assigned to agent i during Algorithm
1 applied to (e, τ) and (e, τ ′).

Induction step: Let r be the number of goods belonging to the initial endowment of the ma-
nipulator. Let C be the cycle chosen in line 7 of Algorithm 2 during the last while loop. Notations
o, f and B are de�ned as in line 10–11 of Algorithm 2. Note that δ(o) is an identity of the ma-
nipulator, and therefore τ ′δ(o) is the LP-tree computed by Algorithm 2. Hence, f labels the root of
τ ′δ(o) since by de�nition this is the last element inserted by function add root in the second loop
while of Algorithm 2. Let k denote the step where C occurs in Gk, and let l be the �rst step of
Algorithm 1 where o belongs to Sl(f). Since k is the last step where o ∈ Vk, inequality k ≥ l

551

Fujita, Lesca, Sonoda, Todo, & Yokoo

trivially holds. �is implies by Corollary 5 that [pl(f)]of = [pk(f)]of holds. �erefore, no good
belonging to

⋃
j∈I ej \ {o} is visited by [pl(f)]of because o is the only good of the manipulator

visited by C (as a result of initialization phase). �erefore, o is the �rst good of
⋃
j∈I ej visited by

pl(f), and this implies by Lemma 10 that [p′l(f)]of = [pl(f)]of holds. Furthermore, we know that
(o, f) belongs to E′l since o labels the root of τ ′δ(o). �erefore, the concatenation of [p′l(f)]of and
(o, f) forms the same cycle as C in G′l. �e goods visited by C are assigned to the same agents as
they are when τ is revealed.

Finally, let B denotes the set of goods visited by C. In order to show that the outcome is
preserved for the goods outside of B, we remove the goods of B from initial endowment e and
we assign these goods to their assignee as described in the previous paragraph. Let e′ denote the
initial endowment a�er removing the goods of B. We consider now the outcome of the ATTC
procedure applied to both (e′, τ) and (e′, τ ′). Note that the goods of B assigned before starting
Algorithm 1, as described in Appendix E. Let τ ′′i denote the outcome of Algorithm 2 applied to
(e′, τ), and let τ ′′ denote the preference pro�le where the identities belonging to the manipulator
reveal τ ′′i instead of τ ′i (other agents reveals the same preference as in τ). Note �rst that the initial
endowment of δ(o) is empty in e′. �erefore this identity is ignored during Algorithm 1 applied to
(e′, τ). �is means also that the number of identities used by the manipulator during Algorithm
1 applied to (e′, τ), or equivalently the number of goods belonging to him in e′, is equal to r− 1.
�erefore, by induction hypothesis we can state that the outcomes of Algorithm 1 applied to (e′, τ)
and (e′, τ ′′) are the same for each identity in I belonging to the manipulator. On the other hand,
we know by Lemma 14 that the outcomes of Algorithm 1 applied to (e, τ) and (e′, τ) (respectively
for (e, τ ′) and (e′, τ ′)) are the same for the goods of K \ B. Furthermore, Lemma 14 states that
the sequence of cycles visiting goods of

⋃
j∈I ej \{o} is the same for Algorithm 1 applied to (e, τ)

and (e′, τ). �erefore, LP-trees τ ′′i and τ ′i , computed by Algorithm 2 with parameters (e, τ) and
(e′, τ), respectively, only di�ers by the position of f i.e., the vertex with label f is not the root
of τ ′′i . However, since f does not belong to e′ and τ ′i and τ ′′i are paths (and therefore represent
lexicographic preferences), the outcomes of Algorithm 1 applied to (e′, τ ′) and (e′, τ ′′) are the
same. All in all, each identity of the manipulator receives the same good during Algorithm 1
applied to (e, τ) and (e, τ ′).

References

Afacan, M. (2014). Fictitious students creation incentives in school choice problems. Economic
�eory, 56(3), 493–514.

Atlamaz, M., & Klaus, B. (2007). Manipulation via endowments in exchange markets with indivis-
ible goods. Social Choice and Welfare, 28(1), 1–18.

Aziz, H., Bachrach, Y., Elkind, E., & Paterson, M. (2011). False-name manipulations in weighted
voting games. Journal of Arti�cial Intelligence Research, 40(1), 57–93.

Aziz, H., Biró, P., Lang, J., Lesca, J., & Monnot, J. (2016). Optimal reallocation under additive and
ordinal preferences. In Proceedings of the 15th International Conference on Autonomous Agents
and Multiagent Systems, pp. 402–410.

Aziz, H., Bouveret, S., Lang, J., & Mackenzie, S. (2017). Complexity of manipulating sequential
allocation. In Proceedings of the 31st AAAI Conference on Arti�cial Intelligence (AAAI’17), pp.
328–334.

552

A Complexity Approach for Core-Selecting Exchange

Aziz, H., Kalinowski, T., Walsh, T., & Xia, L. (2016). Welfare of sequential allocation mechanisms for
indivisible goods. In Proceedinggs of the 22nd European Conference on Arti�cial Intelligence
(ECAI’16), pp. 787–794.

Bartholdi, J.J., I., Tovey, C., & Trick, M. (1989). �e computational di�culty of manipulating an
election. Social Choice and Welfare, 6(3), 227–241.

Booth, R., Chevaleyre, Y., Lang, J., Mengin, J., & Somba�heera, C. (2010). Learning conditionally
lexicographic preference relations. In Proceedings of the 19th European Conference on Arti�-
cial Intelligence (ECAI’10), pp. 269–274.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., & Poole, D. (2004). CP-Nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements. Journal
of Arti�cial Intelligence Research, 21, 135–191.

Cechlárová, K. (2009). On the complexity of the Shapley-Scarf economy with several types of
goods. Kybernetika, 45(5), 689–700.

Cechlárová, K., & Lacko, V. (2012). �e kidney exchange problem: How hard is it to �nd a donor?.
Annals of Operations Research, 193(1), 255–271.

Chen, Y., & Sönmez, T. (2002). Improving e�ciency of on-campus housing: An experimental study.
American Economic Review, 92(5), 1669–1686.

Chevaleyre, Y., Endriss, U., & Maudet, N. (2007). Allocating goods on a graph to eliminate envy. In
Proceedings of the 22th International Joint Conference on Arti�cial Intelligence (IJCAI’07), pp.
700–705.

Conitzer, V. (2008). Anonymity-proof voting rules. In Proceedings of the 4th Workshop on Internet
and Network Economics (WINE’08), pp. 295–306.

Conitzer, V., & Xia, L. (2012). Paradoxes of multiple elections: An approximation approach. In
Proceedings of the 13th International Conference on Principles of Knowledge Representation
and Reasoning (KR’12), pp. 179–187.

de Keijzer, B., Bouveret, S., Klos, T., & Zhang, Y. (2009). On the complexity of e�ciency and envy-
freeness in fair division of indivisible goods with additive preferences. In Proceedings of the
First International Conference on Algorithmic Decision �eory (ADT’09), pp. 98–110. Springer.

Endriss, U., Maudet, N., Sadri, F., & Toni, F. (2006). Negotiating socially optimal allocations of
resources. Journal of Arti�cial Intelligence Research, 25, 315–348.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. A. (2010). Using complexity to protect
elections. Communications of the ACM, 53(11), 74–82.

Faliszewski, P., & Procaccia, A. D. (2010). Ai’s war on manipulation: Are we winning?. AI Magazine,
31(4), 53–64.

Fujita, E., Lesca, J., Sonoda, A., Todo, T., & Yokoo, M. (2015). A complexity approach for core-
selecting exchange with multiple indivisible goods under lexicographic preferences. In Pro-
ceedings of the 29th AAAI Conference on Arti�cial Intelligence (AAAI’15), pp. 907–913.

Gigerenzer, G., & Goldstein, D. (1996). Reasoning the fast and frugal way: Models of bounded
rationality. Psychological review, 103(4), 650.

553

Fujita, Lesca, Sonoda, Todo, & Yokoo

Gold, E. M. (1978). Complexity of automaton identi�cation from given data. Information and
Control, 37 (3), 302 – 320.

Gourvès, L., Lesca, J., & Wilczynski, A. (2017). Object allocation via swaps along a social network.
In Proceedings of the 26th International Joint Conference on Arti�cial Intelligence (IJCAI’17),
pp. 213–219.

Lang, J., Mengin, J., & Xia, L. (2012). Aggregating conditionally lexicographic preferences on multi-
issue domains. In Proceedings of the 18th International Conference on Principles and Practice
of Constraint Programming (CP’12), pp. 973–987.

Lesca, J., Minoux, M., & Perny, P. (2013). Compact versus noncompact lp formulations for mini-
mizing convex choquet integrals. Discrete Applied Mathematics, 161(1), 184 – 199.

Lesca, J., & Perny, P. (2010). LP solvable models for multiagent fair allocation problems.. In Pro-
ceedings of the 19th European Conference on Arti�cial Intelligence (ECAI’10), pp. 393–398.

Luo, S., & Tang, P. (2015). Mechanism design and implementation for lung exchange. In Proceedings
of the 24th International Joint Conference on Arti�cial Intelligence (IJCAI 2015), pp. 209–215.

Ma, J. (1994). Strategy-proofness and the strict core in a market with indivisibilities. International
Journal of Game �eory, 23(1), 75–83.

Moulin, H. (2008). Proportional scheduling, split-proofness, and merge-proofness. Games and
Economic Behavior, 63(2), 567–587.

Ohta, N., Conitzer, V., Satoh, Y., Iwasaki, A., & Yokoo, M. (2008). Anonymity-proof Shapley value:
extending Shapley value for coalitional games in open environments. In Proceedings of
the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’08), pp. 927–934.

Pápai, S. (2003). Strategyproof exchange of indivisible goods. Journal of Mathematical Economics,
39(8), 931 – 959.

Pápai, S. (2007). Exchange in a general market with indivisible goods. Journal of Economic �eory,
132(1), 208 – 235.

Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2011). Manipulation complexity and gender
neutrality in stable marriage procedures. Autonomous Agents and Multi-Agent Systems, 22(1),
183–199.

Roth, A. E., & Postlewaite, A. (1977). Weak versus strong domination in a market with indivisible
goods. Journal of Mathematical Economics, 4(2), 131–137.

Roth, A. E., Sönmez, T., & Ünver, M. U. (2004). Kidney exchange. �e �arterly Journal of Economics,
119(2), 457–488.

Saban, D., & Sethuraman, J. (2014). A note on object allocation under lexicographic preferences.
Journal of Mathematical Economics, 50, 283 – 289.

Shapley, L., & Scarf, H. (1974). On cores and indivisibility. Journal of Mathematical Economics, 1(1),
23–37.

Sikdar, S., Adalı, S., & Xia, L. (2017). Mechanism design for multi-type housing market. In Proceed-
ings of the 31st AAAI Conference on Arti�cial Intelligence (AAAI-17), pp. 684–690.

554

A Complexity Approach for Core-Selecting Exchange

Sikdar, S., Adalı, S., & Xia, L. (2018). Top-trading-cycles mechanisms with acceptable bundles. In
Proceedings of the 11th Multidisciplinary Workshop on Advances in Preference Handling (M-
PREF18).

Sönmez, T. (1999). Strategy-proofness and essentially single-valued cores. Econometrica, 67 (3),
677–689.

Sonoda, A., Fujita, E., Todo, T., & Yokoo, M. (2014). Two case studies for trading multiple indivisible
goods with indi�erences. In Proceedings of the 28th AAAI Conference on Arti�cial Intelligence
(AAAI’14), pp. 791–797.

Sun, Z., Hata, H., Todo, T., & Yokoo, M. (2015). Exchange of indivisible objects with asymmetry.
In Proceedings of the 24th International Joint Conference on Arti�cial Intelligence (IJCAI), pp.
97–103.

Teo, C.-P., Sethuraman, J., & Tan, W.-P. (2001). Gale-Shapley stable marriage problem revisited:
Strategic issues and applications. Management Science, 47 (9), 1252–1267.

Todo, T., & Conitzer, V. (2013). False-name-proof matching. In Proceedings of the 12th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’13), pp. 311–318.

Todo, T., Iwasaki, A., & Yokoo, M. (2011). False-name-proof mechanism design without money. In
Proceedings of the 10th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’11), pp. 651–658.

Todo, T., Sun, H., & Yokoo, M. (2014). Strategyproof exchange with multiple private endowments.
In Proceedings of the 28th AAAI Conference on Arti�cial Intelligence (AAAI’14), pp. 805–811.

Yokoo, M., Conitzer, V., Sandholm, T., Ohta, N., & Iwasaki, A. (2005). Coalitional games in open
anonymous environments. In Proceedings of the 19th International Joint Conference on Arti-
�cial Intelligence (IJCAI’05), pp. 1668–1669.

Yokoo, M., Sakurai, Y., & Matsubara, S. (2004). �e e�ect of false-name bids in combinatorial
auctions: New fraud in internet auctions. Games and Economic Behavior, 46(1), 174–188.

555

