
Journal of Artificial Intelligence Research 63 (2018) 495-513 Submitted 12/17; published 11/18

Approximation and Parameterized Complexity
of Minimax Approval Voting

Marek Cygan cygan@mimuw.edu.pl
 Lukasz Kowalik kowalik@mimuw.edu.pl
Arkadiusz Soca la arkadiusz.socala@mimuw.edu.pl
Department of Mathematics
Informatics and Mechanics
University of Warsaw, Poland

Krzysztof Sornat krzysztof.sornat@cs.uni.wroc.pl

Department of Mathematics and Computer Science

University of Wroc law, Poland

Abstract

We present three results on the complexity of Minimax Approval Voting. First,
we study Minimax Approval Voting parameterized by the Hamming distance d from
the solution to the votes. We show Minimax Approval Voting admits no algorithm
running in time O?(2o(d log d)), unless the Exponential Time Hypothesis (ETH) fails. This
means that the O?(d2d) algorithm of Misra, Nabeel and Singh is essentially optimal.
Motivated by this, we then show a parameterized approximation scheme, running in time
O?((3/ε)2d), which is essentially tight assuming ETH. Finally, we get a new polynomial-time
randomized approximation scheme for Minimax Approval Voting, which runs in time
nO(1/ε2·log(1/ε)) · poly(m), where n is a number of voters and m is a number of alternatives.
It almost matches the running time of the fastest known PTAS for Closest String due
to Ma and Sun.

1. Introduction

One of the central problems in artificial intelligence and computational social choice is
aggregating preferences of individual agents (see the overview of Conitzer, 2010). Here we
focus on multi-winner election, where the goal is to select a k-element subset of a set of
candidates. Given preferences of the agents over the candidates, a multi-winner voting rule
can be used to select a subset of candidates that in some sense are preferred by the agents.
This scenario covers a variety of settings: nations elect members of parliament or societies
elect committees (Chamberlin & Courant, 1983), web search engines choose pages to display
in response to a query (Dwork, Kumar, Naor, & Sivakumar, 2001), airlines select movies
available on board (Skowron, Faliszewski, & Lang, 2016; Elkind, Faliszewski, Skowron, &
Slinko, 2017), companies select a group of products to promote (Lu & Boutilier, 2011), etc.

In this work we restrict our attention to approval-based multi-winner rules, i.e., rules
where each voter expresses his or her preferences by providing a subset of the candidates
which he or she approves. Various voting rules are studied in the literature. In the simplest
one, Approval Voting (AV), occurrences of each candidate are counted and k most often
approved candidates are selected. While this rule has many desirable properties in the single
winner case (Fishburn, 1978), in the multi-winner scenario its merits are often considered

c©2018 AI Access Foundation. All rights reserved.

Cygan, Kowalik, Soca la, & Sornat

less clear (Laslier & Sanver, 2010), e.g., because it fails to reflect the diversity of interests in
the electorate (Kilgour, 2010). Therefore, numerous alternative rules have been proposed,
including Satisfaction Approval Voting, Proportional Approval Voting, and Reweighted
Approval Voting (for details see a book chapter of Kilgour, 2010).

In this paper we study a rule called Minimax Approval Voting (MAV), introduced
by Brams, Kilgour, and Sanver (2007b). Here, we see the votes and the choice as 0-1 strings
of length m (characteristic vectors of the subsets, i.e., the candidate i is approved if the
string contains 1 at position i). For two strings x and y of the same length the Hamming
distance H(x, y) is the number of positions where x and y differ, e.g., H(011, 101) = 2. In
MAV, we look for a 0-1 string with k ones that minimizes the maximum Hamming distance
to a vote. In other words, MAV minimizes the disagreement with the least satisfied voter and
thus it is highly egalitarian: no voter is ignored and a majority of voters cannot guarantee a
specific outcome (LeGrand, 2004; Brams, Kilgour, & Sanver, 2007a). John Rawls (1971) in
his classical book ”A Theory of Justice” states that welfare is maximized when the utility
of those society members that have the least is the greatest, so MAV is a Rawlsian social
welfare function. For more general studies on minisum (utilitarian) and minimax (egalitarian)
objectives see the work of Brams et al. (2007a). Other egalitarian voting rules have been
also studied by Betzler, Slinko, and Uhlmann (2013).

Much recent research has been devoted to the axiomatic properties of multi-winner voting
rules (Elkind et al., 2017; Faliszewski, Skowron, Slinko, & Talmon, 2017; Sanchez-Fernandez
& Fisteus, 2017). The goal is to classify and describe properties of voting rules because
different voting rules have different properties, thus they should be used in proper scenarios.
Let us look at some properties of MAV. MAV is not a proportional type of voting rule.
A large group of voters with similar preferences can be not represented by the number of
committee members proportional to the size of the group. Formally, it was shown that MAV
does not satisfy Justified Representation property (Aziz et al., 2017b). MAV is not strategy-
proof (Caragiannis, Kalaitzis, & Markakis, 2010), i.e., voters can vote strategically to be less
dissatisfied by the outcome. On the other hand MAV supports strong monotonicity with
population increase and weak monotonicity without population increase (Sanchez-Fernandez
& Fisteus, 2017), and it is insensitive to clones (Kilgour, 2010).

MAV could be used when, for example, proportionality is not needed, agents are not
selfish, but the outcome is required to be acceptable by every voter. A natural such scenario
is when a group of experts have to make a decision or a group of friends want to choose
activities for a holiday. Brams et al. (2007a) “commend the minimax procedure to colleges,
universities, and other organizations” (p. 403).

Our focus is on the computational complexity of computing the choice based on the
MAV rule. In the Minimax Approval Voting decision problem, we are given a multiset
S = {s1, . . . , sn} of 0-1 strings of length m (also called votes), and two integers k and d. The
question is whether there exists a string s ∈ {0, 1}m with exactly k ones such that for every
i ∈ {1, . . . , n} we have H(s, si) ≤ d. In the optimization version of Minimax Approval
Voting we minimize d, i.e., given a multiset S and an integer k as before, the goal is to
find a string s ∈ {0, 1}m with exactly k ones which minimizes maxi∈{1,...,n}H(s, si).

A reader familiar with string problems might recognize that Minimax Approval Voting
is closely related to the classical NP-complete problem called Closest String, where we
are given n strings over an alphabet Σ and the goal is to find a string that minimizes the

496

Approximation and Parameterized Complexity of Minimax Approval Voting

maximum Hamming distance to the given strings. Indeed, LeGrand, Markakis, and Mehta
(2007) showed that Minimax Approval Voting is NP-complete as well by reduction from
Closest String with binary alphabet. The first proof of NP-completeness of Minimax
Approval Voting was shown using reduction from Vertex Cover (LeGrand, 2004).
This motivated the study on Minimax Approval Voting in terms of approximability and
fixed-parameter tractability.

1.1 Previous Results on Minimax Approval Voting

The first approximation result was a simple 3-approximation algorithm due to LeGrand
et al. (2007), obtained by choosing an arbitrary vote and taking any k approved candidates
from the vote (extending it arbitrarily to k candidates if needed). Next, a 2-approximation
was shown by Caragiannis et al. (2010) using an LP-rounding procedure. Finally, Byrka
and Sornat (2014) presented a polynomial time approximation scheme (PTAS), i.e., an
algorithm that for any fixed ε > 0 gives a (1 + ε)-approximate solution in polynomial time.
More precisely, their algorithm runs in time nO(1/ε4) ·mO(1) + nO(1/ε) ·mO(1/ε4) which is
polynomial in the number of voters n and the number of alternatives m. The PTAS uses
information extraction techniques from fixed size (O(1/ε)) subsets of voters and random
rounding of the optimal solution to a linear program.

In the area of fixed parameter tractability (FPT) every instance I of a problem P
contains additionally an integer r, called a parameter. The goal is to find a fixed parameter
algorithm (also called FPT algorithm), i.e., an algorithm with running time of the form
f(r)poly(|I|), where f is a computable function, which is typically at least exponential for
NP-complete problems. If such an algorithm exists, we say that the problem P parameterized
by r is fixed parameter tractable (FPT). For more details about FPT algorithms see the
textbook of Cygan et al. (2015) or the survey of Bredereck et al. (2014) (in the context
of computational social choice). The study of FPT algorithms for Minimax Approval
Voting was initiated by Misra et al. (2015). They show, for example, that Minimax
Approval Voting parameterized by k (the number of ones in the solution) is W [2]-hard,
which implies that it does not admit an FPT algorithm, unless there is a highly unexpected
collapse in parameterized complexity classes. From a positive perspective, they show that
the problem is FPT when parameterized by the maximum allowed distance d or by the
number of votes n. Their algorithm runs in time1 O?(d2d).2 For a study on FPT complexity
of generalizations of Minimax Approval Voting see the work of Baumeister, Bohnlein,
Rey, Schaudt, and Selker (2016).

1.2 Previous Results on Closest String

It is interesting to compare the known results on Minimax Approval Voting with the
corresponding ones on the better researched Closest String. The first PTAS for Closest
String was given by Li, Ma, and Wang (2002) with running time bounded by nO(1/ε4)

1. The O? notation suppresses factors polynomial in the input size.

2. Actually, Misra et al. (2015) claim the slightly better running time of O?(dd). However, there is a flaw
in the analysis (Liu & Guo, 2016; Misra, 2016): it states that the initial solution v is at distance at
most d from the solution, while it can be at distance 2d because of, what we call here, the k-completion
operation. This increases the maximum depth of the recursion to d (instead of the claimed d/2).

497

Cygan, Kowalik, Soca la, & Sornat

where n is the number of the input strings. This was later improved by Andoni, Indyk, and

Patrascu (2006) to nO(
log 1/ε

ε2
), and then by Ma and Sun (2009) to nO(1/ε2).

The first FPT algorithm for Closest String, running in time O?(dd) was given
by Gramm, Niedermeier, and Rossmanith (2003). This was later improved by Ma and Sun
(2009), who gave an algorithm with running time O?(2O(d) · |Σ|d), which is more efficient for
constant-size alphabets. Further substantial progress is unlikely, since Lokshtanov, Marx, and
Saurabh (2011b) have shown that Closest String admits no algorithms running in time
O?(2o(d log d)) or O?(2o(d log |Σ|)), unless the Exponential Time Hypothesis (ETH) (Impagliazzo
& Paturi, 2001) fails.

The discrepancy between the state of the art for Closest String and Minimax
Approval Voting raises interesting questions. First, does the additional constraint on the
number of ones in Minimax Approval Voting really make the problem harder and the
PTAS has to be significantly slower? Similarly, although in Minimax Approval Voting
the alphabet is binary, no O?(2O(d))-time algorithm is known, in contrast to Closest
String. Can we find such an algorithm? The goal of this work is to answer these questions.

1.3 Our Results

We present three results on the complexity of Minimax Approval Voting. Let us recall
that the Exponential Time Hypothesis (ETH) of Impagliazzo and Paturi (2001) states
that there exists a constant c > 0, such that there is no algorithm solving 3-SAT in time
O?(2cn), where n is the number of variables in the given 3-SAT instance. In recent years,
ETH became the central conjecture used for proving tight bounds on the complexity of
various problems, see the survey of Lokshtanov, Marx, and Saurabh (2011a). Nevertheless,
ETH-based lower bounds seem largely unexplored in the area of computational social
choice (Niedermeier, 2015). We begin with showing that, unless the ETH fails, there is no
algorithm for Minimax Approval Voting running in time O?(2o(d log d)). In other words,
the algorithm of Misra et al. (2015) is essentially optimal, and indeed, in this sense Minimax
Approval Voting is harder than Closest String. Motivated by this, we then show a
parameterized approximation scheme, i.e., a randomized Monte-Carlo algorithm which, given
an instance (S, k, d) and a number ε > 0, finds a solution at distance at most (1 + ε)d in
time O?((3/ε)2d) or reports that there is no solution at distance at most d (with arbitrarily
small positive constant probability of error). Note that our lower bound implies that, under
(randomized version of) ETH, this is essentially optimal, i.e., there is no parameterized
approximation scheme running in time O?(2o(d log(1/ε))). Indeed, if such an algorithm existed,
by picking ε = 1/(d+ 1) we would get an exact algorithm which contradicts our lower bound.
Finally, we get a new polynomial-time randomized approximation scheme for Minimax
Approval Voting, which runs in time nO(1/ε2·log(1/ε)) · poly(m) (with arbitrarily small
positive constant probability of error). Thus the running time almost matches the one of the
fastest known PTAS for Closest String (up to a log(1/ε) factor in the exponent). The
new PTAS is much faster than the previous one (Byrka & Sornat, 2014). In particular, the
new running time does not contain the mO(1/ε4) term, so one should expect a considerable
speed-up when the number of votes is large.

498

Approximation and Parameterized Complexity of Minimax Approval Voting

1.4 Organization of the Paper

In Section 2 we introduce some notation and we recall standard probability bounds that are
used later in the paper. In Section 3 we present our lower bound for Minimax Approval
Voting parameterized by d. Next, in Section 4 we show a parameterized approximation
scheme. Finally, in Section 5 we show a new randomized PTAS. The paper concludes with
Section 6, where we discuss using randomized and approximation algorithms in multi-winner
elections and directions for future work.

2. Definitions and Preliminaries

For every integer n we denote [n] = {1, 2, . . . , n}. For a set of words S ⊆ {0, 1}m and a word
x ∈ {0, 1}m we denote H(x, S) = maxs∈SH(x, s). For a string s ∈ {0, 1}m, the number
of 1’s in s is denoted as n1(s) and it is also called the Hamming weight of s; similarly
n0(s) = m−n1(s) denotes the number of zeroes. Moreover, the set of all strings of length m
with k ones is denoted by Sk,m, i.e., Sk,m = {s ∈ {0, 1}m : n1(s) = k}. s[j] for j ∈ [m] means
the j-th letter of a string s. For a subset of positions P ⊆ [m] we define a subsequence s|P
by removing the letters at positions [m] \ P from s.

For a string s ∈ {0, 1}m, any string s′ ∈ Sk,m at distance |n1(s)− k| from s is called a
k-completion of s. Note that it is easy to find such a k-completion s′: when n1(s) ≥ k we
obtain s′ by replacing arbitrary n1(s)− k ones in s by zeroes; similarly when n1(s) < k we
obtain s′ by replacing arbitrary k − n1(s) zeroes in s by ones.

3. A Lower Bound

In this section we show a lower bound for Minimax Approval Voting parameterized by d.
To this end, we use a reduction from a problem called k × k-Clique. In k × k-Clique we
are given a graph G over the vertex set V = [k]× [k], i.e., V forms a grid (as a vertex set;
the edge set of G is a part of the input and it can be arbitrary) with k rows and k columns,
and the question is whether in G there is a clique containing exactly one vertex in each row.
Some readers may recognize k × k-Clique as a special case of Multicolored Clique,
where we have k colors and every color has size exactly k.

Lemma 3.1. Given an instance I = (G, k) of k × k-Clique with k ≥ 2, one can construct
an instance I ′ = (S, k, d) of Minimax Approval Voting, such that I ′ is a yes-instance iff
I is a yes-instance, d = 3k−3 and the set S contains O

(
k
(

2k−2
k−2

))
strings of length k2 +2k−2

each. The construction takes time polynomial in the size of the output.

Proof. Each string in the set S will be of length m = k2 + 2k − 2. Let us split the set of
positions [m] into k + 1 blocks, where the first k blocks contain exactly k positions each,
and the last (k + 1)-th block contains the remaining 2k − 2 positions. Our construction will
enforce that if a solution exists, it will have the following structure: there will be a single 1
in each of the first k blocks and only zeroes in the last block. Intuitively the position of the
1 in the first block encodes the clique vertex of the first row of G, the position of the 1 in
the second block encodes the clique vertex of the second row of G, etc. We construct the set
S as follows.

499

Cygan, Kowalik, Soca la, & Sornat

• (nonedge strings) For each pair of nonadjacent vertices v, v′ ∈ V belonging to
different rows, i.e., v = (a, b), v′ = (a′, b′), a 6= a′, we add to S a string svv′ , where
all the blocks except a-th and a′-th are filled with zeroes, while the blocks a, a′

are filled with ones, except the b-th position in block a and the b′-th position in
block a′ which are zeroes (see Figure 1). Formally, svv′ contains ones at positions
{(a− 1)k+ j : j ∈ [k], j 6= b}∪ {(a′− 1)k+ j : j ∈ [k], j 6= b′}. Note that the Hamming
weight of svv′ equals 2k − 2.

• (row strings) For each row i ∈ [k] we create exactly
(

2k−2
k−2

)
strings, i.e., for i ∈ [k]

and for each set X of exactly k − 2 positions in the (k + 1)-th block we add to S a
string si,X having ones at all positions of the i-th block and at X, all the remaining
positions are filled with zeroes (see Figure 2). Note that similarly as for the nonedge
strings the Hamming weight of each row string equals 2k − 2, and to achieve this
property we use the (k + 1)-th block.

0 . . . 0 1 . . . 1 0 1 . . . 1 0 . . . 0 1 . . . 1 0 1 . . . 1 0 . . . 0

0 on b-th position 0 on b′-th position︸ ︷︷ ︸ ︸ ︷︷ ︸
a-th block a′-th block

Figure 1: Nonedge string.

0 . . . 0 1 . . . 1 0 . . . 0 0 0 1 0 1 1 0 . . . 0 1 0︸ ︷︷ ︸ ︸ ︷︷ ︸
i-th block ones on positions X, |X| = k − 2

Figure 2: Row string.

To finish the description of the created instance I ′ = (S, k, d) we need to define the target
distance d, which we set as d = 3k − 3. Observe that as the Hamming weight of each string
s′ ∈ S equals 2k − 2, for s ∈ {0, 1}m with exactly k ones we have H(s, s′) ≤ d if and only if
the positions of ones in s and s′ have a non-empty intersection.

Let us assume that there is a clique K in G of size k containing exactly one vertex from
each row. For i ∈ [k] let ji ∈ [k] be the column number of the vertex of K from row i.
Define s as a string containing ones exactly at positions {(i − 1)k + ji : i ∈ [k]}, i.e., the
(k + 1)-th block contains only zeroes and for i ∈ [k] the i-th block contains a single 1 at
position ji. Obviously s contains exactly k ones, hence it suffices to show that s has at least
one common one with each of the strings in S. This is clear for the row strings, as each
row string contains a block full of ones. For a nonedge string svv′ , where v = (a, b) and
v′ = (a′, b′) note that K does not contain v and v′ at the same time. Consequently s has a
common one with svv′ in at least one of the blocks a, a′.

In the other direction, assume that s is a string of length m with exactly k ones such
that the Hamming distance between s and each of the strings in S is at most d, which
by construction implies that s has a common one with each of the strings in S. First, we
are going to prove that s contains a 1 in each of the first k blocks (and consequently has
only zeroes in block k + 1). For the sake of contradiction assume that this is not the case.

500

Approximation and Parameterized Complexity of Minimax Approval Voting

Consider a block i ∈ [k] containing only zeroes. Let X be any set of k − 2 positions in
block k + 1 holding only zeroes in s (such a set exists as block k + 1 has 2k − 2 positions).
But the row string si,X has 2k − 2 ones at positions where s has zeroes, and consequently
H(s, si,X) = k + (2k − 2) = 3k − 2 > d = 3k − 3, a contradiction.

As we know that s contains exactly one one in each of the first k blocks let ji ∈ [k] be
such a position of block i ∈ [k]. Create X ⊆ V by taking the vertex from column ji for
each row i ∈ [k]. Clearly X is of size k and it contains exactly one vertex from each row,
hence it remains to prove that X is a clique in G. Assume the contrary and let v, v′ ∈ X
be two distinct nonadjacent vertices of X, where v = (i, ji) and v′ = (i′, ji′). Observe that
the nonedge string svv′ contains zeroes at the ji-th position of the i-th block and at the
ji′-th position of the i′-th block. Since for i′′ ∈ [k], i′′ 6= i, i′′ 6= i′ block i′′ of svv′ contains
only zeroes, we infer that the sets of positions of ones of s and svv′ are disjoint leading to
H(s, svv′) = k + (2k − 2) = 3k − 2 > d, a contradiction.

As we have proved that I is a yes-instance of k × k-Clique iff I ′ is a yes-instance of
Minimax Approval Voting, the lemma follows.

In order to derive an ETH-based lower bound we need the following theorem of Lokshtanov
et al. (2011b).

Theorem 3.2. (Lokshtanov et al., 2011b) Assuming ETH, there is no 2o(k log k)-time algo-
rithm for k × k-Clique.

We are ready to prove the main result of this section.

Theorem 3.3. There is no 2o(d log d)poly(n,m)-time algorithm for Minimax Approval
Voting unless ETH fails.

Proof. Using Lemma 3.1, the input instance G of k × k-Clique is transformed into an
equivalent instance I ′ = (S, k, d) of Minimax Approval Voting, where n = |S| =
O(k

(
2k−2
k−2

)
) = 2O(k), each string of S has length m = O(k2) and d = Θ(k). Using a

2o(d log d)poly(n,m)-time algorithm for Minimax Approval Voting we can solve k × k-
Clique in time 2o(k log k)2O(k) = 2o(k log k), which contradicts ETH by Theorem 3.2.

Since this section presents a conditional lower bound, its main practical value is better
understanding of the hardness of breaking the bound (now proven to be equivalent to
disproving ETH). The result can be also seen as an evidence of limitations of any heuristic
for MAV used in practice.

4. Parameterized Approximation Scheme

In this section we show the following theorem.

Theorem 4.1. There exists a randomized algorithm which, given an instance ({si}i∈[n], k, d)

of Minimax Approval Voting and any ε ∈ (0, 3), runs in time O
((

3
ε

)2d · (m+ n) +mn
)

and either

(i) reports a solution at distance at most (1 + ε)d from S, or

501

Cygan, Kowalik, Soca la, & Sornat

(ii) reports that there is no solution at distance at most d from S.

In the latter case, the answer is correct with probability at least 1− p, for arbitrarily small
fixed p > 0.

Let us proceed with the proof. In what follows we assume p = 1/2, since then we can
get the claim even if p < 1/2 by repeating the whole algorithm dlog2(1/p)e times. Indeed,
then the algorithm returns an incorrect answer only if each of the dlog2(1/p)e repetitions
returned an incorrect answer, which happens with probability at most (1/2)log2(1/p) = p.

Assume we are given a yes-instance and let us fix a solution s∗ ∈ Sk,m, i.e., a string
at distance at most d from all the input strings. Our approach is to begin with a string
x0 ∈ Sk,m not very far from s∗, and next perform a number of steps. In the j-th step we
either conclude that xj−1 is already a (1 + ε)-approximate solution, or with some probability
we find another string xj which is closer to s∗.

First observe that if |n1(s1)− k| > d, then clearly there is no solution and our algorithm
reports NO. Hence in what follows we assume |n1(s1) − k| ≤ d. We set x0 to be any
k-completion of s1, therefore we get H(x0, s1) ≤ d. Since H(s1, s

∗) ≤ d, by the triangle
inequality we get the following bound

H(x0, s
∗) ≤ H(x0, s1) +H(s1, s

∗) ≤ 2d. (1)

Now we are ready to describe our algorithm precisely (see also Pseudocode 1). We
begin with x0 defined as above. We are going to create a sequence of strings x0, x1, . . . , xd
satisfying n1(xj) = k for every j. For j ∈ [d] we do the following. If for every i ∈ [n] we
have H(xj−1, si) ≤ (1 + ε)d the algorithm terminates and returns xj−1. Otherwise, fix any
i ∈ [n] such that H(xj−1, si) > (1 + ε)d. Let Pj,0 = {a ∈ [m] : 0 = xj−1[a] 6= si[a] = 1}
and Pj,1 = {a ∈ [m] : 1 = xj−1[a] 6= si[a] = 0}. The algorithm samples a position a0 ∈ Pj,0
and a position a1 ∈ Pj,1. In case Pj,0 = ∅ or Pj,1 = ∅ we return NO because it means
that H(si, Sk,m) = H(si, xj−1) > d. Then, xj is obtained from xj−1 by swapping the 0 at
position a0 with the 1 at position a1. If the algorithm finishes without finding a solution, it
reports NO.

Pseudocode 1: Parameterized approximation scheme for Minimax Approval Vot-
ing.
1 if |n1(s1)− k| > d then return NO;
2 x0 ← any k-completion of s1;
3 for j ∈ {1, 2, . . . , d} do
4 if H(xj−1, S) ≤ (1 + ε)d then return xj−1;
5 otherwise there exists si s.t. H(xj−1, si) > (1 + ε)d;
6 Pj,0 ← {a ∈ [m] : 0 = xj−1[a] 6= si[a] = 1};
7 Pj,1 ← {a ∈ [m] : 1 = xj−1[a] 6= si[a] = 0};
8 if min(|Pj,0|, |Pj,1|) = 0 then return NO;
9 Get xj from xj−1 by swapping 0 and 1 on pair of random positions from Pj,0 and Pj,1;

10 if H(xd, S) ≤ (1 + ε)d then return xd;
11 else return NO ;

The following lemma is the key to get a lower bound on the probability that the xj ’s get
close to s∗.

502

Approximation and Parameterized Complexity of Minimax Approval Voting

Lemma 4.2. Let x be a string in Sk,m such that H(x, si) ≥ (1 + ε)d for some i ∈ [n]. Let
s∗ ∈ Sk,m be any solution, i.e., a string at distance at most d from all the strings sj, j ∈ [n].
Denote

P ∗0 = {a ∈ [m] : 0 = x[a] 6= si[a] = s∗[a] = 1} ,

P ∗1 = {a ∈ [m] : 1 = x[a] 6= si[a] = s∗[a] = 0} .

Then, it holds that min (|P ∗0 | , |P ∗1 |) ≥ εd
2 .

Proof. Let P be the set of positions on which x and si differ, i.e., P = {a ∈ [m] : x[a] 6= si[a]}
(see Figure 3). Note that P ∗0 ∪ P ∗1 ⊆ P . Let Q = [m] \ P .

P Q

P ∗0 P ∗1

s∗ 0 11 0

si 1 0 0 1

x 0 1 0 1

Figure 3: Strings x, si and s∗ after permuting the positions.

The intuition behind the proof is that if min(|P ∗0 |, |P ∗1 |) is small, then s∗ differs too much
from si, either because s∗|P is similar to x|P (when |P ∗0 | ≈ |P ∗1 |) or because s∗|Q has much
more 1’s than si|Q (when |P ∗0 | differs much from |P ∗1 |).

We begin with a couple of useful observations on the number of ones in different parts of
x, si and s∗. Since x and si are the same on Q, we get

n1(x|Q) = n1(si|Q). (2)

Since n1(x) = n1(s∗), we get n1(x|P) + n1(x|Q) = n1(s∗|P) + n1(s∗|Q), and further

n1(s∗|Q)− n1(x|Q) = n1(x|P)− n1(s∗|P). (3)

Finally note that

n1(s∗|P) = |P ∗0 |+ n1(x|P)− |P ∗1 |. (4)

We are going to derive a lower bound on H(si, s
∗). First, we have

H(si|P , s∗|P) = |P | − (|P ∗0 |+ |P ∗1 |) = H(x, si)− (|P ∗0 |+ |P ∗1 |) ≥ (1 + ε)d− (|P ∗0 |+ |P ∗1 |).
(5)

On the other hand, it holds that

H(si|Q, s∗|Q) ≥ |n1(s∗|Q)− n1(si|Q)| (2)
= |n1(s∗|Q)− n1(x|Q)|

(3)
= |n1(x|P)− n1(s∗|P)| (4)

=
∣∣|P ∗1 | − |P ∗0 |∣∣. (6)

503

Cygan, Kowalik, Soca la, & Sornat

It follows that

d ≥ H(si, s
∗) = H(si|P , s∗|P) +H(si|Q, s∗|Q)

(5),(6)

≥ (1 + ε)d− (|P ∗0 |+ |P ∗1 |) + ||P ∗1 | − |P ∗0 || = (1 + ε)d− 2 min(|P ∗0 |, |P ∗1 |).

Hence, min(|P ∗0 |, |P ∗1 |) ≥ εd
2 as required.

Corollary 4.3. Assume that there is a solution s∗ ∈ Sk,m and that the algorithm created a

string xj, for some j ∈ {0, . . . , d}. Then, it holds that Pr[H(xj , s
∗) ≤ 2d− 2j] ≥

(
ε
3

)2j
.

Proof. We use induction on j. For j = 0 the claim follows from (1). Consider j > 0. By the
induction hypothesis, we get

Pr[H(xj−1, s
∗) ≤ 2d− 2j + 2] ≥

(ε
3

)2j−2
. (7)

Assume that H(xj−1, s
∗) ≤ 2d − 2j + 2. Since xj was created, H(xj−1, si) > (1 + ε)d for

some i ∈ [n]. Since H(s∗, si) ≤ d, by the triangle inequality we get the following

|Pj,0|+ |Pj,1| = H(xj−1, si) ≤ H(xj−1, s
∗) +H(s∗, si) ≤ 3d− 2j + 2 ≤ 3d. (8)

Then, we have

Pr[H(xj , s
∗) ≤ 2d− 2j | H(xj−1, s

∗) ≤ 2d− 2j + 2] ≥ |P ∗0 | · |P ∗1 |
|Pj,0| · |Pj,1|

≥
(
εd
2

)2(
3d
2

)2 =
(ε

3

)2
. (9)

The first inequality holds through counting proper swaps among all possible swaps. The
second inequality follows from Lemma 4.2 and (8). The claim follows by combining (7)
and (9).

In order to increase the success probability, we repeat the algorithm until a solution is
found or the number of repetitions is at least (3/ε)2d. By Corollary 4.3 the probability that
there is a solution but it was not found is bounded by

(
1−

(ε
3

)2d
)(3/ε)2d

=

(
1− 1

(3/ε)2d

)(3/ε)2d

≤ 1

e
<

1

2
.

This finishes the proof of Theorem 4.1.
Table 1 presents (rounded) values of ε for which the worst case bounds (with constants

omitted) for the running times of algorithm from Theorem 4.1 and the algorithm of Misra

et al. (2015) are equal, i.e., when (3/ε)2d ·log2(1/p) = d2d which gives ε = (3/d)·(log2(1/p))
1
2d .

For ε greater than the values in Table 1 our algorithm can be faster than the previous one
for instances with no solution at distance at most d from S. Note that the effect of p on
the border value of ε is not very significant. However, a meaningful comparison of practical
aspects of these two algorithms requires performing a series of experiments with actual
implementations.

504

Approximation and Parameterized Complexity of Minimax Approval Voting

Table 1: Rounded values of ε = 3
d ·
(

log 1
p

) 1
2d

.

p
d

10 15 20 25

0.5 0.3 0.2 0.15 0.12

10−10 0.357 0.225 0.164 0.129

10−20 0.370 0.230 0.167 0.131

5. A Faster Polynomial Time Approximation Scheme

The goal of this section is to present a PTAS for the optimization version of Minimax
Approval Voting running in time nO(1/ε2·log(1/ε)) · poly(m). It is achieved by combining
the parameterized approximation scheme from Theorem 4.1 with the following result, which
might be of independent interest. Throughout this section OPT denotes the value of an
optimum solution s for the given instance ({si}i∈[n], k) of Minimax Approval Voting,
i.e., OPT = maxi∈[n]H(s, si),

Theorem 5.1. There exists a randomized polynomial time algorithm which, for arbitrarily
small fixed p > 0, given an instance ({si}i∈[n], k) of Minimax Approval Voting and any

ε > 0 such that OPT ≥ 122 lnn
ε2

, reports a solution, which with probability at least 1− p is at
distance at most (1 + ε) ·OPT from S.

In what follows, we prove Theorem 5.1. As in the proof of Theorem 4.1 we assume w.l.o.g.
p = 1/2. Note that we can assume ε < 1, for otherwise it suffices to use the 2-approximation
of Caragiannis et al. (2010). We also assume n ≥ 3, for otherwise it is a straightforward
exercise to find an optimal solution in linear time. Let us define a linear program (10–13):

minimize d (10)∑
j∈[m]

xj = k (11)

∑
j∈[m]
si[j]=1

(1− xj) +
∑
j∈[m]
si[j]=0

xj ≤ d ∀i ∈ [n] (12)

xj ∈[0, 1] ∀j ∈ [m] (13)

The linear program (10–13) is a relaxation of the natural integer program for Minimax
Approval Voting, obtained by replacing (13) by the discrete constraint xj ∈ {0, 1}.
Indeed, observe that xj corresponds to the j-th letter of the solution x = x1 · · ·xm, (11)
states that n1(x) = k, and (12) states that H(x, S) ≤ d.

Our algorithm is as follows (see Pseudocode 2). First we solve the linear program in time
poly(n,m) using the interior point method (Karmarkar, 1984). Let (x∗1, . . . , x

∗
m, d

∗) be the
obtained optimal solution. Clearly, d∗ ≤ OPT. We randomly construct a string x ∈ {0, 1}m,
guided by the values x∗j . More precisely, for every j ∈ [m] independently, we set x[j] = 1
with probability x∗j . Note that x does not need to contain k ones. Let y be any k-completion
of x. The algorithm returns y.

505

Cygan, Kowalik, Soca la, & Sornat

Pseudocode 2: The algorithm from Theorem 5.1

1 Solve the LP (10–13) obtaining an optimal solution (x∗1, . . . , x
∗
m, d

∗);
2 for j ∈ {1, 2, . . . ,m} do
3 Set x[j]← 1 with probability x∗j and x[j]← 0 with probability 1− x∗j
4 y ← any k-completion of x;

5 return y

Clearly, the above algorithm runs in polynomial time. In what follows we bound the
probability of error. To this end we prove upper bounds on the probability that x is far
from S and the probability that the number of ones in x is far from k. This is done in
Lemmas 5.3 and 5.4, which can be shown using standard Chernoff bounds (see, e.g., Motwani
& Raghavan, 1995, ch. 4.1).

Theorem 5.2. (Motwani & Raghavan, 1995, ch. 4.1) Let X1, X2, . . . , Xn be n independent
random 0-1 variables such that for every i ∈ [n] we have Pr [Xi = 1] = pi, for pi ∈ [0, 1]. Let
X =

∑n
i=1Xi. Then,

• for any 0 < ε ≤ 1 we have:

Pr [X > (1 + ε) · E [X]] ≤ exp
(
−1

3ε
2 · E [X]

)
(14)

Pr [X < (1− ε) · E [X]] ≤ exp
(
−1

2ε
2 · E [X]

)
(15)

• for any 1 < ε we have:

Pr [X > (1 + ε) · E [X]] ≤ exp
(
−1

3ε · E [X]
)

(16)

Pr [X < (1− ε) · E [X]] = 0 (17)

Lemma 5.3. It holds that Pr
[
H(x, S) > (1 + ε

2) ·OPT
]
≤ 1

4 .

Proof. For every i ∈ [n] we define a random variable Di that measures the distance between
x∗ and si by

Di =
∑
j∈[m]
si[j]=1

(1− x[j]) +
∑
j∈[m]
si[j]=0

x[j].

Note that x[i] are independent 0-1 random variables. Using linearity of the expectation we
obtain

E[Di] = E

[∑
j∈[m],si[j]=1

(1− x[j]) +
∑

j∈[m],si[j]=0

x[j]

]

=
∑

j∈[m],si[j]=1

(1− E[x[j]]) +
∑

j∈[m],si[j]=0

E[x[j]]

=
∑

j∈[m],si[j]=1

(1− x∗j) +
∑

j∈[m],si[j]=0

x∗j ≤ d∗ ≤ OPT. (18)

506

Approximation and Parameterized Complexity of Minimax Approval Voting

Note that Di is a sum of m independent 0-1 random variables Xj = 1− x[j] when si[j] = 1
and Xj = x[j] otherwise. Denote δ = ε · OPT

2E[Di]
. We apply Chernoff bounds. For δ < 1 we

have

Pr[Di >
(
1 + ε

2

)
·OPT]

(18)

≤ Pr
[
Di > E[Di] + ε

2 ·OPT
]

= Pr [Di > (1 + δ) · E[Di]]

(14)

≤ exp

(
−1

3

(
ε · OPT

2E[Di]

)2

E[Di]

)
(18)

≤ exp

(
−ε

2 ·OPT

12

)
.

In case δ ≥ 1 we proceed analogously, using the Chernoff bound (16) we get

Pr[Di >
(
1 + ε

2

)
·OPT]

(16)

≤ exp

(
−ε ·OPT

6

)
1>ε
≤ exp

(
−ε

2 ·OPT

12

)
.

Next, we use the union bound to get the claim

Pr
[
H(x, S) > (1 + ε

2) ·OPT
]

= Pr
[
∃i ∈ [n] Di >

(
1 + ε

2

)
·OPT

]
≤ n · exp

(
−ε

2 ·OPT

12

)
≤ n · exp

(
−

122 lnn
OPT ·OPT

12

)
< n−9 n≥3

<
1

4
.

Lemma 5.4. It holds that Pr
[
|n1(x)− k| > ε

2 ·OPT
]
≤ 1

4 .

Proof. First we note that

E[n1(x)] = E
[∑
j∈[m]

x[j]
]

=
∑
j∈[m]

E[x[j]] =
∑
j∈[m]

x∗j = k. (19)

Pick an i ∈ [n]. Define the random variables

Ei =
∑

j∈[m],si[j]=1

(1− x[j]), Fi =
∑

j∈[m],si[j]=0

x[j].

Let Di = Ei + Fi, as in the proof of Lemma 5.3. By (18) we have

E[Ei] ≤ E[Ei] + E[Fi] = E[Di] ≤ OPT (20)

E[Fi] ≤ E[Ei] + E[Fi] = E[Di] ≤ OPT (21)

Both Ei and Fi are sums of independent 0-1 random variables and we apply Chernoff
bounds as follows. When 1

4ε ·
OPT
E[Ei]

≤ 1 then using (14) and (15) we obtain

Pr

[∣∣∣Ei − E[Ei]
∣∣∣ > 1

4
ε ·OPT

]
(14),(15)

≤ exp

(
−1

3
· 1

16
ε2 · (OPT)2

E2 [Ei]
· E[Ei]

)
+ exp

(
−1

2
· 1

16
ε2 · (OPT)2

E2 [Ei]
· E[Ei]

)
(20)

≤ 2 · exp

(
− 1

48
ε2 ·OPT

)
,

507

Cygan, Kowalik, Soca la, & Sornat

otherwise
(

1
4ε ·

OPT
E[Ei]

> 1
)

, using (16) and (17), we have

Pr

[∣∣∣Ei − E[Ei]
∣∣∣ > 1

4
ε ·OPT

]
(16),(17)

≤ exp

(
−1

3
· 1

4
ε · OPT

E[Ei]
· E[Ei]

)
+ 0

≤ exp

(
− 1

12
ε ·OPT

)
1>ε
≤ 2 · exp

(
− 1

48
ε2 ·OPT

)
.

To sum up, in both cases we have shown that

Pr
[∣∣∣Ei − E[Ei]

∣∣∣ > ε

4
·OPT

]
≤ 2 · exp

(
− 1

48
ε2 ·OPT

)
. (22)

Similarly we show

Pr
[∣∣∣Fi − E[Fi]

∣∣∣ > ε

4
·OPT

] (14),(15),(16),(17),(21)

≤ 2 · exp

(
− 1

48
ε2 ·OPT

)
. (23)

We see that

n1(x) =
∑
j∈[m]

x[j] = n1(si) −
∑

j∈[m],si[j]=1

(1 − x[j]) +
∑

j∈[m],si[j]=0

x[j] = n1(si) − Ei + Fi (24)

and hence it holds

E[n1(x)] = n1(si)− E[Ei] + E[Fi]. (25)

Additionally we will use

∀x, y ∈ R |x− y| > a =⇒ |x| > a/2 ∨ |y| > a/2. (26)

Now we can write

Pr
[∣∣∣n1(x)− k

∣∣∣ > 1
2ε ·OPT

]
(19)
= Pr

[∣∣∣n1(x)− E[n1(x)]
∣∣∣ > 1

2ε ·OPT
]

(24),(25)
= Pr

[∣∣∣n1(si)− Ei + Fi − n1(si) + E[Ei]− E[Fi]
∣∣∣ > 1

2ε ·OPT
]

(26)

≤ Pr
[∣∣∣Ei − E[Ei]

∣∣∣ > 1
4ε ·OPT ∨

∣∣∣Fi − E[Fi]
∣∣∣ > 1

4ε ·OPT
]

≤ Pr
[∣∣∣Ei − E[Ei]

∣∣∣ > 1
4ε ·OPT

]
+ Pr

[∣∣∣Fi − E[Fi]
∣∣∣ > 1

4ε ·OPT
]

(22),(23)

≤ 4 · exp
(
− 1

48ε
2 ·OPT

) assum.
≤ 4 · exp

(
−122

48 lnn
) n≥3
< 1

4 .

We can finish the proof of Theorem 5.1. By Lemmas 5.3 and 5.4 with probability at
least 1/2 both H(x, S) ≤ (1 + 1

2ε) · OPT and H(y, x) = |n1(x) − k| ≤ 1
2ε · OPT. By the

triangle inequality this implies that H(y, S) ≤ (1 + ε) ·OPT, with probability at least 1/2 as
required.

We conclude the section by combining Theorems 4.1 and 5.1 to get a faster PTAS.

508

Approximation and Parameterized Complexity of Minimax Approval Voting

Theorem 5.5. For each ε > 0 we can find (1 + ε) approximation solution for the Minimax

Approval Voting problem in time n
O
(

log 1/ε

ε2

)
· poly(m) with probability at least 1− r, for

any fixed r > 0.

Proof. First we run the algorithm from Theorem 4.1 for d = d122 lnn
ε2
e and p = r/2.

If it reports a solution, for every d′ ≤ d we apply Theorem 4.1 with p = r/2 and we
return the best solution. If OPT ≥ d, even the initial solution is at distance at most
(1 + ε)d ≤ (1 + ε) · OPT from S. Otherwise, at some point d′ = OPT and we get a
(1 + ε)-approximation with probability at least 1− r/2 > 1− r.

In the case when the initial run of the algorithm from Theorem 4.1 reports NO, we
just apply the algorithm from Theorem 5.1, again with p = r/2. With probability at least
1 − r/2 the answer NO of the algorithm from Theorem 4.1 is correct. Conditioned on
that, we know that OPT > d ≥ 122 lnn

ε2
and then the algorithm from Theorem 5.1 returns a

(1 + ε)-approximation with probability at least 1− r/2. Thus, the answer is correct with
probability at least (1− r/2)2 > 1− r.

The total running time can be bounded as follows

O∗
((

3

ε

) 244 lnn
ε2

)
⊆ O∗

(
n
O
(

ln 1/ε

ε2

))
⊆ nO

(
log 1/ε

ε2

)
· poly(m).

Let us comment on the practicality of the PTAS presented in this section. Although the
asymptotic worst-case complexity is better than in the case of the previous PTAS (Byrka &
Sornat, 2014), the large constants hidden in the exponents of the function describing the
running time still make it far from being practical. A further algorithm engineering research
effort can help to turn our ideas into a useful implementation.

6. Concluding Remarks and Open Questions

There are examples of theoretical work which was next turned into practical software by
means of non-trivial algorithm engineering effort. See, e.g., the algorithm of Tamaki (2017)
based on work of Bouchitte and Todinca (2001), which solved all 100 instances of exact
treewidth challenge at the PACE 2017 competition (Dell, Komusiewicz, Talmon, & Weller,
2017). Similarly, we believe that our techniques, possibly augmented with additional ideas,
may be used in an efficient implementation. However, our lower bound shows an obstacle
which any such implementation has to face.

Using approximation and randomized algorithms for finding committees in multi-winner
elections appears to be controversial. The outcome can be non-optimal and additionally it
can be different for different random bits. One can see an approximation algorithm as a
new voting rule. In fact, Sequential Proportional Approval Voting (Thiele, 1895),
that was used briefly in Sweden during the early 1900s (Aziz et al., 2017b), is a greedy
algorithm that gives an approximate solution to Proportional Approval Voting. For
more discussion and examples of approximation algorithms being full-fledged voting rule
we delegate to the following papers (Caragiannis et al., 2012; Caragiannis, Kaklamanis,
Karanikolas, & Procaccia, 2014; Skowron, Faliszewski, & Slinko, 2015; Aziz et al., 2017b;

509

Cygan, Kowalik, Soca la, & Sornat

Elkind et al., 2017). While using approximation or randomization in domains similar political
elections may appear controversial, multi-winner voting has much more diverse applications.
Examples include cost-minimization or gain-maximization, see e.g., a recent paper by Byrka,
Skowron, and Sornat (2018) for connections between multi-winner elections and facility
location problems. Finally, randomized and approximation algorithms seem to be well
justified for high-frequency decisions (Aziz, Bogomolnaia, & Moulin, 2017a), e.g., online
scheduling or online systems.

We conclude the paper with some questions related to this work that are left unanswered.
Our PTAS for Minimax Approval Voting is randomized, and it seems there is no direct
way of derandomizing it. It might be interesting to find an equally fast deterministic PTAS.
The second question is whether there are even faster PTASes for Closest String or
Minimax Approval Voting. Recently, Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and
Saurabh (2016) showed that under ETH, there is no PTAS in time f(ε) ·no(1/ε) for Closest
String. This extends to the same lower bound for Minimax Approval Voting, since we
can try all values k ∈ {0, 1, . . . ,m}. It is a challenging open problem to close the gap in the
running time of PTAS either for Closest String or for Minimax Approval Voting.

Acknowledgments

A preliminary version of this work appeared in the proceedings of AAAI-17 (Cygan, Kowalik,
Soca la, & Sornat, 2017) and also was presented at EXPLORE 2017 (The 4th Workshop on
Exploring Beyond the Worst Case in Computational Social Choice). The authors thank
Piotr Skowron for helpful remarks concerning the introduction and they thank reviewers of
AAAI-17, EXPLORE 2017 and JAIR for their insightful comments on the paper. Marek
Cygan would like to thank Daniel Lokshtanov for helpful conversations about existing
algorithms for the Closest (Sub)String problem. The work of M. Cygan is a part of the
project TOTAL that has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement
No 677651). L. Kowalik and A. Soca la were supported by the National Science Centre,
Poland, grant number 2013/09/B/ST6/03136. K. Sornat was supported by the National
Science Centre, Poland, grant number 2015/17/N/ST6/03684 and SNSF Grant APXNET
200021 159697/1.

References

Andoni, A., Indyk, P., & Patrascu, M. (2006). On the Optimality of the Dimensionality
Reduction Method. In Proceedings of 47th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2006, pp. 449–458.

Aziz, H., Bogomolnaia, A., & Moulin, H. (2017a). Fair Mixing: The Case of Dichotomous
Preferences. CoRR, abs/1712.02542.

510

Approximation and Parameterized Complexity of Minimax Approval Voting

Aziz, H., Brill, M., Conitzer, V., Elkind, E., Freeman, R., & Walsh, T. (2017b). Justified
Representation in Approval-based Committee Voting. Social Choice and Welfare,
48 (2), 461–485.

Baumeister, D., Bohnlein, T., Rey, L., Schaudt, O., & Selker, A. (2016). Minisum and
Minimax Committee Election Rules for General Preference Types. In Proceedings of
22nd European Conference on Artificial Intelligence, ECAI 2016, Vol. 285 of Frontiers
in Artificial Intelligence and Applications, pp. 1656–1657. IOS Press.

Betzler, N., Slinko, A., & Uhlmann, J. (2013). On the Computation of Fully Proportional
Representation. Journal of Artificial Intelligence Research, 47, 475–519.

Bouchitte, V., & Todinca, I. (2001). Treewidth and Minimum Fill-in: Grouping the Minimal
Separators. SIAM Journal of Computing, 31 (1), 212–232.

Brams, S. J., Kilgour, D. M., & Sanver, M. R. (2007a). A Minimax Procedure for Electing
Committees. Public Choice, 132 (3-4), 401–420.

Brams, S. J., Kilgour, D. M., & Sanver, M. R. (2007b). A Minimax Procedure for Negotiating
Multilateral Treaties. In Avenhaus, R., & Zartman, I. W. (Eds.), Diplomacy Games,
pp. 265–282. Springer Berlin, Heidelberg.

Bredereck, R., Chen, J., Faliszewski, P., Guo, J., Niedermeier, R., & Woeginger, G. J.
(2014). Parameterized Algorithmics for Computational Social Choice: Nine Research
Challenges. Tsinghua Science and Technology, 19 (4), 358–373.

Byrka, J., Skowron, P., & Sornat, K. (2018). Proportional Approval Voting, Harmonic
k-median, and Negative Association. In Proceedings of 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, pp. 26:1–26:14.

Byrka, J., & Sornat, K. (2014). PTAS for Minimax Approval Voting. In Proceedings of 10th
International Conference Web and Internet Economics, WINE 2014, pp. 203–217.

Caragiannis, I., Covey, J. A., Feldman, M., Homan, C. M., Kaklamanis, C., Karanikolas, N.,
Procaccia, A. D., & Rosenschein, J. S. (2012). On the Approximability of Dodgson
and Young Elections. Artificial Intelligence, 187, 31–51.

Caragiannis, I., Kaklamanis, C., Karanikolas, N., & Procaccia, A. D. (2014). Socially Desir-
able Approximations for Dodgson’s Voting Rule. ACM Transactions on Algorithms,
10 (2), 6:1–6:28.

Caragiannis, I., Kalaitzis, D., & Markakis, E. (2010). Approximation Algorithms and
Mechanism Design for Minimax Approval Voting. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, pp. 737–742.

Chamberlin, J. R., & Courant, P. N. (1983). Representative Deliberations and Representative
Decisions: Proportional Representation and the Borda Rule. American Political Science
Review, 77, 718–733.

Conitzer, V. (2010). Making Decisions Based on the Preferences of Multiple Agents.
Communications of the ACM, 53 (3), 84–94.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., & Saurabh, S. (2015). Parameterized Algorithms. Springer.

511

Cygan, Kowalik, Soca la, & Sornat

Cygan, M., Kowalik, L., Soca la, A., & Sornat, K. (2017). Approximation and Parameterized
Complexity of Minimax Approval Voting. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI 2017, pp. 459–465.

Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., & Saurabh, S. (2016). Lower Bounds
for Approximation Schemes for Closest String. In Proceedings of 15th Scandinavian
Symposium and Workshops on Algorithm Theory, SWAT 2016, pp. 12:1–12:10.

Dell, H., Komusiewicz, C., Talmon, N., & Weller, M. (2017). The PACE 2017 Parameterized
Algorithms and Computational Experiments Challenge: The Second Iteration. In
Proceedings of 12th International Symposium on Parameterized and Exact Computation,
IPEC 2017, pp. 30:1–30:12.

Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank Aggregation Methods
for the Web. In Proceedings of the Tenth International World Wide Web Conference,
WWW 2001, pp. 613–622.

Elkind, E., Faliszewski, P., Skowron, P., & Slinko, A. (2017). Properties of Multiwinner
Voting Rules. Social Choice and Welfare, 48 (3), 599–632.

Faliszewski, P., Skowron, P., Slinko, A., & Talmon, N. (2017). Multiwinner Voting: A New
Challenge for Social Choice Theory. In Endriss, U. (Ed.), Trends in Computational
Social Choice, chap. 2, pp. 27–47. AI Access.

Fishburn, P. C. (1978). Axioms for Approval Voting: Direct Proof. Journal of Economic
Theory, 19 (1), 180–185.

Gramm, J., Niedermeier, R., & Rossmanith, P. (2003). Fixed-Parameter Algorithms for
Closest String and Related Problems. Algorithmica, 37 (1), 25–42.

Impagliazzo, R., & Paturi, R. (2001). On the Complexity of k-SAT. Journal of Computer
and System Sciences, 62 (2), 367–375.

Karmarkar, N. (1984). A New Polynomial-time Algorithm for Linear Programming. Combi-
natorica, 4 (4), 373–396.

Kilgour, D. M. (2010). Approval Balloting for Multi-winner Elections. In Laslier, J.-F., &
Sanver, R. M. (Eds.), Handbook on Approval Voting, pp. 105–124. Springer Berlin,
Heidelberg.

Laslier, J.-F., & Sanver, R. M. (2010). Handbook on Approval Voting. Studies in Choice and
Welfare. Springer Berlin, Heidelberg.

LeGrand, R. (2004). Analysis of the Minimax Procedure. Technical Report WUCSE-2004-67,
Department of Computer Science and Engineering, Washington University, St. Louis,
Missouri.

LeGrand, R., Markakis, E., & Mehta, A. (2007). Some Results on Approximating the Minimax
Solution in Approval Voting. In Proceedings of 6th International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2007, pp. 1193–1195.

Li, M., Ma, B., & Wang, L. (2002). On the Closest String and Substring Problems. Journal
of the ACM, 49 (2), 157–171.

512

Approximation and Parameterized Complexity of Minimax Approval Voting

Liu, H., & Guo, J. (2016). Parameterized Complexity of Winner Determination in Mini-
max Committee Elections. In Proceedings of the 2016 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2016, pp. 341–349.

Lokshtanov, D., Marx, D., & Saurabh, S. (2011a). Lower Bounds Based on the Exponential
Time Hypothesis. Bulletin of the EATCS, 105, 41–72.

Lokshtanov, D., Marx, D., & Saurabh, S. (2011b). Slightly Superexponential Parameterized
Problems. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, pp. 760–776.

Lu, T., & Boutilier, C. (2011). Budgeted Social Choice: From Consensus to Personalized
Decision Making. In Proceedings of 22nd International Joint Conference on Artificial
Intelligence, IJCAI 2011, pp. 280–286.

Ma, B., & Sun, X. (2009). More Efficient Algorithms for Closest String and Substring
Problems. SIAM Journal of Computing, 39 (4), 1432–1443.

Misra, N. (2016) personal communication.

Misra, N., Nabeel, A., & Singh, H. (2015). On the Parameterized Complexity of Minimax
Approval Voting. In Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2015, pp. 97–105.

Motwani, R., & Raghavan, P. (1995). Randomized Algorithms. Cambridge University Press.

Niedermeier, R. (2015). Lower Bound Issues in Computational Social Choice. A talk at
the workshop Satisfiability Lower Bounds and Tight Results for Parameterized and
Exponential-Time Algorithms, Simons Institute, Berkeley, November 10, 2015.

Rawls, J. (1971). A Theory of Justice. Harvard Univeristy Press.

Sanchez-Fernandez, L., & Fisteus, J. A. (2017). Monotonicity Axioms in Approval-based
Multi-winner Voting Rules. CoRR, abs/1710.04246.

Skowron, P., Faliszewski, P., & Lang, J. (2016). Finding a Collective Set of Items: From
Proportional Multirepresentation to Group Recommendation. Artificial Intelligence,
241, 191–216.

Skowron, P., Faliszewski, P., & Slinko, A. M. (2015). Achieving Fully Proportional Repre-
sentation: Approximability Results. Artificial Intelligence, 222, 67–103.

Tamaki, H. (2017). Positive-Instance Driven Dynamic Programming for Treewidth. In
Proceedings of 25th Annual European Symposium on Algorithms, ESA 2017, pp. 68:1–
68:13.

Thiele, T. N. (1895). Om Flerfoldsvalg. In Oversigt over det Kongelige Danske Videnskabernes
Selskabs Forhandlinger, pp. 415–441.

513

