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Abstract

This paper presents an effective, cooperative, and probabilistically-complete multi-
robot motion planner that enables each robot to move to a desired location while avoiding
collisions with obstacles and other robots. The approach takes into account not only the
geometric constraints arising from collision avoidance, but also the differential constraints
imposed by the motion dynamics of each robot. This makes it possible to generate collision-
free and dynamically-feasible trajectories that can be executed in the physical world.

The salient aspect of the approach is the coupling of sampling-based motion planning
to handle the complexity arising from the obstacles and robot dynamics with multi-agent
search to find solutions over a suitable discrete abstraction. The discrete abstraction is
obtained by constructing roadmaps to solve a relaxed problem that accounts for the ob-
stacles but not the dynamics. Sampling-based motion planning expands a motion tree
in the composite state space of all the robots by adding collision-free and dynamically-
feasible trajectories as branches. Efficiency is obtained by using multi-agent search to find
non-conflicting routes over the discrete abstraction which serve as heuristics to guide the
motion-tree expansion. When little or no progress is made, the routes are penalized and
the multi-agent search is invoked again to find alternative routes. This synergistic coupling
makes it possible to effectively plan collision-free and dynamically-feasible motions that
enable each robot to reach its goal. Experiments using vehicle models with nonlinear dy-
namics operating in complex environments, where cooperation among robots is required,
show significant speedups over related work.

1. Introduction

Multi-robot systems provide a viable venue to enhance automation so as to increase pro-
ductivity and reduce operational costs in an increasing number of applications ranging from
exploration, inspection, surveillance, search-and-rescue, to transportation. In these settings,
as part of the overall operations, the robots are often required to move to different locations
while avoiding collisions with obstacles and other robots. As a fundamental requirement to
enhance the autonomy, the multi-robot system must possess a motion-planning framework
that can efficiently generate feasible motion plans so that each robot safely reaches its goal.

Multi-robot motion planning, however, poses significant challenges. The robots often
have to navigate in unstructured, obstacle-rich environments, and pass through numerous
narrow passages in order to reach their desired locations. Figure 1 shows an example. In
such settings, cooperation among robots is often required so that they can avoid deadlock
when preventing each other from reaching the corresponding destinations. Moreover, the
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Figure 1: An example of a multi-robot motion-planning problem, where each robot is re-
quired to reach its goal (Gi for robot i) while avoiding collisions with the obstacles
and the other robots. The planned trajectories must also obey the differential
constraints imposed by the underlying robot dynamics. A physics game engine is
used as the underlying simulator. In this and many other scenarios, cooperation
among the robots is essential to reach the goals. Videos of solutions obtained by
our approach on this and other scenes can be found at http://goo.gl/8muxwC.
Figure best viewed in color and on screen.

robot motions are governed by their underlying dynamics. Robot dynamics express physical
constraints on the feasible motions, such as ensuring a minimum turning radius, bounding
the velocity, acceleration, and steering angle, or preventing the wheels from sliding sideways.
Such constraints are generally expressed as a set of differential equations, which indicate how
the robot moves as a result of applying external control inputs. As an example, differential
equations for a vehicle model indicate how the position, orientation, and velocity change as
a result of turning the steering wheel, accelerating, or braking. The differential equations,
however, due to the complexity of the robotic systems, are generally nonlinear and high-
dimensional. Moreover, differential constraints often lead to nonholonomic systems due to
the controllable degrees of freedom being less than the total degrees of freedom. This is
challenging since motion planning even for one robot is PSPACE-complete (Reif, 1979) when
considering only collision avoidance and becomes undecidable when taking into account also
the differential constraints imposed by the underlying robot dynamics (Branicky, 1995).

To develop an effective multi-robot motion planner, this paper couples the ability of
sampling-based motion planning to handle the complexity arising from the obstacles and
robot dynamics with the ability of multi-agent search to find solutions over a suitable
discrete abstraction. To account for the dynamics, sampling-based motion planning expands
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a motion tree in the composite continuous state space of all the robots by incrementally
adding collision-free and dynamically-feasible trajectories as branches. The expansion in
the composite state space is essential to guarantee probabilistic completeness, which ensures
that when solutions exist, one will be found with probability approaching one.

As the dimensionality of the composite state space increases with the number of robots,
the challenge is how to effectively guide the motion-tree expansion. This is where multi-
agent search becomes vital. Conceptually, the idea is to use multi-agent search as a heuris-
tic to guide sampling-based motion planning as it expands the motion tree. As with any
heuristic, a critical aspect is the design of an appropriate discrete abstraction over a suit-
able relaxed problem setting. We propose to obtain the discrete abstraction by construct-
ing roadmaps over low-dimensional configuration spaces to solve a relaxed problem that
accounts for the obstacles but not the robot dynamics. The objective is to capture the
connectivity of the environment through a network of collision-free roads that would make
it easy to reach the goals from any location.

A crucial aspect of the approach, termed CoSMMAS (Cooperative Sampling-based Multi-
robot motion planning and Multi-agent Search), is that sampling-based motion planning and
multi-agent search work in tandem. Each iteration of a core loop first relies on multi-agent
search to find non-conflicting routes over the discrete abstraction. Afterwards, sampling-
based motion planning seeks to expand the motion tree along these routes. When the
obstacles and robot dynamics make it difficult to progress, the current routes are penalized
so that multi-agent search can provide alternative routes to reach the goals in the next
iteration. This is made possible by developing a mapping from the composite state space
onto the discrete abstraction and using it to partition the motion tree into equivalence
classes. Conceptually, an equivalence class groups together all the vertices in the motion
tree that provide the same information with respect to the discrete abstraction. This means
that non-conflicting routes computed by multi-agent search for an equivalence class can be
used to guide the motion-tree expansion from any vertex belonging to that equivalence class.
This synergistic coupling of sampling-based motion planning over the composite state space
and multi-agent search over the discrete abstraction makes it possible to effectively plan
collision-free and dynamically-feasible motions that enable each robot to reach its goal.

Experiments using vehicle models with nonlinear dynamics operating in complex en-
vironments, where cooperation among robots is required, show significant speedups over
related work. Figure 1 shows an example of such a challenging problem involving 10 robots
(50 degrees-of-freedom). In addition to differential equations, our approach can also be used
with physics game engines such as Bullet (Coumans, 2012) and ODE (Smith, 2006), which
provide an increased level of realism by modeling general rigid-body dynamics, friction, ter-
rains, and other interactions of the robot with the world, which cannot be easily described
analytically. Also note that the approach is agnostic to the inner workings of multi-agent
search, so it can be used with any available method. We conducted experiments using three
different methods, namely WHCA*(Silver, 2005), SIPP(Narayanan, Phillips, & Likhachev,
2012), and Push-and-Swap (Luna & Bekris, 2011).

A preliminary version of this work appeared in ICAPS (Le & Plaku, 2017). This work
provides a more comprehensive description, extended discussion of related work, and offers
a more developed version of the initial algorithm, several algorithmic improvements, and
extended experimental evaluation.
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2. Related Work

Our approach brings together concepts from robotics and AI. In these fields, related work
on multi-robot motion planning can be generally divided into three categories depending on
whether the geometry of the robots and their underlying dynamics are taken into account
during planning, i.e., (i) points over graphs where neither the geometric representations nor
the robot dynamics are considered (Section 2.1), (ii) the obstacles and geometric shapes
of the robots are taken into account but their dynamics are not (Section 2.2), and (iii)
the obstacles, geometric shapes of the robots, and their dynamics are taken into account
(Section 2.3).

2.1 Multi-agent Search over Graphs

In a discrete setting, as in multi-agent pathfinding, a graph abstraction is often used to
represent the world. Each robot is treated as a point, without any dynamics, that in one
step can move to an adjacent vertex. Non-conflicting routes ensure that each robot reaches
its goal and that no vertex is ever occupied by more than one robot. To solve this NP-
hard problem (Yu & LaValle, 2013), decoupled and centralized multi-agent pathfinding
approaches have been proposed (Felner et al., (2017) provides a comprehensive survey).

Decoupled approaches often consider agents one at a time, ensuring that the path
planned for agent i avoids conflicts with the paths already planned for agents 1, . . . , i − 1.
This makes them fast, as they avoid searching over the composite space of all the agents,
but suboptimal. In this setting, WHCA* conducts a cooperative space-time search, us-
ing hierarchical heuristics to guide the search and a dynamic window to limit the search
depth (Silver, 2005). Map abstractions (Sturtevant & Buro, 2006), subgraph substruc-
tures (Ryan, 2008), conflict-oriented windows (Bnaya & Felner, 2014), and numerous other
strategies have been proposed over the years to improve the performance.

To provide optimality, centralized approaches operate over the composite space of all
the agents. Examples include the increasing-cost tree search (Sharon, Stern, Goldenberg,
& Felner, 2013), conflict-based search (Sharon, Stern, Felner, & Sturtevant, 2015), M*
(Wagner & Choset, 2015), A* and its variants (Standley & Korf, 2011; Goldenberg, Felner,
Stern, Sharon, Sturtevant, Holte, & Schaeffer, 2014; Svancara & Surynek, 2017), which seek
to divide the agents into independent groups, avoid surplus nodes, dynamically change the
dimensionality based on conflicts, or develop effective heuristics.

Rule-based approaches devise specific rules for how agents should move to reach their
goals while avoiding conflicts, but often require special properties to hold on the underlying
graph (Botea & Surynek, 2015; Khorshid, Holte, & Sturtevant, 2011). Push-and-swap
introduces rules for pushing an agent to an empty location and for swapping the location of
two agents (Luna & Bekris, 2011; Sajid, Luna, & Bekris, 2012). Push-and-rotate divides the
graph into subgraphs and uses push, swap, and rotate to find solutions (Wilde, Ter Mors,
& Witteveen, 2014). Push-and-rotate is a complete algorithm for multi-agent pathfinding
problems in which there are at least two empty vertices. Multi-agent pathfinders have
also used auctions (Amir, Sharon, & Stern, 2015), answer-set programming (Erdem, Kisa,
Öztok, & Schueller, 2013), or safe intervals (Narayanan et al., 2012).

364



Cooperative Multi-robot Motion Planning

2.2 Multi-robot Path Planning with Geometric Constraints but no Dynamics

In a continuous setting, when considering the robot geometries but not the dynamics,
sampling-based approaches have often been used to solve multi-robot path-planning prob-
lems. Planning takes place in the configuration space, which captures the geometric con-
straints, as it represents position, orientation, and other degrees of freedom, but not the
differential constraints imposed by the robot dynamics. The underlying idea in sampling-
based approaches is to capture the connectivity of the configuration space by sampling
collision-free configurations and connecting configurations to one another with collision-free
paths (Choset, Lynch, Hutchinson, Kantor, Burgard, Kavraki, & Thrun, 2005; LaValle,
2006). PRM methods do so by constructing a roadmap (Kavraki, Švestka, Latombe, & Over-
mars, 1996), while RRT approaches expand a tree (LaValle & Kuffner, 2001; LaValle, 2011).

For multi-robot path planning, sampling-based methods can be used in a centralized,
decoupled, or prioritized framework. In a centralized framework, planning takes place in
the composite configuration space as all the robots are treated as one system. As a result,
any sampling-based approach can be used. Centralized approaches provide probabilistic
completeness but do not scale well due to the high-dimensionality of the composite con-
figuration space. To improve the scalability of PRM, rather than explicitly constructing
the roadmap in the composite configuration space, the composite roadmap is maintained
implicitly as a product of the individual roadmaps in each configuration space (Solovey,
Salzman, & Halperin, 2016). Our approach also leverages the idea of the implicit composite
roadmap when constructing the discrete abstraction. The approach of Solovey, Salzmane,
& Halperin (2016) does not take dynamics into account, so it ends by using graph search
over the implicit roadmap. In distinction, our approach takes dynamics into account and
uses graph paths over the implicit roadmap as heuristics to guide sampling-based motion
planning.

Decoupled approaches plan the robot paths separately. Attempts are then made to
coordinate the paths, e.g., via velocity tuning (Choset et al., 2005), or to repair the paths,
e.g., via subdimensional expansion (Wagner, Kang, & Choset, 2012).

Prioritized1 approaches also plan the robot paths separately, but treat the planned
paths for robots 1, . . . , i− 1 as moving obstacles when planning the path for the i-th robot.
Decoupled or prioritized approaches can be fast but do not guarantee completeness, since
coordination is not always possible and previously planned paths may make it impossible
for the next robot to reach its destination.

2.3 Multi-robot Motion Planning with Geometric and Differential Constraints

When considering the robot geometries and the dynamics, sampling-based motion planners,
e.g., RRT (LaValle & Kuffner, 2001; LaValle, 2011), KPIECE (Sucan & Kavraki, 2012), GUST
(Plaku, 2015), often expand a motion tree by adding collision-free and dynamically-feasible
trajectories as branches. Roadmaps cannot generally be used since each roadmap edge re-
quires solving differential two-boundary value problems in order to generate a dynamically-
feasible trajectory that connects its two end states. Analytical solutions to two-boundary
value problems are available only in limited cases, while numerical methods leave gaps and

1. The term prioritized is often used in robotics to refer to decoupled approaches that treat the robots one
at a time, similar to cooperative approaches in multi-agent pathfinding.
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are computationally expensive (Keller, 1992; Cheng, Frazzoli, & LaValle, 2008). In con-
trast, the motion tree avoids two-boundary value problems since each branch is generated
by applying control actions and numerically integrating the differential equations of motion.

As discussed, sampling-based motion planners, including those that expand a motion
tree, can often be used in a decoupled, prioritized, or centralized setting to plan for multiple
robots. However, due to the complexity of the problem, there is a significance increase in
the planning runtime as the number of robots is increased.

Our approach leverages the notion of using discrete search to guide the motion-tree
expansion (Plaku, Kavraki, & Vardi, 2010; Plaku, 2015). These approaches, however,
have been designed for a single robot. While it is possible to use them in a decoupled or
prioritized framework, it remains open to develop a centralized version due to the coupling
of discrete search and sampling-based motion planning. Moreover, as other sampling-based
approaches that are not specifically designed for multiple robots, the performance tends
to degrade rapidly as the multi-robot problems become more challenging. In contrast, our
approach is specifically designed for multi-robot motion planning, leveraging multi-agent
search as a heuristic to effectively guide the motion-tree expansion.

The proposed approach, as it is common in sampling-based motion planning, assumes
a known map of the environment, including the geometry and placement of the obstacles.
When a map is not available or when executed on a real robot, sampling-based motion
planners are commonly used in a replanning framework. This paper does not focus on
replanning, but the approach can be used in a replanning framework as other sampling-
based motion planners.

3. Problem Formulation

This section defines the robot models, including their underlying dynamics, motion trajec-
tories, and the multi-robot motion-planning problem.

3.1 Robot Models and Underlying Dynamics

Each robot model is defined as a tuple Ri = 〈Pi,Si,Ai, fi〉 in terms of its geometric shape
Pi, state space Si, action space Ai, and motion equations fi.

The geometric shape Pi is used to ensure that the motions planned for robot Ri avoid
collisions with the obstacles and the other robots.

The state space Si is represented by a finite set of continuous variables. A robot state
s ∈ Si corresponds to an assignment of values to these variables. From a motion-planning
perspective, the robot state often includes position, orientation, steering angle, and veloc-
ity. To facilitate presentation, the notations position(s) and orientation(s) are used to
denote the position and orientation components of s.

A robot is controlled by applying external inputs, referred to as control actions. For
a vehicle model, controls could include setting the acceleration and turning the steering
wheel. The action space Ai is then defined as the set of all the control actions that can be
applied to the robot. The control values are often bounded.

The motion equations fi encapsulate the underlying robot dynamics by describing how
the robot state changes as a result of applying control actions. The motion equations fi are
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often expressed as a set of differential equations of the form

ṡ = fi(s, a), (1)

where s ∈ Si, a ∈ Ai, and ṡ is the derivative of s. The model allows for nonlinear equa-
tions with first, second, or higher order derivatives. Moreover, it allows for nonholonomic
constraints, which are essential to model the underlying dynamics associated with robotic
vehicles, since the controllable degrees of freedom are often less than the total degrees of
freedom. A classical example of a nonholonomic system is a car that cannot move sideways.

Example: As an illustration, a vehicle can be modeled by defining its state as s =
(x, y, θ, ψ, v) in terms of the position (x, y), orientation θ, steering angle ψ, and velocity
v. The vehicle is controlled by setting the acceleration aacc and steering rate aω. The
motion equations fi are defined as

ẋ
ẏ

θ̇

ψ̇
v̇

 =


v cos(θ) cos(ψ)
v sin(θ) cos(ψ)
v sin(ψ)/L

aω
aacc

 , (2)

where L is the distance between the back and front wheels. The shape Pi could represent
the body of the vehicle and its wheels.

3.2 Dynamically-Feasible Trajectories

A trajectory ζ : [0, T ]→ Si is a continuous function, parametrized by the duration T ∈ R≥0,
that indicates the robot state at time t ∈ [0, T ]. The trajectory ζ is dynamically feasible
if it also satisfies the differential constraints imposed by the underlying robot dynamics, as
specified by the motion equations fi.

A dynamically-feasible trajectory ζ : [0, T ]→ Si is obtained by starting at a state s ∈ Si
and applying a control function â : [0, T ] → Ai, where â(t) indicates the control actions
applied at time t ∈ [0, T ]. As a result of applying the control function â, the robot state
changes according to the motion equations fi, giving rise to the trajectory ζ, i.e.,

∀t ∈ [0, T ] : ζ(t) = s+

∫ t

0
fi(ζ(h), â(h))dh. (3)

Note that ζ is dynamically-feasible by construction since

∀t : [0, T ] : ζ̇(t) = fi(ζ(t), â(t)). (4)

From a computational aspect, the underlying dynamics and the effects of applying con-
trol actions are encapsulated by a function simulate of the form

snew ← simulate(s, a, fi, dt), (5)

which computes the new robot state snew ∈ Si, obtained by starting at the state s ∈ Si and
applying the control action a ∈ Ai for a time step dt ∈ R≥0. The function simulate can
be implemented using numerical integration, e.g., Runge-Kutta methods.
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A control function â is often defined in terms of a sequence of control actions 〈a1, . . . , a`〉,
where each control action is applied for a time step dt. When starting from a state s ∈ Si
and applying 〈a1, . . . , a`〉 in succession, a trajectory ζ is obtained as a sequence of states,
where ζ(0) = s and, as j iterates from 1 to `, the j-th state is computed as

ζ(j dt)← simulate(ζ(j dt− dt), aj , fi, dt). (6)

3.3 Physics-Based Simulations

In addition to differential equations, our approach can also be used with physics game
engines such as Bullet (Coumans, 2012) and ODE (Smith, 2006), which provide an increased
level of realism by also modeling friction, gravity, terrains, and other interactions of the
robot with the world, which cannot be easily described analytically. Physics game engines
model general body dynamics and implement the function simulate by computing the
forces acting on the robot bodies and the new state resulting from applying those forces.

3.4 Environment and Collision Checking

The environment in which the robots R1, . . . ,Rn operate is represented by its bound-
ing box W, obstacles O = {O1, . . . ,Om}, and goal regions G = {G1, . . . ,Gn}, where
O1, . . . ,Om,G1, . . . ,Gn ⊆ W.

To generate collision-free motions, the robots R1, . . . ,Rn should avoid collisions with
obstacles and each other. Collision checking depends on the shape of the robots and their
placements in the environment. Given a robot state si ∈ Si, let placement(Pi, si) denote
the placement of the shape Pi according to orientation(si) and position(si). Essentially,
placement(Pi, si) is obtained by rotating Pi and then translating it. Collision checking
is then encapsulated by a function collision : S1 × . . . × Sn → {true, false}. Given a
composite state 〈s1, . . . , sn〉 ∈ S1 × . . . × Sn, where si denotes the state of the i-th robot,
collision(〈s1, . . . , sn〉) = false if and only if

• each robot is placed inside the bounding box W, i.e.,

n⋃
i=1

placement(Pi, si) ⊆ W (7)

• there is no robot-obstacle collision, i.e.,(
n⋃

i=1

placement(Pi, si)

)
∩

 m⋃
j=1

Oj

 = ∅ (8)

• there is no robot-robot collision, i.e.,

∀1 ≤ i < j ≤ n : placement(Pi, si) ∩ placement(Pj , sj) = ∅ (9)

Collision-checking packages, such as PQP (Larsen, Gottschalk, Lin, & Manocha, 1999),
FCL (Pan, Chitta, & Manocha, 2012), can be used to efficiently implement collision.
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3.5 Multi-robot Motion-Planning Problem

In multi-robot motion planning, the objective is to compute dynamically-feasible trajecto-
ries that enable each robot to reach a desired goal region while avoiding collisions with the
other robots and the obstacles in the environment. Specifically, given

• robot models R = {R1, . . . ,Rn}, where Ri = 〈Pi,Si,Ai, fi〉 defines the i-th robot in
terms of its shape Pi, state space Si, action space Ai, and motion equations fi,

• environment in which the robots operate in terms of its bounding box W, obstacles
O = {O1, . . . ,Om}, and goal regions G = {G1, . . . ,Gn}, and

• an initial state 〈sinit
1 , . . . , sinit

n 〉 ∈ S1 × . . . × Sn, where sinit
i ∈ Si denotes the initial

state of robot Ri,

the objective is to compute control functions â1, . . . , ân and the resulting dynamically-
feasible trajectories ζ1, . . . , ζn, where âi : [0, T ]→ Ai and ζi : [0, T ]→ Si denote the control
function and the trajectory for robot Ri, such that

• each robot starts at the initial state and reaches its goal, i.e.,

∀i ∈ {1, . . . , n} : ζi(0) = sinit
i ∧ position(ζi(T )) ∈ Gi, (10)

• no robot-robot or robot-obstacle collisions occur, i.e.,

∀t ∈ [0, T ] : collision(ζ1(t), . . . , ζn(t)) = false. (11)

4. Method

The approach has several components:

• a discrete abstraction based on a relaxed problem setting obtained by ignoring the
underlying dynamics of each robot;

• multi-agent search over the discrete abstraction to find solutions in the relaxed prob-
lem setting that serve as heuristics to guide sampling-based motion planning;

• sampling-based expansion of a motion tree in the composite continuous state space of
all the robots;

• partition of the motion tree into equivalence classes based on a mapping of the con-
tinuous state spaces onto the discrete abstraction; and

• interplay of sampling-based motion planning and multi-agent search to effectively
expand the motion tree in the composite continuous state space of all the robots along
non-conflicting routes obtained by the multi-agent search over the discrete abstraction.

A schematic representation is shown in Figure 2. The rest of the section describes these
components in more detail.
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Environment
bounding box: W

obstacles: O = {O1, . . . ,Om}

Robot Models
M = {M1, . . . ,Mn}

Mi = 〈Pi,Si,Ai, fi, s
init
i ,Gi〉

Discrete Abstraction
R1 × . . .×Rn, Ri = (VRi , ERi ,costRi)

Multi-Agent
Pathfinding

Motion Tree
T = (VT , ET )

over S1 × . . .× Sn

Equivalence Classes
Γ = {Γkey1

, . . . ,Γkeyk
}

key = 〈c1, . . . , cn〉 ∈ VR1 × . . .× VRn

routes(Γkey) = 〈σ1, . . . , σn〉

Expand Equivalence Class
follow routes σ1, . . . , σn

Select Equivalence Class
argmaxΓ〈c1,...,cn〉∈Γw(Γ〈c1,...,cn〉)

〈c1, . . . , cn〉

roadmap
routes
〈σ1, . . . , σn〉

Figure 2: Schematic illustration of the proposed approach.

4.1 Relaxed Problem Setting: Geometric Multi-robot Path Planning

The rationale for using a relaxed and simplified problem setting is that it can provide
solutions that can serve as heuristics to guide the overall search in the composite state
space of all the robots. As dynamics present a significant computational challenge, the
simplified problem setting is obtained by ignoring the robot dynamics.

In this relaxed setting, each robot Ri retains its geometric shape Pi but its motions
are no longer restricted by the differential equations fi. In fact, each robot Ri can freely
rotate and move in any direction. The notion of a robot state is replaced by the notion of
a robot configuration, which represents only the position and orientation. For example, for
the vehicle model described in Section 3.1, the configuration is defined as c = 〈x, y, θ〉 in
terms of the position (x, y) and orientation θ. Similarly, trajectories over the state space
Si are replaced with paths over the configuration space Ci, where each path is described by
rotations and translations.

The objective is then to compute paths so that each robot reaches its goal while avoiding
collisions with the obstacles and the other robots. To solve the relaxed problem, first, a
discrete abstraction is obtained by constructing roadmaps over the configuration spaces in
order to provide routes along which the robots can avoid the obstacles. Second, multi-agent
search is used over the roadmaps to find non-conflicting routes so that the robots also avoid
each other. More details follow.

4.1.1 Discrete Abstraction via Roadmaps over Low-Dimensional
Configuration Spaces

The discrete abstraction is obtained by constructing a roadmapMi over each configuration
space Ci as a network of roads, seeking to make it easy to reach the goal Gi from any
location in the environment. Drawing from PRM (Kavraki et al., 1996), Mi is constructed
by sampling collision-free configurations and connecting neighboring configurations with
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Figure 3: Examples of roadmaps and triangulation of the obstacle-free area Wfree.

collision-free paths whenever possible. Figure 3 shows an example. During the construction
of Mi collision checking is done only between robot Ri and the obstacles.

The roadmap Mi = (VMi , EMicostMi) is represented as an undirected, weighted,
graph. Each c ∈ VMi corresponds to a collision-free configuration in Ci. Each edge (c′, c′′) ∈
EMi corresponds to a collision-free path that connects c′ and c′′. The edge cost is defined
as

costMi(c
′, c′′) =

‖position(c′)− position(c′′)‖2
clearance(O, c′, c′′)

, (12)

where clearance(O, c′, c′′) denotes the minimum distance from the obstacles in O =
{O1, . . . ,Om} to the segment connecting position(c′) to position(c′′). By using clear-
ance, edges that are close to the obstacles are assigned a higher cost so that minimum-cost
paths to the goal are less likely to bring the robot close to the obstacles, which would make
navigation more difficult. PQP (Larsen et al., 1999), FCL (Pan et al., 2012), and other
collision-checking packages can be used to efficiently compute clearance(O, c′, c′′).

Pseudocode for constructing the roadmap Mi is shown in Alg. 1. The initial and goal
configurations, denoted by cinit

i and cgoal
i , are first added to VMi . The initial configuration is

obtained from the initial state, i.e., cinit
i = 〈position(sinit

i ),orientation(sinit
i )〉. The goal

configuration is obtained by repeatedly sampling a random position inside Gi and a random
orientation until the resulting robot placement is not in collision.

Adding Configurations to the Roadmap: The roadmap is further populated by
adding collision-free configurations. Each new configuration c added to the roadmap must
maintain a minimum separation from the obstacles (denoted by dminSepCfgObs) and from the
nearest configuration in the roadmap (denoted by dminSepCfgs). The minimum separation
from the obstacles ensures that the roadmap configurations do not place the robot too close
to the obstacles, making it easier for the motion-tree expansion (described later in the sec-
tion) to follow the roadmap routes. The minimum separation from the nearest roadmap
configuration ensures that roadmap paths that go through different configurations do not
get too close to each other. This again is important during the multi-agent search so that
alternative routes do not go through the same locations in the environment as previously
explored routes. Efficient nearest-neighbors data structures are used to quickly compute
the nearest roadmap configuration to c (Muja & Lowe, 2014).
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Algorithm 1 Pseudocode for the construction of the roadmapMi = (VMi , EMi ,costMi)

Input: bounding box W; obstacles O; obstacle-free area Wfree =W \
⋃m

j=1Oj and its triangulation;

configuration space Ci; robot shape Pi; initial state siniti ; goal Gi
Output: Mi = (VMi , EMi ,costMi)

// add initial and goal configurations to the roadmap
1: ciniti ← 〈position(siniti ),orientation(siniti )〉
2: VMi ← {cinit}; EMi ← ∅; attempts← ∅
3: repeat cgoali ← 〈RandomPosition(Gi),RandomOrientation()〉 until collision(O, cgoali ) = false

4: VMi ← VMi ∪ {c
goal
i }

// populate the roadmap with configurations generated from the triangles in the triangulation of Wfree

5: ∆init ← locate triangle in the triangulation of Wfree that contains position(ciniti )
6: ∆goal ← locate triangle in the triangulation of Wfree that contains position(cgoali )
7: Q ← create queue and insert ∆init and ∆goal

8: visited← {∆init,∆goal}
9: while empty(Q) = false do

10: ∆← extract(Q)
11: GenerateAndConnectCfg(Mi,O,∆, attempts)
12: if SameComponent(Mi, c

init
i , cgoali ) = true then returnMi

13: for each ∆′ ∈ adjacent(∆) and ∆′ 6∈ visited do
14: Q ← Q∪ {∆′}
15: visited← visited ∪ {∆′}
// populate the roadmap with configurations generated from Wfree

16: while SameComponent(Mi, c
init
i , cgoali ) = false do

17: GenerateAndConnectCfg(Mi,O,Wfree)
18: returnMi

(a) GenerateAndConnectCfg(Mi,O,B, attempts)
1: c← GenerateCfg(Mi,O,B)
2: if c 6= null then ConnectCfg(Mi,O, c, attempts)

(b) GenerateCfg(Mi,O,B)
// B: area from which to sample
1: ok← false

2: for several times and ok = false do
3: c← 〈RandomPosition(B),RandomOrientation()〉
4: ok← collision(O,Ri, c) = false ∧ distance(O, c) ≥ dminSepCfgObs∧

distance(c,NearestNeighbor(VMi , c)) ≥ dminSepCfgs

5: if ok = false then return null

6: VMi ← VMi ∪ {c}
7: return c

(c) ConnectCfg(Mi,O, c, attempts)
1: neighs← NearestNeighbors(VMi , c)
2: for each cneigh ∈ neighs and (c, cneigh) 6∈ attempts do
3: attempts← attempts ∪ {(c, cneigh)}
4: if CollisionFreePath(O, c, cneigh) = true then
5: EMi ← EMi ∪ {(c, cneigh)}
6: cost(c, cneigh)← ‖position(c)− position(cneigh)‖2/clearance(O, c, cneigh)

The procedure for generating a configuration c that is added to the roadmap (Alg. 1:b)
does so by repeatedly sampling a random orientation and a random position inside the
obstacle-free area of the environment Wfree =W \

⋃m
j=1Oj until the resulting robot place-

ment is not in collision, the distance from c to the obstacles is at least dminSepCfgObs, and the
distance from c to its nearest roadmap configuration is at least dminSepCfgs. When generat-
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ing configurations, it is better to sample from Wfree than W since only configurations from
Wfree could be added to the roadmap. The obstacle-free area Wfree is computed efficiently
using available triangulation packages (Shewchuk, 2002).

In order to improve sampling, attempts are made to generate configurations from the
areas not too far away from existing roadmap configurations (Alg. 1:5–15). More precisely,

the triangles in the triangulation of Wfree that contain cinit
i and cgoal

i are added to a queue.
Proceeding in a breadth-first manner, a triangle ∆ is extracted from the queue, its unvisited
neighbors are inserted into the queue, and attempts are made to generate an acceptable
configuration inside ∆ (using Alg. 1(b) GenerateCfg but sampling the position inside ∆
as opposed to Wfree, and stopping after a number of attempts). If successful, the generated
configuration is added to the roadmap. Attempts are made to connect to several of its
neighbors via collision-free paths. This process is repeated until the queue becomes empty.

If after these steps, cinit
i and cgoal

i do not belong to the same roadmap component, addi-
tional configurations are added to the roadmap. At this time, configurations are generated
from the entire Wfree (Alg. 1:16–17).

Connecting the Roadmap Configurations: As mentioned, each time a configuration
c is added to VMi attempts are made to connect it to several of its nearest neighbors
via collision-free paths (Alg. 1(c)). Efficient nearest-neighbors data structures are used to
quickly compute the nearest roadmap configuration to c (Muja & Lowe, 2014). For each
neighbor cneigh, the path connecting c to cneigh is defined by a linear interpolation, i.e.,

∀t ∈ [0, 1] : path(c, cneigh, t) = (1− t)c+ tcneigh. (13)

If the path does not collide with the obstacles, then the edge (c, cneigh) is added to EMi .
To check whether the path is in collision, several intermediate configurations c1, . . . , ck
are generated along the path, where ∀1 ≤ j ≤ k : cj ← path(c, cneigh, (j + 1)/k). The
number k depends on the distance between c and cneigh. It is generally set to k =
d‖position(c)− position(cneigh)‖2/drese to ensure that consecutive configurations are sep-
arated by at most a distance of dres, where dres is the desired collision-checking resolution.
The robot is placed according to each of the configurations c1, . . . , ck and the resulting ge-
ometric shape is added to a mesh. In this way, the mesh will contain the area swept by the
robot. If the mesh collides with the obstacles, the path is rejected. Computing the area
swept by the robot results in faster collision checking (it is done only once) as opposed to
individually checking for collision after each intermediate configuration.

The process of adding and connecting configurations to the roadmap is repeated until
cinit
i and cgoal

i belong to the same roadmap connected component. A disjoint-set data struc-
ture is used to quickly determine the connected components. When it is possible to connect
cinit
i to cgoal

i with collision-free paths, the probability that the roadmap does so approaches
one rapidly, as shown by the probabilistic completeness of PRM (Kavraki et al., 1996).

Roadmap Sharing: Robots that have the same configuration space and shape can use
the same roadmap. Specifically, let Ψ = {Ψ1, . . . ,Ψk} denote the partition of the robots
{R1, . . . ,Rn} into sets, where each Ψj contains robots that have the same configuration
space and shape. A roadmap for Ψj , denoted by MΨj , is constructed by first adding the
initial cinit

i and goal cinit
i configurations for each robot Ri ∈ Ψj . The process of sampling and

connecting configurations continues until each cinit
i belongs to the same roadmap component
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as cgoal
i . AfterMΨj is constructed, thenMi is set to point toMΨj for each robot Ri ∈ Ψj .

In particular, if all the robots are the same, then only one roadmap is constructed with
M1, . . . ,Mn all pointing to it.

Note that an alternative approach to constructing individual roadmaps M1, . . . ,Mn

over C1, . . . , Cn would be to explicitly construct only one roadmap over the composite con-
figuration space C = C1× . . .×Cn. Such an approach would treat the robots as one system.
However, due to the increased dimensionality, it imposes a significant computational cost,
which renders the roadmap construction over C impractical (Choset et al., 2005, chap. 7).

4.1.2 Multi-agent Search over the Discrete Abstraction

After constructing the roadmaps M1, . . . ,Mn, multi-agent search is used to compute non-
conflicting routes where the robots avoid collisions with each other. Each roadmap Mi

guarantees that robot Ri will not collide with the obstacles as it moves from one roadmap
configuration to the next. Therefore, the multi-agent search has to avoid only robot-robot
conflicts. Specifically, MultiAgentSearch(M1, . . . ,Mn, c1, . . . , cn,G1, . . . ,Gn) searches
over M1, . . . ,Mn to compute non-conflicting routes σ1, . . . , σn for each robot such that σi
is over Mi, starts at ci, and ends at a roadmap configuration associated with the goal Gi.
Since in multi-agent search, each robot moves from one configuration to the next in one
step, each roadmap edge is divided into several parts to ensure that the distance from one
vertex to the next is no more than a user-specified step size.

The overall approach is agnostic to the inner workings of the multi-agent search, so
it can be used in conjunction with any available method that operates over graphs. This
paper includes experiments using three different methods, namely WHCA*(Silver, 2005),
Push-and-Swap (Luna & Bekris, 2011), and SIPP (Narayanan et al., 2012).

4.2 Motion Tree in the Composite Continuous State Space

The relaxed problem setting presented in the previous section takes into account the robot
shapes but not their dynamics. As a result, there is no guarantee that solutions corre-
sponding to the relaxed problem setting are dynamically feasible. In fact, geometric and
differential constraints imposed by the obstacles and the underlying dynamics may make it
difficult or impossible for a robot to follow its route σi.

To account for the dynamics, a motion tree T = (VT , ET ) is incrementally expanded
in the composite state space S1 × . . . × Sn. This is to ensure probabilistic completeness.
Prioritized or decoupled approaches, which would expand one tree for each robot, often
fail to find solutions in cases where robots have to coordinate their motions. As such, it
is critical to expand the motion tree in the composite state space of all the robots. As
described later, scalability and efficiency is obtained by using multi-agent search over the
discrete abstraction to guide the motion-tree expansion.

Each vertex v ∈ VT corresponds to a composite state, denoted by state(v), where
statei(v) ∈ Si represents the state associated with the robot Ri. By construction, the
vertex v is added to VT only if collision(state(v)) = false, i.e., when the robots are
placed according to state(v), there is no robot-robot or robot-obstacle collision.

As any tree-based approach, a procedure for generating successor states is required to
expand the motion tree. Specifically, a successor vnew is generated from v by applying some
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control actions 〈a1, . . . , an〉 component-wise and integrating the motion equations of each
robot for one time step dt, i.e.,

∀i ∈ {1, . . . , n} : statei(vnew)← simulate(statei(v), ai, fi, dt). (14)

If state(vnew) is not in collision, then the edge (v, vnew) is added to ET and is labeled with
the actions 〈a1, . . . , an〉 that were used to generate vnew from v.

The generation of a successor state by applying controls and integrating the motion
equations is what makes it possible for a motion tree to account for the underlying robot
dynamics. This is in contrast to roadmap approaches which are unable to account for
the robot dynamics since each roadmap edge (va, vb) requires exact steering to generate a
dynamically-feasible trajectory ζ : [0, T ]→ S1× . . .×Sn that connects its states. This gives
rise to a high-dimensional differential two-boundary value problem (boundary conditions:
ζ(0) = state(va) and ζ(T ) = state(vb)). Two-boundary value problems are notoriously
challenging, especially for motion equations expressing constraints imposed by the under-
lying robot dynamics. Analytical solutions are generally not available, while numerical
solutions leave gaps and are computationally demanding (Keller, 1992; Cheng et al., 2008).

To solve the multi-robot motion-planning problem, the motion tree T is rooted at the
initial state 〈sinit

1 , . . . , sinit
n 〉. As mentioned, T is incrementally expanded by selecting a

vertex v from T and generating a successor vnew from v. The expansion continues un-
til a vertex vnew is added where each robot has reached its goal, i.e., ∀i ∈ {1, . . . , n} :
position(statei(vnew)) ∈ Gi. The path 〈v1, . . . , v`〉, with v1 = vinit and v` = vnew, from
the root of T to vnew is retrieved and the solution trajectory for each robot Ri is constructed
as ζi = 〈statei(v1), . . . , statei(v`)〉.

4.3 Abstraction-Based Partitioning of the Motion Tree into Equivalence
Classes

The efficiency of the overall approach depends on its ability to effectively expand the motion
tree T so that it quickly finds a solution to the multi-robot motion-planning problem. The
motion tree T could be expanded in an uninformed way by selecting at each iteration
a vertex v ∈ VT at random and applying controls to generate a successor vnew from v.
Uninformed expansions, however, would have difficulty finding solutions since the composite
state space is continuous and high-dimensional. Moreover, reaching the goals would require
very deep expansions of the motion tree. In addition, the branching factor is infinite since
the control actions are represented by continuous variables.

To address these challenges, we introduce multi-agent search to guide the motion-tree
expansion. Since multi-agent search operates over the discrete abstraction, a mapping
from the composite state space to the discrete abstraction must be first defined. Since
the discrete abstraction is obtained via roadmaps, the mapping function maps states to
roadmap configurations. Specifically, the mapping function mapi : Si → VMi maps si ∈ Si
to the nearest configuration in the roadmap, i.e.,

mapi(si) = NearestNeighbor(VMi , 〈position(si),orientation(si)〉). (15)

In case of ties for the nearest neighbor, si is mapped to the nearest roadmap configuration
with the lowest index. The composite mapping function map : S1× . . .×Sn → VM1 × . . .×
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VMn is then defined as

map(〈s1, . . . , sn〉) = 〈map(s1), . . . ,map(sn)〉. (16)

This mapping makes it possible to partition the motion tree T into equivalence classes. The
idea is that vertices in T that provide the same discrete information should belong to the
same equivalence class. In other words, if map(state(va)) = map(state(vb)), then vertices
va, vb ∈ VT should belong to the same equivalence class.

In this way, the equivalence class Γ〈c1,...,cn〉 with 〈c1, . . . , cn〉 ∈ VM1 × . . .× VMn groups
together all the vertices in T that map to 〈c1, . . . , cn〉, i.e.,

Γ〈c1,...,cn〉 = {v : v ∈ VT ∧map(state(v)) = 〈c1, . . . , cn〉}. (17)

The motion tree T is then partitioned into a set of equivalence classes

Γ = {Γ〈c1,...,cn〉 : 〈c1, . . . , cn〉 ∈ VM1 × . . .× VMn ∧ |Γ〈c1,...,cn〉| > 0}. (18)

As an implementation note, Γ is maintained as a hashmap. The key for an equivalence class
Γ〈c1,...,cn〉 is computed as key(〈c1, . . . , cn〉) = 〈index(c1), . . . , index(cn)〉, where index(ci)
denotes the id number for the configuration ci in the roadmap Mi, e.g., position in the
vector that stores the roadmap vertices. When a new vertex vnew is added to the motion
tree T , its key is computed as key(map(state(vnew))). If the hashmap does not contain
the key, then the equivalence class Γmap(state(vnew)) is created and added to Γ; otherwise, it
is retrieved from Γ. In both cases, vnew is added to Γmap(state(vnew)).

What is the significance of partitioning T into equivalence classes? The partition makes
it possible to leverage multi-agent search. In particular, when creating an equivalence
class Γ〈c1,...,cn〉, MultiAgentSearch(M1, . . . ,Mn, c1, . . . , cn,G1, . . . ,Gn) can be invoked
to compute non-conflicting routes σ1, . . . , σn, where each σi starts at ci and reaches Gi.
When selecting a vertex from Γ〈c1,...,cn〉, the objective becomes to expand the motion tree
T along the routes σ1, . . . , σn. Hence, the partition makes it possible to use multi-agent
search as a heuristic to guide the motion-tree expansion.

4.4 Putting it All Together: Using Multi-agent Search over the Discrete
Abstraction to Guide the Motion-Tree Expansion

The overall approach starts by constructing the roadmaps M1, . . . ,Mn to obtain the dis-
crete abstraction. The motion tree T is rooted at the initial state 〈sinit

1 , . . . , sinit
n 〉. The

first equivalence class Γmap(state(vinit)) is also created, which contains the root vertex vinit.
Afterwards, the approach enters a core loop, where each iteration consists of the following:

• select an equivalence class Γ〈c1,...,cn〉 from Γ;

• use multi-agent search over the discrete abstraction to obtain non-conflicting routes
σ1, . . . , σn, where each σi starts at ci, and reaches the goal Gi; and

• expand the motion tree T from vertices in Γ〈c1,...,cn〉 along the routes σ1, . . . , σn.

When an equivalence class Γ〈c1,...,cn〉 is first created, MultiAgentSearch(M1, . . . ,Mn,
c1, . . . , cn,G1, . . . ,Gn) is invoked to compute non-conflicting routes 〈σ1, . . . , σn〉, where each
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σi starts at ci and reaches the goal Gi. To save computation time, the routes are stored
with Γ〈c1,...,cn〉 and retrieved when the multi-agent search is invoked again for Γ〈c1,...,cn〉.

When selecting an equivalence class Γ〈c1,...,cn〉 from Γ, priority is given to equivalence
classes associated with short routes, since expansions along short routes are more likely
to quickly lead each robot to its goal. As the motion tree T is expanded, new vertices
are added, some of which could result in new equivalence classes being created. When the
geometric and differential constraints imposed by the obstacles and the underlying robot
dynamics make it difficult to expand T along the routes σ1, . . . , σn associated with Γ〈c1,...,cn〉,
then Γ〈c1,...,cn〉 is penalized in order to promote expansions from other equivalence classes.

This process of selecting and expanding an equivalence class is repeated until a solution
is found or a runtime limit is reached. A schematic illustration is shown in Figure 2.
Pseudocode is shown in Alg. 2.

4.4.1 Selecting an Equivalence Class Based on Route Costs and Penalties

A weight is defined for each equivalence class Γ〈c1,...,cn〉 as an estimate of the importance
of expanding the motion tree T from Γ〈c1,...,cn〉. The equivalence class with the maximum
weight is then selected for expansion. Specifically, the weight for Γ〈c1,...,cn〉 is defined as

w(Γ〈c1,...,cn〉) =
αNrSel(Γ〈c1,...,cn〉)∑n

i=1(cost(σi))2
, (19)

where NrSel(Γ〈c1,...,cn〉) denotes the number of times Γ〈c1,...,cn〉 has been previously selected,
and σ1, . . . , σn denote the routes associated with Γ〈c1,...,cn〉, 0 < α < 1.

In this way, equivalence classes associated with low-cost routes have a high weight in
order to promote expansions from areas close to the goals. This constitutes the greedy
aspect of the weight. As a purely greedy selection could lead to pitfalls, a penalty factor α
(0 < α < 1) is introduced to reduce the weight of Γ〈c1,...,cn〉 each time it is selected. This
ensures that Γ〈c1,...,cn〉 cannot be selected indefinitely. In fact, repeatedly selecting Γ〈c1,...,cn〉
will continue to reduce its weight so that eventually some other equivalence class will end up
having a greater weight and thus be selected for expansion. The penalty factor is essential to
ensure probabilistic completeness and avoid becoming stuck when the motion-tree expansion
from Γ〈c1,...,cn〉 repeatedly fails due to the geometric and differential constraints imposed by
the obstacles and the underlying robot dynamics.

4.4.2 Expanding an Equivalence Class along Roadmap Routes

After selecting Γ〈c1,...,cn〉, the objective is to expand the motion tree T along the routes
σ1, . . . , σn associated with Γ〈c1,...,cn〉 (Alg. 2(b)). The idea here is to have each robot Ri

move toward the configurations in σi one after the other. Since the routes are not necessarily
dynamically feasible, the robots are given some flexibility when following the routes. Forcing
a robot to follow its route exactly could be infeasible, which would cause the motion-
tree expansion to make little or no progress. The motion-tree expansion stops as soon as
a collision is found or a maximum number of expansion steps is reached. If during the
expansion, each robot reaches its goal, then a solution is found.

More specifically, the expansion procedure starts by setting a target configuration ctarget
i

for each robot Ri. The target configuration ctarget
i is computed by sampling a collision-
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Algorithm 2 Pseudocode for the proposed approach
Input: robot models R = {R1, . . . ,Rn}, Ri = 〈Pi,Si,Ai, fi〉; bounding box W; obstacles O; goal
regions G = {G1, . . . ,Gn}; initial state 〈sinit1 , . . . , sinitn 〉; time step dt; configuration spaces {C1, . . . , Cn};
runtime limit tmax

Output: collision-free and dynamically-feasible trajectories for each robot from initial to goal; or null
if no solution

1: Wfree ← triangulate obstacle-free area W \O
2: for i = 1 . . . n do
3: Mi = (VMi , EMi ,costMi)← roadmap(W,O,Wfree, Ci,Pi, s

init
i ,Gi)

4: T = (VT , ET )← (∅, ∅); Γ← ∅
5: AddVertex(T ,Γ, 〈sinit1 , . . . , sinitn 〉, parent← null, 〈a1, . . . , an〉 ← null)
6: while time() < tmax do
7: Γ〈c1,...,cn〉 ← SelectEquivalenceClass(Γ) //routes were computed by multi-agent search when the
8: 〈σ1, . . . , σn〉 ← RetrieveRoutes(Γ〈c1,...,cn〉) //equivalence class was first created
9: vgoal ← ExpandMotionTree(T ,Γ,Γ〈c1,...,cn〉, σ1, . . . , σn)

10: if vgoal 6= null then return 〈ζ1, . . . , ζn〉 ← RetrieveTrajectories(T , vnew)
11: return null

(a) ExpandMotionTree(T ,Γ,Γ〈c1,...,cn〉, σ1, . . . , σn)
1: for i = 1 . . . n do
2: ctargeti ← FirstTarget(σi)
3: v ← SelectVertex(Γ〈c1,...,cn〉, c

target
1 , . . . , ctargetn )

4: for several steps do
5: solved← true

6: for i = 1 . . . n do
7: si ← statei(v)
8: ai ← controller(si, c

target
i )

9: snewi ← simulate(si, ai, fi, dt)
10: if position(snewi ) 6∈ Gi then solved← false

11: if near(snewi , ctargeti ) = true then ctargeti ← NextTarget(σi)
12: if collision(snew1 , . . . , snewn ) = true then break
13: vnew ← AddVertex(T ,Γ, 〈snew1 , . . . , snewn 〉, v, 〈a1, . . . , an〉)
14: if solved then return vnew
15: v ← vnew
16: return null

(b) AddVertex(T ,Γ, 〈snew1 , . . . , snewn 〉, v, 〈a1, . . . , an〉)
1: vnew ← new motion-tree vertex with 〈snew1 , . . . , snewn 〉 as its state
2: (v, vnew)← new edge labeled with the control actions 〈a1, . . . , an〉
3: VT ← VT ∪ {vnew}; ET ← ET ∪ {(v, vnew)}
4: 〈cnew1 , . . . , cnewn 〉 ← map(snew1 , . . . , snewn )
5: Γ〈cnew

1 ,...,cnew
n 〉 ← find(Γ, 〈cnew1 , . . . , cnewn 〉)

6: if Γ〈cnew
1 ,...,cnew

n 〉 = null then
7: Γ〈cnew1 ,...,cnew

n 〉 ← new equivalence class
8: 〈σ1, . . . , σn〉 ←MultiAgentSearch(M1, . . . ,Mn, c

new
1 , . . . , cnewn ,G1, . . . ,Gn)

9: store 〈σ1, . . . , σn〉 with Γ〈cnew
1 ,...,cnew

n 〉
10: insert(Γ〈cnew

1 ,...,cnew
n 〉, vnew)

11: insert(Γ,Γ〈cnew
1 ,...,cnew

n 〉)
12: return vnew

free configuration near σi[2] (since σi[1] = ci). Sampling near σi[2] as opposed to setting
ctarget
i = σi[2] is preferred to give more flexibility to the robot, since σi is not necessarily

dynamically feasible. As such, it could be infeasible for the robot Ri to exactly follow σi.
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After setting the targets, the procedure seeks to expand T from the closest vertex v in
Γ〈c1,...,cn〉 to 〈c1, . . . , cn〉, i.e.,

v = argmin
v′∈Γ〈c1,...,cn〉

n∑
i=1

‖position(ci)− position(statei(v
′))‖2. (20)

A collision-free and dynamically-feasible trajectory is generated in the composite state space
S1 × . . . × Sn by starting at v and moving toward 〈ctarget

1 , . . . , ctarget
n 〉. Specifically, a suc-

cessor vnew is obtained from v by applying some control actions and integrating the motion
equations for one time step dt. If vnew is in collision, then the expansion terminates. If vnew

is not in collision, then vnew and the edge (v, vnew) are added to the motion tree T . This
process is repeated for several steps by setting v to vnew at the end of each step, so that the
expansion continues from the new vertex added to T .

A proportional-integrative-derivative (PID) controller (Spong, Hutchinson, & Vidyasagar,
2005) is used to select the control actions that steer robot Ri toward ctarget

i . For a vehicle,
the PID controller selects controls that turn the wheels and then move toward ctarget

i .
When statei(vnew) gets near ctarget

i (within some predefined distance), the next target
ctarget
i is computed by sampling a collision-free configuration near the next configuration in
σi. In this way, the robot Ri can progress from one configuration in σi to the next.

When adding vnew to the motion tree T , the partition Γ is updated accordingly, as
described earlier. If state(vnew) has reached all the goals, then the algorithm terminates
successfully since a solution is found.

4.5 Runtime Analysis and Probabilistic Completeness

When constructing a roadmap Mi, most of the time is spent in collision checking and
nearest-neighbors computations. Collision checking based on sweep-and-prune algorithms
runs in O((nO + |Pi|) log(nO + |Pi|)) time, where nO =

∑
i=1 |Oi| denotes the total number

of vertices for the obstacles and |Pi| denotes the number of vertices for the geometric shape
of robot Ri (Larsen et al., 1999; Tracy, Buss, & Woods, 2009; Pan et al., 2012). Nearest
neighbors can be computed in O(k log |VMi |) time, where k is the number of neighbors
(Beygelzimer, Kakade, & Langford, 2006; Muja & Lowe, 2014).

The number of collision-checking and nearest-neighbors calls depends on the characteris-
tics of the environment, the placement of the initial and goal configurations, the probability
distribution used for generating collision-free configurations, the length of the roadmap
edges, and many other factors. Providing a bound on the number of calls remains an
open problem. In fact, analysis of roadmap approaches have focused on showing proba-
bilistic completeness as a function of the number of samples (Kavraki et al., 1996; Ladd
& Kavraki, 2004; Karaman & Frazzoli, 2011), which are also applicable to our roadmap
constructions.

After the roadmap construction, our approach enters its core loop (Alg. 2:6). The
runtime here is dominated by calls to selecting an equivalence class from Γ, inserting a
new equivalence class into Γ, selecting a vertex from a given equivalence class, simulating
motion dynamics, collision checking, mapping, and multi-agent search. Maintaining a heap
data structure for the equivalence classes, makes it possible to retrieve the equivalence
class with maximum weight in O(1) time and to insert a new class into Γ in O(log |Γ|)
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time. Using efficient nearest-neighbors data structures, the procedure for selecting a vertex
from an equivalence class Γ〈c1,...,cn〉 runs in O(log |Γ〈c1,...,cn〉|) time (or O(log |VT |) since
|Γ〈c1,...,cn〉| ≤ |VT |). map computes one nearest neighbor from each roadmap, so it runs in
O(
∑n

i=1 log |VMi |) time. The complexity of MultiAgentSearch depends on the particular
method being used, so it is denoted here as tMultiAgentSearch.

simulate uses Runge-Kutta to integrate the motion equations, so it runs in O(d1 +
. . . + dn) time for all the robots, where di is the dimensionality of Si. collision checks
for robot-obstacle and robot-robot collisions. Robot-obstacle collision checking runs in
O((nO + nP) log(nO + nP)) time, where nP =

∑n
i=1 |Pi|. Robot-robot collision checking

runs in O(nnP log nP) time, since checking robot Ri against all the other robots runs in
O(nP log nP) time. Hence, collision runs in O(nO log nO + nnP log nP) time.

Let nMP denote the number of times the main while loop is entered (Alg. 2:6). Then,
selecting an equivalence class and selecting a vertex are each invoked nMP times. collision
and map are invoked O(nMP) times since a user-defined constant bounds the number of
times the for loop in Alg. 2(a):4 is entered. For the same reason, it follows that simulate
is invoked O(nnMP) times. MultiAgentSearch is invoked once per equivalence class, so
|Γ| times. Putting it all together, the runtime complexity is

O(|Γ|tMultiAgentSearch + nMP(log |VT |+
n∑

i=1

di + nO log nO +

nnP log nP +
n∑

i=1

log |VMi |)). (21)

Note that |Γ| ≤ |VT | ≤ nMP.

Sampling-based motion planners generally offer probabilistic completeness, which guar-
antees that when a solution exists, it will be found with probability approaching one as time
goes to infinity. Our approach also offers probabilistic completeness. The claim follows from
the analysis by Plaku (2015) which can be applied to sampling-based motion planners that
partition the motion tree into equivalence classes. The analysis requires guaranteeing that
no equivalence will be selected indefinitely. This was one of the reasons for introducing the
penalty factor in the definition of the weight for an equivalence class (Eqn. 19). Although
the analysis by Plaku is presented for a single robot, it still applies in our case since T is
expanded over the composite state space S = S1× . . .×Sn. For the purposes of the analysis,
multiple robots are considered as one system operating in S.

5. Experiments and Results

Experimental validation is provided in simulation using vehicle models with nonlinear dy-
namics operating in complex environments, as shown in Figure 1 and 4, where cooperation
among the robots is often required to make it possible for each robot to reach its goal. Ex-
periments are also conducted with vehicles modeled by physics game engines which provide
an increased level of realism by also modeling friction, terrains, general rigid-body dynam-
ics, and other interactions of the robots with the world, which cannot be easily described
analytically by motion equations.
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scene 2

scene 3

scene 4

scene 5

scene 6

Figure 4: Scenes used in the experiments (scene 1 is shown in Figure 1). Scenes are shown
with the bumpy terrain, which is used for the experiments with the physics-
based vehicle models, using Bullet as the underlying physics game engine. For
the experiments with the vehicle models based on differential equations of mo-
tion (Section 3.1), the bumpy terrain is replaced with a flat terrain (shown
in Figure 3). Videos of solutions obtained by our approach can be found at
http://goo.gl/8muxwC. Figure best viewed in color and on screen.

The efficiency and scalability of the approach is demonstrated in comparison to related
work across different environments and as the number of robots is increased. Experiments
also evaluate the approach when used with different multi-agent search methods, namely
WHCA* (Silver, 2005), Push-and-Swap (Luna & Bekris, 2011), and SIPP (Narayanan et al.,
2012).
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5.1 Vehicle Models and Problem Instances

Experiments are conducted using vehicles whose motions are modeled by differential equa-
tions and by physics game engines. The vehicle model based on differential equations of
motion is described in Section 3.1. The physics-based vehicle model uses the game engine
Bullet (Coumans, 2012) as the underlying simulator. Bullet simulates the interactions of
the vehicle with the environment by taking into account the friction from the wheels, the
slip caused by friction, suspension damping, suspension stiffness, and compression. Due
to the complexity of the interactions between the vehicle and the terrain, Bullet, as other
physics game engines, relies on numerical simulations of general rigid-body dynamics since
analytical formulas are generally not available.

Experiments are conducted using 6 scenes, as shown in Figure 1 and 4. Scenes 1, 2, and
3 feature unstructured and obstacle-rich environments. Scenes 1 and 3 require some level
of cooperation among the robots as the motions of one robot toward its goal region could
interfere with the motions of another robot. Scene 2 requires little or no cooperation among
the robots. Scenes 4, 5, 6 are specifically designed to test the ability of multi-robot motion
planners to solve problems where cooperation among robots is essential.

A problem instance is defined by the scene, number of robots, initial placement of
the robots, and goal regions. For each scene and number of robots n a set of 60 problem
instances is generated, denoted by I〈scene,n〉, by randomly placing the robots and the goals in
the environment. To make the test cases more challenging, rather than randomly sampling
from the entire W, the robots and the goals are placed at random locations inside certain
manually-selected areas. More specifically, for each scene and number of robots n, we define
areas E init

1 , . . . , E init
n and Egoal

1 , . . . , Egoal
n . The robot Ri and the goal Gi are then placed at

random inside E init
i and Egoal

i , respectively.

To evaluate the performance, each multi-robot motion planner is run on each of the
problem instances. For a scene and number of robots n, results report the mean runtime
obtained over the 60 problem instances in I〈scene,n〉, after dropping the best and worst five
runs to avoid the influence of outliers. The runtime measures everything from reading the
input file to reporting that a solution is found (including the roadmap constructions for our
approach). Experiments were run on an Intel Core i7 (1.90GHz).

5.2 Comparisons to Prioritized and Centralized Approaches

To evaluate the competitiveness of the approach, comparisons are carried out using a central-
ized and a prioritized version of RRT (LaValle & Kuffner, 2001), denoted by cRRT and pRRT.
RRT is a widely-used sampling-based motion planner. The implementations of cRRT and
pRRT have been fine-tuned and use goal bias, multi-step expansions, and efficient nearest-
neighbor data structures, as advocated in the literature.

Comparisons are also done with a prioritized version of GUST (Plaku, 2015), denoted by
pGUST. GUST was selected since it has has been shown to be significantly faster than RRT and
other sampling-based motion planners when solving challenging problems with dynamics.
We could only use a prioritized version of GUST, since, as mentioned in the related work
section, a centralized version is not straightforward and has yet to be developed.
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Figure 5: Results when comparing (a) our approach to (b) pGUST, (c) pRRT, and (d) cRRT.
Runtime measures everything from reading the input file to reporting that a
solution is found (including for our approach the time to build the roadmaps).
Missing entries indicate failure by the planner to solve the problem instances
within the runtime limit (set to 90s per run). Note in particular that only our
approach could solve scenes 4, 5, 6 (denoted as s4, s5, s6 in the figure).

Figure 5 shows the results of the comparisons. Our approach is significantly faster than
cRRT, pRRT, and pGUST. The speedups become higher as the number of robots is increased
and for the scenes where cooperation among the robots is essential to reach the goals.

The other approaches have difficulty solving these challenging problems. The runtime of
cRRT degrades rapidly as more and more robots are added to the scene. This is due to the
high-dimensionality of the composite state space S1×. . .×Sn and the lack of global guidance,
which makes it difficult for cRRT to expand the motion tree toward the goals G1, . . . ,Gn.
pRRT is faster than cRRT since pRRT plans the motions of the robots one at a time, so it
avoids searching over the composite state space. As any prioritized approach, however, pRRT
has difficulty finding solutions in scenes where cooperation among the robots is required.
pRRT also has difficulty findings solutions when the number of robots is increased. Even in
scene 2, which requires little or no cooperation, pRRT times out as the number of robots is
increased.

pGUST is faster than pRRT since pGUST uses discrete search to guide the motion-tree
expansion toward goal Gi when planning the motions of robot Ri. pGUST does best in
Scene 2 where cooperation among the robots is not essential. Note that even for this scene,
our approach, which expands the motion tree in the composite state space, is as fast as
pGUST. For the other scenes (Scenes 1, 3, 4, 5, 6), where cooperation is important, pGUST
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Figure 6: Results of our overall approach CoSMMAS when varying the multi-agent search:
(a) CoSMMAS[WHCA*, window size: 5], (b) CoSMMAS[WHCA*, window size: 2],
(c) CoSMMAS[WHCA*, window size: 10], (d) CoSMMAS[SIPP], (e) CoSMMAS[Push-
and-Swap].

has difficulty finding solutions as trajectories planned for previous robots often prevent the
current robot from reaching its goal.

Our approach shows remarkable efficiency in solving these challenging multi-robot motion-
planning problems, even as the number of robots is increased. Our approach is particularly
well-suited for scenes where cooperation among robots is essential. While cRRT, pRRT, and
pGUST all timed out in scenes 4, 5, 6 (set to 90s per run), our approach was able to find
solutions in 1-3s. This is as a result of using multi-agent search over the discrete abstraction
to effectively guide the motion-tree expansion.

5.3 Impact of Multi-agent Search

As mentioned, CoSMMAS is agnostic to the inner workings of the multi-agent search, so it
can be used with any available method. To evaluate the impact of the multi-agent search
on the overall performance of CoSMMAS, experiments were run using WHCA* with three
different window sizes (2, 5, and 10) (Silver, 2005), SIPP (Narayanan et al., 2012), and
Push-and-Swap (Luna & Bekris, 2011).

Results in Figure 6 show that CoSMMAS works well with WHCA*, SIPP, and Push-and-
Swap. The best performance is obtained when using WHCA* (with window size set to 5).
For WHCA*, the window size can have an impact on the overall performance. The window
size can be thought of as the number of look-ahead moves to resolve conflicts. A small
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CoSMMAS with multi-agent search as
cRRT pRRT pGUST CSIPP PaS WHCA*2 WHCA*5 WHCA*10

Runtime (s) 93494 81216 56928 16654 16918 21963 7790 8231
Percentage 30.74% 26.53% 18.59% 5.78% 6.16% 6.68% 2.72% 2.81%

Table 1: Runtime for each of the methods used in the experiments over all the problem
instances (1260 in total) and over both diffeq- and physics-based vehicle models.

window size works well in scenes requiring little or no cooperation among the robots but
can have a hard time resolving conflicts in scenes where cooperation among the robots is
essential. A large window size causes WHCA* to generate larger portions of non-conflicting
routes. This increases the runtime to compute non-conflicting routes, but could potentially
reduce the number of reroutings as longer non-conflicting routes are generated. Results in
Figure 6 show that the overall runtime is reduced when the window size is neither too small
nor too large. It is an interesting problem to find an optimal window size or to dynamically
adjust the window size to reduce the overall runtime.

5.4 Runtime Distribution

Table 1 shows the runtime of each of the methods used in the experiments over all the
problem instances and over both diffeq- and physics-based vehicle models. Essentially, it is
the runtime over everything that was used for the experiments in this paper. The results
show that CoSMMAS is significantly faster than the other methods.

Figure 7 shows the runtime distribution for various components of CoSMMAS. Although
the construction of roadmaps takes some time (about 1-2s), it more than makes up for it by
providing a network of roads, seeking to make it easy to reach the goals from any location
in the environment. Multi-agent search also takes a considerable percentage of the runtime,
especially as the number of robots increases. This also pays off as it provides non-conflicting
routes that are used to effectively guide the motion-tree expansion. Overall, the roadmaps
and multi-agent search make it possible for CoSMMAS to shift the load from the motion-tree
expansion in the composite continuous state space to multi-agent search over graphs. In this
way, non-conflicting routes obtained by multi-agent search effectively guide the motion-tree
expansion so that it spends little time exploring parts of the composite state space that are
not needed to find a solution.

6. Discussion

This paper developed an effective, cooperative, and probabilistically-complete multi-robot
motion planner which took into account the obstacles, robot geometries, and the underlying
robot dynamics. The efficiency of the approach is derived from coupling sampling-based
motion planning to handle the complexity arising from the obstacles and robot dynamics
with multi-agent search to find solutions over a suitable discrete abstraction. We obtained
the discrete abstraction by constructing roadmaps over low-dimensional configuration spaces
to solve a relaxed problem that accounts for the obstacles but not the robot dynamics.
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Figure 7: Runtime distribution as a percentage of the total runtime for the various com-
ponents of CoSMMAS (from bottom to top): (a) create roadmaps (Alg. 2:1-3), (b)
MultiAgentSearch (Alg. 2(b):8), (c) simulate (Alg. 2(a):9), (d) collision
(Alg. 2(a):12), and (e) other. Similar distributions are obtained also for the in-
stances with the physics-based vehicle models.
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Experiments demonstrated significant speedups over related work, especially in scenarios
where cooperation among robots is required to reach the goals.

This work opens up several research directions. Advances in multi-agent search can
significantly improve the efficiency and scalability of the framework by reducing the run-
time to compute the non-conflicting routes. Moreover, the quality of the routes can also
be improved, for example, by requiring the multi-agent search to compute non-conflicting
routes that maximize the separation among the robots and the clearance from the obsta-
cles. Such routes would be easier to follow, which would significantly reduce the runtime
for the motion-tree expansion. Another direction is to enable the team of robots to perform
complex tasks given by PDDL or some other high-level formalism.
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