
Journal of Artificial Intelligence Research 62 (2018) 755-797 Submitted 05/18; published 08/18

Computing Hierarchical Finite State
Controllers with Classical Planning

Javier Segovia-Aguas javier.segovia@upf.edu
Dept. Information and Communication Technologies
Universitat Pompeu Fabra
Roc Boronat 138, 08018 Barcelona, Spain

Sergio Jiménez serjice@dsic.upv.es
Dept. Sistemas Informáticos y Computación
Universitat Politècnica de València
Camino de Vera s/n. 46022 Valencia, Spain

Anders Jonsson anders.jonsson@upf.edu

Dept. Information and Communication Technologies

Universitat Pompeu Fabra

Roc Boronat 138, 08018 Barcelona, Spain

Abstract

Finite State Controllers (FSCs) are an effective way to compactly represent sequential
plans. By imposing appropriate conditions on transitions, FSCs can also represent gener-
alized plans (plans that solve a range of planning problems from a given domain). In this
paper we introduce the concept of hierarchical FSCs for planning by allowing controllers
to call other controllers. This call mechanism allows hierarchical FSCs to represent gen-
eralized plans more compactly than individual FSCs, to compute controllers in a modular
fashion or even more, to compute recursive controllers. The paper introduces a classical
planning compilation for computing hierarchical FSCs that solve challenging generalized
planning tasks. The compilation takes as input a finite set of classical planning problems
from a given domain. The output of the compilation is a single classical planning problem
whose solution induces: (1) a hierarchical FSC and (2), the corresponding validation of
that controller on the input classical planning problems.

1. Introduction

Finite State Controllers (FSCs) are a compact and effective representation commonly used in
AI; prominent examples include robotics (Brooks, 1989) and video-games (Buckland, 2004).
In planning, FSCs offer two main benefits: solution compactness (Bäckström, Jonsson, &
Jonsson, 2014); and solution generalization. FSCs can represent generalized plans that solve
a range of different planning problems with a common structure, arbitrarily large problems,
as well as problems with partial observability and non-deterministic actions (Bonet, Pala-
cios, & Geffner, 2010; Hu & Levesque, 2011; Srivastava, Immerman, Zilberstein, & Zhang,
2011; Hu & De Giacomo, 2013).

Even FSCs have limitations, however. Consider the problem of traversing all nodes of
a binary tree (as in Figure 1). A classical plan for this task is an action sequence whose
length is linear in the number of nodes, and hence exponential in the depth of the tree. In
contrast, the recursive definition of the Depth-First Search (DFS) algorithm only requires a

c©2018 AI Access Foundation. All rights reserved.

Segovia-Aguas, Jiménez & Jonsson

few lines of code and it is able to traverse any tree, no matter the tree size. Standard FSCs
cannot however implement recursion, and the iterative definition of the DFS algorithm is
considerably more complicated, involving an external data structure.

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

Figure 1: Binary tree with fifteen nodes. Nodes in the tree are labeled following a DFS order.

In this paper we introduce hierarchical FSCs, a novel formalism for representing and
computing compact and generalized planning solutions. Our formalism extends standard
FSCs for planning in three ways. First, a hierarchical FSC can involve multiple individual
FSCs. Second, each FSC can call other FSCs. Third, each FSC has a parameter list, and
when an FSC is called, it is necessary to specify the arguments assigned to the parameters.
As a special case, our formalism makes it possible to implement recursion by allowing an
FSC to call itself with different arguments.

To illustrate this idea Figure 2 shows a hierarchical FSC, named C[n], that implements
a recursive DFS traversal of binary trees. The controller C[n] is pictured as a directed
graph whose nodes mount to the different controller states. Edges in the graph represent
the transitions of the controller states. Each edge is tagged with a condition/action label,
that denotes the condition under which the action is taken. C[n] has a lone parameter that
represents the current node of the binary tree. Condition isNull(n) tests whether n has
no assigned value, isVisited(n) tests whether n is an already visited node, while a hyphen
‘−’ indicates that the corresponding transition fires no matter what. Action visit(n) visits
node n, while copyL(n,m) and copyR(n,m) assign the left and right child of node n to m,
respectively. Action call(m) is a recursive call to the controller itself, assigning argument m
to the only parameter of the controller and restarting execution from the initial controller
state q0.

Intuitively the controller C[n] works as follows. The controller state q3 is a terminal state
and the action visit(n) (on the transition to q3) is in fact not needed and could be removed.
The hierarchical FSC of Figure 2 is automatically generated by our approach, so we present
conditions and actions exactly as they appear. By repeatedly assigning the right child of n
to n itself (following the transition isVisited(n)/copyR(n, n)) the controller visits all nodes
on the rightmost branch of the tree until n has no value (or after visiting a leaf). Moreover,
by assigning the left child of n to child (following the transition −/copyL(n, child)) and

756

Hierarchical Finite State Controllers

q0 q1 q2 q3
−/copyL(n, child) !isNull(n)/visit(n)

isNull(n)/visit(n)

isVisited(n)/copyR(n, n)
!isVisited(n)/call(child)

Figure 2: Hierarchical FSC, named C[n], that implements a recursive DFS traversal of a binary
tree. Its lone parameter represents the current node of the binary tree.

making a recursive call (following the transition !isVisited(n)/call(child)) the controller is
recursively executed on all the left sub-trees.

Compared to previous work on the computation of FSCs for planning, the contributions
of our approach are:

1. A reformulation of FSCs for planning that allows us to synthesize the observation
function of a FSC in addition to its transition and output functions.

2. A formal definition of hierarchical FSCs for planning that allows controllers to call
other controllers and that includes recursion as a special case.

3. A novel method for computing hierarchical FSCs for planning. The method is a
compilation that takes as input a set of classical planning problems from a given
domain. The output of the compilation is a single classical planning problem whose
solution induces, a hierarchical FSC and the corresponding validation of that controller
on the input planning problems.

A first description of the hierarchical FSC formalism previously appeared in our con-
ference paper (Segovia-Aguas, Jiménez, & Jonsson, 2016b). Compared to that work, this
paper includes the following novel material:

• An study of the relation of Mealy machines and FSCs for classical and generalized
planning.

• Formal and empirical comparisons of hierarchical FSCs with the planning program
formalism for generalized planning (Segovia-Aguas, Jiménez, & Jonsson, 2016a).

• An exhaustive empirical evaluation of hierarchical FSCs with additional results in new
benchmarks and with various planners.

The rest of the paper is organized as follows. Section 2 introduces the planning model
we follow in this work and presents our definition of FSCs for planning, which is slightly
adapted from previous work. Section 3 describes our compilation for computing FSCs that
solve classical planning problems and generalized planning problems. Section 4 formalizes

757

Segovia-Aguas, Jiménez & Jonsson

hierarchical FSCs and extends our compilation to compute controllers of this kind. Section 5
evaluates our approach and reports the empirical performance of our compilation. Finally,
Section 6 describes related work and we conclude with a discussion in Section 7.

2. Background

This section defines the planning model we follow in the rest of the paper and presents
previous formalisms for FSCs in the context of planning.

2.1 Classical Planning with Conditional Effects

We use the model of classical planning with conditional effects because it can compactly
define actions whose precise effects depend on the state where the action is executed. The
support of conditional effects is now a requirement of the International Planning Competi-
tion (Vallati et al., 2015) and current classical planners cope with conditional effects without
compiling them away (Röger, Pommerening, & Helmert, 2014).

We use F to denote the set of fluents (propositional variables) describing a state. A
literal l is a valuation of a fluent f ∈ F , i.e. l = f or l = ¬f . A set of literals L on F
represents a partial assignment of values to fluents (WLOG we assume that L does not
assign conflicting values to any fluent). Given L, ¬L = {¬l : l ∈ L} is the complement of
L. Finally, we use L(F) to denote the set of all literal sets on F , i.e. all partial assignments
of values to fluents.

A state s is a set of literals such that |s| = |F |, i.e. a total assignment of values to
fluents. The number of states is then 2|F |. Explicitly including negative literals ¬f in states
simplifies subsequent definitions, but we often abuse notation by defining a state s only in
terms of the fluents that are true in s, as is common in Strips planning. In that case, since
s is a total assignment, all fluents not explicitly mentioned as true are assumed to be false.

A classical planning problem with conditional effects is a tuple P = 〈F,A, I,G〉, where
F is a set of fluents, A is a set of actions, I is an initial state and G is a goal condition, i.e. a
set of literals. Each action a ∈ A has a set of literals pre(a), called the precondition, and a
set of conditional effects, cond(a). Each conditional effect C � E ∈ cond(a) is composed of
sets of literals C (the condition) and E (the effect). Action a is applicable in state s if and
only if pre(a) ⊆ s, and the resulting set of triggered effects is

eff(s, a) =
⋃

C�E∈cond(a),C⊆s

E,

i.e. effects whose conditions hold in s. The result of applying a in s is the successor state
θ(s, a) = (s\¬eff(s, a))∪eff(s, a). We often assume that fluent set F of a planning problem P
is induced by a set of predicates Ψ and a set of objects Ω, as specified in PDDL (McDermott
et al., 1998). Likewise, the action set A is induced by a set of action schemas A and Ω.

A solution for P can be specified using different representation formalisms, e.g. a se-
quence of actions, a partially ordered plan, a policy, an FSC, etc. Each solution model
has its own syntax and semantics, and defines the space of solutions that can be computed
as well as the worst case computation complexity. Here we define a sequential plan for P
as an action sequence π = 〈a1, . . . , an〉 that induces a state sequence 〈s0, s1, . . . , sn〉 such

758

Hierarchical Finite State Controllers

that s0 = I and, for each i such that 1 ≤ i ≤ n, ai is applicable in si−1 and generates the
successor state si = θ(si−1, ai). The plan π solves P if and only if G ⊆ sn, i.e. if the goal
condition is satisfied following the application of π in I.

Next we define our formalism for FSCs that is suitable for representing solutions to both
classical and generalized planning.

2.2 Finite State Controllers for Planning

FSCs for planning in the literature (Bonet et al., 2010; Hu & De Giacomo, 2013) are
similar to transducers that, in addition to processing input, produce output. We first define
transducers and then explain how FSCs for planning are derived from transducers.

Formally, a finite state transducer or Mealy machine is a tuple ∆ = 〈Q, q0, Q⊥,Σ,Λ, T,Γ〉:

• Q is a finite set of controller states where q0 ∈ Q is the initial controller state and
Q⊥ ⊆ Q is the subset of terminal controller states,

• Σ is a finite set of input symbols called the input alphabet,

• Λ is a finite set of output symbols called the output alphabet,

• T : Q × Σ → Q is a transition function mapping pairs of a controller state and an
input symbol to the corresponding next state,

• Γ : Q×Σ→ Λ is an output function mapping pairs of a controller state and an input
symbol to the corresponding output symbol,

When in q ∈ Q, on receiving input σ ∈ Σ, the transducer ∆ transitions to q′ = T (q, σ)
and outputs symbol λ = Γ(q, σ). This process starts with q = q0 and it is repeated for
q = q′ until q′ ∈ Q⊥, is a terminal controller state, or until the sequence of input symbols
is exhausted.

Given a classical planning problem with conditional effects P = 〈F,A, I,G〉, an FSC
for P is a pair C = (∆, O) of a transducer ∆ = 〈Q, q0, Q⊥,Σ, A, T,Γ〉 and an observation
function O : 2F → Σ. The observation function maps the current planning state to an
observation i.e., a symbol in the input alphabet of the transducer. The transitions of the
transducer ∆ do not rely then on an external input, but rather on the current planning
state. On the other hand, the output alphabet of this particular transducer is given by the
set of actions A in the classical planning problem P .

The world state of an FSC for P is a pair (q, s) that consists of a controller state q ∈ Q
and a planning state s, with the initial world state given by (q0, I). Given C, an FSC for
P , and a world state (q, s), then C transitions to a new world state (q′, s′) that is computed
as follows:

1. First we retrieve the observation O(s) ∈ Σ symbol that is associated with the current
planning state s.

2. Then we compute the new controller state q′ = T (q,O(s)) and the planning action
a ∈ A to apply next, a = Γ(q,O(s)).

3. Finally we compute the new planning state s′ = θ(s, a) that results from applying
action a in the planning state s.

759

Segovia-Aguas, Jiménez & Jonsson

We use (q, s) →C (q′, s′) to denote the transition from (q, s) to (q′, s′), and we use
(q0, s0) →k

C (qk, sk) to denote a sequence of k such transitions. For (q0, s0) →k
C (qk, sk)

to be well-defined, all intermediate actions have to be applicable, i.e. pre(ai) ⊆ si−1 for
each ai = Γ(qi−1, O(si−1)), 1 ≤ i ≤ k. Each transition T (q,O(s)) is associated with a
single observation of the current planning state however, FSCs for planning can represent
expressive state queries including the no-op action in A. The no-op action does not modify
the planning state and affects only to the next controller state which allows to concatenate
state queries like in decision trees.

In previous work (Bonet et al., 2010; Hu & De Giacomo, 2013), the set Q⊥ of terminal
controller states is empty, and termination is implicitly defined as G ⊆ s, i.e. the goal
condition G has to hold in the planning state s of the current world state (q, s). Hence
a given controller C solves P if and only if there exists a well-defined transition sequence
(q0, I) →k

C (qk, sk), k ≥ 0, such that G ⊆ sk. This means that goal achievement has to be
tested after executing every action for checking termination. Further, the authors assume
that the observation function is given as input to synthesize a FSC that solves a given
contingent planning problem.

Hu and De Giacomo (2013) define a generalized planning problem P = {P1, . . . , PT } as
a finite set of classical planning problems Pt = 〈Ft, A, It, Gt〉, 1 ≤ t ≤ T , that share the
same action set A. An FSC for a generalized planning problem P is a pair C = (∆,O) of
a transducer ∆ = 〈Q, q0, Q⊥,Σ, A, T,Γ〉 and a set O of observation functions Ot : 2Ft → Σ,
1 ≤ t ≤ T . The preconditions and conditional effects of actions in A could have different
definitions for different planning problems in P. An FSC C = (∆,O) solves P if and only if
Ct = (∆, Ot) solves each Pt, 1 ≤ t ≤ T . The authors show how to synthesize the transition
function T and output function Γ given all other elements of C (including the observation
functions O1, . . . , OT) such that C solves P.

3. Computing Finite State Controllers for Planning

This section details our novel formalism of FSCs for planning and presents our compilation
for computing FSCs with off-the-shelf planners. The compilation takes as input a classical
planning instance, and outputs another classical planning instance whose solution induces
(1), an FSC plus (2), the validation of that FSC on the input planning instance. The output
of the compilation is formalized in the standard PDDL language, so off-the-shelf classical
planners can be used to compute the FSCs.

3.1 A Novel Definition of FSCs for Planning

We reformulate the previous definition of FSCs for planning. Given a classical planning
problem with conditional effects P = 〈F,A, I,G〉, an FSC for P is a pair C = (∆,Φ) of a
transducer ∆ = 〈Q, q0, q⊥, {0, 1}, A, T,Γ〉 and a function Φ : Q→ F that maps a controller
state into a fluent from the given planning problem.

Compared to the previous definition of FSCs for planning, this novel formalism intro-
duced the following three modifications:

1. There is a single terminal controller state q⊥. The reason for including an explicit
terminal controller state q⊥ is that we will later extend our definition to hierarchies

760

Hierarchical Finite State Controllers

of FSCs in which the goal G is not necessarily satisfied when an FSC terminates its
execution. In addition, including an explicit terminal state allows us to use FSC as
acceptors (Segovia-Aguas, Jiménez, & Jonsson, 2017b, 2017a).

2. The input alphabet is simply {0, 1} so Φ induces an observation function O : Q×2F →
{0, 1} that maps pairs of a controller state and a planning state, into either 0 or 1.
Formally, O(q, s) = Φ(q) ∈ s, where Φ(q) ∈ s is interpreted as a test whose outcome:

• Equals 1, iff the fluent Φ(q) is true in the planning state s.

• Equals 0, iff the fluent Φ(q) is false in the planning state s.

When Φ(q) is static (i.e. the value of this fluent in F is not changed by any action in
A) then the outcome of O(q, s), either 0 or 1, is constant.

3. The observation function O is defined on controller states in addition to planning
states. We aim to synthesize the observation function O in addition to T and Γ (in
contrast to previous work in which O is given). To keep the space of observation
functions tractable, we restricted ourselves to the simplest observation set {0, 1}.
Further, we only consider observation functions that use the Φ mapping to test the
truth value of a single fluent. Therefore synthesizing O is equivalent to synthesizing
Φ (there is nothing however, that prevents Φ(q) to be a derived fluent that is, a fluent
that holds when an arbitrary formula over primitive fluents holds).

The execution model of FSCs for planning is the same as before but now, we say that
an FSC C = (∆,Φ) solves P if and only if there exists a well-defined transition sequence
(q0, I)→k

C (q⊥, sk), k ≥ 0, such that G ⊆ sk, where q⊥ is the terminal controller state. The
execution of an FSC on a planning problem P = 〈F,A, I,G〉 can fail for any of the following
three reasons:

1. The execution terminates in a world state (q⊥, sk) but the goal condition does not
hold, i.e. G 6⊆ sk.

2. For some world state (qi, si) with 0 ≤ i ≤ k, the action ai = Γ(qi, O(qi, si)) cannot be
applied because the precondition of ai does not hold in si, i.e. pre(ai) 6⊆ si.

3. The execution enters an infinite loop that never reaches the terminal state q⊥.

To illustrate our new definition of FSCs for planning, we show an example of a con-
troller for traversing a linked list. We model this task as a classical planning problem
P = 〈F,A, I,G〉, where F contains the following fluents:

• For each pair of list nodes x, y, a fluent succ(x, y) identifying y as the successor node
of x in the linked list.

• For each list node x fluents visited(x), denoting that x has been visited and end(x),
denoting that node x is the end of the list.

• Fluents assign(n, x), denoting that variable n points to the list node x, and the derived
fluent isEnd(n) ≡ ∃x assign(n, x) ∧ end(x), denoting that variable n points to the end
of the linked list.

761

Segovia-Aguas, Jiménez & Jonsson

The action set A contains a no-op action, named a⊥, such that pre(a⊥) = cond(a⊥) = ∅ as
well as the following two kinds of actions:

• visit(n), that mark the list node assigned to n as visited:

pre(visit(n)) = ∅,
cond(visit(n)) = {{assign(n, x)}� {visited(x)} : ∀x}.

• step(n), that move n to the next node in the linked list:

pre(step(n)) = ∅,
cond(step(n)) = {{assign(n, x), succ(x, y)}� {¬assign(n, x), assign(n, y)} : ∀x, y}.

For a linked list of length k, the initial state I and goal condition G are defined as follows:

I = {assign(n, x0), succ(x0, x1), . . . , succ(xk−1, xk), end(xk)},
G = {visited(x0), . . . , visited(xk−1)}. (1)

Figure 3 shows a three-state FSC that solves a traversing list planning problem P . The edge
(q0, q2) with label isEnd(n)/a⊥ encodes that Φ(q0) = isEnd(n), T (q0, 1) = q2, Γ(q0, 1) = a⊥,
i.e. encodes the transition and associated action when isEnd(n) holds in the current planning
state. The edge (q0, q1) with label !isEnd(n)/visit(n) encodes the transition and action when
isEnd(n) does not hold, i.e. T (q0, 0) = q1 and Γ(q0, 0) = visit(n). The edge (q1, q0) with
label −/step(n) denotes that, when in q1, the transition and action are always the same no
matter the current planning state.

q0 q1 q2
!isEnd(n)/visit(n)

−/step(n)

isEnd(n)/a⊥

Figure 3: FSC for the task of traversing a linked list.

3.2 Computing FSCs for Classical Planning

This section describes our compilation for computing an FSC that solves a given classical
planning problem. The idea behind the compilation is to include the current controller
state, as part of the planning state, and to define actions of two types: program actions
(that program the three functions Φ, T and Γ of the FSC) and execute actions, that simulate
the execution of the FSC evaluating its programmed functions Φ, T and Γ.

Formally, the compilation takes as input a classical planning problem P = 〈F,A, I,G〉
and a bound n on the number of controller states, and outputs another classical plan-
ning problem Pn = {Fn, An, In, Gn}. Any plan that solves Pn generates an FSC C =
(〈Q, q0, q⊥, {0, 1}, A, T,Γ〉,Φ) and validates that C solves P .

762

Hierarchical Finite State Controllers

We first set Q = {q0, . . . , qn} and q⊥ ≡ qn. The functions Φ, T and Γ are not defined
on q⊥, so we say that C has n controller states (even though |Q| = n+ 1). Now we proceed
to define the compilation.

The set of fluents Fn = F ∪ Ffun ∪ Faux, where Ffun contains the fluents needed to
encode the functions Φ, T and Γ:

• For each q ∈ Q and f ∈ F , a fluent condf
q that holds iff f is the condition associated

with q, i.e. if Φ(q) = f .

• For each q, q′ ∈ Q and b ∈ {0, 1}, a fluent succbq,q′ that holds iff T (q, b) = q′.

• For each q ∈ Q, b ∈ {0, 1} and a ∈ A, a fluent actbq,a that holds iff Γ(q, b) = a.

• For each q ∈ Q and b ∈ {0, 1}, fluents nocondq, nosuccbq and noactbq that hold iff we
have yet to program the functions Φ, T and Γ, respectively, in q and b.

Moreover, Faux contains the following fluents:

• For each q ∈ Q, a fluent csq that holds iff q is the current controller state.

• Fluents evl and app that hold iff we are done evaluating the condition or applying the
action corresponding to the current controller state, and fluents o0 and o1 representing
the outcome of the evaluation (0 or 1).

The initial state and goal condition equal In = I ∪ {csq0} ∪ {nocondq, noactbq, nosuccbq :
q ∈ Q, b ∈ {0, 1}} and Gn = G ∪ {csqn}. Finally, the set of actions An replaces the actions
in A with the following actions:

• For each q ∈ Q and f ∈ F , an action pcondf
q for programming Φ(q) = f :

pre(pcondf
q) = {csq, nocondq},

cond(pcondf
q) = {∅� {¬nocondq, condf

q }}.

• For each q ∈ Q and f ∈ F , an action econdf
q that evaluates the condition of the

current controller state:

pre(econdf
q) = {csq, condf

q ,¬evl},
cond(econdf

q) = {∅� {evl}, {¬f}� {o0}, {f}� {o1}}.

• For each q ∈ Q, b ∈ {0, 1} and a ∈ A, an action pactbq,a for programming Γ(q, b) = a:

pre(pactbq,a) = pre(a) ∪ {csq, evl, ob, noactbq},
cond(pactbq,a) = {∅� {¬noactbq, actbq,a}}.

• For each q ∈ Q, b ∈ {0, 1} and a ∈ A, an action eactbq,a that applies the action of the
current controller state:

pre(eactbq,a) = pre(a) ∪ {csq, evl, ob, actbq,a,¬app},
cond(eactbq,a) = cond(a) ∪ {∅� {app}}.

763

Segovia-Aguas, Jiménez & Jonsson

• For each q, q′ ∈ Q and b ∈ {0, 1}, an action psuccbq,q′ for programming T (q, b) = q′:

pre(psuccbq,q′) = {csq, evl, ob, app, nosuccbq},
cond(psuccbq,q′) = {∅� {¬nosuccbq, succbq,q′}}.

• For each q, q′ ∈ Q and b ∈ {0, 1}, an action esuccbq,q′ that transitions to the next
controller state:

pre(esuccbq,q′) = {csq, evl, ob, app, succbq,q′},
cond(esuccbq,q′) = {∅� {¬csq,¬evl,¬ob,¬app, csq′}}.

Actions pcondf
q , pactbq,a and psuccbq,q′ program the three functions Φ, T and Γ, respectively

that encode the possible transitions of the controller, while econdf
q , eactbq,a and esuccbq,q′

execute the corresponding function. Fluents evl and app control the order of the execution
such that Φ is always executed first, then Γ, and finally T .

We remark that the functions Φ, T and Γ are programmed online: actions pcondf
q ,

pactbq,a and psuccbq,q′ are only applicable when the current controller state is q and the
current observation is b, respectively. As a consequence, a plan that solves Pn may not
always program Φ, T and Γ for all the controller states in Q, in which case the resulting
FSC ignores the unprogrammed controller states. One benefit of this online approach is
that we can immediately check whether the precondition of a given action a ∈ A holds (note
that pre(a) is part of the precondition of the action pactbq,a for programming a).

The compilation Pn also includes a mechanism for symmetry breaking, which we proceed
to describe. For simplicity we excluded this mechanism from the above definition of Pn. To
program a transition to a controller state q′ using an action psuccbq,q′ , q

′ has to be available.
Initially, only q1 and qn are available. When we visit q1 for the first time, q2 becomes
available, etc. It is straightforward to implement this mechanism using fluents availableq
and conditional effects of esuccbq,q′ . With this mechanism in place, we avoid generating
multiple permutations of the same FSC that only rename the controller states.

3.3 Example

We show how our Pn compilation computes the three-state controller of Figure 3. Recall that
the initial state output by our compilation is In = I ∪ {csq0} ∪ {nocondq, noactbq, nosuccbq :
q ∈ Q, b ∈ {0, 1}}. In this example, where I is given by the expression (1), the only
applicable actions at In are pcondf

q0 for programming the value of Φ(q0). To produce

the FSC in Figure 3, the planner chooses f = isEnd(n). The effect of action pcondf
q0 is

{¬nocondq0 , condf
q0}.

In the resulting state, the only applicable action is econdf
q0 . Since isEnd(n) is not true in

the current state, the effect of econdf
q0 is {evl, o0}. At this state, the only applicable actions

are pact0
q0,a, a ∈ A, for programming the value of Γ(q0, 0). To produce the FSC in Figure 3,

the planner chooses a = visit(n). The effect of pact0
q0,a is to add fluent act0

q0,a, causing
eact0

q0,a to be the only applicable action. In turn, the effect of eact0
q0,a is {visited(x0), app},

where visited(x0) is the effect of a and app indicates that we have applied action a = Γ(q0, 0).

764

Hierarchical Finite State Controllers

Now the only applicable actions are psucc0
q0,q, q ∈ Q, for programming the value of

T (q0, 0). In the case of computing the FSC of Figure 3, the planner chooses q = q1. The
effect of psucc0

q0,q is to add fluent succ0
q0,q, causing esucc0

q0,q to be the only applicable action.
The effect of esucc0

q0,q is {¬csq0 ,¬evl,¬o0,¬app, csq1}, representing a transition from q0 to

q1 and making actions pcondf
q1 applicable. So far, the applied action sequence is:

〈pcondisEnd(n)
q0 , econdisEnd(n)

q0 , pact0
q0,visit(n), eact0

q0,visit(n), psucc0
q0,q1 , esucc0

q0,q1〉.

Next, to program and simulate the transition from q1 to q0, the planner chooses a similar
action sequence. Here, any static fluent can be used to produce the FSC in Figure 3,
e.g. Φ(q1) = succ(x0, x2), since this transition fires no matter what.

〈pcondsucc(x0,x2)
q1 , econdsucc(x0,x2)

q1 , pact0
q1,step(n), eact0

q1,step(n), psucc0
q1,q0 , esucc0

q1,q0〉.

Since Φ(q), Γ(q, 0) and T (q, 0) are already programmed for q ∈ {q0, q1}, to simulate now
the transition from q0 to q1 and back to q0 we only need execute actions (no programming
actions are necessary here):

〈econdisEnd(n)
q0 , eact0

q0,visit(n), esucc0
q0,q1 , econdsucc(x0,x2)

q1 , eact0
q1,step(n), esucc0

q1,q0〉.

The result is to visit x1 and move n from pointing to x1 to pointing to x2. This cycle

repeats until the effect of econd
isEnd(n)
q0 is {evl, o1}, indicating that fluent isEnd(n) is true.

When this happens we can program and simulate the transition from q0 to q2 using the
following action sequence:

〈pact1
q0,a⊥

, eact1
q0,a⊥

, psucc1
q0,q2 , esucc1

q0,q2〉.

Since q2 is the terminal controller state and all list nodes have been visited, the goal condition
Gn is satisfied. Note that Gn is only satisfied after the execution of the programmed FSC
guarantees to solve the input planning problem P .

3.4 Properties

Here we analyze the theoretical properties of our Pn compilation for synthesizing an FSC
that solves a classical planning task P .

Theorem 1 (Soundness). Any plan π that solves Pn induces an FSC that solves P .

Proof. Once π programs the functions Φ, T and Γ of the FSC they cannot be altered.
Programming actions pcondf

q , pactbq,a and psuccbq,q′ delete fluents nocondq, noactbq and nosuccbq
respectively, and there are no actions in An for adding these fluents, which bans the later
application of actions pcondf

q , pactbq,a or psuccbq,q′ for the same values of q and b.

The plan π deterministically executes the FSC (the programmed Φ, T and Γ functions)
on the input planning problem P . The only way to change the current controller state
from q to q′ is to apply a partial action sequence 〈econdf

q , eactbq,a, esuccbq,q′〉 for some f ∈ F ,

a ∈ A, b ∈ {0, 1}. Because of the corresponding preconditions condf
q , actbq,a and succbq,q′ of

these actions, this means that programming actions pcondf
q , pactbq,a and psuccbq,q′ have to

765

Segovia-Aguas, Jiménez & Jonsson

be applied in advance. Further, since condf
q , actbq,a and succbq,q′ are true for at most a single

combination of values of f , a and q′, this uniquely determines the value of the functions Φ,
T and Γ in q and b.

Eventually π executes the programmed FSC on P until it solves P . The subset of
fluents {csq : q ∈ Q} ∪ F ⊆ Fn represents the current world state (q, s) of an FSC C with
controller states Q = {q0, . . . , qn}. The definition of In claims that the initial world state is
(q0, I). To satisfy the goal condition Gn, π has to simulate a well-defined transition sequence
(q0, I)→k

C (qn, s), 0 ≤ k = n, such that G holds in s, i.e. G ⊆ s. The partial action sequence
〈econdf

q , eactbq,a, esuccbq,q′〉 precisely simulates a well-defined transition (q, s)→C (q′, s′) of C.

Action econdf
q adds ob where b ∈ {0, 1} is the truth value of f in s. Action eactbq,a applies

the action a in s to obtain a new state s′ = θ(s, a). Finally, action esuccbq,q′ transitions to
controller state q′. This deterministic execution continues until we reach a terminal state
(qn, s) or revisit a world state. If π solves Pn, execution finishes in (qn, s) and the goal
condition G holds in s, which is the definition of the FSC solving P .

Theorem 2 (Completeness). If there exists an FSC C = (〈Q, q0, q⊥, {0, 1}, A, T,Γ〉,Φ) that
solves P , there exists a corresponding plan π that solves Pn for each n ≥ |Q| − 1.

Proof. By definition, fluents condf
q , actbq,a and succbq,q′ can altogether determine the Φ, T

and Γ functions of any FSC (provided that there is an enough amount n of controller states).
Therefore, a plan π can be built that programs the functions Φ, Γ and T of any FSC making
the appropriate fluents true among condf

q , actbq,a and succbq,q′ using the corresponding actions

pcondf
q , pactbq,a and psuccbq,q′ .

The fact that C solves P implies that there exists a sequence of well-defined world
transitions (q0, I) →k

C (qn, s), 0 ≤ k = n, such that G ⊆ s. The execution of the se-
quence of world transitions of any FSC can be simulated using action sequences of type
〈econdf

q , eactbq,a, esuccbq,q′〉. Therefore, the plan π can be extended simulating the execution
of the functions Φ, Γ and T , starting from (q0, I) and until reaching a world state (qn, s)
s.t. G ⊆ s. This is the definition of π satisfying the goal condition Gn to solve Pn.

Our compilation is not complete in the sense that the bound n on the number of con-
troller states may be too small to accommodate an FSC that solves P . For instance, the
FSC in Figure 2 cannot be computed if n < 3. Larger values of n do not formally affect the
completeness of our approach but they do affect its practical performance since the sets Fn

and An grow with the parameter n and classical planners are sensitive to the input size.

3.5 Computing FSCs for Generalized Planning

This section presents an extension of our compilation to compute FSCs for generalized
planning. The input to the compilation is no longer a single classical planning problem,
but a finite set of classical planning problems that define the generalized planning problem
P = {P1, . . . , PT }. The output of the extended compilation is a classical planning problem
whose solution induces an FSC C and validates that C solves every classical planning
problem Pt, 1 ≤ t ≤ T .

766

Hierarchical Finite State Controllers

Let us modify the definition of a generalized planning problem P = {P1, . . . , PT } such
that now the planning problems Pt = 〈F,A, It, Gt〉, 1 ≤ t ≤ T , share the fluent set F in
addition to the action set A. Despite the action set is shared, the precise effects of an action
is determined by the state where the action is applied due to conditional effects. An FSC
for P is a pair C = (∆,Φ) of a transducer ∆ and a mapping Φ, inducing an observation
function O which is shared among the planning problems in P. As before, the FSC C solves
P iff C solves each Pt, 1 ≤ t ≤ T .

This definition of a generalized planning problem is not as restrictive as it first may
appear. We can define a large fluent set F and action set A, and use the initial state
It of each planning problem Pt to “switch on/off” certain elements. This way, we can
address planning problems of various sizes in P, as long as F and A are sufficiently large to
accommodate the largest planning problem in P. For example, in our list traversal example,
we can define a set of list nodes x0, . . . , x20, and use the fluent end(x5) to indicate that the
given list has length 5. Even though there are fluents in F and actions in A associated with
the list nodes x6, . . . , x20, these fluents and action are not used in this particular planning
problem.

Since the extension of the compilation, P ′n = 〈F ′n, A′n, I ′n, G′n〉, is similar to the original
compilation Pn = 〈Fn, An, In, Gn〉, we define P ′n in terms of Pn:

• The set of fluents is F ′n = Fn ∪ Ftest, where Ftest = {testt : 1 ≤ t ≤ T} models the
current classical planning problem in P that is being solved.

• The set of actions is A′n = An ∪Aend, where Aend includes actions endt, 1 ≤ t < T , for
ending the execution on the current classical planning problem in P and enabling the
next one:

pre(endt) = Gt ∪ {csqn , testt},
cond(endt) = {∅� {¬csqn , csq0 ,¬testt, testt+1}}

∪ {{¬f}� {f} : f ∈ It+1} ∪ {{f}� {¬f} : ¬f ∈ It+1}}.

The precondition tests that we have reached the goals Gt of the current problem Pt

in the terminal controller state qn, while the effect resets the world state to (q0, It+1),
i.e. the initial state of the next problem Pt+1, which becomes the current problem.

• The initial state is I ′n = I1∪{csq0 , test1}∪{nocondq, noactbq, nosuccbq : q ∈ Q, b ∈ {0, 1}},
while the goal condition is G′n = GT ∪ {csqn , testT }.

A plan solving P ′n induces an FSC C and iterates over the classical planning problems
Pt ∈ P, 1 ≤ t ≤ T using actions of type endt and hence, validating that C solves every
P1, . . . , PT .

4. Hierarchical Finite State Controllers

This section extends our FSCs formalism to hierarchical FSCs. The extension allows a
controller to call other controllers, forming hierarchies of FSCs and enabling the reuse of
existing controllers. In addition, a hierarchical FSC have a list of parameters. This makes it
possible to implement recursive solutions by allowing an given controller to call itself with
different arguments.

767

Segovia-Aguas, Jiménez & Jonsson

4.1 Parameter Passing

To explain the intuition behind hierarchical FSCs, we borrow several concepts from pro-
gramming. An FSC is similar to a procedure in programming, i.e. an independent program
unit with an associated set of program instructions. A procedure can be called an arbitrary
number of times, which consists in executing the associated program instructions. Proce-
dure calls are organized in a call stack that keeps track of where execution should continue
once the execution of a given procedure ends.

A procedure may contain local variables whose values are different for each call to the
procedure. Some of these local variables may be designated as parameters of the procedure.
When a procedure is called, it is necessary to specify the values of its parameters. Since
local variables have different values for different procedure calls, each level of the call stack
maintains a copy of each local variable, storing its value for the current procedure call.

The first step necessary for defining hierarchical FSCs is to introduce the concept of
local variable. Given a classical planning problem P = 〈F,A, I,G〉 we assume that the set
of fluents F of a planning problem are instantiated from a set of predicates Ψ and a set of
objects Ω. Our approach is to designate a subset of objects, Ωv = {v1, . . . , vq} ⊆ Ω , as
local variables.

To represent the assignment of values to local variables, we define a predicate assign ∈ Ψ.
Given a local variable object v ∈ Ωv and another object x ∈ Ω \ Ωv, the fluent assign(v, x)
denotes that x is the current value assigned to v. Since the local variable v can only have one
assigned value at a time, the set of fluents {assign(v, x) : x ∈ Ω \Ωv} is exactly-1 invariant,
i.e. precisely one fluent in this set is true at any given moment. All other predicates in Ψ
are instantiated exclusively on objects in Ω \ Ωv.

In programming, a procedure call can either assign a concrete value to a parameter, or
pass a variable as argument such that the current value of the variable is assigned to the
parameter. In this work we are assuming that parameter passing is always of the second type,
i.e. the arguments passed to the parameters of a controller are also local variable objects
in Ωv. With this regard, the same local variables can be reused for all the controllers in a
hierarchical FSC, even if these local variables have different uses in the different controllers.
The reason is that each level of the stack maintains a copy of each local variable.

4.2 Hierarchical FSCs for Planning

We are now ready to define a hierarchical FSC for a classical planning problem P as a pair
H = (C, C1), where C = {C1, . . . , Cm} is a set of FSCs for P and C1 ∈ C is the root FSC.
Each FSC Ci = (〈Q, q0, q⊥, {0, 1},Λ, Ti,Γi〉,Φi), 1 ≤ i ≤ m, shares the same set of controller
states Q and output set Λ, and differs only in the three functions Φi, Ti and Γi that
govern the particular transitions of Ci. In addition, each FSC Ci has ki ≤ |Ωv| associated
parameters. Because of symmetry breaking and WLOG, we define the parameter list of Ci

as [v1, . . . , vki], i.e. the ki first local variable objects in Ωv.

The shared output set Λ = A ∪ Z extends the set of primitive planning actions A to
include also the set of possible calls Z = {Ci[p] : Ci ∈ C, p ∈ Ωki

v }. That is, each transition
of a controller Ci either (1), applies an action in A or (2), calls an FSC Cj [p] with the
specific arguments p ∈ Ωki

v . We remark that a call action in Z can be used to implement
recursion making a controller to call itself.

768

Hierarchical Finite State Controllers

4.2.1 The Execution Model of Hierarchical FSCs for Planning

To model the execution of a hierarchical FSC H on a classical planning problem P , we
introduce the concept of a call stack for FSCs. Because of the local fluents assign(v, x), a
planning state s = sl ∪ sg can be decomposed into a local state sl and a global state sg.
Each level of the call stack maintains its own copy of the local state sl, while the global
state sg is shared among all levels of the call stack. The execution of a hierarchical FSC on
P starts at the root controller C1 in state (q0, I) and on level 0 of the call stack.

For a given controller Ci and world state (q, s) with s = sl ∪ sg, if Γi(q,O(q, s)) = a
returns an action a ∈ A, the execution semantics is the same as for single FSCs. However,
when Γi(q,O(q, s)) = Cj [p] returns an FSC call in Z, we push call Cj [p] onto the call stack,
setting the world state to (q0, s

′
l∪sg), i.e. the initial controller state q0 and a new local state

s′l obtained from sl by copying the value of each local variable in p to the corresponding
parameter in the parameter list [v1, . . . , vki] of Cj . Execution then proceeds on the next
stack level following the definition of Cj .

When we reach a terminal state (q⊥, s
′) of Cj with s′ = s′l∪s′g, control is returned to the

parent controller Ci by popping the procedure call Cj [p] from the call stack. Specifically, the
state of Ci becomes (q′, sl∪s′g) where q′ = Ti(q,O(q, s)) is the next controller state according
to the transition function Ti, and sl is the assignment to the local variables already stored
in the call stack. The execution of a hierarchical FSCH on P terminates when it reaches
a terminal state (q⊥, s) on stack level 0 and, H solves P iff its execution on that problem
terminates and G ⊆ s.

To ensure that the execution model remains finite, we define an upper bound ` on the
size of the call stack. As a consequence, the execution of a hierarchical FSC H on a classical
planning problem P has a fourth failure condition:

4. Execution does not terminate because, when executing an FSC call Cj [p] ∈ Z the size
of the stack equals `. Executing such a call would result in a call stack whose size
exceeds the upper bound `, i.e. a stack overflow.

4.2.2 An Example of Hierarchical FSC for Planning

To illustrate our definition of hierarchical FSCs for planning, we use binary tree traversal
as an example (Figure 1). In addition to the tree nodes, we introduce two local variable
objects Ωv = {n, child}, and define the actions on that variable objects. We can model this
task as a planning problem P = 〈F,A, I,G〉, where F contains the following fluents:

• For each tree node x, a fluent visited(x) denoting that x has been visited.

• For each pair of tree nodes x, y, two fluents left(x, y) and right(x, y) denoting that y
is the left (or right) child of x, respectively.

• For each variable v ∈ {n, child} and tree node x, a fluent assign(v, x) denoting that x
is assigned to the variable v, and a fluent isNull(v) indicating that v is empty.

• For each v ∈ {n, child}, a fluent isVisited(v) denoting that the node assigned to v has
been visited, modelled as a derived predicate isVisited(v) ≡ ∃x assign(v, x)∧visited(x).

769

Segovia-Aguas, Jiménez & Jonsson

The action set A contains the following actions:

• For each v ∈ {n, child}, an action visit(v) that marks the node assigned to v as visited:

pre(visit(v)) = ∅,
cond(visit(v)) = {{assign(v, x)}� {visited(x)} : ∀x}.

• For each u, v ∈ {n, child}, an action copyL(u, v) that copies the left child of u onto v:

pre(copyL(u, v)) = ∅,
cond(copyL(u, v)) = {∅� {isNull(v),¬assign(v, x) : ∀x}}

∪ {{assign(u, x), left(x, y)}� {¬isNull(v), assign(v, y)} : ∀x, y}.

By default, the effect is isNull(v), but if u has a left child that node is assigned to v.

• For each u, v ∈ {n, child}, an action copyR(u, v) that copies the right child of u onto
v, with a definition analogous to copyL(u, v).

For the binary tree in Figure 1, the initial state I and goal condition G are defined as

I = {assign(n, x0), left(x0, x1), right(x0, x9), . . . , right(x13, x15)},
G = {visited(x1), . . . , visited(x15)}. (2)

Figure 2 shows a hierarchical FSC H = ({C}, C) that solves P . Even though H contains a
single FSC C, it is still hierarchical in the sense that C includes a call to itself, represented
by the edge (q2, q0) with label !isVisited(n)/call(child). Note that C has a single parameter,
which we define as the first variable object in Ωv, namely n.

4.3 Computing Hierarchical Finite State Controllers

We now describe a compilation from a classical planning problem P = 〈F,A, I,G〉 into
another classical planning problem P `

n,m = 〈F `
n,m, A

`
n,m, I

`
n,m, G

`
n,m〉, such that solving P `

n,m

amounts to programming a hierarchical FSC H = 〈C, C1〉 and simulating its execution on
P . The parameters of the compilation are n, a bound on the number of controller states,
m that is a bound on the number of FSCs and `, a bound on the stack size. For each
Ci ∈ C, the compilation also needs to specify a bound ki on the number of parameters of
the corresponding controller. Note that the actions in A can now be defined on the variable
objects to update the value of local variables (e.g. as shown in the previous example with
the actions visit(v), copyL(u, v) and copyR(u, v)).

The set of fluents is given by F `
n,m = Fr ∪ F `

a ∪ Fm
fun ∪ F `

aux ∪ FH where

• Fr is the set of fluents instantiated from predicates different from assign.

• F `
a = {f l : 0 ≤ l ≤ `, f ∈ Fa}, where Fa = {assignv,x : v ∈ Ωv, x ∈ Ω \Ωv} is the set of

fluents instantiated from assign. By parameterizing on the stack level l, all fluents in
Fa are evaluated with respect to the current stack level.

• Fm
fun = {f i : f ∈ Ffun, 1 ≤ i ≤ m} where, as before, Ffun is the set of fluents modelling

the functions Φ, T and Γ, which we parameterize on the FSC Ci, 1 ≤ i ≤ m.

770

Hierarchical Finite State Controllers

• F `
aux = {f l : f ∈ Faux, 0 ≤ l ≤ `} where, as before, Faux is the set of fluents

representing the execution model, which we parameterize now on the stack level l.

Moreover, FH contains the following additional fluents:

• For each l, 0 ≤ l ≤ `, a fluent lvll denoting that l is the current level of the call stack.

• For each Ci ∈ C and l, 0 ≤ l ≤ `, a fluent fsci,l denoting that Ci is the FSC being
executed on stack level l.

• For each q ∈ Q, b ∈ {0, 1}, Ci, Cj ∈ C and p ∈ Ω
kj
v , a fluent callb,iq,j(p) denoting that

Γi(q, b) = Cj [p].

The initial state and goal condition are defined as I`n,m = (I ∩ Fr) ∪ {f0 : f ∈ I ∩ Fa} ∪
{cs0

q0 , lvl0, fsc1,0} ∪ {nocondi
q, noactb,iq , nosuccb,iq : q ∈ Q, b ∈ {0, 1}, Ci ∈ C} and G`

n,m =
G ∪ {cs0

qn}. In other words, fluents of type assignv,x ∈ Fa are initially marked with stack
level 0, the controller state on level 0 is q0, the current stack level is 0, the FSC on level 0
is C1, and the functions Φi, Ti and Γi are yet to be programmed for any FSC Ci ∈ C. To
satisfy the goal we have to reach the terminal state qn on level 0 of the stack.

To establish the actions in the set A`
n,m, we first adapt all actions in An by parameterizing

on the FSC Ci ∈ C and stack level l, 0 ≤ l ≤ `, adding preconditions lvll and fsci,l, and
modifying the remaining preconditions and effects accordingly. As an illustration we provide
the definition of the resulting action pcondf,i,l

q :

pre(pcondf,i,l
q) = {lvll, fsci,l, cslq, nocondi

q},
cond(pcondf,i,l

q) = {∅� {¬nocondi
q, condf,i

q }}.

Compared to the old version of pcondf
q , the current controller state cslq ∈ F `

aux refers to the

stack level l, and fluents nocondi
q and condf,i

q in Fm
fun refer to the FSC Ci. The precondition

models the fact that we can only program the function Φi of Ci in controller state q on
stack level l when l is the current stack level, Ci is being executed on level l, the current
controller state on level l is q, and Φi has not been previously programmed in q.

In addition to the actions adapted from An, the set A`
n,m also contains the following

new actions:

• For each q ∈ Q, b ∈ {0, 1}, Ci, Cj ∈ C, p ∈ Ω
kj
v and l, 0 ≤ l < `, an action pcallb,i,lq,j (p)

to program a call from the current FSC Ci to FSC Cj :

pre(pcallb,i,lq,j (p)) = {lvll, fsci,l, cslq, evll, ob,l, noactb,iq },

cond(pcallb,i,lq,j (p)) = {∅� {¬noactb,iq , callb,iq,j(p)}}.

• For each q ∈ Q, b ∈ {0, 1}, Ci, Cj ∈ C, p ∈ Ω
kj
v and l, 0 ≤ l < `, an action ecallb,i,lq,j (p)

that executes an FSC call:

pre(ecallb,i,lq,j (p)) = {lvll, fsci,l, cslq, evll, ob,l, callb,iq,j(p),¬appl},

cond(ecallb,i,lq,j (p)) = {∅� {¬lvll, lvll+1, fscj,l+1, csl+1
q0 , appl}}

∪ {{assignl
pk,x
}� {assignl+1

vk,x
} : 1 ≤ k ≤ kj , x ∈ Ωx}.

771

Segovia-Aguas, Jiménez & Jonsson

• For each Ci ∈ C and l, 0 < l ≤ `, an action termi,l:

pre(termi,l) = {lvll, fsci,l, cslqn},
cond(termi,l) = {∅� {¬lvll,¬fsci,l,¬cslqn , lvll−1}} ∪ {∅� {¬assignl

v,x : v ∈ Ωv, x ∈ Ωx}}.

As an alternative to pactb,i,lq,a , the action pcallb,i,lq,j (p) programs an FSC call Cj [p], i.e. defines

the output function as Γi(q, b) = Cj [p]. Action ecallb,i,lq,j (p) executes this FSC call by incre-
menting the current stack level to l+ 1 and setting the controller state on level l+ 1 to q0.
The conditional effect {assignl

pk,x}�{assignl+1
Lk
j ,x
} effectively copies the value of the argument

pk on level l to the corresponding parameter Lk
j of Cj on level l+ 1. When in the terminal

state qn, the termination action termi,l decrements the stack level to l − 1 and deletes all
temporary information about stack level l.

Besides computing a hierarchical FSC starting from scratch, the P `
n,m compilation is

flexible to reuse existing FSCs. In this regard, our compilation can also partially specify
the functions Γi, Λi and Φi of an existing FSC Ci by setting to True the corresponding
fluents of type condf,i

q , actb,iq,a, succb,iq,q′ and callb,iq,j(p) in the initial state I`n,m. This way, we can
incorporate prior knowledge regarding the configuration of some previously existing FSCs
in C. Interestingly, this idea can be exploited to determine whether a given string e belongs
to the regular language defined by a given FSC by ignoring the actions for programming the
transition function (Segovia-Aguas et al., 2017a). In this case, a solution plan π represents
the transitions in the given FSC proving that the string e is accepted.

The P `
n,m compilation can also be extended to address a generalized planning problem

P = {P1, . . . , PT } in a way analogous to Pn. Specifically, each action endt, 1 ≤ t < T ,
should have precondition Gt ∪ {cs0

qn} and reset the state to It+1 ∪ {cs0
q0}, i.e. the system

should reach the terminal state qn on stack level 0 and satisfy the goal condition Gt of Pt

before execution proceeds on the next problem Pt+1 ∈ P. To solve P `
n,m, a plan hence has

to simulate the execution of H on all planning problems in P.

4.4 Example

We show how the compilation P `
n,m computes the hierarchical FSC in Figure 2 for binary

tree traversal (with m = 1). Recall that the initial state is given by I`n,m = (I ∩ Fr) ∪ {f0 :

f ∈ I ∩Fa}∪{cs0
q0 , lvl0, fsc1,0}∪{nocondi

q, noactb,iq , nosuccb,iq : q ∈ Q, b ∈ {0, 1}, Ci ∈ C}, with
I given by the expression (2).

At I`n,m the only applicable actions are pcondf,1,0
q0 , f ∈ F , for programming the value of

Φ1(q0) on stack level 0. In Figure 2 this transition fires no matter what so any static fluent
can be programmed here, e.g. f = left(x1, x3). Similar to the example in Section 3.3, the
following action sequence programs and simulates the complete transition from q0 to q1 on
level 0 of the stack:

〈pcondleft(x1,x3),1,0
q0 , econdleft(x1,x3),1,0

q0 , pact0,1,0
q0,copyL(n,child), eact0,1,0

q0,copyL(n,child), psucc0,1,0
q0,q1 , esucc0,1,0

q0,q1〉.

The action sequences for programming the transitions from q1 to q2 and from q2 to itself
are analogous. The resulting action sequence on A is 〈copyL(n, child), visit(n), copyR(n, n)〉,
and the corresponding effect on F is {assign0

child,x2
, visited(x1),¬assign0

n,x1
, assign0

n,x9
}.

772

Hierarchical Finite State Controllers

The programming and simulation of the recursive call of the controller in Figure 2
occurs in the partial state {csq2 , o

0}, i.e. when isVisited(n) is false in controller state q2.
To replicate the FSC in Figure 2, the planner should program and simulate the recur-
sive call using actions pcall0,1,0q2,1

(child) and ecall0,1,0q2,1
(child). The effect of ecall0,1,0q2,1

(child)

is {¬lvl0, lvl1, fsc1,1, cs1
q0 , app0, assign1

n,x2
}, where the assignment assign1

n,x2
is copied from

assign0
child,x2

due to the argument child being passed to the lone parameter n of the FSC
C1 being called. As a result, execution of the controller on P continues on level 1 of the
call stack.

On stack level 1, execution is deterministic, resulting in the same transition sequence
q0 → q1 → q2 → q2 → q0 and causing another recursive call but using now action
ecall0,1,1q2,1

(child), that assigns node x3 to n on level 2 of the stack. Recursion continues
until isNull(n) becomes true, in which case we can program and simulate the transition
from q1 to the terminal controller state q3. In turn, this allows us to pop an FSC call from
the stack. At this point, since appl was added by ecall0,1,lq2,1

(child) at the previous stack level

l, we can finally program and simulate the transition from q2 to q0 using actions psucc0,1,l
q2,q0

and esucc0,1,l
q2,q0 . Note that the bound ` on the stack size has to be sufficiently large to accom-

modate all recursive calls otherwise P `
n,m will not have a solution. In the particular case of

binary tree traversal, ` has to be larger than the tree depth.

4.5 Properties

Here we analyze the theoretical properties of our compilation P `
n,m for synthesizing hierar-

chical FSCs.

Theorem 3 (Soundness). Any plan π that solves P `
n,m induces a hierarchical FSC H =

(C, C1) that solves P .

Proof. First we show that at any moment, a single fluent of type lvll is true, denoting the
top level of the stack, and that all fluents for levels l + 1 and higher are set to False. In
the initial state I`n,m, the top level is lvl0 and all fluents for level 1 and higher are false. The

only actions for changing the top level are ecallb,i,lq,j (p) for pushing an FSC call onto level

l + 1 of the stack, and termi,l for popping an FSC call from level l of the stack. Note that
ecallb,i,lq,j (p) deletes lvll and adds lvll+1, and only adds fluents for level l+ 1. Likewise, termi,l

deletes lvll and adds lvll−1, and deletes all fluents for level l proving that the claim holds.
Next we show that for each stack level l, at or below the top, fluents fsci,l and cslq

uniquely determine the current FSC Ci ∈ C and the current controller state q ∈ Q. In
the initial state, only fsc1,0 and cs0

q0 are true, i.e. the current FSC is C1 in controller state

q0 on stack level 0. Action ecallb,i,lq,j (p) adds {fscj,l+1, csl+1
q0 }, indicating that Cj is the FSC

pushed onto level l+ 1 of the stack in controller state q0. Action termi,l deletes {fsci,l, cslqn},
indicating that the FSC call to Ci is popped from level l of the stack. As happens with
simple FSCs, the only action for changing the controller state is esuccb,i,lq,q′ , which transitions
from q to q′ when b is the outcome of the observation function in q. The only difference
here is that esuccb,i,lq,q′ is parameterized by i and l. Because of precondition {lvll, fsci,l} of

esuccb,i,lq,q′ , l has to be the top level of the stack and Ci has to be the FSC that is executing
on level l of the stack.

773

Segovia-Aguas, Jiménez & Jonsson

Now we show that actions pcallb,i,lq,j (p) and ecallb,i,lq,j (p) for programming and execut-

ing an FSC call Cj [p] and action termi,l for terminating an FSC call correctly simulate

the execution model for hierarhical FSCs. Since pcallb,i,lq,j (p) has the same precondition

{cslq, evll, ob,l, noactb,iq } as pactb,i,lq,a , and since both delete noactb,iq , programming an FSC call
for q and b in FSC Ci is an alternative to programming an action for q and b, effec-
tively establishing the value of the function Γi(q, b) ∈ A ∪ Z. The effect of ecallb,i,lq,j (p) is

{lvll+1, fscj,l+1, csl+1
q0 }, pushing the FSC call Cj [p] onto the call stack and making Cj the ac-

tive FSC on the top level l+1. Moreover, the conditional effect {{assignl
pk,x
}�{assignl+1

vk,x
} :

1 ≤ k ≤ kj , x ∈ Ωx} copies the values of the variable objects in p onto the variable objects
v1, . . . , vkj that constitute the parameters of Cj . Finally, action termi,l pops the FSC call
involving Ci from the stack when the terminal controller state qn has been reached.

It only remains to reuse the argument from the proof of Theorem 1 to show that the
actions adapted from An, program and simulate the execution of an FSC Ci on a single
stack level. The actions adapted from An, i.e. those for programming or executing a function
among Φi, Ti and Γi, 1 ≤ i ≤ m, include the extra precondition {lvll, fsci,l}. In other words,
the corresponding FSC Ci has to be active on the top of the stack. Other than that, these
actions behave just as for single FSCs.

Theorem 4. If there exists a hierarchical FSC H = (C, C1) that solves P then there exists
a plan π that solves P `

n,m given that the n, m, and ` bounds are large enough.

Proof. The plan π is built as follows. Whenever the execution of H on P (starting with
the initial planning state I, the first state of the root controller C1, and an empty call
stack) reaches a controller state q ∈ Q of an FSC Ci for the first time, then π programs the
three functions Φi, Ti and Γi of the FSC Ci as specified by H, and using the corresponding
programming actions pcondf,i,l

q , pactb,i,lq,a or psuccb,i,lq,q′ . As an alternative to pactb,i,lq,a , the FSC

calls of H are programmed with pcallb,i,lq,j (p).
Once this execution reaches a controller state whose transition functions encoded by Φi,

Ti and Γi are already programmed, an action sequence of type 〈econdf,i,l
q , eactb,i,lq,a , esuccb,i,lq,q′ 〉

that simulates the execution of the corresponding transition is added to the plan π. Note
that in this case an action ecallb,i,lq,j (p) is executed as an alternative to eactb,i,lq,a , when the

transition to simulate represents a controller call, and a termi,l action is used to simulate
the termination of the execution of a controller Ci ∈ C.

A plan π built this way has the effect of programming H and simulating the execution
of H on P . The fact that H = (C, C1) solves P implies that the simulation of the execution
of H on P ends achieving G while leaving the root controller C1 at its terminal state and
with the call stack empty, which is also the definition of a plan π solving P `

n,m.

5. Comparing FSCs and Planning Programs

Planning programs represent compact and generalized plans assigning planning actions to
an enumeration of program lines (Jiménez & Jonsson, 2015; Segovia-Aguas et al., 2016a).
Apart from planning actions, the lines of a planning program can also contain goto in-
structions to implement control flow. Figure 4(a) shows a three-line planning program for

774

Hierarchical Finite State Controllers

decreasing the value of variable n until achieving the goal condition n = 0. This program
assumes that n initially has a positive value, and that action dec(n) decrements the current
value of n. Instruction goto(0,!(n=0)), in line one, indicates a conditional jump to line
zero if the value of variable n is not 0.

0. dec(n)

1. goto(0,!(n=0))

2. end

(a)

q0 q1 q2
−/dec(n) (n=0)/−

!(n=0)/−

(b)

q0 q1
(n=0)/−

!(n=0)/dec(n)

(c)

Figure 4: a) Three-line planning program for decreasing variable n until achieving n = 0; b) an
equivalent three-state FSC; c) a more compact FSC representing the same generalized plan.

Planning programs can be understood as syntactic sugar to improve the readability
of FSCs that, separates control flow from the primitive planning actions. On the other
hand, FSCs can be more compact. Both programs and FSCs can represent hierarchical
and recursive solutions as well as reuse existing solutions. Moreover, both programs and
FSCs can be computed following a top-down approach that searches in a bounded space of
solutions.

Theorem 5. For any planning program Π with n program lines, there exists an equivalent
FSC C with n controller states.

Proof. Given a planning problem P = 〈F,A, I,G〉 and a planning program Π = 〈w0, . . . , wn〉,
we prove the theorem by constructing an equivalent FSC C = (〈Q, q0, qn, {0, 1}, A, T,Γ〉,Φ),
where Q = {q0, . . . , qn} has as many controller states as Π has program lines. For each con-
troller state qi ∈ Q, the functions Φ, T and Γ are defined as follows:

• If the instruction wi on line i of program Π is a primitive planning action, i.e. wi ∈ A,
then T (qi, 0) = T (qi, 1) = qi+1 always transitions to the next controller state qi+1,
and Γ(qi, 0) = Γ(qi, 1) = wi always returns action wi (Φ(qi) can be arbitrarily defined
since the transition is always to qi+1 no matter what fluent we associate with qi).

• If wi is a goto(j, !f) instruction, then Φ(qi) = f associates fluent f with qi. Further,
T (qi, 0) = qj and T (qi, 1) = qi+1 causing a transition to qj if f is false, else to qi+1,
and Γ(qi, 0) = Γ(qi, 1) = a⊥ returning the no-op action.

The world state (s, i) of a planning program Π comprises a planning state s and a program
line i. We prove by induction that executing Π from (s, i) is equivalent to executing C from
(qi, s), where qi is the controller state that corresponds to line i.

The base case is given by (s, n), in which case the execution of both Π and C terminates
in the same state s (just as qn is always a terminal controller state, the last instruction wn

of Π is always a termination instruction). The inductive case is given by world state (s, i)
such that i < n:

775

Segovia-Aguas, Jiménez & Jonsson

• If wi ∈ A, the resulting world state is (s′, i + 1) for Π, and (qi+1, s
′) for C, where

s′ = θ(s, wi) is the result of applying the action wi in the planning state s.

• If wi is a goto instruction goto(j, !f), the resulting world state is (s, j) for Π and (qj , s)
for C if f is false, and (s, i+ 1) for Π and (qi+1, s) for C if f is true.

In each case, the resulting pair of world states (s′, i′) and (qi′ , s
′) are identical, so by hy-

pothesis of induction executing Π from (s′, i′) is equivalent to executing C from (qi′ , s
′). In

particular, this means that executing Π from the initial world state (I, 0) is equivalent to
executing C from (q0, I), proving that Π and C are equivalent generalized plans.

Figure 4(b) shows the equivalent FSC that we construct following the proof of Theorem 5
for the planning program in Figure 4(a). Now we prove also the other direction of Theorem 5
and prove hence, that planning programs are as expressive as FSCs (but not necessarily as
compact):

Theorem 6. For any FSC C with n controller states, there exists an equivalent planning
program Π with 5× n program lines.

Proof. Given a planning problem P = 〈F,A, I,G〉 and an FSC C = (∆,Φ) with ∆ =
〈Q, q0, qn, {0, 1}, A, T,Γ〉, we prove the theorem by constructing an equivalent planning pro-
gram Π = 〈w0, . . . , w5n〉 with five times as many lines as C has controller states.

For a given controller state qi ∈ Q, let Φ(qi) = f , T (qi, 0) = qj , T (qi, 1) = qk, Γ(qi, 0) =
a, Γ(qi, 1) = b be the transitions from qi. We can exactly represent these same transitions
from qi using the following partial program:

5i: goto(5i+3,!f)

5i+1: b

5i+2: goto(5k,!false)

5i+3: a

5i+4: goto(5j,!false)

Here, false is a dummy fluent whose value is always false, causing the corresponding
goto condition to trigger every time. Executing the above partial program replicates the
transition from qi, so Π and C are equivalent generalized plans.

FSCs are at least as compact as planning programs, and often strictly more compact (as
shown in Figure 4(c)). In practice, this gives FSCs an advantage over planning programs,
since a smaller bound on the number of controller states typically results in faster generation
of FSCs.

6. Evaluation

This section evaluates the performance of our approach for the computation of FSCs in
a selection of generalized planning benchmarks and programming tasks taken from Bonet
et al. (2010), Srivastava et al. (2011) and Segovia-Aguas et al. (2016a).

776

Hierarchical Finite State Controllers

6.1 Experimental Setup and Benchmarks

All experiments are run on a processor Intel Core i7 2.60GHz x 4 with a 4GB memory bound
and time limit of 3600s. FSCs are computed solving the corresponding classical planning
problem that results from our compilation. The classical planning problems output by our
compilation are solved running the following two classical planners:

1. Fast Downward (Helmert, 2006) with the Lama-2011 setting (Richter & Westphal,
2010).

2. Best-First Width Search with the Dual-BFWS setting (Lipovetzky & Geffner,
2017).

We briefly describe here each of the evaluation benchmarks. In the AnBn domain the
goal is to compute a controller to parse any string consisting of n A’s followed by n B’s.
In Blocks, the goal is to compute a controller that unstack blocks from a single tower until
a green block is found. In Fibonacci the FSC must compute the nth Fibonacci number.
In Gripper, the goal is to transport a set of balls from one room to another using a two-
gripper robot. In List, the goal is to visit all the nodes of a linked list (as in the example of
Section 3) while in Reverse, the goal is to reverse a linked list. In the Serial Binary Adder
(SBA) domain, we compute a controller that implements the algorithm for the addition of
two binary numbers of unbounded size. In Triangular Sum, the goal is to compute

∑n
i=1 i

for a given n. In Tree/DFS, the goal is to visit all nodes of binary trees whose the nodes
may have one child, two children or none. Finally in Visitall, the goal is to visit all the cells
of a rectangular grid.

6.2 Computing FSCs and Hierarchical FSCs with Classical Planning

Table 1 summarizes the obtained results when using our compilation to compute controllers
for the introduced benchmarks.

FD BFWS
Domain |C| Sol |Q| |P| Time(s) |π| Time(s) |π|
AnBn 1 R 2 1 0.52 46 0.58 39
Blocks 1 OC 3 5 2.73 65 1.08 65
Fibonacci 2 HC 3,2 2,4 2.81,8.28 30,173 3.54,4.81 34,183
Gripper 1 OC 3 2 5.34 140 8.65 135
Hall-A 5 HC 2,2,2, 2,2,2, 13.27,5.60,19.09, 58,46,46, 29.64,204.88,284.91, 46,46,43,

2,2 2,2 32.93,203.03 46,195 82.06,20.31 46,189
List 1 OC 2 6 0.14 159 0.14 159
Reverse 1 OC 3 2 43.56 62 13.85 49
SBA 7 HC 1,1,1,1 2,2,2,2 0.20,0.31,0.44,0.55, 14,14,14,14, 0.07,0.13,0.01,0.01, 14,14,14,14,

1,1,2 4,4,8 0.79,0.91,271.92 38,38,267 0.62,1.79,ME 38,38,ME
T. Sum 1 OC 2 4 7.06 61 14.40 66
Tree/DFS 1 RP 3 4 921.08 422 ME ME
Visitall 2 HC 2, 2 3, 2 0.40,25.23 84,314 7.01,ME 84,ME

Table 1: Number of controllers used, solution kind (OC=One Controller, HC=Hierarchical Con-
troller, R=Recursivity, RP=Recursivity with Parameters), solution size and instances in P. For
each controller: planning time and plan length required for computing the controller.

777

Segovia-Aguas, Jiménez & Jonsson

In many domains our compilation computes a single FSC (OC = One Controller) that
solves the input planning instances; there are two domains where the computed solution is
a recursive controller (R = Recursivity; RP = Recursivity with Parameters) that are single
FSCs that call themselves. For the rest of domains the solutions are hierarchical FSCs
(HC = Hierarchical Controller) where controllers call to other controllers, all solutions with
|C| > 1 fall into this last category.

In addition to the kind and size of the computed FSCs we also report |P|, the number of
classical planning instances given as input to the compilation. Last but not least we report,
for each domain, the planning time and plan length required by the classical planners Fast
Downward and Best-First Width Search to compute the controllers. We report
Memory Exceeded (ME) if the planner overflows the memory limit (there are no timebound
errors in Table 1 because either a FSC is found or memory overflows before exceeding the
given time limit).

Overall Best-First Width Search does not require as much preprocessing time as
Fast Downward. However in certain benchmarks, BFWS requires a larger amount of
memory than FD. Next we discuss the obtained solutions for each domain.

The AnBn domain is solved with a recursive FSC without parameters. String parsing
problems can be formalized as generalized planning (Segovia-Aguas et al., 2017a). Actions
in this domain parse the current letter in the input string and progress the string iterator. If
the current letter is still an a, the FSC makes a recursive call to itself else, it parses a b before
terminating. Thus, it will process each letter a using n recursive calls, and a letter b before
returning from each recursion, processing a total of n b’s. The Appendix A includes (1)
the PDDL domain and problem definition that is given as input to our compilation (2), the
PDDL domain and problem output by our compilation and (3), the solution plan computed
by the FD planner to solve the planning instance that is output by our compilation. This
solution plan includes the programming of the FSC and its validation on the input instance.

Blocks, Fibonacci, Gripper, Hall-A, List, Reverse, and Triangular Sum, are all domains
taken from our previous research work with planning programs (Segovia-Aguas et al., 2016a)
to evidence the compactness and effectiveness of hierarchical FSCs. Compared to planning
programs obtained in that work, the computed FSCs comprise a smaller number of controller
states, reducing the time required to compute a generalized plan for the same tasks.

Results on the Serial-Binary Adder domain are reported to show how single FSCs, that
solve a very specific problem like computing the bit sum and carry from two inputs and
a carry, can be combined into a hierarchical FSC that iteratively calls previous FSCs to
simulate the addition operation of two unbounded binary numbers.

The solution computed for the Tree/DFS domain corresponds to the FSC of Figure 2
encoding the condition isNull(n) as equals(n, n), where equals is a derived predicate that
tests whether two variables have the same value. When applied to a leaf node n, the action
copyR(n, n) deletes the current value of n without adding another value. Hence, evaluating
equals(n, n) returns false when n does not have a right child because there is no current
value of n to unify with.

In Visitall both, Best-First Width Search and Fast Downward, fail to generate
a single FSC within the given time and memory bounds. Even if we attempt to generate a
hierarchical FSC from scratch, these planners cannot find a solution. Instead, our approach
is to generate a hierarchical FSC incrementally. We first generate a single FSC, Figure 5(a),

778

Hierarchical Finite State Controllers

that solves the subproblem of visiting all cells in a single row. We then use our compilation
to generate a second FSC, Figure 5(b), that iterates for each row and in every iteration,
calls the first controller to visit the current row and then goes back to the first column until
there are no more rows to visit.

(a) FSC-0, visits every cell in a row. (b) FSC-1, for every row, calls FSC-0 and goes back to
the first column.

Figure 5: Hierarchical FSC that visits all cells of a grid.

6.3 Assessing the Influence of the Input Instances

Our compilation programs a controller and validates it on the set P of classical planning
instances that is given as input. The next experiment evidences that the performance of
this process is affected by the order in which the planning instances in P are given as input.
This ordering has a positive impact in the performance when the first input instances forces
the compilation to program an FSC that generalizes to the remaining instances. On the
other hand, the ordering has a negative impact when the programmed FSCs overfits to the
first input instances so the planner requires expensive backtracks to validate the remaining
input instances.

Table 2 shows the performance of our compilation approach for all the possible orderings
of the given input instances. For this analysis we considered only the domains that can be
solved with a single FSC. For each domain, the Table 2 reports the number of instances
and their possible orderings, factorial in the number of instances. Then for both classical
planners, BFWS and FD, the table reports the minimum, maximum and average planning
time (in seconds) computed for the given orderings. Last column reports the planning time
given the input ordering reported in Table 1 to serve as a reference.

From these results we can conclude that there is a significant difference in the planning
times (in some cases by orders of magnitude from best to worst case, like in the Blocks
domain) that depends on the particular ordering of the input instances and the used planner.
When a human specifies the input order (e.g. the results reported in Table 1) performance
usually is below the average running time, but also depends on the used planning system.
What can be a good ordering for one planner can result bad for the other planner, like in
the Gripper domain.

779

Segovia-Aguas, Jiménez & Jonsson

Domain |P| Orderings FD BFWS
Min Max Avg Ref Min Max Avg Ref

Gripper 2 2 3.12 4.88 4.00 4.88 8.12 34.86 21.49 8.12
Blocks 5 120 2.18 568.04 87.22 2.36 0.41 520.22 43.25 0.78
List 6 720 0.02 0.04 0.04 0.04 0.02 0.15 0.03 0.02
T. Sum 4 24 2.90 9.78 4.85 7.94 0.26 18.69 6.11 14.46
Reverse 2 2 42.0 51.34 46.67 42.00 16.16 86.59 51.38 16.16

Table 2: For each domain we report the number of instances and possible orderings. For each
planner, the minimum, maximum and average times (in secs) for the orderings and the planning
time given the ordering from Table 1.

7. Related Work

Previous work on FSCs for planning (Bonet et al., 2010; Hu & De Giacomo, 2013) assumes
a partially observable planning model in which the observation function is given as input.
In our approach the observation function is not given as input; our classical planning compi-
lation synthesizes this function (in addition to the transition and output functions of FSCs).
This means that our compilation can generate FSCs that branch on any fluent, since all
fluents are considered observable. Further, our approach provides a call mechanism that
makes it possible to generate recursive and hierarchical solutions as well as to reuse existing
FSCs.

Hierarchical FSCs are related to our planning programs formalism for the representation
and computation of generalized plans (Jiménez & Jonsson, 2015; Segovia-Aguas et al.,
2016a; Lotinac, Segovia-Aguas, Jiménez, & Jonsson, 2016). These programs are a special
case of FSCs, and in general, FSCs can represent plans more compactly than planning
programs. Another related formalism is automaton plans (Bäckström et al., 2014), which
also store sequential plans compactly using hierarchies of finite state automata. However,
automaton plans are Mealy machines whose transitions depend on the symbols of an explicit
input string. Hence automaton plans are not suitable for representing generalized plans,
and their focus is instead on the compression of sequential plans.

Besides solution plans, finite state automata can represent other objects in planning. For
instance, the domain transition graph is an automaton for representing the possible values
of planning state variables (Chen, Huang, & Zhang, 2008). Toropila and Barták (2010)
also used finite state machines to represent the domains of the state variables of a given
planning instance. Another examples are the LOCM system, that uses finite state machines
to represent planning domain models (Cresswell, McCluskey, & West, 2013) or the use
of Petri nets to represent an entire planning instance (Hickmott, Rintanen, Thiébaux, &
White, 2007).

A different application of finite state machines for planning is to compile LTL represen-
tations of temporally extended goals, i.e. conditions that must hold over the intermediate
states of a plan, into a non-deterministic automaton (Baier & McIlraith, 2006). Related to
this, the techniques for bound synthesis show how to address the computation of finite-state
transition systems that satisfy a given LTL formula (Finkbeiner & Schewe, 2013). An in-
teresting research direction is how to adapt our approach for the computation of automata
of these kinds.

780

Hierarchical Finite State Controllers

The aim of generalized planning (that is computing solutions that generalize over a set
of input instances) is tightly related to Machine Learning. In more detail, the Reinforce-
ment Learning (RL) literature includes works like Shavlik (1990), Parr and Russell (1998),
Dietterich (2000) and Chentanez, Barto, and Singh (2005) that leverages hierarchical de-
compositions of complex sequential problems and learn when every controller should be
applied. In some cases these knowledge can be iteratively included in the bag of controllers,
in other cases this set is close but can be reused to solve more complex tasks, options or
to learn more complex concepts. Despite, in the best case, learning converges to a solution
that minimizes a cost function (or maximizes a reward); in domains with huge state spaces,
full observability and a far horizon, it may become unfeasible for RL approaches to reach
a goal and even harder to converge, so planning techniques can be applied to explore only
promising state space sections.

8. Conclusion

The paper introduced hierarchical FSCs, a novel formalism in which controllers can call
other controllers (or recursively call themselves) to represent compact generalized plans.
The paper also presented a classical planning compilation that makes it possible to use
off-the-shelf planners to compute hierarchical FSCs. The compilation is extensible to com-
pute hierarchical FSCs in an incremental fashion to address more challenging generalized
planning problems.

Just as in previous work on the automatic generation of FSCs, our compilation takes
as input a bound on the number of controller states. Furthermore, for hierarchical FSCs
we specify bounds on the number of FSCs and stack levels. An iterative deepening ap-
proach could be implemented to automatically derive these bounds. Another issue is the
specification of representative subproblems to generate hierarchical FSCs in an incremental
fashion. Inspired by Test Driven Development (Beck, Beedle, Van Bennekum, Cockburn,
Cunningham, Fowler, Grenning, Highsmith, Hunt, Jeffries, et al., 2001), we believe that
defining subproblems is a step towards automation.

We follow an inductive approach to generalization, and hence we can only guarantee that
the solution generalizes over the instances of the generalized planning problem, much as in
previous work on computing FSCs. With this said, all the controllers we report in the paper
generalize. In machine learning, the validation of a generalized solution is traditionally done
by means of statistics and validation sets. In planning this is an open issue, as well as the
generation of relevant examples that lead to solutions that generalize.

Last but not least, our evaluation evidenced the impact of the order of the input tasks
in the experimental performance of our compilation. Despite the planner could also be
used to determine this order, a better approach is to compute the FSC considering the
parallel execution of the controller over all the instances. An interesting research direction
is then the use of techniques for progressing belief states, like in conformant or contingent
planning (Palacios & Geffner, 2009; Albore, Palacios, & Geffner, 2009).

781

Segovia-Aguas, Jiménez & Jonsson

Acknowledgments

This work is partially supported by grant TIN2015-67959 and the Maria de Maeztu Units of Excel-

lence Programme MDM-2015-0502, MEC, Spain. Sergio Jiménez is supported by the RYC15/18009,

program funded by the Spanish government.

Appendix A. Original, Compilation and Generalized Plan of anbn Problem

(define (domain AnBn)

(:requirements :typing)

(:types index letter)

(:constants a b empty - letter)

(:predicates

(at ?i - index)

(adjacent ?i1 ?i2 - index)

(content ?i - index ?l - letter)

(current-content ?l - letter)

)

(:action process-a

:parameters ()

:precondition (and (current-content a))

:effect (and (forall (?i1 ?i2 - index ?l - letter)

(when (and (adjacent ?i1 ?i2) (at ?i1) (content ?i2 ?l))

(and (not (at ?i1)) (at ?i2)

(not (current-content a)) (current-content ?l)))))

)

(:action process-b

:parameters ()

:precondition (and (current-content b))

:effect (and (forall (?i1 ?i2 - index ?l - letter)

(when (and (adjacent ?i1 ?i2) (at ?i1) (content ?i2 ?l))

(and (not (at ?i1)) (at ?i2)

(not (current-content b)) (current-content ?l)))))

)

)

Figure 6: PDDL domain file for parsing strings that belong to the grammar anbn.

(define (problem aaaabbbb)

(:domain AnBn)

(:objects i0 i1 i2 i3 i4 i5 i6 i7 i8 - index)

(:init

(at i0) (current-content a)

(adjacent i0 i1) (adjacent i1 i2) (adjacent i2 i3) (adjacent i3 i4)

(adjacent i4 i5) (adjacent i5 i6) (adjacent i6 i7) (adjacent i7 i8)

(content i0 a) (content i1 a) (content i2 a) (content i3 a)

(content i4 b) (content i5 b) (content i6 b) (content i7 b)

(content i8 empty)

)

(:goal (and (at i8)))

)

Figure 7: PDDL problem file for parsing the string aaaabbbb that belongs to the grammar anbn.

782

Hierarchical Finite State Controllers

Next, we show the PDDL domain file that results from compiling the previous classical
planning domain for generating an FSC that parses strings that belong to the anbn grammar.
The compilation parameters are Q = 2 and l = 5.

(define (domain compiled-AnBn)

(:requirements :action-costs :conditional-effects :typing)

(:types index letter stackrow stackstate - object)

(:constants

i0 i1 i2 i3 i4 i5 i6 i7 i8 - index

a b empty - letter

row-0 row-1 row-2 row-3 row-4 - stackrow

state-0 state-1 state-2 - stackstate

)

(:predicates

(at ?index0 - index)

(adjacent ?index0 ?index1 - index)

(content ?index0 - index ?letter1 - letter)

(current-content ?letter0 - letter)

(empty-cond-stack ?stackstate0 - stackstate)

(empty-true-goto-stack ?stackstate0 - stackstate)

(empty-false-goto-stack ?stackstate0 - stackstate)

(empty-tact-stack ?stackstate0 - stackstate)

(empty-fact-stack ?stackstate0 - stackstate)

(true-no-act-0 ?stackstate0 - stackstate)

(false-no-act-0 ?stackstate0 - stackstate)

(state-stack ?stackstate0 - stackstate ?stackrow1 - stackrow)

(next-stack-row ?stackrow0 ?stackrow1 - stackrow)

(top-stack ?stackrow0 - stackrow)

(stack-procedure-0 ?stackrow0 - stackrow)

(true-call-0-0 ?stackstate0 - stackstate)

(false-call-0-0 ?stackstate0 - stackstate)

(accumulator-0 ?stackrow0 - stackrow)

(done-evaluating-0 ?stackrow0 - stackrow)

(done-applying-0 ?stackrow0 - stackrow)

(test-0) (done-programming)

(available-state ?stackstate0 - stackstate)

(next-state ?stackstate0 ?stackstate1 - stackstate)

(ncond-0 ?stackstate0 - stackstate)

(true-goto-0 ?stackstate0 ?stackstate1 - stackstate)

(false-goto-0 ?stackstate0 ?stackstate1 - stackstate)

(cond-at-0 ?index0 - index ?stackstate1 - stackstate)

(cond-current-content-0 ?letter0 - letter ?stackstate1 - stackstate)

(true-process-a-0 ?stackstate0 - stackstate)

(false-process-a-0 ?stackstate0 - stackstate)

(true-process-b-0 ?stackstate0 - stackstate)

(false-process-b-0 ?stackstate0 - stackstate)

(end-cond-0-0) (end-cond-0-1) (end-cond-0-2)

)

(:functions (total-cost))

(:action program-true-no-act-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(empty-tact-stack ?stackstate0)

(done-evaluating-0 ?stackrow1)

(accumulator-0 ?stackrow1)

)

:effect

(and

783

Segovia-Aguas, Jiménez & Jonsson

(not (empty-tact-stack ?stackstate0))

(true-no-act-0 ?stackstate0)

)

)

(:action program-false-no-act-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(empty-fact-stack ?stackstate0)

(done-evaluating-0 ?stackrow1)

(not (accumulator-0 ?stackrow1))

)

:effect

(and

(not (empty-fact-stack ?stackstate0))

(false-no-act-0 ?stackstate0)

)

)

(:action program-true-process-a-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(current-content a)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(empty-tact-stack ?stackstate0)

(done-evaluating-0 ?stackrow1)

(accumulator-0 ?stackrow1)

)

:effect

(and

(not (empty-tact-stack ?stackstate0))

(true-process-a-0 ?stackstate0)

)

)

(:action program-false-process-a-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(current-content a)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(empty-fact-stack ?stackstate0)

(done-evaluating-0 ?stackrow1)

(not (accumulator-0 ?stackrow1))

)

:effect

(and

(not (empty-fact-stack ?stackstate0))

(false-process-a-0 ?stackstate0)

)

)

(:action program-true-process-b-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(current-content b)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

784

Hierarchical Finite State Controllers

(state-stack ?stackstate0 ?stackrow1)

(empty-tact-stack ?stackstate0)

(done-evaluating-0 ?stackrow1)

(accumulator-0 ?stackrow1)

)

:effect

(and

(not (empty-tact-stack ?stackstate0))

(true-process-b-0 ?stackstate0)

)

)

(:action program-false-process-b-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(current-content b)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(empty-fact-stack ?stackstate0)

(done-evaluating-0 ?stackrow1)

(not (accumulator-0 ?stackrow1))

)

:effect

(and

(not (empty-fact-stack ?stackstate0))

(false-process-b-0 ?stackstate0)

)

)

(:action program-end-2

:parameters (?stackrow0 - stackrow)

:precondition

(and

(top-stack ?stackrow0)

(stack-procedure-0 ?stackrow0)

(state-stack state-2 ?stackrow0)

(empty-cond-stack state-2)

)

:effect

(and

(not (empty-cond-stack state-2))

(end-cond-0-2)

(increase (total-cost) 1)

)

)

(:action program-nocond-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(empty-cond-stack ?stackstate0)

)

:effect

(and

(not (empty-cond-stack ?stackstate0))

(ncond-0 ?stackstate0)

)

)

(:action program-cond-at-0

:parameters (?index0 - index ?stackstate1 - stackstate ?stackrow2 - stackrow)

:precondition

(and

785

Segovia-Aguas, Jiménez & Jonsson

(top-stack ?stackrow2)

(stack-procedure-0 ?stackrow2)

(state-stack ?stackstate1 ?stackrow2)

(empty-cond-stack ?stackstate1)

)

:effect

(and

(not (empty-cond-stack ?stackstate1))

(cond-at-0 ?index0 ?stackstate1)

)

)

(:action program-cond-current-content-0

:parameters (?letter0 - letter ?stackstate1 - stackstate ?stackrow2 - stackrow)

:precondition

(and

(top-stack ?stackrow2)

(stack-procedure-0 ?stackrow2)

(state-stack ?stackstate1 ?stackrow2)

(empty-cond-stack ?stackstate1)

)

:effect

(and

(not (empty-cond-stack ?stackstate1))

(cond-current-content-0 ?letter0 ?stackstate1)

)

)

(:action program-true-goto-0

:parameters (?stackstate0 ?stackstate1 - stackstate ?stackrow2 - stackrow)

:precondition

(and

(done-evaluating-0 ?stackrow2)

(accumulator-0 ?stackrow2)

(done-applying-0 ?stackrow2)

(top-stack ?stackrow2)

(stack-procedure-0 ?stackrow2)

(state-stack ?stackstate0 ?stackrow2)

(empty-true-goto-stack ?stackstate0)

(available-state ?stackstate1)

)

:effect

(and

(not (empty-true-goto-stack ?stackstate0))

(true-goto-0 ?stackstate0 ?stackstate1)

(forall

(?stackstate3 - stackstate)

(when

(next-state ?stackstate1 ?stackstate3)

(available-state ?stackstate3)

)

)

)

)

(:action program-false-goto-0

:parameters (?stackstate0 ?stackstate1 - stackstate ?stackrow2 - stackrow)

:precondition

(and

(done-evaluating-0 ?stackrow2)

(not (accumulator-0 ?stackrow2))

(done-applying-0 ?stackrow2)

(top-stack ?stackrow2)

(stack-procedure-0 ?stackrow2)

(state-stack ?stackstate0 ?stackrow2)

(empty-false-goto-stack ?stackstate0)

(available-state ?stackstate1)

786

Hierarchical Finite State Controllers

)

:effect

(and

(not (empty-false-goto-stack ?stackstate0))

(false-goto-0 ?stackstate0 ?stackstate1)

(forall

(?stackstate3 - stackstate)

(when

(next-state ?stackstate1 ?stackstate3)

(available-state ?stackstate3)

)

)

)

)

(:action program-true-call-0-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(empty-tact-stack ?stackstate0)

(done-evaluating-0 ?stackrow1)

(accumulator-0 ?stackrow1)

)

:effect

(and

(not (empty-tact-stack ?stackstate0))

(true-call-0-0 ?stackstate0)

)

)

(:action program-false-call-0-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(empty-fact-stack ?stackstate0)

(done-evaluating-0 ?stackrow1)

(not (accumulator-0 ?stackrow1))

)

:effect

(and

(not (empty-fact-stack ?stackstate0))

(false-call-0-0 ?stackstate0)

)

)

(:action repeat-true-no-act-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(done-evaluating-0 ?stackrow1)

(not (done-applying-0 ?stackrow1))

(accumulator-0 ?stackrow1)

(true-no-act-0 ?stackstate0)

)

:effect

(and

(done-applying-0 ?stackrow1)

)

787

Segovia-Aguas, Jiménez & Jonsson

)

(:action repeat-false-no-act-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(done-evaluating-0 ?stackrow1)

(not (done-applying-0 ?stackrow1))

(not (accumulator-0 ?stackrow1))

(false-no-act-0 ?stackstate0)

)

:effect

(and

(done-applying-0 ?stackrow1)

)

)

(:action repeat-true-process-a-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(current-content a)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(done-evaluating-0 ?stackrow1)

(not (done-applying-0 ?stackrow1))

(accumulator-0 ?stackrow1)

(true-process-a-0 ?stackstate0)

)

:effect

(and

(forall

(?index2 ?index3 - index ?letter4 - letter)

(when

(and

(adjacent ?index2 ?index3)

(at ?index2)

(content ?index3 ?letter4)

)

(and

(not (at ?index2))

(at ?index3)

(not (current-content a))

(current-content ?letter4)

)

)

)

(done-applying-0 ?stackrow1)

)

)

(:action repeat-false-process-a-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(current-content a)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(done-evaluating-0 ?stackrow1)

(not (done-applying-0 ?stackrow1))

(not (accumulator-0 ?stackrow1))

(false-process-a-0 ?stackstate0)

788

Hierarchical Finite State Controllers

)

:effect

(and

(forall

(?index2 ?index3 - index ?letter4 - letter)

(when

(and

(adjacent ?index2 ?index3)

(at ?index2)

(content ?index3 ?letter4)

)

(and

(not (at ?index2))

(at ?index3)

(not (current-content a))

(current-content ?letter4)

)

)

)

(done-applying-0 ?stackrow1)

)

)

(:action repeat-true-process-b-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(current-content b)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(done-evaluating-0 ?stackrow1)

(not (done-applying-0 ?stackrow1))

(accumulator-0 ?stackrow1)

(true-process-b-0 ?stackstate0)

)

:effect

(and

(forall

(?index2 ?index3 - index ?letter4 - letter)

(when

(and

(adjacent ?index2 ?index3)

(at ?index2)

(content ?index3 ?letter4)

)

(and

(not (at ?index2))

(at ?index3)

(not (current-content b))

(current-content ?letter4)

)

)

)

(done-applying-0 ?stackrow1)

)

)

(:action repeat-false-process-b-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(current-content b)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

789

Segovia-Aguas, Jiménez & Jonsson

(done-evaluating-0 ?stackrow1)

(not (done-applying-0 ?stackrow1))

(not (accumulator-0 ?stackrow1))

(false-process-b-0 ?stackstate0)

)

:effect

(and

(forall

(?index2 ?index3 - index ?letter4 - letter)

(when

(and

(adjacent ?index2 ?index3)

(at ?index2)

(content ?index3 ?letter4)

)

(and

(not (at ?index2))

(at ?index3)

(not (current-content b))

(current-content ?letter4)

)

)

)

(done-applying-0 ?stackrow1)

)

)

(:action repeat-true-goto-0

:parameters (?stackstate0 ?stackstate1 - stackstate ?stackrow2 - stackrow)

:precondition

(and

(top-stack ?stackrow2)

(stack-procedure-0 ?stackrow2)

(true-goto-0 ?stackstate0 ?stackstate1)

(state-stack ?stackstate0 ?stackrow2)

(done-evaluating-0 ?stackrow2)

(accumulator-0 ?stackrow2)

(done-applying-0 ?stackrow2)

)

:effect

(and

(not (done-evaluating-0 ?stackrow2))

(not (done-applying-0 ?stackrow2))

(not (accumulator-0 ?stackrow2))

(not (state-stack ?stackstate0 ?stackrow2))

(state-stack ?stackstate1 ?stackrow2)

)

)

(:action repeat-false-goto-0

:parameters (?stackstate0 ?stackstate1 - stackstate ?stackrow2 - stackrow)

:precondition

(and

(top-stack ?stackrow2)

(stack-procedure-0 ?stackrow2)

(false-goto-0 ?stackstate0 ?stackstate1)

(state-stack ?stackstate0 ?stackrow2)

(done-evaluating-0 ?stackrow2)

(not (accumulator-0 ?stackrow2))

(done-applying-0 ?stackrow2)

)

:effect

(and

(not (done-evaluating-0 ?stackrow2))

(not (done-applying-0 ?stackrow2))

(not (state-stack ?stackstate0 ?stackrow2))

790

Hierarchical Finite State Controllers

(state-stack ?stackstate1 ?stackrow2)

)

)

(:action eval-nocond-0

:parameters (?stackstate0 - stackstate ?stackrow1 - stackrow)

:precondition

(and

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(ncond-0 ?stackstate0)

(not (done-evaluating-0 ?stackrow1))

)

:effect

(and

(done-evaluating-0 ?stackrow1)

(accumulator-0 ?stackrow1)

)

)

(:action eval-cond-at-0

:parameters (?index0 - index ?stackstate1 - stackstate ?stackrow2 - stackrow)

:precondition

(and

(top-stack ?stackrow2)

(stack-procedure-0 ?stackrow2)

(state-stack ?stackstate1 ?stackrow2)

(cond-at-0 ?index0 ?stackstate1)

(not (done-evaluating-0 ?stackrow2))

)

:effect

(and

(done-evaluating-0 ?stackrow2)

(when

(at ?index0)

(and

(accumulator-0 ?stackrow2)

)

)

)

)

(:action eval-cond-current-content-0

:parameters (?letter0 - letter ?stackstate1 - stackstate ?stackrow2 - stackrow)

:precondition

(and

(top-stack ?stackrow2)

(stack-procedure-0 ?stackrow2)

(state-stack ?stackstate1 ?stackrow2)

(cond-current-content-0 ?letter0 ?stackstate1)

(not (done-evaluating-0 ?stackrow2))

)

:effect

(and

(done-evaluating-0 ?stackrow2)

(when

(current-content ?letter0)

(and

(accumulator-0 ?stackrow2)

)

)

)

)

(:action repeat-end-main-0-0-1

:parameters ()

:precondition

791

Segovia-Aguas, Jiménez & Jonsson

(and

(test-0)

(top-stack row-0)

(state-stack state-1 row-0)

(end-cond-0-1)

(at i8)

)

:effect

(and

(done-programming)

)

)

(:action repeat-end-main-0-0-2

:parameters ()

:precondition

(and

(test-0)

(top-stack row-0)

(state-stack state-2 row-0)

(end-cond-0-2)

(at i8)

)

:effect

(and

(done-programming)

)

)

(:action repeat-end-0-0-1

:parameters (?stackrow0 - stackrow ?stackrow1 - stackrow)

:precondition

(and

(test-0)

(next-stack-row ?stackrow0 ?stackrow1)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack state-1 ?stackrow1)

(end-cond-0-1)

)

:effect

(and

(not (top-stack ?stackrow1))

(top-stack ?stackrow0)

(not (state-stack state-1 ?stackrow1))

(not (stack-procedure-0 ?stackrow1))

)

)

(:action repeat-end-0-0-2

:parameters (?stackrow0 - stackrow ?stackrow1 - stackrow)

:precondition

(and

(test-0)

(next-stack-row ?stackrow0 ?stackrow1)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack state-2 ?stackrow1)

(end-cond-0-2)

)

:effect

(and

(not (top-stack ?stackrow1))

(top-stack ?stackrow0)

(not (state-stack state-2 ?stackrow1))

(not (stack-procedure-0 ?stackrow1))

)

792

Hierarchical Finite State Controllers

)

(:action repeat-true-call-0-0

:parameters (?stackstate0 - stackstate ?stackrow1 ?stackrow2 - stackrow)

:precondition

(and

(accumulator-0 ?stackrow1)

(true-call-0-0 ?stackstate0)

(next-stack-row ?stackrow1 ?stackrow2)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(done-evaluating-0 ?stackrow1)

(not (done-applying-0 ?stackrow1))

)

:effect

(and

(not (top-stack ?stackrow1))

(top-stack ?stackrow2)

(stack-procedure-0 ?stackrow2)

(state-stack state-0 ?stackrow2)

(done-applying-0 ?stackrow1)

)

)

(:action repeat-false-call-0-0

:parameters (?stackstate0 - stackstate ?stackrow1 ?stackrow2 - stackrow)

:precondition

(and

(not (accumulator-0 ?stackrow1))

(false-call-0-0 ?stackstate0)

(next-stack-row ?stackrow1 ?stackrow2)

(top-stack ?stackrow1)

(stack-procedure-0 ?stackrow1)

(state-stack ?stackstate0 ?stackrow1)

(done-evaluating-0 ?stackrow1)

(not (done-applying-0 ?stackrow1))

)

:effect

(and

(not (top-stack ?stackrow1))

(top-stack ?stackrow2)

(stack-procedure-0 ?stackrow2)

(state-stack state-0 ?stackrow2)

(done-applying-0 ?stackrow1)

)

)

)

793

Segovia-Aguas, Jiménez & Jonsson

(define (problem compiled-aaaabbbb)

(:domain compiled-AnBn)

(:objects)

(:init

(at i0) (current-content a)

(adjacent i0 i1) (adjacent i1 i2) (adjacent i2 i3) (adjacent i3 i4)

(adjacent i4 i5) (adjacent i5 i6) (adjacent i6 i7) (adjacent i7 i8)

(content i0 a) (content i1 a) (content i2 a) (content i3 a)

(content i4 b) (content i5 b) (content i6 b) (content i7 b)

(content i8 empty) (test-0)

(state-stack state-0 row-0)

(stack-procedure-0 row-0)

(top-stack row-0)

(empty-cond-stack state-0)

(empty-true-goto-stack state-0) (empty-false-goto-stack state-0)

(empty-tact-stack state-0) (empty-fact-stack state-0)

(empty-cond-stack state-1)

(empty-true-goto-stack state-1) (empty-false-goto-stack state-1)

(empty-tact-stack state-1) (empty-fact-stack state-1)

(empty-cond-stack state-2)

(next-stack-row row-0 row-1) (next-stack-row row-1 row-2)

(next-stack-row row-2 row-3) (next-stack-row row-3 row-4)

(available-state state-0) (available-state state-1)

(next-state state-0 state-1) (next-state state-1 state-2)

)

(:goal (and (done-programming)))

(:metric minimize (total-cost))

)

Figure 8: PDDL problem file that results from compiling the previous classical planning instance
(that encoded the aaaabbbb string) for generating an FSC that parses strings that belong to the
anbn grammar. The compilation parameters are Q = 2 and l = 5.

794

Hierarchical Finite State Controllers

(program-nocond-0 state-0 row-0)

(eval-nocond-0 state-0 row-0)

(program-true-process-a-0 state-0 row-0)

(repeat-true-process-a-0 state-0 row-0)

(program-true-goto-0 state-0 state-1 row-0)

(repeat-true-goto-0 state-0 state-1 row-0)

(program-cond-current-content-0 a state-1 row-0)

(eval-cond-current-content-0 a state-1 row-0)

(program-true-call-0-0 state-1 row-0)

(repeat-true-call-0-0 state-1 row-0 row-1)

(eval-nocond-0 state-0 row-1)

(repeat-true-process-a-0 state-0 row-1)

(repeat-true-goto-0 state-0 state-1 row-1)

(eval-cond-current-content-0 a state-1 row-1)

(repeat-true-call-0-0 state-1 row-1 row-2)

(eval-nocond-0 state-0 row-2)

(repeat-true-process-a-0 state-0 row-2)

(repeat-true-goto-0 state-0 state-1 row-2)

(eval-cond-current-content-0 a state-1 row-2)

(repeat-true-call-0-0 state-1 row-2 row-3)

(eval-nocond-0 state-0 row-3)

(repeat-true-process-a-0 state-0 row-3)

(repeat-true-goto-0 state-0 state-1 row-3)

(eval-cond-current-content-0 a state-1 row-3)

(program-false-process-b-0 state-1 row-3)

(repeat-false-process-b-0 state-1 row-3)

(program-false-goto-0 state-1 state-2 row-3)

(repeat-false-goto-0 state-1 state-2 row-3)

(program-end-2 row-3)

(repeat-end-0-0-2 row-2 row-3)

(program-true-goto-0 state-1 state-1 row-2)

(repeat-true-goto-0 state-1 state-1 row-2)

(eval-cond-current-content-0 a state-1 row-2)

(repeat-false-process-b-0 state-1 row-2)

(repeat-false-goto-0 state-1 state-2 row-2)

(repeat-end-0-0-2 row-1 row-2)

(repeat-true-goto-0 state-1 state-1 row-1)

(eval-cond-current-content-0 a state-1 row-1)

(repeat-false-process-b-0 state-1 row-1)

(repeat-false-goto-0 state-1 state-2 row-1)

(repeat-end-0-0-2 row-0 row-1)

(repeat-true-goto-0 state-1 state-1 row-0)

(eval-cond-current-content-0 a state-1 row-0)

(repeat-false-process-b-0 state-1 row-0)

(repeat-false-goto-0 state-1 state-2 row-0)

(repeat-end-main-0-0-2)

Figure 9: Solution plan for the compiled domain and instance. The program-* actions define the
recursive FSC while repeat-* actions execute the programmed FSCs in the given input instance
that, in this case, represent the parsing of the aaaabbbb string.

795

Segovia-Aguas, Jiménez & Jonsson

References

Albore, A., Palacios, H., & Geffner, H. (2009). A translation-based approach to contingent
planning. In International Joint Conference on Artificial Intelligence.

Bäckström, C., Jonsson, A., & Jonsson, P. (2014). Automaton plans. Journal of Artificial
Intelligence Research, 51, 255–291.

Baier, J., & McIlraith, S. (2006). Planning with Temporally Extended Goals Using Heuristic
Search. In International Conference on Automated Planning and Scheduling.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al. (2001). The agile manifesto..

Bonet, B., Palacios, H., & Geffner, H. (2010). Automatic derivation of finite-state machines
for behavior control. In AAAI Conference on Artificial Intelligence.

Brooks, R. (1989). A robot that walks; emergent behaviours from a carefully evolved
network. Neural Computation, 1, 253–262.

Buckland, M. (2004). Programming Game AI by Example. Wordware Publishing, Inc.

Chen, Y., Huang, R., & Zhang, W. (2008). Fast planning by search in domain transition
graph.. In AAAI Conference on Artificial Intelligence, pp. 886–891.

Chentanez, N., Barto, A. G., & Singh, S. P. (2005). Intrinsically motivated reinforcement
learning. In Advances in neural information processing systems, pp. 1281–1288.

Cresswell, S. N., McCluskey, T. L., & West, M. M. (2013). Acquiring planning domain
models using locm. The Knowledge Engineering Review, 28 (2), 195–213.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Research, 13, 227–303.

Finkbeiner, B., & Schewe, S. (2013). Bounded synthesis. International Journal on Software
Tools for Technology Transfer, 15 (5-6), 519–539.

Helmert, M. (2006). The Fast Downward Planning System. Journal of Artificial Intelligence
Research, 26, 191–246.

Hickmott, S., Rintanen, J., Thiébaux, S., & White, L. (2007). Planning via Petri Net
Unfolding. In International Joint Conference on Artificial Intelligence, pp. 1904–1911.

Hu, Y., & De Giacomo, G. (2013). A generic technique for synthesizing bounded finite-state
controllers. In International Conference on Automated Planning and Scheduling.

Hu, Y., & Levesque, H. J. (2011). A correctness result for reasoning about one-dimensional
planning problems. In International Joint Conference on Artificial Intelligence, pp.
2638–2643.

Jiménez, S., & Jonsson, A. (2015). Computing Plans with Control Flow and Procedures
Using a Classical Planner. In International Symposium on Combinatorial Search, pp.
62–69.

Lipovetzky, N., & Geffner, H. (2017). Best-first width search: Exploration and exploitation
in classical planning. In AAAI Conference on Artificial Intelligence.

796

Hierarchical Finite State Controllers

Lotinac, D., Segovia-Aguas, J., Jiménez, S., & Jonsson, A. (2016). Automatic generation of
high-level state features for generalized planning. In International Joint Conference
on Artificial Intelligence.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., &
Wilkins, D. (1998). PDDL - The Planning Domain Definition Language. Tech. rep.,
Yale Center for Computational Vision and Control.

Palacios, H., & Geffner, H. (2009). Compiling uncertainty away in conformant planning
problems with bounded width. Journal of Artificial Intelligence Research, 35, 623–
675.

Parr, R., & Russell, S. J. (1998). Reinforcement learning with hierarchies of machines. In
Advances in neural information processing systems, pp. 1043–1049.

Richter, S., & Westphal, M. (2010). The LAMA Planner: Guiding Cost-Based Anytime
Planning with Landmarks. Journal of Artificial Intelligence Research, 39, 127–177.

Röger, G., Pommerening, F., & Helmert, M. (2014). Optimal planning in the presence of
conditional effects: Extending lm-cut with context-splitting. In European Conference
on Artificial Intelligence, pp. 765–770.

Segovia-Aguas, J., Jiménez, S., & Jonsson, A. (2016a). Generalized planning with procedural
domain control knowledge. In International Conference on Automated Planning and
Scheduling.

Segovia-Aguas, J., Jiménez, S., & Jonsson, A. (2016b). Hierarchical finite state controllers
for generalized planning. In International Joint Conference on Artificial Intelligence.

Segovia-Aguas, J., Jiménez, S., & Jonsson, A. (2017a). Generating context-free grammars
using classical planning. In International Joint Conference on Artificial Intelligence.

Segovia-Aguas, J., Jiménez, S., & Jonsson, A. (2017b). Unsupervised classification of plan-
ning instances. In International Conference on Automated Planning and Scheduling.

Shavlik, I. W. (1990). Acquiring recursive and iterative concepts with explanation-based
learning. Machine Learning, 5 (1), 39–70.

Srivastava, S., Immerman, N., Zilberstein, S., & Zhang, T. (2011). Directed search for
generalized plans using classical planners. In International Conference on Automated
Planning and Scheduling.

Toropila, D., & Barták, R. (2010). Using Finite-State Automata to Model and Solve Plan-
ning Problems. In Italian AI Symposium on Artificial Intelligence (AI*IA), pp. 183–
189.

Vallati, M., Chrpa, L., Grzes, M., McCluskey, T. L., Roberts, M., & Sanner, S. (2015). The
2014 international planning competition: Progress and trends. AI Magazine, 36 (3),
90–98.

797

