
Journal of Artificial Intelligence Research 63 (2018) 1-49 Submitted 05/18; published 09/18

Human-Machine Collaborative Optimization
via Apprenticeship Scheduling

Matthew Gombolay GOMBOLAY@MIT.EDU
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02114 USA

Reed Jensen RJENSEN@LL.MIT.EDU
Jessica Stigile JESSICA.STIGILE@LL.MIT.EDU
MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420 USA

Toni Golen TGOLEN@BIDMC.HARVARD.EDU
Neel Shah NTSHAH@BIDMC.HARVARD.EDU
Beth Israel Deaconess Medical Center
330 Brookline Avenue
Boston, MA 02215 USA

Sung-Hyun Son SSON@LL.MIT.EDU
MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420 USA

Julie Shah JULIE A SHAH@CSAIL.MIT.EDU

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02114 USA

Abstract

Coordinating agents to complete a set of tasks with intercoupled temporal and resource con-
straints is computationally challenging, yet human domain experts can solve these difficult
scheduling problems using paradigms learned through years of apprenticeship. A process for
manually codifying this domain knowledge within a computational framework is necessary to
scale beyond the “single-expert, single-trainee” apprenticeship model. However, human do-
main experts often have difficulty describing their decision-making processes. We propose a
new approach for capturing this decision-making process through counterfactual reasoning in
pairwise comparisons. Our approach is model-free and does not require iterating through the
state space. We demonstrate that this approach accurately learns multifaceted heuristics on
a synthetic and real world data sets. We also demonstrate that policies learned from human
scheduling demonstration via apprenticeship learning can substantially improve the efficiency
of schedule optimization. We employ this human-machine collaborative optimization technique
on a variant of the weapon-to-target assignment problem. We demonstrate that this technique
generates optimal solutions up to 9.5 times faster than a state-of-the-art optimization algorithm.

©2018 AI Access Foundation. All rights reserved.

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

1. Introduction

Resource scheduling and optimization is a costly, challenging problem that affects almost every
aspect of our lives. In healthcare, for example, patients with non-urgent needs who experience pro-
longed wait times have higher rates of treatment noncompliance and missed appointments (Kehle,
Greer, Rutks, & Wilt, 2011; Pizer & Prentice, 2011). In military engagements, the weapon-to-target
assignment problem requires warfighters to deploy the minimal amount of resources in order to
mitigate as many threats as possible, maximizing the duration of survival (Lee, Su, & Lee, 2003).

The problem of optimal task allocation and sequencing with upper- and lowerbound temporal
constraints (i.e., deadline and wait constraints) is NP-Hard (Bertsimas & Weismantel, 2005), and
domain-independent approaches to real-world scheduling problems quickly become computation-
ally intractable (Boese, Kahng, & Muddu, 1994; Streeter & Smith, 2006; Do & Kambhampati,
2003). Yet, human domain experts are able to learn from experience to develop strategies, heuris-
tics and rules-of-thumb to effectively respond to these problems. The challenge we pose is to au-
tonomously learn the strategies employed by these domain experts; this knowledge can be applied
and disseminated more efficiently with such a model than with a “single-expert, single-apprentice”
model.

Researchers have made significant progress toward capturing domain-expert knowledge from
demonstration (Berry, Gervasio, Peintner, & Yorke-Smith, 2011; Abbeel & Ng, 2004; Konidaris,
Osentoski, & Thomas, 2011b; Zheng, Liu, & Ni, 2015; Odom & Natarajan, 2015; Vogel, Ramach,
Gupta, & Raux, 2012; Ziebart, Maas, Bagnell, & Dey, 2008). In one recent work (Berry et al.,
2011), an AI scheduling assistant called PTIME learned how users preferred to schedule events.
PTIME was subsequently able to propose scheduling changes when new events occurred by solving
an integer program. Two limitations to this work exist, however: PTIME requires users to explicitly
rank their preferences about scheduling options to initialize the system, and also uses a complete
solver that, in the worst-case scenario, must consider an exponential number of options.

Research focused on capturing domain knowledge based solely on user demonstration has led
to the development of inverse reinforcement learning (IRL) (Abbeel & Ng, 2004; Konidaris et al.,
2011b; Zheng et al., 2015; Odom & Natarajan, 2015; Vogel et al., 2012; Ziebart et al., 2008). IRL
serves the dual purpose of learning an unknown reward function for a given problem and learning a
policy to optimize that reward function.

However, there are two primary drawbacks to IRL for scheduling problems, computational
tractability and the need for an environment model. The classical apprenticeship learning algo-
rithm, developed by Abbeel and Ng in 2004, requires repeated solving of a Markov decision process
(MDP) until a convergence criterion is satisfied. However, enumerating a large state space, such as
those common to large-scale scheduling problems involving hundreds of tasks and tens of agents,
can quickly become computationally intractable due to memory limitations. Approximate dynamic
programming approaches exist that essentially reformulate the problem as regression (Konidaris
et al., 2011b; Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland,
Ostrovski, et al., 2015), but the amount of data required to regress over a large state space remains
challenging, and MDP-based scheduling solutions exist only for simple problems (Wu, Xu, Zhang,
& Liu, 2011; Wang & Usher, 2005; Zhang & Dietterich, 1995).

IRL also requires a model of the environment for training. At its most basic, reinforcement
learning uses a Markovian transition matrix that describes the probability of transitioning from an
initial state to a subsequent state when taking a given action. In order to address circumstances

2

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

in which environmental dynamics are unknown or difficult to model within the constraints of a
transition, researchers have developed Q-Learning and its variants, which have had much recent
success (Mnih et al., 2015). However, these approaches require the ability to “practice,” or explore
the state space by querying a black-box emulator to solicit information about how taking a given
action in a specific state will change that state.

Another prior method involves directly learning a function that maps states to actions (Cher-
nova & Veloso, 2007; Terrell & Mutlu, 2012; Huang & Mutlu, 2014). For example, Ramanujam
and Balakrishnan (2011) trained a discrete-choice model using real data collected from air traffic
controllers, and showed how this model can accurately predict the correct runway configuration for
an airport. Sammut, Hurst, Kedzier, and Michie (1992) applied a decision tree model for an au-
topilot to learn to control an aircraft from expert demonstration. Action-driven learning techniques
offer great promise for learning policies from expert demonstrators, but they have not been applied
to complex scheduling problems. However, in order for these methods to succeed, the scheduling
problem must be modeled in a way that allows for efficient computation of a scheduling policy.

In this paper, we propose a technique, which we call “apprenticeship scheduling,” to capture this
domain knowledge in the form of a scheduling policy. Our objective is to learn scheduling policies
through expert demonstration and validate that schedules produced by these policies are of com-
parable quality to those generated by human or synthetic experts. Our approach efficiently utilizes
domain-expert demonstrations without the need to train with an environment emulator. Rather than
explicitly modeling a reward function and relying upon dynamic programming or constraint solvers
– which become computationally intractable for large-scale problems of interest – our objective is to
use action-driven learning to extract the strategies of domain experts in order to efficiently schedule
tasks.

The key to our approach is the use of pairwise comparisons between the actions taken (e.g.,
schedule agent a to complete task τi at time t) and the set of actions not taken (e.g., unscheduled
tasks at time t) to learn the relevant model parameters and scheduling policies demonstrated by
the training examples. Our approach was inspired by cognitive studies of human decision-making,
in which learning through comparisons – and, in particular, paired comparisons – was identified
as a foundation of human multi-criteria decision-making (Saaty, 2008; Lombrozo, 2006). Rather
than explicitly query human experts about their preferences, our approach functions more like a
human apprentice who learns by observing a sequence of actions performed by a demonstrator. Our
approach automatically computes pairwise comparisons of the features describing the action taken
at each moment in time relative to the corresponding set of actions not taken, producing sets of both
positive and negative training examples. We formulate the apprenticeship scheduling problem as
one of learning a pairwise preference model, and construct a classifier that is able to predict the rank
of all possible actions and, in turn, predict which action the expert would ultimately take at each
moment in time.

We validated our approach using both a synthetic data set of solutions for a variety of schedul-
ing problems and two real-world data sets of demonstrations by human experts solving a variant
of the weapon-to-target assignment problem (Lee et al., 2003), known as anti-ship missile defense
(ASMD), and a hospital resource allocation problem (Gombolay, Yang, Hayes, Seo, Liu, Wadhwa-
nia, Yu, Shah, Golen, & Shah, 2016). The synthetic and real-world problem domains we used to
empirically validate our approach represent two of the most challenging classes within the taxon-
omy established by Korsah, Stentz, and Dias (2013).

3

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

The first problem we considered was the vehicle routing problem with time windows, tempo-
ral dependencies and resource constraints (VRPTW-TDR). Depending upon parameter selection,
this family of problems encompasses the traveling salesman (Type 1), job-shop scheduling, multi-
vehicle routing and multi-robot task allocation problems, among others. We found that apprentice-
ship scheduling accurately learns multifaceted heuristics that emulate the demonstrations of experts
solving these problems. We observed that an apprenticeship scheduler trained on a small data set
of 15 scheduling demonstrations selected the correct scheduling action with up to 95% accuracy.
We also empirically characterized the extent to which our method is robust to errors that humans
– even experts – may commonly make. We found that our method is able to learn a high-quality
representation of the demonstrator’s underlying heuristic from a “noisy” expert demonstrator that
selects an incorrect action up to 20% of the time.

Next, we observed that apprenticeship scheduling learned a policy for ASMD that outper-
formed the average ASMD domain expert for a statistically significant portion of problem scenarios
(p < 0.05) when trained on 15 perfect expert-generated schedules. Third, we trained a decision
support tool to assist nurses in managing resources – including patient rooms, staff and equipment
– in a Boston hospital. We found that 90% of the high-quality recommendations generated by the
apprentice scheduler were accepted by the nurses and doctors participating in the study.

In this work, we also introduce a new technique called Collaborative Optimization via Ap-
prenticeship Scheduling (COVAS), which incorporates learning from human expert demonstration
within an optimization framework to automatically and efficiently produce optimal solutions for
challenging real-world scheduling problems. This technique applies apprenticeship scheduling to
generate a favorable (if suboptimal) initial solution to a new scheduling problem. To guarantee that
the generated schedule is serviceable, we augment the apprenticeship scheduler to solve a constraint
satisfaction problem, ensuring that the execution of each scheduling commitment does not directly
result in infeasibility for the new problem. COVAS uses this initial solution to provide a tight bound
on the value of the optimal solution, substantially improving the efficiency of a branch-and-bound
search for an optimal schedule.

We first presented the apprenticeship scheduling technique in a prior work (Gombolay, Jensen,
Stigile, Son, & Shah, 2016), and also previously discussed an application of the technique to the
hospital scheduling problem (Gombolay et al., 2016). This paper incorporates multiple extensions
to these original works: First, we improve the performance of the original technique through the
use of hyperparamter tuning. Second, we incorporate the data set acquired from the hospital do-
main in the previous study (Gombolay et al., 2016) to validate apprenticeship scheduling using a
second real-world data set consisting of scheduling decisions generated by hospital nurses. Third,
we present COVAS, an algorithmic extension that enables human-machine collaborative optimiza-
tion. COVAS leverages apprenticeship scheduling to optimally solve scheduling problems, whereas
apprenticeship scheduling alone does not provide guarantees for solution quality. We report here
that COVAS is able to leverage viable (but imperfect) human demonstrations to quickly produce
globally optimal solutions. Fourth, we show that COVAS can transfer an apprenticeship scheduling
policy learned for a small problem to optimally solve problems involving twice as many variables as
those observed during any training demonstrations, and also produce an optimal solution an order
of magnitude faster than mathematical optimization alone.

4

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

2. Background

In this section, we briefly review goal and policy learning, as well as methods for bridging machine
learning (ML) and optimization. We also discuss the applicability and limitations of prior works
related to learning through scheduling demonstration.

2.1 Goal Learning

Here, we review both IRL-based techniques and methods proposed for recommender and preference-
learning systems within the realm of goal learning.

2.1.1 INVERSE REINFORCEMENT LEARNING

Learning from demonstration (LfD) is an active subfield of ML (Abbeel & Ng, 2004; Berry et al.,
2011; Ijspeert, Nakanishi, & Schaal, 2002; Konidaris et al., 2011b; Zheng et al., 2015; Odom &
Natarajan, 2015; Terrell & Mutlu, 2012; Thomaz & Breazeal, 2006; Vogel et al., 2012; Ziebart
et al., 2008). Arguably, the most ubiquitous approach to LfD is inverse reinforcement learning,
which is founded on a Markov decision process M = (S,A, T, γ,R) where:

• S is a set of states.

• A is a set of actions.

• T : S × A × S → [0, 1] is a transition function, where T (s, a, s′) is the probability of being
in state s′ after executing action a in state s.

• R: S → R (S×A→ R) is a reward function that takes the form ofR(s) orR(s, a) depending
upon whether the reward is assessed for being in a state or for taking a particular action within
a state.

• γ ∈ [0, 1) is the discount factor for future rewards.

In a Markov decision process, the goal is to learn a policy π : S → A that dictates which action
to take in each state in order to maximize the infinite-horizon expected reward starting in state s.
This reward is defined by a value function, V π(s), as shown in Equation 1:

V π(s) = Eπ

[
T∑
t=0

γtR(st)|so = s

]
(1)

The value function satisfies the Bellman equation for all s ∈ S, as shown in Equation 2.

V π(s) = R(s) + γ

[∑
s′∈S

T (s, π(s), s′)V π(s′)

]
(2)

A policy π is an optimal policy π∗ iff ∀s ∈ S Equation 3 holds.

π(s) = argmax
a∈A

(∑
s′∈S

T (s, a, s′)
(
R(s′) + γV π(s′)

))
(3)

5

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

The problem of inverse reinforcement learning (IRL) is to take as input 1) a Markov deci-
sion process without a known reward function R and 2) a set of m expert demonstrations O =
{(so, ao), (s1, a1), . . . , (sm, am)}, and to then determine a reward function R that produces the ex-
pert demonstrations. IRL has previously been successfully applied to autonomous driving (Abbeel
& Ng, 2004), aerobatic helicopter flight (Abbeel, Coates, Quigley, & Ng, 2007), urban naviga-
tion (Ziebart et al., 2008), spoken dialog systems (Chandramohan, Geist, Lefevre, & Pietquin,
2011), and more. Researchers have also extended the capability of IRL algorithms to enable learn-
ing from operators with differing skill levels (Ramachandran & Amir, 2007) and identification of
operator subgoals (Michini & How, 2012).

The computational bottleneck of IRL and dynamic programming, in general, is the size of the
state space. Algorithms that solve the IRL problem (Lagoudakis & Parr, 2003; Sutton, McAllester,
Singh, Mansour, et al., 1999; Tesauro, 1995; Watkins & Dayan, 1992) typically work by iteratively
updating the estimate of the future expected reward of each state until convergence. However, for
many problems of interest, the number of states is too numerous to hold in the memory of modern
computers, and the time required for the expected future reward to converge can be impractical (Wu
et al., 2011; Wang & Usher, 2005; Zhang & Dietterich, 1995).

Even if one approximately solves the RL problem (Konidaris et al., 2011b; Sutton et al., 1999),
RL is still ill-suited for handling the temporal dependencies among tasks inherent in scheduling
problems. Some researchers have attempted to extend the traditional Markov decision process to
characterize temporal phenomena, but these techniques do not scale efficiently (Bradtke & Duff,
1994; Das, Gosavi, Mahadevan, & Marchalleck., 1999; Yu, 2010). The inherent challenge is that
complex real-world scheduling problems are highly non-Markovian: the next state of the environ-
ment is dependent upon the history of actions taken to arrive at the current state and time. The few
works that have addressed scheduling problems via RL assume models that are too restrictive: tasks
must be periodic, occur with a regular frequency, and be independent, meaning there are no tempo-
ral dependencies between the tasks (Zhang & Dietterich, 1995; Wu et al., 2011). Even work (Aydin
& Öztemel, 2000) that relaxes the assumption of determinism and allows for tasks comprising pre-
defined subtasks linked through precedence (as opposed to tasks representing atomic units of work)
still does not consider wait-, deadline-, or resource-based constraints, nor does it consider problems
in the XD complexity class (Korsah et al., 2013).

2.1.2 RECOMMENDER/PREFERENCE-LEARNING SYSTEMS

While not typically considered LfD, recommender systems are important within the field of goal
learning. Recommender systems – those that use collected information to predict a rating or degree
of preference a consumer would give for an item (e.g., goods or services) – have become ubiquitous
during the Internet age, including services such as Netflix, which predicts which movies a viewer
would want to watch (Koren, Bell, & Volinsky, 2009). These systems generally fall into one of
two categories: collaborative filtering (CF) or content-based filtering (CB) (Park, Kim, Choi, &
Kim, 2012). In essence, collaborative filtering is a technique through which an algorithm learns to
predict content for a single user based upon his or her history and that of other users who share his
or her interests. However, CF suffers from problems related to data sparsity and scalability (Park
et al., 2012). CB works by comparing content that the user has previously viewed with new content
(Claypool, Gokhale, Miranda, Murnikov, Netes, & Sartin, 1999; Herlocker, Konstan, Terveen, &
Riedl, 2004; Sarwar, Karypis, Konstan, & Riedl, 2000). The challenge of content-based filtering

6

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

lies in the difficulty of measuring the similarities between two items; also, these systems can often
over-fit, only predicting content that is very similar to that which the user has previously used (Basu,
Hirsh, & Cohen, 1998; Schafer, Frankowski, Herlocker, & Sen, 2007). Researchers have previously
employed association rules (Cho, Kim, & Kim, 2002), clustering (Lihua, Lu, Jing, & Zongyong,
2005; Linoff & Berry, 2004), decision trees (Kim, Cho, Kim, Kim, & Suh, 2002), k-nearest neighbor
algorithms (Kim, Kim, & Ryu, 2009), neural networks (Anders & Korn, 1999; Ibnkahla, 2000), link
analysis (Cai, He, Wen, & Ma, 2004), regression (Malhotra, 2010), and general heuristic techniques
(Park et al., 2012) to recommend content to users.

Ranking the relevance of Web pages is a key focus within systems that recommend suggested
topics to users (Cao, Qin, Liu, Tsai, & Li, 2007; Haveliwala, 2002; Herbrich, Graepel, & Ober-
mayer, 2000; Jin, Valizadegan, & Li, 2008; Page, Brin, Motwani, & Winograd, 1999; Pahikkala,
Tsivtsivadze, Airola, Boberg, & Salakoski, 2007; Li, Wu, & Burges, 2007; Valizadegan, Jin, Zhang,
& Mao, 2009; Volkovs & Zemel, 2009). The seminal paper on Web page ranking by Page et al.
(1999) initiated the computational study of page ranking with an algorithm, PageRank, which as-
sesses the relevance of a page by determining the number of other pages that link to the page in
question . Since that paper, many have focused on developing better models for recommending
Web pages to users; these models can then be trained using various ML algorithms (Haveliwala,
2002; Herbrich et al., 2000; Jin et al., 2008; Pahikkala et al., 2007).

There are three primary approaches to modeling the importance of a Web page: pointwise,
pairwise, and listwise ranking. In pointwise ranking, the goal is to determine a score for a Web page
via regression analysis, given features describing its contents (Li et al., 2007; Page et al., 1999).
Pairwise ranking is typically a classification problem in which the aim is to predict whether one page
is more relevant than another, given a user’s query (Jin et al., 2008; Pahikkala et al., 2007). More
recent efforts have focused on listwise ranking, in which researchers develop loss-functions based
on entire lists of ranked Web pages, rather than individual pages or pairwise comparisons between
pages (Cao et al., 2007; Valizadegan et al., 2009; Volkovs & Zemel, 2009). Our approach draws
inspiration from the Web page pairwise ranking formulation in order to improve the tractability of
learning scheduling policies from demonstration. We further discuss the relationship between prior
work and our own approach in Section 3.2.

The recommender and preference-learning system most closely related to ours is that of Berry et
al. (2006, 2011), which focused specifically on scheduling applications. Their goal was to develop
an autonomous scheduling assistant that learned the preferences of the user. Berry et al. produced
a number of works over the course of a decade, culminating in the development of an automated
scheduling assistant, called PTIME. The purpose of PTIME was to help human coworkers schedule
meetings. Berry et al. incorporated extensive questionnaires to solicit the preferences of human
workers regarding how they preferred to arrange their schedules. PTIME would take these prefer-
ences as input and map them to a mathematical objective function. When a new meeting needed
to be arranged amongst the workers, PTIME would solve a mixed-integer mathematical program
to determine the optimal time for this meeting to occur. However, after approximately a decade of
work, the ultimate acceptance rate of PTIME’s suggestions was only 60%. These authors conducted
a retrospective analysis of their work and presented the following guidance for future researchers
(Berry et al., 2011):

1. “A personal assistant must build trust.”

2. “An assistive agent must aim to support, rather than replace, the user’s natural process.”

7

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

These tenants have served as an inspiration for our own work, and we believe all future works should
begin with these key design principles.

Other works have outlined alternate approaches to elicitation and utilization of user preferences.
De Grano, Medeiros, and Eitel (2009) presented a method for optimizing scheduling shifts among
nurses by soliciting nurses’ preferences via an auction process. In particular, De Grano et al. used an
iterative approach in which nurses first bid on which shifts they would prefer; then, their algorithm
matches nurses to shifts based on their collective bids. Next, the nurses view the results and adjust
their bids to push the algorithm toward a more preferable result. This process repeats over a number
of iterations. The need for this iterative approach is due to the fact that nurses’ preferences were not
independent: each nurse’s preferences would change according to the preferences of others. Further,
it was not feasible for De Grano et al. to codify a rule set or learn a policy for each nurse (De Grano
et al., 2009).

Boutilier, Brafman, Domshlak, Hoos, and Pool (2004, 1999) and Öztürké, Tsoukiı̀s, and Vincke
(2005) alternatively focused on modeling preferences as a set of ceteris paribus (all other things
being equal) preference statements. In these works, researchers solicited preferences from users,
typically in the form of binary comparisons. For example, consider the problem of determining
which food and drink to serve a guest (Boutilier et al., 2004). In this scenario, one may already
know the following:

• The guest prefers to drink red over white wine when eating a steak.

• The guest prefers steak over chicken.

• The guest prefers to drink white wine when eating chicken.

Determining the optimal food/drink pairing can be performed in polynomial-time; however, identi-
fying the relative optimality two pairings is NP-complete (Boutilier et al., 2004).

Other researchers have focused on developing techniques for efficiently incorporating prefer-
ences into constraint satisfaction problems (Dubois & Fortemps, 1999; Lin, Xie, Guo, & Wang,
2005; Rossi, Venable, & Walsh, 2009; Rudová & Murray, 2002; Schiex, Fargier, Verfaillie, et al.,
1995; Soomer & Franx, 2008). A subset of this work has specifically addressed the unique chal-
lenges of solving such formulations for scheduling problems (Benton, Coles, & Coles, 2012; Khatib,
Morris, Morris, & Rossi, 2001; Minton, Johnston, Philips, & Laird, 1992; Morris, Morris, Khatib,
Ramakrishnan, & Bachmann, 2004; Peintner & Pollack, 2004; Yorke-Smith, Venable, & Rossi,
2003; Rossi, Venable, & Yorke-Smith, 2006).

These methods, which are designed for scheduling problems, still suffer from issues with com-
putational tractability. As mentioned previously, Berry et al. (2006) used a preference learning al-
gorithm to codify an objective function, which could then be solved via mathematical optimization.
Similarly, Wilcox and Shah (2012) used mathematical programming to maximize the incorporation
of users’ scheduling preferences into the system. However, mathematical programming is not a
tractable solution technique for many real-world scheduling problems (Bertsimas & Weismantel,
2005), including the anti-ship missile defense and hospital resource allocation problems presented
in this work. Solving these problems typically requires specification of domain-specific heuristics
in order to focus the search space. In this work, we present a system designed to automatically learn
a heuristic policy from expert demonstration, and then apply the heuristic in order to intelligently
explore the search space, reducing computation time.

8

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

2.2 Policy Learning

One alternative approach to goal learning is policy learning, which focuses on learning a mapping
from states to actions (Chernova & Veloso, 2007; Huang & Mutlu, 2014; Sammut et al., 1992;
Ramanujam & Balakrishnan, 2011). This technique has been applied to learn cognitive decision-
making tasks from human experts (Ramanujam & Balakrishnan, 2011; Sammut et al., 1992; Silver,
Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam,
Lanctot, et al., 2016; Inamura, Inaba, & Inoue, 1999; Rybski & Voyles, 1999), including an air
traffic control task (Ramanujam & Balakrishnan, 2011) and a piloting task (Sammut et al., 1992).

Ramanujam and Balakrishnan (2011) investigated learning a discrete-choice model for how
air traffic controllers decide which runways to use for arriving and departing aircraft according
to weather, arrival and departure demand, and other environmental factors. The authors trained a
discrete-choice model on real data from air traffic controllers and showed how the model was able
to accurately predict the correct runway configuration for the airport .

Sammut et al. (1992) applied a decision tree model to train an airplane’s autopilot from expert
demonstration. Their approach generates a separate decision tree for each of the following control
inputs: elevators, ailerons, flaps, and thrust. In their investigation, Sammut et al. noted that each
pilot demonstrator could execute a planned flight path differently. These demonstrations could be
in disagreement, thus making the learning problem significantly more difficult. To cope with the
variance between pilot executions, the system learned a separate model for each pilot.

Other systems learn policies through interaction and feedback, as well as demonstration, from
the user (Baranes & Oudeyer, 2013; Bullard, Akgun, Chernova, & Thomaz, 2016; Chernova &
Veloso, 2008; Grollman & Jenkins, 2008; Inamura et al., 1999; Konidaris, Kuindersma, Grupen, &
Barto, 2011a; Zeng & Kuipers, 2016). For example, Chernova and Veloso developed a Gaussian
mixture model able to interactively learn from demonstration (Chernova & Veloso, 2007). Their
algorithm first learns a reasonable policy for a given task (e.g., driving a car along a highway),
then solicits user feedback by constructing scenarios involving a high level of uncertainty. Support
vector machines are then applied to learn when an autonomous agent should request additional
demonstrations (Chernova & Veloso, 2008).

Policy learning is an important complement to goal- or reward-learning. While goal- and
reward-learning approaches are able to capture high-level goals in order to produce quality sched-
ules (Abbeel & Ng, 2004; Berry et al., 2006), these methods are limited by their reliance on com-
putational methods for exploring the search space to identify a high-quality schedule. IRL relies on
dynamic programming, which requires state space enumeration, while approaches such as PTIME
(Berry et al., 2006) rely upon mathematical programming. Policy learning, on the other hand, is
well-suited to guiding exploration of a state space. With a function mapping states to actions, a
system can construct a schedule by taking sequential scheduling actions (e.g., assigning a worker
to a task at the present time). In this sense, a learned policy can serve as a type of domain-specific
heuristic to intelligently guide a search within a large state space. However, we are unaware of any
prior attempts to apply policy learning to the scheduling domain.

2.3 Blending Machine Learning and Optimization

Typically, reward and policy learning are limited by the quality of the relevant demonstrations.
However, even if the demonstrations are high-quality, one cannot assume demonstrators nor their
demonstrations will be optimal – or even uniformly suboptimal (Aleotti & Caselli, 2006; Sammut

9

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

et al., 1992). As such, some have sought to directly model the sub-optimality of demonstrations.
For example, Zheng et al. (2015) cleverly extended the work of Ramachandran and Amir (2007)
to model the trustworthiness of the demonstrator within a softmax formulation transition function
for reinforcement learning, as shown in Equation 4. In this equation, Qπ

∗(R)(s, a) is the expected
reward for taking action a in state s, assuming reward functionR with the associated optimal policy
π∗:

Pr((s, a)|α;R) =
eαQ

π∗(R)(s,a)∑
a′ e

αQπ
∗(R)(s,a′)

(4)

Through such a mechanism, it is possible to learn a policy that outperforms human demonstrators
by inferring the intended goal rather than the demonstrated goal. Zheng et al. showed that their
approach was better able to capture the ground-truth objective function from imperfect training
data than Bayesian IRL (Ramachandran & Amir, 2007), which does not include a trustworthiness
parameter for demonstrations. They validated their approach using a synthetic data set in an exper-
iment with the goal of identifying the best route through an urban domain. However, one limiting
assumption from their work is that a system is able to accurately measure the trustworthiness of the
demonstrations – especially the relative trustworthiness amongst the demonstrations.

AlphaGo is another well-known ML-optimization framework recently developed to play Go, a
turn-based strategy game (Silver et al., 2016). At its core, AlphaGo is based on policy learning;
it uses a Monte-Carlo Tree Search (MCTS) that is guided by a neural network policy trained on a
data set of 30 million examples of demonstrations by human Go experts. A policy π is employed
to initially explore the search tree, and two additional components are used to evaluate the quality
of each branching point in the tree. The first component is a second policy, π′, which is identical to
the first except that the neural network includes fewer nodes. This smaller size enables the second
policy to rapidly play the Go game to completion in order to predict a winner (Silver et al., 2016).

The second component of AlphaGo is a value function trained via Q-learning. The developers
rewired and duplicated the initial policy π to enable improvement through self-play. These dupli-
cated, rewired policies πSelf−Play would repeatedly play Go against one another and use a policy
gradient approach, developed by Sutton et al. (1999), to iteratively improve their policies; the devel-
opers then captured a data set of 30 million moves taken by these policies. They then used this data
set to train a Q-learning algorithm to predict the expected value of taking a given action in a given
state. Interestingly, the authors noted that these self-play policies actually performed worse than the
original π trained on actual human demonstrations, but did not have a cohesive theory for why this
was the case. Nonetheless, AlphaGo serves as a key example for how policy learning, coupled with
optimization techniques (e.g., Q-learning and policy gradient methods) can yield performance on
strategy games that is superior to that of humans.

The learning-optimization system most related to our work is that developed by Banerjee, Ono,
Roy, and Williams (2011), who considered a scheduling problem for aircraft carrier flight deck op-
erations. The system repeatedly solved a scheduling problem wherein the variables remained the
same (i.e., variables describing which workers performed which tasks and when), but the constraints
relating the variables (e.g. temporal constraints between tasks) changed. Using a mixed-integer lin-
ear program (MILP) formulation, they proposed a ML-optimization pipeline in which the system
performed a branch-and-bound search over the integer variables, and used the prediction of a regres-
sion algorithm trained on examples of previously solved problems to provide a provable lowerbound
for the optimality of the current integer variable assignments. This approach relied upon the gen-
eration of a large database of solutions to train the regression algorithm; however, this generation

10

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

requires the costly exercise of repeatedly solving a large set of MILPs, which can be intractable for
large-scale scheduling problems.

3. Model for Apprenticeship Learning

In this section, we present a framework for learning, via expert demonstration, a scheduling policy
that correctly determines which task to schedule as a function of task state.

3.1 Problem Domain

We intend for our apprenticeship learning model to address a variety of scheduling problem types.
Korsah et al. (2013) provided a comprehensive taxonomy for classes of scheduling problems, which
vary according to formulation of constraints, variables and objective or utility function (Korsah
et al., 2013). Within this taxonomy, there are four classes addressing interrelated utilities and con-
straints: No Dependencies (ND) (Liu & Shell, 2013), In-Schedule Dependencies (ID) (Brunet,
Choi, & How, 2008; Gombolay & Shah, 2015; Nunes & Gini, 2015), Cross-Schedule Dependen-
cies (XD) (Gombolay, Wilcox, & Shah, 2013) and Complex Dependencies (CD) (Jones, Dias, &
Stentz, 2011).

The Korsah et al. (2013) taxonomy also delineates between tasks requiring one agent (‘single-
agent tasks” [SA]); and tasks requiring multiple agents (“multi-agent tasks” [MA]). Similarly, agents
that perform one task at a time are “single-task agents” (ST), while agents capable of performing
multiple tasks simultaneously are “multi-task agents” (MT). Lastly, the taxonomy distinguishes
between “instantaneous assignment” (IA), in which all task and schedule commitments are made
immediately, and “time-extended assignment” (TA), in which current and future commitments are
planned.

In this work, we demonstrate our approach for two of the most difficult classes of scheduling
problems defined within this taxonomy: XD [ST-SA-TA] and CD [MT-MA-TA]. The first problem
we consider is the VRPTW-TDR, which is an XD [ST-SA-TA]-class problem. We next consider
two real-world problems within the more-difficult CD [MT-MA-TA] class. The second problem
(first real-world domain) is a variant of the weapon-to-target assignment problem (WTA) (Lee et al.,
2003), known as anti-ship missile defense (ASMD). The third problem (second real-world problem)
we address is one of hospital resource allocation on a labor and delivery unit, wherein one nurse,
called the “resource nurse,” is responsible for ensuring that the correct patient is in the correct type
of room at the correct time, with the correct types of nurses present to care for those patients. The
characteristics of the three problem domains we explore in evaluating the apprenticeship scheduling
algorithm are shown in Table 1.

3.2 Technical Approach

Many approaches to learning via demonstration, e.g., IRL, are based on Markov models (Busoniu,
Babuska, & De Schutter, 2008; Barto & Mahadevan, 2003; Konidaris & Barto, 2007; Puterman,
2014). Markov models, however, do not capture the temporal dependencies between states and are
computationally intractable for large problem sizes. In order to determine which tasks to schedule
at which times, we draw inspiration from the domain of Web page ranking (Page et al., 1999), or
predicting the most relevant Web page in response to a search query. One important component
of page ranking is capturing how pages relate to one another as a graph with nodes (representing

11

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Problem Domain VRPTW-TDR ASMD Hospital Resource Mngmt.
Describing Section Section 4.1 Section 4.2 Section 4.3
Data Type Synthetic Real-world Real-world
Dependency Type XD CD CD
Agent Type ST MT MT
Task Type SA MA MA
Allocation Type TA TA TA

Table 1: This table summarizes the differing characteristics of the three problem domains used to
empirically evaluate the apprenticeship scheduling algorithm.

Web pages) and directed arcs (representing links between those pages) (Page et al., 1999). This
connectivity is a suitable analogy for the complex temporal dependencies (precedence, wait and
deadline constraints) relating tasks within a scheduling problem.

Recent approaches to page ranking have focused on pairwise and listwise models, which each
have advantages over pointwise models (Valizadegan et al., 2009). In listwise ranking, the goal is
to generate a ranked list of Web pages directly (Cao et al., 2007; Valizadegan et al., 2009; Volkovs
& Zemel, 2009), while a pairwise approach determines ranking based on pairwise comparisons be-
tween individual pages (Jin et al., 2008; Pahikkala et al., 2007). We chose the pairwise formulation
to model the problem of predicting the best task to schedule at time t.

The pairwise model has key advantages over the listwise approach: First, classification algo-
rithms (e.g., support vector machines) can be directly applied (Cao et al., 2007). Second, a pairwise
approach is non-parametric, in that the cardinality of the input vector is not dependent upon the
number of tasks (or actions) that can be performed at any instance. Third, training examples of pair-
wise comparisons in the data can be readily solicited. From a given observation during which a task
was scheduled, we only know which task was most important, not the relative importance between
all tasks. Thus, we create training examples based on pairwise comparisons between scheduled and
unscheduled tasks. A pairwise approach is more natural because we lack the necessary context to
determine the relative rank between two unscheduled tasks.

We formulate the apprenticeship scheduling problem as one of learning a pairwise preference
model, as follows. Consider a set of m observations, O = {O1, O2, . . . , Om}. Each observation
Om = 〈γ, τi, tτi , Aτi , Rτi , ξτ 〉 is a six-tuple consisting of the following: a set of feature vectors
γ = {γτ1 , γτ2 , . . . , γτn}, where vector γτj describes the state of each task τj ; τi, the task to be
scheduled by the expert demonstrator at the current time step tτi ; Aτi ⊆ A, the subset of agents
allocated to task τi from the set of all agents A; Rτi ⊆ R, the subset of resources allocated to task
τi from the set of all resources R; and ξτ , a set of context-specific and “task-independent” features
that affect expert decision-making. The state feature vector for each task γτj incorporates features

12

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

that affect the selection of the task for execution and may represent, for example, the deadline,
the earliest time at which the task is available, the duration of the task, which resource r the task
requires, etc. The task-independent feature vector, ξτ , represents global state features, such as the
proportion of agents that are currently idle.

An agent is defined as an entity that processes tasks and possesses the following set of attributes:
time-varying physical location, travel speed, and task-specific proficiency (i.e., two agents may
require different amounts of time to execute the same task). A resource is defined as an object
required to process a task and possesses the following attributes: time-invariant physical location, a
finite number of agents that can utilize the resource at any one time, and a task-specific proficiency
(i.e., one resource may allow a task to be completed at a faster rate than another). In the event that
no task is scheduled at time t, elements τi, Aτi , and Rτi in Om are null.

The goal is to learn a scheduling policy that selects a task τi to schedule at a selected time tτi
to be processed by agent a aτi as a function of the task and problem state encoded by γτi and ξτ .
Our formulation assumes at least one agent is required to process one task, with the assignment and
scheduling of agents to tasks determined by the scheduler. The assignment of a resource to a task is
assumed to be either pre-allocated based on the problem specification or assigned by the scheduler.

We assume that the cross product of the task-independent feature vectors and the task-dependent
feature vector (ξτ × γτ1 × γτ2 × . . . × γτn) encodes sufficient information to make high quality
scheduling decisions. Modeling choices may affect the dimensionalities of these feature vectors.
For example, in one formulation the state of task τi may include a list of upper- and lowerbound
temporal constraints between task τi and all other tasks τj ; alternatively, depending on the problem,
a lower-dimensional representation of the same relevant information may simply include the latest
possible time (i.e., the deadline) by which each task must start to satisfy the problem temporal
constraints.

We note that our approach relies upon the ability of domain experts to articulate an appropriate
set of features for the given problem. We believe this to be a reasonable limitation. Results from
prior work have indicated that domain experts are adept at describing the high-level, contextual,
and task-specific features used in their decision making; however, it is more difficult for experts to
describe how they reason about these features (Cheng, Wei, & Tseng, 2006; Raghavan, Madani, &
Jones, 2006). In future work, we aim to extend our approach to include feature learning rather than
relying upon experts to enumerate the important features they reason about in order to construct
schedules.

Our learning approach de-constructs the problem into two steps: 1) For each agent, determine
the candidate next task to schedule; and 2) For each candidate task, determine whether to schedule
said task.

3.2.1 LEARNING TASK PRIORITIES

In order to learn to correctly assign the next task to schedule, we transform each observation Om
into a new set of observations by performing pairwise comparisons between the scheduled task τi
and the set of unscheduled tasks (Equations 5-6). Equation 5 creates a positive example for each
observation in which a task τi was scheduled. This example consists of the input feature vector,
φm〈τi,τx〉, and a positive label, ym〈τi,τx〉 = 1. Each element of input feature vector φm〈τi,τx〉 is computed
as the difference between the corresponding values in the feature vectors γτi and γτx , describing
scheduled task τi and unscheduled task τx concatenated with the high-level contextual feature vector

13

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

ξτ . Equation 6 creates a set of negative examples with ym〈τx,τi〉 = 0. For the input vector, we take
the difference of the feature values between unscheduled task τx and scheduled task τi concatenated
with the high-level contextual feature vector ξτ .

We note that it is necessary to separate the task-independent features as point-wise terms so as
to preserve their information. Consider the example task-independent feature, ξkτ , representing the
proportion of agents currently idle. If this feature would be encoded in each task-specific feature
vector as γkτi , the result would be γkτi − γ

k
τj = 0 for all tasks τi and τk. Thus, for their information

to be preserved for the learning algorithm, one must concatenate a separate vector of contextual
features to the pairwise differences.

rankθm〈τi,τj〉 :=
[
ξτ , γτi − γτj

]
, ym〈τi,τj〉 = 1,∀τj ∈ τ\τi, ∀Om ∈ O|τi scheduled in Om (5)

rankθm〈τj ,τi〉 :=
[
ξτ , γτj − γτi

]
, ym〈τj ,τi〉 = 0,∀τj ∈ τ\τi, ∀Om ∈ O|τi scheduled in Om (6)

τ̂∗i = argmax
τi∈τ

∑
τj∈τ

fpriority (τi, τj) (7)

Figure 1 is a graphical depiction of the process for automatically generating positive and nega-
tive training examples for each Om ∈ O. For illustrative purposes, the graphic depicts the process
considering two task-specific features, γk· and γk

′
· , corresponding to the x- and y-axes, respectively.

In the left graphic, the node “st” represents the state of the scheduling domain at time t, mapped
to the feature space (γk· , γk

′
·). At this time t, the apprentice scheduler observes the demonstrator

scheduling task τi (denoted by the solid arrow vector γτi|t). The apprentice scheduler observes
that the demonstrator chose to not schedule the two other available tasks τ1 or τn at t (denoted
by the dashed vectors γτ1|t and γτn|t, respectively). After the scheduling and execution of τi, the
scheduling domain is observed to be in the state represented by node “st+1”. The figure shows the
process repeating at time t = 1.

The right graphic depicts the generation of training examples. For each time step, the appren-
ticeship scheduler constructs positive and negative training examples through vector subtraction of
task-dependent feature vectors. The red dotted lines depict the vector difference of the scheduled
task’s feature vector and each unscheduled task’s feature vector; the resulting vectors are applied
to construct negative training examples. The blue dotted lines depict the negative vector difference
of the scheduled task’s feature vector and each unscheduled task’s feature vector; the resulting vec-
tors are applied to construct positive training examples. Recall that a contextual “task-independent”
feature vector, ξτ , is appended to each pairwise term in the formation of each training example
rankθm〈·,·〉. This procedure then repeats for each observation (i.e., each time step for each demon-
strated schedule) and task. The value of this approach is that the learner does not need to explicitly
solicit pairwise comparisons from the demonstrator; instead, the pairwise comparisons are derived
automatically through observation of the expert demonstrator.

3.2.2 LEARNING TO SCHEDULE OR IDLE

Given these observationsOm and their associated features, we can train a classifier, fpriority(τi, τx) ∈
{0, 1}, to predict whether it is better to schedule task τi as the next task rather than τx. With this

14

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

Figure 1: This figure depicts the process for automatically generating positive and negative training
examples for each Om ∈ O. The left graphic shows the apprentice scheduler’s observations of
the expert, and the right graphic depicts the construction of training examples through pairwise
comparisons.

pairwise classifier, we can determine which single task τi is the highest-priority task τ∗i according
to Equation 7 by determining which task has the highest cumulative priority in comparison to the
other tasks in τ . In this work, we train a single classifier, fpriority(τi, τj), to model the behavior of
the set of all agents rather than train one fpriority(τi, τj) for each agent. fpriority(τi, τj) is a function
of all features associated with the agents; as such, agents need not be interchangeable, and different
sets of features may be associated with each agent.

Next, we must learn to predict whether τ∗i should be scheduled or the agent should remain idle.
To do so, we train a second classifier, fact(τi) ∈ {0, 1}, that predicts whether or not τi should be
scheduled. The observations set, O, consists either of examples in which a task was scheduled or
those in which no task was scheduled. To train this classifier, we construct a new set of examples
according to Equation 8, which assigns positive labels to examples from Om in which a task was
scheduled and negative labels to examples in which no task was scheduled.

actφmτi := [ξτ , γτi] , y
m
τi =

{
1 : τi scheduled in Om ∧ τi scheduled in Om+1

0 : τ∅ scheduled in Om
(8)

Finally, we construct a scheduling algorithm to act as an apprentice scheduler (Algorithm 1).
This algorithm takes as input the set of tasks, τ ; agents, A; temporal constraints (i.e., upper- and
lowerbound temporal constraints) relating tasks in the problem, TC; and the set of task pairs that
require the same resources and can therefore not be executed at the same time, τR. Lines 1- 2
iterate over each agent at each time step. (In the event that resource-to-task assignments are not
predefined, the algorithm would also iterate over each resource r ∈ R that could be assigned.)
In Line 3, the highest-priority task, τ∗i , is determined for a particular agent. In Lines 4-5, τ∗i is
scheduled if fact(τ∗i) predicts that τ∗i should be scheduled at the current time.

Note that iteration over agents (Line 2) can be performed according to a specific ordering,
or the system can alternatively learn a more general priority function to select and schedule the
best agent-task-resource tuple using fpriority (〈τi, a, r〉 , 〈τj , a′, r′〉), fact (〈τi, a, r〉∗). In the latter
case, the features γτi are mapped to agent-task-resource tuples rather than tasks τi, which represent
the atomic (i.e., lowest-level) job. For the synthetic evaluation, we use the original formulation,

15

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Algorithm 1 Pseudocode for an Apprentice Scheduler
ApprenticeScheduler(τ ,A,TC,τR)

1: for t = 0 to T do
2: for all agents a ∈ A do
3: τ∗i ← argmax

τi∈τ

∑
τj∈τ

fpriority(τi, τj)

4: if fact(τ∗i) == 1 then
5: Schedule τ∗i
6: end if
7: end for
8: end for

fpriority(τi, τj). For the ASMD application, we use fpriority
(〈
τ ti , a, r

〉
,
〈
τ tj , a

′, r′
〉)

, where τ ti
represents the objective of mitigating missile i during time step t, a is the decoy to be deployed,
and r is the physical location for that deployment. For the hospital domain evaluation, we use
fpriority

(〈
τ ji , a, r

〉
, 〈τ qp , a′, r′〉

)
, where τ ji represents the jth stage of labor for patient i, a is the

assigned nurse, and r is the room to which the patient is assigned. For convenience in notation,
we refer to this tuple as a “scheduling action.” Finally, note that multiple agent-resource pairs can
be assigned to a single task, τi. The apprentice scheduler would first pick the best agent (or agent-
resource pair) to assign to a task according to the fpriority metric. During the same time step (or
a subsequent time step), another agent (or agent-resource pair) can be added. The algorithm will
continue to add assignments to the task until the null assignment (i.e., no further changes to the
current set of assignments) is the best option according to fact.

Our model is a hybrid point- and pairwise formulation, which has several key benefits for learn-
ing to schedule form expert demonstration. First, we can directly apply standard classification
techniques, such as a decision tree, support vector machine, logistic regression, or neural networks.
Second, because this technique only considers two scheduling actions at a time, the model is non-
parametric in the number of possible actions. Thus, the system can train on fpriority(τi, τj) sched-
ules with a agents and n tasks, yet apply fpriority(τi, τj) to construct a schedule for a problem with
a′ agents and n′ tasks where a 6= a′, n 6= n′, and a ∗ n 6= a′ ∗ n′. Furthermore, it can even
train fpriority(τi, τj) on demonstrations of a heterogeneous data set of scheduling observations with
differing numbers of agents and tasks. Third, the pairwise portion of the formulation provides struc-
ture for the learning problem. A formulation that simply concatenated the features of two or more
scheduling actions would need to solve the more complex problem of learning the relationships
between features and then how to use those relationships to predict the highest-priority scheduling
action. Such a concatenation approach would suffer from the curse of dimensionality and require a
very large training data set (Indyk & Motwani, 1998). Note, however, that this method requires the
designer to appropriately partition the features into pairwise and pointwise components such that
the pairwise portion does not lose information by considering the differences between actions’ fea-
tures. Fourth, the transformation of the observations into a pairwise model results in some features
that are advantageous for learning from small data sets: the number of positive and negative training
examples is balanced given that the algorithm simultaneously creates one negative label for every
positive label, and the observations are bootstrapped to create 2 ∗ |τ | examples for each time step,
rather than only |τ | for a pointwise model, where n = |τ |.

16

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

4. Data Sets

Here, we validate that schedules produced by the learned policies are of comparable quality to those
generated by human or synthetic experts. To do so, we considered a synthetic data set from the XD
[ST-SA-TA] class of problems and two real-world data sets from the CD [MT-MA-TA] class of
problems, as defined by Korsah et al. (2013). We present each problem domain and describe the
manner in which the data set of expert demonstrations for the domain was acquired.

4.1 Synthetic Data Set

For our first investigation, we generated a synthetic data set of scheduling problems in which agents
were assigned a set of tasks. The tasks were related through precedence or wait constraints, as well
as deadline constraints, which could be absolute (relative to the start of the schedule) or relative to
another task’s initiation or completion time. Agents were required to access a set of shared resources
to execute each task. Agents and tasks had defined starting locations, and task locations were static.
Agents were only able to perform tasks when present at the corresponding task location, and each
agent traveled at a constant speed between task locations. Task completion times were potentially
non-uniform and agent-specific, as would be the case for heterogeneous agents. An agent that was
incapable of performing a given task was assumed to have an infinite completion time for that task.
The objective was to minimize the makespan or other time-based performance measures.

This problem definition spans a range of scheduling problems, including the traveling salesman,
job-shop scheduling, multi-vehicle routing and multi-robot task allocation problems, among others.
We describe this range as a vehicle routing problem with time windows, temporal dependencies, and
resource constraints (VRPTW-TDR), which falls within the XD [ST-SA-TA] class in the taxonomy
by Korsah et al. (2013): agents perform tasks sequentially (ST), each task requires one agent (SA),
and commitments are made over time (TA).

To generate our synthetic data set, we developed a mock scheduling expert that applies one
of a set of context-dependent rules based on the composition of the given scheduling problem.
This behavior was based upon rules presented in prior work addressing these types of problems
(Gombolay et al., 2013; Gombolay & Shah, 2015; Solomon, 1987; Tan, Lee, Zhu, & Ou, 2001). Our
objective was to show that our apprenticeship scheduling algorithm learns both context-dependent
rules and how to identify the associated context for their correct application.

The mock scheduling expert functions as follows: First, the algorithm collects all alive and
enabled tasks τi ∈ τAE as defined by (Muscettola, Morris, & Tsamardinos, 1998). Consider a pair
of tasks, τi and τj , with start and finish times si, fi and sj , fj , respectively, such that there is a wait
constraint requiring τi to start at least W〈τj ,τi〉 units of time after τj . A task τi is alive and enabled
if t ≥ fj +Wτj ,τi for all such τj and W〈τj ,τi〉 in τ .

After task collection, the heuristic iterates over each agent to identify the highest-priority task,
τ∗i , to schedule for that agent. The algorithm determines which scheduling rule is most appro-
priate to apply for each agent. If agent speed is sufficiently slow (≤ 1 m/s), travel time will be-
come the major bottleneck. If agents move quickly but utilize one or more resources R heavily (∑

τi

∑
τj

1Rτi=Rτj ≥ c for some constant c), use of these resources can become the bottleneck.
Otherwise, task durations and associated wait constraints are generally most important.

If the algorithm identifies travel distance as the primary bottleneck, it chooses the next task by
applying a priority rule well-suited for vehicle routing that minimizes a weighted, linear combi-
nation of features (Gambardella, Éric Taillard, & Agazzi, 1999; Solomon, 1987) comprised of the

17

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

distance and angle relative to the origin between agent a and τj . This rule is depicted in Equation
9, where ~lx is the location of τj , ~la is the location of agent a, θxa is the relative angle between
the vector from origin to the agent location and the origin to the location of τj , and α1 and α2 are
weighting constants:

τ∗i ← argmin
τj∈τAE

(
‖~lx −~la‖+ α1θxa + α2‖~lx −~la‖θxa

)
(9)

If the algorithm identifies resource contention as the most important bottleneck, it employs a rule
to mitigate resource contention in multi-robot, multi-resource problems based on prior work in
scheduling for multi-robot teams (Gombolay et al., 2013). Specifically, the algorithm uses Equation
10 to select the high-priority task to schedule next, where dτj is the deadline of τj and α3 is a
weighting constant:

τ∗i ← argmax
τj∈τAE

∑
τi

∑
τj

1Rτi=Rτj

− α3dτj

 (10)

If the algorithm decides that temporal requirements are the major bottleneck, it employs an Earliest
Deadline First rule (Equation 11), which performs well across many scheduling domains (Chen &
Askin, 2009; Gombolay et al., 2013; Gombolay & Shah, 2015):

τ∗i ← argmin
τj∈τAE

dτj (11)

After selecting the most important task, τ∗i , the algorithm determines whether the resource required
for τ∗i , Rτ∗i , is idle and whether the agent is able to travel to the task location by time t. If these
constraints are satisfied, the heuristic schedules task τ∗i at time t. (An agent is able to reach task τ∗i
if t ≥ fj + k (li − lj) /‖li − lj‖ for all τj ∈ τ that the agent has already completed, where k is the
agent’s speed.)

We constructed the synthetic data set for two homogeneous agents and 20 partially ordered tasks
located within a 20 x 20 grid.

4.2 Real-World Data Set: Anti-ship Missile Defense

In ASMD, the goal is to protect one’s naval vessel against attacks by anti-ship missiles using “soft-
kill weapons” (i.e., decoys) that mimic the qualities of a target in order to direct the missile away
from its intended destination.

Developing tactics for soft-kill weapon coordination is highly difficult due to the relationship
between missile behavior and soft-kill weapon characteristics. The control laws governing anti-
ship missiles vary, and the captain must select the correct decoy types in order to counteract the
associated anti-ship missiles. For example, a ship’s captain may deploy a decoy that emits a large
amount of heat in order to cause an enemy heat-seeking missile to fly toward the decoy rather than
the ship. Also, an enemy missile may consider the spatial layout of all targets in order to select
the nearest or furthest targets; in doing so, the missile may consider the magnitude of the radar
reflectivity, radar emissions, and heat emissions, either separately or in various combinations.

Further, decoys have different financial costs and timing characteristics: Some decoys, such as
unmanned aerial vehicles (UAVs), are able to function throughout the entirety of an engagement,
while others, such as an infrared (IR) flares, disappear after a certain time. As a result, a captain

18

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

Figure 2: The tactical action officer aboard a naval vessel must coordinate a heterogeneous set of
soft- and hard-kill weapons to defeat various anti-ship missiles.

may be required to use multiple decoys in tandem in order to divert a single anti-ship missile, but
may also be able to use a single decoy to defeat multiple missiles. There is a complex interplay
between the types and locations of decoys relative to the control laws governing anti-ship missiles.
For example, deployment of a particular decoy, while effective against one airborne enemy missile,
may actually cause a second enemy missile that was previously homing in on a second decoy to
now impact the ship.

The ASMD problem is characterized as the most complex class of scheduling problem accord-
ing to the Korsah et al. (2013). taxonomy : CD [MT-MA-TA]. The problem considers multi-task
agents (MA) in the form of decoys, each of which can work to divert multiple missiles at the same
time. The problem also incorporates multi-agent tasks (MT); a feasible solution may require the
simultaneous use of multiple agents in order to complete an individual task. Further, time-extended
agent allocation (TA) must be considered, given the potential future consequences of scheduling
actions taken at the current moment. Finally, the ASMD problem falls within the CD class, because
each task can be decomposed in a variety of ways – each with their own cost – in order to accomplish
the same goal, with each decomposition affecting the value and feasibility of the decompositions of
other tasks. The full specification of the mixed-integer linear program formulation for the ASMD
problem is provided in Appendix A.

4.2.1 DATA COLLECTION

A real-world data set was collected, consisting of human demonstrators of various skill levels solv-
ing the anti-ship missile defense (ASMD) weapon-to-target assignment problem. Data was collected
from domain experts playing a serious game, called Strike Group Defender1 (SGD), for ASMD
training. Game scenarios involved five types of decoys and 10 types of threats. Threats were ran-
domly generated for each played scenario, promoting the development of strategies that were robust
to a varied distribution of scenarios. Each decoy had a specified effectiveness against each threat
type.

Players attempted to deploy a set of decoys by using the correct types at the correct locations
and times in order to distract incoming missiles. Threats were launched over time; an effective

1. SGD was developed by Pipeworks Studio in Eugene, Oregon, USA.

19

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Figure 3: A resource nurse must assimilate a large variety and volume of information to effectively
reason about resource management for patient care.

deployment at time t could become counterproductive in the future as new enemy missiles were
launched.

Games were scored as follows: 10, 000 points were received each time a threat was neutralized
and 2 points were received for each second a threat spent homing in on a decoy. Players lost 5, 000
points for each threat impact and 1 point was deducted for each second a threat spent homing in on
the player’s ship. At each decoy deployment, players lost 25-1, 000 points depending upon decoy
type.

The collected data set consisted of 311 games played by 35 humans across 45 threat configu-
rations, or “levels.” From this set, we also separately analyzed 16 threat configurations such that
each configuration included at least one human demonstration in which the ship was successfully
protected from all enemy missiles. For these 16 configurations, there were 162 total games played
by 27 unique human demonstrators. The player cohort consisted of technical fellows and associates,
as well as contractors at a federally funded research and development center (FFDRC), with exper-
tise varying from “generally knowledgeable about the ASMD problem” to “domain experts” with
professional experience or training in ASMD.

4.3 Real-World Data Set: Labor and Delivery

To further evaluate our approach, we applied our method to a second data set collected from a labor
and delivery floor at a Boston hospital. In this domain, a “resource nurse” must solve a problem
of task allocation and schedule optimization with stochasticity in the number and types of patients
and the duration of tasks. Specifically, the resource nurse is responsible for ensuring that the correct
patient is in the correct type of room at the correct time, with the correct types of nurses present
to care for those patients. The functions of a resource nurse are to assign nurses to take care of
labor patients; assign patients to labor beds, recovery room beds, operating rooms, antepartum ward
beds or postpartum ward beds; assign scrub technicians to assist with surgeries in operating rooms;
call in additional nurses if necessary; accelerate, delay or cancel scheduled inductions or cesarean
sections; expedite active management of a patient in labor; and reassign roles among nurses.

Using our apprenticeship scheduling method in for the Labor and Delivery problem domain, a
task τi represents the set of steps (subtasks) required to care for patient i, and each τ ji is a given
stage of labor for that patient. Stages of labor are related by stochastic lowerbound constraints

20

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

W〈τ ji ,τyx〉, requiring the stages to progress sequentially. There are stochastic time constraints, Dabs
τ ji

and Drel

〈τ ji ,τyx〉
, relating the stages of labor to account for the inability of resource nurses to perfectly

control when a patient will move from one stage to the next. Arrivals of τi (i.e. patients) are drawn
from stochastic distributions. The model considers three types of patients: scheduled cesarean
patients, scheduled induction patients and unscheduled patients. The set of W〈τ ji ,τyx〉, D

abs
τ ji

and

Drel
〈τi,τj〉 are dependent upon patient type.

Labor nurses are modeled as agents with a finite capacity to process tasks in parallel, where
each subtask requires a variable amount of this capacity. For example, a labor nurse may generally
care for a maximum of two patients simultaneously. If the nurse is caring for a patient who is “full
and pushing” (i.e., the cervix is fully dilated and the patient is actively trying to push out the baby)
or in the operating room, he or she may only care for that patient.

Rooms on the labor floor (e.g., a labor room, an operating room, etc.) are modeled as resources,
which process subtasks in series. Agent and resource assignments to subtasks are pre-emptable,
meaning that the agent and resource assigned to care for any patient during any step in the care
process may be changed over the course of executing that subtask.

In this formulation, At a
τ ji
∈ {0, 1} is a binary decision variable for assigning agent a to subtask

τ ji for time epoch [t, t + 1). Gt a
τ ji

is an integer decision variable for assigning a certain portion of

the effort of agent a to subtask τ ji for time epoch [t, t + 1). Rt r
τ ji
∈ {0, 1} is a binary decision

variable for whether subtask τ ji is assigned resource r for time epoch [t, t + 1). Hτi ∈ {0, 1} is a
binary decision variable for whether task τi and its corresponding subtasks are to be completed. U

τ ji

specifies the effort required from any agent to work on τ ji . s
τ ji
, f
τ ji
∈ [0,∞) are the start and finish

times of τ ji .

min fn

(
{ At a

τ ji
}, { Gt a

τ ji
}, { Rt r

τ ji
}, {Hτi}, {sτ ji , fτ ji }

)
(12)

∑
a∈A

At a
τ ji
≥ 1−M (1−Hτi) ,∀τ

j
i ∈ τ , ∀t (13)

M
(

2− At a
τ ji
−Hτi

)
≥ −U

τ ji
+ Gt a

τ ji
≥

M
(
At a
τ ji

+Hτi − 2
)
, ∀τ ji ∈ τ , ∀t (14)∑

τ ji ∈τ

Gt a
τ ji
≤ Ca, ∀a ∈ A,∀t (15)

∑
r∈R

Rt r
τ ji
≥ 1−M (1−Hτi) ,∀τ

j
i ∈ τ ,∀t (16)

21

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

∑
τ ji ∈τ

Rt r
τ ji
≤ 1,∀r ∈ R,∀t (17)

ub
τ ji
≥ f

τ ji
− s

τ ji
≥ lb

τ ji
,∀τ ji ∈ τ (18)

sτyx − fτ ji ≥W〈τi,τj〉, ∀τi, τj ∈ τ |,∀W〈τi,τj〉 ∈ TC (19)

fτyx − sτ ji ≤ D
rel
〈τi,τj〉,∀τi, τj ∈ τ |∃D

rel
〈τi,τj〉 ∈ TC (20)

f
τ ji
≤ Dabs

τi ,∀τi ∈ τ |∃D
abs
τi ∈ TC (21)

Equation 13 enforces that each subtask τ ji during each time epoch [t, t + 1) is assigned a single
agent. Equation 14 ensures that each subtask τ ji receives a sufficient portion of the effort of its
assigned agent a during epoch [t, t + 1). Equation 15 ensures that agent a is not oversubscribed.
Equation 16 ensures that each subtask τ ji of each task τi that is to be completed (i.e., Hτi = 1) is
assigned one resource r. Equation 17 ensures that each resource r is assigned to only one subtask
during each epoch [t, t+ 1). Equation 18 requires the duration of subtask τ ji to be less than or equal
to ub

τ ji
and at least lb

τ ji
units of time. Equation 19 requires that τyx occurs at least W〈τ ji ,τyx〉 units

of time after τ ji . Equation 20 requires that the duration between the start of τ ji and the finish of τyx
be less than Drel

〈τ ji ,τyx〉
. Equation 21 requires that τ ji finishes before Dabs

τ ji
units of time have expired

since the start of the schedule.
The functions of a resource nurse are to assign nurses to take care of labor patients and to assign

patients to labor beds, recovery room beds, operating rooms, antepartum ward beds or postpartum
ward beds. The resource nurse has substantial flexibility when assigning beds, and his or her de-
cisions will depend upon the type of patient and the current status of the unit in question. He or
she must also assign scrub technicians to assist with surgeries in operating rooms, and call in addi-
tional nurses if required. The corresponding decision variables for staff assignments and room/ward
assignments in the above formulation are At a

τ ji
and Rt r

τ ji
, respectively.

The resource nurse may accelerate, delay or cancel scheduled inductions or cesarean sections in
the event that the floor is too busy. Resource nurses may also request expedited active management
of a patient in labor. The decision variables for the timing of transitions between the various steps
in the care process are described by s

τ ji
and f

τ ji
. The commitments to a patient (or that patient’s

procedures) are represented by Hτi .
The resource nurse may also reassign roles among nurses: For example, a resource nurse may

pull a nurse from triage, or even care for patients herself if the floor is too busy. Or, if a patient’s
condition is particularly acute (e.g., the patient has severe preeclampsia), the resource nurse may
assign one-to-one nursing. The level of attentional resources a patient requires and the level a nurse
has available correspond to variables U

τ ji
and Gt a

τ ji
, respectively. The resource nurse makes his

or her decisions while considering current patient status Λ
τ ji

, which is manually transcribed on a
whiteboard, as shown in Figure 3.

The stochasticity of the problem arises from the uncertainty in the upper- and lowerbound of
the durations (ub

τ ji
and lb

τ ji
) of each of the steps in caring for a patient; the number and types of

patients, τ ; and the temporal constraints, TC, relating the start and finish of each step. These vari-
ables are a function of the resource and staff allocation variables, Rt a

τ ji
and At a

τ ji
, as well as patient

task state Λ
τ ji

, which includes information on patient type (i.e., presentation with scheduled in-

22

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

duction, scheduled cesarean section, or acute unplanned anomaly), gestational age, gravida, parity,
membrane status, anesthesia status, cervix status, time of last exam and the presence of any comor-
bidities. Formally,

(
{ub

τ ji
, lb

τ ji
|τ ji ∈ τ}, τ ,TC

)
∼ P ({ Rt a

τ ji
, At a

τ ji
,Λ

τ ji
,∀t ∈ [0, 1, . . . , T]}).

The computational complexity of completely searching for a solution that satisfies the con-
straints in Equations 13-21 is given byO

(
2|A||R|T

2
C
|A|T
a

)
, where |A| is the number of agents, with

each agent possessing an integer processing capacity of Ca. There are n tasks τi, each with mi sub-
tasks, |R| resources, and an integer-valued planning horizon of T units of time. In practice, there
are ∼ 10 nurses (agents) who can care for up to two patients at a time (i.e., Ca = 2,∀a ∈ A), 20
different rooms (resources) of varying types, 20 patients (tasks) at any one time, and a planning hori-
zon of 12 hours or 720 minutes, yielding a worst-case complexity of ∼ 210∗20∗720

2
210∗720 ≥ 210

6
,

which is computationally intractable for exact methods without the assistance of informative search
heuristics.

4.3.1 DATA COLLECTION

To collect data from resource nurses about their decisions, a high-fidelity simulation of a labor and
delivery floor was developed, as depicted in Figure 4. We developed this simulation in collabo-
ration with Beth Israel Medical Deaconess Hospital in Boston. The effort was part of a quality-
improvement project at the hospital to develop training tools and involved a rigorous, year-long
design and iteration process that included workshops with nurses, physicians, and medical students
to ensure the tool accurately captured the role of a resource nurse. Parameters within the simulation
(e.g., patient arrivals, timelines for labor progression) were drawn from medical textbooks and pa-
pers and modified through alpha and beta testing to ensure that the simulation closely mirrored the
patient population and nurse experience at our partner hospital.

We invited expert resource nurses to play this simulation in order to collect a data set for training
our apprenticeship scheduling algorithm. This data set was generated by seven resource nurses
working with the simulation for a total of 21/2 hours, simulating 60 hours of elapsed time on a real
labor floor and yielding a set of more than 3, 013 individual decisions.

5. Empirical Evaluation of Apprenticeship Scheduling

In this section, we evaluate our prototype for apprenticeship scheduling using synthetic and real-
world data sets.

5.1 Synthetic Data Set

We trained our model using a decision tree, KNN classifier, logistic regression (logit) model, a
support vector machine with a radial basis function kernel (SVM-RBF), and a neural network to
learn fpriority(., .) and fact(.). We randomly sampled 85% of the data for training and 15% for
testing.

We defined the input features as follows: The high-level feature vector of the task set, ξτ , was
comprised of the agents’ speed and the degree of resource contention,

∑
τi

∑
τj

1Rτi=Rτj . The task-
specific feature vector, γτi , was comprised of the task’s deadline, a binary indicator for whether or
not the task’s precedence constraints had been satisfied, the number of other tasks sharing the given
task’s resource, a binary indicator for whether or not the given task’s resource was available, the

23

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Figure 4: A screen capture of our simulation of a labor and delivery floor.

(a) Sensitivity (b) Specificity

Figure 5: Figures 5a-5b depict the sensitivity and specificity of ML techniques using the pairwise,
pointwise and naı̈ve approaches.

travel time remaining to reach the task location, the distance agent a would travel to reach τi, and
the angular difference between the vector describing the location of agent a and the vector describing
the position of τi relative to agent a.

We compared the performance of our pairwise approach with pointwise and naı̈ve approaches.
In the pointwise approach, training examples for selecting the highest-priority task were of the
form rankφmτi := [ξτ , γτi]. The label γmτi was equal to 1 if task τi was scheduled in observation
m, and was 0 otherwise. In the naı̈ve approach, examples were comprised of an input vector
that concatenated the high-level features of the task set and the task-specific features of the form
rankφm := [ξτ , γτ1 , γτ2 , . . . , γτn]; labels ym were given by the index of the task τi scheduled in
observation m.

24

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

(a) Sensitivity (b) Specificity

Figure 6: Figures 6a-6b depict the sensitivity and specificity of a pairwise decision tree, varying the
number and proportion of correct demonstrations.

Figures 5a-5b depict the sensitivity (true positive rate) and specificity (true negative rate), re-
spectively, of the model. We found that a pairwise model outperformed the pointwise and naı̈ve
approaches. Within the pairwise model, a decision tree yielded the best performance: The trained
decision tree was able to identify the correct task and when to schedule that task 95% of the time,
and was able to accurately predict when no task should be scheduled 96% of the time.

To more fully understand the performance of a decision tree trained with a pairwise model as a
function of the number and quality of training examples, we trained decision trees with the pairwise
model using 15, 150, and 1,500 demonstrations. The sensitivity and specificity depicted in Figures
6a and 6b for 15 and 150 demonstrations represent the mean sensitivity and specificity of 10 models
trained via random sub-sampling without replacement.

We also varied the quality of the training examples, assuming the demonstrator was operating
under an ε-greedy approach with a (1− ε) probability of selecting the correct task to schedule, and
selecting another task from a uniform distribution otherwise. Our goal in this evaluation was to
empirically investigate the impact of noisy demonstrations (i.e., those in which the demonstrator
does not always select the“best” tasks) on the quality of the learned policy. There are a number
of possible models for introducing such noise, including an epsilon-greedy approach or a softmax
model. An epsilon-greedy approach is expected to produce lower-quality demonstrations compared
with a noisy human demonstrator, since a human would be more likely to select the second- or
third-best task when making an error than to select a task at random, thus making the LfD problem
more difficult. While no model will perfectly imitate an imperfect human demonstrator, we selected
an epsilon-greedy approach as a reasonably conservative method of introducing more noise than
might be generated by an imperfect human demonstrator.

Training a model from pairwise comparisons of between the scheduled and each unscheduled
tasks produced a comparable policy to that of the synthetic expert. The decision tree model per-
formed well due to the modal nature of the multifaceted scheduling heuristic. Note that this data
set consisted of scheduling strategies with mixed discrete-continuous functional components; per-
formance could potentially be improved upon in future work by combining decision trees with
logistic regression. This hybrid learning approach has been successful in prior ML classification
tasks (Landwehr, Hall, & Frank, 2005) and can be readily applied to this apprenticeship scheduling

25

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

framework. There is also an opportunity to improve performance through hyperparameter tuning
(e.g., to select the minimum number of examples in each leaf of the decision tree). We leave com-
prehensive investigation of the relative benefits for a range of learning techniques for future work.

Note that the results presented in Figures 5a-6b were achieved without any hyperparameter
tuning. For example, with the decision tree, we did not perform an inner cross-validation loop
to estimate the minimum number of examples in each leaf to achieve the best performance. The
purpose of this analysis was to show that, with our pairwise approach, the system can accurately
learn expert heuristics from example. In the following section, we investigate how apprenticeship
scheduling using a decision tree classifier can be improved upon via an inner cross-validation loop
to tune the model’s hyperparameters.

5.1.1 PERFORMANCE OF DECISION TREE WITH HYPERPARAMETER TUNING

We performed our initial analysis, detailed above, to identify which techniques have inherent ad-
vantages that can be realized without extensive hyperparameter tuning. Our results indicate that
the pairwise formulation for apprenticeship scheduling, in conjunction with a decision tree clas-
sifier, has advantages over alternative formulations for learning a high-quality scheduling policy.
Given evidence of this advantage, we further evaluated the potential of the pairwise formulation
with hyperparameter tuning.

To improve the performance of the model, we manipulated the “leafiness” of the decision tree to
find the best setting to increase the accuracy of the apprenticeship scheduler. Specifically, we varied
the minimum number of training examples required in each leaf of the tree. As the minimum number
required for each leaf decreases, the chance of over-fitting to the data increases. Conversely, as the
minimum number increases, the chance of not learning a helpful policy (under-fitting) increases. To
identify the best number of leaves for generalization, we tested values for the minimum number of
examples required for each leaf of the decision tree in the set {1, 5, 10, 25, 50, 100, 250, 500, 1000}.
If the minimum number of examples in each leaf exceeded the total number of examples, the setting
was trivially set to the total number of examples available for training.

We performed 5-fold cross-validation for each value of examples as follows: We trained an ap-
prentice scheduler on four-fifths of the training data and tested on one-fifth of the data, and recorded
the average testing accuracy across each of the five folds. Then, we used the setting of the minimum
number of examples required for each leaf that yielded the best accuracy during cross-validation
to train a full apprenticeship scheduling model on all of the training data (85% of the total data).
Finally, we tested the full apprenticeship scheduling model on the 15% of the total data reserved for
testing. Thus, none of the data used to test the full model was used to estimate the best setting for
the leafiness of the tree. We repeated this procedure 10 times, randomly sub-sampling the data and
taking the average performance across the 10 trials.

The sensitivity and specificity of the fully trained apprenticeship scheduling algorithm are de-
picted in Figures 7a and 7b for 1, 5, 15, and 150 scheduling demonstrations with homogeneous
agents, and in Figures 8a and 8b for demonstrations with heterogeneous agents. As before, we also
varied the quality of the training examples, assuming the demonstrator was operating under an ε-
greedy approach with a (1 − ε) probability of selecting the correct task to schedule and selecting
another task from a uniform distribution otherwise.

For both the homogeneous and heterogeneous cases, we found that the apprenticeship schedul-
ing algorithm was able to average≥ 90% sensitivity and specificity either with five perfect schedules

26

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

(a) Sensitivity (b) Specificity

Figure 7: Figures 7a-7b depict the sensitivity and specificity for a pairwise decision tree tuned for
leafiness, varying the number and proportion of correct demonstrations. The corresponding data set
comprised schedules with homogeneous agents.

(a) Sensitivity (b) Specificity

Figure 8: Figures 8a-8b depict the sensitivity and specificity for a pairwise decision tree tuned for
leafiness, varying the number and proportion of correct demonstrations. The corresponding data set
comprised schedules with heterogeneous agents.

27

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

or 15 schedules generated by an operator making mistakes 20% of the time. Hyperparameter tuning
substantially increased the sensitivity of the model from 59% to 82% for five scheduling examples
generated by an operator making mistakes 20% of the time. (Recall that a schedule consists of
allocating 20 tasks to two workers and sequencing those tasks in time.)

Through our synthetic evaluation, we have shown that our apprentice scheduling algorithm is
able to learn to make sequential decisions that accurately emulate the decision making process of a
mock expert. The apprenticeship scheduler model shows a robust ability to learn from sparse, noisy
data. In the following sections, we investigate the ability of the apprentice scheduler to learn from
scheduling demonstrations produced by experts performing real-world scheduling tasks.

5.2 Real-World Data Set: ASMD

We trained a decision tree with our pairwise scheduling model and tested its performance via leave-
one-out cross-validation involving 16 real demonstrations in which a player successfully protected
the ship from all enemy missiles. Each demonstration originated from a unique threat scenario.
Features for each decoy/missile pair (or null decoy deployment due to inaction) included indicators
for whether a decoy had been placed such that a missile was successfully distracted by that decoy,
whether a missile would be lured into hitting the ship due to decoy placement, or whether a missile
would be unaffected by decoy placement.

Across all 16 scenarios, the mean player score was 74, 728 ± 26, 824. With only 15 examples
of expert human demonstrations, our apprenticeship scheduling model achieved a mean score of
87, 540, with a standard deviation of 16, 842. We hypothesized that scores produced by the learned
policy would be statistically significantly better than the scores achieved by the human demonstra-
tors. The null hypothesis stated that the number of scenarios in which the apprenticeship scheduling
model achieved superior performance would be less than or equal to the number of scenarios in
which the mean score of the human demonstrators was superior to that of the apprenticeship sched-
uler. We set the significance level at α = 0.05, which means that the risk of identifying a difference
between the mean scores earned by the apprenticeship scheduler and the set of human performers
when no such difference exists is less than 5%.

Results from a binomial test rejected the null hypothesis, indicating that the learned scheduling
policy performed better than the human demonstrators in significantly more scenarios (12 versus
4 scenarios; p < 0.011). In other words, we can say with 95% certainty that the apprenticeship
scheduler outperformed the average human player for the majority of the presented missile defense
scenarios. This promising result was achieved using a relatively small training set, and suggests that
learned policy can form the basis for a training tool to improve the average human player’s score.

5.3 Real-World Data Set: Labor and Delivery

Currently, nurse resource managers commonly operate without technological decision-making aids.
As such, it is imprudent to introduce a fully autonomous solution for resource management, as do-
ing so could have life-threatening consequences for practitioners unfamiliar with such automation.
Rather, research has shown that a semi-autonomous system is preferable when integrating machines
into human cognitive workflows (Kaber & Endsley, 1997; Wickens, Li, Santamaria, Sebok, &
Sarter, 2010). Such a system would provide recommendations that a human supervisor could then
accept or modify, and would be placed within the “4-6” range on Sheridan’s 10-point scale for levels
of automation (Parasuraman, Sheridan, & Wickens, 2000).

28

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

We found it prudent to test our apprenticeship scheduling technique with the algorithm offering
recommendations to labor nurses who would evaluate how acceptable they found the quality of
each recommendation. Specifically, we wanted to test whether the algorithm was able to learn to
differentiate between high- and low-quality resource management decisions. If nurses accepted
what the apprenticeship scheduler had learned to be high-quality advice while rejecting what the
scheduler had learned to be low-quality advice, we could be reasonably confident that the apprentice
scheduler had captured the desired resource management policy.

The first step, then, was to train a decision tree using the pairwise scheduling model based on the
data set described in Section 4.3.1 of resource nurses’ scheduling decisions. Recall that this data set
consisted of the results of expert resource nurses playing the simulation for 21/2 hours, simulating
60 hours of elapsed time on a real labor floor, and yielding a data set of more than 3, 013 decisions.

Second, we invited 15 labor nurses, none of whom were among those involved in training the
algorithm, to play the same simulation used to collect the data (Figure 4). However, instead of purely
soliciting decisions from the player, the simulation used the apprenticeship scheduling policy to
offer recommendations about how to manage patients. Specifically, whenever a new patient arrived
in the simulated waiting room, the apprenticeship scheduler would offer advice recommending 1)
which of six wards to admit that patient to, 2) which bed within that ward to place that patient, and 3)
which nurse should care for that patient. Nurses would then either accept the advice, automatically
implementing the decision, or reject the advice and implement their own decisions.

In order to generate high-quality advice, the apprenticeship scheduler simply applied Equation
7. To generate low-quality advice, the apprenticeship scheduler applied Equation 22, which changes
the maximization to a minimization, as follows:

τ∗i = argmin
τi∈τ

∑
τx∈τ

fpriority(τi, τx) (22)

However, such a minimization could create a straw-man counterpoint to the high-quality advice,
demonstrating only that the apprenticeship scheduler learned at least hard constraints (e.g., “do not
assign a patient to an occupied bed”) rather than a gradation over feasible actions (e.g., “assign a
less-busy nurse to a new patient rather than a busier nurse”). As such, we also used the apprentice-
ship scheduler to generate low-quality but feasible advice by only considering τi ∈ τ such that τi
was feasible, as determined through a manually-encoded schedulability test.

For each of the 15 nurse players, we conducted two trials with the simulation offering advice.
In one trial, the advice was high-quality; in the other, the simulation offered low-quality advice
randomly chosen to be low-quality but feasible or low-quality and infeasible. We hypothesized
that nurses would accept advice during the high-quality trials and reject advice during the low-
quality trials (regardless of feasibility). Each simulation trial was randomly generated, with each
player experiencing different scenarios with differing advice. On average, a nurse would receive 8.5
recommendations per trial, resulting in a total of 256 recommendations across all nurses and trials.

The nurses accepted high-quality advice 88.4% of the time (114 of 129 high-quality recommen-
dations), while rejecting low-quality advice 88.2% of the time (112 of 127 low-quality recommenda-
tions), indicating that the apprenticeship scheduling technique is able to learn a high-quality model
for resource management decision making in the context of labor and delivery. In other words, the
apprenticeship scheduler was able to learn context-specific strategies for hospital resource allocation
and apply them to make reasonable suggestions about which tasks to perform and when.

29

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Anecdotally, some of the advice was not accepted for reasons that could be easily remedied: For
example, upon initiation of the test, we were unaware that one room on the labor and delivery floor
was unique because it uniquely contained cardiac monitoring equipment. As such, the algorithm did
not know to reason about that feature and sometimes offered a recommendation that was feasible but
less preferable for patients with cardiac-related comorbidities. It was not until later that we learned
from the nurses about this particular feature. Such findings motivate the need for active learning
for improved feature solicitation in future work. We also note that inter-operator agreement among
nurse demonstrators is unlikely to be 100%. For these reasons, we believe learning a policy that can
generate advice validated to be correct nearly 90% of the time is a favorable result.

6. Model for Collaborative Optimization via Apprenticeship Scheduling

Apprenticeship scheduling is designed to simply emulate human expert scheduling decisions; in
this work, we also use the apprenticeship scheduler in conjunction with optimization to automati-
cally and efficiently produce optimal solutions to challenging real-world scheduling problems. Our
approach, called Collaborative Optimization via Apprenticeship Scheduling (COVAS), involves ap-
plying apprenticeship scheduling to generate a favorable (if suboptimal) initial solution to a new
scheduling problem. To guarantee that the generated schedule is serviceable, we augment the ap-
prenticeship scheduler to solve a constraint satisfaction problem, ensuring that the execution of
each scheduling commitment does not directly result in infeasibility for the new problem. COVAS
uses this initial solution to provide a tight bound on the value of the optimal solution, substantially
improving the efficiency of a branch-and-bound search for an optimal schedule.

We show that COVAS is able to leverage good (but imperfect) human demonstrations to quickly
produce globally optimal solutions. We also report that COVAS can transfer an apprenticeship
scheduling policy learned for a small problem to optimally solve problems with twice as many
variables as any shown during training, and produce an optimal solution an order of magnitude faster
than mathematical optimization alone. Here, we provide an overview of the COVAS architecture
and present its two components: the policy learning and optimization routines.

6.1 COVAS Architecture

The system (Figure 9) takes as input a set of domain expert scheduling demonstrations (e.g., Gantt
charts) that contains information describing which agents complete which tasks, when and where.
These demonstrations are passed to an apprenticeship scheduling algorithm that learns a classifier,
fpriority(τi, τj), to predict whether the demonstrator(s) would have chosen scheduling action τi over
action τj ∈ τ . Next, COVAS uses fpriority(τi, τj) to construct a schedule for a new problem. The
system creates an event-based simulation of this new problem and runs this simulation in time until
all tasks have been completed. In order to complete tasks, COVAS uses fpriority(τi, τj) at each mo-
ment in time to select the best scheduling action to take. We describe this process in detail in the next
section. COVAS then provides this output as an initial seed solution to an optimization subroutine
(i.e., a MILP solver). The initial solution produced by the apprenticeship scheduler improves the
efficiency of a search by providing a bound on the objective function value of the optimal schedule.
This bound informs a branch-and-bound search over the integer variables (Bertsimas & Weismantel,
2005), enabling the search algorithm to prune areas of the search tree and focus its search on areas
that can yield the optimal solution. After the algorithm has identified an upper- and lowerbound
within some threshold, COVAS returns the solutions that have proven optimal within that threshold.

30

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

Figure 9: The COVAS architecture.

Thus, an operator can use COVAS as an anytime algorithm and terminate the optimization upon
finding a solution that is acceptable within a provable bound.

6.2 Apprenticeship Scheduling Subroutine

In Section 3, we presented our apprenticeship scheduling algorithm, which is centered around learn-
ing a classifier, fpriority(τi, τj), to predict whether an expert would take scheduling action τi over τj .
With this function, we can then predict which single action τ∗i amongst a set of actions τ the expert
would take by applying Equation 7. In this section, we build upon this formulation and integrate it
into our collaborative-optimization via apprenticeship scheduling framework.

As a subroutine within COVAS, fpriority(τi, τj) is applied to obtain the initial solution to a
new scheduling problem as follows: First, the user must instantiate a simulation of the scheduling
domain; then, at each time step in the simulation, take the scheduling action predicted by Equation
7 to be the action that the human demonstrators would take. This equation identifies the task τi with
the highest importance marginalized over all other tasks τj ∈ τ . Unlike our original formulation
in Section 3, each selected action is validated using a schedulability test (i.e., solving a constraint
satisfaction problem) to ensure that direct application of that action does not violate the constraints
of the new problem. For example, in anti-ship missile defense, one would check to ensure that the
given action does not result in a suicidal deployment (i.e., the decoy directly causes a missile to
impact the ship). This test must be fast, so as to make the benefit to feasibility and optimality in
the resulting schedule worth the additional complexity. If, at a given time step, τ∗i does not pass the
schedulability test, COVAS uses Equation 7 for all τi ∈ τ\τ∗i to consider the second-best action. If
no action passes the schedulability test, no action is taken during that time step.

While the schedulability test forces the apprenticeship scheduling algorithm to follow a subset
of the full constraints in the MILP formulation, it is possible that the algorithm may not successfully
complete all tasks. Here, we model tasks as optional and use the objective function to maximize the
total number of tasks completed. In turn, constraints for a task that the apprenticeship scheduling
algorithm did not satisfactorily complete can be turned off, with a corresponding penalty in the
objective function score. Thus, an initial seed solution that has not completed all tasks (i.e., satisfied
all constraints to complete the task) can still be helpful for seeding the MILP.

31

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Figure 10: The total computation time for COVAS, as well as the time COVAS required to identify a
solution superior to that resulting from a human expert’s demonstration. Results for the benchmark
and COVAS are depicted offset to the left and right of each position along the x-axis, respectively.

6.3 Optimization Subroutine

For optimization, we employ mathematical programming techniques to solve mixed-integer linear
programs via branch-and-bound search. COVAS incorporates the solution produced by the ap-
prenticeship scheduler to seed a mathematical programming solver with an initial solution, which
is a built-in capability provided by many off-the-shelf, state-of-the-art MILP solvers, including
CPLEX (2018) and Gurobi (2018). This seed provides a tight bound on the objective function value
of the optimal solution, which serves cut the search space; these cuts allow COVAS to more quickly
hone in on the optimal solution. Furthermore, this approach allows COVAS to quickly achieve a
bound on the optimality of the solution provided by the apprenticeship scheduling subroutine. In
such a manner, an operator can determine whether the apprenticeship scheduling solution is accept-
able or whether waiting for successive solutions from COVAS is warranted.

7. Results and Discussion

In this section, we empirically validate that COVAS is able to generate optimal solutions more
efficiently than state-of-the-art optimization techniques. We also analyze the sensitivity of the com-
putational time COVAS required to find an optimal solution as a function of the quality of the
scheduling policy learned by the apprenticeship scheduling algorithm.

7.1 Validation Against Expert Benchmark

In this section, we empirically validate that COVAS is able to generate optimal solutions more ef-
ficiently than state-of-the-art optimization techniques. As a baseline benchmark, we solve a pure
MILP formulation (Appendix A Equations 23-44) using Gurobi, which applies state-of-the-art tech-
niques for heuristic upperbounds, cutting planes and LP relaxation lowerbounds. We set the opti-
mality threshold at 10−3. For the apprenticeship scheduling subroutine’s schedulability test, we
apply Equations 36-37 as a constraint satisfaction check when testing the feasibility of action τ∗i ,
given by applying Equation 7. With regard to tasks within the apprenticeship scheduler’s seed so-
lution that are not satisfactorily completed, the MILP can leave those tasks incomplete to start by
initially setting Vm ← 0.

32

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

Figure 11: The total computation time needed for COVAS and the MILP benchmark to identify the
optimal solution for the tested scenarios. Results for the benchmark and COVAS are depicted offset
to the left and right of each position along the x-axis, respectively.

We trained COVAS’ apprenticeship scheduling algorithm on demonstrations of experts’ solu-
tions to unique ASMD scenarios (save for one “hold-out” scenario) from the ASMD data set de-
scribed in Section 4.2. We then tested COVAS on the hold-out scenario. We also applied a pure
MILP benchmark on this scenario and compared the performance of COVAS to the benchmark. We
generated one data point for each unique demonstrated scenario (i.e., leave-one-out cross-validation)
to validate the benefit of COVAS.

Figure 10 consists of two performance indicators: The total computation time required for the
MILP benchmark and COVAS to solve for the optimal solution is depicted on the left; to the right is
the computation time required for the benchmark and COVAS to identify a solution better than that
provided by a human expert. This figure indicates that COVAS was not only able to improve overall
optimization time, but that it also substantially improved computation time for solutions superior to
those produced by human experts. The average improvements in computation time with COVAS
were 6.7x the overall optimization time and 3.1x the expert-generated solutions.

Next, we evaluated COVAS’ ability to transfer prior learning to more-challenging task sets. We
trained on a level in the ASMD game in which a total of 10 missiles of varying types came from
specific bearings at given times. We randomly generated a set of scenarios involving 15 and 20
missiles, with bearings and times randomly sampled with replication from the set of bearings used
in the 10-missile scenario.

Figure 11 depicts the computation time required by COVAS and the MILP benchmark to identify
the optimal solution for scenarios involving 10, 15 and 20 missiles. The average improvement to
computation time with COVAS was 4.6x, 7.9x, and 9.5x, respectively, demonstrating that COVAS
is able to efficiently leverage the solutions of human domain experts to quickly solve problems twice
as large as those the demonstrator provided for training.

7.2 Sensitivity Analysis of COVAS to Apprenticeship Scheduler’s Learned Policy

Here, we assess the sensitivity of the computational time COVAS required to find an optimal solu-
tion as a function of the quality of the scheduling policy learned by the apprenticeship scheduling
algorithm.

33

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

7.2.1 SENSITIVITY ANALYSIS DESIGN

We sought to understand how incorrect predictions generated by the apprenticeship scheduling al-
gorithm’s classifier, fpriority(., .), would affect COVAS’ computational efficiency. We considered
three classes of mistakes that the apprenticeship scheduler could make when creating an initial
schedule: two types of mistakes related to agent allocation (swapping tasks among agents and the
misallocation of agents to a particular task), as well as task sequencing errors. We generated a
synthetic dataset involving these three error classes as follows:

• Allocation: Swapping: Select two tasks with uniform probability, τi and τj , such that the
agent a assigned to τi is different from the agent a′ assigned to τj , and subsequently swap
their assignment such that agent a′ now performs τi and vice-versa.

• Allocation: Stealing: Select one task, τi, with uniform probability, where τi is assigned to
agent a, and reassign it to a different agent, a′.

• Sequencing: Select two tasks, τi and τj , with uniform probability, such that τi precedes τj in
the schedule, and reverse their order such that τj now precedes τi.

Table 2 depicts the experiment design for our sensitivity analysis. We incorporated the synthetic
dataset because the scheduling problem has a well-defined objective function and set of constraints
for use in the optimization component of COVAS, and also because the data set encompasses three
different types of scheduling problems. The problem domain and the mock demonstrator’s heuristics
for each problem were defined in Section 5.1. We generated 15 problems for each problem type,
misclassification type, and number of misclassifications. Five replicates were generated for each
problem, with the replicates varying according to misclassification type (e.g., switching the ordering
of τi and τj versus switching τp and τq). In total, the analysis involved 3 × 3 × 3 = 27 different
experimental settings and 27× 15× 5 = 2, 025 total data points.

Problem Type
Travel Resource Temporal

Distance Contention Requirements
(Heuristic Applied) (Equation 9) (Eq. 10) (Eq. 11)

Misclassification Type Swapping Stealing Sequencing

Misclassifications 1 2 3 1 2 3 1 2 3

Table 2: This table depicts the experimental design for COVAS’ sensitivity analysis.

7.2.2 STATISTICAL MODEL FOR THE ANALYSIS

We performed a mixed-effects multiple linear regression to quantify the sensitivity of COVAS with
respect to the quality of the apprenticeship scheduling policy. The dependent variable was the com-
putational time required by COVAS to identify the optimal solution. The independent variables were
the problem type (vehicle routing, resource contention, and temporal requirements), the misclassi-
fication type (allocation-based swapping and stealing and sequencing-based errors), the number of
errors (one, two, or three), and the objective function value of the schedule produced by the appren-
ticeship scheduling algorithm (normalized to the objective function value of the optimal solution).

34

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

Parameter Estimate Confidence Interval p-value
Intercept −13.095 (−15.047,−11.143) < 0.001

Obj. Fn. Val. of AS’s schedule (Normalized) 5.256 (3.937, 6.575) < 0.001

Number of Classification Errors 1.357 (0.630, 2.083) < 0.001

Alloc. vs. Seq. Allocation 6.471 (4.942, 7.999) < 0.001
Misclassification Sequencing - - -
Allocation Steal 1.018 (−0.448, 2.484) 0.173
Misclassification Type Swap - - -

Problem Type:
Temporal Req. 3.074 (1.300, 4.848) < 0.001
Resource Contention 0.271 (−1.893, 2.435) 0.806
Travel Distance - - -

Table 3: This table depicts the results of the regression analysis. Entries with dashes indicate that
the associated parameter setting was the baseline. Statistically significant values are in bold.

The aforementioned independent variables were modeled as fixed effects. We also included random
effects for the individual problem and for the optimality of the apprenticeship scheduler’s solution
as a function of the fixed-effects independent variables. We applied a Box-Cox transformation (Box
& Cox, 1964) to normalize the data for regression, which returned λ = 0.223 as the optimal trans-
formation factor. We established statistical significance for the regression at the α = 0.05 level.

7.2.3 RESULTS AND DISCUSSION

Table 3 reports the statistical results of our sensitivity analysis.2 There are three key takeaways from
these results: First, the primary driver of COVAS’ computational time was the objective function
value of the schedule produced by the apprentice scheduler’s learned policy – not the number of
misclassification errors made when constructing the schedule. As shown in the third and fourth
rows of Table 3, the impact of the objective function value on COVAS’ computational efficiency
was 5.256/1.357 ≈ 4 times more than for the individual classification errors made by fpriority(., .).

Second, there was a statistically significant effect for allocation- versus sequencing-based per-
turbations. The regression analysis shows that COVAS’s improvement in computation time lessens
when considering allocation-based perturbations (p < 0.001). However, there was no statistically
significant effect present between allocation-based swapping and stealing errors (p = 0.173).

Third, we observed a sensitivity to the problem type / heuristic applied, with the problem type
emphasizing temporal requirements (for which the heuristic in Equation 11 is applied) represent-
ing the most challenging problem. There was not a significant difference between the resource
contention and VRP-style problem types (p = 0.806).

Finally, note that COVAS showed an improvement in computation time relative to a commercial,
state-of-the-art solver regardless of problem and misclassification type and number. We performed
separate regression analyses for each problem type and as a function of whether the classifica-
tion errors by the apprenticeship scheduler were allocation- or sequencing-based. Table 4 depicts
the objective function value of the apprenticeship scheduler’s schedule for which COVAS no longer

2. The Akaike information criterion (Akaike, 1974) and Bayesian information criterion (Schwarz et al., 1978) are
2,968.1 and 3,016, respectively. The log likelihood of the model is -1,474.1, and the deviance is 2,948.1.

35

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Travel Resource Temporal
Distance Contention Requirements

Allocation-Based Swapping Errors 1.68 1.38 1.13
Allocation-Based Stealing Errors 1.88 1.43 1.14
Sequencing-Based Errors 1.34 1.27 1.12

Table 4: This table depicts the maximum objective function value of the apprenticeship scheduler’s
initial solution (normalized to that of the optimal solution) to provide COVAS’ optimization sub-
routine with an improvementin computation time.

demonstrates an advantage in computation time (relative to a state-of-the-art solver) when marginal-
izing over the number of errors. For example, if COVAS is scheduling a problem for which travel
distance is key (and the apprentice scheduler was trained on a mock demonstrator applying Equa-
tion 9) and the apprentice scheduler makes a number of (1, 2, or 3) allocation-based swapping-type
classification errors while constructing the schedule, COVAS is faster than a state-of-the-art bench-
mark, so long as the objective function value of the schedule produced by the apprentice scheduler
is no worse than 1.88 times that of the optimal solution. The results show that COVAS demonstrates
an advantage for all problem and misclassification types.

7.2.4 CONCLUSION

The results from our sensitivity analysis support the hypothesis that COVAS is robust to misclassi-
fication errors by the apprenticeship scheduler’s learned policy. The data indicate that the appren-
ticeship scheduler’s solution quality is the dominating factor, rather than the number of individual
mistakes made when generating that solution. While further investigation of other scheduling prob-
lems is warranted, the variants within this data set inform our understanding of the sensitivity of
COVAS to imperfections in the learned policy across a range of problem types.

These results also provide insight into ways that we can potentially improve COVAS’ appren-
ticeship scheduling subroutine. For example, COVAS is more sensitive to the objective function
value of the schedule produced by the apprenticeship scheduler’s policy, while being somewhat ro-
bust to the number of errors made by the apprenticeship scheduler when constructing the schedule.
As such, imitation learning (Ross, Gordon, & Bagnell, 2011; Cheng & Boots, 2018) approaches,
which attempt to bootstrap off of an initial, learned policy, may be able to improve the quality of
the solutions produced by the apprenticeship scheduler. Further, a Bayesian IRL approach (Michini
& How, 2012; Ramachandran & Amir, 2007), which seeks to infer a policy mimicking an “ideal
demonstrator,” may also be able to leverage demonstrations to better guide COVAS’ optimization
subroutine. In future work, we will seek to determine how to combine such approaches with our
pairwise training procedure for COVAS’ apprenticeship scheduling subroutine.

8. Limitations and Future Work

The core of the apprenticeship scheduling algorithm is learning a classifier, fpriority(τi, τj), to
predict whether a human expert would take action τi over τj . The output of fpriority(τi, τj) is a
probability in [0, 1]. This pairwise approach has a number of key advantages: For example, it is

36

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

nonparametric with regard to the number of tasks, meaning one can learn from problems involving
n actions and apply that knowledge to problems with n′ 6= n actions. However, there are two inter-
esting anomalies inherent in this approach: First, one could hypothetically evaluate fpriority(τi, τj)
and find that it predicts that the expert has a higher probability of taking action τi than τj ; how-
ever, evaluating argmax

τi∈τ

∑
τj∈τ

fpriority(τi, τj) could predict that τj is the action most likely to be

taken by the expert. The second anomaly entails the lack of a guarantee that the transitive prop-
erty will hold for arbitrary fpriority(τi, τj). For example, it could be that fpriority(τi, τj) > 0.5,
fpriority(τj , τk) > 0.5, but also fpriority(τk, τi) > 0.5 for some τi, τj , and τk. Through our eval-
uation, we have shown that the formulation for apprenticeship scheduling can learn high-quality
policies from human domain experts’ demonstrations. However, an interesting aim for future work
would be to study these anomalies, quantify their effects – if any – and develop a formulation to alter
these effects. Appendix B provides an example formulation for how to mitigate such anomalies.

COVAS also has some interesting aspects that merit future investigation. COVAS is able to
leverage expert scheduling demonstrations to speed up the computation of provable, globally opti-
mal scheduling solutions. However, the approach is still limited by the quality of the demonstrations
provided by experts, as well as the ability of the apprenticeship scheduling algorithm to generalize
the information within those demonstrations. The MILP’s computation time is expedited by tight
upperbounds (i.e., an initial seed) provided by the apprenticeship scheduling algorithm. If the ap-
prenticeship scheduling algorithm is unable to provide a tight upperbound, the MILP’s computation
time may not be significantly improved. In future work, we will explore potential extensions to the
apprenticeship scheduling algorithm to improve its ability to learn from noisy demonstrations. One
approach could be to incorporate a trustworthiness metric à la Zhang and Burns (2009) directly into
the training of the classifier to uncover a latent action ranking. For example, instead of binary labels,
we could reformulate the problem to be one of regression, where positive and negative labels are
proportional and inversely proportional, respectively, to the fidelity of the demonstrator.

Finally, apprenticeship scheduling with heterogeneous demonstrators is an important area for
future work. In this paper, we demonstrated the ability to learn from 1) homogeneous demonstra-
tors with varying quality and quantity of training data in a synthetic domain and 2) heterogeneous
demonstrators in multiple real-world domains (i.e., healthcare and ship defense). Future lines of
research include learning clusters of operator archetypes through unsupervised or semi-supervised
learning so that the apprenticeship scheduler can better account for individual differences between
operators. If each demonstrator applies different strategies, it will be more difficult to generalize
across operators (Sammut et al., 1992). However, if there are a small number of demonstrator types
relative to the number of demonstrators, it may be possible to leverage commonality within or across
types to bootstrap the learning process.

9. Conclusions

In this paper, we proposed a technique for apprenticeship scheduling that relies upon a pairwise
comparison of scheduled and unscheduled tasks to learn a model for task prioritization. We vali-
dated that our apprenticeship scheduling algorithm is able to learn high-quality scheduling policies
from demonstration across both synthetic data and real-world data sets. Specifically, apprentice-
ship scheduling can learn from nurse resource managers to make scheduling decisions that are ac-
cepted by resource nurses 90% of the time, and can learn from military experts to solve a variant of

37

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

the weapon-to-target assignment problems with better performance than the average human expert.
Next, we embedded this apprenticeship scheduling algorithm within a ML-optimization framework.
This algorithm, COVAS, leverages the ability of apprenticeship scheduling to capture the knowledge
of human domain experts in order to produce optimal solutions for complex real-world scheduling
problems. We validated our technique using a data set collected from human experts solving an
anti-ship missile defense problem, and showed that our approach can substantially improve upon
solutions produced by experts, at a rate up to 9.5 times faster than an optimization approach that
does not incorporate human expert demonstration.

Appendix A. ASMD: Mathematical Program Formulation

We readily formulate the ASMD as a mixed-integer linear program in Equations 23-44. This for-
mulation incorporates a set of binary decision variables: Ad,m,t ∈ {0, 1} is set to 1 to indicate that
decoy d is assigned to missile m at time t, and is 0 otherwise. Ad,t ∈ {0, 1} is set to 1 to indicate
that decoy d is assigned to some missile at time t, and is 0 otherwise. Ud,m ∈ {0, 1} is set to 1
to indicate that decoy d is used against missile m, and is 0 otherwise. Ud ∈ {0, 1} is set to 1 to
indicate that decoy d is used in the solution, and is 0 otherwise. Xd,l ∈ {0, 1} is set to 1 to indicate
that decoy d is deployed at location l, and is 0 otherwise. Vm ∈ {0, 1} is set to 1 to indicate that
missile m has been effectively diverted, and is 0 otherwise. Gg,m,t ∈ {0, 1} is set to 1 to indicate
that missile m is tracking the ship at time t. A single missile might have multiple, separate epochs
during which it tracks the ship (e.g., it first tracks the ship, then a decoy, then the ship again after
the decoy disappears); thus, the program can choose which index g to represent the various epochs
in Gg,m,t. Jd,m ∈ {0, 1} is set to 1 to indicate that decoy d is deployed after missile m’s flight (i.e.,
after it either hits the ship or is guided astray by a decoy).

The program contains the following continuous variables: Sdecoyd,m represents the start time of

the assignment of decoy d to missile m, and Sdecoyd is the time at which decoy d is deployed from
the ship. Likewise, F decoyd,m represents the finish time of the assignment of decoy d to missile m,

and F decoyd is either the time at which the decoy disappears or the end of the engagement. Sshipg,m

indicates the start time of missile m tracking the ship during epoch g, and F shipg,m indicates the finish
time of missile m tracking the ship during epoch g. We include the constant, M , which is a large,
positive number allowing one to formulate linear, conditional constraints.

The program also includes the following set of constants: dtre−targetm is the length of time for
which a missile will track a single target (i.e., a decoy or ship) before reassessing which target
is best to track. Thus, if the missile begins tracking the ship at time t, no decoy can break its
lock during the interval [t, t + dtre−targetm). ETAm is the time at which missile m will reach the
ship’s immediate vicinity. tappearm is the time at which missile m first becomes close enough to
track the ship. cd represents the financial cost of deploying decoy d. α, α′, and α′′ are predefined
weighting terms for the objective function. The computational complexity of completely searching
for the optimal solution via this formulation is dominated by the integer variables, which yields
O(2dmt+dm+dt+dl+d+gmt+m).

Equation 23 is a multi-criteria objective function that minimizes a weighted linear combination
of the cost of all decoy deployments, less the total time during which missiles are tracking decoys
and the number of missiles successfully guided away from the ship. Equations 24-31 ensure internal
consistency between the variables. Equation 32 ensures that a decoy, if deployed, is active for dtevapd

38

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

units of time given its timing characteristics. Equation 33 ensures that a decoy is deployed to no
more than one location. Equation 34 ensures that, if a decoy is deployed against a missile, its
deployment location will be a more attractive target than the ship for that missile. Equation 35
requires that each missile track either a ship or decoy while within range. Equations 36-37 force a
decoy, if deployed to a location that would cause missile m to impact the ship, to either be deployed
after the missile has already been diverted or reached the ship (Equation 36) or to be deployed and
disappear before the missile enters targeting range (Equation 37).

Equation 38 ensures that a missile must be tracking a decoy in the final seconds before it reaches
the vicinity of the ship, or else the missile will impact the ship. The duration of this critical period
is dependent upon missile dynamics and the target selection process. Equation 39 ensures that a
missile will select the most attractive decoy according to that missile’s selection logic. Equation 40
restricts decoy deployments such that the missile heading does not “sweep” across the ship in the
final seconds of the missile’s flight. If a missile does not have enough time to change its direction
toward a newly deployed decoy, that missile will fly into the ship.

Equations 41-44 ensure that the duration of epoch g of missile m while tracking the ship lasts
exactly as long as the retargeting time for the missile. Equations 41-42 are akin to Equations 28-
30 and relate the start and finish times of ship-tracking epoch g to the decision variable Gg,m,t.
Equation 43 is akin to Equation 31 and relates the start and finish times of ship-tracking epoch g to
the decision variable Gg,m,t. Equation 44 ensures that the tracking time is dtre−targetm if the missile
is airborne for at least dtre−targetm seconds. Otherwise, the tracking time is equal to the time before
impacting the ship (i.e., ETAm− t− 1). Finally, a term (i.e., −MGg,m,t−1) disables the constraint
for all t except for the exact moment when t begins tracking the ship.

min z, z = α
∑
d

cdUd − α′
∑
d,m,t

Ad,m,t − α′′
∑
m

Vm (23)

Ad,m,t ≤ Ad,t,∀d,m, t (24)

Ad,m,t ≤ Ud,m,∀d,m, t (25)

Xd,l ≤ Ud, ∀d, l (26)

Sdecoyd ≤ Sdecoyd,m ,∀d,m (27)

Sdecoyd,m ≤ t+M(1−Ad,m,t),∀d,m, t (28)

F decoyd,m ≤ F decoyd ,∀d,m (29)

tAd,m,t ≤ F decoyd,m ,∀d,m, t (30)

M(Ud,m − 1) ≤ Sdecoyd,m − F decoyd,m − 1 +
∑
t

Ad,m,t ≤M(1− Ud,m) (31)

M(Ud − 1) ≤ F decoyd − Sdecoyd − dtevapd ≤M(1− Ud) (32)∑
l

Xd,l ≤ 1,∀d (33)

Ud,m ≤
∑

l|m seduced by decoy d in location l

Xd,l,∀d,m (34)

1 =
∑
d

Ad,m,t +
∑
g

Gg,m,t,∀m, t (35)

39

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

tappearm − F decoyd ≥M(Xd,l + Vm − Jd,m − 2),

∀d, l,m s.t. decoy d in location l would cause missile m to impact the ship. (36)

Sdecoyd − ETAm ≥M(Xd,l + Vm + Jd,m − 3),∀d, l,m s.t. decoy d

in location l would cause missile m to impact the ship. (37)

Vm ≤
∑
d

Ad,m,t, ∀m, t|t in critical region for missile m. (38)

2 ≥ Ad,m,t +Xd,l +Xd′,l′ , ∀d, d′, l, l′,m, t s.t. missile m is more

attracted to decoy d’ at location l’ than decoy d at location l at time t. (39)

1 ≥ Ad,m,t +Ad′,m,t, ∀d, d′,m, t s.t. d 6= d′

and t is in a critical region before impact. (40)

Sshipg,m ≤ t+M(1−Gg,m,t),∀g,m, t (41)

t ∗Gg,m,t ≤ F shipg,m , ∀g,m, t (42)

M(Ug,m − 1) ≤ Sshipg,m − F shipg,m − 1 +
∑
t

Gg,m,t ≤M(1− Ug,m) (43)

F shipg,m − Sshipg,m ≥M(Gg,m,t − 1)

+

{
dtre−targetm − 1 if t < ETAm − dtre−targetm ,

ETAm − t− 1 otherwise.

+

{
−MGg,m,t−1 if t > tappearm ,

0 otherwise.

∀g,m, t|tappearm ≤ t < ETAm (44)

As ASMD is a time-extended problem, the formulation must discretize time. However, note that
the granularity with which the task of protecting the ship is decomposed as a function of time is a
modeling choice with ramifications for the quality and computation time of a solution. Consider a
missile that will hit the ship if it tracks the ship in some time interval [t, t′) for a duration dt = t−t′.
The captain might, at time t, deploy a decoy d, such as a hovering UAV, that is able to last the entire
duration dt. However, it may be preferable to deploy one or more decoys, d′, each of which remains
active for a portion of the specified time interval. Furthermore, in a situation wherein another
missile, m′, is launched before m, it may be best to have a decoy deployed before t that can divert
both m and m′ during part or all of those missiles’ flights.

As we do not know a priori the best time to deploy a decoy that can be used for varying portions
(i.e., subtasks) of the task of mitigating each missile, we must decompose the task into sufficiently
small time steps. Discretizing time exponentially increases the search space, and thus the time to
compute the solution; therefore, there is a balance between optimality (and feasibility) and compu-
tation time. In order to generate an exact solution, we chose the least-common multiple of the time
constants, which is trivially 1, as the unit of time in the simulation.

40

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

Appendix B. Mitigating Anomalies

To mitigate anomalies inherent in a pairwise comparison approach, one could consider the following
formulation in Equations 45 through 50 when learning a decision tree model, T ∗, for apprenticeship
scheduling:

T ∗ = argmin
T

Eθ,y[L(ym〈τi,τj〉, T (rankθm〈τi,τj〉))] (45)

subject to

T (rankθm〈τi,τj〉) > 0.5 +M(1− Zi,j),∀τi, τj (46)

T (rankθm〈τi,τj〉) < 0.5 +M(Zi,j),∀τi, τj (47)∑
τk∈τ

T (rankθm〈τi,τk〉)−
∑
τk∈τ

T (rankθm〈τj ,τk〉) > M(1− Zi,j),∀τi, τj (48)∑
τk∈τ

T (rankθm〈τi,τk〉)−
∑
τk∈τ

T (rankθm〈τj ,τk〉) < M(Zi,j), ∀τi, τj (49)

Zi,j + Zj,k − 1 ≥ Zi,k, ∀τi, τj , τk (50)

Equation 45 states that we want to find the decision tree, T ∗, among all possible trees, T , that
minimizes an expected loss function, L. Recall from Section 3.2 that ym〈τi,τj〉 is the binary label
given to an observation to indicate whether the human demonstrator took action τi or τj . Further,
rankθm〈τi,τj〉 is the corresponding feature vector from that observation. Equations 46 through 49 force
the pairwise comparisons to agree with the cumulative ranking. Zi,j is a binary decision variable
that is equal to 1 when τi is expected to be chosen over τj and 0 when τj is expected to be chosen
over τi. Recall that M is a large positive number that allows one to formulate linear, conditional
constraints. Finally, Equation 50 requires that the transitive property holds for T . Specifically, if τi
is predicted to be more likely than τj (i.e, Zi,j = 1), and τj (i.e, Zj,k = 1) is more likely than τk,
then τi should also be predicted to be more likely than τk (i.e, Zi,k = 1).

References

Abbeel, P., Coates, A., Quigley, M., & Ng, A. Y. (2007). An application of reinforcement learning
to aerobatic helicopter flight. Advances in neural information processing systems, 19, 1.

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the International Conference on Machine Learning.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Auto-
matic Control, 19(6), 716–723.

Aleotti, J., & Caselli, S. (2006). Robust trajectory learning and approximation for robot program-
ming by demonstration. Robotics and Autonomous Systems, 54(5), 409–413.

Anders, U., & Korn, O. (1999). Model selection in neural networks. Neural Networks, 12(2), 309 –
323.

Aydin, M. E., & Öztemel, E. (2000). Dynamic job-shop scheduling using reinforcement learning
agents. Robotics and Autonomous Systems, 33(2), 169–178.

41

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Banerjee, A. G., Ono, M., Roy, N., & Williams, B. (2011). Regression-based LP solver for chance-
constrained finite horizon optimal control with nonconvex constraints. In Proceedings of the
American Controls Conference, pp. 131–138. IEEE.

Baranes, A., & Oudeyer, P.-Y. (2013). Active learning of inverse models with intrinsically motivated
goal exploration in robots. Robotics and Autonomous Systems, 61(1), 49–73.

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13(1-2), 41–77.

Basu, C., Hirsh, H., & Cohen, W. (1998). Recommendation as classification: Using social and
content-based information in recommendation. In Proceedings of the National Conference
on Artificial Intelligence, pp. 714–720. AAAI Press.

Benton, J., Coles, A. J., & Coles, A. (2012). Temporal planning with preferences and time-
dependent continuous costs.. In Proceedings of the International Conference on Automated
Planning and Scheduling, Vol. 77, p. 78.

Berry, P., Peintner, B., Conley, K., Gervasio, M., Uribe, T., & Yorke-Smith, N. (2006). Deploying
a personalized time management agent. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, pp. 1564–1571.

Berry, P. M., Gervasio, M., Peintner, B., & Yorke-Smith, N. (2011). Ptime: Personalized assistance
for calendaring. ACM Transactions on Intelligent Systems and Technology, 2(4), 40:1–40:22.

Bertsimas, D., & Weismantel, R. (2005). Optimization over Integers. Dynamic Ideas, Belmont.

Boese, K. D., Kahng, A. B., & Muddu, S. (1994). A new adaptive multi-start technique for combi-
natorial global optimizations. Operations Research Letters, 16(2), 101–113.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., & Pool, D. (2004). Cp-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, 21, 135–191.

Boutilier, C., Brafman, R. I., Hoos, H. H., & Poole, D. (1999). Reasoning with conditional ceteris
paribus preference statements. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, pp. 71–80, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 211–252.

Bradtke, S. J., & Duff, M. O. (1994). Reinforcement learning methods for continuous-time markov
decision problems. In Advances in Neural Information Processing Systems, pp. 393–400.
MIT Press.

Brunet, L., Choi, H.-L., & How, J. P. (2008). Consensus-based auction approaches for decentralized
task assignment. In Proceedings of the AIAA Guidance, Navigation, and Control Conference,
Honolulu, HI.

Bullard, K., Akgun, B., Chernova, S., & Thomaz, A. L. (2016). Grounding action parameters
from demonstration. In Proceedings of the International Symposium on Robot and Human
Interactive Communication, pp. 253–260. IEEE.

Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews, 38(2), 156–172.

42

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

Cai, D., He, X., Wen, J.-R., & Ma, W.-Y. (2004). Block-level link analysis. In Proceedings of the
27th Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 440–447. ACM.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007). Learning to rank: from pairwise approach
to listwise approach. In Proceedings of the International Conference on Machine Learning,
pp. 129–136. ACM.

Chandramohan, S., Geist, M., Lefevre, F., & Pietquin, O. (2011). User simulation in dialogue
systems using inverse reinforcement learning. In Interspeech, pp. 1025–1028.

Chen, J., & Askin, R. G. (2009). Project selection, scheduling and resource allocation with time
dependent returns. European Journal of Operational Research, 193, 23–34.

Cheng, C.-A., & Boots, B. (2018). Convergence of value aggregation for imitation learning. arXiv
preprint arXiv:1801.07292.

Cheng, T.-H., Wei, C.-P., & Tseng, V. S. (2006). Feature selection for medical data mining: Com-
parisons of expert judgment and automatic approaches. In Proceedings of the Symposium on
Computer-Based Medical Systems, pp. 165–170.

Chernova, S., & Veloso, M. (2007). Confidence-based policy learning from demonstration using
gaussian mixture models. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems, pp. 233:1–233:8. ACM.

Chernova, S., & Veloso, M. (2008). Multi-thresholded approach to demonstration selection for
interactive robot learning. In Proceedings of the IEEE International Conference on Human-
Robot Interaction. IEEE.

Cho, Y. H., Kim, J. K., & Kim, S. H. (2002). A personalized recommender system based on web
usage mining and decision tree induction. Expert Systems with Applications, 23(3), 329 –
342.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining
content-based and collaborative filters in an online newspaper. In Proceedings of the ACM
SIGIR Workshop on Recommender Systems.

Das, T., Gosavi, A., Mahadevan, S., & Marchalleck., N. (1999). Solving semi-markov decision
problems using average reward reinforcement learning. Management Science, 45, 560–574.

De Grano, M. L., Medeiros, D. J., & Eitel, D. (2009). Accommodating individual preferences in
nurse scheduling via auctions and optimization. Healthcare Management Science, 12, 228–
242.

Do, M. B., & Kambhampati, S. (2003). Sapa: A multi-objective metric temporal planner. Journal
of Artificial Intelligence Research, 20, 155–194.

Dubois, D., & Fortemps, P. (1999). Computing improved optimal solutions to max–min flexible
constraint satisfaction problems. European Journal of Operational Research, 118(1), 95–
126.

Gambardella, L. M., Éric Taillard, & Agazzi, G. (1999). MACS-VRPTW: A multiple colony system
for vehicle routing problems with time windows. In New Ideas in Optimization, pp. 63–76.
McGraw-Hill.

43

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Gombolay, M., Jensen, R., Stigile, J., Son, S.-H., & Shah, J. (2016). Decision-making authority,
team efficiency and human worker satisfaction in mixed human-robot teams. In Proceedings
of the International Joint Conference on Artificial Intelligence, New York City, NY, U.S.A.

Gombolay, M., & Shah, J. (2015). Schedulability analysis of task sets with upper- and lower-bound
temporal constraints. Journal of Aerospace Information Systems, 11(12), 821–841.

Gombolay, M., Wilcox, R., & Shah, J. (2013). Fast scheduling of multi-robot teams with tem-
porospatial constrints. In Proceedings of Robotics: Science and Systems, Berlin, Germany.

Gombolay, M., Yang, X. J., Hayes, B., Seo, N., Liu, Z., Wadhwania, S., Yu, T., Shah, N., Golen,
T., & Shah, J. (2016). Robotic assistance in coordination of patient care. In Proceedings of
Robotics: Science and Systems, Ann Arbor, MI, U.S.A.

Grollman, D. H., & Jenkins, O. C. (2008). Sparse incremental learning for interactive robot control
policy estimation. In International Conference on Robotics and Automation, pp. 3315–3320.
IEEE.

Gurobi Optimization, Inc. (2018). Gurobi optimizer version 5.0. http://www.gurobi.com.

Haveliwala, T. H. (2002). Topic-sensitive PageRank. In Proceedings of the International Conference
on World Wide Web, pp. 517–526. ACM.

Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large Margin Rank Boundaries for Ordinal
Regression, chap. 7, pp. 115–132. MIT Press.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5–53.

Huang, C.-M., & Mutlu, B. (2014). Learning-based modeling of multimodal behaviors for human-
like robots. In Proceedings of the International Conference on Human-Robot Interaction, pp.
57–64.

IBM (2018). Ilog cplex optimization studio. https://www.ibm.com/products/
ilog-cplex-optimization-studio. Accessed: 2018-08-24.

Ibnkahla, M. (2000). Applications of neural networks to digital communications - a survey. Signal
Processing, 80(7), 1185 – 1215.

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear dynamical
systems in humanoid robots. In Proceedings of the International Conference on Robotics and
Automation, Vol. 2, pp. 1398–1403.

Inamura, T., Inaba, M., & Inoue, H. (1999). Acquisition of probabilistic behavior decision model
based on the interactive teaching method. In Proceedings of the International Conference on
Advanced Robotics.

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the Symposium on Theory of computing, pp. 604–613.

Jin, R., Valizadegan, H., & Li, H. (2008). Ranking refinement and its application to information
retrieval. In Proceedings of the Conference on the World Wide Web, pp. 397–406.

Jones, E., Dias, M., & Stentz, A. (2011). Time-extended multi-robot coordination for domains with
intra-path constraints. Autonomous Robots, 30(1), 41–56.

44

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

Kaber, D. B., & Endsley, M. R. (1997). Out-of-the-loop performance problems and the use of
intermediate levels of automation for improved control system functioning and safety. Process
Safety Progress, 16(3), 126–131.

Kehle, S. M., Greer, N., Rutks, I., & Wilt, T. (2011). Interventions to improve veterans? access
to care: A systematic review of the literature. Journal of General Internal Medicine, 26(2),
689–696.

Khatib, L., Morris, P., Morris, R., & Rossi, F. (2001). Temporal constraint reasoning with prefer-
ences. Tech. rep., Moffet Field, CA, USA.

Kim, H. K., Kim, J. K., & Ryu, Y. (2009). Personalized recommendation over a customer network
for ubiquitous shopping. IEEE Transactions on Services Computing, 2.

Kim, J. K., Cho, Y. H., Kim, W. J., Kim, J. R., & Suh, J. H. (2002). A personalized recommendation
procedure for internet shopping support. Electronic Commerce Research and Applications,
1(3-4), 301 – 313.

Konidaris, G., & Barto, A. (2007). Building portable options: Skill transfer in reinforcement learn-
ing. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 895–
900.

Konidaris, G., Kuindersma, S., Grupen, R., & Barto, A. (2011a). Robot learning from demon-
stration by constructing skill trees. The International Journal of Robotics Research,
0278364911428653.

Konidaris, G., Osentoski, S., & Thomas, P. (2011b). Value function approximation in reinforce-
ment learning using the fourier basis. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 380–385.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender sys-
tems. Computer, 42(8), 30–37.

Korsah, G. A., Stentz, A., & Dias, M. B. (2013). A comprehensive taxonomy for multi-robot task
allocation. International Journal of Robotics Research, 32(12), 1495–1512.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning
Research, 4(Dec), 1107–1149.

Landwehr, N., Hall, M., & Frank, E. (2005). Logistic model trees. Machine Learning, 59(1-2),
161–205.

Lee, Z.-J., Su, S.-F., & Lee, C.-Y. (2003). Efficiently solving general weapon-target assignment
problem by genetic algorithms with greedy eugenics. IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, 33(1), 113–121.

Li, P., Wu, Q., & Burges, C. J. (2007). Mcrank: Learning to rank using multiple classification and
gradient boosting. In Platt, J., Koller, D., Singer, Y., & Roweis, S. (Eds.), Advances in Neural
Information Processing Systems, pp. 897–904, Cambridge, MA. MIT Press.

Lihua, W., Lu, L., Jing, L., & Zongyong, L. (2005). Modeling user multiple interests by an improved
GCS approach. Expert Systems with Applications, 29(4), 757 – 767.

Lin, M., Xie, J., Guo, H., & Wang, H. (2005). Solving qos-driven web service dynamic composition
as fuzzy constraint satisfaction. In Proceedings of the IEEE International Conference on e-
Technology, e-Commerce and e-Service, pp. 9–14. IEEE.

45

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Linoff, G. S., & Berry, M. J. (2004). Data Mining Techniques: For Marketing, Sales and Customer
Relationship Management. Wiley, Hoboken, New Jersey.

Liu, L., & Shell, D. A. (2013). Optiml market-based multi-robot task allocation via strategic pricing.
In Proceedings of Robotics: Science and Systems, Berlin, Germany.

Lombrozo, T. (2006). The structure and function of explanations. Trends in cognitive sciences,
10(10), 464–470.

Malhotra, N. K. (2010). Marketing Research: an Applied Orientation. Prentice Hall, Upper Saddle
River, New Jersey.

Michini, B., & How, J. P. (2012). Bayesian nonparametric inverse reinforcement learning. In
Machine Learning and Knowledge Discovery in Databases, Vol. 7524 of Lecture Notes in
Computer Science, pp. 148–163. Springer Berlin Heidelberg.

Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1992). Minimizing conflicts: a heuristic
repair method for constraint satisfaction and scheduling problems. Artificial Intelligence,
58(1-3), 161–205.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529–533.

Morris, P., Morris, R., Khatib, L., Ramakrishnan, S., & Bachmann, A. (2004). Strategies for global
optimization of temporal preferences. In Proceedings of the International Conference on
Principles and Practice of Constraint Programming, pp. 408–422. Springer.

Muscettola, N., Morris, P., & Tsamardinos, I. (1998). Reformulating temporal plans for efficient
execution. In Proceedings of the International Conference on Principles of Knowledge Rep-
resentation and Reasoning, Trento, Italy.

Nunes, E., & Gini, M. (2015). Multi-robot auctions for allocation of tasks with temporal constraints.
In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2110–2116.

Odom, P., & Natarajan, S. (2015). Active advice seeking for inverse reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4186–4187.

Öztürké, M., Tsoukiı̀s, A., & Vincke, P. (2005). Preference modelling. In Multiple Criteria Deci-
sion Analysis: State of the Art Surveys, Vol. 78 of Proceedings of the International Series in
Operations Research & Management Science, pp. 27–59. Springer New York.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing
order to the web.. Technical report 1999-66, Stanford InfoLab. SIDL-WP-1999-0120.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., & Salakoski, T. (2007). Learning to rank with
pairwise regularized least-squares. In SIGIR Workshop on Learning to Rank for Information
Retrieval, pp. 27–33.

Parasuraman, R., Sheridan, T., & Wickens, C. D. (2000). A model for types and levels of human
interaction with automation. IEEE Transactions on Systems, Man, and Cybernetics-A, 30(3),
286–297.

Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K. (2012). A literature review and classification of
recommender systems research. Expert Systems with Applications, 39(11), 10059 – 10072.

46

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

Peintner, B., & Pollack, M. E. (2004). Low-cost addition of preferences to dtps and tcsps. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 723–728.

Pizer, S. D., & Prentice, J. C. (2011). What are the consequences of waiting for health care in the
veteran population?. Journal of General Internal Medicine, 26(2), 676–682.

Puterman, M. L. (2014). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons.

Raghavan, H., Madani, O., & Jones, R. (2006). Active learning with feedback on features and
instances. Journal of Machine Learning Research, 7, 1655–1686.

Ramachandran, D., & Amir, E. (2007). Bayesian inverse reinforcement learning. In Proceedings of
the International Joint Conference on Artificial Intelligence, pp. 2586–2591.

Ramanujam, V., & Balakrishnan, H. (2011). Estimation of maximum-likelihood discrete-choice
models of the runway configuration selection process. In Proceedings of the American Con-
trols Conference, pp. 2160–2167.

Ross, S., Gordon, G., & Bagnell, D. (2011). A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the International Conference on Artificial
Intelligence and Statistics, pp. 627–635.

Rossi, F., Venable, K. B., & Walsh, T. (2009). Preferences in constraint satisfaction and optimiza-
tion. AI magazine, 29(4), 58.

Rossi, F., Venable, K. B., & Yorke-Smith, N. (2006). Uncertainty in soft temporal constraint prob-
lems: A general framework and controllability algorithms forthe fuzzy case. Journal of Arti-
ficial Intelligence Research, 27, 617–674.

Rudová, H., & Murray, K. (2002). University course timetabling with soft constraints. In Inter-
national Conference on the Practice and Theory of Automated Timetabling, pp. 310–328.
Springer.

Rybski, P. E., & Voyles, R. M. (1999). Interactive task training of a mobile robot through human
gesture recognition. In IEEE International Conference on Robotics and Automation, pp. 664–
669.

Saaty, T. L. (2008). Relative measurement and its generalization in decision making why pairwise
comparisons are central in mathematics for the measurement of intangible factors the ana-
lytic hierarchy/network process. RACSAM-Revista de la Real Academia de Ciencias Exactas,
Fisicas y Naturales. Serie A. Matematicas, 102(2), 251–318.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learning to fly. In Proceedings of the
International Conference on Machine Learning, pp. 385–393.

Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J. T. (2000). Application of dimensionality
reduction in recommender system - a case study. In Proceedings of the ACM WEBKDD
workshop.

Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender
systems. In The Adaptive Web, pp. 291–324. Springer-Verlag, Berlin, Heidelberg.

Schiex, T., Fargier, H., Verfaillie, G., et al. (1995). Valued constraint satisfaction problems: Hard
and easy problems. International Joint Conference on Artificial Intelligence (1), 95, 631–639.

47

GOMBOLAY, JENSEN, STIGILE, GOLEN, SHAH, SON, & SHAH

Schwarz, G., et al. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2),
461–464.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587), 484–489.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35(2), 254–265.

Soomer, M., & Franx, G. (2008). Scheduling aircraft landing using airlines’ preferences. European
Journal of Operational Research, 190, 277–291.

Streeter, M. J., & Smith, S. F. (2006). How the landscape of random job shop scheduling instances
depends on the ratio of jobs to machines. Journal of Artificial Intelligence Research, 26,
247–287.

Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y., et al. (1999). Policy gradient methods
for reinforcement learning with function approximation.. In Advances in Neural Information
Processing Systems, pp. 1057–1063.

Tan, K., Lee, L., Zhu, Q., & Ou, K. (2001). Heuristic methods for vehicle routing problem with
time windows. Artificial Intelligence in Engineering, 15(3), 281 – 295.

Terrell, A., & Mutlu, B. (2012). A regression-based approach to modeling addressee backchannels.
In Proceedings of the Special Interest Group on Discourse and Dialogue, pp. 280–289.

Tesauro, G. (1995). Temporal difference learning and td-gammon. Communications of the ACM,
38(3), 58–68.

Thomaz, A. L., & Breazeal, C. (2006). Reinforcement learning with human teachers: Evidence of
feedback and guidance with implications for learning performance. In Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 1000–1005.

Valizadegan, H., Jin, R., Zhang, R., & Mao, J. (2009). Learning to rank by optimizing NDCG
measure. In Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., & Culotta, A. (Eds.),
Advances in Neural Information Processing Systems, pp. 1883–1891. Curran Associates, Inc.

Vogel, A., Ramach, D., Gupta, R., & Raux, A. (2012). Improving hybrid vehicle fuel efficiency
using inverse reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 384–390.

Volkovs, M. N., & Zemel, R. S. (2009). Boltzrank: Learning to maximize expected ranking gain.
In Proceedings of the International Conference on Machine Learning, pp. 1089–1096.

Wang, Y.-C., & Usher, J. M. (2005). Application of reinforcement learning for agent-based produc-
tion scheduling. Engineering Applications of Artificial Intelligence, 18(1), 73–82.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279–292.

Wickens, C. D., Li, H., Santamaria, A., Sebok, A., & Sarter, N. B. (2010). Stages and levels of au-
tomation: An integrated meta-analysis. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, Vol. 54, pp. 389–393. SAGE Publications.

Wilcox, R. J., & Shah, J. A. (2012). Optimization of multi-agent workflow for human-robot collab-
oration in assembly manufacturing. In Proceedings of AIAA Infotech@Aerospace.

48

HUMAN-MACHINE COLLABORATIVE OPTIMIZATION

Wu, J., Xu, X., Zhang, P., & Liu, C. (2011). A novel multi-agent reinforcement learning approach
for job scheduling in grid computing. Future Generation Computer Systems, 27(5), 430 –
439.

Yorke-Smith, N., Venable, K. B., & Rossi, F. (2003). Temporal reasoning with preferences and
uncertainty. In International Joint Conference on Artificial Intelligence, Vol. 3, pp. 1385–
1386.

Yu, S.-Z. (2010). Hidden semi-markov models. Artificial Intelligence, 174(2), 215 – 243. Special
Review Issue.

Zeng, Z., & Kuipers, B. (2016). Learning tabletop object manipulation by imitation. arXiv preprint
arXiv:1603.00964.

Zhang, F., & Burns, A. (2009). Schedulability analysis for real-time systems with edf scheduling.
IEEE Transactions on Computers, 58(9), 1250–1258.

Zhang, W., & Dietterich, T. G. (1995). A reinforcement learning approach to job-shop scheduling. In
Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1114–1120.

Zheng, J., Liu, S., & Ni, L. (2015). Robust bayesian inverse reinforcement learning with sparse
behavior noise. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2198–
2205.

Ziebart, B. D., Maas, A., Bagnell, J. A., & Dey, A. K. (2008). Maximum entropy inverse rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
1433–1438.

49

