
Journal of Artificial Intelligence Research 63 (2018) 281-359 Submitted 04/18; published 10/18

Watching and Acting Together: Concurrent Plan
Recognition and Adaptation for Human-Robot Teams

Steven J. Levine sjlevine@mit.edu
MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar St. Room 32-226
Cambridge, MA 02139 USA

Brian C. Williams williams@mit.edu

MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar St. Room 32-227

Cambridge, MA 02139 USA

Abstract

There is huge demand for robots to work alongside humans in heterogeneous teams.
To achieve a high degree of fluidity, robots must be able to (1) recognize their human
co-worker’s intent, and (2) adapt to this intent accordingly, providing useful aid as a team-
mate. The literature to date has made great progress in these two areas – recognition and
adaptation – but largely as separate research activities. In this work, we present a unified
approach to these two problems, in which recognition and adaptation occur concurrently
and holistically within the same framework. We introduce Pike, an executive for human-
robot teams, that allows the robot to continuously and concurrently reason about what
a human is doing as execution proceeds, as well as adapt appropriately. The result is a
mixed-initiative execution where humans and robots interact fluidly to complete task goals.

Key to our approach is our task model: a contingent, temporally-flexible team-plan with
explicit choices for both the human and robot. This allows a single set of algorithms to find
implicit constraints between sets of choices for the human and robot (as determined via
causal link analysis and temporal reasoning), narrowing the possible decisions a rational
human would take (hence achieving intent recognition) as well as the possible actions a
robot could consistently take (hence achieving adaptation). Pike makes choices based on
the preconditions of actions in the plan, temporal constraints, unanticipated disturbances,
and choices made previously (by either agent).

Innovations of this work include (1) a framework for concurrent intent recognition and
adaptation for contingent, temporally-flexible plans, (2) the generalization of causal links
for contingent, temporally-flexible plans along with related extraction algorithms, and (3)
extensions to a state-of-the-art dynamic execution system to utilize these causal links for
decision making.

1. Introduction

There is a huge demand for humans and robots to work alongside each other to collab-
oratively achieve tasks. This is apparent in a number of domains, including aerospace
manufacturing, household robotics for assisting in daily chores, medical robotics for per-
forming clinical procedures, and countless more. No matter what the domain, it is necessary
for the robots to both (1) infer the intent of their human teammates, and (2) adapt to their
intent appropriately. Without such fluidity, accomplishing a task in a collaborative manner

c©2018 AI Access Foundation. All rights reserved.

Levine & Williams

with humans would be challenging and humans would likely find working with such robots
to be laborious, thus limiting their adoption.

The literature to date has made great progress on these two areas – intent recognition and
adaptation – but largely as separate research activities, and rarely with overlap. Numerous
approaches to intent and plan recognition have been proposed (Sukthankar, Geib, Bui,
Pynadath, & Goldman, 2014; Carberry, 2001). However, these approaches generally focus
solely on the recognition task and not on selecting suitable adaptations for the robot once
the recognition is achieved. In parallel, numerous approaches to robotic adaptations have
been proposed over the years, but few focus explicitly on adapting to inferred intent.

This work takes the viewpoint that intent recognition and robot adaptation can and
should be viewed as two sides of the same coin, and that any practicable cognitive robot must
integrate both approaches seamlessly. Towards that view, this work presents a single set of
algorithms that simultaneously performs intent recognition and selects robot adaptations
within one framework and with one model. Both problems are framed in our approach as
inference and consistency-based reasoning. By performing intent recognition and adaptation
concurrently as opposed to separately, our system is able to achieve a greater degree of
robustness and fail less often.

To achieve this duality, a key aspect of our approach is our shared plan representation.
We operate on contingent, temporally-flexible team plans. Some actions in the plan are
targeted at the human, while others are for the robot(s) to perform. Additionally, these
plans contain explicit choices which are either controllable by the robot (allowing it to choose
to perform or not perform certain actions), or uncontrollable by the robot (up to the human
or nature to perform certain actions). The choices in these plans afford flexibility to react
to different situations that may arise during execution by encoding different contingencies.
Within this framework, an intent is a set of uncontrollable choices made by the human
(or the environment, or any other uncontrollable agent), and an adaptation is a set of
controllable choices made by the robot. An example of such a plan is shown in Figure 1.
Our approach exploits the often implicit interconnections between these two sets of choices,
controllable and uncontrollable. Namely, only certain combinations of uncontrollable choice
outcomes made by the human and controllable choice outcomes made by the autonomous
agent would be allowable together in successful team plans. Our approach reasons over these
sets of choices to determine which outcomes would be possible, and uses that to predict
which choices a rational human agent could consistently take (thus inferring intent), and
simultaneously infer which choices the robot should take (thus adapting appropriately).
By explicitly considering the coupling between human and robot decisions, our reasoning
algorithms are thus able to consider intentions and adaptations from a unified viewpoint.

The basis for the interconnections between choices come from several different sources.
The first is state: certain actions have preconditions that rely upon other previously-
executed actions in order to succeed. As such, choosing to execute one action may require
choices to execute other actions in the plan. The second is temporal requirement: certain
combinations of choices may result in missing deadlines or other timing constraints imposed
in the plan. A third is unanticipated disturbances: certain choices become infeasible given
new, online observations that the world has changed in an unexpected way. Our technique
addresses all three of these. We handle the first by reasoning about causal links, the second
through temporal conflict extraction, and the third through online causal link execution

282

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

monitoring. At a high level, these three techniques can be summarized as keeping your eye
on the goal. Pike makes choices and monitors the plan always with respect to ensuring
that the constraints of the human-robot team’s plan can be met.

Our approach is divided into two phases: (1) an offline compilation phase, and (2) online
execution. During offline compilation, we first compute implicit temporal relationships in
the plan, which allows us to reason about which actions must precede which others. We
then use this information to extract labeled causal links from the plan, which capture the
dependence of certain actions on others in the plan. Labeled causal links generalize the no-
tion of causal links from non-contingent plans to contingent temporally-flexible plans. Their
labels capture the choices required for them to hold, which is necessary in our contingent
plans where actions may or may not occur (depending on the choices made), and where
producers and threats may be partially ordered. After extracting these labeled causal links,
they are then translated into propositional state logic constraints where each solution to
the constraints represents a successful execution of the team plan. Finally, these proposi-
tional constraints are then compiled into a form suitable for fast online use. The output
of this compilation is a data structure that represents the space of all successful executions
of the plan, and can be quickly queried online. A similar problem has been solved in the
past by the Assumption-based Truth Maintenance System (ATMS) (de Kleer, 1986a); our
compilation process is inspired by it, and extends the ATMS label propagation algorithms
to generate a sound and complete set of prime implicants that are used online. The compi-
lation allows human robot interaction to be performed quickly without the requirement of
replanning when new observations or certain unexpected disturbances occur.

Our online execution algorithm uses the compiled constraints to quickly check if the
robot is able to make certain choices online, and still respect temporal consistency and
ensure that the preconditions of activities will be satisfied. The online algorithm also takes
in observations in the form of outcomes to uncontrollable choices decided by the human, as
well as a full set of observed state measurements which are the basis for causal-link based
execution monitoring. This allows our executive to make incremental changes online to its
knowledge base and adapt according to these changes. A grounded example is provided
later in this section.

As Pike is a plan executive, it is useful here to briefly say a few remarks about the
complexity of executing plans. It is well known that planning is a hard problem – STRIPS
planning for example is PSPACE-complete (Bylander, 1994). It is less well known, how-
ever, that execution can also be computationally challenging, depending on the features
that we desire from our executive. On one end of the spectrum, the easiest form of plan
execution – namely dispatching the activities sequentially to agents – is computationally
very simple. Each action can be dispatched in near constant time, as no effort is required
from the executive to process ordering constraints (let alone metric temporal ones), moni-
tor for disturbances, and more. At the other end of the spectrum, plan execution is much
harder for the case where we have more complex plans with metric temporal constraints
(some of which have uncontrollable durations), desire rich execution monitoring to discover
potential faults before they are problematic, and where the executive is left with discrete
choices (i.e., choices for the robot) that must be made in a least-commitment manner on-
line. Such approaches are generally NP-hard mainly because the introduction of discrete
choices requires combinatorial reasoning. In the middle of the spectrum, there are a num-

283

Levine & Williams

Figure 1: Contingent, temporally-flexible plan (i.e., a TPNU) for making breakfast. Circles
denote events and edges denote temporal constraints. Shaded double circles denote uncon-
trollable choices (made by Alice) and are followed activities for Alice to perform. Unshaded
double circles represent controllable choices (made by the robot), and are followed by ac-
tivities targeted at the robot. Note that each activity is represented with a start and end
event, but illustrated here as a box for compactness. All unlabeled temporal constraints
are [ε,∞] ordering constraints.

ber of approaches that provide a middle ground both in terms of polynomial computational
complexity and provided features, such as executing metric temporal plans with execution
monitoring but with no choice (Levine, 2012). Our work falls into the more feature-rich,
yet computationally challenging end of the spectrum (see Theorem 3.1, which states that
Pike’s execution problem is NP-complete). We argue that an executive capable of respond-
ing to disturbances, adapting to human intent, monitoring the execution for problems, and
addressing metric temporal constraints – all in a flexible, least-commitment way – would
provide valuable robustness for autonomous systems and justify its greater computational
complexity. Many of the techniques in this paper aim to provide reasonable performance
on real-world problems despite the poor worst-case complexity guarantees.

While the focus of this paper is on human-robot collaboration, we note that we make few
assumptions about the human in this work. Therefore, our approach is equally applicable to
other multi-agent settings in which there are uncontrollable agents (possibly other robots).

As noted earlier, Pike is designed to take as input a contingent, temporally-flexible
team plan for a human-robot team. This input plan can come from a variety of sources,
such as a planner capable of outputting contingent, temporally-flexible plans (to the authors
knowledge however, no such planner meets this requirements - but the closest are RAO*
(Santana, Thiébaux, & Williams, 2016), tBurton (Wang & Williams, 2015), and FOND
(Muise, McIlraith, & Beck, 2012)). Additionally, a control program with appropriate choice
structure could be created by a human expert in RMPL and compiled into a TPNU (Kim,
Williams, & Abramson, 2001; Williams, Ingham, Chung, & Elliott, 2003).

1.1 Approach in a Nutshell

We illustrate a grounded example of concurrent intent recognition and adaptation. Consider
the grounded example shown in Figure 1, in which a person named Alice is making breakfast
for herself with the help of her trusty robot. The left half of the plan depicts the team either
making coffee (for which Alice uses a mug) or getting some juice (for which Alice uses a

284

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Figure 2: Kitchen example. Part (a) shows the plan annotated with labeled causal links.
Part (b) shows the resulting execution if Alice chooses xA1 = mug .

glass), while the right half depicts either making a bagel with cream cheese or getting some
cereal and milk. Alice is running late for work, so she imposes an overall temporal constraint
that both her food and drink must be ready within 7 minutes.

Consider just the first half of the plan, in which the team prepares a beverage — either
coffee or juice. There are three decisions — at first, Alice chooses to either get a mug or a
glass for her beverage. Shortly thereafter and in parallel, the robot chooses to either fetch
the coffee grounds or juice from the refrigerator. Finally once all the necessary supplies
have been retrieved, Alice will either make coffee and pour it into her mug, or pour the
juice into her glass, depending on her preferred beverage this morning.

Key to our approach is observing that these three choices — two uncontrollable made
by Alice and one controllable made by the robot — are not independent. Rather, they
are tightly coupled through state constraints in this example, and more generally through
temporal constraints as well. For example, if the robot chooses to get the juice out of the
refrigerator, Alice will not be able to make coffee as her second choice since she will not
have the coffee grounds. Such interrelationships are illustrated in Figure 2a, where we have
defined three variables, xA1 , xR, and xA2 , to represent the different choices. We have also
annotated the plan with labeled causal links, denoted by dotted arcs and labeled with the
environment under which they hold. These labeled causal links capture state requirements
in the form of actions preconditions, and their environments imply constraints over feasible
choice assignments.

Consider the execution of the example plan depicted in Figure 2b, in which Alice chooses
to get the mug instead of the glass for her first choice (i.e., xA1 = mug). Alice will therefore
have a mug (necessary for pouring coffee into the mug in her second choice), but will not
have a glass (necessary for pouring juice into the glass). The top-most labeled causal link,

285

Levine & Williams

(have mug) contingent upon xA1 = mug , will hold, yet the labeled causal link (have glass)
contingent upon xA1 = glass will not hold. Thus, Alice cannot choose xA2 = juice, since
the pour juice action would have an unsatisfied precondition. In this way, the robot infers
that Alice – a rational agent – must have the intent of making coffee (i.e., xA2 = coffee)
since she picked up a mug and not a glass. Our approach therefore makes the assumption
that human agents are rational, and will not knowingly make inconsistent choices.

Similar reasoning allows the robot to adapt to Alice’s intent. Given that Alice is making
coffee, she will require the coffee grounds — illustrated by the causal link (have grounds)
contingent upon xR = grounds. Since this is the only labeled causal link supporting said
precondition, the robot infers that it must choose xR = grounds. Thus, the robot adapts
by getting the grounds instead of the juice, resulting in the final execution depicted in
Figure 2b.

If we step back and consider the larger plan shown in Figure 1, we note that Alice cannot
both make coffee and make a bagel because she would run out of time. The minimum time
required to make coffee and toast a bagel is more than 7 minutes. Thus, if Alice chooses
to grab a mug at the beginning, the robot infers that her intent must be not only to make
coffee, but also to choose the less time-consuming cereal option so she will arrive at work
on time. By similar causal link analysis, the robot will adapt by getting milk for her cereal
instead of cream cheese for a bagel.

Consider one final case, in which Alice at first chooses xA1 = glass. She will have
enough time later for either a bagel or cereal. However, suppose while pouring her juice,
an unexpected disturbance occurs. Alice’s cat (slinking along the kitchen countertop) ac-
cidentally bumps the toaster oven, causing it to fall on the floor and break. The robot’s
sensors observe this disturbance, and the robot infers that a labeled causal link justifying
the precondition of Alice toasting a bagel has been dynamically violated at run time (a
working toaster would of course be required). Alice’s only option, therefore, is to make
cereal. The robot detects this unanticipated change in world state, instantaneously infers
Alice’s refined intent, and adapts accordingly.

We have just illustrated how a single algorithm, based on constraint satisfaction, con-
currently achieves plan recognition and adaptation given state and temporal constraints as
well as disturbances. We note that in this specific example, Alice’s intent and the robot’s
adaptations were completely determined after she picked up the mug. This is not generally
the case however — often, there may still be multiple consistent options for future choices
after constraint propagation (though fewer than before). In these cases, further decisions,
either by human or robot, are necessary to hone in on a single intent and adaptation.

1.2 Related Work

There is a rich literature on techniques for both intent recognition and robot adaptation,
but largely as separate research activities. To the author’s knowledge, there are only sev-
eral other approaches that simultaneously perform explicit intent recognition and robotic
adaptation from a single, core model – a key aspect of our work. The first is described
by Freedman and Zilberstein (2017). This work builds upon work in compiling the proba-
bilistic plan recognition task into a classical planning problem (Ramı́rez & Geffner, 2010),
allowing greater foresight during recognition by using a dynamic prior. A probability dis-

286

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

tribution over different possible PDDL goals is computed, and subsequently merged into a
single estimated goal state that is used to plan a response for the robot with an off-the-shelf
generative classical planner. This process repeats online, resulting in a closed-loop collabo-
rative execution that excels in its flexibility to respond to many different scenarios. Like our
approach, the work of Freedman and Zilberstein uses a single model for both recognition
and adaptation – in their case, a PDDL model. In many ways this is a complementary
approach to ours, with a focus on achieving great flexibility by employing classical planning
techniques. Comparatively, Pike focuses on executing contingent team plans with temporal
constraints, achieving fast online reactivity, and monitoring the execution to predict future
problems.

A second approach integrating intent recognition explicitly with robot adaptation is
SAM (Pecora, Cirillo, Dell’Osa, Ullberg, & Saffiotti, 2012). Like our approach, SAM rea-
sons about temporally flexible constraints and action preconditions (through a generaliza-
tion known as synchronizations). SAM has been very successfully applied to a smart home
scenario in which the autonomous system watches an elderly individual perform daily rou-
tines, and then automatically aids him or her or provides suggestions. While similar in
the spirit of performing simultaneous intent recognition and adaptation, our approach is
fundamentally different (and in many ways complementary). To adapt to recognized in-
tentions, SAM employs a form of online, generative temporal planning. We instead focus
on having a contingent, shared task available beforehand. Generative planning approaches
are well suited to household robotics domains and can enable great flexibility, whereas hav-
ing a shared contingent temporal plan is particularly well-suited to other scenarios where
considering risk, deadends, low online latency, and predictability are crucial.

A third approach integrating plan recognition with adaptation is described by Geib,
Weerasinghe, Matskevich, Kantharaju, Craenen, and Petrick (2016). The system developed
uses plan recognition to recognize the goals of a human. The system subsequently engages in
a dialog to confirm those goals, and agree upon an independent subtask for the autonomous
agent to accomplish. A plan for this subtask is automatically generated and executed.
A shared model is used for both plan recognition and the planning tasks. While able
to achieve significant flexibility due to its generative planning, this approach is restricted
to work in domains in which the robotic agent’s subtasks are independent of the human.
Comparatively, Pike allows tightly-coupled human robot interaction.

To the author’s knowledge, most other approaches dealing with either intent recognition
or robot adaptation do so as separate processes, without a single core model guiding both
simultaneously. We will now discuss some of these approaches, beginning with techniques
for robot adaptation.

Causal links have been used in a number of AI systems, ranging from partial order
planners to execution monitoring systems (Mcallester & Rosenblitt, 1991; Penberthy &
Weld, 1992; Veloso, Pollack, & Cox, 1998; Lemai & Ingrand, 2004; Levine, 2012). A causal
link from activity AP to activity Ac with predicate p denotes that activity AP (the producer)
achieves p as an effect, which is required as a precondition of a later-occurring activity Ac
(the consumer) (Russell & Norvig, 1995). AP must precede Ac in the plan, and there may
be no other activity AT (a threat) that negates p between AP and Ac. Historically, causal
links were traditionally used as open conditions during the planning process (Mcallester &
Rosenblitt, 1991; Penberthy & Weld, 1992). When used for execution monitoring, causal

287

Levine & Williams

links are a form of goal monitoring in which only the relevant conditions with respect to
execution are monitored (Veloso et al., 1998; Levine, 2012). This monitoring allows an
autonomous system to detect upcoming plan failure before it is imminent, thereby enabling
proactive adaptation through replanning. In this work, we extend causal links to apply
to contingent temporally-flexible plans, resulting in labeled causal links. Because they are
crucial to reasoning about plan causal completeness, a key part of Pike’s offline compilation
stage is to extract these labeled causal links from the plan. They are later used to reason
over possible choice outcomes online.

A number of adaptation techniques recover based on violated state constraints. Many
such systems have focused on integrated planning and execution, such as IxTeT-eXeC
(Lemai & Ingrand, 2004), ROGUE (Haigh & Veloso, 1998), IPEM (Ambros-Ingerson &
Steel, 1988), and HOTRiDE (Ayan, Kuter, Yaman, & Goldman, 2007). Some focus on
planning at reactive time scales or continuously online (Finzi, Ingrand, & Muscettola, 2004;
Chien, Knight, Stechert, Sherwood, & Rabideau, 2000). The Human-Aware Task Planner
(HATP), combined with SHARY, executes human-robot tasks and replans as needed (Alili,
Warnier, Ali, & Alami, 2009; Clodic, Cao, Alili, Montreuil, Alami, & Chatila, 2008). The
TpopExec system generalizes plans and at every time point will try to execute the first
action of a subplan consistent with the current state, thus minimizing the need for replan-
ning (Muise, Beck, & McIlraith, 2013). Both the works of Ingrand and Ghallab (2017) and
Meneguzzi and de Silva (2015) offer valuable surveys that discuss the integration of planning
with execution in support of robotic adaptation. Like our approach, these works all focus
on techniques allowing a robot to adapt to disturbances or situations in its environment.
However, these systems generally take a different strategy by focusing on planning, execu-
tion with plan repair, and/or responding to disturbances that are not explicitly modeled as
human intent. We differ in that we reason explicitly over the possible choices a human is
likely to make, and adapt based on this single model.

Beginning with temporally-flexible plans such as Simple Temporal Networks (STNs), ef-
ficient dispatchers have been developed that perform fast, online, least-commitment schedul-
ing (Dechter, Meiri, & Pearl, 1991; Muscettola, Morris, & Tsamardinos, 1998; Tsamardinos,
Muscettola, & Morris, 1998). Later approaches introduced uncertainty and uncontrollabil-
ity into these models, resulting in executives that could adapt to many different types of
temporal disturbances (Effinger, Williams, Kelly, & Sheehy, 2009; Vidal, 1999). These sys-
tems focus on adapting to temporal rather than state constraints, and do not recognize
human plans. We do, however, build on the frameworks of some of these approaches. The
underlying structure of our temporal plans contains set-bounded temporal constraints like
these approaches, and our dispatching algorithms trace their heritage to STN dispatchers
(Muscettola et al., 1998).

The Kirk executive (Kim et al., 2001) extends the notion of temporal plans to also
incorporate choice, in the temporal planning network (TPN) formalism. By incorporating
discrete choices, a plan now represents a set of possible subplans. The TPN is identical to the
TPNU formalism used in this work, except that no distinction is made between controllable
versus uncontrollable choices. Kirk is designed to assign choices optimally offline, ensuring
that the resulting subplan is temporally consistent. A temporal plan dispatcher is then
used for online execution. TPNs can be specified in the RMPL language (Williams et al.,
2003), allowing a human operator to easily encode flexible plans with choice. The TPNU

288

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

formalism used in this work derives directly from the TPNs introduced with Kirk. We
experimentally compare our work against Kirk in Section 6.

Drake is an executive capable of executing temporally flexible plans with choice (such as
TPNUs), scheduling and making choices online with low latency and using minimal space
overhead (Conrad, Shah, & Williams, 2009; Conrad & Williams, 2011). It responds dynam-
ically to temporal disturbances, both in terms of scheduling and also in terms of making
discrete choices that are guaranteed to be feasible given those temporal disturbances. This
is accomplished by fusing ideas from temporal plan execution and from the ATMS (Forbus,
1993) in order to compactly maintain the set of feasible subplans online. In this way, Drake
can be seen as solving a similar problem to Kirk, but with a different approach. Instead of
selecting a single optimal candidate subplan offline, Drake instead compactly maintains the
set of all feasible candidate subplans and makes choices dynamically online. Pike is heav-
ily inspired by Drake, and in fact we borrow many of its techniques and algorithms in this
work. Specifically, our online execution algorithm is very similar to that of Drake, as are the
temporal reasoning algorithms that we use (albeit with some minor enhancements). Pike
differs from Drake as follows: (1) Pike additionally performs causal link analysis to reason
about the preconditions of activities in the plan, (2) we transform these causal links into
propositional constraints that are encoded alongside temporal conflicts into a knowledge
base for fast online decision making, (3) we use a different constraint compilation technique
that builds upon the ATMS, and (4) we view all of these technologies from the perspective
of human-robot teamwork.

The Chaski executive performs fast online task reallocation for human-robot teams with
temporal constraints (Shah, Conrad, & Williams, 2009). Chaski is capable of inferring if
an agent – human or otherwise – is stuck, and will re-allocate tasks for the other agents
appropriately to maintain plan consistency. Chaski focuses on the dynamic task assignment
problem, while we take a different approach and focus instead on plan recognition and
adaptation by reasoning over explicit choices in the plan. Chaski introduces two very useful
concepts characterizing human-robot team work: that of “Equal Partners” and “Leader
and Assistant.” Pike follows the “Equal Partners” model.

Many approaches to plan, intent, and goal recognition have been proposed (Sukthankar
et al., 2014; Carberry, 2001; Kautz & Allen, 1986; Bui, 2003; Avrahami-Zilberbrand,
Kaminka, & Zarosim, 2005; Goldman, Geib, & Miller, 1999; Ramı́rez & Geffner, 2010;
Pattison & Long, 2010). Many of these approaches, however, perform intent recognition
without directly interacting with the human. That is, they do not attempt to interact with
the human whose intent is being recognized. Our approach differs in that we perform execu-
tion concurrently and interleaved with intent recognition. An important approach that does
interact with the human is the problem of sequential plan recognition (SPR), in which a set
of hypotheses (corresponding to different possible recognized plans a human agent may be
following) is incrementally refined by asking the human intelligent questions, such as ones
designed to optimize information gain (Mirsky, Stern, Gal, & Kalech, 2016). SPR is com-
plementary in many ways to Pike, and the two approaches could even work well together as
follows: SPR could select targeted questions to ask the human, allowing the human’s intent
to be further refined in support of selecting the robot’s adaptations. Another interesting
problem for correcting differences between the world models of humans and a robot is that
of generating conformant or conditional explanations for model reconciliation (Sreedharan,

289

Levine & Williams

Chakraborti, & Kambhampati, 2018). In this task, a robot chooses explanations to explain
itself and try to correct the human’s mental model, even in the face of uncertainty about
this model. One final interesting related problem that is complementary to this work is
that of goal recognition design (Keren, Gal, & Karpas, 2014). In this problem, the task is
to modify the environment or model in which agents operate, so these agents reveal their
intentions earlier rather than later. We believe that goal recognition design could be very
successfully applied to Pike’s setting. Such techniques could be used to improve the recog-
nition task for environments in which the Pike operates, in support of improving execution
robustness.

1.3 Contributions

The main contributions of this work are:

1. Novel framework for concurrent intent recognition and robot adaptation for contingent
temporally-flexible plans,

2. Generalization of causal links for contingent temporally-flexible plans, and techniques
to extract them from said plans and compile them into propositional constraints,

3. An online, state-of-the art dynamic execution system that employs these causal link
constraints to make online decisions.

This work is an extension of the conference paper (Levine & Williams, 2014), and makes
the following additions: (1) algorithmic improvements and an updated constraint encoding,
allowing Pike to handle potential threats and unordered producers to causal links (thus
improving robustness), (2) greatly expanded discussion, theory, and proofs, and (3) much
broader experimental validation.

1.4 Organization

This paper is organized as follows. Section 2 introduces some preliminaries and defines
Pike’s problem statement. We then dive into the online execution algorithm in Section 3.
Next, we discuss the offline compilation that makes this online execution possible; Sec-
tion 4 discusses labeled causal link extraction and a constraint transformation needed for
execution. Section 5 describes a knowledge compilation approach that enables fast online
querying of the constraints. Empirical evaluations are presented in Section 6. Finally in
Section 7, we discuss related work and concluding remarks. An appendix presents additional
algorithms and proofs of various theorems in this work.

2. Problem Statement & Solution Architecture

In this section, we define Pike’s problem statement — both offline and online. We begin
with some preliminaries, present the problem statement, and conclude with an outline of
our solution architecture.

290

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

2.1 Preliminaries

Pike takes as input a set of possible team plans to be performed, which are represented
by a Temporal Plan Network under Uncertainty (TPNU). Importantly, these plans involve
activities performed both by the robot and by the human, activities that are performed
concurrently, and constraints on the timing of these activities. The TPNU has its roots
in the Temporal Plan Network (TPN) (Kim et al., 2001), a representation for concurrent
threads of execution in a timed, decision-theoretic programming language. In the literature,
a TPNU contains two types of uncontrollability: uncontrollable temporal durations (which
may be either set-bounded or probabilistic in nature) (Yu, Fang, & Williams, 2014), or un-
controllability in the outcome of discrete choices (Effinger et al., 2009; Santana & Williams,
2014). We focus our attention solely on uncontrollable choices in this work, though work ex-
ists extending it to handle uncertain temporal durations via strong controllability (Karpas,
Levine, Yu, & Williams, 2015). The underlying temporal structure of these representations
takes inspiration from the Simple Temporal Network (Dechter et al., 1991).

An example TPNU is depicted in Figure 1. In this picture, circles denote events, each
of which represents an instantaneous point in time. Examples of events include “the time
at which the robot starts picking up the coffee” or “the time at which the human com-
pleted making coffee.” Edges in the diagram represent temporal constraints. Colored boxes
represent activities.

Definition 2.1 (TPNU). A Temporal Plan Network under Uncertainty (TPNU) T is a
tuple 〈V, E , C,A〉 where:

• V is a set of choice variables, which is partitioned into two groups: V = VC ∪ VU .
Each v ∈ V is a discrete variable with a finite domain Domain(v). VC are controllable
choices that are decidable by the executive at run time. VU are uncontrollable choice
variables that are not decidable by the executive, but rather by the human or nature.

• E is a set of events representing notable points in time. Each event e ∈ E is associated
with a guard (denoted ϕe or guard(e)), which is a conjunction of choice variable
assignments. An event e is activated if ϕe holds. Event e will be executed (i.e., a time
scheduled for it) by the executive iff it is activated. Additionally, certain events are
associated with a choice variable, denoted vi = variable-at-event(e), denoting that vi
must be assigned by the time e is executed.

• C is a set of temporal constraints. Each c ∈ C is a tuple 〈es, ef , l, u, ϕc〉 where es is
the from or start event, ef is the to or finish event, ϕc is a conjunction of choice
variable assignments, and l, u ∈ R represent a temporal bound with the meaning that
ϕc ⇒ (l ≤ ef − es ≤ u). In other words, the temporal constraint must hold if the
guard holds (it is activated). We require that ϕc |= ϕes ∧ ϕef , so that whenever a
temporal constraint is activated its from and to events must be executed. We denote

a temporal constraint c ∈ C sometimes as es
[l,u]−−→ ef : ϕc.

• The set A represents the set of activities. An activity a ∈ A is a tuple 〈c, α〉, where
c ∈ C is a temporal constraint, and α is an action that will be executed online. With
c = 〈es, ef , l, u, ϕc〉, action α starts when es is scheduled, and terminates when ef is
scheduled. We require that l > 0.

291

Levine & Williams

{xR1 = juice, xA3 = bagel}

...

Figure 3: A TPNU is a compact encoding of many different candidate subplans, and an
environment represents a subset of those candidate subplans. Shown are various candidate
subplans of the TPNU from Figure 1 (note the different choices visible from their structure).

The human-robot plans involve actions targeted at both the human and the robot that
follow an action model. These actions are denoted by the α field of activities in the TPNU.
An action α may be anything that an agent can perform. Each action has predicates called
conditions that are required to all hold true (either at its start or end of execution), and
other predicates called effects that are asserted by the action and represent the changes to
the world as a result of executing the action (again, either at its start or end of execution).
In this way, we employ similar semantics to durative actions in PDDL 2.1 (Fox & Long,
2003), though actions could also be represented in other forms such as STRIPS or RMPL
operators (Fikes & Nilsson, 1971; Williams et al., 2003). For the remainder of this paper,
we treat the start event es and end event ef of an activity as snap actions, each with their
own preconditions and effects, denoted Preconditions(e) and Effects(e), respectively.

Central to the notion of Pike are team scenarios / candidate subplans and environments.

Definition 2.2 (Team Scenario). A team scenario ϕS is a full assignment xi = vi ∧ xj =
vj ∧ . . . to all choice variables in V.

Definition 2.3 (Environment). An environment ϕ is a partial assignment xi = vi ∧ xj =
vj ∧ . . . to choice variables in V. That is, some choice variables in V may not be assigned.

Throughout this paper, we sometimes denote team scenarios and environments using
set notation for convenience, such as {xi = vi, xj = vj , . . .}. The empty environment, {},
is logically equivalent to True.

Intuitively, a team scenario represents a specific candidate subplan of the TPNU. Given
an assignment to all choice variables, we can evaluate which guard conditions hold, and
hence which temporal constraints and events in TPNU are activated. All other inactivated
events and temporal constraints can be discarded. A team scenario hence defines a specific
candidate subplan, which encompasses a set of events, activities, and their associated flexible
temporal constraints. For this reason, in this paper we often denote a specific candidate

292

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

subplan simply by ϕS , its team scenario full assignment to choice variables. Using the terms
interchangeably in this manner is convenient so that we may refer to a candidate subplan
ϕS satisfying a set of constraints (we mean that ϕS is a solution to those constraints). The
underlying network structure of a candidate subplan is that of a Simple Temporal Network
(STN) (Dechter et al., 1991), though it is distinct from an STN by virtue of having activities,
each with preconditions and effects.

An environment that is not a team scenario (i.e., a partial assignment to variables),
represents a set of candidate subplans. Environment ϕ represents all candidate subplans
ϕS for which ϕS |= ϕ. Thus, we use environments to compactly reason over large sets of
candidate subplans, as illustrated in Figure 3.

Definition 2.4 (Environment Representing Set of Team Scenarios). An environment ϕ
represents the set of all team scenarios S(ϕ), where ϕS ∈ S(ϕ) iff ϕS |= ϕ.

For example, suppose we have three discrete variables x, y, and z, each with domain
{1, 2}. The empty environment {} is the most general, representing all eight possible sce-
narios. The environment {x = 1} represents the four scenarios that assign x = 1. The
environment {x = 1, y = 2, z = 1}, which is itself a scenario, is the most specific (represent-
ing just itself).

The conjunction of two environments ϕa ∧ ϕb represents the intersection of these two
sets S(ϕa)∩S(ϕb), and the disjunction ϕa∨ϕb represents their union S(ϕa)∪S(ϕb). We say
that an environment ϕa ∧ϕb is self-consistent if it does not contain conflicting assignments
to the same variable (e.g., {x = 1, x = 2} is not self-consistent). Generally, as the number
of assignments in an environment increases, it gets more specific and represents fewer team
scenarios.

Given a candidate subplan ϕS , which contains a set of activated events and temporal
constraints, we can consider the scheduling problem of trying to find a time assignment to
every event that satisfies those temporal constraints.

Definition 2.5 (Schedule, Temporal Consistency). A schedule TϕS for a candidate subplan
ϕS assigns a time value to each event in E activated by ϕS . We denote the assigned time
for a specific event ei by TϕS (ei). A schedule is temporally consistent iff it satisfies all
of the temporal constraints of the candidate subplan (i.e., those c ∈ C activated by ϕS).
A candidate subplan is temporally consistent iff it has at least one temporally consistent
schedule.

It is also useful to think in terms of executions, which represent not only the schedule but
also the choices made. We can then consider not only temporal consistency, but also another
very important concept for plan execution known as causal completeness. Intuitively, causal
completeness says that the preconditions of all activities in the plan are expected to be
satisfied by the time those activities are executed.

Definition 2.6 (Execution). An execution is a tuple 〈ϕS , TϕS 〉 where ϕS is a team scenario
(i.e., representing a candidate subplan) and TϕS is a schedule for that candidate subplan.
An execution is temporally consistent iff TϕS satisfies all of the temporal constraints of ϕS .
An execution is causally complete iff the precondition of every event activated by ϕS is
satisfied at the time of its execution in TϕS , assuming no disturbances. An execution is
correct iff it is both temporally consistent and causally complete.

293

Levine & Williams

The related concept of a partial execution represents the state in the midst of execution
– some choices have been made so far, and some events have been executed – but not
necessarily the entire plan.

Definition 2.7 (Partial Execution). A partial execution is a tuple 〈ϕex, T̃ϕex〉 where ϕex
is a partial assignment to choice variables in V (i.e., an environment), and T̃ϕex is a par-
tial schedule that assigns time values to a subset of the events in E . A partial execution
〈ϕex, T̃ϕex〉 can be extended to execution 〈ϕS , TϕS 〉 iff ϕS |= ϕex and TϕS (ei) = T̃ϕex(ei) for
all ei assigned by T̃ϕex .

We can also describe a partial execution as correct, if additional choices and scheduling
decisions can be made that would extend it to a correct execution:

Definition 2.8 (Correct Partial Execution). A partial execution 〈ϕex, T̃ϕex〉 is temporally
consistent iff there exists an extending execution 〈ϕS , TϕS 〉 that is temporally consistent.
A partial execution 〈ϕex, T̃ϕex〉 is causally complete iff there exists an extending execution
〈ϕS , TϕS 〉 that is causally complete. Finally, a partial execution 〈ϕex, T̃ϕex〉 is correct iff there
exists an extending execution 〈ϕS , TϕS 〉 that is correct, i.e. both temporally consistent and
causally complete.

Execution begins with the empty partial execution, where ϕex = {} (i.e., no choices
made yet) and T̃ϕex makes no time assignments. As execution proceeds, Pike will make
choices that only result in correct partial executions.

So far, we have not distinguished between choices made by robotic agents versus choices
made by human or environmental agents. We therefore further define two related concepts:
the intent and the adaptation. An intent is a set of assignments to the uncontrollable
variables made by the human; we think of this as the true intentions of what the human
plans to do. An adaptation is similarly an assignment to the controllable variables, and
represents a way that the robot may react to the human’s intentions.

Definition 2.9 (Intent / Adaptation). An intent is an environment consisting solely of
assignments to uncontrollable variables in VU . An adaptation is an environment consisting
solely of assignments to controllable variables in VC . Furthermore, an intent scenario is
an intent that assigns a value to every variable in VU , and an adaptation scenario is an
adaptation that assigns a value to every controllable variable VC .

Based on these definitions, we see that an intent scenario and an adaptation scenario
jointly define all choices for the team.

Observation. Suppose ϕI is an intent scenario, and ϕA is an adaptation scenario. Then
ϕI ∧ ϕA assigns all variables in V, and is hence a team scenario.

2.1.1 Labeled Value Sets

The labeled value set (LVS) is a data introduced in Drake’s labeled temporal reasoning algo-
rithms (Conrad & Williams, 2011) for compactly recording the tightest possible constraint
over many team scenarios.

Suppose we have a variable t, and we have deduced that t < 2 universally holds. Later
on, suppose we deduce the additional constraint that when the finite-domain variable x = 1,

294

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

the constraint t < 1 holds. This is a tighter constraint, so if we have some information about
the world (namely that x = 1), we can use the tighter constraint t < 1 in our subsequent
reasoning. Writing this as a table, we would have two entries; the first would be that
t < 2 holds in all circumstances, and the second would be that t < 1 holds in the specific
circumstance where x = 1. Suppose we also deduce that t < 5 whenever x = 2. This
information is redundant, as we already have deduced that the tighter constraint t < 2
always holds. It is dominated by the other constraints we already have discovered.

Such is the intuition behind the labeled value set, which encodes the tightest value for
a constraint as a function of choice. The LVS stays compact using two strategies: (1) not
keeping track of unnecessary relations that are dominated by others already deduced, and
(2) using environments to compactly represent values over many different scenarios. We
use the LVS for several different purposes within Pike.

Labeled value sets operate with respect to a relation <R, which provides a total ordering
over elements. We use the standard numeric < relation to compare numbers in its temporal
reasoning algorithms. However, we additionally use a different relation (defined later) to
compare TPNU events chronologically, given temporal flexibility. Therefore, we keep the
following discussion general with the denoted relation <R. Along with this relation, we also
have related quantities∞R, −∞R (representing the maximal and minimal possible elements
of the relation), and operations ≤R, maxR, and minR.

Definition 2.10 (Labeled Value Pair). A labeled value pair is a tuple (al, ϕl), where al is
some value and ϕl is an environment.

A labeled value pair represents that a constraint value of al holds whenever ϕl holds. For
example, with relation < over a variable t, the labeled value (al, ϕl) means that ϕl ⇒ t < al.

It is unnecessary to store labeled value pairs corresponding to any constraints implied
by other constraints. This is the notion of dominance.

Definition 2.11 (Dominance). A labeled value (ad, ϕd) dominates a weaker labeled value
(aw, ϕw), iff 1.) ad <R aw, and 2.) ϕw |= ϕd.

Again taking < as our relation, (1, {x = 1}) dominates (2, {x = 1, y = 2}). Whenever
{x = 1, y = 2} holds and the constraint t < 2 is active, then x = 1 must also hold and the
tighter constraint t < 1 is also active. Thus, since the dominating pair both applies more
generally and is tighter, the weaker, dominated pair may be discarded.

Definition 2.12 (Labeled Value Set). A labeled value set L = {(a1, ϕ1), (a2, ϕ2), . . .} is a
set of labeled value pairs, such that no pair in the set dominates any other pair.

Since no labeled value dominates any other, the LVS remains attempts to remain com-
pact by omitting superfluous information. In some circumstances however, an LVS may
grow quite large – there could be at worst a labeled value pair for every possible environ-
ment, resulting in an LVS with exponential size. In practice, we find that LVSs typically stay
much more compact than this worst-case guarantee and that the non-dominating property
is effective at significantly reducing the number of labeled value pairs.

The AddLVS(p, L) method is responsible for adding a new labeled value pair p min-
imally to LVS L and ensuring the non-dominance invariant. It operates as follows. If p

295

Levine & Williams

is dominated by any other pair pi ∈ L, then p is not added and AddLVS(p, L) returns
False. Otherwise, p is added to L, any other pi ∈ L dominated by p is removed, and the
method returns True. We also define a related method, MergeLVS(L,Ladd) that adds
every labeled value pair of Ladd minimally to L using AddLVS.

Perhaps the most useful operation on an LVS L is querying it, which computes the
tightest possible constraint value that holds over all scenarios in a given environment. It
answers the question: given L, what is the tightest bound that holds over all ϕs ∈ S(ϕ)? In
other words, what is the smallest value a that can be guaranteed for the constraint t <R a?
We denote the query operation over L under an environment ϕ is as QL(ϕ). To compute
QL(ϕ), we assemble a set P containing all labeled values (ai, ϕi) ∈ L such that ϕ |= ϕi. If
P is not empty, then we return minR{ai | (ai, ϕi) ∈ P}. Otherwise, we return ∞R.

We can additionally perform certain binary operations on LVSs, such as addition and
subtraction. This is quite useful as a “labeled generalization” of normal addition and sub-
traction, allowing for an elegant formulation of various algorithms such as Floyd Warshall
(Conrad & Williams, 2011). To perform a binary operation on two LVSs, every possible
combination of their labeled values is considered and the binary operation (ex. addition) is
applied to the values. The conjunction of their environments is also taken, forming a new
candidate labeled value for the result. Only the dominating labeled values of this result
are kept (Conrad & Williams, 2011). For example, suppose we wish to add L1 = {(2, {x =
1}), (3, {y = 2}), (4, {})} to L2 = {(1, {x = 2}), (3, {})}. The resulting LVS contains the
sum, taking into account each possible combination of environments but pruning out dom-
inated labeled values: {(4, {x = 2, y = 2}), (5, {x = 1}), (5, {x = 2}), (6, {y = 2}), (7, {})}.

2.2 Inputs and Outputs

In order to prepare for execution, Pike takes in the following inputs offline:

• A TPNU T representing a contingent, temporally-flexible human-robot plan.

• An action model specifying conditions and effects of actions in the plan.

• The initial state of the world. Specified as a set of state predicates.

• The desired goal state of the world. Specified as a set of state predicates.

Online during execution, Pike additionally takes in the following inputs:

• A stream of alertsA(t) for when activities terminate (assumed to be within durations).

• A stream of uncontrollable choice outcomes U(t) as they occur.

• A stream of predicates P(t) describing current state estimates.

Pike outputs the following during online execution:

• A stream of dispatched actions, targeted at both the robot and human, at temporally
consistent times.

• A stream of controllable choice assignments that maintain a correct partial execution.

296

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

• A flag detecting future plan failure, as soon as it is detected.

We adopt similar temporal controllability semantics as Drake; namely, we treat each
activity as begin controllable (Vidal, 2000), meaning that our executive controls the start
times of activities but may not arbitrarily and instantaneously choose their end times.
Rather, these times are determined by nature or by the human, and the executive will be
told online when each activity ends immediately afterward. We do not address the issue
of temporal controllability further in this paper (i.e., dynamic controllability), but note
that this is an important field and that notable work has been done in characterizing it for
conditional plans (Hunsberger, Posenato, & Combi, 2012).

When execution begins, the partial execution is empty – no choices have been made and
no events have been scheduled. As execution proceeds, choices and scheduling decisions are
made. Given the current partial execution 〈ϕex, T̃ϕex〉, if Pike chooses to execute event ei
at time t, we would have the resulting partial execution with more choice variables assigned
and events scheduled: 〈ϕex ∧ ϕei , T̃ϕex ∪ {ei = t}〉. Pike is permitted to execute ei at
time t (and hence make associated controllable choices) if and only if this resulting partial
execution would be correct. This execution property is key to Pike’s robustness, and will
be proved later in this work by Theorem 4.7.

We can also view the above in terms of intents and adaptations. Pike may choose
any controllable choice (i.e., an adaptation) such that there remains at least one consistent
adaptation scenario and one intent scenario for the human consistent with this adaptation
scenario and satisfying the plan’s preconditions and temporal constraints. We can express
this in terms of partial executions as follows. Consider some controllable choice assignments
(i.e., an adaptation) represented by environment ϕAi , and an associated event ei. Pike
is permitted to make the choices ϕAi and simultaneously execute event ei at time t if
and only if there exists an adaptation scenario ϕA, an intent scenario ϕI , and a schedule
TϕA∧ϕI where the execution 〈ϕA ∧ ϕI , TϕA∧ϕI 〉 is correct and extends the partial execution
〈ϕex ∧ ϕAi , T̃ϕex ∪ {ei = t}〉. Please note that such semantics allow Pike to restrict the
future possibilities for the human, but the end result is a mixed-initiative execution.

By not distinguishing intents from adaptations, we can employ a single framework to
check causal completeness and temporal consistency for both kinds of choices – hence con-
currently performing intent recognition and adaptation via one mechanism. As long as the
partial execution remains correct, there exists some human and robot choices that yield
a correct execution. Therefore, for the remainder of this paper, we distinguish between
intents and adaptations seldomly and only when required, treating both more generally as
assignments to choice variables within the context of ensuring a correct execution.

2.3 Solution Architecture

Given this problem statement, we revisit our solution approach. An algorithmic architecture
of Pike is shown in Figure 4, and the rest of this paper describes its various components.

First, offline compilation begins with the Labeled All-pairs Shortest Path (Labeled
APSP) algorithm (the upper-left component in Figure 4). This is the core temporal reason-
ing algorithm in Pike. Given a TPNU as input, it outputs a matrix Di,j , where an entry
for row i, column j in the matrix is a labeled value set containing important temporal in-
formation relating events ei and ej of the TPNU. Intuitively, this labeled value set contains

297

Levine & Williams

Propositional constraints

Labeled

APSP

TPNU

Additional temporal

constraints for

Labeled causal links

Labeled APSP

Extract Labeled

Causal Links +

Constraints

Constraint Compiler

Online Execution

Compiled Knowledge Base

Knowledge Base

Labeled APSP

Uncontrollable choice outcomes

Current predicate estimates

Activity completion times

Controllable choice decisions

Dispatched activities

Labeled causal links

Early failure detection

, ...

Action model,

Initial state,

Goal state

Offline Online

(once)

Figure 4: Algorithmic architecture of Pike. Computation begins with the upper component
of the Offline component, and flows downward. After offline compilation, online execution
occurs.

the tightest possible inferred temporal relationships between events i and j, as a function of
the TPNUs choices. Pike uses this information for three purposes: (1) to schedule events
and activities online, making sure that they respect the temporal constraints, (2) to infer
ordering relationships between events for the next step (e.g., “ei always occurs before ej
when x = 1 holds”), and (3) to infer that certain combinations of choices will always be
temporally infeasible (e.g., “if we choose x = 1 and y = 1, we are guaranteed to miss a
deadline”). The labeled APSP algorithm is described in Section 4.1.

Next, after temporal relationships between events have been computed via the labeled
APSP algorithm, causal link reasoning is performed (middle-left component in Figure 4).
This process extracts a set of labeled causal links for every precondition of every event in
the plan. It makes use of the ordering relations present in Di,j as part of this process. The
main output of this process is a set of labeled causal links, as well as a set of propositional
constraints KB used for ensuring causal completeness later during online execution. The
set of solutions to KB captures the space of all candidate subplans that admit correct
executions. Depending on the structure of the TPNU, additional temporal constraints may
be added to the TPNU – effectively creating a new augmented TPNU. This requires re-
computing the labeled APSP a second time due to the newly-added temporal constraints.
An updated Di,j is obtained1. All of this causal link reasoning is described in Sections 4.2,
4.3, and 4.4.

Finally, we generate a compiled representation of our constraints KB that is suitable
for efficient, low-latency use during online execution (lower-left component in Figure 4).

1. We will only need to compute the labeled APSP at most twice.

298

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Specifically, the goal is to generate a representation of KB that allows us to quickly make
certain key queries needed for online execution:

• CorrectTeamPlanExists?(KB). Returns True if and only if KB is satisfiable;
i.e., if there exists a candidate subplan that admits at least one correct execution.

• CouldCommitToAdditionalConstraints?(KB, {F1, ..., Fn}). Returns True if
and only if there would exist a candidate subplan admitting a correct execution after
adding the additional set of constraints; that is, if KB ∧ (F1 ∧ ... ∧ Fn) is satisfiable.

• CommitToConstraints(KB, {F1, ..., Fn}). Adds the constraints to KB conjunc-
tively; i.e., KB← KB ∧ (F1 ∧ ... ∧ Fn).

Our compilation scheme is implemented by computing the prime implicants of the propo-
sitional constraints of constraints KB via a label propagation algorithm we call the πTMS.
This compilation is described in Section 5. This completes the offline compilation stage.

During online execution (rightmost component in Figure 4), the TPNU is executed,
activities are dispatched to the robot, and interaction with the human and the environment
occurs. As its input, the online execution algorithm takes in the outputs generated from
offline compilation: (1) Di,j to help decide when to schedule events and dispatch activities,
(2), the compiled knowledge base KB to decide what choices in the TPNU can be made
to ensure a correct execution, and (3) the set of labeled causal links, to monitor for future
problems during execution. Additionally, online execution takes as input certain “live”
data as it becomes observed online: (1) the outcomes to uncontrollable choices made by
the human U(t), (2) notifications of when dispatched activities complete A(t), and (3)
an estimate of the world state P(t) used for execution monitoring. The output of online
execution is a live, streaming dispatch of (1) activities targeting the robot, (2) a series of
controllable choice decisions for the robot, and (3) early signaling of failure, if it is detected
via execution monitoring. The online execution algorithm is described in Section 3.

This completes the architecture and interface description of our approach. As Pike is a
plan executive whose primary goal is to execute plans, we dive right into the online execution
algorithm next in Section 3. Our presentation defers the details of offline compilation to
Sections 4 and 5, where their context and usefulness may be more clear after seeing the
details of their use during online execution in Section 3.

3. Online Execution Strategy

The online execution algorithm is responsible for (1) scheduling events and dispatching
associated activities at the proper times, (2) assigning values to controllable choices, and
(3) monitoring the execution for potential problems. It does so by analyzing choices made
by the human, respecting the plan’s temporal constraints, and observing the state of the
world to detect upcoming failures. Our approach takes a least-commitment approach to
execution, leaving as much flexibility as possible to the online executive. This flexibility –
in terms of both controllable choices and scheduling decisions – affords a greater degree of
robustness than executives operating with grounded plans where such decisions have been
already made offline before execution begins. Least-commitment executives such as Pike

299

Levine & Williams

are able to exploit new information that becomes available online and adapt to it without
full replanning.

While rich, least-commitment execution approaches can be very beneficial, they do come
at a cost in terms of worst case theoretical complexity:

Theorem 3.1 (Checking for a Correct Execution is NP-Complete). The problem of checking
if there exists a correct execution 〈ϕS , TϕS 〉 for a TPNU T is NP-complete.

Proof. See Appendix B.

Checking for a correct execution is a key operation of Pike that occurs during online
execution. Despite this worst case theoretical bound, we argue (and show experimentally
in Section 6.2) that least-commitment approaches such as Pike are well worth the cost due
to their improved robustness online. Additionally, we employ a number of techniques in
this work that evade this worst case bound and endow good performance in many practical,
real-world domains.

Our online execution approach takes as input the output of the offline compilation
process: (1) a matrix Di,j containing temporal information computed by the labeled APSP,
(2) the set of extracted labeled causal links, and (3) a knowledge base KB representing
a compiled version of constraints derived from the causal links. Additionally, the online
execution algorithm takes as input certain observations that only become available online,
including (1) a stream of uncontrollable choice outcomes U(t) representing the choices made
by the human and/or environment, (2) a stream of activity finish notifications A(t) denoting
when dispatched activities finish, and (3) a stream of estimated state predicates P(t) used
for execution monitoring.

Our online execution strategy is heavily inspired by Drake (Conrad, 2010; Conrad &
Williams, 2011), and follows the same overall structure. Drake’s execution strategy can
be seen as a labeled generalization of the STN dispatching algorithm (Muscettola et al.,
1998) for plans with choice. It maintains labeled generalizations of many datastructures,
and uses them to find new propositional constraints that would be required to hold in order
to execute events at the current time. Drake uses a compiled version of these constraints
to “greedily” schedule events and dispatch associated activities, and to make choices when-
ever possible such that doing so would not cause temporal inconsistency. Pike follows this
same strategy, and borrows many of Drake’s temporal reasoning algorithms and labeled
datastructures as we shall discuss shortly. Pike augments Drake’s execution strategy by
additionally considering causal completeness and performing causal-link execution monitor-
ing, two attributes which we argue are very important for human robot collaboration. Pike
may choose to schedule any event at any time, such that there would remain at least one
correct execution of the TPNU. Despite the apparent greediness of the approach, choices
are never made that entail execution failure. As execution proceeds and choices are made
by both the human and robot, the space of correct executions becomes successively smaller.
The result is a mixed-initiative execution, in which the human and robot make choices
together, and possibly constrain each other’s future choices (such that at least one correct
execution remains).

We describe Pike’s execution algorithm here, and will illustrate it shortly with an ex-
ample. Each event ei is associated with an execution window, which captures the earliest

300

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

and latest allowable absolute times during which ei can be executed without violating any
temporal constraints. Each execution window is defined by its lower bound(ei) and up-
per bound(ei). In traditional dispatchers for STNs, these lowerbounds and upperbounds for
each event are numbers representing absolute times (Muscettola et al., 1998). Whenever
an event is executed, its scheduled time is propagated locally to all neighbors, causing a
tightening of those events’ execution windows. An event may only be executed if the cur-
rent time is within its execution window. Pike uses a generalization of these execution
windows, called labeled execution windows (Conrad, 2010). These encode the dependence
of each event’s execution time on the choice variables. As different choices are made, dif-
ferent temporal constraints become active or inactive, thus affecting each event’s execution
window. lower bound(ei) and upper bound(ei) are each labeled value sets instead of num-
bers in this formalism. Specifically, a labeled value (l, ϕl) in lower bound(ei) means that in
all scenarios where ϕl holds, event ei must be executed at l or later; that is, ϕl ⇒ ei ≥ l.
Similarly, a labeled value in (u, ϕu) in upper bound(ei) means that in all scenarios where
ϕu holds, ei must be executed by u or earlier; that is, ϕu ⇒ ei ≤ u. Note that if ϕ is
the empty environment, we are equivalent to the unlabeled approach for STNs. The LVS
relation <R for upper bound(ei) is <, and for lower bound(ei) it is >, capturing the notion
that earlier upperbounds and later lowerbounds are tightest. Before execution begins, we
set up an execution window for each event of the plan, initializing each to the broadest
range possible. For each ei, lower bound(ei) is initialized to the LVS {(−∞, {})}, and up-
per bound(ei) is similarly initialized to {(∞, {})}. If an event ei is executed at some time t,
then we propagate the execution window of other events ej as follows using Di,j (computed
in Section 4.1) (Conrad, 2010):

MergeLVS(upper bound(ei), {(t, {})}+Dei,ej) (1)

MergeLVS(lower bound(ei), {(t, {})} −Dej ,ei)

During execution, Pike must check if an event ei can be executed at the current time
t. To do so, we assemble a set of constraints F1, ..., Fn that would all need to hold. If
there exists a team scenario ϕS that satisfies the conjunction of KB with these constraints
{F1, ..., Fn}, then ei can safely be executed now (Conrad, 2010). We refer to the proce-
dure that obtains these constraints as GetConstraintsRequiredToExecute(ei, t). It
produces the constraints F1, ..., Fn using Di,j as follows:

1. The guard of ei, ϕei .

2. True if ei is directly executable, otherwise False. Event ei is not directly executable
if (1) it is the end event of an activity (which is scheduled externally and reported
to Pike via A(t)), (2) if ϕei mentions an assignment to a currently unassigned un-
controllable variable (which Pike is not allowed to assign), or (3) if the variable
variable-at-event(ei) is uncontrollable and unassigned. Note that if we add False
conjunctively, we effectively prevent ei from being executed now.

3. ¬ϕl for any labeled value (l, ϕl) in lower bound(ei) if t < l.

4. ¬ϕu for any labeled value (u, ϕu) in upper bound(ei) if t > u.

5. ¬ϕ for any (w,ϕ) in Dei,ej where ej is a yet un-executed event, and w < 0.

301

Levine & Williams

6. ¬ϕ for any (w,ϕ) in Dei,ej where ej is a yet un-executed event and is also not directly
executable, and w ≤ 0.

We provide some brief intuition about these constraints, but refer the reader to Drake
for full details (Conrad, 2010). Constraint 1 ensures that the guard of the event holds, a re-
quirement to execute ei. Constraint 2 prevents Pike from executing non-directly executable
events. These are events that are scheduled externally by the environment (for instance,
the end event of activities), events whose guards depend on a yet-unassigned uncontrollable
choice variable, or events that are “branching points” where uncontrollable choices must
be made. This prevents Pike from effectively choosing the outcome of uncontrollable vari-
ables. Constraint 3 handles the case of violated lowerbounds: lower bound(ei) dictates that
ei must be executed after time l whenever ϕl holds. If we instead execute it beforehand at
t < l, then ϕl cannot hold. We therefore add ¬ϕl to the set of constraints. Similar reason-
ing holds for the upperbounds in Constraint 4. Constraint 5 handles the case of violated
ordering constraints. If the labeled APSP dictates that event ej must be executed before
event ei whenever ϕ holds, but we are executing ei now before the un-executed ej , then ϕ
cannot hold. Finally, Constraint 6 addresses a similar case where ej is unexecuted and is
not directly executable (e.g., the end event of an activity), and must precede or occur at
the same time as ei.

Theorem 3.2 (GetConstraintsRequiredToExecute is correct). Let 〈ϕex, T̃ϕex〉 be
a temporally consistent partial execution. GetConstraintsRequiredToExecute(ei, t)
returns a set of constraints F1, ..., Fn such that a team scenario ϕS satisfies F1, ..., Fn if
and only if the partial execution that would result if ei were executed at time t – namely
〈ϕex∧ϕei , T̃ϕex ∪{ei = t}〉 – can be extended to a temporally consistent execution 〈ϕS , TϕS 〉.

Proof. Not proven here – see prior work on Drake for details (Conrad & Williams, 2011).

High-level pseudo code for the overall online execution algorithm is shown in Algo-
rithm 1. The process begins by initializing the execution. A queue Qremaining of events
remaining to be executed is created. It initially contains every event. Next, the initializa-
tion routine sets the initial time to t = 0, and associates an execution window with each
event. The online algorithm then proceeds to enter a loop on Line 2, only terminating
once there are no more remaining events in Qremaining, or failure has been detected. An
appropriately tiny pause is introduced at the end of each loop cycle (Line 19) so that time
advances. Within each loop iteration, a number of checks and updates are performed that
will be described shortly. Then, a repeat loop (Lines 10 - 18) begins which does the main
work of executing the plan by executing individual events. Inside this repeat loop is an
inner for loop (Lines 11 - 17) that iterates each event in Qremaining, checks if the event
can be executed now via CanExecuteEventNow? (Line 12), and then executes it if so
(Line 14). The CanExecuteEventNow?(ei, t) procedure computes the set of constraints
F1, ..., Fn that must hold if ei is executed at time t, and then checks if these constraints can
be satisfied along with KB (we prove later in Theorem 4.7 that, due to the constraints in
KB, CanExecuteEventNow? is correct). The repeat loop keeps repeating, only exiting
when no more events can be executed by the inner for loop at the present time t.

Note that the above algorithm may execute any event as long as the associated set of
constraints can hold. Sometimes during execution, it may be the case that multiple events

302

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Algorithm 1: OnlineExecution()

Input: A matrix Di,j , a knowledge base KB compiled with causal link and temporal
conflict constraints, streams of uncontrollable choice assignments U(t), state
estimates P(t), and activity completions A(t)

Output: Stream of controllable choice assignments, dispatched planned activities,
and immediate failure if problem is detected.

1 InitializeExecution()
2 while |Qremaining| > 0 do
3 CheckActivatedCausalLinks()
4 Process any just-finished activities in A(t)
5 Call CommitToConstraints(KB, {U}) for any observed uncontrollable choice

assignments U ∈ U(t)
6 Process missed execution windows
7 if not CorrectTeamPlanExists?(KB) then
8 return Failed

9 end
10 repeat
11 for event e ∈ Qremaining do
12 executable? , {F1, ..., Fn} ← CanExecuteEventNow?(e, t)
13 if executable? then
14 ExecuteEvent(e, {F1, ..., Fn})
15 break

16 end

17 end

18 until no event is executed
19 Sleep for a small time to allow time t to advance

20 end

Algorithm 2: CanExecuteEventNow?()

Input: An event e, current time t
Output: Returns two values: (1) a boolean for whether e can be executed at time t,

and (2) a set of constraints that must hold if so.
1 {F1, ..., Fn} ← GetConstraintsRequiredToExecuteEvent(e, t)
2 if CouldCommitToAdditionalConstraints?(KB, {F1, ..., Fn}) then
3 return True, {F1, ..., Fn}
4 else
5 return False, {False}
6 end

are eligible for execution. Currently, Pike picks one arbitrarily. In the future, it may be
possible to employ other approaches to rank the events, such as considering which event
would leave the greatest flexibility for the remainder of the execution.

303

Levine & Williams

[ε, ∞]

[ε, ∞]

[ε, ∞]

[ε, ∞]

[ε, ∞]

[ε, ∞]

[ε, ∞]

[ε, ∞]
[ε, ∞]

[ε, ∞]

[ε, ∞]

[ε, ∞] [ε, ∞]

[ε, ∞] (pour-coffee human mug)

[0.5, 1][3, 5]

(make-coffee human grounds)

(pour-juice human juice glass)

[0.5, 1]

(get robot juice)

[0.5, 1]

(get human glass)

[0.5, 1]

(get human mug)

[0.5, 1]

[ε, ∞]

[ε, ∞]

[ε, ∞]

[0, 7]

...
[ε, ∞]

[ε, ∞]

(get robot grounds)

[0.5, 1]

[ε, ∞]

[ε, ∞]

[ε, ∞]

[ε, ∞]

Figure 5: Plan for making breakfast, with events and temporal constraints labeled. ε is
a small number (0.001 here) to ensure strict ordering constraints. Shaded backgrounds
indicate guard conditions over the indicated events and temporal constraints. The second
half of the plan is omitted for brevity.

We illustrate these algorithms by describing an example execution. Figure 5 shows a
slightly modified version of the TPNU discussed earlier in Figure 1, now annotated more
precisely with event names (ex., e1), temporal constraints (ex., ordering constraints such as
[ε,∞] for a small value ε), and guard conditions (shaded backgrounds). The second half of
the plan (toasting a bagel or having cereal) has been omitted for brevity but is still part
of the TPNU. Assume offline compilation is finished, and therefore we have computed (1)
the labeled APSP matrix Di,j , (2) a set of labeled causal links (namely those illustrated in
Figure 2), and (3) a knowledge base KB that can be queried.

For this example, a partial list of propositional constraints represented by KB is shown
below. Full details about how these constraints are derived are discussed in Section 4.3
and Section 4.4, but we omit such details here to focus on the online execution algorithm.
They capture relationships amongst choice variables that are required to ensure causal
completeness as well as avoiding temporal conflicts. The variable assignments of the form
sp,ec = eP where p is a predicate intuitively mean eP has been chosen to support ec: there
is a labeled causal link where producer event eP has an effect p that is a precondition of
the consumer event ec. The propositional constraints for this example are:

xA2 = coffee⇒ (s(has mug),e21 = e6 ∧ xA1 = mug) (2)

xA2 = coffee⇒ (s(has grounds),e19 = e12 ∧ xR1 = grounds)

xA2 = juice⇒ (s(has glass),e17 = e8 ∧ xA1 = glass)

xA2 = juice⇒ (s(has juice),e17 = e14 ∧ xR1 = juice)

...

¬(xA4 = bagel ∧ xA2 = coffee)

Execution now begins. Suppose the current time is t = 0. The online execution algo-
rithm will iterate over each event, checking to see if it is executable or not. Let us consider
and see if the event einitial is executable. Following the constraints above, Pike derives
that the following set {F1, ..., Fn} of additional constraints would need to hold in order to
execute einitial now at t = 0:

304

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Algorithm 3: ExecuteEvent(e, {F1, ..., Fn})
Input: An event e, a set of constraints {F1, ..., Fn}

1 Mark e as executed at time t
2 Remove e from Qremaining
3 CommitToConstraints(KB, {F1, ..., Fn})
4 Propagate execution time t time to other events
5 Prune any other events with now-inconsistent guards from Qremaining
6 [Optional: prune execution windows with now-inconsistent labels]
7 Dispatch any activities starting at e
8 If variable-at-event(e) is a controllable variable, commit to a consistent choice
9 Activate / Deactivate any labeled causal links starting / ending at e

• Constraint 1: True (einitial has guard True so it will always be executed)

• Constraint 2: True (einitial is directly executable - not the end event of an activity
nor does its guard contain an assignment to an unassigned uncontrollable variable)

• Constraint 3: None. t 6< −∞ so no constraint is added.

• Constraint 4: None. t 6>∞ so no constraint is added.

• Constraint 5: None, as einitial has no predecessors.

• Constraint 6: None (same reasoning as above).

We have just the single constraint True. As a result, the output of the function
CouldCommitToAdditionalConstraints?(KB, {True}) will be True since adding
the constraint True conjunctively will not remove any correct team scenarios. Pike will
therefore execute event einitial now at t = 0 by calling ExecuteEvent(einitial, {True})
on Line 14.

Algorithm 3 shows the pseudo code for the ExecuteEvent(e, {F1, ..., Fn}) procedure,
which is called to actually execute some event e. The first steps in executing event e are to
mark it as executed at time t, remove it from Qremaining, and add the required constraints
{F1, ..., Fn} to KB. Then, we propagate this time t to all e’s neighbors so that their exe-
cution windows are appropriately updated. For example, consider event e6 with execution
window lower bound(e6) = {(−∞, {})}, upper bound(e6) = {(∞, {})}. Given the previ-
ously computed APSP distances De6,einitial

= {(−2.021, {xA1 = mug, xA2 = coffee, xA4 =
bagel}), (−0.503, {xA1 = mug}), (−0.001, {})} and Deinitial,e6 = {(∞, {})}, we can update
via Equation 1 to

lower bound(e6) = {(0.001, {}),
(0.503, {xA1 = mug}),
(2.021, {xA1 = mug, xA2 = coffee, xA4 = bagel})}

upper bound(e6) = {(∞, {})}

305

Levine & Williams

Similar updates are computed for the execution windows of all other events remaining
to be scheduled.2

After propagating execution times to other events, we prune events whose guard condi-
tions are now inconsistent with KB by removing them from Qremaining. This is illustrated
later in this example when a choice is observed. We may also optionally prune invalid
labeled values from execution windows, as they will not affect algorithm correctness but
could impact system latency. We found experimentally, however, that this could at times
actually increase the worst-case execution latency time (as removal could be expensive).
Hence this step is optional.

Next, after any pruning has occurred, Pike will check to see if e is the start event of
any activity in the TPNU. If so, then the activity is dispatched at the current time. This
is not the case for einitial.

The final step in ExecuteEvent(...) is to activate or deactivate any labeled causal
links starting or ending at event e, respectively. An activated labeled causal link is one that
is continually monitored during execution by comparison with the current estimated world
state P(t), which we illustrate later.

After executing einitial and propagating to its neighbors, the execution loop (Line 10 of
OnlineExecution) continues trying to find other events that are executable. It turns out
that for this example, none are – the plan’s temporal constraints force all other events to
be executed strictly after einitial, but the time has not yet advanced past t = 0. For any
other event, there must therefore be some labeled value (l, {}) for l > 0 in its lower bound
execution window (per the propagation step above). By Constraint 3, {F1, ..., Fn} would
contain the constraint ¬True = False, which cannot be conjunctively added to KB while
still maintaining a team scenario. Therefore no other event is executable at t = 0, so Pike
must wait for time to advance, and the repeat loop exits (Line 18).

Suppose it is now later, t = 1. We may now execute event e1, as {F1, ..., Fn} would
contain the single constraint True. The time t = 1 is propagated to other events in the
plan. This pattern continues, and guarantees that events will be scheduled at their proper
times and that the partial execution remains correct.

Suppose later that we observe a message in U(t) (Line 5) that the human is making the
choice to pick up the mug, namely xA1 = mug. Such inferences are made external to Pike in
a separate activity recognition module such as LCARS (Lane, 2016), and reported to Pike
via U(t). This triggers a call to CommitToConstraints(KB, {xA1 = mug}), adding this
assignment to the knowledge base KB. Additionally, since xA1 is an uncontrollable variable,
other events in the plan may become executable now that it has been observed. For example,
event e3 can now be executed since we have observed the outcome of its requisite choice
variable, as can e9 and e5. As e5 is the start event of the (get human mug) activity, this
action is dispatched (though in practice the human will have already begun doing it as the
activity recognition system reported the outcome of xA1).

To illustrate the mechanics by which human choices influence robot adaptations, we
point out that the robot may not choose to execute event e13 (the start of the (get robot

juice) activity). Doing so would result in {F1, ..., Fn} containing xR1 = juice (which is

2. In the works of Conrad (2010) and Muscettola et al. (1998), a minimal dispatchable form is computed
that only requires propagating event updates to local neighbors, not to all other events. Such an approach
could be adopted here but is omitted for simplicity.

306

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

ϕe13). This would cause

CouldCommitToAdditionalConstraints?(KB, {xR1 = juice})

to return False, which can be seen by logically analyzing the set of constraints in KB. We
show that KB would become inconsistent. KB currently consists of Equation 2, plus the
assignment xA1 = mug. If the executive were to additionally add the assignment xR1 = juice
as would be required to execute e13, then the human could not later consistently get coffee
xA2 = coffee (doing so would require xR1 = grounds instead by the second constraint).
Thus we infer that the human must later pour juice xA2 = juice. By the third constraint,
this requires that the human get the glass xA1 = glass, which contradicts the earlier added
assignment of xA1 = mug. We have shown that adding the constraint xR1 = juice leads
to an unsatisfiable KB; therefore CouldCommitToAdditionalConstraints? returns
False and the executive cannot execute e13 now.

On the other hand, event e11 (the start of the (get robot grounds) activity) can be
executed now, as its guard condition xR1 = grounds is consistent with KB. Once executed,
the (get robot grounds) activity is dispatched to the robot. This will in turn trigger
lower-level motion planning and control algorithms to physically implement this action. We
also see that the robot is properly adapting to the human’s intent.

Once a choice has been made or observed, certain events are no longer executable because
their guards are inconsistent with KB. For example, after observing the choice xA1 = mug,
events e7 and e8, which each have a guard xA1 = glass, can never be executed. These
events are therefore pruned from execution by removing them from Qremaining and never
considered again as candidates to be executed.

Shortly later, the executive receives messages in A(t) (Line 4) informing that the (get

human mug) and (get robot grounds) activities have finished successfully. Pike hence
calls ExecuteEvent(...) for the end events of those two activities. This makes events e6

and e12 now directly executable, so Pike executes them now. This in turn allows other
events to become executable, and the execution process continues.

It may be the case that, during execution, an activity takes too long and violates a tem-
poral constraint. This circumstance is detected within the OnlineExecution(...) method
on Line 6 by detecting missed execution windows. This routine follows logic similar to Con-
straint 4 in constructing {F1, ..., Fn}. If the current time t is greater than the upperbound
u for some (u, ϕ) ∈ upper bound(ei), then we add the constraint ¬ϕ to KB. This is because
we cannot go back in time, and there is no way that we will meet the given upperbound
required under environment ϕ. For example, if the upper bound part of the execution win-
dow for some event ei is the labeled value set {(3, {x = 1}), (6, {})} and the current time is
t = 4, then the executive can infer that it has missed the upper bound of 3 required by the
choice x = 1. Therefore, the constraint ¬(x = 1) is added to KB.

Finally, the last aspect of execution that we wish to illustrate is execution monitoring.
Our executive employs causal link-based execution monitoring to detect failures early, hope-
fully before they become critical. Recall that there is a labeled causal link where consumer
e21 has a precondition of (have mug) that is achieved by producer event e6 (the end of
the (get human mug) activity). If the predicate (have mug) ceases to be true after e6 is
executed – for instance, if the mug somehow gets knocked off of the table by accident – then
this labeled causal link is violated. Unlike earlier work in execution monitoring however, a

307

Levine & Williams

violated causal link in our setting does not necessarily imply plan failure (Levine, 2012). For
example, if the plan contains sufficient flexibility to avoid executing e21 (i.e., by choosing
xA2 = juice), then execution can still succeed. Some TPNUs contain explicit contingency
options to address likely causes of failure such as unreliable robotic hardware, where the
robot has multiple choices of whether or not to pick something up (this is a form of k-fault
tolerance). However, at this point during execution in our breakfast example, the robot
cannot “change its mind” and commit to xA2 = juice. Hence this causal link violation
implies plan failure. We do not need to wait until the consumer activity (pour-coffee

human mug) is actually executed to report the failure; our executive will detect it as early
as possible during execution (such as, for example, immediately after the (get human mug)

activity finishes). Such early failure detection is extremely beneficial in practice in many
autonomous systems, as it provides additional time to replan (Levine, 2012).

A procedure called CheckActivatedCausalLinks (Line 3) is responsible for detecting
causal link violations that occur online. It iterates over all activated labeled causal links from
eP to ec with predicate p. If p /∈ P(t), then CommitToConstraints(KB,

{
¬(sp,ec = eP)

}
)

is called. For example, suppose that after executing e6 but before e12 the executive discovers
from the current state estimates P(t) that (has mug) /∈ P(t). Then, the executive commits
to the additional constraint ¬(s(has mug),e21 = e6). As can be seen from Equation 2, this
invalidates the right-hand side of the first implication constraint, therefore precluding the
choice xA2 = coffee. Since this choice must be made however, KB becomes inconsistent.
If there had been sufficient flexibility in the plan to handle this causal link violation, then
KB would still have remained consistent and execution would have succeeded (barring more
violations), albeit possibly by forcing some later choice assignments. In this way, Pike is
able to react to certain unmodeled disturbances in the world, and predict future plan failure
before it occurs.

This concludes our explanation of Pike’s online execution algorithm. In summary, we
employ a strategy of least commitment (both in terms of timing and controllable choices).
The resulting execution obeys the plan’s temporal constraints by employing techniques
from Drake. Pike additionally makes controllable choices using a compiled knowledge base
KB describing the dependencies between controllable and uncontrollable choices, allowing
it to ensure that the partial execution remains correct. The result is a mixed-initiative
execution where the robot adapts to the human’s intentions, the plan’s timing constraints,
and unmodeled disturbances.

4. Using Causal Links for Decision Making

Previously in Section 3, we discussed the online execution component of Pike and showed
the manner in which it used the results of offline compilation. In this Section, we now step
back and discuss the details of offline compilation that make low-latency, correct online
execution possible.

Specifically, we discuss how we extract labeled causal links from the plan and how they
apply to online decision making. These labeled causal links capture important relationships
between choices in the plan by making explicit its causal structure, and they are used by our
executive to make intelligent choices online via KB. From the perspective of human-robot

308

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Algorithm 4: OfflineCompilation()

Input: TPNU T , action model, initial and goal states
Output: Labeled APSP matrix Di,j , labeled causal links, compiled propositional

constraints KB
1 Di,j ←Compute labeled APSP of T
2 Extract labeled causal links from T using Di,j

3 Generate augmented TPNU T ′ and KB using T and labeled causal links
4 if any temporal constraints were added to T ′ then
5 Di,j ← Compute labeled APSP of T ′
6 end
7 Add temporal conflict constraints to KB
8 Compile propositional constraints KB

interaction, this causal structure allows Pike to choose robot adaptations that are logically
consistent with the human’s intentions.

We first introduce some preliminaries, including algorithms and data structures for
performing labeled temporal reasoning. These are necessary for causal link extraction,
as producers must precede consumers in time in our conditional plans. We then introduce
labeled causal links, a generalization of causal links for contingent, temporally-flexible plans.
We also introduce a transformation from our input TPNU to an augmented TPNU along
with a set of constraints based on these causal links, which together allow Pike to maintain
a correct partial execution online.

High-level pseudo code for the entire offline compilation procedure is illustrated in Al-
gorithm 4. First, a labeled all-pairs shortest path matrix Di,j is computed, which provides
temporal reasoning that is necessary both for online execution and for causal link extraction.
Next, labeled causal links and threats are extracted, and encoded as a propositional theory
KB. An augmented TPNU is then constructed based on these causal links. This process
sometimes results in new temporal constraints being added to ensure causal completeness; if
so, the labeled APSP algorithm is re-run to reflect these new temporal constraints. Finally,
the propositional constraints KB are compiled into a form suitable for efficient use during
online execution.

4.1 Labeled APSP

In this section, we describe the labeled all-pairs shortest path algorithm (APSP), which
enables Pike to reason about the temporal constraints in the TPNU as a function of the
choices made. The resulting data structure, a matrix of shortest path LVSs, is used for
extracting labeled causal links and also for online dispatching (as it is a “dispatchable
form”, meaning that it makes explicit all implicit temporal constraints) (Dechter et al.,
1991).

The labeled APSP algorithm is a strict generalization of the Floyd Warshall all-pairs
shortest path algorithm (Conrad, 2010). The Floyd Warshall algorithm takes as input a
weighted directed graph (often called a “distance graph” in the scheduling literature) with
N vertices, and outputs an N × N matrix di,j , where each entry in the matrix contains

309

Levine & Williams

the shortest path length (a number) from i to j. These shortest path distances represent
required timing constraints (Dechter et al., 1991).

In contrast, the labeled APSP instead generates a matrix Di,j where each entry is an
LVS representing the shortest path from i to j as a function of choice. Its input is the labeled
distance graph, which similarly generalizes of the distance graph from the STN literature.
Instead of each edge weight between two vertices being a single number, it is now a labeled
value set, representing the edge weight as a function of what choices are made (Conrad
& Williams, 2011). Just as an STN can be readily transformed into a distance graph
(Dechter et al., 1991), a TPNU (as well as many other temporal representations, such as
the DTP) can be readily transformed into a labeled distance graph through a straight-
forward process. Each vertex in the labeled distance graph is an event from the TPNU,
and each labeled simple temporal constraint is converted into two labeled weights going in
opposite directions between the associated events, corresponding to the upper and lower
bound constraints (Conrad, 2010).

For this work, we use the labeled APSP algorithms as introduced in Drake, with some
additional modifications. These modifications compute tighter bounds for each LVS by
considering the finite domains of variables and adding additionally, logically implied labeled
values when appropriate. Details about the labeled APSP algorithm with supplemental
modifications can be found in Appendix C.

Given the resulting output Di,j from the labeled all-pairs shortest path, we introduce
some necessary terminology. First, we discuss temporal conflicts.

Definition 4.1 (Temporal Conflict). An environment ϕ is called a temporal conflict iff
QDei,ei

(ϕ) < 0 for any event ei

Theorem 4.1 (Temporally Inconsistent Candidate Subplan). A candidate subplan ϕS is
temporally inconsistent iff there exists a temporal conflict environment ϕ where ϕS |= ϕ.

Proof. Not proven here – see prior work on Drake for details (Conrad & Williams, 2011).

Temporal conflicts are important, because they allow us to detect temporally inconsis-
tent candidate subplans so Pike can avoid them online. The definition above is a direct
analogy to the negative cycles of distance graphs for STNs (Dechter et al., 1991).

We can also define the very useful concept of precedence, which allows us to determine if
some events must be scheduled before other events in all temporally consistent executions.

Definition 4.2 (Precedence). Suppose we have two events, ei and ej , with guards ϕei and
ϕej respectively. Suppose that we also have a third, context environment ϕC . We say that

ei precedes ej in context ϕC , denoted ei ≺ ej
∣∣∣
ϕC

, iff QDej ,ei
(ϕei ∧ ϕej ∧ ϕC) < 0.

When the context ϕC = {}, we denote ei ≺ ej

∣∣∣
{}

as just ei ≺ ej for brevity. We define

a similar succession operator � analogous to ≺: ei � ej iff QDei,ej
(ϕei ∧ ϕej) < 0.

If ei ≺ ej , then ei will be executed before ej in all temporally consistent executions in
which both ei and ej are activated. If an additional context environment ϕC is provided,
it has the effect of conditioning on those sets of choices; ei is executed before ej whenever
ϕC holds.

310

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

(a) A choice-less plan with two producers and
one consumer. Black lines are [0,∞] tempo-
ral constraints, and lighter dotted lines rep-
resent causal links. Either could be the sup-
porting causal link during execution.

(b) A similar plan to the above, but now with
choices surrounding each activity. Labeled
causal links are required for this plan, and
will allow us to reason about consistent sets
of choices amongst x, y, and z.

Figure 6: Labeled causal links enable an executive to ensure that preconditions are satisfied
in contingent plans.

A few properties about precedence that hold when ϕei ∧ ϕej ∧ ϕC is not a temporal
conflict:

• It is possible for ei ≺ ej
∣∣∣
ϕC

to hold, or for ej ≺ ei
∣∣∣
ϕC

to hold, but not both.

• It is possible that neither ei ≺ ej

∣∣∣
ϕC

nor ej ≺ ei

∣∣∣
ϕC

hold. In that case, a precise

a priori ordering between the two events cannot be determined before the plan is
executed. There are temporally consistent executions in which ei comes before ej ,
and other(s) in which ej comes before ei.

• There are thus three possibilities: (1) ei ≺ ej
∣∣∣
ϕC

, (2) ej ≺ ei
∣∣∣
ϕC

, or (3) neither.

Definition 4.3 (Incomparability). If neither ei ≺ ej
∣∣∣
ϕC

nor ej ≺ ei
∣∣∣
ϕC

, we say that ei and

ej are incomparable in context ϕC , denoted by ei ‖ ej
∣∣∣
ϕC

.

4.2 Labeled Causal Links

In this section, we introduce labeled causal links and motivate their use in executing con-
tingent plans.

Given a correct, totally ordered plan and a STRIPS-like action model, the process of
extracting causal links from said plan (for use during execution monitoring) is straightfor-
ward. For each precondition p of a consumer action Ac in the plan, we may find its causal
link by regressing backwards from Ac in the plan until we find a producer action AP that
produces p as an effect. In this case, we associate a single, unique causal link with every
precondition p of every action Ac in the plan.

Things become more complicated when extracting causal links from partially-ordered
plans, including those with metric temporal constraints. Aside from inferring precedence
via a transitive closure operation (or in the case of metric temporal constraints, an all-
pairs shortest path algorithm), there may in general be multiple candidate causal links for

311

Levine & Williams

each precondition of each action in the plan (Levine, 2012). This is illustrated in Figure 6a,
which shows two partially ordered producer actions that produce p as an effect for the later-
occurring consumer that requires p as a precondition. The [0,∞] temporal bounds permit
any ordering of the two producers; the top may come first, second, or they may overlap. So,
which of the two actions will be the causal link? For the purposes execution monitoring and
detecting violated causal links, only the latest producer matters. Hence, there is flexibility
during execution since the two producers are unordered. If during execution, the top-most
producer finishes first, then we designate the bottom-most action as providing the final
support for the consumer – and vice versa. Due to such cases, there may in general be
multiple possible candidate causal links for each precondition of each action in the plan.
The plan is only at risk of being causally incomplete if the latest-most occurring causal link
is violated (Levine, 2012).

Things are complicated further in the case of metric temporal plans with choice, such
as the TPNU representation embraced by this work. With the addition of choices, certain
producer actions may not even execute depending on what choices are made. As a result,
for each precondition p in the plan, we now have a set of labeled causal links, at least one of
which must hold in order to guarantee that the precondition is met in the plan. The label
captures the dependence of the causal link on choices made in the plan.

For example, suppose we generalize the earlier example Figure 6a to Figure 6b, where
each of the activities are now conditioned on a choice. In this case, each of the activities may
or may not be activated depending on the choice assignments, and may not be executed.
The causal links are therefore now contingent upon the choices made. For example, if the
executive chooses x = 2, then the top-most causal link will vanish since the producer is not
executed. Similarly, the bottom-most causal link vanishes if y = 2 is chosen. If z = 1 is
chosen (and hence the consumer will be executed), then either x = 1 or y = 1 must hold
for the consumer’s precondition to be supported (and for the plan to be causally complete).
But if z = 2 is chosen, then there are no constraints on either x or y. This is the core
intuition behind labeled causal links: the causal links now depend on the choices made,
and for a plan to be causally complete, there must be at least one activated causal link
supporting every precondition of every activated event. We therefore label each causal links
with its requisite choice environments. In the example, the top-most causal link is labeled
with {x = 1}, and the bottom-most one is labeled with {y = 1}.

The notion of a threat can also be generalized for contingent plans. A threat that
asserts ¬p as an effect may or may not be activated depending on the choices made. Note
that if a threat is indeed activated, and if the consumer and producer that it threatens are
also activated, the executive may still possibly be able to ensure a causally complete plan
execution by making certain choices to activate other, later-occurring labeled causal links.
This will be described more later.

Given this intuition, we are now prepared to define a labeled causal link.

Definition 4.4 (Labeled Causal Link). A labeled causal link is a tuple 〈eP , ec, p, ϕ〉 where
eP is the producer event with p ∈ Effects(eP), ec is a consumer event occurring after eP
with p ∈ Preconditions(ec), p is a predicate, and the label ϕ is an environment. The
label ϕ will be the execution environment of eP , ϕeP .

312

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

(a) Labeled causal link with later-occurring
producer dominates earlier one (not shown). (b) No causal link dominance here.

Figure 7: Causal link dominance examples. Unlabeled temporal constraints are [0,∞].

(a) All labeled causal links. (b) Only non-dominated labeled causal links.

Figure 8: Comparison of labeled causal links before and after dominated ones have been
removed. With fewer links, the problem is simplified.

We define one final useful property related to labeled causal links: causal link dominance.
While not strictly necessary for correctness, the notion of dominance allows us to prune out
many would-be causal links that are superseded by others and need not be considered.
A labeled causal link for some consumer event ec with producer ePi dominates another
labeled causal link with the same consumer but different producer ePj iff (1) whenever ePj

is activated then ePi is also activated, (2) when all three events are activated then ePi must
occur after ePj , and (3) when all three events are activated then ePi must precede ec.

Definition 4.5 (Labeled Causal Link Dominance). A labeled causal link 〈ePi , ec, p, ϕePi
〉

dominates another labeled causal link 〈ePj , ec, p, ϕePj
〉 iff all of the following conditions hold:

1. ϕePj
|= ϕePi

2. ePj ≺ ePi

∣∣∣
ϕec

3. ePi ≺ ec
∣∣∣
ϕePj

Some examples of causal link dominance are shown in Figure 7. Consider Figure 7a, in
which we have a plan with a single choice of a producer, followed by a second producer.
The labeled causal link with the later-occurring producer dominates the other one. This
is because whenever the earlier producer is activated, so is the later-occurring one. The
situation is however reversed in Figure 7b, where the order of the choice is reversed. In this
case, the later-occurring producer is not necessarily activated whenever the earlier one is,

313

Levine & Williams

(a) Original TPNU T . (b) The augmented TPNU T ′.

Figure 9: A TPNU example, original and augmented.

so there is no domination. This structure in Figure 7b is useful for modeling contingency
or recovery actions in a plan; should there be an unexpected disturbance that negates p
sometime before the choice, the executive may recover by choosing x = 1 in the later choice,
thus ensuring that the precondition will be supported.

It is safe to ignore dominated causal links from consideration during the compilation
process, where the augmented TPNU is constructed.

Theorem 4.2 (Dominated Causal Links are Irrelevant). Dominated labeled causal links do
not influence the correctness of an execution.

Proof. See Appendix A.

Pruning dominated causal links can have a positive impact on the executive’s perfor-
mance by significantly decreasing the size of the compiled solutions found. This is illustrated
in Figure 8b, where a number of labeled causal links can be pruned to obtain much simpler
constraint structure.

4.3 Augmented TPNUs

Now that we have introduced labeled causal links, we discuss how they can be used online
to guide controllable choices and scheduling decisions. To guarantee correct executions that
are causally complete, we transform the original TPNU T into a new TPNU T ′ which we call
the augmented TPNU, and also generate a knowledge base of propositional constraints we
call KB. Together, this augmented TPNU T ′ and set of constraints KB describes the space
of all possible correct executions of the original TPNU T . As we shall illustrate shortly, T ′
along with KB represents every correct execution of T – but it also prunes out incorrect
executions from T that are temporally consistent yet causally incomplete. Online during
execution, Pike uses T ′ and KB to make controllable choices and scheduling decisions in
such a way as to maintain a correct partial execution.

Consider the example TPNU shown in Figure 9a. This TPNU has four events, each
of which must be assigned a time to form a schedule. We assume here that event einit is
scheduled at t = 0, leaving three remaining events to be scheduled. This TPNU has no

314

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

(a) Space of all temporally consistent execu-
tions of T .

(b) Space of all correct (temporally consistent
and causally complete) executions of T .

Figure 10: Various spaces of executions.

choice variables, so there is just one candidate subplan ϕS . What is the space of possible
temporally consistent schedules for T ? We visualize it in Figure 10a. The x, y, and z axes
represent the scheduled times of events eP , eT , and ec, respectively. Each point in this 3D
space represents a schedule for T , and the shaded region represents the set of all temporally
consistent schedules. This space is convex, as the scheduling problem can be equivalently
reformulated as a linear program.

While all schedules visualized in Figure 10a are temporally consistent, they are not
all correct. This highlights one of the key differences between the scheduling problem for
temporal networks and the plan execution problem: causal completeness must be enforced.
Event ec has precondition p, event eP asserts p as an effect (and is therefore a producer
for a labeled causal link), and event eT asserts ¬p as an effect and is a potential threat.
Any execution 〈ϕS , TϕS 〉 in which eT is scheduled between eP and ec – namely TϕS (eP) ≤
TϕS (eT) ≤ TϕS (ec) – is causally incomplete. We can also see that TϕS (eP) < TϕS (ec) is
required in any causally complete execution (any temporally consistent execution satisfies

this however, due to the eP
[1,3]−−→ ec temporal constraint). The space of all correct executions

is visualized in Figure 10b. We see that a large slice has been removed relative to Figure 10a:
these pruned executions were temporally consistent yet causally incomplete, and represent
executions where eT occurred between eP and ec.

It is visually apparent From Figure 10b that there are two separate subregions. Our
approach in Pike is to represent each of these subregions by a different candidate subplan
ϕ′S of the augmented TPNU T ′. By modifying the original TPNU T appropriately, the
augmented TPNU T ′ contains more candidate subplans than the original, and each repre-
sents a set of correct executions. Pike covers the entire space of all correct executions in
this way. In our visualized example, T has a single candidate subplan and T ′ has two, one
for each of the subregions.

Creating the augmented TPNU T ′ = 〈V ′, E , C′,A〉 and KB is accomplished by copying T ,
and subsequently adding new controllable choice variables to V ′, new temporal constraints
to C′, and propositional constraints to KB. In this example, one of the new choice variables

315

Levine & Williams

Figure 11: A larger example TPNU. Unlabeled temporal constraints are [0,∞].

added to V ′ will choose whether eT will come before or after the labeled causal link from
eP to ec. We will introduce the full encoding shortly, but for now we simply call this
variable o ∈ {−1,+1} where o = −1 indicates that eT must come before eP and o = +1
indicates that eT must come after ec. We also add two additional temporal constraints:

eT
[ε,∞]−−−→ eP : ϕbefore and ec

[ε,∞]−−−→ eT : ϕafter, resulting in the augmented TPNU shown in
Figure 9b. These new temporal constraints will act as ordering constraints that are activated
based on o: the guards ϕbefore and ϕafter are defined such that ϕbefore holds if o = −1, and
ϕafter holds if o = +1. There are thus two candidate subplans of T ′, one corresponding
to each possible assignment, differing only in which newly added temporal constraint is
activated. Each of these candidate subplans has an associated set of temporally consistent
executions, shown as the left and right convex subregions of Figure 10b. By Theorem 4.5
(discussed and proved later), all of these executions are guaranteed to be causally complete
and correct. In this way, Pike represents the complex space of correct executions of T
using a factored approach, where T is transformed into an augmented TPNU T ′ with an
associated KB. Every candidate subplan ϕ′S of T ′ that satisfies KB represents a simpler,
convex set of correct executions (see Theorem 4.6). Taking all of these candidate subplans
of T ′ together, Pike maintains the full space of possible executions.

Plans may be additionally complicated with the addition of choices, multiple candidate
causal links, and multiple threats. A larger example with these features is illustrated in
Figure 11. There are five activities, which are conditioned on choice variables w, u, v, x and
y. Activity A1 has a precondition of p. Two activities P1 and P2 both produce p as an

316

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

effect. We also have two potential threats T1 and T2 that negate p as an effect. All unlabeled
temporal constraints are [0,∞], so any activity may come before or after (or overlap) other
activities. This example involves both potential producers and potential threats.

Which producers support the precondition p of event ec? The only events that produce
p are eP1 and eP2 . However, neither is guaranteed to precede ec due to the loose tem-
poral constraints of the problem. These are hence referred to as potential producers. We
address potential producers by adding additional labeled temporal constraints to C′ of the
augmented TPNU, as well as a new controllable choice variable to V ′. This new variable
chooses which of the different possible producer events — eP1 or eP2 in this case — will be
chosen to enforce support for the precondition p of event ec (i.e., which event will be the
producer in the supporting causal link). We define this new choice variable, sp,ec , as3

sp,ec =


eP1 if eP1 will be the producer

eP2 if eP2 will be the producer

⊥ if neither will be the producer

We also add the propositional constraint below to KB, which asserts that if ec is activated
(as is the case when w = 1), then one of the producers must also be activated and chosen
as the support:

(w = 1)⇒ (sp,ec = eP1 ∧ u = 1) ∨ (sp,ec = eP2 ∧ v = 1)

In this way, we translate a labeled causal link into a propositional state logic constraint.
We must also enforce that if sp,ec = eP1 is chosen, event eP1 must precede ec. This

resolves the potential producer and forms the basis for a labeled causal link. We accom-
plish this by adding the following temporal constraint to C′, labeled appropriately for the
environment where this choice is made and where the consumer and producer activities are
both activated:

eP1

[ε,∞]−−−→ ec : {sp,ec = eP1 , u = 1, w = 1}
Note that we only need to add such additional temporal constraints if the temporal

flexibility of the plan could allow for the producer event to happen after the consumer. If
eP1 ≺ ec, no additional temporal constraints are added to C′.

We add a similar constraint for eP2 :

eP2

[ε,∞]−−−→ ec : {sp,ec = eP2 , v = 1, w = 1}

Next, we address the two potential threats T1 and T2. For the following arguments,
suppose that P1 is chosen to be the supporting producer. Hence, the labeled causal link
from event eP1 to event ec over predicate p will be the supporting causal link, and sp,ec = eP1 .
To avoid threats to this labeled causal link, no other action may be scheduled during the
interval between eP1 and ec that negates p. Both eT1 and eT2 are potential threats, because
the loose flexibility in the temporal constraints admits some executions that are causally

3. We include ⊥ in the domain of sp,ec to represent that sp,ec may acceptably be left unassigned if ec is
not activated. This is useful for there to be a solution if causal link violations cause ¬(sp,ec = eP1) and
¬(sp,ec = eP1) constraints to be added to KB: namely deactivating ec by choosing w = 2.

317

Levine & Williams

Constraint Reason

Propositional for KB:

ϕec ⇒
∨

ePi
∈P

(sp,ec = ePi ∧ ϕePi
) At least one activated producer

¬ϕC Avoid definite threat

¬ϕC Avoid temporal conflict

Temporal for T ′:

ePi

[ε,∞]−−−→ ec : {sp,ec = ePi} ∧ ϕePi
∧ ϕec Producers precede consumers

ec
[ε,∞]−−−→ eTj : ϕC Force threat after consumer

eTj
[ε,∞]−−−→ ePi : ϕC Force threat before producer

eTj
[ε,∞]−−−→ ePi : {op,ec,ePi

,eTj
= −1} ∧ ϕC Force threat before producer

ec
[ε,∞]−−−→ eTj : {op,ec,ePi

,eTj
= +1} ∧ ϕC Force threat after consumer

Table 1: Summary of constraints added for T ′ and KB.

complete and others that are not. They must each be scheduled either before eP1 or after
ec, as was the case in the earlier example. We resolve these potential threats by adding
additional temporal constraints to C′ to enforce this, and by adding a new controllable
choice variable to V ′ choosing whether it will come before or after:

op,ec,eP1
,eT1

=

{
−1 if eT1 will precede eP1

+1 if eT1 will succede ec

A similar choice variable oec,p,eP1
,eT2

is also added, representing the ordering of eT2 . We
also add the following temporal constraints to C′:

eT1
[ε,∞]−−−→ eP1 : {sp,ec = eP1 , op,ec,eP1

,eT1
= −1, u = 1, x = 1, w = 1}

ec
[ε,∞]−−−→ eT1 : {sp,ec = eP1 , op,ec,eP1

,eT1
= +1, u = 1, x = 1, w = 1}

These temporal constraints guarantee that if T1 is activated and would threaten the
labeled causal link from eP1 to ec, then it will be scheduled either before or after the labeled
causal link. Two similar labeled temporal constraints are added for eT2 , completing the
threat resolutions for the case where eP1 is chosen as the support. We also have similar
constraints to the above corresponding to the case where eP2 is chosen as the support.
These constraints effectively implement similar threat resolution rules as POCL (Penberthy
& Weld, 1992), though generalized for contingent plans.

318

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

4.4 Causal Link Extraction & Constructing the Augmented TPNU

In the previous sections, we have illustrated some examples of labeled causal link extraction,
along with examples of constructing the augmented TPNU T ′ and constraints KB. In this
section, we codify these examples by introducing appropriate algorithms. Pseudo code
is shown in Algorithm 5, and a summary listing of all additional constraints is shown in
Table 1.

Without loss of generality, we assume that there are two auxiliary events in the plan: (1)
einitial which precedes all other events and has Effects(einitial) set to the initial conditions,
and (2) egoal which succeeds all other events and has Preconditions(egoal) set to the goal
conditions. This encoding technique allows labeled causal links to be extracted from the
initial conditions and goals without treating them separately from other events. Similar
techniques have been used in other approaches (Muise, Beck, & McIlraith, 2016).

Our algorithm takes the following steps for each precondition p of each event ec. First,
it defines a new partial order relation over pairs of events for determining causal link dom-
inance <domec . It is defined as follows:

ei <
dom
ec ej =

True if ej ≺ ei
∣∣∣
ϕc

and ei ≺ ec
∣∣∣
ϕj

False otherwise

This new relation will be helpful for determining labeled causal link dominance, through
the use of an LVS, ξ (Line 4). This LVS ξ will use <domec as its relation <R, and values will
be events (as opposed to relation < and values being numbers, as used earlier for temporal
reasoning). If ei <

dom
ec ej and ϕej |= ϕei , it can be shown from the definition of labeled

causal link dominance that a labeled causal link with producer ei dominates a labeled causal
link with producer ej (both having consumer ec). Therefore, a labeled value (ei, ϕei) will
dominate a different labeled value (ej , ϕej) in ξ iff the labeled causal link with producer
ei dominates the labeled causal link with producer ej . The environment entailment checks
of the LVS take care of the first criterion required for labeled causal link dominance in
Definition 4.5, and the <domec operator takes care of the second and third criteria.

During labeled causal link extraction, we add all potential producers, as well as all po-
tential threats, to ξ. We therefore ensure that we find only the relevant, latest-occurring,
non-dominated causal link producers and threats. Specifically, for each event e that pro-
duces either p or ¬p in the plan, we add (e, ϕe) to ξ as long as ec ≺ e does not hold
(hence either e ≺ ec or e ‖ ec) (Line 7). The resulting ξ contains the minimal set of non-
dominating possible producers and threats. For the example in Figure 11, ξ = {(eP1 , {u =
1}), (eP2 , {v = 1}), (eT1 , {x = 1}), (eT2 , {y = 1})}.

We then partition each event e in (e, ϕe) ∈ ξ into those that produce p as an effect into
set P (producers), and those that produce ¬p into set T (threats) on Line 10.

Next, we make a new controllable choice variable sp,ec with domain {eP1 , ..., ⊥} for
each ePi in P . On Line 12, we add the following propositional constraint to KB:

ϕec ⇒
∨

ePi
∈P

(sp,ec = ePi ∧ ϕePi
)

Additionally, for each ePi , we check whether ePi ≺ ec. If so, then we continue (no additional
temporal constraint is needed to order this producer before the consumer). Otherwise, it

319

Levine & Williams

Algorithm 5: ConstructAugmentedTPNUwithKB()

Input: TPNU T = 〈V, E , C,A〉
Output: Augmented TPNU T ′ = 〈V ′, E , C′,A〉 with associated constraints KB

1 T ′ = 〈V ′, E , C′,A〉 ← copy of T , KB← True
2 foreach ec ∈ E do
3 foreach p ∈ Preconditions(ec) do
4 ξ ← new LVS with relation <domec
5 foreach e ∈ E \ {ec} with p or ¬p in Effects(e) do
6 if not(ec ≺ e) and ϕe ∧ ϕec is self consistent then
7 AddLVS((e, ϕe), ξ)
8 end

9 end
10 Partition events from ξ into P (producers) and T (threats)
11 Add new choice variable sp,ec to V ′ with domain {eP1 , eP2 , ...,⊥} for ePi ∈ P
12 KB← KB ∧

(
ϕec ⇒

∨
ePi
∈P

(sp,ec = ePi ∧ ϕePi
)
)

13 foreach ePi ∈ P where not(ePi ≺ ec) do

14 C′ ← C′ ∪
(
ePi

[ε,∞]−−−→ ec : {sp,ec = ePi} ∧ ϕePi
∧ ϕec

)
15 end
16 foreach ePi ∈ P do
17 foreach eTj ∈ T do
18 ϕC ← {sp,ec = ePi} ∧ ϕePi

∧ ϕeTj ∧ ϕec
19 continue to next if ϕC is self inconsistent or temporally infeasible
20 if ePi ≺ eTj

∣∣
ϕC

and eTj ≺ ec
∣∣
ϕC

then

21 KB← KB ∧
(
¬ϕC

)
. Avoid definite threat

22 else if ePi ≺ eTj
∣∣
ϕC

and eTj ‖ ec
∣∣
ϕC

then

23 C′ ← C′ ∪
(
ec

[ε,∞]−−−→ eTj : ϕC

)
. Force threat after consumer

24 else if ePi ‖ eTj
∣∣
ϕC

and eTj ≺ ec
∣∣
ϕC

then

25 C′ ← C′ ∪
(
eTj

[ε,∞]−−−→ ePi : ϕC

)
. Force threat before producer

26 else if ePi ‖ eTj
∣∣
ϕC

and ec ‖ eTj
∣∣
ϕC

then

. Force threat either before or after
27 Add new choice variable op,ec,ePi

,eTj
to V ′ with domain {−1,+1}

28 C′ ← C′ ∪
(
eTj

[ε,∞]−−−→ ePi : {op,ec,ePi
,eTj

= −1} ∧ ϕC
)

29 C′ ← C′ ∪
(
ec

[ε,∞]−−−→ eTj : {op,ec,ePi
,eTj

= +1} ∧ ϕC
)

30 end

31 end

32 end

33 end

34 end

320

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

eTj ≺ ePi

∣∣∣
ϕC

eTj ‖ ePi

∣∣∣
ϕC

ePi ≺ eTj
∣∣∣
ϕC

eTj ≺ ec
∣∣∣
ϕC

C1: Nothing required. C2: Force eTj before
ePi to resolve threat.

C3: Definite threat:
avoid through conflict.

ec ‖ eTj
∣∣∣
ϕC

C4: Impossible. C5: Force eTj either
before ePi OR after ec
via choice variable.

C6: Force eTj after ec
to resolve threat.

ec ≺ eTj
∣∣∣
ϕC

C7: Impossible. C8: Impossible. C9: Nothing required.

Figure 12: Labeled causal link threat resolution cases. Moving across horizontally, we have
the three possible precedence relations between ePi and eTj . Vertically, we have the three
possible relations between eTj and ec. The environment ϕC = {sp,ec = ePi}∧ϕePi

∧ϕec∧ϕeTj .

is possible for ePi to occur after ec; we prevent this by adding to C′ the labeled temporal
constraint ePi −→ ec, [ε,∞] : {sp,ec = ePi ∧ ϕec ∧ ϕePi

} on Line 14.

We must also resolve any potential threats of this labeled causal link. Based on the
different possible precedence relations amongst the consumer ec, producer ePi , and threat
eTj , different constraints may be added to T ′ and KB. A case-based analysis is depicted
in Figure 12. Depending on the case, either a conflict environment is added, or additional
labeled temporal constraints are added to resolve the threat. We iterate over all pairs of
potential producer events ePi and all potential threat events eTj (Line 16). The context
environment is set such that all of ec, ePi , and eTj are activated, and ePi is selected as the
supporting labeled causal link. Hence, ϕC = {sp,ec = ePi} ∧ ϕePi

∧ ϕec ∧ ϕeTj . We evaluate

all precedence relations with respect to this context environment.

In case C1 above, eTj is not a threat. Since eTj ≺ ePi

∣∣
ϕC

and ePi ≺ ec
∣∣
ϕC

, the threat will
not interfere with the causal link. The predicate in question is negated before the producer
event asserts it. Similarly in C9, the threat in question will occur after the consumer event.
Therefore, we can be sure that the threat event will not interfere.

Cases C4, C7, and C8 represent impossible situations if ϕC is a temporally consistent
environment (which is checked on Line 19). Since we add appropriately labeled ordering
constraints ensuring that producers precede consumers, we will have that ePi ≺ ec

∣∣
ϕC

. In

cases C4 and C7, we also have that eTj ≺ ePi

∣∣
ϕC

, so we can derive that eTj ≺ ec
∣∣
ϕC

. This
however contradicts the premises in cases C4 and C7. Similar reasoning holds for case C9.

In C3, the threat is guaranteed to occur temporally between the causal link producer
and the consumer. This means that the potential threat is in fact a definite threat, and
there is nothing that can be done about it except to avoid it. Therefore, we add a conflict
disallowing ϕC to KB (Line 21).

In C2, we know that the threat precedes the consumer, but it is incomparable to the
producer (which also precedes the consumer). Therefore, we can resolve this threat by
adding a labeled temporal ordering constraint forcing the threat to occur before the producer
event (Line 25). If this results in a temporally feasible plan after re-running the APSP, we
have resolved the threat. If not, we will extract a temporal conflict similar to C3 above.

321

Levine & Williams

Figure 13: An example TPNU.

Similar reasoning also holds for C6, in which we know that the threat must occur after the
producer, but could potentially occur before the consumer ec. We therefore resolve this
threat by forcing the threat to occur after the consumer event via an additional labeled
temporal constraint (Line 23).

Case C5 is the most complicated, and involves adding an additional controllable choice
variable. In C5, the threat event can occur anywhere temporally; it could occur before the
producer, between the producer and the consumer, or after the consumer. We wish to move
the threat so that it occurs either before or after. We hence add a new controllable choice
variable op,ec,ePi

,eTj
with domain {−1,+1} to V ′. If op,ec,ePi

,eTj
= −1, we choose for the

threat to come before ePi ; otherwise, we choose for it to come after ec. We add two new
temporal constraints to enforce this (Line 27):

• eTj
[ε,∞]−−−→ ePi : {op,ec,ePi

,eTj
= −1} ∧ ϕC

• ec
[ε,∞]−−−→ eTj : {op,ec,ePi

,eTj
= +1} ∧ ϕC

If ϕC holds, exactly one of the above two constraints will be activated. This forces
the executive to schedule the threat either before or after the labeled causal link interval,
thereby resolving it.

Note that we could always do case C5, i.e., for cases C2, C3, and C6. We avoid this how-
ever for efficiency, so that we do not need to add unnecessary choice variables and temporal
constraints to the problem. This is the key motivation for such case-based reasoning.

This concludes our description of the algorithms that extract dominating labeled causal
links and use them generate an augmented TPNU T ′ along with the propositional con-
straints KB. We provide one more grounded example to illustrate. In the TPNU shown
in Figure 13, there is one consumer event and two preceding producer events. There is
additionally a potential threat that is ordered after the first producer, but may come either
before or after the second producer.

The result of running Algorithm 5 on this example will be the following additional
constraints for T ′ and KB:

• Propositional: z = 1⇒ (sp,ec = eP2) ∨ (sp,ec = eP1 ∧ y = 1)

• Temporal: ec
[ε,∞]−−−→ eT1 : {z = 1, x = 1, sp,ec = eP2}

322

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

• Temporal: eT1
[ε,∞]−−−→ eP1 : {z = 1, y = 1, x = 1, sp,ec = eP1 , op,ec,eP1

,eT1
= −1}

• Temporal: ec
[ε,∞]−−−→ eT1 : {z = 1, y = 1, x = 1, sp,ec = eP1 , op,ec,eP1

,eT1
= +1}

4.5 Ensuring Correct Partial Executions

We show in this section that, when Pike uses the augmented TPNU T ′ and KB to guide
execution, the resulting partial execution will remain correct. This is a key property of
Pike, and a central goal of using the augmented TPNU. In the context of human-robot
interaction, this means that Pike will make controllable choices and scheduling decisions
such that there is always some way for the plan to succeed (i.e., some way for the human and
robot team to make choices that achieve the plan goals). We introduce a series of theorems
(proved in Appendix A), culminating in Theorems 4.7 and 4.4, showing that, when Pike
executes T ′ with KB, it will make online decisions properly in this manner.

We begin by formalizing the relationship between T and T ′ in terms of correct executions
and partial executions.

Theorem 4.3 (Executions from T and T ′ correspond). An execution 〈ϕS , TϕS 〉 of the
original TPNU T is correct if and only if there exists a corresponding correct execution
〈ϕ′S , TϕS 〉 of the augmented TPNU T ′ where ϕ′S |= ϕS.

Proof. See Appendix A.

Theorem 4.4 (Correct Executions of Original T). Let 〈ϕex, T̃ϕex〉 be a partial execution at
some point during execution of the augmented TPNU T ′. This partial execution is correct
with respect to the augmented TPNU T ′ if and only if it is also correct with respect to the
original TPNU T .

Proof. See Appendix A.

Theorem 4.3 maps correct executions of T to at least one correct execution in T ′ with
an identical schedule. The relationship between these two sets is a surjection; every correct
execution of T maps to at least one (possibly multiple) executions of T ′, corresponding to
different allowable assignments to the sp,ec or op,ec,eP ,eT variables. Relatedly, in Theorem 4.4,
we make a similar connection in terms of partial executions.

The following two theorems highlight key properties of T ′, and are visualized by Fig-
ure 10b. Theorem 4.5 asserts that every temporally consistent execution of T ′ is also correct.
Crucially, this property does not hold for T , which could admit temporally consistent yet
causally incomplete executions. By constructing T ′ and KB, we ensure that Pike can
achieve any temporally consistent execution and rest assured that it will also be causally
complete.

Theorem 4.5 (Temporally consistent executions of T ′ with KB are also causally complete,
and correct). Let 〈ϕ′S , TϕS 〉 be a temporally consistent execution of T ′ where ϕ′S satisfies
KB. Then this execution is also causally complete (and hence correct).

Proof. See Appendix A.

323

Levine & Williams

Theorem 4.6 describes the space of candidate subplans whose variable assignments sat-
isfy KB. We can therefore think of the solutions of KB as representing the space of all
candidate subplans that admit a correct execution.

Theorem 4.6 (ϕ′S satisfies KB iff correct). ϕ′S satisfies KB if and only if there exists a
correct execution 〈ϕ′S , TϕS 〉 of T ’.

Proof. See Appendix A.

Based on these theorems, we can prove that the CanExecuteEventNow? procedure,
which is crucial for online execution correctness and is shown in Algorithm 2, is correct.
Specifically, it will allow an event to be executed and controllable choices to be made by
Pike if and only if the resulting partial execution would remain correct.

Theorem 4.7 (CanExecuteEventNow? is correct). Let 〈ϕex, T̃ϕex〉 be the current, cor-
rect partial execution of T ′. Then CanExecuteEventNow?(ei, t) returns True at time
t if and only if the partial execution of T ′ that would result if ei is executed at time t –
namely 〈ϕex ∧ ϕei , T̃ϕex ∪ {ei = t}〉 – is correct.

Proof. See Appendix A.

By Theorem 4.7, Pike’s controllable choices and scheduling decisions keep the partial
execution correct for T ′, the TPNU being executed. By Theorem 4.4, correct partial exe-
cutions of T ′ correspond to correct partial executions of T . Therefore, we have proven that
Pike will maintain a correct partial execution of T – a central goal of Pike in ensuring
that its choices can match the human’s possible intentions.

This concludes our discussion of labeled causal link extraction, and the generation of
the augmented TPNU T ′ and corresponding constraints. Next, we discuss how to compile
the constraints for efficient use during online execution.

5. Constraint Compilation

In this section, we describe a method to compile these constraints into a knowledge base
KB for efficient online execution. The goal of this knowledge compilation is to compactly
represent all possible candidate subplans ϕ′S that admit a correct execution for the human-
robot team, and to allow certain queries about these candidate subplans to be computed for
efficient online execution. Per Theorem 4.6, this means that we must compactly represent
the space of all solutions of KB. Towards this goal, we employ a well-known technique from
the knowledge compilation community: prime implicants. We briefly introduce the πTMS,
a label propagation mechanism building upon the Assumption-based Truth Maintenance
System (ATMS) that generates a sound and complete set of prime implicants for our theory
incrementally. The resulting prime implicants can be used to efficiently implement the
query operations on KB needed for online execution, as discussed shortly. Note that while
the size of KB may in the worst case grow exponentially with the size of the TPNU, the use
of prime implicants offers significant gains in compactness (as shown later by Figure 21).

We begin with background about the ATMS and prime implicants. We then illustrate
the key algorithms we use to generate prime implicants.

324

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

5.1 Background

In this section, we introduce background information about the ATMS and prime implicants.

5.1.1 ATMS

The Assumption-based Truth Maintenance System, or ATMS, is a knowledge base that
allows a problem solver to efficiently reason about facts without prematurely committing to
them (de Kleer, 1986a). The ATMS introduces assumptions – facts whose certainty is not
known and may be changed by the problem solver with little overhead. This fast context
switching is taken advantage of during online execution, when querying which choices can
consistently be made online.

We take a propositional logic viewpoint of the ATMS and introduce some terminology.
A node N is logically equivalent to a proposition. An assumption is a special type of node
whose truthfulness may be unknown beforehand. A node that represents False is called
a contradiction node. A justification is logically equivalent to the implication NA1 ∧ ... ∧
NAk

⇒ NC where each node NAi is an antecedent and NC is the consequent. A nogood or
conflict is a conjunction that entails an inconsistency; its resolution is logically equivalent
to ¬(NC1 ∧ ...∧NCk

). An environment is a conjunction of assumption propositions (though
it is often denoted as a set for convenience).

An environment ϕe manifests a conflict ϕC iff ϕe |= ϕC . An environment ϕe resolves
a conflict ϕC iff ϕe |= ¬ϕC (Williams & Ragno, 2007). An environment may manifest a
conflict, resolve it, or neither. If ϕe manifests a conflict, then any environment ϕ whose
assignments are a superset of ϕe (i.e., ϕ |= ϕe) also manifests that conflict. Similar logic
holds for resolving a conflict. However, if an environment ϕe neither resolves nor manifests
a conflict, then there exists some superset environment that manifest the conflict, and some
other superset that resolves it.

Each node in an ATMS is associated with a label, which is a set (disjunctive) of envi-
ronments. A node holds in environment ϕ iff it can be propositionally derived from ϕ and
all justifications in the ATMS, and False cannot be propositionally derived via a conflict
(Forbus, 1993). An environment ϕe in node N ’s label means that N will hold in any su-
perset environment ϕ |= ϕe – except those manifesting a conflict. A label is minimal if
no environment in it is a subset of any other environment (i.e., no environment entails any
other). The ATMS enforces that no environment in an ATMS label may manifest a conflict,
but it is possible for supersets of the environment to manifest conflicts (i.e., environments
in a label need not resolve all conflicts). The ATMS employs label propagation algorithms
to ensure that a sound, complete, and minimal set of environments is incrementally derived
for each node’s label, given the justifications and conflicts encoded so far (Forbus, 1993).

5.1.2 Prime Implicants

An implicant ϕ of a propositional theory C is a conjunction of variables (i.e., an environment)
that entails the theory, ϕ |= C. A prime implicant ϕP is an implicant that is minimal in
size; no subset of assignments of ϕP themselves form an implicant. The intuition for this is
that if ϕ is an implicant, then any superset must also be an implicant. We therefore need
to only maintain the smallest ones, namely the prime implicants. There is also the related

325

Levine & Williams

concept of an implicate and prime implicate. An implicate θ of a theory C is a disjunction
which logically follows from the theory, namely C |= θ.

While there are many different knowledge compilation techniques that could be success-
fully applied to this task (Darwiche & Marquis, 2002), we choose to pursue prime implicants
in this work. We are motivated to do so for two several reasons, including: (1) the potential
to be more compact than full model enumeration, (2) the ability to compute the relevant
consistency queries online in polynomial time in the number of prime implicants, and (3)
the ability to update a prime implicant database efficiently (via bounded conjunctions in
polynomial time) (Darwiche & Marquis, 2002), a necessary operation for Pike’s online exe-
cution when we add new constraints to KB. Note that while it is possible for the number of
prime implicants to exceed the number of models for a theory (Quine, 1959), our aim here
is to improve the compactness of our solution representation so as to improve the efficiency
of computing Pike’s online queries. Experimental results verify that prime implicants are
indeed generally more compact for our problem structure (see Figure 21).

5.2 The πTMS

We introduce the πTMS (short for Prime Implicant TMS) – a technique for incrementally
and efficiently computing the prime implicants of a theory over finite-domain variables.
Like the ATMS, the πTMS uses label propagation to store a set of environments in a label
associated with each node. The πTMS, however, uses a form of consensus over finite-domain
variables within each label to generate prime implicants and more compactly represent the
solution space.

We wish for labels in the πTMS to contain prime implicants of associated theories. To
achieve this, we modify the semantics of labels. In an ATMS, no environment in a label may
manifest any conflicts. The πTMS strengthens this, by requiring that each environment
in a label resolve all known conflicts. The difference between these semantics lies in the
supersets of an environment: the ATMS permits supersets of environments to manifest
conflicts, but the πTMS does not. If some environment ϕe in an ATMS label has a superset
ϕ′e that manifests a conflict of the theory, then ϕe cannot be an implicant of the theory. In
the πTMS, we therefore modify the label semantics to guarantee that all environments in a
node’s label must resolve all conflicts, thereby guaranteeing that all supersets also resolve
all conflicts.

5.3 Encoding Constraints in the πTMS

In this section, we discuss how we take a theory C of constraints over finite-domain variables
and hierarchically encode it into the πTMS. With our encoding, each constraint in C is
represented by a node in the πTMS, such that the node is propositionally derivable iff
the constraint holds. In the earlier example shown in Figure 13, recall that causal link
extraction process derived the constraint z = 1⇒ (sp,ec = eP2) ∨ (sp,ec = eP1 ∧ y = 1).

To encode this constraint in the πTMS, it is broken down hierarchically into a series of
nodes (each representing a subformulae) where each holds if the corresponding constraint
holds. This is similar in spirit to the well-known Tseitin transformation (Tseitin, 1968),
in which additional variables represent the decomposed portions of constraints. πTMS
nodes are propositionally derivable iff the associated decomposed constraints hold. We

326

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

z = 2

sp,ec = eP1

sp,ec = eP2

y = 1

N2

N1

N3

N4

NG

...

y = 1 ∧ sp,ec = eP1

(sp,ec = eP2) ∨ (y = 1 ∧ sp,ec = eP1)

¬(z = 1)

¬(z = 1) ∨ (sp,ec = eP2) ∨ (y = 1 ∧ sp,ec = eP1)

z = 1 ⇒ (sp,ec = eP2) ∨ (y = 1 ∧ sp,ec = eP1)

Figure 14: Hierarchical encoding of constraint in πTMS. Following the notation introduced
by Forbus (1993), boxes represent assumptions, circles represent nodes, and arrows represent
justifications with the multiple tails representing a conjunction. Gray annotations represent
the constraints represented by the associated nodes.

recursively traverse the constraints starting from its top-level conjunction, then following
the logical order of operations and applying De Morgan’s law as appropriate, to create
more nodes hierarchically. The example constraint presented earlier would be encoded
into πTMS via the justifications illustrated in Figure 14. The node NG is the overarching
“goal” representing our entire theory, in this case the single constraint we have extracted
(in general, more constraints would be conjoined for NG). The example implication is first

converted to the equivalent disjunction
(
¬(z = 1)

)
∨
(

(sp,ec = eP2) ∨ (sp,ec = eP1 ∧ y =

1)
)

, which can be represented by a node N4 and the two disjuncts inside by nodes N1

(representing ¬(z = 1)) and N3 (representing (sp,ec = eP2) ∨ (sp,ec = eP1 ∧ y = 1)). We can
then encode the disjunction via the two implications N1 ⇒ N4 and N3 ⇒ N4 as the only
justifications in the πTMS for N4. This guarantees that N4 will be propositionally derivable
iff either N1 or N3 holds, thus capturing the disjunction. We can use a similar technique to
encode a conjunction. By justifying a node N2 with the implication y = 1∧sp,ec = eP1 ⇒ N2

as the only justification for N2, we guarantee that N2 will be propositionally derivable iff
both y = 1 and sp,ec = eP1 hold – a conjunction. A negation of an assignment can be
encoded by creating a disjunction of all other variable domain values. For instance, the
N1 node (which represents ¬(z = 1)) can here be justified with the single implication
z = 2⇒ N1, guaranteeing that N1 will be derivable only if ¬(z = 1) holds.

The one exception to this hierarchical decomposition rule applies to conflicts. When
encoding a conflict, i.e. a negation of a conjunction of assignments, we instead make use of
contradiction nodes (which represent False) originating from the ATMS. Specifically, we
create a new contradiction node, and add a single justification with this contradiction as
the consequent. The antecedents contain the assignments present in the conflict.

5.4 Incrementally Computing Prime Implicants via Consensuses

Here, we describe our approach to compactly computing prime implicants: consensuses.

327

Levine & Williams

Each node’s label is expressed in disjunctive normal form (DNF) – i.e., it is a disjunction
of environments, which are themselves conjunctions. The following Lemma can be used
repeatedly to compute implicants of the DNF. The resulting implicants are smaller than the
environments used to generate it, and will eventually result in computing prime implicants
when used repeatedly.

Lemma 5.1 (Consensus for Finite Domain Variables). Suppose theory C can be expressed

in DNF in the form

[∨
i=1...N

(ϕi ∧ x = vi)

]
∨ . . . for some finite-domain variable x with

domain v1, ..., vN . Then
∧

i=1...N

ϕi, if self-consistent, is an implicant of C; i.e.:

∧
i=1...N

ϕi |=
∨

i=1...N

(ϕi ∧ x = vi)

Proof.
∧
i=1...N ϕi |= ϕj for all j = 1 . . . N . Hence, each of the ϕi in the disjunction are be

entailed. Since x must take some value from its domain, exactly one of the (ϕi ∧ vi) terms
must hold, causing the disjunction to be satisfied.

This result can be seen as the finite-domain generalization of the consensus theo-
rem (Kean & Tsiknis, 1990) for boolean variables:

ϕ1 ∧ ϕ2 |= (ϕ1 ∧ x) ∨ (ϕ2 ∧ ¬x)

Suppose we have a node N with label L : {{x = 1, y = 1, z = 1}, {x = 2, y = 1, z =
1}, {x = 2, y = 3}, {x = 3}}, where each variable x, y, and z has a domain of {1, 2, 3}. We
can express L logically in DNF as

(x = 1 ∧ y = 1 ∧ z = 1) ∨ (x = 2 ∧ y = 1 ∧ z = 1) ∨
(x = 2 ∧ y = 3) ∨ (x = 3)

Lemma 5.1 applies to this DNF for the variable x and its three domain values 1, 2, 3,
where ϕ1 : y = 1 ∧ z = 1, ϕ2 : y = 1 ∧ z = 1 (note that ϕ2 : y = 3 could equivalently be
chosen), and ϕ3 : True. Therefore, ϕ1∧ϕ2∧ϕ3, namely y = 1∧z = 1, is an implicant of the
theory. This implicant may be added disjunctively to the label L as a new environment, as
it will not change its semantics (i.e., the set of represented team scenarios will not change).
By “minimally,” we refer to the ATMS operation in which an environment ϕi is added to
a list L of environments: any ϕj ∈ L that entails ϕi is removed from L, and ϕi is added to
L only if it is does not entail any other ϕj ∈ L. In our example, the first two terms in the
DNF are entailed by the new implicant, so it is added minimally and those terms removed.
The resulting label L may be represented more compactly with just three environments as
{{y = 1, z = 1}, {x = 2, y = 3}, {x = 3}}.

It is important to note that not all consensuses yield a useful implicant. For example,
if we had chosen ϕ3 : y = 3, the resulting consensus would have been y = 1∧ y = 3∧ z = 1.
This is not self-consistent due to the conflicting variable assignment for y. While False is
indeed an implicant of any theory, it does not provide any useful information in our case,
so we do not consider it.

328

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

5.5 πTMS Label Propagation Algorithms

Now that we have illustrated both the hierarchical node structure of the πTMS as well as
the intuition behind computing prime implicants from an existing label, we put the two
together to describe the πTMS label propagation algorithms.

We begin by describing the semantics of each node’s label. Intuitively, the label of a
node contains a set of prime implicants for the theory containing that node’s constraint, as
described by Invariant 5.2 below:

Invariant 5.2 (Labels of πTMS Contain Prime Implicants). Let node N represent con-
straint C in theory C. Then, the label of N contains a sound and complete set of prime
implicants for a new theory C′, which consists of the constraint C as well as all conflict
constraints in C.

We illustrate this by continuing with the same example as before. Since there are
no conflicts in the theory, the label of node N4 will contain the complete set of prime
implicants for the theory containing just the single constraint: {z = 2}, {sp,ec = eP2}, and
{y = 1, sp,ec = eP1}. Any assignment of variables containing the assignment z = 2 will
entail the causal link constraint being satisfied. Consider the node N3, which represents the
constraint (sp,ec = eP2) ∨ (y = 1 ∧ sp,ec = eP1). By Invariant 5.2, the label for N3 contains
the prime implicants of a theory containing just this constraint. The computed label for
N3 is {sp,ec = eP2}, {y = 1, sp,ec = eP1}.

As another example, suppose that during online execution, Pike adds the conflict
¬(sp,ec = eP2). This could happen, for example, if the causal link is detected to be vi-
olated online. In that case, the theory we wish to encode is

z = 1⇒ (sp,ec = eP2) ∨ (sp,ec = eP1 ∧ y = 1)

¬(sp,ec = eP2)

Note in this example that we have a conflict. All prime implicants must resolve this
conflict. The computed label for NG contains prime implicants {z = 2, sp,ec = eP1}, {z =
2, sp,ec =⊥}, and {y = 1, sp,ec = eP1}.

In the first example, it is no coincidence that the label of N3 is a subset of the label
of N4. The ATMS label propagation algorithms – from which the πTMS derives – allow
environments to flow through the constraint structure to compute the labels for other nodes
hierarchically. The label of any assumption node of a πTMS contains a single environment
containing the associated variable assignment. This is the “base case,” as that variable
assignment is an implicant of the theory containing just that assignment. We may then
“build up” hierarchically. For a conjunction (shown visually in Figure 14 as a justification
with two tails), we may take all possible combinations of implicants of the subtheories (from
each label) and conjoin them to form an implicant of the new theory – this is accomplished
by the ATMS Weave operation (de Kleer, 1986a). For a disjunction, we may simply merge
the implicants of the subtheories.

The πTMS label propagation algorithms differ from the ATMS procedures in that they
compute prime implicants at every label propagation update – thus aiming to keep propa-
gation to a minimum and find prime implicants early on during propagation. Upon adding
a new environment to a label, all possible consensuses (which are implicants of the theory)

329

Levine & Williams

are computed and added to the label per the above illustration. Note that this does not
change the team scenarios represented by that label’s prime implicants, but it can make the
label more compact. Sometimes, new implicants can be computed based on the implicants
that were just added – so this process repeats iteratively until no new implicants can be
added to a label. We keep track of the new implicants that were ultimately added and only
propagate those implicants forward. This can have the effect of reducing unnecessary prop-
agations. The resulting label is generally more compact than that of the standard ATMS,
and can oftentimes be computed faster as well. For domains in which the number of models
which would be computed by the ATMS is prohibitively large, the πTMS is often able to
tractably complete the computation and takes orders of magnitude less space and time (see
experimental results and Figure 21).

The illustrated approach is based on a generalized form of consensus. Yet since consensus
is the dual of resolution, we can also view the above implicant generation in a different
light. Hyper-resolution in boolean logic (Robinson, 1965) is a generalization of resolution
for performing multiple resolutions in CNF in a single step, re-stated below (in its negative
form):

C1 ∨ ¬x1

C2 ∨ ¬x2

...
Cn ∨ ¬xn

x1 ∨ x2 ∨ ... ∨ xn ∨D

n∨
i

Ci ∨D

Each xi is positive literal, and each Ci is a disjunctive clause of literals. The derived
conclusion

∨n
i Ci∨D is the hyper-resolvent and is an implicate (as opposed to an implicant

in consensus), the disjunction x1 ∨ x2 ∨ ...∨ xn ∨D is the nucleus, and each clause Ci ∨¬xi
is a satellite.

To view consensus as the dual of hyper-resolution, we exploit the fact that computing
implicants (conjunctive) of a theory C can be accomplished by negating implicates (disjunc-
tive) of the theory’s negation ¬C (Elliott, 2004). Continuing with the same example, we
can view the implicant y = 1∧ z = 1 through the lens of hyper-resolution by computing its
associated implicate of ¬C. As C is expressed in DNF, we can easily express ¬C in CNF by
negating each literal and swapping ∧ and ∨:

(¬(x = 1) ∨ ¬(y = 1) ∨ ¬(z = 1)) ∧
(¬(x = 2) ∨ ¬(y = 1) ∨ ¬(z = 1)) ∧

(¬(x = 2) ∨ ¬(y = 3)) ∧
(¬(x = 3))

330

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Since we operate over finite-domain variables, each of which must take a domain value,
we can add in the extra clause on the last line below and perform hyper-resolution:

(¬(x = 1) ∨ ¬(y = 1) ∨ ¬(z = 1)) ∧
(¬(x = 2) ∨ ¬(y = 1) ∨ ¬(z = 1)) ∧

(¬(x = 2) ∨ ¬(y = 3)) ∧
(¬(x = 3)) ∧

(x = 1 ∨ x = 2 ∨ x = 3)

¬(y = 1) ∨ ¬(z = 1)

The first, second, and fourth clauses are the satellites, the nucleus is the final disjunction
x = 1∨x = 2∨x = 3, and the hyper-resolvent is ¬(y = 1)∨¬(z = 1), which is an implicate
of ¬C. Therefore, its negation y = 1 ∧ z = 1 is an implicant of C. Effectively, we are taking
advantage of the fact that each variable must take a value from its domain, allowing us to
perform hyper-resolution over this disjunction.

Previous work has examined the problem of incorporating hyper-resolution into the
ATMS, and argued the complete case intractable (de Kleer, 1986b). However, we argue
that our approach in this work, which is incremental and seeks to minimize the number
of resolutions performed through efficient propagation, is computationally feasible in many
situations. Experimental results show that the πTMS is tractable for many of Pike’s tested
problem instances.

5.6 πTMS Algorithms

Here, we introduce the πTMS label propagation algorithms that modify those of the ATMS.

Given a label L and an assignment, x = vi, we define the candidate satellites Lx=vi
sat

as a set consisting of all environments in L that assign x = vi, except with that single
assignment stripped off the environment. These correspond to the satellites in hyperreso-
lution, removing the nucleus. Taking the same example as earlier where L = {{x = 1, y =
1, z = 1}, {x = 2, y = 1, z = 1}, {x = 2, y = 3}, {x = 3}}, the result of computing Lx=1

sat

would be {{y = 1, z = 1}}, corresponding to ϕ1 described earlier. Computing Lx=2
sat yields

{{y = 1, z = 1}, {y = 3}}, which are both of the possible ϕ2 values described earlier.

The actual work of computing the implicants occurs by computing Lx=v1
sat ×Lx=v2

sat × ...×
Lx=vk
sat for each vi ∈ Domain(x). One environment from each set of candidates satellites

must be chosen, and the result joined conjunctively together if consistent. This is accom-
plished via the cross product operation ×. In a nutshell, the × operation finds the cross
product of all possible environments incrementally, prunes inconsistent combinations early
before they are fully constructed, and attempts to maintain compactness by only keep-
ing track of minimal, non-entailing environments. The algorithm is similar to the ATMS
Weave operation (Forbus, 1993). Please note that this can, in the worst case, result in a
combinatorial explosion of consensuses. Crucially, each of the results of the cross product
is an implicant of the DNF formula represented by L. Some (but not all) could be prime
implicants, and others could entail other terms in L.

Now that we have described how consensuses can be computed for a single variable, we
describe how these algorithms are integrated into the overall label propagation algorithm,

331

Levine & Williams

Algorithm 6: πTMSUpdate(a, L)

Input: A node a with associated label La, and a list of new environments L to be
added to a’s label

1 if a is a contradiction node then
2 Add each e ∈ L minimally to nogoods
3 foreach ϕN actually added to nogoods above do
4 SplitAllLabelsOnConflict(ϕN)
5 end

6 else
7 Ladded = AddAndGeneratePrimeImplicants(La, L)
8 foreach justification J where a is an antecedent do
9 Propagate(J, a, Ladded)

10 [Optional: Split Ladded on any newly-added nogoods]

11 end

12 end

forming the πTMS. The πTMS borrows the ATMS Propagate and Weave algorithms un-
changed, and changes the Update method to the new πTMSUpdate, which incorporates
prime implicant generation (Forbus, 1993). Intuitively, Update is called when a new envi-
ronment is added to a node’s label. This in turn triggers propagation to other ATMS nodes
via justifications, and the Weave method is called to combine environments conjunctively
for this propagation.

Instead of solely adding the new environments to a label minimally as the original
Update method does, πTMSUpdate computes prime implicants via the above consensus
procedures given the new environments, possibly resulting in new, smaller environments
being produced that are entailed by the ones being originally added. Only these entailed
environments are added and propagated forward, not the entailing ones – thus reducing
unnecessary computation.

Pseudo code for πTMSUpdate(a, L) is shown in Algorithm 6. There are two cases: (1)
if node a is a contradiction node, and (2) if it is not. If a is not a contradiction node, then we
add new environments to a’s label, and also compute new prime implicants for the theory
rooted at a by calling AddAndGeneratePrimeImplicants. These new prime implicants
can also be added to a, but may entail other environments originally in L. The procedure
returns a list Ladded of environments that were ultimately added to La (including new
implicants derived) to be propagated forwarded in the similar spirit as the ATMS. Otherwise
in case (2) if a is a contradiction node, then all of the environments in L are conflicts. In this
case, we split all labels in the πTMS, by ensuring that each one resolves the conflicts. This
can be accomplished in a manner similar to that of Conflict-Directed A∗ (Williams & Ragno,
2007). To split an environment in a label on a conflict, we do nothing if that environment
resolves the conflict. If the environment manifests the conflict, we remove it from the label.
Otherwise, we create a new series of environments, each containing additional assignments
that conflict with conflict. Each of these new environments resolves the conflict. Note that
this can at times result in a significant increase in the number of environments in a label.

332

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Algorithm 7: AddAndGeneratePrimeImplicants(L,L+)

Input: A label L, and a label L+ to be added to L.
Output: Adds the environments from L+ to L, along with any new consensuses.

Returns a label containing all environments actually added to L.
1 Q← {}
2 Ladded ← {}
3 Add each ϕi ∈ L+ minimally to L
4 foreach ϕi actually added to L above do
5 Add ϕi to Ladded minimally
6 Add any variables mentioned in ϕi to Q if not already present

7 end
8 Lconsensuses = ConsensusUntilFixedPoint(L,Q)
9 Add each ϕi ∈ Lconsensuses minimally to Ladded

10 return Ladded

The AddAndGeneratePrimeImplicants method is shown in Algorithm 7. It is
responsible for adding the environments in L+ to the label L, generating any new prime
implicants of L, adding those to L, and returning a minimal set of environments Ladded
that have been added to L. Note that Ladded may contain both environments from L+ and
newly-generated prime implicants.

The AddAndGeneratePrimeImplicants maintains a queue Q of variables, over
which to find consensuses. Whenever a new environment ϕi is added to L, all of the variables
referenced in ϕi are pushed onto Q (if they’re not on there already). This is because it may
now be possible to compute new consensuses over those variables. After each ϕi ∈ L+ is
added to L minimally and Q is populated, then the routine ConsensusUntilFixedPoint
is called with Q, which continually computes new consensuses until no new ones can be
generated and returns the resulting additional environments.

The ConsensusUntilFixedPoint takes as input a label L as well as a queue Q of
variables. For each variable in Q, it computes consensuses / implicants by taking the cross
product of satellite candidate sets. Each of the resulting consensuses is a new implicant that
can be added to L. If some newly-computed implicant ϕi is added minimally to L, then its
variables are pushed onto Q if not present already. The process is repeated until the queue
is empty, meaning that no more consensuses can be computed. This “fixed point” means
that L is now a set of prime implicants, as no new, smaller implicants can be derived. This
completes the algorithmic description of the πTMS.

5.7 Using the πTMS for Online Queries

Here, we describe how the prime implicants computed by the πTMS are used to enable
Pike’s reactive online execution. Specifically, we describe how the queries over KB outlined
in Section 2.3 are implemented, given the prime implicants of the goal node NG.

• CorrectTeamPlanExists?(KB): Returns True iff the label of NG contains at
least one environment; else False if it is empty.

333

Levine & Williams

• CouldCommitToAdditionalConstraints?(KB, F): F is a set of constraints. We
take advantage of the fact that F contains only assignment and/or conflicts (and not,
for example, arbitrary propositional sentences) – this is guaranteed via the constraints
noted in Section 3. Without loss of generality, let ϕa denote an environment repre-
senting the conjunction of all assignments in F , and C denote the set of conflicts in
F . To implement the procedure, we search for some prime implicant ϕi in node NG’s
label where ϕi ∧ ϕa does not manifest any of the new conflicts C. If there is such a
ϕi, then there exists some scenario extending ϕi, consistent with ϕa, that satisfies all
of KB’s constraints in addition to F .

• CommitToConstraints(KB, F). Like the above, F will only contain conflict con-
straints or assignments. For each conflict, we encode the constraint by creating a new
contradiction node, and adding a single justification to it corresponding to the conflict.
During label propagation, all labels will be split on this conflict, guaranteeing that
they resolve the conflict. For assignments x = vi in F , we encode a conflict ¬(x = vj)
for each domain value vj 6= vi.

By following the above procedures, we can use the set of prime implicants in the label of
NG to answer the online queries required by Pike’s online execution system. This enables a
robust user interaction that can adapt to the human’s intent as well as other disturbances.

6. Evaluation

In this section, we focus on evaluating two key claims of this work: (1) concurrent intent
recognition and adaptation is advantageous over other approaches that do so separately,
and (2) Pike supports fluid human-robot teamwork through its goal-directed execution.

We validate (1) in simulation, comparing Pike against a competing approach based
on Kirk (Kim et al., 2001) that recognizes intent and adapts via separate processes. We
evaluate (2) with two hardware demonstrations of human-robot teamwork.

We then provide additional performance measurements from simulation on randomly-
structured problems to quantify Pike’s scalability. Finally, we conclude this section with a
discussion about the appropriate amount of flexibility for TPNUs executed with Pike.

6.1 Evaluation in Robotic Testbed

We describe two proof-of-concept hardware demonstrations where Pike has successfully
been applied to tasks requiring human-robot collaboration. These demonstrations show
promise that Pike could successfully be applied to other similar real-world tasks.

Figure 15a shows the familiar household robotics breakfast domain described earlier in
this work. The TPNU for this domain was manually generated. A robotic arm is capable
of picking up either coffee grounds or orange juice. The human may pick up a coffee mug
or a glass for juice. This demo behaves exactly as described earlier: if the human operator
picks up the coffee mug, the robot will infer the human’s intent to make coffee and react by
fetching the nearby coffee grounds. Similarly, had the human instead picked up the glass,
the robot would have adapted by handing the person orange juice.

A computer-vision based sensing system was implemented to act as the activity recog-
nizer in this example. All objects were annotated with AR tags, allowing their 3D location

334

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

(a) Kitchen example in hardware. (b) Airplane manufacturing demo.

Figure 15: Various human-robot hardware demos of Pike. At left, the breakfast TPNU as
described earlier in this document. At right, an airplane manufacturing scenario.

to be measured. To recognize the human’s low-level actions, motion was detected on either
the mug or the glass. If for example the sensing system detected the mug being raised into
the air by the human, then the choice xA1 = mug was published to Pike.

Figure 15b shows a more complex example, in which a human and heterogeneous team
of robots collaboratively construct part of an airplane wing in a manufacturing setting. In
this demo, two robots (right and left) lift up some internal framing of an airplane wing
for the human and the red Baxter robot to collaboratively assemble together. A second
piece, the “rib” must be attached to the frame using a temporary fastener called a cleco.
Depending on the action taken next by the human, the Baxter robot adapts accordingly. If
the human picks up pliers, Baxter will fetch a cleco fastener. If the human instead picks up
a cleco, Baxter will pick up the pliers. If the human picks up both the plier and the cleco,
the robot detects this and waits idly. After the first cleco is fastened, a similar process
occurs for a second cleco. In this way, the robot is able to adapt to the human’s inferred
intent in a manufacturing setting. The TPNU for this domain was manually generated.

In both of these scenarios – the robotic breakfast manufacturing and the airplane manu-
facturing – the robots successfully and proactively assisted the human by selecting adapta-
tions consistent with the team’s goals. As a result, the team was able to complete their tasks.
Qualitatively, the robots acted responsively and chose adaptations at reactive timescales
with little noticeable latency after the activity recognizer published uncontrollable choices
to Pike.

6.2 Simulations

In addition to the hardware demonstrations above, we also validate Pike in simulation.
First, we show empirically that Pike’s approach – namely concurrently recognizing human
intent and adapting online – is advantageous over other approaches where intent recognition
and adaptation occur as separate processes. Second, we evaluate the scalability of Pike.

6.2.1 Advantage of Concurrent Intent Recognition & Adaptation

Pike performs intent recognition and adaptation concurrently : the two occur in an inter-
leaved manner online during execution. This stands in contrast to other approaches where

335

Levine & Williams

intent recognition occurs separately from adaptation, such as systems in which intent is
recognized offline prior to execution, followed subsequently by a suitable adaptation being
chosen and acted upon during the separate execution phase.

In this section, we show the benefit of concurrent intent recognition and adaptation
over an approach that performs separate intent recognition and adaptation. Specifically, we
compare Pike against a variant of Kirk (Kim et al., 2001). Kirk takes as input a TPNU and
makes all choices optimally offline based on a cost function such that the resulting candidate
subplan is temporally consistent. This choice-less subplan can then be dispatched online
with execution monitoring (Levine, 2012). We use a Kirk-inspired strategy as a competing
approach that performs intent recognition and adaptation separately as follows. Before
execution begins, an intent is “inferred” by guessing any intent scenario ϕI such that there
exists a corresponding adaptation scenario ϕA where the candidate subplan ϕI ∧ϕA admits
a correct execution. In other words, a single intent that is consistent with at least one
adaptation is chosen, instead of maintaining multiple hypotheses for possible intents as
Pike does. After this offline intent inference, adaptation occurs subsequently in the separate
execution phase in which the robot acts by following ϕA. In this way, Kirk has made all
of the controllable and uncontrollable choices in the plan, resulting in a single candidate
subplan to be executed.

If there are multiple possible feasible intents, this separated approach may of course
incorrectly guess the true intent. If this occurs during execution and the Kirk executive de-
termines that it made an uncontrollable choice decision incorrectly, replanning is triggered.
For the purpose of these tests, we compute the suffix of the existing TPNU, backtracking
the last incorrect uncontrollable choice and making it correctly based on the now-observed
uncontrollable choice. This approach does not work in every domain, however, so full gener-
ative planning is required in the general case. Furthermore, in many domains it is necessary
to execute a recovery activity if an incorrect choice is made during execution.

Example 6.1 (Recovery Activity). Suppose a robot that is helping to prepare breakfast
incorrectly infers the human’s intent and hence adapts incorrectly: the human’s true intent
is to prepare juice, but the robot incorrectly assumes the person wants coffee and hence
picks up the coffee grounds. Once the robot becomes aware of its mistake, it cannot simply
pick up the juice immediately – it must first execute a recovery activity to repair the world
state caused by the incorrect adaptation. In this example, the recovery activity would be to
first put down the coffee grounds so that the robot has an empty gripper again – a necessary
precondition for picking up the juice in the new plan.

These recovery activities take time, and delay the completion of the overall task. For
these reasons, it is crucial for an online executive to minimize the number of execution
failures that trigger replanning. Having many such failures / replans will result in a poor
quality of interaction with the human, and could substantially delay the human robot team.

We choose a Kirk-inspired approach as our incumbent due to its similarities with Pike.
Both have a similar problem statement, models, and inputs and outputs. Our implemen-
tation also shares as much code as possible: Pike and our Kirk variant share the same
temporal reasoning, dispatching, and execution monitoring components. The key differ-
ence between the two is, again, that Pike performs intent recognition and adaptation

336

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Figure 16: An example k-intents plan for k = 18 and structure [3, 2, 3].

concurrently while maintaining multiple hypotheses, but Kirk performs intent recognition
separately from the adapting execution phase and maintains a single candidate hypothesis.

To compare this variant of Kirk with Pike in a controlled manner, we introduce an
artificial domain called the k-intents domain, generate thousands of example problems from
this domain with varying structure, and dispatch each using the incumbent version of Kirk
while counting the number of execution failures that trigger replanning during each dispatch.
A problem from the k-intents domain consists of a TPNU as well as an action model that
imposes causal links. An example is shown in Figure 16. Each TPNU has a structure
denoted by a set of positive integers [N1, N2, ..., Nm], representing a sequence of choices
between different activities. For each Ni, the TPNU contains a pair of choices: (1) a
human-made uncontrollable choice yi ∈ {1, 2, ..., Ni} followed sequentially by (2) a robot-
made controllable choice xi ∈ {1, 2, ..., Ni}. Each outcome yi = j activates a single activity
denoted hij , and similarly each outcome xi = j activates a single activity denoted rij . Our
action model is such that hij has a single at-end add effect of predicate pij , and rij has a
single at-start precondition of pij , thus forming a causal link from hij to rij . Therefore, in
any causally complete execution, yi = xi for all pairs of choices i = 1, . . . ,m. We call this
a k-intents plan because it has k possible intent scenarios, where k =

∏m
i=1Ni. In terms

of temporal durations, all activities of each yi and xi choice have identical randomized
temporal duration of the form [1 + w, 2 + w] where w is sampled uniformly in the range
[0, 1

2]. Finally, the k-intents domain requires that if the executive makes an incorrect choice
and begins dispatching the wrong activity, then a recovery activity must be executed before
re-planning (thereby backtracking from the mistake) with duration half that of the incorrect
activity’s lower bound (i.e., 1+w

2).

A k-intents problem has the property that for each intent scenario ϕI , there exists a
single adaptation scenario ϕA that together form a correctly executable candidate subplan.
This enables the following observation:

Observation (Pike requires no re-plans for k-intents). Given a k-intents problem, Pike
will execute it and never trigger replanning.

Proof. Pike compactly encodes the set of all correct team subplans in KB. Whenever an
uncontrollable choice yi = j is observed, Pike is immediately able to infer from KB that
the corresponding choice xi = j must be made. This results in a successful execution
where Pike waits for uncontrollable choices to be observed, then makes the corresponding
controllable choice correctly – never failing and triggering a replan.

337

Levine & Williams

101 102 103 104

Number of Intents in Plan (k)

0

2

4

6

8

10

N
u

m
b

er
of

R
ep

la
n

s

Number of Replans vs Number of Plan Intents k

Concurrent IR&A

Separate IR&A

Figure 17: Comparison of replans for concurrent intent recognition and adaptation (dotted
line) versus separate intent recognition and adaptation (dots).

This nice property of Pike does not hold for Kirk, however:

Observation (Kirk may need to replan for k-intents). Given a k-intents problem, Kirk
may need to replan, possibly multiple times, during execution.

Proof. In Kirk, intent recognition happens first, in which an intent ϕI is chosen. Then
separately, an adaptation ϕA is chosen based on ϕI . However, during execution it may very
well be the case that the ϕI guessed at start does not match the actual intent chosen by
the human, which will be revealed online one assignment at a time through a sequence of
uncontrollable choice observations U(t). If this happens, for example if ϕI |= (yi = j) but
Kirk observed that actually the human chose yi = j′ for some j 6= j′, then execution will
fail and replanning will occur.

We experimentally validate these observations, measuring the number of replans required
by the Kirk strategy. Figure 17 compares Kirk’s approach of separate intent recognition &
adaptation to Pike’s concurrent approach that maintains multiple hypotheses. We generate
2000 instances from the k-intents domain and execute each with our Kirk variant and
with Pike, counting the number of replans. Each point represents a k-intents problem
instance, where k is shown on the x-axis and the number of replans needed by the Kirk-
inspired approach is shown on the y-axis. Ni ∈ {2, 3} for all i in these tests. To generate
a single problem, k is sampled logarithmically (so that the x-axis is uniform), and the
closest factorization by 2’s and 3’s is computed. This factorization is shuffled, yielding
a randomized structure for the k-intents problem. Pike and our Kirk variant then each
execute this problem instance, and the number of replans is recorded.

338

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

0 5 10 15 20 25 30 35 40
Separate IR&A Execution Time (s)

0

5

10

15

20

25

30

35

40

C
on

cu
rr

en
t

IR
&

A
E

x
ec

u
ti

on
T

im
e

(s
)

Total Time to Reach Goal

101

102

103

104

N
u

m
b

er
of

In
te

n
ts

(k
)

Figure 18: Comparison of total time to complete the task for concurrent intent recognition
and adaptation versus separate intent recognition and adaptation.

These results in Figure 17 show that as the number of intents in the plan grows, the
average number of replans required by Kirk also grows. Since the number of intents is
often exponential in the number of uncontrollable choices, this indicates that the number
of replans tends to grow roughly linearly with the number of uncontrollable choices in the
plan. Pike did not replan once for any of these problems.

In addition to counting the number of replans, we now analyze the same data from a
different perspective: the total time required to complete the task by executing the entire
plan correctly. This includes a number of factors:

1. Total online dispatch time. The total time required for online dispatching of the
temporal plans (including new plans from replanning). Problem instances with larger
k tend to have more choices and activities, and hence take more time.

2. Any online replanning time and recovery actions. If execution fails due to an
incorrect intent inference and replanning is triggered, we measure the time required to
replan and come up with a new TPNU suffix that completes execution, and perform
temporal and causal link reasoning on this TPNU suffix. Note that we do not count
the initial offline compilation time for either Pike or the Kirk approach (we assume
that the initial compilation can be computed beforehand). We additionally measure
the time delay required for the recovery activity taking 1

2 of the lower bound duration
of the incorrectly-dispatched activity.

339

Levine & Williams

3. Extra overhead of maintaining multiple hypotheses. Pike has a slightly higher
overhead than Kirk due to its online reasoning about many possible intents and adap-
tations (as opposed to Kirk, which considers only a single hypothesis).

For our Kirk variant, our implementation of online replanning and generating the TPNU
suffix is specific to the k-intents domain and hence very fast. In addition, the temporal rea-
soning and causal link reasoning – while employing the same algorithms as Pike– in practice
require less overhead when used with Kirk, because after it chooses a single candidate sub-
plan, the inactivated temporal constraints and activities are eliminated from consideration.

Figure 18 shows the results of executing the 2000 k-intents problems with both Pike and
the Kirk variant. Each problem instance is represented by a point, where the x-axis shows
the total time for the Kirk variant and the y-axis shows the total time for Pike. Points are
shaded by k. We see in general a clear trend in which Pike consistently completes the task
faster than Kirk, especially for larger k. For this data, the average performance improvement
of Pike over Kirk is 13.4%. We note that this improvement is largely dominated by the
time delay incurred by recovery activities. If we were to (unrealistically) ignore such time
delays and assume recovery activities were instantaneous, the performance improvement of
Pike over the Kirk variant would be a much more modest 2.2%. Such a measurement only
considers differences in terms of online replanning (which Pike never performs for k-intents)
and the extra overhead of Pike maintaining multiple hypotheses. While this 2.2% figure
is modest for k-intents, it does demonstrate that the costs incurred by Pike’s maintaining
multiple hypotheses is generally more than offset by the cost of replanning multiple times
during execution, even when that replanning is fast.

In domains where replanning is costly and recovery activities must be taken, the results
of Figure 17 and Figure 18 show a notable advantage for approaches such as Pike that
concurrently perform intent recognition & adaptation by simultaneously and compactly
maintaining many hypotheses.

6.2.2 Scalability Evaluation

In addition to the above, we evaluate Pike’s performance in terms of compilation speed,
execution latency, and KB compactness. For this, we generate different random, structured
problem instances. Each problem instance consists of a randomly-generated TPNU, as well
as a randomly-generated action model to impose causal link structure. While the problem
instances we test on are randomly-generated, we attempt to add structure to the problems to
improve realism. However, as with many artificially, randomized-generated domains, this
setting is likely significantly more challenging to Pike than more engineered, real-world
problems such as those demonstrated on robotic hardware.

We generate each TPNU as follows. We randomly sample a sequence of elements,
where each element is either an activity, a choice, or parallel substructure. For choices and
parallel substructure, we further sample more sequences of elements to build up the TPNU
recursively. When sampling a sequence, the length is chosen from a binomial distribution
whose parameters vary based on the nested depth of the sequence. For example, a top-
level sequence of a TPNU may have a maximum of 10 elements, whereas a sequence being
generated for a parallel or choice substructure nested one level deep may have a maximum
length of 3 elements in our tests. Once the number of elements has been determined, we

340

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Figure 19: An example of a randomly-generated, structured TPNU with sequence, parallel,
and choice structure. Not shown for brevity are the activity durations, nor the causal link
structure imposed by the action model. This TPNU has 25 activities and 64 candidate
subplans.

randomly choose which structure type the element will be: an action, a choice, or a parallel
substructure. The probability mass function for this sampling also varies based on nested
depth; our tests enforce that no more parallel substructure will be sampled at depths of 3
or more, thus limiting the recursion depth and size of the generated TPNUs. For action
substructure, a random activity name is chosen, as are random integer-valued lower and
upper bounds. For both parallel and choice substructure, we further sample more sequences
of elements at the increased nesting level, corresponding to each “branch.” Finally, after
all of the substructure has been recursively constructed, the final step in TPNU generation
imposes an overall temporal constraint that may “squeeze” the plan. This upper bound
of this temporal constraint is currently chosen to be between 0 and 10% shorter than the
minimum time required to execute the TPNU, thereby creating temporal conflicts and
making certain candidate subplans of the TPNU temporally inconsistent. An example of a
randomly-generated TPNU is shown in Figure 19.

Once the TPNU has been constructed, we generate random causal link structure via an
action model. We use PDDL 2.1 (Fox & Long, 2003) to specify the at start conditions and at
end effects of activities in the TPNU to enforce causal link relations. Our approach works as
follows. For each activity Ac in the TPNU, we randomly generate several at start conditions
pi for the activity (in our tests, i ∈ [1, 4] and is chosen via a binomial distribution). For each
of these new conditions added, we create (possibly multiple) supporting producer actions
APij that assert those conditions as effects (thereby creating labeled causal links). To do
this, we compute the set of preceding actions by searching the TPNU structure for all
actions that are guaranteed to come before our consumer action (we also include a special
activity Ainitial representing the initial conditions). As a result, our tests will never require
Pike to add temporal constraints to order a potential producer before its consumer. The
producer candidates APij will be chosen randomly from this set, and pi will be added as an
at end effect to each. If Ainitial is chosen, then pi will be added as an initial condition to the
PDDL problem. The number of labeled causal links is chosen from a binomial distribution
(in our tests, j ∈ [1, 4]). Next, we randomly generate threat activities ATik . Threats are
randomly chosen from the set of actions that precede at least one of the producers APij .
The number of threats is chosen from a binomial distribution, whose parameters limit the
number to the number of causals links or preceding actions. For each threat ATik , ¬pi is
added as an at end effect. Finally, the resulting action model, as initial state, and goal state
are written to PDDL domain and problem files.

We generated 500 such random TPNUs with associated action models, and ran Pike
on each accordingly. Many of these problems admit no correct execution but still serve as

341

Levine & Williams

100 101 102 103 104 105

Number of Candidate Subplans

10−2

10−1

100

101

102

103

T
im

e
(s

)
Constraint Compilation Time

(a) Constraint compilation time

100 101 102 103 104 105

Number of Candidate Subplans

10−2

10−1

100

101

102

T
im

e
(s

)

Worst Online Commit Latency

(b) Maximum online commit latency.

Figure 20: Constraint compilation time for the πTMS, and the maximum latency measured
during online execution. The x-axis is a rough measure of the complexity of the plan; it is
the number of candidate subplans of the TPNU. The y-axis is time in seconds.

a useful point of reference. Our benchmarking setup ran Pike with an upper time limit
of 30 minutes compilation time on each problem. Figures 20a and 20b show the results of
running these simulated examples on Pike, using the πTMS to compile the constraints. On
the left, we see the time required for Pike to compile the constraints and compute the set
of prime implicants (this plot does not include the time to compute the labeled APSP). For
these graphs, each dot represents a problem instance. The y-axis measures time, and the
x-axis measures the number of candidate subplans of the TPNU. This number of candidate
subplans can be computed via a recursive formula, traversing the elements that were used
in constructing the TPNU: sequential structure yields the product of the count of each sub
element, parallel structure operates similarly, choice structure yields the sum of the count
of sub elements, and activities yield the value 1. Applying this to the example shown in
Figure 19 yields 64 candidate subplans. Note that in general, TPNUs that appear relatively
small actually have exponentially many candidate subplans.

As we can see, there is a large variance in compilation times, with the 30 minute time-
out band occurring at the top of the plot (124 samples, or 24.8% of problems). As expected,
compilation time increases with increasing number of candidate subplans.

We note that for many domains of interest, including manufacturing and high-risk set-
tings, spending a significant amount of time beforehand in a compilation process is an
acceptable trade-off to improve online performance. In these settings, there is typically
plenty of available time for the robotic system to plan and prepare before execution begins.
It is therefore not problematic in these domains to spend a significant amount of time before
execution begins on the offline reasoning phase in order to achieve a low online latency.

In Figure 20b, we see the worst case execution latency. Of the 500 problems generated,
94 TPNs admitted correct executions, and 75 of those 94 did not timeout with the πTMS
and were executed. Across each simulated execution, this is the worst-case time of the event
execution loop in the OnlineExecution procedure shown in Algorithm 1 over the entire
course of execution. We note that most calls to this function are actually significantly much

342

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

100 102 104 106 108 1010 1012 1014 1016 1018 1020

Number of Theory Models

100

102

104

106

108

1010

1012

1014

1016

1018

1020

π
T

M
S

G
oa

l
L

ab
el

S
iz

e

πTMS Compactness

Figure 21: Compactness of the πTMS. The x-axis measures the number of models in the
encoded theory as measured by the DSHARP model counter; the y-axis are the number of
prime implicants computed by the πTMS. This ratio is generally much less than 1, indicating
significant space savings.

faster, due to work in caching solution results and the fact that queries for certain events tend
to be much more demanding than for others. The results presented therefore represent a
conservative, worst-case estimate for these challenging, randomly-generated problems. We
see that latency times are generally reactive except for several examples, with 85.3% of
executions having a worst-case latency of 0.5 seconds or less. There are, however, certain
cases for which significantly delays have been recorded; we attribute these to the difficulty
afforded by the random causal link structure.

A key goal of the πTMS is to encode the solution space efficiency. Figure 21 quantifies
this, by plotting (only for problem instances that admit correct executions) the ratio of
the πTMS goal label size to the number of solution models, as measured by the DSHARP
model counter (Muise, McIlraith, Beck, & Hsu, 2010). As can be seen, the number of prime
implicants never exceeds the number of models (despite this being theoretically possible),
but rather in most cases is orders of magnitude less. This indicates that our attempts to
compactly represent the entire solution space of KB are fruitful.

6.3 How Much Flexibility is Best?

In this section, we provide a recommendation on how much flexibility should be afforded to
an executive such as Pike, which accepts a very expressive input representation (i.e., the
TPNU) that can vary wildly in flexibility.

On one end of the spectrum, Pike can be given an extremely rigid TPNU: one with
no choices, and where every activity appears sequentially one after the other. This TPNU

343

Levine & Williams

could further have tight or even completely rigid temporal durations (for instance, [2, 2.01]
or [2, 2], respectively) limiting the possible temporally consistent schedules. Such a TPNU
could be generated by a classical planner or by a temporal planner that generates a fixed
schedule (Benton, Coles, & Coles, 2012). When given a rigid TPNU, Pike is very limited
in the ways it can adapt to achieve online robustness. As a result, such rigid plans may be
brittle in very dynamic domains in which disturbances regularly occur. The performance of
online execution would likely be poor due to failures caused by disturbances, and without
replanning, Pike would be powerless to do better.

On the other end of the spectrum, Pike can be given an extraordinarily flexible TPNU:
one that it is so flexible, in fact, that it could encode every possible plan up to a given
maximum length. Imagine a generalization of the TPNU shown in Figure 11, in which we
have a parallel choice structure for every possible grounded action, repeated k times. This
would allow any plan (up to length k) to be encoded. Essentially, the entire planning process
would be deferred to Pike, which would choose the plan dynamically online. Virtually no
work would be done beforehand by an offline planner. Pike could in theory handle and
successfully execute such a TPNU, though in practice it would be intractable even for
moderate values of k. Pike’s offline compilation algorithm would be required to reason
concurrently about every possible plan up to length k, and – even if this were tractable –
there would be substantial online overhead in maintaining and reasoning about such a huge
set, impacting online latency. So, given this other extreme in which there is a tremendous
degree of flexibility afforded to the executive, Pike would also perform poorly.

Despite these two extremes, evidence exists (e.g., via the total time to reach the goal in
Figure 18) suggesting that affording some degree of flexibility to the online executive can
be very beneficial to improving overall performance. This raises the question: how much
flexibility should there be in the TPNUs given to a least-commitment executive such as
Pike?

We recommend taking a middle ground approach, in which the TPNU encodes as much
flexibility as possible, such that tractability is maintained. One way to achieve this is to
construct TPNUs for Pike that have contingencies to handle only the most common or most
likely outcomes that may arise during execution. This may mean, for example, modeling the
most likely actions that a human is likely to take, or modeling contingencies for a robot to
retry certain tasks that are likely to fail (e.g., if the robot has an unreliable gripper, it may
need to try several times before successfully picking up an object). However, contingencies
for exceedingly unlikely situations probably do not need to be reasoned about or encoded
in the TPNU (e.g., the situation in which an asteroid falls from the sky and hits the robot).
By constructing appropriately flexible TPNUs, Pike will be able to avoid intractability
while achieving a robust online execution.

7. Conclusion & Future Work

This work introduces Pike, an executive for human-robot teamwork that views intent recog-
nition and robot adaptation as two fundamentally interwoven problems. We argue that any
autonomous system must address both of these problems to successfully work alongside
humans. Pike uses a single set of algorithms and a single model to concurrently perform
intent recognition and find suitable robot adaptations for contingent, temporally-flexible

344

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

team plans. The result is a mixed-initiative execution in which the human and robot work
together and influence one another.

We achieve this through the use of temporal reasoning and causal link analysis, which
allows us to find relationships between possible choices in the team plan. This allows Pike
to make controllable choices online that will be consistent with choices made by the human,
thus adapting to intent. For this purpose, we introduce labeled causal links as well as
related extraction algorithms, and show how these labeled causal links can be used to guide
correct decisions online by generating additional temporal and propositional constraints.
This allows the robot to quickly and effectively make choices online based on the outcomes
of the human’s decisions, the preconditions and effects of activities in the plan, temporal
flexibility, and unanticipated disturbances.

There are a number of avenues for future work. One is to examine the effectiveness of
other promising knowledge compilation techniques other than prime implicants, such as d-
DNNF for example, to represent the set of candidate subplans admitting a correct execution
(Muise et al., 2010). Second, we believe it would be valuable to validate Pike’s ability to
enhance fluid human-robot teamwork through a user study in which team fluency metrics are
measured (Nikolaidis & Shah, 2013). Finally, a third avenue that we are currently pursuing
takes a probabilistic approach that models the distribution over likely human choices, so
that the robot may adapt to likely human intents in a chance-constrained manner and better
predict the probability of plan success.

Acknowledgments

We are very grateful to the members of the MERS group in MIT CSAIL for their in-
valuable feedback and discussions on this work. We are particularly indebted to Christian
Muise for a plethora of helpful technical discussions and insights relating to this research
and earlier drafts of this paper, as well as to Andreas Hofmann for his valuable guidance
and advice throughout the research process. The anonymous journal reviewers provided
thought-provoking and detailed feedback that was extremely valuable in strengthening the
final version of this paper. We would also like to thank our collaborators at the Mitsubishi
Electric Company, Yuki Sato and Akihiko Honda, for their generous support and wise
insights from the industrial perspective. This work was funded in part by Boeing grant
MIT-BA-GTA-1 and by Mitsubishi grant 024909-00001.

Appendix A. Proofs

Here we provide proofs of key theorems throughout this work. Note that proofs are presented
in a different order than in the paper, for logical progression and clarity here.

Theorem 4.3 (Executions from T and T ′ correspond). An execution 〈ϕS , TϕS 〉 of the
original TPNU T is correct if and only if there exists a corresponding correct execution
〈ϕ′S , TϕS 〉 of the augmented TPNU T ′ where ϕ′S |= ϕS.

Proof. ⇒. We may assume there exists a correct execution 〈ϕS , TϕS 〉 of T . It is possible to
choose assignments to the additional sp,ec and op,ec,eP ,eT variables in V ′ not present in V,

345

Levine & Williams

appending those assignments to ϕS conjunctively to create a ϕ′S where ϕ′S |= ϕS . We use
this to construct an execution with an identical schedule, 〈ϕ′S , TϕS 〉 of T ′. Since 〈ϕS , TϕS 〉
is causally complete, every precondition of every event must be satisfied by the time of the
event’s execution. We also know that there can be no consumers that come before their
supporting producers in TϕS , and no threats may occur between producers or consumers.
We can therefore trace this support through properly selected assignments to the sp,ec and
op,ec,eP ,eT variables. The additional guarded temporal constraints present in T ′ but not
in T must be satisfied by TϕS , as the added temporal constraints only serve to preclude
such causally incomplete executions. Therefore, the execution 〈ϕ′S , TϕS 〉 of T ′ must be
temporally consistent. We now argue that it is also causally complete. Since T ′ and T
share the same events E (each with preconditions and effects from the same activities A),
and the events occur at the same time in both executions by virtue of sharing the same
schedule TϕS , the preconditions of all events would be satisfied in T ′ at their proper times
– just the same as in T . Therefore, the execution 〈ϕS , TϕS 〉 of T ′ is causally complete, and
correct.

⇐. We may assume there exists a correct execution 〈ϕ′S , TϕS 〉 of T ′. Let ϕS be the
projection of ϕ′S (which assigns all the variables V ′ of T ′) onto the variables V of T – i.e.,
removing the additional sp,ec and op,ec,eP ,eT variable assignments. Similar to the above case,
we know that both executions are causally complete since they share the same schedule,
events, and activities with preconditions and effects. Furthermore, since T contains a subset
of the temporal constraints from T ′, and since TϕS satisfies all of those constraints from
T ′, it must also satisfy all of the temporal constraints of T . The execution 〈ϕS , TϕS 〉
is therefore temporally consistent. We have shown it is both temporally consistent and
causally complete, so it is correct with respect to T .

Theorem 4.5 (Temporally consistent executions of T ′ with KB are also causally complete,
and correct). Let 〈ϕ′S , TϕS 〉 be a temporally consistent execution of T ′ where ϕ′S satisfies
KB. Then this execution is also causally complete (and hence correct).

Proof. We show that the additional propositional and temporal constraints added during
Pike’s compilation guarantee causal completeness. For ϕ′S to be a solution of KB, it must
satisfy all of KB’s constraints and assign all variables, including the original variables, the
sp,ec variables, and the op,ec,eP ,eT variables.

Let event ec be any event activated by ϕ′S with precondition p; for causal completeness,
we show that p is expected to hold at the time ec is scheduled by TϕS . Suppose without loss
of generality that sp,ec = eP

4. By the additional temporal constraints added to the problem
guarded in part by this assignment, we know that (1) eP must also be activated by ϕ′S , and
(2) eP must precede ec in TϕS (else TϕS would be temporally inconsistent). Furthermore,
any threat eT cannot occur between eP and ec in TϕS , as required by the other temporal
constraints added and possibly the op,ec,eP ,eT variables. Therefore, assuming no unmodeled
disturbances, p will hold by the time ec is scheduled in TϕS .

Thus since the execution is temporally consistent and causally complete, it is also correct.

4. The reader may wonder why we exclude the possibility of sp,ec =⊥. Any such assignment however is
guaranteed to not satisfy KB since ec is activated, and hence ϕS would not even be represented by KB.

346

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Theorem 4.6 (ϕ′S satisfies KB iff correct). ϕ′S satisfies KB if and only if there exists a
correct execution 〈ϕ′S , TϕS 〉 of T ’.

Proof. ⇒. We show that if ϕ′S satisfies KB, then there exists a correct execution 〈ϕ′S , TϕS 〉 of
T ’. Since all temporal conflicts are encoded in KB, by Theorem 4.1, there exists a temporally
consistent execution 〈ϕ′S , TϕS 〉 of T ′. By Theorem 4.5, this temporally consistent execution
must also be correct.

⇐. We show that if there exists a correct execution 〈ϕ′S , TϕS 〉 of T ′, then ϕ′S satisfies all
of the constraints in KB. This execution must be both temporally feasible and causally com-
plete. Since it is temporally feasible, TϕS satisfies all of the temporal constraints activated
by ϕ′S . So, ϕ′S must satisfy all of the temporal conflict constraints derived by the labeled
APSP present in KB. Next, we consider the causal completeness constraints in KB. Since
the execution is causally complete, we know that there must be some supporting producer
eP for each precondition p of every consumer event ec, and any threats must be resolved.
We may therefore assume that ϕS assigns sp,ec = eP and any associated op,ec,eP ,eT variables
appropriately to satisfy the additional propositional constraints in KB. Since all constraints
in KB are satisfied, then ϕ′S satisfies KB.

Theorem 4.7 (CanExecuteEventNow? is correct). Let 〈ϕex, T̃ϕex〉 be the current, cor-
rect partial execution of T ′. Then CanExecuteEventNow?(ei, t) returns True at time
t if and only if the partial execution of T ′ that would result if ei is executed at time t –
namely 〈ϕex ∧ ϕei , T̃ϕex ∪ {ei = t}〉 – is correct.

Proof. The CanExecuteEventNow? procedure begins by obtaining the set of additional
constraints F1, ..., Fn required to execute event ei at time t (one of these constraints is ϕei).

It then returns whether KB ∧
(
F1 ∧ ... ∧ Fn

)
is satisfiable. We prove that this conjunction

is satisfiable if and only if 〈ϕex ∧ ϕei , T̃ϕex ∪ {ei = t}〉 is correct.

⇒. We may assume that there exists some ϕ′S satisfying KB ∧
(
F1 ∧ ... ∧ Fn

)
. ϕ′S

must therefore satisfy both KB and F1 ∧ ... ∧ Fn. Since F1 ∧ ... ∧ Fn is satisfied by ϕ′S ,
then by Theorem 3.2, the partial execution 〈ϕex ∧ ϕei , T̃ϕex ∪ {ei = t}〉 can be extended to
a temporally consistent execution 〈ϕ′S , TϕS 〉 of T ′. Considering that KB is satisfied, then
by Theorem 4.5, this temporally consistent execution must also be causally complete and
hence correct. Therefore, the partial execution is correct.

⇐. We may assume that 〈ϕex ∧ ϕei , T̃ϕex ∪ {ei = t}〉 is correct, or namely that there
exists an extending execution 〈ϕ′S , TϕS 〉 of T ′ that is correct. By Theorem 4.6, ϕ′S satisfies
KB. Since this execution is temporally consistent, by Theorem 3.2, ϕ′S satisfies F1∧ ...∧Fn.

Therefore, the assignment ϕ′S satisfies KB ∧
(
F1 ∧ ... ∧ Fn

)
.

Theorem 4.4 (Correct Executions of Original T). Let 〈ϕex, T̃ϕex〉 be a partial execution at
some point during execution of the augmented TPNU T ′. This partial execution is correct
with respect to the augmented TPNU T ′ if and only if it is also correct with respect to the
original TPNU T .

Proof. The partial execution 〈ϕex, T̃ϕex〉 is correct with respect to T ′ iff it can be extended
to a correct execution 〈ϕ′S , TϕS 〉 of T ′. By Theorem 4.3, this correct execution of T ′ exists

347

Levine & Williams

iff 〈ϕS , TϕS 〉 is a correct execution of T ′, where ϕ′S |= ϕS . This correct execution of T must
be an extension of 〈ϕex, T̃ϕex〉. Since 〈ϕS , TϕS 〉 is an extended and correct execution of T
iff 〈ϕex, T̃ϕex〉 is correct with respect to T , we have proven the claim.

Theorem 4.2 (Dominated Causal Links are Irrelevant). Dominated labeled causal links do
not influence the correctness of an execution.

Proof. Suppose we have a TPNU T containing consumer event ec with precondition p.
Further suppose there is a dominating labeled causal link from producer ePdom

, and a
dominated labeled causal link from producer eP . As a thought experiment, we introduce
a modified version of T , which we call Trem, that is exactly the same as T except that p
has been removed from the effects of eP (and thus the dominated labeled causal link has
disappeared). We will prove that if some execution 〈ϕS , TϕS 〉 is correct with respect to
T , then it is also correct with respect to Trem – thus demonstrating the irrelevance of the
dominated labeled link with respect to correctness, and highlighting that it can be safely
removed from consideration.

Proof by contradiction. We assume that execution 〈ϕS , TϕS 〉, even though correct with
respect to T , is incorrect with respect to Trem. There can be only one way for this to
happen: if the precondition p of ec is no longer satisfied in the execution of Trem due to p
having been removed as an effect from eP . If this is the case, then eP must be the supporting
producer of ec in the execution of T – i.e., ec must be activated, eP must be activated, eP
must be the latest-occurring producer before ec, and no threat event eT is executed during
the time between eP and ec. If eP were not the supporting producer in the execution of T ,
then removing p from the effects of eP would have no bearing on the execution correctness
since there would be some other supporting producer for ec or ec would not be activated.

As eP is the supporting producer for ec in the execution of T , eP must be activated.
By the definition of labeled causal link dominance, ϕeP |= ϕePdom

, so ePdom
must also be

activated. Additionally, by the definition of labeled causal link dominance, eP ≺ ePdom
|ϕec

and ePdom
≺ ec|ϕeP

. Therefore TϕS (eP) < TϕS (ePdom
) < TϕS (ec). No activated threats may

be scheduled in the range between ePdom
and ec, since they are guaranteed to already be

scheduled outside the strictly larger range from eP to ec. We have therefore shown that the
producer ePdom

is activated, is a later-occurring producer than eP , and is not threatened.
This contradicts our earlier conclusion that eP must have been the supporting producer.
Therefore, our initial assumption must be incorrect, and so the execution 〈ϕS , TϕS 〉 must
be correct with respect to Trem.

Appendix B. Online Execution is NP-Complete

In this section, we prove that Pike’s online execution strategy is NP-complete. Specifically,
we show that the problem of determining whether a correct execution exists for a TPNU is
NP-complete. Note that this is a key operation performed by Pike both offline, and also
online during execution as execution proceeds.

Theorem 3.1 (Checking for a Correct Execution is NP-Complete). The problem of checking
if there exists a correct execution 〈ϕS , TϕS 〉 for a TPNU T is NP-complete.

348

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Figure 22: Example transformation of a SAT theory to an equivalent TPNU. The SAT
theory is satisfiable if and only if the TPNU is causally complete. The leftmost activities
represent assigning SAT variables to true or false. Rightmost activities represent clauses.
Dotted arrows represent causal link structure over the (clause-holds ...) predicates. For
each causal link of a given shade, at least one of the producer activities must be activated
for the TPNU admit a correct execution.

Proof. To prove NP-completeness, we show that (1) this problem is in NP, and (2) that it
is NP-hard.

To show that this problem is in NP, it suffices to show that a polynomial time algorithm
exists that can verify if an execution 〈ϕS , TϕS 〉 is correct with respect to T . This can be done
easily by (1) checking whether TϕS satisfies the temporal constraints of T , and subsequently
(2) computing the predicted state at each event execution time in TϕS , and checking if if
the preconditions of each event are satisfied by those states. If both of these checks pass,
the execution is both temporally consistent and causally complete, and hence correct.

To show that this problem is NP-hard, we describe a polynomial time reduction from
the NP-complete SAT problem. Specifically, we show how an arbitrary SAT problem can
be translated into a TPNU with a suitable action model such that this TPNU admits a
correct execution iff the SAT theory is satisfiable.

In our translation, models of the SAT theory map one-to-one with candidate subplans
that admit a correct execution. An example of our encoding is shown in Figure 22. To
construct such a TPNU, we first create a small choice structure with two activities for
each boolean variable xi in the SAT problem. We include a finite-domain choice variable
vxi in our TPNU corresponding to xi. Its domain is vxi ∈ {True,False}, corresponding
to whether xi or ¬xi holds in a model of the SAT theory, respectively. We create an
activity for each case: (assign-xi) and (assign-not-xi). Both of these activities have no
preconditions, and we will specify the effects of these activities shortly. Our choice structure
is such that activity (assign-xi) will be activated and dispatched iff vxi = True and (hence
xi holds in the corresponding model of the SAT theory), otherwise (assign-not-xi) will

349

Levine & Williams

be activated iff vxi = False (and ¬xi holds). Our TPNU contains such a choice structure
for each variable in our SAT theory. These structures are placed in parallel in the TPNU.

Temporally after all of these choice structures, we add additional activities to the TPNU
corresponding to each disjunctive clause ci of the SAT theory (without loss of generality, we
assume the theory is expressed in CNF). For each clause, we create an activity (clause-ci)
with preconditions that will be specified shortly, and with no effects.

All temporal constraints in the TPNU are ordering constraints [ε,∞].

Finally, we now tie the clause activities to the variable activities, in such a way as to
guarantee that the TPNU admits a correct execution iff the SAT theory is satisfiable. We
do this by carefully choosing the preconditions of the (clause-ci) activities and effects of
the (assign-...) activities so as to encode causal link structure. Each clause ci in the theory
contains a set of literals, each denoted lij . We note that lij will be either positive (such
as xj) or negative (such as ¬xj). For each clause ci, we add a precondition to the activity
(clause-ci) that is denoted (clause-holds ci). For each literal lij in clause ci, we add an
effect to the corresponding activity (assign-lij) of (clause-holds ci).

This completes our translation from SAT to a TPNU, which can be performed in poly-
nomial time. We now show its correctness; namely that the SAT theory is satisfiable iff the
TPNU admits a correct execution.

Let ϕS be some team scenario of the TPNU, and let A be the corresponding full as-
signment of the SAT theory. Additionally, let TϕS be any schedule for ϕS satisfying the
temporal constraints (one is guaranteed to exist due to our problem’s temporal constraints).
The execution 〈ϕS , TϕS 〉 is temporally consistent. We show that it is causally complete (and
hence correct) iff A is a model of the SAT theory. To do this, we show that the precondi-
tions of (clause-ci) will be satisfied in execution 〈ϕS , TϕS 〉 iff the corresponding clause ci
in the SAT theory is satisfied by A. This is because each (clause-ci) has the single pre-
condition (clause-holds ci), which will hold iff at least one of the activities (assign-li0),
(assign-li1), ... is activated by ϕS . This is analogous to clause ci holding iff at least one of
the literals li0, li1, ... is true. Therefore, all activities in the TPNU will have their precondi-
tions met (and hence the execution is correct) iff all of the clauses in the SAT theory are
satisfied (and hence the theory is satisfiable).

Appendix C. Extensions to the Labeled APSP

In this appendix, we describe a modified version of the labeled all-pairs shortest path al-
gorithm introduced in Drake (Conrad & Williams, 2011). This modification is designed
to improve the quality of querying the individual matrix entries, and relies on computing
new labeled values logically implied by others. We first introduce those new labeled values
below, and then proceed to describe our modified labeled APSP algorithm.

C.1 Resolutions for LVSs

We now present a novel extension to the original LVS that improves compactness and the
tightness of the query operator for finite-domain variables through a form of resolution.

350

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Consider an example LVS in which we have a single discrete-domain variable x ∈ {1, 2},
and the constraint on t with the following LVS L:

t < {(3, {x = 1}), (4, {x = 2})}
What is the value QL({}), the tightest constraint on t over all environments? Since {}

entails neither {x = 1} nor {x = 2}, neither labeled value in the LVS apply, and hence the
LVS cannot guarantee any bound. QL({}) = ∞, so we are left with the loosest possible
constraint t <∞.

We can improve the tightness of the returned constraint, however, if we consider the
discrete domain of the variable x. We add completions to the LVS, which intuitively are
new labeled value sets logically implied by others in the LVS. These completions allow the
query operation to return tighter values.

Returning to the above example, the LVS actually can guarantee the bound t < 4,
which is of course much tighter than t < ∞. This is because x will be either 1 or 2 in
any scenario, so one of the two labeled values must apply. We can thus be sure that the
“loosest” possible value (here, 4) will hold for the constraint. So, given the domain of x,
this LVS could equivalently be represented as {(3, {x = 1}), (4, {})}.

Here is another example. Suppose we have

t < {(−1, {x = 1, y = 2}), (−2, {x = 2, y = 2}), (∞, {})}
where x, y ∈ {1, 2}. We are interested in the query QL({y = 2}). The query operation on
this LVS would result in t < ∞ as the tightest constraint, but again, we can do better.
Noting that if y = 2 then either one of {x = 1, y = 2} or {x = 2, y = 2} must hold, we can
guarantee the looser of these labeled values, namely t < −1.

In general, when computing QL(ϕ) and L contains a set of labeled values whose envi-
ronments partition S(ϕ), then at least one of these labeled values must hold true. We may
therefore take the loosest constraint value among these labeled values.

Theorem C.1. Suppose we have a discrete variable x ∈ {v1, v2, . . . , vk}, and an LVS over
t with relation <R of the form

t <R {(a1, ϕ1 ∧ {x = v1}), (a2, ϕ2 ∧ {x = v2}), . . . , (ak, ϕk ∧ {x = vk}), . . .}
where ϕ1, . . . , ϕk are arbitrary environments such that

ϕM =
k∧
i=1

ϕi 6=⊥

Then, we can guarantee that ϕM ⇒ t ≤R maxR

{
a1, a2, . . . , ak

}
.

Proof. Since ϕM = ϕ1∧ϕ2∧ . . .∧ϕk, we know that ϕM |= ϕi for all i = 1 . . . k. Thus, if ϕM
holds, then each of the ϕi must hold. We also know that in any scenario, precisely one of
the x = vj constraints must hold. Therefore, exactly one of the ϕi ∧ {x = vi} environments
must hold, if ϕM holds. In other words, ϕM |= ϕi ∧ {x = vi} for exactly one i. We do not
know which i however, and hence which labeled value applies, but we know that exactly
one does. As such, when ϕM holds, we conservatively take the loosest possible constraint

among the i labeled values, namely t ≤R maxR

{
a1, a2, . . . , ak

}
.

351

Levine & Williams

Building upon this theorem, we devise the following inference rule to augment an LVS
with additional implied labeled values:

(a1, ϕ1 ∪ {x = v1})
(a2, ϕ2 ∪ {x = v2})

. . .
(ak, ϕk ∪ {x = vk})(
max
i R
{ai},

∧
i

ϕi

)

where x ∈ {v1, ..., vk} and
∧
i ϕi 6=⊥.

This inference rule for LVSs is analogous to hyper-resolution in boolean logic. Since
the new labeled value is logically implied by the other labeled values (i.e., an implicant), it
can safely be added to L without changing correctness while improving the tightness of the
query operator.

Algorithm 8: FindLVSCompletions(L, x)

Input: An LVS L, and a variable x over which to find completions
Output: An LVS C of completions, suggesting pairs to add.

1 W ← {(−∞R, {})}
2 foreach assignment x = vi in x’s domain do
3 Y = {}
4 foreach (aL, ϕL) ∈ L do
5 if ϕL assigns x = vi then
6 ϕR = ϕL \ {x = vi}
7 AddLVS((aL, ϕR), Y)

8 end

9 end
10 W ← LVSBinaryOp(maxR(·, ·), Y,W)

11 end
12 return W

The pseudo code for an algorithm to find all such completions, FindLVSCompletions,
is outlined in Algorithm 8. This algorithm finds completions over the variable x for LVS L.
It maintains an LVS W , which is incrementally grown to contain all completions that could
be added to L. W starts containing only the weakest possible completion, (∞R, {}). W
is then updated to contain completions for each possible variable assignment x = vi in x’s
domain. For each assignment x = vi, a temporary LVS Y is produced that contains all pairs
consistent with that assignment but stripping off x = vi from the label of the value. This
happens in Lines 3 – 9. Line 10 incrementally computes multiple possible ϕM , along with
the corresponding maxima by employing a binary operation between W and Y to update
W .

352

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Algorithm 9: LabeledTightFloydWarshall

Input: A TPNU 〈V, E , C,A〉
Output: Di,j , a matrix of shortest path distances between pairs of events in E (each

entry an LVS)
1 foreach i, j ∈ E do
2 Dij ← {(∞, {})}
3 end
4 foreach i ∈ E do
5 Dii ← {(0, {})}
6 end
7 foreach 〈i, j, l, u, ϕ〉 ∈ C do
8 Dij ← {(u, ϕ)}
9 Dji ← {(−l, ϕ)}

10 end
11 foreach k ∈ E do
12 foreach i ∈ E do
13 foreach j ∈ E do
14 Cij = LVSBinaryOp(+, Dik, Dkj)
15 Dij ←MergeWithCompletions(Dij , Cij)

16 end

17 end

18 end
19 return D

[0, 0] [0, 0]

[0, 0] [0, 0]

[0, 0] [0, 0]

[0, 0] [0, 0]

[0, 0]

[0, 0] [0, 0]

[0, 0] [0, 0]

(action ...)

[2, 4]

(action ...)

[2, 4]

(action ...)

[2, 4]

(action ...)

[2, 4]

(action ...)

[2, 4]

(action ...)

[2, 4]

...

Figure 23: A TPNU with N choices and completely symmetric temporal constraints. With-
out completions, the LVS in Di,j from the last event to the first event would in general
contain 2N labeled values. With completions, it would contain just one.

C.2 Labeled APSP

We present a modified version of the original labeled APSP algorithm extended to generate
LVS completions as described earlier. For the original version, please see Drake (Conrad,
2010). Pseudo code for the labeled APSP is shown in Algorithm 9. It takes in a TPNU
with events E and temporal constraints C, performs the above transformation to a labeled
distance graph implicitly, and then runs a generalized version of Floyd Warshall. The
algorithm begins in Lines 1 – 10 by initializing a matrix Di,j with a new LVS for each pair
of events. The shortest distances from every event to itself is {(0, {})}. Other off-diagonal
entry weights are added corresponding to each episode, and others are all set to {(∞, {})}.

Lines 11 – 18 provide the signature “triple for loops” of the Floyd Warshall algorithm.
The key difference between our labeled APSP algorithm and the original presented in Drake

353

Levine & Williams

Algorithm 10: MergeWithCompletions(A,L)

Input: An LVS A, and another LVS L that should be merged into A
Output: Returns updated A

1 Q← {}
2 foreach pair (al, ϕl) in L do
3 added? = AddLVS(A, (al, ϕl))
4 if added? then
5 Push each variable listed in ϕl to Q if not already present
6 end

7 end
8 while Q is not empty do
9 x← pop variable from Q

10 C ← FindLVSCompletions(A, x)
11 foreach pair (ac, ϕc) in C do
12 added? = AddLVS(A, (ac, ϕc))
13 if added? then
14 Push each variable listed in ϕc to Q if not already present
15 end

16 end

17 end
18 return A

is shown in Line 15, which calls a new method MergeWithCompletions(Dij , Cij), in-
stead of the original Merge method. This method computes completions for the LVS,
ensuring that queries performed upon it will return the tightest possible values.

Pseudo code for MergeWithCompletions is shown in Algorithm 10. This method
takes as input an LVS A and a second LVS L whose pairs will be added to A. The algorithm
first adds each labeled value in L to A, maintaining dominance via AddLVS. The algorithm
also maintains a queue Q over variables for which completions may exist. This queue
contains a list of all the variables referenced by any labeled value pair added to A. The
second phase of the algorithm, beginning on Line 8, repeatedly pops variables off of Q and
calls the FindLVSCompletions algorithm to find new implied labeled values for L given
the current variables that were added. Each newly generated completion is added to A, and
more variables are possibly pushed onto Q if more resolutions could be possible. Finally,
the modified A is returned.

An example where our modified labeled APSP is beneficial is shown in Figure 23. In this
example, a TPNU is shown with N sequential and identical sets of choices of two actions,
each with temporal bounds of [2, 4]. Without the MergeWithCompletions modification
above, the LVS shortest path from the first event to the last event of the plan would contain
2N pairs; one for each possible team scenario. However, with our addition, this LVS will
contain just a single pair.

While operating with completions can in some cases greatly improve the performance of
the labeled APSP algorithm, such as in the example in Figure 23, this is not always the case.

354

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

We have found that the performance in general is greatly dependent on the numerics of the
temporal constraints, and on any encoded “symmetry” across the temporal constraints. For
example, if the [2, 4] temporal constraints in Figure 23 were randomized by adding Gaussian
noise to them, the performance would drastically decrease, due to the fact that the shortest
possible path between different events would now be a much more complex function of what
choices are made.

References

Alili, S., Warnier, M., Ali, M., & Alami, R. (2009). Planning and plan-execution for human-
robot cooperative task achievement. In 19th International Conference on Automated
Planning and Scheduling.

Ambros-Ingerson, J. A., & Steel, S. (1988). Integrating planning, execution and monitoring.
In Shrobe, H. E., Mitchell, T. M., & Smith, R. G. (Eds.), Proceedings of the 7th
National Conference on Artificial Intelligence, St. Paul, MN, USA, August 21-26,
1988., pp. 83–88. AAAI Press / The MIT Press.

Avrahami-Zilberbrand, D., Kaminka, G., & Zarosim, H. (2005). Fast and complete symbolic
plan recognition: Allowing for duration, interleaved execution, and lossy observations.
In Proc. of the AAAI Workshop on Modeling Others from Observations, MOO.

Ayan, N. F., Kuter, U., Yaman, F., & Goldman, R. P. (2007). Hotride: Hierarchical or-
dered task replanning in dynamic environments. In Proceedings of the 3rd Workshop
on Planning and Plan Execution for Real-World Systems (held in conjunction with
ICAPS 2007), Vol. 2.

Benton, J., Coles, A. J., & Coles, A. (2012). Temporal planning with preferences and time-
dependent continuous costs. In McCluskey, L., Williams, B. C., Silva, J. R., & Bonet,
B. (Eds.), Proceedings of the Twenty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012.
AAAI.

Bui, H. H. (2003). A general model for online probabilistic plan recognition. In Gottlob,
G., & Walsh, T. (Eds.), IJCAI-03, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pp. 1309–
1318. Morgan Kaufmann.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning.
Artif. Intell., 69 (1-2), 165–204.

Carberry, S. (2001). Techniques for plan recognition. User Modeling and User-Adapted
Interaction, 11 (1-2), 31–48.

Chien, S. A., Knight, R., Stechert, A., Sherwood, R., & Rabideau, G. (2000). Using iterative
repair to improve the responsiveness of planning and scheduling.. In AIPS, pp. 300–
307.

Clodic, A., Cao, H., Alili, S., Montreuil, V., Alami, R., & Chatila, R. (2008). SHARY: A
supervision system adapted to human-robot interaction. In ISER, Vol. 54 of Springer
Tracts in Advanced Robotics, pp. 229–238. Springer.

355

Levine & Williams

Conrad, P. R., Shah, J. A., & Williams, B. C. (2009). Flexible execution of plans with choice.
In International Conference on Automated Planning and Scheduling (ICAPS).

Conrad, P. R., & Williams, B. C. (2011). Drake: An efficient executive for temporal plans
with choice. Journal of Artificial Intelligence Research, 42, 607–659.

Conrad, P. R. (2010). Flexible execution of plans with choice and uncertainty. Master’s
thesis, Massachusetts Institute of Technology.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial
Intelligence Research, 17 (1), 229–264.

de Kleer, J. (1986a). An assumption-based TMS. Artif. Intell., 28 (2), 127–162.

de Kleer, J. (1986b). Extending the ATMS. Artif. Intell., 28 (2), 163–196.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial intelli-
gence, 49 (1), 61–95.

Effinger, R. T., Williams, B. C., Kelly, G., & Sheehy, M. (2009). Dynamic controllability of
temporally-flexible reactive programs.. In ICAPS.

Elliott, P. H. (2004). An efficient projected minimal conflict generator for projected prime
implicate and implicant generation. Master’s thesis, Massachusetts Institute of Tech-
nology.

Fikes, R., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artif. Intell., 2 (3/4), 189–208.

Finzi, A., Ingrand, F., & Muscettola, N. (2004). Model-based executive control through re-
active planning for autonomous rovers. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, Vol. 1, pp. 879–884.
IEEE.

Forbus, K. D. (1993). Building Problems Solvers, Vol. 1. MIT press.

Fox, M., & Long, D. (2003). PDDL2.1: an extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research (JAIR), 20, 61–124.

Freedman, R. G., & Zilberstein, S. (2017). Integration of planning with recognition for re-
sponsive interaction using classical planners. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA., pp. 4581–4588.

Geib, C. W., Weerasinghe, J., Matskevich, S., Kantharaju, P., Craenen, B. G. W., & Petrick,
R. P. A. (2016). Building helpful virtual agents using plan recognition and planning.
In Sturtevant, N., & Magerko, B. (Eds.), Proceedings of the Twelfth AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2016, October
8-12, 2016, Burlingame, California, USA., pp. 162–168. AAAI Press.

Goldman, R. P., Geib, C. W., & Miller, C. A. (1999). A new model of plan recognition.
In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pp.
245–254. Morgan Kaufmann Publishers Inc.

Haigh, K. Z., & Veloso, M. M. (1998). Interleaving planning and robot execution for asyn-
chronous user requests. In Autonomous agents, pp. 79–95. Springer.

356

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Hunsberger, L., Posenato, R., & Combi, C. (2012). The dynamic controllability of condi-
tional STNs with uncertainty. CoRR, abs/1212.2005.

Ingrand, F., & Ghallab, M. (2017). Deliberation for autonomous robots: A survey. Artif.
Intell., 247, 10–44.

Karpas, E., Levine, S. J., Yu, P., & Williams, B. C. (2015). Robust execution of plans
for human-robot teams.. In International Conference on Automated Planning and
Scheduling (ICAPS) Robotics Track.

Kautz, H. A., & Allen, J. F. (1986). Generalized plan recognition.. In AAAI, Vol. 86, pp.
32–37.

Kean, A., & Tsiknis, G. K. (1990). An incremental method for generating prime impli-
cants/impicates. J. Symb. Comput., 9 (2), 185–206.

Keren, S., Gal, A., & Karpas, E. (2014). Goal recognition design. In Proceedings of
the Twenty-Fourth International Conference on Automated Planning and Scheduling,
ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-26, 2014.

Kim, P., Williams, B. C., & Abramson, M. (2001). Executing reactive, model-based pro-
grams through graph-based temporal planning. In IJCAI, pp. 487–493.

Lane, S. D. (2016). Propositional and activity monitoring using qualitative spatial relations.
Master’s thesis, Massachusetts Institute of Technology.

Lemai, S., & Ingrand, F. (2004). Interleaving temporal planning and execution in robotics
domains. In AAAI, Vol. 4, pp. 617–622.

Levine, S. J. (2012). Monitoring the execution of temporal plans for robotic systems.
Master’s thesis, Massachusetts Institute of Technology.

Levine, S. J., & Williams, B. C. (2014). Concurrent plan recognition and execution for
human-robot teams. In Proceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire,
USA, June 21-26, 2014.

Mcallester, D., & Rosenblitt, D. (1991). Systematic nonlinear planning. In In Proceedings
of the Ninth National Conference on Artificial Intelligence, pp. 634–639.

Meneguzzi, F., & de Silva, L. (2015). Planning in BDI agents: a survey of the integration
of planning algorithms and agent reasoning. Knowledge Eng. Review, 30 (1), 1–44.

Mirsky, R., Stern, R., Gal, Y. K., & Kalech, M. (2016). Sequential plan recognition. In
Kambhampati, S. (Ed.), Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp.
401–407. IJCAI/AAAI Press.

Muise, C., Beck, J. C., & McIlraith, S. A. (2013). Flexible execution of partial order plans
with temporal constraints. In Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, pp. 2328–2335. AAAI Press.

Muise, C., McIlraith, S., Beck, J. C., & Hsu, E. (2010). Fast d-DNNF compilation with
sharpSAT. In Proceedings of the 8th AAAI Conference on Abstraction, Reformulation,
and Approximation, pp. 54–60. AAAI Press.

357

Levine & Williams

Muise, C. J., Beck, J. C., & McIlraith, S. A. (2016). Optimal partial-order plan relaxation
via MaxSAT. Journal of Artificial Intelligence Research, 57, 113–149.

Muise, C. J., McIlraith, S. A., & Beck, J. C. (2012). Improved non-deterministic planning
by exploiting state relevance. In McCluskey, L., Williams, B. C., Silva, J. R., & Bonet,
B. (Eds.), Proceedings of the Twenty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012.
AAAI.

Muscettola, N., Morris, P. H., & Tsamardinos, I. (1998). Reformulating temporal plans for
efficient execution. In Proceedings of the Sixth International Conference on Principles
of Knowledge Representation and Reasoning (KR’98), Trento, Italy, June 2-5, 1998.,
pp. 444–452.

Nikolaidis, S., & Shah, J. A. (2013). Human-robot cross-training: computational formu-
lation, modeling and evaluation of a human team training strategy. In Kuzuoka,
H., Evers, V., Imai, M., & Forlizzi, J. (Eds.), ACM/IEEE International Conference
on Human-Robot Interaction, HRI 2013, Tokyo, Japan, March 3-6, 2013, pp. 33–40.
IEEE/ACM.

Pattison, D., & Long, D. (2010). Domain independent goal recognition. In Ågotnes, T.
(Ed.), STAIRS 2010 - Proceedings of the Fifth Starting AI Researchers’ Symposium,
Lisbon, Portugal, 16-20 August, 2010, Vol. 222 of Frontiers in Artificial Intelligence
and Applications, pp. 238–250. IOS Press.

Pecora, F., Cirillo, M., Dell’Osa, F., Ullberg, J., & Saffiotti, A. (2012). A constraint-based
approach for proactive, context-aware human support. Journal of Ambient Intelligence
and Smart Environments, 4 (4), 347–367.

Penberthy, J. S., & Weld, D. S. (1992). UCPOP: A sound, complete, partial order planner
for ADL. In Nebel, B., Rich, C., & Swartout, W. R. (Eds.), Proceedings of the 3rd
International Conference on Principles of Knowledge Representation and Reasoning
(KR’92). Cambridge, MA, USA, October 25-29, 1992., pp. 103–114. Morgan Kauf-
mann.

Quine, W. V. (1959). On cores and prime implicants of truth functions. The American
Mathematical Monthly, 66 (9), 755–760.

Ramı́rez, M., & Geffner, H. (2010). Probabilistic plan recognition using off-the-shelf clas-
sical planners. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010.

Robinson, J. A. (1965). Automatic deduction with hyper-resolution. International journal
of computer mathematics, 1 (3), 227–234.

Russell, S., & Norvig, P. (1995). Artificial intelligence: a modern approach. Prentice hall.

Santana, P. H., Thiébaux, S., & Williams, B. (2016). RAO*: An algorithm for chance-
constrained POMDP’s. In Thirtieth AAAI Conference on Artificial Intelligence.

Santana, P. H., & Williams, B. (2014). Chance-constrained consistency for probabilistic
temporal plan networks. In International Conference on Automated Planning and
Scheduling (ICAPS).

358

Watching and Acting Together: Concurrent Plan Recognition and Adaptation

Shah, J. A., Conrad, P. R., & Williams, B. C. (2009). Fast distributed multi-agent plan
execution with dynamic task assignment and scheduling.. In International Conference
on Automated Planning and Scheduling (ICAPS).

Sreedharan, S., Chakraborti, T., & Kambhampati, S. (2018). Handling model uncertainty
and multiplicity in explanations via model reconciliation. In de Weerdt, M., Koenig,
S., Röger, G., & Spaan, M. T. J. (Eds.), Proceedings of the Twenty-Eighth Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2018, Delft, The
Netherlands, June 24-29, 2018., pp. 518–526. AAAI Press.

Sukthankar, G., Geib, C., Bui, H. H., Pynadath, D., & Goldman, R. P. (2014). Plan, Ac-
tivity, and Intent Recognition: Theory and Practice (1st edition). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Tsamardinos, I., Muscettola, N., & Morris, P. H. (1998). Fast transformation of temporal
plans for efficient execution. In Mostow, J., & Rich, C. (Eds.), Proceedings of the
Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Appli-
cations of Artificial Intelligence Conference, AAAI 98, IAAI 98, July 26-30, 1998,
Madison, Wisconsin, USA., pp. 254–261. AAAI Press / The MIT Press.

Tseitin, G. S. (1968). On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic, 2, 115–125.

Veloso, M. M., Pollack, M. E., & Cox, M. T. (1998). Rationale-based monitoring for planning
in dynamic environments.. In AIPS, pp. 171–180.

Vidal, T. (1999). Handling contingency in temporal constraint networks: from consistency to
controllabilities. Journal of Experimental & Theoretical Artificial Intelligence, 11 (1),
23–45.

Vidal, T. (2000). A unified dynamic approach for dealing with temporal uncertainty and
conditional planning. In Proceedings of the Fifth International Conference on Artificial
Intelligence Planning Systems, Breckenridge, CO, USA, April 14-17, 2000, pp. 395–
402.

Wang, D., & Williams, B. (2015). tburton: A divide and conquer temporal planner. In
Twenty-Ninth AAAI Conference on Artificial Intelligence.

Williams, B. C., Ingham, M. D., Chung, S. H., & Elliott, P. H. (2003). Model-based pro-
gramming of intelligent embedded systems and robotic space explorers. Proceedings
of the IEEE, 91 (1), 212–237.

Williams, B. C., & Ragno, R. J. (2007). Conflict-directed A* and its role in model-based
embedded systems. Discrete Applied Mathematics, 155 (12), 1562–1595.

Yu, P., Fang, C., & Williams, B. C. (2014). Resolving uncontrollable conditional temporal
problems using continuous relaxations.. In International Conference on Automated
Planning and Scheduling (ICAPS).

359

