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Abstract

We describe algorithms for use by prediction markets in forming a crowd consensus joint
probability distribution over thousands of related events. Equivalently, we describe market
mechanisms to efficiently crowdsource both structure and parameters of a Bayesian network.
Prediction markets are among the most accurate methods to combine forecasts; forecasters
form a consensus probability distribution by trading contingent securities. A combinatorial
prediction market forms a consensus joint distribution over many related events by allowing
conditional trades or trades on Boolean combinations of events. Explicitly representing the
joint distribution is infeasible, but standard inference algorithms for graphical probability
models render it tractable for large numbers of base events. We show how to adapt these
algorithms to compute expected assets conditional on a prospective trade, and to find the
conditional state where a trader has minimum assets, allowing full asset reuse. We compare
the performance of three algorithms: the straightforward algorithm from the DAGGRE
(Decomposition-Based Aggregation) prediction market for geopolitical events, the simple
block-merge model from the SciCast market for science and technology forecasting, and a
more sophisticated algorithm we developed for future markets.

1. Introduction

A prediction market is a market formed for the purpose of making predictions about events
of interest. Human or machine forecasters contribute either by directly editing a consensus
probability distribution or by buying and selling securities whose prices can be interpreted
as probabilities. It is well known that combining forecasts from multiple sources improves
accuracy (Surowiecki, 2005) and that prediction markets are among the most accurate
information aggregation methods (Wolfers & Zitzewitz, 2006). Prediction markets have
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become a popular method for aggregating information from human forecasters (Arrow et
al., 2008; Tziralis & Tatsiopoulos, 2007; Horn, Ivens, Ohneberg, & Brem, 2014) and show
promise as an ensemble method for machine learning (Barbu & Lay, 2012).

Combinatorial prediction markets allow forecasts not only on base events, but also on
conditional and/or Boolean combinations of events. A market-maker-based combinatorial
prediction market (Hanson, 2007) allows a user to trade on any event at any time by
interacting with an automated market maker which sets the price of a contingent security
according to a market scoring rule. The market maker performs several functions: it processes
trades on demand, manages a consistent joint probability distribution over the base events,
can be queried for any user’s expected assets, disallows any trade that could allow a user’s
total market assets to become negative, and pays off users when the state of any event
becomes known.

The joint outcome space for a combinatorial market is exponential in the number of
base events. Managing probabilities and assets in a general combinatorial prediction market
is therefore intractable. This problem has been addressed by limiting the set of securities
that can be traded and designing a market maker that can efficiently price these securities
(Pennock & Xia, 2011; Abernethy, Chen, & Vaughan, 2013). The consensus probabilities
share information among logically related securities in the restricted set.

While there has been considerable work on the problem of information sharing in the
consensus probability distribution, less attention has been devoted to the problem of asset
reuse by users trading on logically related securities. In a market without asset reuse,
purchasing several logically related securities can unnecessarily tie up assets. For example,
suppose a user with a total of $10 in available cash spends $7 for a security that pays $10 if
A occurs and $3 for a security that pays $10 if A does not occur. The user is guaranteed to
recoup her $10 investment whether or not A occurs. However, without asset reuse, the $10
is unavailable to make any additional trades until the truth-value of A is revealed. Asset
reuse allows users to make purchases as long as they are guaranteed to have sufficient assets
in any state of the world to cover their trades.

We present a method for managing assets and probabilities in large combinatorial
prediction markets. Our method allows asset reuse, and easily supported live markets
with 600 questions and simulated markets with over 10,000 questions. We compare three
different asset management approaches including the parallel junction tree method used in
the DAGGRE (Decomposition-Based Aggregation) geopolitical forecasting market (Powell,
Hanson, Laskey, & Twardy, 2013), the simple block merge method deployed in the SciCast
public prediction market (Twardy et al., 2014), and a more sophisticated algorithm we
developed but have not yet deployed.

Our core algorithms follow Pennock and Xia (2011) in assuming that allowable securities
are structure-preserving. There are several ways to overcome this limitation if participants
wish to express knowledge that does not conform to the structure-preserving restriction. In
SciCast, we allowed users to add new arcs, but required a minimum investment to offset the
additional computation, i.e. computationally expensive arcs required expensive bets.

The remainder of this paper is organized as follows. This section provides background
on prediction markets, market makers, and combinatorial prediction markets. Section 2
describes the tasks an automated market maker must perform in a combinatorial prediction
market. Section 3 describes the parallel junction tree method and shows how it accomplishes
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the market maker tasks. Section 4 introduces the two methods for managing user-specific
asset data structures. A numerical performance evaluation of the algorithms is presented in
Section 5, followed by a concluding section.

1.1 Prediction Markets

Prediction markets make probabilistic forecasts by allowing participants to trade securities
whose value is contingent on events of interest. Prices in such a market can be interpreted
as probabilities: the price p in cents of a security paying $1 contingent on event E is the
market probability of E. Traders self-select to make forecasts on the events they believe
they know how to forecast. Those with more knowledge tend to gain more assets, giving
them greater purchasing power for making new forecasts and greater influence on market
probabilities. Conversely, those who make poor forecasts have fewer assets and therefore less
influence on market probabilities. Market prices inform everyone of trader information. At
each moment, the market probability of an event can be considered as a consensus forecast
that aggregates current information possessed by market participants.

Traditionally, prediction markets have used a double auction, where buyers list bid prices
for the securities they wish to purchase and sellers list ask prices for the securities they
wish to sell. Unfortunately, this double auction approach can give rise to illiquid markets in
which traders with information have no incentive to trade (Chen et al., 2010). This problem
can be addressed through the use of automated market makers. A market maker stands
ready to buy or sell securities on any relevant event. Hanson (2003) introduced a class of
market makers based on proper scoring rules (Savage, 1971). Infinitesimal trades with such
a market scoring rule (MSR) are fair bets at the price offered by the market maker. Larger
trades change the market probabilities. Users increase their expected assets by moving the
market probabilities toward their beliefs. The prices offered by a MSR market maker can be
viewed as a current trader consensus on the probabilities of those events.

The most commonly applied MSR is the logarithmic market scoring rule (LMSR) (Hanson,
2007). In a LMSR-based prediction market, the market maker varies its price exponentially
with the quantity of assets it sells. The LMSR is attractive for combinatorial markets
because it is uniquely modular. That is, LMSR is the only MSR for which a trade that
changes the probability p(E|F ) of an event E given another event F leaves the probability
p(F ) of the conditioning event unchanged. In other words, the LMSR uniquely allows users
with conditional information to focus on trades related to their area of expertise, without
unintentionally changing the probabilities of conditioning events about which they have no
knowledge.

Most prediction markets focus on buying and selling securities, but MSRs support a
formally equivalent view in which participants make direct changes to probabilities. We call
such direct changes edits to the joint distribution. Offering an edit-based interface may be
attractive to subject-matter experts who think in terms of event probabilities rather than
security prices. For this reason, we use the terminology of trades and edits interchangeably.

For more information on prediction markets the reader might start with (Wolfers &
Zitzewitz, 2006) and then use (Tziralis & Tatsiopoulos, 2007; Horn et al., 2014) as bibliometric
guides to the field in 2007 and 2014, respectively. Our focus is combinatorial prediction
markets, for which the next section provides background.
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1.2 Combinatorial Prediction Markets

A combinatorial prediction market allows edits to Boolean combinations of a base set of
events and/or conditional trades on base events given other base events. A market-maker-
based combinatorial prediction market, therefore, declares a complete consistent probability
distribution over a combinatorial space of events, and lets participants edit any part of that
distribution. In a combinatorial LMSR-based market, users can make conditional bets that
satisfy intuitive independence properties. For example, letting “¬” denote “not”, a trader
who increases the value of p(A|B) gains if A and B occur and loses if ¬A and B occur.
Such an edit changes neither p(B) nor p(A|¬B) and the trader neither gains nor loses if ¬B
occurs (Hanson, 2007).

With a large set of base events, the number of event combinations becomes astronomical,
making it intractable in general to compute market prices and identify infeasible trades. In
particular, it is in general NP-hard to maintain correct LMSR prices across an exponentially
large outcome space (Chen, Fortnow, Lambert, Pennock, & Wortman, 2008).

The Predictalot public combinatorial market (Malinowski, 2010) achieved tractability by
using a Monte Carlo approximation to price securities. Other authors have showed how to
achieve tractable pricing without approximation by limiting the securities that can be traded:
two key examples follow. Chen et al. (2008) used a Bayesian network to represent the
consensus distribution for a set of securities related to outcomes in a tournament, and showed
how to perform price updating efficiently when trades are restricted to securities for which
updates preserve the structure. Pennock and Xia (2011) gave a general characterization of
the class of structure preserving securities for a Bayesian network and proved that prices
can be updated in polynomial time if edits are structure preserving.

Abernethy, et al. (2013) introduced a general framework for automated market maker
design in combinatorial markets that restrict trades to a relatively small set of structured
securities. From a set of intuitive axioms for a reasonable market maker, they prove the
market maker must price securities using a convex cost function. Their framework uses
optimization over the convex hull of security payoffs to achieve efficient algorithms for
pricing securities. Their framework includes LMSR markets as a special case. Li et al.
(2013) extended this framework to a parameterized class of markets with adaptive liquidity,
and studied the relationship of market parameters to the market’s ability to aggregate
information and make a profit.

Dud́ık et al. (2012) proposed a market maker that achieves some information sharing
among related securities, without restricting the securities that can be traded. Convex opti-
mization and constraint generation are used to detect and eliminate some kinds of arbitrage
opportunities. Loss bounds were derived. While falling short of a full combinatorial market,
this approach allows trading on the full combinatorial space while balancing information
propagation with tractability. The approach was applied in a large-scale predication market
for United States elections (Dud́ık, Lahaie, Rothschild, & Pennock, 2013).

1.3 Reusing Assets

In the LMSR framework of Pennock and Xia (2011), each edit takes the form of a participant
paying cash to a market maker to obtain a contingent security that pays cash if a certain
event happens. A trader who has run out of cash is not permitted to make any more trades.

424



GMMM for CPM

Yet the assets one is sure to obtain from prior trades are often sufficient to guarantee many
more trades.

As a simple example, suppose a user buys a security “Pays $10 if A,” and then later
buys a security “Pays $10 if ¬A.” Because one of these is guaranteed to pay off, the two are
together worth $10 in cash. However, in a näıve implementation, this $10 cannot be used to
make additional trades until the truth-value of A is resolved.

As another example, consider a user who wishes to trade on conditional probabilities
for an event A given N mutually exclusive conditions Bi, i = 1 . . . N . In the Pennock and
Xia framework, such conditional probabilities can be established by trading securities that
depend on joint states. A market probability p(A|Bi) = xi corresponds to a market price
of $xi to purchase two separate securities, one paying $1 if Bi and A both occur and the
other paying $xi if ¬Bi occurs. Trading on A given all N of the Bi requires purchasing N
separate pairs of securities, where the ith pair costs $xi and pays $1 if A and Bi occur, 0 if
¬A and Bi occur, and $xi if ¬Bi occurs. Without asset reuse, the total purchase price of
$
∑
xi would be tied up until one of the Bi occurred. Note, though, that because no more

than one of the Bi can occur, the collection of securities is guaranteed to pay off at least
$(
∑
xi −max{xi}). If N is large and the probabilities are non-negligible, a considerable

sum could be unnecessarily tied up.

While we might imagine that a market maker could be designed to notice and account for
these kinds of asset reuse opportunities, combinations of trades worth a guaranteed amount
of cash are difficult to identify in general. The market maker needs to be able to ensure that
each participant has sufficient assets to cover any losses that could occur. Thus, in order to
allow asset reuse, the market maker must be able to determine whether an attempted edit
could result in negative assets in some state of the world, and if so, disallow the attempt.
When there are complex combinations of conditional trades, this can be challenging. The
market maker algorithms presented in Sections 3 and 4 provide computationally efficient
ways to identify and exploit asset reuse opportunities.

2. Market Maker Tasks

Consider a LMSR market maker market with base events of the form V = vk, where V is
a question posed to market participants and {v1, . . . vm} is a set of of mutually exclusive
and collectively exhaustive possible answers to the question. For example, V might be
the question of who will win a given election, {v1, . . . vm} might be the list of candidates
running for the position, and V = vk would represent the event that the kth candidate wins
the election. Following standard terminology, V is called a random variable and the set
{v1, . . . vn} consists of the states or possible outcomes of V . A traditional or “flat” prediction
market assigns a probability to each base event V = vk.

In a combinatorial prediction market with n random variables V1, . . . , Vn, the market
consensus distribution assigns a probability to each of the

∏
k nk possible joint outcomes of

the random vector V = (V1, . . . , Vn).1 From this joint probability assignment can be derived
probabilities for the base events Vj = vjk , as well as probabilities of more complex events
such as logical combinations of events or conditional events.

1. We use capital letters for random variables, lowercase letters for variable values, and bold letters for
vectors.
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At any time, a user u possesses assets consisting of the collection of securities u has
purchased up to that time together with the cash u has remaining after purchases. The
value of these assets depends on the outcomes of the events on which u has traded. Once
the joint state v of all market variables becomes known, all u’s securities will be paid out
for their cash value in state v. At any point during trading, the amount of cash the user
would receive if a given state v were revealed to be the true state, denoted by auv, is called
the user’s current assets for that joint state. For example, suppose a user starts with $100
and spends $0.70 to purchase a security paying $1 if A occurs. This user will have assets
$100.30 in any state in which A occurs and $99.30 in any state in which A does not occur.
If the user then spends an additional $0.40 to purchase a conditional security that pays $1
for B given A, then the user’s new assets will be $100.90 if A and B both occur, $99.90 if A
occurs and B does not, and $99.30 if A does not occur.

The market maker maintains the current consensus joint market probability distribution,
sets prices on contingent securities, and maintains an account of each user’s state-dependent
assets. This section discusses six tasks the market maker must perform in order to manage
probabilities and assets.

Task 1: First, the market maker needs to maintain a consistent consensus distribution
pv = p(V = v) over joint states v of V and respond to queries about features of the current
consensus distribution. In addition to queries p(V = v) about the probabilities of base
events, a combinatorial market may allow queries p(T |H = h) for the distribution of a target
variable T given that assumption (or hypothesis) variables H have values h. Queries may
also involve Boolean combinations, e.g., p((W = w)∨ (U = u)). While intractable for general
combinatorial markets, this task has been accomplished either by restricting the securities
that can be priced (Pennock & Xia, 2011; Abernethy et al., 2013) or by approximation
(Malinowski, 2010; Dud́ık et al., 2012).

Task 2: The second market maker task is to process edits. A user who disagrees with
the current consensus distribution pv can change it by making edits, provided the edits can
be covered by her current assets. If user u begins with assets auv ≥ 0 in joint state v and
makes an edit changing p(v) to x(v), the market maker needs to update u’s assets according
to the LMSR asset updating rule. User u’s post-edit assets in joint state v are given by:

a′uv = auv + b ln
x(v)

p(v)
, (1)

where b is a liquidity parameter. That is, u’s assets change in proportion to the logarithm of
the ratio of new to old probabilities. Edits by u leave other users’ assets unchanged.

Edits typically involve only small subsets of the base events. For example, u might make
an edit to change the conditional distribution p(T |H = h) to a new distribution x(T |H = h).
Such an edit changes only the conditional distribution of T given H = h. The marginal
distribution of the variables other than T remains unchanged, as does the distribution of T
given H 6= h. Specifically, p(v) becomes x(T |H=h)

p(T |H=h))p(v) in states v = (t,h,w) and remains

unchanged in states v′ = (t,h′,w) for which h′ 6= h. From (1) we see that this conditional
edit changes u’s assets au(t,h,w) to

a′u(t,h,w) = au(t,h,w) + b ln
x(t|H = h)

p(t|H = h)
. (2)
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where w consists of all variables other than t and h. For h′ 6= h, assets a′u(t,h′,w) = au(t,h′,w)

remain unchanged. Thus, u’s assets increase in states (t,h,w) for which the edit has
increased the probability of t given h; decrease in states (t,h,w) for which the edit has
decreased the probability of t given h; and remain unchanged in states (t,h′,w) for which
h′ 6= h.

In summary, the market maker’s edit processing task is to update the consensus joint
distribution after each edit and to update assets of the user making the edit according to
(1), which becomes (2) for conditional edits. As with the first task, this task is intractable
in full generality, but can be approximated, or made tractable by restricting the allowable
securities.

Task 3: The third market maker task is to ensure that users can cover their bets. The
market maker has to disallow any edit for which the new asset value a′uv would be negative
in any state v. Therefore, the market maker should be able to calculate the minimum asset
value cu = minv a

u
v, also known as the user’s cash, in order to ensure that it always remains

non-negative. When a user attempts an edit, the market maker can provisionally update
the asset structure, calculate the user’s post-edit cash, and process the edit only if the result
is non-negative.

Rather than having users attempt edits that may be disallowed, it is convenient for
the market maker to provide upper and lower bounds in advance of edits. Edit limits are
straightforward to calculate if the market maker is able to find conditional minimum assets.
Denote the conditional cash given Y = y as:

cuy = min
v:Y=y

auv

Suppose the user wants to make an edit to change p(T |H = h), denoted as pt|h, to
x(T |H = h), denoted as xt|h. The updated assets will remain non-negative as long as both
cu(t,h) + b ln{xt|h/pt|h} and cu(¬t,h) + b ln{(1− xt|h)/(1− pt|h)} are non-negative. That is, the
new probability xt|h must fall within the edit limits x∗ ≤ xt|h ≤ x∗, where:

x∗ = pt|he
−
(
cu
(t,h)

/b
)
, and

x∗ = 1− (1− pt|h)e
−
(
cu
(¬t,h)

/b
)
.

(3)

Thus, the ability to calculate conditional minimum assets allows the market maker to
give users upper and lower bounds on probability changes that can be supported by their
assets.

The problem of finding a user’s minimum assets has received little attention in the
literature. Market makers for combinatorial prediction markets typically do not consider
asset reuse.

Task 4: In addition to responding to probability queries, processing edits and computing
unconditional and conditional minimum assets, the fourth market maker task is to compute
the market value, or expected value, of any user’s portfolio of assets:

āu =
∑
v

pva
u
v.
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Note that if a user u makes an edit x(t|H = h) to move the consensus distribution in
the direction of her subjective probability for t given h, her subjective expected assets
will increase. Thus, users are incentivized to move the market distribution toward their
subjective beliefs.

Task 5: Over time, as the values of some components of V become known, the market
maker needs to update its representations of pv and auv accordingly. When it becomes known
that the random variable W has value w, the system can throw away all representations
associated with states where W 6= w. The remaining probabilities must then be renormalized
so that

∑
W=w pv = 1. Assets auv for states v with W = w do not change. The cash for user

u changes from cu to cuw. This fifth market maker operation, removing a random variable
and renormalizing when its value becomes known, is called resolving W to the value w.

Task 6: Finally, new questions of interest arise from time to time. To allow forecasts on
new questions, the market maker must perform a sixth task of adding new random variables
and specifying a joint distribution for the new and old random variables. When a new
random variable W is added to the system, each previous state v is replaced by a set of
states {(v, w)}, one for each of the possible values w of W . Assets are directly transferred via
au(v,w) = auv. Probabilities p(v,w) = pvpw|v are assigned, where pw|v is the initial conditional

probability for state w of W given v, and
∑

w pw|v = 1. This initial probability distribution
is arbitrary and can be set by the market maker. For simplicity, it is commonly set to a
uniform distribution. This bounds the loss suffered by a LMSR market maker from adding
the new random variable to −b ln #W , where #W is the number of possible values of W . If
the market maker has knowledge about W , the market maker’s expected loss is minimized
by setting pw|v to the market maker’s conditional probability of w given v.

To summarize, a combinatorial prediction market needs data structures and algorithms
to accomplish the following tasks:

1. Perform probability query to find the current conditional distribution p(T |H = h) for
target variable T given assumption H = h.

2. Apply edit by user u to the distribution of one or more variables, e.g., a change from
p(T |H = h) to x(T |H = h).

3. Determine allowable edits. This task includes finding unconditional and conditional
cash cu and cuw, determining upper and lower edit limits, and checking whether an
attempted edit is allowable.

4. Find expected assets āu of user u with respect to the current market distribution.

5. Resolve variable W to value w.

6. Add variable W with possible values {w1, . . . , w#W }.

3. Parallel Junction Tree Market Maker

Hanson’s (2007) combinatorial market maker algorithm employed a näıve brute-force enumer-
ation approach that quickly becomes intractable as the number of market questions grows.
In a combinatorial market with n base events, each of which has two possible outcomes (e.g.,
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true and false), the market maker must maintain a consensus probability distribution over
2n joint states. With 20 base events, there are over a million probabilities; with 30 base
events, there are over a billion probabilities; with 40 base events, there are over a trillion
probabilities. Clearly, brute force enumeration does not scale to combinatorial markets with
more than a few base questions.

The problem of efficiently representing and computing with joint distributions over large
numbers of random variables arises in a wide range of applications and has been studied
extensively. The standard approach is to represent the joint distribution as a product of
factors, where each factor involves only a small number of random variables. The number of
parameters required to specify the joint distribution then scales as the number of factors
times the number of parameters required to specify the largest factor. This generally provides
a drastic reduction in the number of parameters needed to specify the joint distribution. In
addition to representation economy, factored representations also typically admit efficient
query processing and probability updating algorithms.

Pennock and Xia (2011) introduced a factored representation for probabilities in a
combinatorial prediction market, but did not provide a means to allow asset reuse and did
not discuss how to compute expected assets. This section presents a probability and asset
management approach, based on probabilistic graphical models, that allows asset reuse and
supports computation of expected values. Section 4 introduces a new asset management
approach that is more efficient when trades are sparse in the full joint space.

3.1 Probabilistic Graphical Models for Market Joint Distribution

Probabilistic graphical models have emerged as a general framework for efficient representa-
tion of and inference with joint probability distributions over many random variables. A
probabilistic graphical modelM = (G,P) consists of a graph G representing direct dependen-
cies among related random variables and a set P of functions, defined on clusters of random
variables, representing numerical probability information. For example, Figure 1 shows the
graph G for a directed graphical model, also called a Bayesian network, representing the
dependency structure for a group of eighteen related questions that appeared in the SciCast
(Twardy et al., 2014) combinatorial prediction market in 2014. The graph G is an acyclic
directed graph in which each node represents a random variable. The nodes are shown as
rounded boxes labeled with short phrases; full question text is provided in Table 1. Arcs in
the graph, shown as arrows, represent direct dependence relationships, e.g., Arctic Sea ice
volume depends on Arctic Sea ice thickness and Arctic Sea ice extent.

In a Bayesian network B = (G, {Pk}) defined on random variables V = (V1, . . . , Vn), each
random variable Vk is conditionally independent of its non-descendents given its parents.
With each node Vk is associated a set

Pk = {p(Vk = vk|VPa(Vk) = vPa(Vk))} (4)

of local distributions, where VPa(Vk) denotes the parents of Vk in G and p(Vk = vk|VPa(Vk) =
vPa(Vk)) denotes the conditional probability that Vk has outcome vk given that its parents
VPa(Vk) have outcomes vPa(Vk). For a root node, the local distribution assigns a probability
to each possible value; otherwise it assigns a conditional distribution given each combination
of values of its parents.
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V2: Ice
extent

V1:  Ice
Thickness

V4: Ice 
volume

V6: Biomes

V8: Nitrogen
deposition

V10: Sustainable
management

V18: Marine
trophic

V14: Water
quality

V17: Threatened 
species status

V16: Wooly 
adelgid

V15: Ash 
borer

V11: Abundance

V12: Bottlenose
dolphin population

V13: Sea lion
population

V7: Sardine
biomass

V9: Alien 
species

V3: Sardine
Catch

V5: Eco
footprint

Figure 1: Bayesian Network for a Subset of SciCast Questions.

The graph G and local distributions {Pk} together represent a joint probability distribu-
tion over V. This joint distribution can be written in factored form as:

p(V = v) =
∏

1≤k≤n
p(Vk = vk|VPa(Vk) = vPa(Vk)). (5)

If no node has more than r states and s parents, then specifying the joint distribution requires
no more than n(r − 1)s probabilities. This is typically a vast reduction: for 40 random
variables with 4 states each, brute force enumeration requires more than 1024 probabilities,
whereas a Bayesian network with no more than four parents per node can be specified fewer
than 3, 300 probabilities. A general joint distribution for the random variables of Figure 1
would require over 200 billion probabilities to specify by brute force, whereas this Bayesian
network requires about 1,500 probabilities to specify.

In addition to simplifying specification, probabilistic graphical models admit inference
algorithms that exploit the independence relationships for efficient computation. When
the graph is singly connected–that is, when there is only one path between any two nodes
in the graph–there are elegant message-passing schemes for managing probability updates
and query processing. For multiply connected graphical models such as Figure 1, the most
popular inference method is the junction tree algorithm (Lauritzen & Spiegelhalter, 1988).
This algorithm first transforms the original graphical model into a new singly connected
graphical model and then applies a message-passing scheme on the transformed model. The
transformation preserves the joint probability distribution represented by the original model.

430



GMMM for CPM

Table 1: Full Question Text for SciCast Question Subset

Variable Full Text of Question Appearing on SciCast Market

V1 What will be the daily average Arctic sea ice thickness for September 2014?

V2 What will the average Arctic sea ice extent be for September 2014?

V3 How will the U.S. catch of Pacific sardines in 2014 change from the 2013
estimated catch of 112,296 metric tons?

V4 What will be the monthly averaged Arctic ice volume for September 2014?

V5 Which of the following changes will be reported about “Ecological footprint
and related concepts” in the fourth edition of the Global Biodiversity
Outlook report?

V6 Which of the following changes will be reported about “trends in extent
of selected biomes, ecosystems, and habitats” in the fourth edition of the
Global Biodiversity Outlook report?

V7 How will NOAA Fisheries 2015 stock biomass estimate of the Pacific sardine
change compared to the 2014 estimate of 378,120 metric tons?

V8 Which of the following changes will be reported on the topic of Nitrogen
deposition in the fourth edition of the Global Biodiversity Outlook report?

V9 Which of the following changes will be reported about “Trends in invasive
alien species” in the fourth edition of the Global Biodiversity Outlook
report?

V10 Which of the following changes will be reported about “Area of forest,
agricultural and aquaculture ecosystems under sustainable management” in
the fourth edition of the Global Biodiversity Outlook report?

V11 Which of the following changes will be reported about “trends in abundance
and distribution of selected species” in the fourth edition of the Global
Biodiversity Outlook report?

V12 How will NOAA Fisheries’ next minimum population estimate of Califor-
nia/Oregon/Washington offshore common bottlenose dolphins change from
the 2010 stock assessment of 684 bottlenose dolphins?

V13 How will NOAA Fisheries’ next minimum population estimate of the U.S.
stock of California sea lions change from the 2011 stock assessment?

V14 Which of the following changes will be reported about “Water quality of
aquatic ecosystems” in the fourth edition of the Global Biodiversity Outlook
report?

V15 Will any new infestations of Emerald Ash Borer, an invasive insect species,
be observed in the U.S. in 2014?

V16 Will the number of U.S. counties with infestations of Hemlock Woolly
Adelgids, an invasive insect species, decrease in 2014 from the previous
year?

V17 Which of the following will be reported about “Change in status of threatened
species” in the fourth edition of the Global Biodiversity Outlook report?

V18 Which of the following changes will be reported about “The Marine Trophic
Index” in the fourth edition of the Global Biodiversity Outlook report?
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The graph for the transformed model is an undirected graph called a junction tree. The
nodes of the junction tree represent clusters of related random variables from the original
Bayesian network.

Figure 2 shows a junction tree constructed from the Bayesian network of Figure 1. The
clusters, shown as ovals in the figure, are arranged in a tree. Each arc in the graph is labeled
with the intersection, or separator, of its endpoints.

For a probabilistic graphical model on a junction tree composed of a set of clusters C
and separators S, the joint probability distribution p(v) factors according to:

p(V = v) =

∏
c∈C p(Vc = vc)∏
s∈S p(Vs = vs)

. (6)

Here, Vc and Vs denote the random variables in cluster c and separator s, respectively, and
p(Vc = vc) and p(Vs = vs) are the marginal distributions for the cluster and separator
variables, respectively.

The junction tree algorithm works as follows. Each cluster c [separator s] is initialized
with a potential function, denoted by ψ(vc) [ψ(vs)], such that the ratio∏

c∈C ψc(vc)∏
s∈S ψs(vs)

. (7)

is proportional to p(V = v). After initialization, the cluster and separator potentials are
updated by passing messages along the arcs. Each updating step leaves the product (7)
invariant. At termination of the algorithm, each cluster and separator potential function is
proportional to the joint marginal distribution of its random variables, i.e., at termination,
ψ(vc) ∝ pc(Vc = vc) and ψ(vs) ∝ p(Vs = vs) for all clusters c and separators s.

When evidence is obtained, the junction tree algorithm can be used to propagate the
effects of this new information to other related random variables. For example, suppose
we learn that a random variable V has value v. First, we choose a cluster c containing V
(if it belongs to more than one cluster, we can choose one arbitrarily). Then, we modify
the potential function for this cluster by setting it to zero for any state vc in which V 6= v,
leaving it unchanged for states vc in which V = v. Then message passing is applied to
propagate the changes to the other clusters. At termination, each potential is proportional
to the conditional distribution of its random variables given V = v.

The computational complexity of the junction tree algorithm is exponential in the
treewidth of the junction tree, defined as the size of the largest cluster in the junction tree.
Although inference in arbitrary graphical models is NP-hard (Cooper, 1990), models with
tractable treewidth have been defined for many applications.

Henceforth, we assume a LMSR combinatorial prediction market in which the consensus
probability distribution p(v) is represented as a probabilistic graphical model that can be
compiled into a junction tree.

The parallel junction tree (PJT) method maintains a set of junction trees, all having the
same clusters and separators. One junction tree represents the consensus joint distribution;
a separate junction tree of the same structure represents each user’s assets. The following
subsections describe how the PJT method performs the six market maker tasks. Section 4
then introduces a more efficient approach to asset management.
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Figure 2: Junction Tree for Bayesian Network of Figure 1.
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3.2 Probability Queries

The first market maker task is to process probability queries. If the current consensus
distribution is maintained as a junction tree (6), the junction tree algorithm (Lauritzen &
Spiegelhalter, 1988) is applied directly to perform probability calculations such as finding
the marginal distribution of a random variable T or the conditional distribution of T given
H = h.

3.3 Structure Preserving Edits: Probability Updating

When a user makes an edit to change the conditional probability p(t|H = h) to a new
probability x(t|H = h), the market maker needs to update the distributions of all the
other random variables to account for the new information. This operation makes use of
a generalization of Bayes’ rule, known as Jeffrey’s rule (Jeffrey, 1990), to handle evidence
declaring a new non-extreme probability distribution. This kind of evidence is known as soft
evidence, in contrast to traditional (hard) evidence asserting a definite value for one of the
random variables.

The junction tree algorithm is adapted in a straightforward way to handle soft evidence
(Koski & Noble, 2009; Langevin & Valtorta, 2008; Valtorta, Kim, & Vomlel, 2002). To update
the consensus distribution when the user changes p(t|h) to x(t|h), the market maker asserts
soft evidence to set a new conditional probability x(t|h) of T = t given H = h and update
the remaining probabilities according to Jeffrey’s rule. Formally, asserting soft evidence is
equivalent to introducing a hidden “dummy” random variable D with parents T and H,
setting the conditional probabilities p(D = 1|t,h) to values proportional to x(t|h)/p(t|h),
and then declaring D = 1 as ordinary evidence (Pearl, 1990).

Probability updating after an edit is straightforward if there is at least one cluster
containing all the variables mentioned in the edit. Pennock and Xia (2011) call such an
edit structure preserving for the junction tree. In general, clusters in the junction tree
contain variables that are closely related to each other. In particular, if the joint distribution
is represented as a Bayesian network, and if two variables in the Bayesian network are
connected directly, then there will be a cluster in the junction tree containing both variables.
Thus, conditional edits of directly connected variables are structure preserving, as are edits
on Boolean combinations of directly connected variables. Variables related only through
a chain of connections may not be structure preserving. For example, V 5 and V 14 are
indirectly related via V 9 in the Bayesian network of Figure 1, but are not in a common
cluster in Figure 2. Thus, edits involving both V 5 and V 14 are not structure preserving with
respect to the junction tree of Figure 2. Further discussion about non structure preserving
edits is in Section 3.9.

Suppose the user wishes to make a structure preserving edit to: (1) set p(t|h) to x(t|h);
(2) proportionally adjust probabilities of t′ 6= t given h; and (3) leave p(t|h′) unchanged for
h′ 6= h. This task can be accomplished by using a standard probability updating algorithm
to apply soft evidence to the consensus distribution junction tree. To do this, the market
maker can add a new random variable D with possible values 1 and 0, add the cluster
(D,T,H) to the junction tree, and define the potential function ψ(T,H, D) of the new cluster
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as follows:

ψ(t,h, 1) = m
x(t|h)

p(t|h)

ψ(t′,h, 1) = m
1− x(t|h)

1− p(t|h)
p(t′|h) t′ 6= t

ψ(t′′,h′, 1) = m all t′′,h′ 6= h

ψ(t′′,h′′, 0) = 1− ψ(t′′,h′′, 1) all t′′, all h′′,

where m = max{ p(t|h)
x(t|h) ,

1−p(t|h)
1−x(t|h)p(t

′|h)} is chosen so that ψ(T,H, D) is strictly non-negative.

The market maker then declares D = 1 as evidence and applies the standard junction
tree algorithm to update the probabilities of all random variables. To see that this operation
results in the desired new probabilities, first note that declaring D = 1 as evidence will set
ψ(·, ·, 0) to zero for all values of T and H. After declaring evidence, the algorithm will choose
a cluster containing T and H and multiply its potential by ψ(·, ·, 1). This operation will
multiply cluster table entries by the constant m for states (t′′,h′) for which h′ 6= h, leaving
the conditional distribution of T given h′ unchanged. The cluster table entry for (t,h) will be

multiplied by mx(t|h)
p(t|h) and entries for (t′,h) for t′ 6= t will be multiplied by m1−x(t|h)

1−p(t|h)p(t
′|h).

Therefore: (1) the old marginal probability p(t|h) is multiplied by mx(t|h)
p(t|h) ; and (2) the old

marginal probability p(t′|h) is multiplied by m1−x(t|h)
1−p(t|h)p(t

′|h). The resulting conditional

probabilities given H = h are therefore proportional to mx(t|h) and m1−x(t|h)
1−p(t|h)p(t

′|h). After

normalizing, the new conditional probability of t given h will be equal to x(t|h) and the

probabilities of t′ 6= t will be multiplied by 1−x(t|h)
1−p(t|h) . The impact of the edit will be propagated

to the rest of the network by the junction tree algorithm.

More efficiently, a market maker working directly with the junction tree representation
need not explicitly represent the dummy variable D. The market maker can simply multiply
the potential function for a cluster containing both T and H by ψ(T,H, 1) and update
probabilities accordingly.

In the foregoing, the edit was assumed to be structure preserving. Non structure
preserving edits can be viewed as changing the structure of the Bayesian network, an
operation that requires separate treatment (see Section 3.9 below).

3.4 Structure Preserving Edits: Asset Updating

The previous section addressed probability updating by applying standard algorithms for
graphical models. This section introduces a new method for using a junction tree to represent
assets and process structure preserving edits. This new method enables asset reuse as well
as providing tractable probability and asset updating.

Consider a user making a structure preserving edit of p(t|H = h) to x(t|H = h). As
discussed above, the effect of this edit is to change the probability of the full joint state v
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from p(v) to x(v) as follows:

x(t,h,w) =
x(t|H = h)

p(t|H = h)
p(t,h,w)

x(t′,h,w) =
1− x(t|H = h)

1− p(t|H = h)
p(t′,h,w) t′ 6= t

x(t′,h′,w) = p(t′,h′,w), h′ 6= h

where w denotes the joint state of the random variables other than T and H. To implement
the edit, a LMSR market maker will update u’s assets auv according to Equation (2). It is
convenient to work with an exponential transformation qu(v) = (auv)b of u’s assets.

Proposition 3.1. Let the transformation qu on a user’s assets be given by:

qu(v) = (auv)b , (8)

If the user makes a structure preserving edit of p(t|H = h) to x(t|H = h), then the ratio of
new to old transformed assets satisfies:

q′u(v)

qu(v)
=

(a′uv )b

(auv)b
=
x(v)

p(v)
, (9)

where (a′uv ) is the user’s updated assets in joint state v as defined in (2) and q′u(v) is the
updated transformed assets.

Proof. The expression (9) can be derived as follows:

a′uv = auv + ∆auv

= auv + b ln
x(v)

p(v)

= b ln(qu(v)) + b ln
x(v)

p(v)

= b ln(q′u(v))

⇒ b ln(q′u(v)) = b ln(qu(v)) + b ln
x(v)

p(v)

⇒ ln(q′u(v))− ln qu(v) = ln
x(v)

p(v)
.

⇒ q′u(v)

qu(v)
=
x(v)

p(v)
.

This establishes (9).

To interpret the constant b, note that if the user changes the probability of state v
from p(v) to x(v) = 1 and v turns out to be true, the user gains ∆auv = −b ln p(v). The
maximum possible gain is therefore −b ln p(v∗), where v∗ is the minimum probability state.
If all states start out equally likely, i.e., p(v) = 1/L for all v, then the maximum gain to
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users, and the maximum loss to the market maker, is b lnL, where L is the total number of
states. Therefore, to bound losses to be no more than M , we can initialize all market states
to be equally likely at the start of trading and set b = M/ lnL.

If qu starts out independent of the state and changes in proportion to changes in p, we
can decompose qu similar to the decomposition of p in Equation (6). Specifically,

qu(v) =

∏
c∈C q

u
c (vc)∏

s∈S q
u
s (vs)

, (10)

where quc and qus are local asset components defined on the cluster and separator variables,
respectively. Notice the similarity between (10) and (6). This factored representation for
assets is preserved as long as initial assets are state-independent and all edits are structure
preserving.

Any structure preserving edit can be implemented by changing the potential function
for just one cluster. All factors of (9) cancel except for the joint space of the edited cluster.
That is, assets can be updated simply by choosing a cluster c containing the variables being
traded and multiplying quc (vc) by the probability ratio:

q′uc (vc) = qc(vc)
xc(vc)

pc(vc)
. (11)

Combining 11 with Equation (10) yields the same result as Equation (9) in the case of a
structure preserving edit.

Thus, a representation of the user’s assets can be stored as an asset junction tree of the
same structure as the junction tree representing the consensus distribution. Each edit can
be processed locally by modifying a cluster containing the edited variables. The user’s asset
junction tree can then be used to compute cash and expected assets as described below.

3.5 Determining Allowable Edits

Allowable edits must respect the rule that the user’s cash cu may not become negative in
any joint state with non-zero consensus probability. Equivalently, any edit that changes
x(t|H = h) to p(t|H = h) must fall within the edit limits x∗ ≤ x(t|H = h) ≤ x∗ as defined
by (3). The factored asset representation (10) can be exploited to compute cash, conditional
cash, and edit limits. Dawid’s (1992) generalization of the junction tree algorithm can be
applied to find the minimum value of a function that can be represented in factored form as
in (10). The market maker can verify that the user’s cash is non-negative by finding the
minimum of the transformed assets qu as defined in Equation (8) and checking that it is no
smaller than 1. Dawid’s algorithm can be easily adapted to calculate conditional minima,
providing a way to calculate conditional cash cuy and consequently edit limits (8).

3.6 Expected Value of User’s Assets

A user typically wants to know the expected value of her assets given the current market
consensus prices. If she is contemplating an edit to event A, she would want to know what
her expected assets will be if A happens and if ¬A happens. These expectations can be
calculated given the factorization represented in the junction tree, as shown by Dawid (1992).
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User u’s expected assets are given by:

āu =
∑
c∈C

∑
vc

auc (vc)pc(vc)−
∑
s∈S

∑
vs

aus (vs)ps(vs), (12)

where

auc (vc) = b ln(quc (vc)),

and

aus (vs) = b ln(qus (vs)).

Note that the asset updating rule (11) updates only to the cluster tables, leaving the
separator tables unchanged. Because all separator tables start out independent of state and
are not changed by updating, the second term of (12) is a constant.

3.7 Resolving Variables

When the value of a random variable W = w becomes known, the distributions of the
remaining random variables U = V \W are updated to p(U|W = w) according to Bayes’
rule. The junction tree algorithm is a computationally efficient way to perform Bayesian
updating. After updating, we can remove W from the representation. To do this, the
consensus probability distribution is updated by removing W from all clusters and separators
to which it belongs, and then replacing all cluster and separator marginal distributions pc(vc)
and ps(vs) with their conditional distributions given W = w. Each user’s asset structure is
then updated by removing W from all the asset clusters and separators, and replacing all
the cluster and separator asset tables with the conditional tables given W = w.

3.8 Adding Variables

To add a new random variable Y , we first decide whether it should be linked to any of
the other market random variables. If so, we need to add arcs connecting Y to these
random variables. This may necessitate recompiling the junction tree. It is possible that
recompilation will assign variables formerly in the same cluster to different clusters. In
this case, any edits involving these variables, while structure preserving with respect to the
original junction tree, would no longer be structure preserving in the new representation.
This issue can be addressed by modifying the junction tree construction algorithm to force
variables connected by edits to remain in the same cluster.

After updating the junction tree, each user’s asset structure must be updated – an
expensive operation that will be avoided by the algorithms in Section 4. The asset tables
remain unchanged for any clusters left unchanged in the probability representation. If the
only change to a cluster is to add the variable Y , the cluster table is updated by simply
duplicating the existing table for each state y of Y . More extensive changes to the junction
tree require re-processing edits. Recall that each edit is processed by applying (11) to a
cluster c containing the edited variables. An edit must be reprocessed unless it is associated
with an unchanged cluster or a cluster that changes only by adding Y .
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3.9 Non Structure Preserving Edits

So far we have considered edits that follow equation (1). In such an edit, a user who changes
p(T |H = h) also changes her assets auv in any joint state in which H = h, and leaves
unchanged the probabilities p(H = h) and p(T |H 6= h), as well as her assets in any state
for which p(H 6= h). No one else’s assets change in any way. These relationships hold for
the general but computationally intractable LMSR. Because the algorithms presented in
this paper employ LMSR, they also respect these relationships, but are limited to structure
preserving edits.

What should a system do if a user requests to make an edit that violates the structural
assumptions of the current graphical model? If we thought there was a strong consensus
that the graphical model is correct, we might interpret this user request as wanting to leave
the graphical model unchanged, and yet still make the requested change to p(T |H = h). It
would be interesting further research to seek a general method to satisfy the user’s request
as closely as possible while making a minimum change to p(T |H 6= h), p(H = h), and
assets in states with H 6= h. However, any such algorithm (like minimizing KL divergence)
could involve the user in any number of bets they might disavow, so we chose a more direct
approach. Our response to an edit request that violates structural assumptions is to change
the graphical model. The simplest way to do this is to extend the model by adding links
between variables. Direct links to T from all the variables in H would be sufficient to support
a change to p(T |H = h), but not all of these links may be necessary. By using this extended
model, one can preserve all the features of the algorithms in this paper.

However, adding links can increase computational cost. For example, doing this could
increase the treewidth of the junction tree, and as we’ve seen the computational complexity
of probability updating is exponential in that treewidth. In the final version of our SciCast
system, when a user indicated that they wanted to edit a particular conditional probability
that violated our structural assumptions, the system required an edit whose cost increased
with the new computational load. Specifically, the larger the treewidth, the larger the
minimum required edit.

If new links are sometimes added to the model, yet never removed (except by questions
resolving), then eventually the treewidth will become large enough to prevent adding more
links. Thus for long term adaptability, one should consider removing links. But cutting
links raises two new problems: stranded assets and user incentives for cutting links.

Regarding stranded assets, consider the simplest case of two binary variables A and B,
with one link between them. In this case there are three independent probabilities, four
possible states, and users can have a different asset amount in each of the four states. If
the one link between these two variables is cut, then there are now only two independent
probabilities, and a parallel junction tree representation of assets now assumes that the
added assets that a user has if the variable A has state true, relative to the state false,
is independent of the value of the variable B. To convert assets from the previous asset
representation into this new representation, some assets in the original representation will in
general be “stranded”, in that they are not directly expressed in the new representation.
Stranded assets will still be paid out properly when variables are resolved, but cannot be
reused.
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As variables are resolved, stranded assets involving those variables become simpler, and
eventually turn into cash. Currently stranded assets are not considered when calculating
cash values for feasible edit limits, but this is exactly as it should be, and so edit limits
are correctly calculated. It is straightforward to include stranded assets in expected value
calculations. Thus the problem of stranded assets seems to be a manageable one.

There is a potential incentive problem, however, that seems more difficult. Consider
that in a graphical model, the lack of a link between two variables corresponds to an exact
conditional independence relationship. Therefore, in order to remove an arc, the probabilities
must be adjusted to remove that particular conditional dependence. The problem is that
profit-maximizing users have no obvious incentive to exactly balance the probability numbers.
A user interface could include a macro operator that enables users to easily produce these
exact values, and thus allow links to be cut from the graph. However, some other incentive
will need to be found and offered to induce users to make such edits. Alternatively, the
system can periodically remove weak links that induce compute costs, ideally by making
regular edits and absorbing the associated costs. In SciCast we never needed to invoke arc
deletion.

4. Trade-based Asset Management

In the PJT representation, each user has an asset junction tree with the same structure
as the consensus belief junction tree. A typical user in a market with a large number of
questions will make edits on only a small proportion of the questions. Because a user’s
assets do not depend on the state of any random variables she has not edited, it is highly
inefficient to maintain a user-specific asset structure on the entire joint space. Further, any
changes (e.g., adding questions, resolving questions, or adding links) to the structure of the
global junction tree must be propagated to each user’s asset structure. With large numbers
(e.g., thousands) of users and questions, space and time complexity of the parallel junction
tree representation can become prohibitive. Adequate performance for large-scale prediction
markets requires a more efficient approach to asset management.

To address this challenge, trade-based asset management uses a data structure for each
user’s assets that involves only the random variables on which that user has traded. Each
user’s asset structure consists of a set of asset blocks constructed from the user’s trade
history and updated incrementally with each trade. When most users trade on only a small
fraction of the market variables, the asset blocks consume much less space and support more
efficient asset management algorithms than the parallel junction tree representation. The
trade-based asset structure no longer mirrors the probability structure, which means that
changes to the structure of the joint distribution no longer need to be propagated to all
user-specific asset structures.

For example, consider a combinatorial prediction market in which the consensus distri-
bution is represented by the junction tree of Figure 2. Consider a user who makes structure
preserving edits involving only four variables, V 2, V 6, V 11, and V 17. To determine this
user’s allowable edits and expected assets, the market maker needs to consider only joint
configurations of these four variables. The asset block representations described in this
section would represent this user’s asset structure with the junction tree of Figure 3. This
is much smaller than the asset junction tree maintained under the parallel junction tree
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V2, V6 V6 V6, V11 V11 V11, V17

Figure 3: Trade-Based Asset Structure for Sparse Trader.

representation. Further, in computing prices and expected assets for this user, we can remove
all clusters from the consensus distribution junction tree except the three clusters at the top
of Figure 2. The time and space complexity of computation with junction trees is the size of
the largest cluster times the number of clusters. Across a large number of users who make
sparse edits, we can achieve a large savings in both storage and computation by moving to a
user-specific asset block representation.

Section 4.1 describes the basic asset representation. Section 4.2 describes how the market
maker tasks described in Section 2 are accomplished with the asset block representation.
Section 4.3 provides algorithms for updating the asset block representation as trades and
resolutions occur. Sections 4.4 and 4.5 describe two different methods for calculating cash
with the asset block representation, a simple block merge approach and a method based on
an asset junction tree constructed dynamically from a user’s current asset structure.

4.1 Representing Gains and Losses with Asset Blocks

The basic idea of our trade-based asset representation is to partition the user’s trades into
subsets, such that each subset involves only a small number of variables. Each subset of
trades is summarized by a data structure called an asset block, which represents a user’s
gains and losses from its associated trades.

Definition 4.1. An asset block B = (VB, δB) consists of a vector VB of block variables
and a block asset function δB that maps states vB of VB to real numbers δB(vB).

The block variables VB are those involved in the trades covered by the asset block. The
value δB of the block asset function at the state vB is the net amount the user gains or loses
from the covered trades if the state occurs.

A single asset block B summarizes gains or losses from a subset of trades. A collection of
asset blocks covering all the user’s trades forms a compact representation of gains or losses
in any joint state.

Definition 4.2. A user’s assets auv are additively decomposable with respect to the set B of
asset blocks if

auv =
∑
B∈B

δB(vB). (13)

For each user u, the market maker maintains a user-specific collection Bu of asset blocks
such that u’s assets are additively decomposable with respect to Bu. These asset blocks Bu
are updated incrementally with each trade and each new question resolution to ensure that
(13) holds.

To support space and time efficient asset management, we require that the user’s asset
blocks satisfy the following properties.

Definition 4.3. The asset block B is structurally congruent with the junction tree (6) if
there exists a cluster c ∈ C such that every variable in VB is an element of c.
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Definition 4.4. The set B of asset blocks is frugal if for any pair of blocks B 6= B′ ∈ B,
the block variable vector VB includes at least one variable not in VB′ .

Structural congruence allows computing the block variable marginal distribution p(VB)
easily from the cluster marginal distribution p(Vc), which is maintained by the market
maker. The block marginal distribution is needed to compute expected gains and losses∑

vB
δB(vB)p(vB). Frugality is desirable to avoid unnecessary proliferation of blocks.

Together, these two requirements allow the asset management computations to be performed
in a natural and computationally efficient way using the consensus probability distribution.

4.2 Market Maker Tasks with Asset Block Representation

For each user u, the trade-based asset manager maintains a collection Bu of asset blocks
that represent u’s trading history. This section describes how the asset block representation
can be used to perform the market maker tasks defined in Section 2. The representation
supports efficient computation of edit limits and expected assets in the typical case where
a user’s trades are sparse in the full joint space. The asset structure Bu is updated each
time u makes an edit to reflect gains and losses from the edit. When a question W resolves
to state w, every user’s asset structure is updated to remove W from Bu and update all
the block asset functions to reflect the resolution. Because the asset block representation
includes only the random variables on which the user has traded, resource savings can be
large when trades are sparse.

Each user’s asset structure is initialized to a null asset structure representing initial
assets au0 that are constant across all states. As shown in Section 4.3 below, the properties
of frugality, structural congruence and additive decomposability are trivially satisfied by the
initial asset structure and are preserved by the asset updating algorithms.

4.2.1 Probability Queries

Probability queries are performed exactly as described in Section 3.2 and are unaffected by
changes to the asset representation.

4.2.2 Structure Preserving Edits

An edit by user u requires both an update to the consensus joint distribution and a change
to u’s asset structure. The probability update is accomplished via soft evidence update to
the consensus probability distribution as described in Section 3.3 and is unaffected by the
asset representation. The asset structure Bu is updated by either creating a new asset block
or updating an existing asset block. This must be done in a way that preserves additive
decomposability, frugality and structural congruence. Details are given in Section 4.3 below.

4.2.3 Determining Allowable Edits

In addition to the requirement that edits must be structure preserving, no edit is allowed if
the user’s assets can become negative in any state. In order to ensure that no edit will allow
the user’s assets to become negative, the market maker must be able to compute conditional
and unconditional minimum assets cu and cuy. Section 4.4 below presents a simple cash
calculation method that works well when asset blocks have few overlaps. Section 4.5 presents
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a more general method that constructs a junction tree from the user’s asset blocks and uses
min propagation to find the user’s cash.

4.2.4 Expected Value of User Assets

The expected assets of user u are given by:

āu =
∑
B∈B

∑
vB

δB(vB)pB(vB), (14)

Structural congruence implies that each block variable vector VB is contained in at least
one of the cluster variable vectors Vc of the consensus distribution junction tree. Thus, the
block marginal distribution pB(VB) can be computed by marginalizing the cluster marginal
distribution pc(Vc). Therefore, it is straightforward to calculate the sum (14) from the
marginal distributions and block asset functions.

4.2.5 Resolving Variables

When a variable W is resolved to one of its values w, the consensus probability junction
tree is updated as described in Section 3.7 and is unaffected by the asset representation.
If user u has made no edits involving the variable W , then u’s asset structure does not
change. Otherwise, u’s asset structure Bu must be updated as follows. Find all blocks
B ∈ B such that W is one of the variables in VB. For each such B, we write the block
variables as VB = (W,Y), where Y consists of the block variables other than W . The block
B is replaced by a new block B∗ with block variables VB∗ = Y and block asset function
δB∗(y) = δB(w,y). This process of removing W may result in a new asset structure that is
no longer frugal. That is, VB∗ may be entirely contained in the block variables of another
block. If so, then B∗ is then merged with one such block.

It is straightforward, as shown in Section 4.3 below, to show that this resolution method
preserves frugality, structural congruence and additive decomposability.

4.2.6 Adding Variables

When a new random variable Y is added, the probability structure is updated as described in
Section 3.8. If all asset blocks are structurally congruent with the new probability structure,
no change is needed to the asset structure. Otherwise, any previous edits associated with
non structurally congruent blocks need to be re-processed.

4.3 Asset Block Updating

This section provides details on how asset blocks are updated when a user makes edits. We
assume each user u begins with state-independent assets represented as an asset structure
Bu = {B∅} containing a single “null” block B∅ for which the block variable vector VB∅ = ()
is empty and the block asset function δB∅ = au0 is a constant equal to u’s initial assets. It
is clear from Definitions 4.2, 4.3 and 4.4 that the initial asset structure {B∅} is frugal and
structurally congruent with the junction tree (5), and that u’s initial assets are additively
decomposable with respect to {B∅}.
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The asset structure Bu is updated after each of u’s edits and after every resolution of any
variable u has edited. In this section, we show that the properties of frugality, structural
congruence and additive decomposability are preserved when assets are updated.

At a certain point during trading, the user u has asset structure Bu = {Bu
1 , . . . , B

u
k}

consisting of k blocks. We assume Bu is frugal and structurally congruent with the junction
tree (5), and that u’s current assets are additively decomposable with respect to Bu. When
u makes an edit involving variables Y, u’s pre-edit asset structure Bu is updated as follows.

1. Create a new asset block Bu
k+1 = (VBu

k+1
, δBu

k+1
), with block variables VBu

k+1
= Y

and block asset function δBu
k+1

(y) = b ln(x(y)
p(y) ), where p(y) and x(y) are the pre-

and post-edit probability distributions on Y. The new block asset function δBu
k+1

(y)
represents gains and losses from the edit.

2. Perform zero or more block merges. To merge two blocks Bi and Bj into a single block
B, set block variables VB to include all variables occurring in either of VBi or VBj ,
and block asset function δB(vB) = δB(vBi) + δB(vBj ) equal to the sum of the original
block asset functions applied to their respective sub-vectors of vB. Any block whose
variables are all included in those of another block must be merged into one such
block. No merge is allowed if the resulting block would violate structural congruence.
Otherwise, merges are at the discretion of the asset management algorithm.

Algorithm 4.1 summarizes the process of updating a user’s asset blocks after a trade.
The following two propositions are immediate consequences of Definition 4.2, and together

imply that edit updates preserve additive decomposability of the editing user’s assets.

Proposition 4.5. Suppose u’s assets auv are additively decomposable with respect to the
asset structure B = {B1, . . . , Bk} and let Bk+1 be an asset block with block variables

VBk+1
= Y and block asset function δBk+1

(y) = b ln(x(y)
p(y) ), where all variables Y are

contained in V. Let

a∗v = auv + b ln

(
x(y)

p(y)

)
.

Then a∗v is additively decomposable with respect to B∗ = {B1, . . . , Bk+1}.

Proposition 4.6. Suppose u’s assets auv are additively decomposable with respect to the
asset structure B = {B1, . . . , Bk}, where k ≥ 2. Let B be an asset block with block
variables VB consisting of all variables in either of VB1 or VB2 , and block asset function
δB(vB) = δB(vB1) + δB(vB2). Let B∗ = {B,B3, . . . , Bk} be a new asset structure replacing
B1 and B2 with the merged block. Then u’s assets auv are additively decomposable with
respect to B∗.

The next proposition is also an immediate consequence of Definition 4.2. Ir implies that
resolution preserves additive decomposability of assets.

Proposition 4.7. Suppose u’s assets auv are additively decomposable with respect to the
asset structure B = {B1, . . . , Bk}. Let W be one of the variables in V, and let w be one
of the possible states of W . Let B∗ = {B∗1 , . . . , B∗k} be a new asset structure obtained as
follows.
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• If W is not one of the variables in VBi
, then B∗i = Bi.

• Otherwise, writing VBi
= (W,Y), the updated block B∗i has block variables VB∗ = Y

and block asset function δB∗(y) = δB(w,y).

Then u’s assets auv are additively decomposable with respect to the asset structure B∗.

Algorithm 4.1 (Update User’s Asset Blocks after a Trade). This algorithm is called
when a user makes a trade, to update the user’s asset model by either creating a new
asset block or absorbing the trade into existing blocks.

Require: user’s asset structure B = {(Vi, δi)}. Here, Vi is the vector of domain variables
in the ith block, δi is the asset function of the ith block, represented as a table of dimension
equal to the product of the number of states of the variables in Vi.

Require: trade information: target question T ; set of assumption questions A, and
their given states a; current conditional probability p(T |A = a); intended target probability
x(T |A = a)

Require: domain sizes of variables involved in the trade, namely, an array of number of
states of T,A. This is used to calculate the size of the new asset table.

Require: list C of clusters of variables, with which it is assumed B is structurally congruent,
and must remain so at termination.

1. create the asset table δ∗ associated with the trade, using market scoring rule δ∗ =
b ∗ log([x(T |A = a)]/[p(T |A = a)])

2. flag = 0, k = number of asset blocks in B

3. for i = 1 to k, do
D = Vi; τ = δi;
if D == {T,A}
δi = δ∗ + τ ;
flag = 1; break

if D ⊃ {T,A}
Extend δ∗ to the size of D
δi = δ∗ + τ ; flag = 1; break

if D ⊂ {T,A}
Extend τ to the size of {T,A}
Vi = {T,A}; δi = τ + δ∗; flag = 1; break

if D ∪ {T,A} ⊂ c for some cluster c ∈ C then optionally
Extend τ and δ∗ to the size of {T,A} ∪D
Vi = {T,A} ∪D; δi = τ + δ∗; flag = 1; break

endfor

4. if flag == 0,Vk+1 = {T,A}, δk+1 = δ∗.

5. return B = {(Vi, δi)}

Together, Propositions 4.5, 4.6, and 4.7 imply the following result:

Proposition 4.8. Suppose u begins with initial asset structure Bu0 = {B∅} consisting of
a single asset block having zero-length block variable vector VB∅ = () and constant block
asset function δB∅ = au0 with value equal to u’s initial assets. Suppose u makes a sequence of
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structure preserving edits to the joint distribution (6). Interspersed among u’s edits may be
structure preserving edits by other users and resolutions of some variables. Let Bu denote
u’s asset structure after all edits and resolutions have been processed as described above.
Then:

1. All blocks B ∈ Bu are structurally congruent with (6);

2. Bu is frugal; and

3. u’s assets auv are additively decomposable with respect to Bu.

Proof. The initial asset structure Bu0 = {B0} trivially satisfies structural congruence, fru-
gality and additive decomposability of au0 . As an induction hypothesis, suppose u’s asset
structure But−1 just prior to the tth edit satisfies structural congruence, frugality and additive
decomposability. The first step in processing the tth edit is adding a new block to represent
gains and losses from the edit. Proposition 4.5 implies that this step preserves additive
decomposability of u’s asset structure. If the edit is structure preserving, the new block is
structurally congruent with (6). Proposition 4.6 implies that any block merges that occur
will not destroy additive decomposability. If updating operations result in a non-frugal asset
structure, block merges will be performed to restore frugality. Therefore, edits preserve
the properties of structural congruence, frugality and additive decomposability of u’s asset
structure. Any edits by other users between u’s tth and (t + 1)st edits do not affect u’s
asset structure. Further, Proposition 4.7 implies that any resolutions between edits t and
t+ 1 preserve additive decomposability. By Proposition 4.6, any post-resolution merges to
restore frugality also preserve additive deomposability. Therefore, the asset structure But
satisfies structural congruence, frugality and additive decomposability, and the result follows
by induction.

4.4 Global Separator (GS) Method for Cash Calculation

In the PJT approach, the user’s conditional or unconditional minimum assets are calculated
using min-propagation in the user’s asset junction tree (Section 3.5). Having replaced the
parallel junction tree with a user-specific asset structure, we need a method to find minimum
assets using this data structure. This section describes a simple method, called the global
separator algorithm, that works well when the asset blocks do not have many variables in
common.

The collection of a user’s asset blocks is a compact representation of the user’s trading
history. Each asset block represents a modular set of trades involving only that block’s
variables. The associated asset functions record local asset changes and collectively represent
the user’s assets in any joint state. We would like to exploit the modularity of the asset
block representation to do asset management with local computations involving only a few
variables at a time.

From an asset structure B = {B1, . . . , Bk}, we can construct an undirected graph in
which nodes correspond to trade blocks, an arc connects any pair of blocks that share a
variable, and each arc is labeled with variables shared between its terminal nodes. An
example is shown in Figure 4, where u’s gains and losses from trades involving variables A
through H are represented in an asset structure consisting of five asset blocks. The variables
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A, B, E

B, E

B B, C, D

B

B, E, K

D D, F, G

G

G,H

Figure 4: Example asset block graph.

B, D, E, and G are shared between blocks, while each of A, C, F , and H belongs to only
one block.

As shown in Figure 5, we can transform the graph of Figure 4 into a junction tree with
the shared variables as the root node and the five original trade blocks as leaf nodes. The
variables at the root, which all appear in more than one block, are called the global separator,
because they separate all the leaf nodes from each other.

B, C, D

B, D

D, F, G

D,G

B, D,
E, G

B,EB, E, K G G,H

B,E

A, B, E

Figure 5: Global Separator Tree for Figure 4 Asset Blocks.

Definition 4.9. The global separator (GS) VB for asset structure B = {B1, . . . , Bk} consists
of all variables contained in more than one of the VBi .

The GS algorithm iterates through states vB of the global separator VB, summing the
minima of the asset blocks for states in which VB = vB. The minimum over vB of these
sums is the cash cu.

Proposition 4.10. Let auv be additively decomposable with respect to asset structure
B = {B1, . . . , Bk}, and let VB be the global separator for B. Then u’s cash cu = minv a

u
v is
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given by:

cu = min
vB

k∑
i=1

min
{vBi

:VB=vB}
δBi(vBi). (15)

Proof. From additive decomposability of u’s assets with respect to B = {B1, . . . , Bk} we
have

cu = min
v
auv

= min
v

k∑
i=1

δBi(vBi)

= min
vB

min
{v:VB=vB}

k∑
i=1

δBi(vBi).

Conditional on v : VB = vB, the conditional minima of the asset blocks are independent of
each other. Thus, the inner minimum can be brought inside the sum:

cu = min
vB

k∑
i=1

min
{v:VB=vB}

δBi(vBi)

= min
vB

k∑
i=1

min
{vBi

:VB=vB}
δBi(vBi),

which establishes (15).

For conditional minimum assets, u’s cash conditional on state y of variable Y is:

cuy = min
{vB:Y=y}

k∑
i=1

min
{vBi

:VB=vB}
δBi(vBi). (16)

Algorithm 4.2 summarizes how to compute a user’s unconditional minimum assets. The
modification to calculate conditional minimum assets is straightforward.
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Algorithm 4.2 (Calculate Cash using Global Separator). This algorithm is called to
find the minimum assets in any state.

Require: user’s asset structure B = {(Vi, δi)}. Here, Vi is the vector of domain variables
in the ith block, δi is the asset function of the ith block, represented as a table of dimension
equal to the product of the number of states of the variables in Vi.

1. initialize global separator G = ∅; other traded variables W = ∅; k=number of asset blocks
in B

2. for i = 1 to k do
for each variable V ∈ Vi

if V ∈ η then set W = W \ {V } and G = G ∪ {V }
else if V /∈ G then set W = W ∪ {V }

Set global separator G to variables in γ

3. initialize m∗ = 0

4. for all states g of the variables in G
for i = 1 to k do
m∗ = m∗ + minG=g δi(vi)

endfor

5. return m∗

A common trading pattern is to make edits to multiple disjoint clusters of variables.
This would happen, for example, if u expresses knowledge about multiple topics that are
unrelated to each other. In this case, we can represent u’s asset structure as B = B1 ∪ · · · Br,
where there is no overlap among the variables involved in different Bj . Graphically, this
corresponds to multiple disjoint global separator trees. When this happens, u’s unconditional
[conditional] assets are obtained by applying (15) [(16)] to each of the Bj separately and
summing the results.

GS becomes intractable as the number of overlapping variables in a user’s asset blocks
becomes large. The SciCast market (Twardy et al., 2014) addressed this issue with a
conservative approximation. When the algorithm finds an asset block containing variables
that increase the size of the global separator beyond a threshold, it simply ignores the
overlap, treating the new trade as a separate investment for the purpose of cash computation.
The approximation still guarantees that the user’s cash will not become negative, but may
fail to exploit some opportunities for asset reuse. The next section describes an alternative
method that improves upon GS when there are more than a few variables in the global
separator.

4.5 Dynamic Asset Cluster Model

The simple approach of iterating over states of the global separator variables breaks down
as a user makes more complex patterns of interrelated trades. For example, if a user makes
a linked set of conditional trades on binary variables Vi+1 given Vi, for i = 1, · · · , n, the
global separator will have size 2n. Clearly, GS becomes intractable as n grows large. For
example, a user who makes a series of 20 such linked edits on binary variables will have a
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Algorithm 4.3 (Construct DAC Asset Junction Tree). This algorithm is called to
build DAC asset junction tree for computing asset related values. The built junction
tree can be cached as long as the user does not make any new trades.

Require: user’s asset structure B = {(Vi, δi)}. Here, Vi is the vector of domain variables
in the ith block, δi is the asset function of the ith block, represented as a table of dimension
equal to the product of the number of states of the variables in Vi.

1. if B is empty, return NULL ;

2. set k = number of asset blocks in B ;

3. initialize list of clusters C = NULL; list of asset tables D = NULL, cluster adjacency
matrix J = 0 ;

4. if k = 1 then set C = (V1); return C,D, and J;

5. if k = 2 , then set C = (V1,V2) ; D = (δ1, δ2) ; J(1, 2) = 1; return C, D, and J ;

6. set n = number of variables on which user has traded;

7. initialize n× n trade adjacency matrix H = 0;

8. for i = 1 to k, do
d = domain indices for variables in Vi,
H(d,d) = 1;

endfor

9. set the diagonal of H to be zeros, indicating no self-connections.

10. add edges to H to form a triangulated graph using a standard triangulation algorithm;

11. identify cliques of the graph from the triangulated adjacency matrix H and set list C of
clusters to the set of cliques;

12. use a standard algorithm to find a junction tree for the clusters C; set J to the adjacency
matrix H for the junction tree;

13. set z = number of clusters in C ;

14. initialize cluster asset tables ϕ(j), j = 1, . . . , z to zero ;

15. for i = 1 to k, do
for j = 1 to z, do

set C to the cluster variables for the jth cluster ;
if Vi ⊆ C, then

merge asset block table δi into cluster asset table ϕ(j) ;
break ; (one block can go into only one cluster)

endif
endfor

endfor

16. return C, D = (ϕ(1), . . . , ϕ(z)), and J ;

global separator table of size greater than 1 million entries. A more robust approach to
calculating minimum assets is needed for such cases.
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To develop such an approach, we first note that the global separator tree of Figure 5 is a
junction tree, and that the GS algorithm is a special case of min-propagation in a junction
tree. It is well known that the complexity of the junction tree algorithm is dominated by the
treewidth, or size of the largest cluster. The junction tree of Figure 6 is a smaller treewidth
junction tree for the same asset block graph of Figure 4. This alternative junction tree can
be used to find the user’s cash more efficiently.

The Dynamic Asset Cluster (DAC) algorithm is based on this insight. DAC dynamically
creates an asset junction tree from the trade block graph whenever a user makes a query for
conditional or unconditional cash. Junction tree construction must ensure that the original
asset blocks are never split when new cliques are formed. Asset tables in the junction tree are
built from the asset tables of the original asset blocks. Min-propagation in this dynamically
constructed junction tree gives the user’s cash. The complexity difference is small for the
example of Figures 5 and 4, but the experimental comparison of Section 5 demonstrates
that the resource savings of DAC over the global separator method can be substantial.

The steps of the DAC algorithm are:

1. Create an undirected trade graph G by pairwise connecting all variables in each asset
block. (This guarantees that all variables in each asset block will be contained in at
least one clique in the asset junction tree.)

2. Triangulate G to make a triangulated graph T , and identify all cliques from T . An
undirected graph is triangulated if every cycle with four or more nodes has a chord. A
clique of a graph is a maximal set of nodes, all of which are connected to each other.
Triangulation is performed because the cliques of a triangulated graph can always be
arranged into a junction tree (Lauritzen & Spiegelhalter, 1988).

3. Use a standard algorithm to form a junction tree J from the triangulated graph T .

4. Assign the asset function for each asset block to exactly one cluster in the junction tree
that contains all the block variables for the asset block. The junction tree formation
process ensures that none of the original blocks is split, thus guaranteeing that at least
one clique will contain all the block variables.

5. Create an asset table for each clique by adding the block asset functions for blocks
assigned to the clique.2

Algorithm 4.3 gives pseudo-code for constructing the asset junction tree from a user’s
asset blocks and filling in the clique asset tables.

2. Note that we do not fill in asset tables for the separators of the junction tree
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Algorithm 4.4 (Min-propagation Protocol between two cliques). Assume that two
cliques Ci and Cj are neighbors in the junction tree, and the separator Sij is associated
with the edge between Ci and Cj . The asset tables for Ci, Cj and Sij are ϕ(Ci), ϕ(Cj) and
ϕ(Sij) respectively. Min-propagation from Ci to Cj along the separator Sij follows the
min-propagation protocol presented below.

1. Let ϕ(Sij)′ = minCi\Sij ϕ(Ci), — minimizing ϕ(Ci) onto the domain of the separator Sij .

2. Let L(Sij) = ϕ(Sij)′ − ϕ(Sij), — subtracting the old asset in the separator Sij with the
projected minimization value from its neighbor. The result is called the separator gain.

3. Let ϕ(Cj) = ϕ(Cj) + L(Sij), — summing up with the separator gain to update the assets
ϕ(Cj).

Given the asset junction tree, local propagation can be used to perform the following
tasks:

• Calculate conditional minimum assets. The min-propagation algorithm (Dawid, 1992)
returns both the minimum global value and the joint state where the minimum occurs.
To calculate trade limits, we need only the minimum global value and not the joint
state where the minimum is attained. For this, one-way min-propagation is sufficient.
We can choose any clique as the root, and a one-way propagation order from all leaf
cliques to the chosen root can be determined. The propagation protocol between
cliques is presented in Algorithm 4.4.

• Calculate expected assets. Expected assets are calculated by finding the joint consensus
probability for each clique, calculating clique expected assets, and summing the
expected values for all the cliques.

A, B, E

B, E

B B, C, D

B, E, K

D D, F, G

G

G,H

Figure 6: Junction Tree Constructed from Figure 4 Asset Blocks.
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5. Evaluation

This section analyzes resource usage by the different asset management algorithms and
reports on experiments comparing their performance.

5.1 Resource Usage

The introduction of graphical models enables tractable probability and asset management
for combinatorial prediction markets with hundreds to thousands of base variables. All
the algorithms presented in this paper are based on junction trees. This section considers
time and space complexity of operations needed for probability and asset management. The
following operations must be supported

1. Construct consensus distribution junction tree. This operation needs to be performed
any time the structure of the junction tree changes, and is typically handled offline.
Incremental modification can save resources over complete recompilation, as well as
ensuring that all existing trades remain structure preserving. However, incremental
modification can result in a junction tree with larger treewidth than compiling from
scratch.

2. Update consensus distribution after edit. This operation requires probability propa-
gation in the consensus distribution junction tree. It is performed after any edit is
made. On restarting the system, all edits must be processed. For efficiency, as long as
the structure does not change, all evidence can be posted first, and then probability
propagation need only be performed once.

3. Process assets for an edit. This operation includes determining whether an edit is
allowable, creating a new asset block to represent gains and losses from the edit, and
integrating the new asset block into the existing representation. This operation is
needed only for the user making the edit, and involves that user’s asset structure. For
DAC it includes constructing the user’s asset junction tree; for GS it includes updating
the GS tree; for PJT it involves manipulating the common junction tree.

4. Calculate expected assets. This operation involves both the consensus probability
junction tree and the asset junction tree. It is performed every time expected assets are
updated. Ideally, it would be performed after each edit for all users, but performance
constraints may make this infeasible when there are many users.

Each of the above operations requires representing and manipulating tables in one or
both of the probability and asset junction trees. Relevant parameters for time and space
complexity are given in Table 2. Table 3 shows space and time complexity values for the
PJT and trade-based methods.

When there are many users, the space complexity is dominated by the complexity of the
asset junction tree, which is the same as the probability junction tree for the PJT method.
If there are many sparsely trading users, so that most users’ asset junction trees have smaller
treewidth and fewer cliques than the probability junction tree, space savings for trade-based
asset management can be large.
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Table 2: Notation for Complexity Analysis

Parameter Definition
u # users
s # states per variable
c # cliques in probability junction tree
w treewidth of probability junction tree
a # cliques in asset junction tree
b # asset blocks
z treewidth of asset junction tree

The time for a probability update is independent of the asset management method. Cash
computation is typically faster for the trade-based approach because min-propagation is
faster than probability propagation. However, the time to perform cash updates is small
relative to the time for probability updates, so even a large improvement in time to compute
cash does not have much impact on the overall time to process a trade.

Table 3: Complexity of Operations

Method Operation Complexity
PJT Space (# values stored) O(ucsw)
Trade-based Space (# values stored) O(csw + ubsz)
All Time for probability update O(csw)
PJT Time to compute cash O(csw)
Trade-based Time to compute cash O(asz)
PJT Time to compute expected score O(ucsw)
Trade-based Time to compute expected score O(uasw)

The expected score computation must be performed for every user each time scores
are updated. Ideally, this would happen after every edit, but resource constraints may
necessitate less frequent updates. Equation (14) involves iterating over asset blocks and
computing the expectation with respect to the clique in the probability junction tree that
contains the asset block. Therefore, the computation is linear in the number of users and
the number of asset blocks, and exponential in the treewidth of the probability junction
tree. Achieving good performance in the expected score computation requires keeping the
number of asset blocks from growing too large. Recall that the asset block update operation
gives the algorithm designer discretion in combining asset blocks subject to the required
conditions of structural congruence and frugality. We have found that good performance of
the expected value computation requires more than the minimum amount of merging. We
use the heuristic of assigning each new asset block to a clique in the probability junction
tree that contains the asset block, and merging all asset blocks assigned to the same clique.
Using this heuristic, when edits are confined to only a few cliques in the asset junction tree,
there will be fewer summands in (14) than in (12), resulting in better performance. The
difference can be substantial when there are many users.
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5.2 Experimental Procedure

We performed an experiment to compare performance of the different asset management
approaches. Our experiment used one of the most natural applications of combinatorial
prediction markets, forecasting the outcome of a tournament. Figure 7 shows a Bayesian
network representing outcomes of a tournament with eight teams. Chen et al. (2008) used an
m-level network of this structure to represent outcomes of a tournament with 2m teams. Each
node represents the outcome of a game. The leaf nodes have two states, each representing
the outcome of a game in the first round. The parent of a pair of nodes represents the
outcome of a game between the winners of the games represented by the child nodes. The
root node, which has 2 ∗m possible values, represents the winner of the tournament.

A junction tree for this Bayesian network is shown in Figure 8. In our simulation, each
user was assigned a favorite team Tu, and made edits to change p(Vk = tu|Vj = tu) to
x(Vk = tu|Vj = tu), where Vk is the parent of Vj in the Bayesian network. That is, u edits
the probability that her team wins a round given that it won the previous round. It is clear
from Figure 8 that these edits are structure preserving.

Our simulation varied the depth of the tree from m = 4 to m = 6. We assumed a market
of 30 users with 240 trades in each round, or an average of 8 trades per user. For each of 50
runs, the simulation proceeded as follows.

V1 (T1 : T8)

V2 (T1 : T4) V3 (T5 : T8)

V4 (T1 : T2) V5 (T3 : T4) V6 (T5 : T6) V7 (T7 : T8)

Figure 7: Bayesian Network for Three-Level Tournament

1. Generate a random depth m and an m-level Bayesian network to represent a tournament
with 2m teams.

2. For each user, select a random team Tu. Select all nodes containing Tu as the nodes u
edits.

3. For each of the 240 trades, perform the following steps.

(a) Select a user to make the trade. For the first 30 trades, cycle through the users,
so that each user has at least one trade. For the rest of the trades, select a trader
at random.

(b) Generate a parent-child pair from the possible trades involving u’s favorite team.
Generate a random trade for user u to change the probability of a win of the
parent node given a win of the child node.

(c) Update the consensus probability distribution given the edit, recording the
computation time.
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(d) Calculate u’s new cash using each of the cash calculation methods, recording the
computation time.

(e) Calculate the expected score for all users using each of the expected score
calculation methods, recording the computation time.

4. Record the storage required for the consensus probability distribution and all users’
asset structures for PJT and each of the trade-based asset management methods.

V1, V2 V1 V1, V3

V2

V2, V4 V2, V5

V3

V3, V6 V3, V7

Figure 8: Junction Tree for Figure 7 Bayesian Network.

5.3 Experimental Results

Figure 9 shows results of the experiment. The upper left panel shows the logarithm of the
time to compute cash for each of the three methods as a function of the number of levels
in the tournament. The upper right panel shows the time to compute the expected score
for the trade-based asset block and the parallel junction tree representations, again as a
function of the number of levels in the tournament. The third panel compares the total time
to perform an entire update, which includes making an edit (common to all three methods),
calculating cash (different for all three methods), and computing expected score (common
for GS and DAC, different for PJT). The bottom right panel shows memory usage in bytes
to store the asset structures for the trade asset block and parallel junction tree methods.
In all these graphs, the error bars span a range from the 5th to the 95th percentile of the
observations.

The cash computation comparison shows that both trade-based representations out-
perform the parallel junction tree method for small m, but as the depth of the tree increases,
the global separator method degrades until at m = 6 it is considerably worse than the
parallel junction tree representation. This happens because the asset blocks for each user’s
trades form a chain of clusters starting at the leaf node containing the team’s first round
game, passing through the intermediate levels, ending at the cluster containing the final
game. For example, with the model of Figure 8, a user who likes T3 will trade on the clusters
{V5, V2} and {V2, V1}. All m− 2 intermediate clusters along this chain (V2 in our T3 fan’s
asset model) will be in the global separator for the chain of trade blocks. By contrast,
the DAC asset junction tree will have a chain of clusters of size 2 and length m− 1 with
separators of size 1. This means that the treewidth zDAC of the DAC asset junction tree is 2,
whereas the treewidth zGS of the GS asset junction tree is m− 1. Because cash computation
is exponential in the treewidth of the asset junction tree (see Table 3, performance degrades
rapidly as m increases.
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Figure 9: Results of Experiment

The expected score computation is the same for both DAC and GS, and takes much less
time than for PJT. In total time, PJT performance is worse than both GS and DAC, but as
the number of levels increases, GS performance begins to approach PJT performance.

The PJT method averaged about 8 times the computation time taken by DAC. Broken
down by m, the average was 5.4 times for m = 4, 8.3 times for m = 5, and 11.5 times for
m=6.

Clearly, trade-based asset management can save computation time over PJT. The global
separator method is simpler to implement than DAC, and is faster when there are few
overlaps in the user’s trade blocks, but becomes much more expensive as the number of
overlaps increases. In extreme cases, the GS cash computation can dominate and degrade
performance to the point where PJT becomes competitive. The DAC method avoids this
problem.

The plot of memory usage shows a clear dominance of the trade-based asset data structure
over the parallel junction trees. On average, PJT uses about 6 times as much memory as
the trade block representation. Broken down by m, PJT uses 4.2 times as much storage for
m = 4, 6.5 times as much storage for m = 5, and 8.2 times as much storage for m = 6.

6. Conclusion

Combining forecasts from multiple sources has been shown to improve accuracy, and predic-
tion markets are among the most accurate methods for achieving this task. Combinatorial
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prediction markets allow forecasting agents to arrive at a consensus joint distribution over
multiple related propositions by making conditional trades and/or trades on Boolean combi-
nations of events. This paper presented methods based on probabilistic graphical models
for managing probabilities and assets in a logarithmic market scoring rule combinatorial
prediction market, and experiments comparing their performance. These methods make it
feasible to easily run large-scale combinatorial prediction markets with hundreds of questions
and thousands of forecasting agents.

The methods presented in this paper were implemented in the DAGGRE and SciCast
prediction markets, which were open to forecasters in the general public over a four-year
period from 2011 through 2015. The DAGGRE public LMSR prediction market (Powell
et al., 2013) ran from October of 2011 through May of 2013 as part of an Intelligence
Advanced Research Projects Activity (IARPA) program to improve aggregate forecast
accuracy (Tetlock, Mellers, Rohrbaugh, & Chen, 2014, p.17). The market focused on
forecasting world events, including events with extended time horizons (usually 1-12 months)
and considerable uncertainty. DAGGRE began as a flat prediction market. A combinatorial
feature launched in October of 2012. At any given time, there were on the order of 100
active questions on the market. Over the 20 months the market was open, more than 3000
participants contributed at least one forecast, with an average of about 80 forecasts by 20
users on any given day. The market averaged about 2 edits per question per day. Questions
were removed as their outcomes became known, and new questions were introduced on a
regular basis.

SciCast, also sponsored by IARPA, was a public LMSR combinatorial prediction market
focused on forecasting science and technology innovation (Twardy et al., 2014). SciCast was
designed to handle at least a 10-fold increase in the number of live questions and active
forecasters. Performance limitations of the DAGGRE market necessitated a move to a
user-specific, trade-based asset system. The market opened in November of 2013 using the
global separator asset management algorithm. The plan was to move to the dynamic asset
cluster algorithm if performance became an issue. An approximation was implemented to
compute cash if the global separator became too large to handle. The approximation was
conservative, ensuring that no user would run out of assets but sometimes disallowing edits
the user could have covered. There were very few instances where the system had to resort
to approximation, and consequently the dynamic asset cluster method was never introduced
into the public market.
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