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Abstract

Answer Set Programming (ASP) is a well-known declarative problem solving approach based
on nonmonotonic logic programs, which has been successfully applied to a wide range of appli-
cations in artificial intelligence and beyond. To address the needs of modern applications, HEX-
programs were introduced as an extension of ASP with external atoms for accessing information
outside programs via an API style bi-directional interface mechanism. To evaluate such programs,
conflict-driving learning algorithms for SAT and ASP solving have been extended in order to cap-
ture the semantics of external atoms. However, a drawback of the state-of-the-art approach is that
external atoms are only evaluated under complete assignments (i.e., input to the external source)
while in practice, their values often can be determined already based on partial assignments alone
(i.e., from incomplete input to the external source). This prevents early backtracking in case of
conflicts, and hinders more efficient evaluation of HEX-programs. We thus extend the notion of
external atoms to allow for three-valued evaluation under partial assignments, while the two-valued
semantics of the overall HEX-formalism remains unchanged. This paves the way for three enhan-
cements: first, to evaluate external sources at any point during model search, which can trigger
learning knowledge about the source behavior and/or early backtracking in the spirit of theory pro-
pagation in SAT modulo theories (SMT). Second, to optimize the knowledge learned in terms of
so-called nogoods, which roughly speaking are impossible input-output configurations. Shrinking
nogoods to their relevant input part leads to more effective search space pruning. And third, to make
a necessary minimality check of candidate answer sets more efficient by exploiting early external
evaluation calls. As this check usually accounts for a large share of the total runtime, optimization
is here particularly important. We further present an experimental evaluation of an implementation
of a novel HEX-algorithm that incorporates these enhancements using a benchmark suite. Our re-
sults demonstrate a clear efficiency gain over the state-of-the-art HEX-solver for the benchmarks,
and provide insights regarding the most effective combinations of solver configurations.

1. Introduction

Answer Set Programming (ASP) is a well-known declarative programming approach based on the
stable-model semantics (Gelfond & Lifschitz, 1991). Thanks to efficient and expressive systems
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like CLASP (Gebser, Kaufmann, Kaminski, Ostrowski, Schaub, & Schneider, 2011)1, SMODELS (Si-
mons, Niemelä, & Soininen, 2002)2, DLV (Leone, Pfeifer, Faber, Eiter, Gottlob, Perri, & Scarcello,
2006)3, and WASP (Alviano, Dodaro, Leone, & Ricca, 2015a)4, it has been successfully applied to
a wide range of applications in artificial intelligence and beyond (Brewka, Eiter, & Truszczynski,
2011; Erdem, Gelfond, & Leone, 2016). In a nutshell, a problem at hand is represented by a set of
rules (an ASP-program) such that its models, called answer sets, encode the solutions to the pro-
blem; an answer set solver is used to compute models, from which the solutions are then extracted.
The approach is a relative of SAT solving, but in contrast, starts from a relational language where
variables range over a (finite) set of constants, which allows for more compact formalization than
in propositional logic. Furthermore, the support of negation as failure makes ASP inherently non-
monotonic, which allows one for instance to easily express transitive closure. Finally, a number
of language extensions that include, among others, optimization constructs, aggregates, disjuncti-
ons, and choice rules, cf. Gebser and Schaub (2016), have turned ASP into a very expressive and
powerful problem solving tool.

HEX-programs (Eiter, Kaminski, Redl, Schüller, & Weinzierl, 2017) are an extension of ASP-
programs aimed at the integration of heterogeneous external information sources, such as XM-
L/RDF data bases, SAT solvers, route planners etc. So-called external atoms can be used in rules,
and provide a bidirectional interface between the logic program and the external sources in an API
style manner. To this end, an external atom passes information from the program, given by predi-
cates and constants, to an external source, which returns the output values for the respective input;
the atom states an input-output relationship, which evaluates to either true or false wrt. each po-
tential output value. For example, an external atom &synonym[car ](X) might find synonyms X
of car , e.g. automobile, bus , motocar etc., by accessing a thesaurus such as the one of Merriam-
Webster (Merriam-Webster Website, 2018); that is, e.g. &synonym[car ](automobile) evaluates to
true. As seen from this example, external sources can be of non-logical nature, and without par-
ticular assumption about how the external source is evaluated. This is facilitated by an abstract
modeling of external atoms that can exhibit nonmonotonic behavior, be used in recursive and cyclic
definitions, and introduce new constants which do not appear in the original program (known as
value invention). This rich expressiveness empowers HEX-programs to subsume many other ASP
extensions such as programs with (nonmonotonic) aggregates (Alviano, Faber, & Gebser, 2015b),
constraint ASP (Ostrowski & Schaub, 2012), and DL-programs (Eiter, Lukasiewicz, Schindlauer,
& Tompits, 2004), to mention a few; furthermore, the versatility and genericity of external atoms
has been exploited for different purposes and application domains (cf. Erdem, Gelfond, & Leone,
2016; Eiter, Kaminski, Redl, Schüller, & Weinzierl, 2017).

Efficient evaluation of HEX-programs is a challenging issue, and several methods and techni-
ques have been developed to this end. Current evaluation algorithms for (ground) HEX build on
existing ASP solvers (in particular, on CLASP). Roughly speaking, they first compute a complete
truth-assignment by guessing the truth values of all external atoms and evaluating an accordingly
rewritten program using a solver for ordinary ASP-programs. Only when the assignment is com-
plete, the correctness of the guess can be verified by calls to the external sources; if this succeeds,
an additional check is required to establish foundedness (i.e., minimality) of the candidate answer

1. http://potassco.sourceforge.net
2. http://www.tcs.hut.fi/Software/smodels
3. http://www.dlvsystem.com
4. https://github.com/alviano/wasp
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set. This basic approach has been enhanced with conflict-driven learning techniques, which learn
parts of the external source semantics while the search space is traversed in order to prevent that
wrong guesses reoccur (Eiter, Fink, Krennwallner, & Redl, 2012). Moreover, advanced techniques
for minimality checking have been developed to boost efficiency (Eiter, Fink, Krennwallner, Redl,
& Schüller, 2014a).

Despite these improvements, the evaluation of external atoms over complete assignments is an
obstacle to good performance in general. This can be mitigated by launching evaluation when the
input to an external atom is complete, rather than the whole assignment to all predicates. Howe-
ver, even then this late evaluation does not yield much information to prune the search space and
to guide the search algorithm effectively. Intuitively, evaluating external sources under yet partial
assignments (i.e., assignments in which only some input atoms are set to true or false, while ot-
hers remain unassigned) may in some cases allow to decide the eventual truth value of an external
atom, regardless of how the assignment will be completed. For example, suppose an external atom
&planar [node, edge]() interfaces an external source for checking whether a graph whose nodes
and edges are captured by the unary predicate node and the binary predicate edge, respectively, is
a planar graph. If a rule edge(X,Y ) ∨ not edge(X) ← connected(X,Y ) guesses the edges of a
graph from a pool of connections, the external checker might detect non-planarity even if the guess
is not yet complete (i.e., some edges are missing). Early external evaluation has the potential for
significant performance gains, as wrong guesses may be detected early on or avoided entirely. In
this way, the external sources can guide the answer set search proactively.

This idea is in the spirit of theory propagation in SAT modulo theories (SMT) (Barrett, Se-
bastiani, Seshia, & Tinelli, 2009). However, adopting evaluations under partial assignments for
HEX-programs is non-trivial, because – unlike in SMT, which considers only fixed theories – exter-
nal sources are largely black boxes, without much information about their structure (as in case of
privacy and data hiding, or of a wrapped web service) let alone a propagation machinery available.
Moreover, their heterogeneity and (possibly) nonmonotonic nature, e.g. if the external source access
is to ASP engines or argumentation solvers, adds further conceptual and computational complexity.

In this paper, we address the issue of partial evaluation by extending external source access via
external atoms from a Boolean semantics, which is defined only under complete assignments, to a
three-valued evaluation semantics that is defined under partial assignments. This extension is fur-
nished with novel evaluation techniques to achieve the main goal of efficiency improvements. In
particular, learning about the behavior of external sources during evaluation under partial assign-
ments allows us to acquire additional knowledge that aids in guiding the search, similar as theory
propagation in SMT; we will encode such knowledge as nogoods (Gebser, Kaufmann, & Schaub,
2012), i.e., sets of literals that must not be true at the same time. Moreover, the possibility of such
early evaluation further paves the way for identifying the part of the input that is relevant for the
final value of an external atom. This allows for minimizing the learned nogoods in order to obtain
a larger cover of the external source semantics. Importantly, the semantics of the overall forma-
lism remains unchanged, i.e., the three-valued semantics of external sources is only exploited for
performance improvements during the search, while the final answer sets are still two-valued.

1.1 Contributions

The main contributions of our work are briefly summarized as follows.
• We extend the notion of external atoms in two dimensions: first, that it can be evaluated under
partial assignments, which set each atom to either true, false, or unassigned. Second, that the output
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of the evaluation can be either true, false or unknown; this is because the truth value of the external
atom might be definitely known (true or false), or it is yet unknown under the current partial input.
However, the overall semantics of HEX-programs remains unchanged, i.e., answer sets still remain
two-valued. Thanks to backwards compatibility, we further show how existing (two-valued) external
atoms can be seamlessly integrated in our extended framework for three-valued evaluation.

• Based on this extension, we then present a novel evaluation algorithm which exploits three-valued
evaluation in external source access for early search space pruning in answer set search. At the heart
of this algorithm is learning additional knowledge about external sources, similar as done by theory
propagation in SMT solving. Owing to the generic nature of external atoms, this knowledge is
acquired by abstractly defined learning functions and represented by nogoods. The latter consist of
sets of literals over the input predicates of an external atom plus a designated literal that excludes
an evaluation result for matching inputs.

• As well-known, learning can be much more effective if structural properties of the underlying
domain are known (cf. Valiant, 1984). We thus present also concrete learning functions for exter-
nal sources with certain properties, among them monotonicity (relative to the input assignment).
Along with that, we devote particular attention to minimizing the nogoods learned, given the inter-
face for evaluation under partial assignments; as already mentioned, small (non-redundant) nogoods
are instrumental for pruning the search space of candidate answer sets effectively. However, each
minimization step causes computational costs, and external evaluation comes at a price. We mi-
tigate the minimization cost using several techniques: first, besides sequential (literal by literal)
minimization, we exploit the divide-and-conquer strategy that was presented by Junker (2004) for
conflict set minimization in constraint programming. Second, we develop simultaneous minimiza-
tion of multiple nogoods: an external source may return for a given input multiple output values
(e.g., &gas station[route](X) may return for a tour given in route all gas stations close by), and
the structural relationships of according nogoods can be exploited. Notably, simultaneous mini-
mization has not been considered in SMT. Third, we consider heuristics towards a good trade-off
between the efforts and benefits of evaluation calls and minimization steps.

• In further pushing the computation effort down, we also exploit the possibility for evaluation
under partial assignments for minimality checking of candidate answer sets. This is particularly
important as the minimality check accounts for a major share of the overall runtime, and usually
involves significantly more external evaluation calls than the search for candidates itself. In par-
ticular, we discuss how three-valued external evaluation can be interleaved with the search for an
unfounded set, which is a semantics-based characterization of minimality for answer sets (Leone,
Rullo, & Scarcello, 1997) that has been lifted to HEX-programs (Eiter et al., 2014a). Again, learning
from external source calls is used for guiding the search; notably, the nogoods learned can be pooled
with those in the main search, and thus speed up the latter.

• We present a prototype implementation of our approach in the DLVHEX system, based on the
grounder GRINGO and the solver CLASP as backends. Furthermore, we perform an experimental
evaluation of the new techniques on a rich benchmark suite that comprises problems of different
characteristics. It appears that each of them can yield significant performance gains, yet the picture
of their combination is (as expected) more complex and does not lend for a canonical way of how
to apply them; in particular, heuristics may lead to diverging (though explainable) behavior. In any
case, our experimental results show a speedup of up to two orders of magnitude in performance (in
theory, even exponential gains are possible).
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Thus in conclusion, our results significantly advance the evaluation of ASP-programs with ex-
ternal source access, as formally available in HEX-programs, drawing from and extending similar
ideas in SMT solving. In turn, the idea of simultaneous minimization might be of interest for SMT
and related approaches as well. Our approach is further related to techniques that are used in con-
straint ASP solvers to minimize learned knowledge, such as those implemented in the CLINGCON

system (Ostrowski & Schaub, 2012). However, these techniques usually rely on a tailored integra-
tion of theory solvers crafted by experts, while the DLVHEX system branches out for a broad range
of heterogeneous source access and users, where the latter may have little or no prior knowledge
on solver construction. The interface-based HEX-approach makes it easier for them to harness per-
formance gains by the new learning techniques. In fact, as we show, nogood minimization and
theory-specific learning are closely related and thus, user-crafted optimizations in learning, in parti-
cular finding small nogoods, can be shifted to nogood minimization by the system for three-valued
external evaluation under partial assignments. Full backward compatibility with existing two-valued
source descriptions makes exploiting the new features an option but not a requirement for the use of
DLVHEX on legacy and new applications.

1.2 Organisation

The rest of this article is structured as follows. After necessary preliminaries in Section 2, we pro-
ceed to present in Section 3 the extension of external evaluations under partial assignments, and an
algorithm that exploits this in answer set search. The subsequent Section 4 considers nogood lear-
ning functions, while Section 5 is devoted to nogood minimization and its relationship to external
learning. In Section 6, the usage of evaluation under partial assignments for minimality checking is
explored. Section 7 contains a description of our implementation and the experimental evaluation.
The final Section 8 considers related work and concludes the article with a discussion of further
issues and future work.

A preliminary version of this work was presented at IJCAI 2016 (Eiter, Kaminski, Redl, &
Weinzierl, 2016). The additions in this paper comprise the extension of the techniques to the un-
founded set check (Section 6), the introduction of an additional nogood minimization algorithm, a
more exhaustive discussion of the theory, additional experiments, and formal proofs of the results.

2. Preliminaries

In this section, we start by introducing the necessary background regarding ASP and HEX-programs,
which subsequent sections will build on. Our vocabulary consists of a set P of predicates, where
each predicate has a fixed arity, a set C of constants, and a set X of variables, whereby the sets are
mutually disjoint.

An atom is of the form p(t1, . . . , t`), abbreviated as p(~t), with predicate p ∈ P of arity ` and
terms t1, . . . , t` ∈ C ∪ X . For a vector ~t = t1, . . . , t` we write t ∈ ~t if t = ti for some 1 ≤ i ≤ `.

An answer set program P is a finite set of (disjunctive) rules r of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . ,not bn., (1)

where all ai, 1 ≤ i ≤ k, and bj , 1 ≤ j ≤ n, are atoms. The head of a rule r isH(r) = {a1, . . . , ak},
its body is B(r) = {b1, . . . , bm, not bm+1, . . . ,not bn}, and its positive resp. negative body is
B+(r) = {b1, . . . , bm} resp. B−(r) = {bm+1, . . . , bn}. A rule r is called a (disjunctive) fact if
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B(r) = ∅, and a constraint if H(r) = ∅. As usual, an atom (rule, program etc) is ground, if no
variable occurs in it.

For a program P we let X(P ) =
⋃
r∈P X(r) for each X ∈ {H,B,B+, B−} to denote the sets

of literals that occur in rule heads (H) and rule bodies (B), and the sets of atoms that occur in the
positive (B+) and negative rule bodies (B−), respectively. The intuitive meaning of the rule (1) is
that if all assertions in the rule body hold, then at least one atom in the head has to hold as well.

In the context of ASP, interpretations are usually Herbrand interpretations. In this setting,
programs with variables can be reduced to programs without variables, by instantiating the variables
in rules in all possible ways with constants from C. This process, which is known as grounding, is
also adopted commonly by solvers in practice, where in addition optimization steps are made in
order to avoid useless rules. Suitable syntactic and/or semantic safety conditions guarantee that a
finite number of rule instances suffices for answer set computation. After grounding, in a second
solving phase the answer sets of the program are then computed. As we focus in this paper only
on the solving phase, we can assume in the sequel that the vocabulary (and in particular the set of
constant symbols) is finite, and that the programs to consider are ground; in the examples, rules with
variables stand for all ground instances with respect to this set of constants.

Herbrand interpretations are usually represented by the sets of ground atoms that are true in
them. However, when discussing the evaluation of answer set programs, it is often more convenient
to explicitly represent which atoms are assigned to true resp. false. Following Drescher, Gebser,
Grote, Kaufmann, König, Ostrowski, and Schaub (2008), a (signed) literal is either a positive or a
negated ground atom Ta or Fa, where a is a ground atom. For σ ∈ {T,F}, we let σ = T if σ = F
and σ = F if σ = T, and for a literal L = σa, we let L = σa. A complete assignment over a (finite)
set A of atoms is a set A of literals such that for all a ∈ A, Ta ∈ A iff Fa /∈ A; here Ta ∈ A
expresses that a is true and Fa ∈ A that a is false.5

Let A be a complete assignment. Then A satisfies a ground atom a, denoted A |= a, if Ta ∈ A,
and it does not satisfy it, denoted A 6|= a, if Fa ∈ A. Furthermore, A satisfies a default-negated
atom not a, denoted A |= not a, if A 6|= a, and it does not satisfy it, denoted A 6|= not a, if A |= a.
A ground rule r is satisfied by A, denoted A |= r, if either A |= a for some a ∈ H(r) or A 6|= a
for some a ∈ B(r). A ground answer set program P is satisfied by A, denoted A |= P , if A |= r
for all r ∈ P .

Answer set programs are interpreted under the answer set semantics based on the well-known
GL-reduct by Gelfond and Lifschitz (1991). Given a ground answer set program P and a complete
assignment A, the GL-reduct of P wrt. A is the program

PA = {H(r)← B+(r) | r ∈ P,A 6|= b for all b ∈ B−(r)}.

For complete assignments A1 and A2, let A1 ≤ A2 denote that {Ta | Ta ∈ A1} ⊆ {Ta |
Ta ∈ A2} holds. A complete assignment A is an answer set of an answer set program P if A is a
≤-minimal model of PA. The general idea of ASP is to encode a problem by means of an answer
set program and to extract corresponding solutions from the respective answer sets.

Example 1. Consider the answer set program P = { a ← not b.; b ← not a.; ← a. } and the
complete assignment A = {Fa,Fb}. It is easy to see that A is not a ≤-minimal model of PA =

5. Here, complete refers to the fact that the complete assignment defines for each atom a ∈ A whether it is true or
false. We explicitly say complete in this section in order to distinguish it from the more general concept of partial
assignments we introduce later.
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{ a ← .; b ← .; ← a. } and thus, not an answer set of P . On the other hand, A′ = {Fa,Tb} is a
≤-minimal model of PA′ = { b ← .; ← a. }, and it is the only answer set of P as {Ta,Fb} is not
an answer set due to the constraint “← a.”.

Sets of signed literals are also utilized to formulate constraints wrt. assignments, i.e. to specify
combinations of signed literals that are not permitted to be part of a complete assignment. A nogood
is a set {L1, . . . , Ln} of literals; and a complete assignment A is a solution to a nogood δ resp. a
set of nogoods ∆, if δ 6⊆ A resp. δ 6⊆ A holds for all δ ∈ ∆.

Example 2. The complete assignment A = {Tp(a),Tp(b),Tp(c)} is a solution to the nogood
{Tp(a),Fp(b)}, but not to the nogood {Tp(a),Tp(b)}.

Nogoods correspond to clauses as known from SAT solving, and are utilized by ASP-solvers
that are based on Conflict-Driven Nogood Learning (CDNL) (Drescher et al., 2008) for representing
the input program and for guiding the search by learning additional nogoods from conflicts.

2.1 HEX-Programs

We briefly recall HEX-programs, which generalize (disjunctive) logic programs under the answer
set semantics by integrating external sources of computation; for more details and background, cf.
Eiter et al. (2005b, 2014a).

As in the case of answer set programs, we can restrict our theoretical investigation of HEX-
programs to ground programs because safety conditions allow for applying an advanced grounding
algorithm to compute finite groundings (cf. Eiter, Fink, Krennwallner, & Redl, 2016). However, our
examples will also use variables as shortcuts for instantiations with all possible values.

2.1.1 SYNTAX

HEX-programs extend ordinary ASP-programs by external atoms, which enable a bidirectional inte-
raction between a program and external sources of computation. In addition to the sets C, P , and X
introduced above, we assume a further finite set G of external predicate symbols in our vocabulary,
which is disjoint from C, P and X . External predicates in G are prefixed with ‘&’ to distinguish
them from ordinary predicate symbols. Again, due to our restriction of the formal discussion to
ground programs it is sufficient to consider only a finite vocabulary.

Informally, external atoms are associated with input and output values, where constants and the
extensions of predicates in the input are provided to an external source which computes whether the
respective output values are correct. More formally, a ground external atom is of the form &g [~p](~c),
where ~p = p1, . . . , pk is a list of input parameters (predicate names or object constants), called input
list, and ~c = c1, . . . , cl are constant output terms. More generally, a non-ground external atom is of
the form &g [~Y ]( ~X), where ~Y = Y1, . . . , Yk is a list of input terms (variables, predicate names or
object constants), and ~X = X1, . . . , Xl are output terms, i.e, variables or object constants.

In contrast to answer set programs, in HEX-programs external atoms can be used in the bodies
of rules to specify dependencies on external sources. Formally:

Definition 1. A HEX-program Π consists of rules r of the form (1), where each ai, 1 ≤ i ≤ k, is
an ordinary atom and each bj , 1 ≤ i ≤ n, is either an ordinary atom or an external atom.

In the following, we call a program ordinary if it does not contain external atoms, i.e., if it is
a standard ASP-program; as usual, an (ordinary or external) atom, rule, program etc. is ground, if
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it is variable-free. The head H(r), the body B(r), the positive body B+(r) and the negative body
B−(r) of a rule r in a HEX-program are defined as before for ordinary programs. We let B+

o (r)
resp. B−o (r) be the set of ordinary atoms in B+(r) resp. B−(r). Moreover, we denote by A(Π) the
set of ordinary atoms that occur in a HEX-program Π.

Like ordinary ASP programs, HEX-programs can be reduced by grounding to variable-free pro-
grams, where in a non-ground external atom &g [~Y ]( ~X) each variable Yi in ~Y = Y1, . . . , Yk is
instantiated with a predicate name or an object constant, and each variable Xi in ~X = Y1, . . . , Xl

with an object constant. Solvers for HEX-programs do this in a grounding phase, which is followed
by a solving phase. As we focus here on solving, we assume in the sequel that the HEX-program for
evaluation are ground and over a finite alphabet. 6

According to Definition 1, the usage of external atoms is restricted to the rule bodies in a HEX-
program as they can only be queried for information. A common use case of external atoms consists
in eliminating answer sets based on external constraints as illustrated by the following example.

Example 3. Consider the HEX-program Π that consists of the following facts and rules:

node(a). node(b).

edge(X,Y ) ∨ n edge(X,Y )← node(X),node(Y ), X 6= Y.

← &geq [edge, 2]().

Informally, the rule on the second line guesses edges (arcs) of a self-loop-free directed graph whose
vertices are given as facts on the first line. The constraint on the third line uses an external atom
&geq [edge, 2]() to check whether the number of edges is at most one, by eliminating the guess if at
least two edges exist.

2.1.2 SEMANTICS

Next, we discuss the semantics of ground HEX-programs Π, which generalizes the answer set se-
mantics of Gelfond and Lifschitz (1991). In the following, if not stated otherwise, assignments are
over the setA =A(Π) of ordinary atoms that occur in the ground HEX-program Π at hand. Further-
more, we let AP,C be the set of all possible complete assignments over predicatesP and constants C;
in the following we will drop P, C from the index and denote this set just as A since the vocabulary
is assumed to be fixed.

The semantics of a ground external atom &g [~p](~c) wrt. a complete assignment A is given by the
value of a 1+k+l-ary decidable two-valued (Boolean) oracle function

f&g : A×(P ∪ C)k×Cl → {T,F}

that is defined for all possible complete assignments A ∈ A, and tuples ~p and ~c, where k and l are
the lengths of ~p and ~c, respectively. Thus, &g [~p](~c) is true relative to A, denoted A |= &g [~p](~c),
if f&g(A, ~p,~c) = T and false, denoted A 6|= &g [~p](~c), otherwise. Importantly, external oracles
support value invention such that they can be true for output values that do not occur in a respective
(non-ground) program. However, all relevant constants are imported by available grounding al-
gorithms (Eiter, Fink, Krennwallner, & Redl, 2016) invoked during the grounding phase of HEX-
program evaluation. In practice, oracle functions are realized as solver-plugins, which are usually
implemented in C++ or Python.

6. More sophisticated evaluation interleaves grounding and solving, which we omit here for simplicity as it is irrelevant
for this work.
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While in general, the value of an external atom f&g(A, ~p,~c) may depend on any literal in A,
we assume in the following that its value depends only on literals over predicates that appear in ~p;
formally: f&g(A, ~p,~c) = f&g(A

′, ~p,~c) for all complete assignments A and A′ that assign the same
truth values to all atoms of the form p(~c′) where p ∈ ~p.

Satisfaction of ordinary rules and ASP-programs (Gelfond & Lifschitz, 1991) is then extended
to HEX-rules and HEX-programs in the obvious way by also taking the satisfaction of external atoms
wrt. a complete assignment A into account. The answer sets of a ground HEX-program Π are
then defined as follows. Let the FLP-reduct (Faber, Pfeifer, & Leone, 2011) of Π wrt. a complete
assignment A be the set fΠA = {r ∈ Π | A |= b, for all b ∈ B(r)} of all rules whose body is
satisfied by A. Then:

Definition 2. A complete assignment A is an answer set of a ground HEX-program Π, if A is a
≤-minimal model of fΠA.

For a given ground HEX-program Π we let AS(Π) denote the set of all answer sets of Π.
For ordinary ASP-programs (i.e., HEX-programs without external atoms), the above definition

of answer sets based on the FLP-reduct fΠA is equivalent to the original definition of answer sets
by Gelfond and Lifschitz (1991) based on the GL-reduct. However, for HEX-programs, the FLP-
reduct is more attractive than the GL-reduct as it prevents unintuitive answer sets involving cyclic
justifications. Furthermore, the stronger notion of well-justified answer set by Shen, Wang, Eiter,
Fink, Redl, Krennwallner, and Deng (2014) excludes any cyclic justification whatsoever, as the
whole answer must be obtained in a constructive process that involves classical provability.

We illustrate the notion of answer set in the case of HEX-programs on two simple examples.

Example 4 (Ex. 3 cont’d). The external atom in Example 3 has an associated oracle function
f&geq(A, p, n) defined as follows:

f&geq(A, p, n) =

{
T if |{p(x, y)| Tp(x, y) ∈ A}| ≥ n,
F otherwise.

The complete assignment A1 = {Tnode(a),Tnode(b),Fedge(a, a),Fedge(a, b),Fedge(b, a),
Fedge(b, b)} is an answer set of Π if we add Tn edge(c, c′) if Fedge(c, c′) ∈ A1, and we add
Fn edge(c, c′) if Tedge(c, c′) ∈ A1, where c, c′ ∈ {a, b}. On the other hand, the assignment
A2 = {Tnode(a), Tnode(b),Fedge(a, a), Tedge(a, b), Tedge(b, a), Fedge(b, b)} is not an ans-
wer set of Π for an analogous addition. As easily seen, Π has three answer sets that correspond to
the self-loop-free directed graphs on a,b with less than two edges.

Example 5. Consider as another example the program Π = {p ← &id [p]().}, where &id [p]() is
true iff p is true. Then Π has the answer set A1 = {Fp}; indeed A1 is a ≤-minimal model of the
reduct fΠA1 = ∅. We remark that using the traditional Gelfond-Lifschitz reduct, which had been
devised for ordinary ASP-programs by Gelfond and Lifschitz (1991), adapted to HEX-programs
instead of the FLP-reduct, would admit another answer set A2 = {Tp}; constructing the latter
would however involve cyclic justification, which is intuitively not acceptable.

2.1.3 EVALUATION

The basic evaluation procedure for ground HEX-programs uses a guess-and-check rewriting to ordi-
nary ASP (Eiter, Fink, Ianni, Krennwallner, Redl, & Schüller, 2016) and leverages available solvers
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such as CLASP (Gebser et al., 2011) for HEX-evaluation. At this, HEX-programs Π are transformed
to ordinary programs by replacing each external atom &g [~p](~c) in Π by an ordinary replacement
atom e&g[~p](~c), and by adding a rule e&g[~p](~c) ∨ ne&g[~p](~c)← . that represents a guess for the truth
value of the respective external atom. The answer sets of the resulting guessing program Π̂ are then
computed by an ASP solver. The assignment encoded by such an answer set may not satisfy Π, as
f&g may yield for &g [~p](~c) a value that is different from the guess for e&g[~p](~c). Thus, the answer
set is merely a model candidate; if a check against the external sources finds no discrepancy, it is a
compatible set. Formally:

Definition 3. A compatible set of a program Π is an answer set Â of the guessing program Π̂ such
that f&g(Â, ~p,~c) = T iff Te&g[~p](~c) ∈ Â for all external atoms &g [~p](~c) in Π.

Each answer set of Π is the projection A of a compatible set Â to the atoms A(Π) in Π, but not
vice versa. To discard the non-answer sets, the evaluation algorithm calls an FLP check which uses
unfounded sets to check minimality wrt. fΠA (Eiter et al., 2014a). This check constitutes a second
minimality check which intuitively is needed in addition to the usual check that ensures minimality
wrt. Π̂Â to prevent cyclic justifications involving external atoms.

Example 6 (Ex. 3 cont’d). For the program Π in Example 3, the guessing program Π̂ is as follows:

node(a). node(b).

edge(X,Y ) ∨ n edge(X,Y )← node(X),node(Y ), X 6= Y.

← e&geq[edge,2]().

e&geq[edge,2]() ∨ ne&geq[edge,2]()← .

The answer sets of Π̂ comprise the sets Â1 = A1 ∪ {Fe&geq[edge,2]()} where A1 = {Tnode(a),

Tnode(b),Fedge(a, a),Fedge(a, b),Fedge(b, a),Fedge(b, b)}, and Â2 = A2∪{Fe&geq[edge,2]()}
where A2 = {Tnode(a),Tnode(b), Fedge(a, a), Tedge(a, b),Tedge(b, a),Fedge(b, b)}. While
Â1 is a compatible set of Π̂, Â2 is not. Thus, the latter cannot give rise to some answer set of Π.
Regarding Â1, it is easy to see that A1 is a minimal model of the FLP-reduct fΠA1 = {node(a).;
node(b).; edge(a, b) ∨ n edge(a, b) ← node(a),node(b), a 6= b.; edge(b, a) ∨ n edge(b, a) ←
node(b),node(a), b 6= a.}. Hence, A1 is an answer set of Π.

Example 7 (Ex. 5 cont’d). Reconsider Π = { p ← &id [p](). } from Example 5. Then the guessing
program Π̂ = { p ← e&id [p]().; e&id [p] ∨ ne&id [p] ← . } has the answer sets Â1 = {Fp,Fe&id [p]}
and Â2 = {Tp,Te&id [p]}; as easily seen, both are compatible sets of Π̂. Here the projection A1 is
a ≤-minimal model of fΠA1 = ∅, and thus A1 is an answer set of Π̂; on the other hand, A2 not a
minimal model of fΠA2 = Π, and thus A2 is not an answer set of Π̂.

3. Extension to Partial Assignments

In this section, we start by generalizing complete assignments and oracle functions to partial assig-
nments, which provide a means for explicitly representing that some atom is yet unassigned. To this
end, we introduce signed literals Ua to represent that an atom a is yet unassigned in an assignment.
Also oracle functions may be extended to deal with unassigned input atoms and in turn, may also
evaluate to U to represent that the value of the corresponding external atom is yet unknown under
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the given input. This allows us, in the next step, to enhance the existing evaluation algorithm in
such a way that external sources are already evaluated early during search, which potentially allows
for earlier backtracking. We note that the extended concepts are only used by the algorithm during
solving, while the semantics of the formalism remains unchanged. That is, answer sets define the
truth values of all atoms, and are thus still two-valued.

We start with a formal definition of the required concepts:

Definition 4. A partial assignment over a set A of atoms is a set A of signed literals of the form
Ta, Fa and Ua such that for every a ∈ A it holds that |A ∩ {Ta,Fa,Ua}| = 1.

Then, a complete assignment as defined in Section 2 corresponds to the special case of a partial
assignment which contains no signed literal Ua. Since the rest of the paper will use the more
general concept of partial assignment only (with complete assignments as special case thereof), we
will drop ‘partial’ in the following and say only assignment.

To avoid the introduction of further symbols and heavy notation, we let AP,C denote the set of
all three-valued assignments over the given vocabulary from now on; as before we drop P, C from
the index since the vocabulary is fixed. Since we use only three-valued assignments in the remaining
part of the paper, this is unambiguous.

For assignments A,A′ we call A′ an extension of A, denoted A′ � A, if it holds that
A \ {Ua ∈ A | a ∈ A} ⊆ A′ (i.e., some unassigned atoms in A may be flipped to true resp. false).
Oracle functions are then extended as follows in order to define the semantics of an external atom
&g [~p](~c) wrt. partial assignments.

Definition 5. A three-valued oracle function f&g for a ground external atom &g [~p](~c) with k input
and l output parameters is a 1+k+l-ary function

f&g : A×(P ∪ C)k×Cl → {T,F,U},

where A is the set of all possible assignments A, such that f&g(A, ~p,~c) 6= U whenever A is a
complete assignment.

Thus, &g [~p](~c) is true, false or unassigned relative to A, if the value of f&g(A, ~p,~c) is T, F
or U, respectively. As in the case of two-valued oracle functions, we assume that f&g(A, ~p,~c) =
f&g(A

′, ~p,~c) for all partial assignments A and A′ that assign the same truth values to all atoms of
the form p(~c′) where p ∈ ~p.

We require that once the output of f&g is assigned to true or false for some A, the value stays
the same for all extensions.

Definition 6. A three-valued oracle function f&g is assignment-monotonic if f&g(A, ~p,~c) = X ,
X ∈ {T,F}, implies f&g(A

′, ~p,~c) = X for all assignments A′ � A.

Assignment-monotonicity guarantees that no compatible set is lost when querying external sour-
ces on partial assignments.

Example 8 (Ex. 3 cont’d). Reconsider the program Π in Example 3 and recall that the (two-valued)
oracle function f&geq(A, edge, 2) for a complete assignment A evaluates to true if A contains at
least two distinct literals Tedge(x, y), and to false otherwise.
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We can extend the oracle to partial assignments A′ by defining an assignment-monotonic three-
valued oracle function f ′&geq(A′, p, n) as follows:

f ′&geq(A′, p, n) =


T if |{p(x, y) | Tp(x, y) ∈ A′}| ≥ n,
U if |{p(x, y) | Tp(x, y) ∈ A′}| < n and

|{p(x, y) | Tp(x, y) ∈ A′ or Up(x, y) ∈ A′}| ≥ n,
F otherwise.

s.t. &geq [edge, 2]() can also be evaluated under partial assignments, where f ′&geq(A′, edge, 2)
yields true if |{edge(x, y) | Tedge(x, y) ∈ A′}| ≥ 2, unassigned if |{edge(x, y) | Tedge(x, y) ∈
A′}| < 2 and |{edge(x, y) | Tedge(x, y) ∈ A′ or Uedge(x, y) ∈ A′}| ≥ 2, and false otherwise.

Note that the definition of answer sets carries immediately over to programs with external atoms
that use three-valued oracle functions. This is because answer sets are complete assignments and
thus, the oracle function call for an external atom &g [~p](~c) evaluates to either T or F. It is therefore
not necessary to extend the definitions of satisfaction of ordinary atoms, rules, and programs, and
the definition of answer sets, to partial assignments.

A two-valued oracle function, however, cannot handle partial assignments and is thus not a
special case of a three-valued oracle function that can be passed to an algorithm expecting the latter.
However, we can always obtain a three-valued from a two-valued oracle function such that answer
sets remain invariant.

Proposition 1. For every HEX-program Π and external predicate &g defined by a two-valued oracle
function, one can redefine &g by an assignment-monotonic three-valued oracle function without
changing the answer sets of Π.

Intuitively, we construct a three-valued oracle function which coincides with the two-valued
one for complete assignments, and returns U otherwise. Hence, Proposition 1 allows us to “wrap”
two-valued oracle functions for use by our algorithms below; in the implementation this is the basis
for backwards compatibility with existing external sources.

We exploit partial assignments by extending previous evaluation algorithms. In the spirit of
theory propagation in SMT solvers (Barrett et al., 2009), we use external theory learning (ETL). It
is related to external behavior learning (EBL), which encodes observed output of external sources
as nogoods (Eiter et al., 2012), but our extension works over partial assignments such that external
sources may drive early propagation of truth values implied by the current partial assignment.

As for EBL, we can associate with each external source a learning-function Λ that yields a set
of nogoods Λ(&g [~p],A) learned from the evaluation of &g [~p] under an assignment A. Learned
nogoods have to be correct, i.e., they must not eliminate compatible sets. Formally, a nogood δ is
correct wrt. a program Π, if all compatible sets of Π are solutions to δ.

We extend learning functions for partial assignments as follows. Let E(Π) contain all expressi-
ons &g [~p] (called external predicate instances) that occur in Π, and let L(Π̂) = {Ta,Fa,Ua | a ∈
A(Π̂)} denote the set of all signed literals on atoms that occur in Π̂.

Definition 7. A (three-valued) learning function for a HEX-program Π is a mapping Λ: E(Π) ×
A → 22L(Π̂)

that assigns each external predicate instance &g [~p] and partial assignment A a set
Λ(&g [~p],A) of nogoods. We call Λ correct for Π, if for all arguments &g [~p] ∈ E and A ∈ A, every
nogood δ ∈ Λ(&g [~p],A) is correct for Π.
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Algorithm 1: HEX-CDNL
Input: A HEX-program Π
Output: An answer set of Π if one exists, and ⊥ otherwise

Let Π̂ be the guessing program of Π

Â← {Ua | a ∈ A(Π)} // all atoms unassigned
∇ ← ∅ // set of dynamic nogoods
dl ← 0 // decision level
while true do

(a)(Â,∇)← Propagation(Π̂,∇, Â)

(b)if some nogood δ violated by Â then
if dl = 0 then return ⊥
analyze conflict, add learned nogood to ∇, set dl to backjump level

(c)else if Â is complete then
A← Â ∩

{
Ta,Fa | a ∈ A(Π̂)

}
(d)if there is an unfounded set U of Π̂ wrt. Â s.t. U ∩ {Ta | Ta ∈ Â} 6= ∅ then

construct violated nogood for U and add it to ∇
analyze conflict, add learned nogood to ∇, set dl to backjump level

else if Â is not compatible for Π̂ or A is not a minimal model of fΠA then
∇ ← ∇∪ {Â}

else
return A

(e)else if heuristics evaluates &g [~y] and Λ(&g [~y], Â) 6⊆ ∇ then
∇ ← ∇∪ Λ(&g [~y], Â)

(f)else
Guess σa ∈ {Ta,Fa} for some atom a with Ua ∈ Â
dl ← dl + 1

Â← (Â \ {Ua}) ∪ {σa}

Throughout the rest, we assume that learning functions are always correct for the programs at
hand.

We now present a procedure for computing an answer set of a HEX-program, shown in Algo-
rithm 1 and illustrated by Figure 1. To compute multiple answer sets, we can naively add previous
answer sets as constraints and call the algorithm again (cf. Gebser, Kaufmann, Neumann, & Schaub,
2007) for more elaborated techniques. The basic structure of Algorithm 1 resembles an ordinary
ASP solver, but has additional checks in Part (c) and external calls to learn further nogoods in
Part (e), which is based on partial assignments. Without the extensions, it computes an answer set
Â of the guessing program Π̂ and returns the projection of Â to the atoms in Π (cf. Drescher et al.,
2008). To this end, it starts from a void assignment and performs unit propagation in Part (a) to
derive further truth values. Part (b) backtracks and learns nogoods from conflicts. Part (c) checks
compatibility and minimality of the model candidate. To this end, the (more efficient) check in the
if-block checks minimality from the perspective of an ordinary ASP-solver without respecting the
semantics of external sources (i.e., minimality of Â wrt. Π̂); the minimality check is realized using
so-called unfounded sets (Eiter et al., 2014a), which are atoms that support each other only cycli-
cally. We will introduce them formally and discuss them in detail in Section 6. If this check fails,
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Figure 1: Illustration of the workflow of Algorithm 1.

the algorithm learns a nogood and backtracks. Only if this check is passed, the elsif-block in Part (d)
checks compatibility and minimality under consideration of external sources (i.e., minimality of A
wrt. Π), cf. Definition 2; if this check is also passed, an answer set has been found. Finally, without
Part (e), the algorithm makes a guess in Part (f) if no further truth values can be derived and the
assignment is incomplete.

The additional calls to external sources and nogood learning in Part (e) are not mandatory but
prune the search space; they may eliminate assignments violating known behavior of external sour-
ces already early in the search, while the correctness of the learning function Λ guarantees that no
compatible set of Π̂ (and hence no answer set of Π) is eliminated. Notably and in contrast to previ-
ous algorithms (Eiter et al., 2012), external atoms are evaluated under partial assignments and use a
three-valued oracle function.

We can show that this algorithm is sound and complete:

Theorem 1 (Soundness and Completeness of Algorithm 1). If Algorithm 1 returns for an input pro-
gram Π (i) an assignment A, then A is an answer set of Π; (ii) the symbol⊥, then Π is inconsistent.

Algorithm HEX-CDNL describes the schematic backbone of concrete incarnations that are obtai-
ned by choosing particular learning functions and heuristics for driving the learning process under
partial assignment evaluation. Furthermore, different procedures for the unfounded set check might
be used; we shall deal with these aspects in the next sections.
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4. Nogood Learning with Partial Assignments

In this section, we discuss the generation of nogoods which partially encode the semantics of ex-
ternal atoms. In contrast to previous work on external behavior learning (EBL), this generation
however will work for partial assignments in general, and not only for complete assignments. When
certain ground instances of an external atom can already be decided, nogoods can be learned early
on, and incompatible assignments identified; thus, they can guide the solver. Intuitively, nogoods
learned based on partial assignments are preferable as they are usually smaller and cut incomplete
assignments.

4.1 Three-valued Learning Functions

Let us first assume that we have no further knowledge about external sources and can only observe
their (partial) output under a given (possibly partial) input. We introduce a three-valued learning
function for the general case, which is a lifting of the respective two-valued learning function defined
by Eiter et al. (2012).

Definition 8. An input-output (io-)nogood is any nogood of the form

N = {σ1a1, . . . , σnan} ∪ {σn+1e&g[~p](~c)} where σ1, . . . , σn+1 ∈ {T,F};

we let NI = {σ1a1, . . . , σnan} be the literals over ordinary atoms (called the input part), NO =
{σn+1e&g[~p](~c)} be the replacement atom (called the output part) of N , and σ(NO) = σn+1. We
call N faithful, if f&e(A, ~p,~c) = σ(NO) for all partial assignments A ⊇ NI , i.e., it resembles the
semantics of the external source.

We note the following property.

Proposition 2. If N is a faithful io-nogood such that NO = {σn+1e&g[~p](~c)}, then N is correct wrt.
all programs Π that use e&g[~p](~c).

As for the converse, correct nogoods wrt. a given program Π may be io-nogoods that are not
faithful, or simply even no io-nogoods. In particular, for inconsistent ordinary ASP-programs any
io-nogood is trivially correct as there are no compatible sets which could be wrongly eliminated,
but e.g. the empty nogood is not an io-nogood.

When the oracle of an external atom is evaluated, the solver can create a new nogood for the
observed input-output relationship. That is, evaluating &g [~p] for a partial assignment A, the solver
learns, given all true and false literals of input predicates, whether the output contains ~c, where
f&g(A, ~p,~c) 6= U. Note that, since we only consider ground HEX-programs Π, for any partial as-
signment A and input list ~p there can only be finitely many tuples ~c where f&g(A, ~p,~c) = F such
that ~c occurs in a given program Π. Hence, in general we only need to consider a fixed number of
potential output tuples, which we call a scope S of output tuples. In general, the scope may contain
all output tuples over the given finite vocabulary.

Definition 9. The learning function for an external predicate with input parameters &g [~p] under
partial assignment A and scope S is

Λu(&g [~p],A) =
{
A′ ∪ {σe&g[~p](~c)}|f&g(A, ~p,~c) =σ 6= U,~c ∈ S

}
,

where A′ = {σ′p(~c′) ∈ A | p ∈ ~p, σ′ 6= U} is the relevant part of the external atom input.
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Each respective nogood is an io-nogood by construction and as we have that the oracle is
assignment-monotonic, also faithful. Hence:

Proposition 3. Let &g [~p](·) be an external atom in a HEX-program Π. Then for all assignments A,
the nogoods Λu(&g [~p],A) in Definition 9 are correct wrt. Π.

Example 9 (Ex. 3 cont’d). Assume we are given for the graph guessing program Π in Example 3
the partial assignment A = {Tnode(a), Tnode(b), Fedge(a, b), Uedge(b, a), Tn edge(a, b),
Un edge(b, a)}. Then the learning function Λu(&geq [edge, 2],A) yields the single io-nogood
{Fedge(a, b), Te&geq[edge,2]()}, which is indeed faithful. On the other side, for A′ = {Tnode(a),
Tnode(b), Tedge(a, b), Uedge(b, a), Fn edge(a, b), Un edge(b, a)}, we find that no io-nogood
can be learned and Λu(&geq [edge, 2],A′) returns ∅ as f ′&geq(A′, edge, 2) = U, where f ′&geq is the
three-valued assignment-monotonic oracle functions as in Example 8.

According to Eiter et al. (2012), given an external predicate with input parameters &g [~p] and a
complete assignment A, an input parameter pi ∈ ~p is monotonic, if f&g(A, ~p,~c) = T implies that
f&g(A

′, ~p,~c) = T for every A′ ≥ A that augments A only by atoms with predicate pi. We can
refine a three-valued function Λu similar to two-valued learning functions (cf. Eiter et al., 2012),
and tailor it to external sources with specific properties. We show this for external atoms which are
monotonic in an input predicate pi, i.e., the value of the external atom cannot switch from true to
false if more atoms over pi become true and, conversely, it cannot switch from false to true if more
atoms over pi become false. Then, literals of the form Fpi(~c

′) may be dropped from io-nogoods
containing Fe&g[~p](~c), and literals of the form Tpi(~c

′) may be dropped from io-nogoods containing
Te&g[~p](~c). Accordingly, by exploiting monotonic behavior of oracle functions we are able to obtain
smaller, i.e. more general, io-nogoods than by using the general learning function Λu.

Definition 10. The learning function for an external predicate with input parameters &g [~p] that is
monotonic in ~pm ⊆ ~p, under a partial assignment A and a scope S , yields

Λmu(&g [~p],A) =
{
A′σ ∪ {σe&g[~p](~c) |f&g(A, ~p,~c) =σ 6= U,~c ∈ S

}
,

where A′σ = {σ′p(~c′) ∈ A | p ∈ ~p, p 6∈ ~pm, σ
′ 6= U} ∪ {σp(~c′) ∈ A | p ∈ ~pm}.

As before, we can also show that nogoods learned by means of the learning function Λmu are
not violated by any compatible set:

Proposition 4. Let &g [~p](·) be an external atom in a HEX-program Π. Then for all assignments A,
the nogoods Λmu(&g [~p],A) in Definition 10 are correct wrt. Π.

Example 10 (Ex. 3 cont’d). Consider again program Π from Example 3 and the partial assig-
nment A = {Tnode(a), Tnode(b), Fedge(a, b), Tedge(b, a), Tn edge(a, b), Un edge(b, a)}.
When employing the learning function Λu, we obtain Λu(&geq [edge, 2],A) =

{
{Fedge(a, b),

Tedge(b, a), Te&geq[edge,2]()}
}

. However, we obtain Λmu(&geq [edge, 2],A) =
{
{Fedge(a, b),

Te&geq[edge,2]()}
}

by exploiting monotonicity of the input parameter edge.

The learning functions Λu and Λmu generate nogoods depending on the oracle function given a
certain input. However, an external source provider usually knows the source semantics better and
can thus provide better nogoods. The latter might include only the necessary atoms in the input; they
are thus smaller and prune more of the search space. In such cases, it makes sense to provide custom
learning functions Λl(&g [~p],A) which generate for &g [~p] and a (possibly partial) assignment A a
set of nogoods.
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5. Nogood Minimization

In this section, we discuss a second way to exploit partial assignments for more effective learning of
io-nogoods based on three-valued oracle functions. Instead of calling three-valued oracle functions
with partial input assignments that are generated during solving, a new partial assignment A′ can
be obtained from a given assignment A, where A � A′, by changing part of the truth values of
literals in A from T or F to U afterwards. Then, a three-valued oracle function can be called with
the resulting assignment A′ in order to detect truth assignments in A which are irrelevant for the
evaluation of the respective external source.

By employing this strategy, we eliminate redundant (input) literals from the nogoods in Λu and
Λmu, while faithfulness of io-nogoods is retained (relying on assignment-monotonicity of three-
valued oracle functions). Recall that io-nogoods do not contain any literals which are unassigned.
Hence, we can obtain smaller and thus, more general io-nogoods, which potentially prune larger
parts of the search space. For this purpose, we introduce two new algorithms for computing minimal
io-nogoods, i.e, nogoods from which no literal in the input part can be removed without changing the
output value of the respective oracle function to unassigned. Moreover, we show that minimization
and theory-specific learning are in fact closely related.

Definition 11. Given a faithful io-nogoodN withNO = {σe&g[~p](~c)}, the set of minimized nogoods
of N is

minimize(N) = {N ′ ⊆ N | N ′ is a faithful io-nogood, f&g(N
′′, ~p,~c) = U for all N ′′ ( N ′I}.

This extends to sets S of nogoods by minimize(S) =
⋃
N∈S minimize(N). Note that expo-

nentially many minimal nogoods in the size of N are possible.

Example 11 (Ex. 10 cont’d). Consider the assignment A = {Tnode(a), Tnode(b), Fedge(a, b),
Fedge(b, a), Tn edge(a, b), Tn edge(b, a)} together with the learned faithful io-nogood N =
{Fedge(a, b), Fedge(b, a), Te&geq[edge,2]()} ∈ Λu(&geq [edge, 2],A). According to Definition 11,
we obtain minimize(N) = {{Fedge(a, b), Te&geq[edge,2]()}, {Fedge(b, a), Te&geq[edge,2]()}}.

The minimized nogoods subsume all faithful io-nogoods.

Proposition 5. Let A be a partial assignment and N be a faithful io-nogood for &g [~p] over the
atoms in A. Then some N ′ ∈ minimize(Λu(&g [~p],A)) exists such that N ′ ⊆ N .

As a subset of each faithful io-nogood occurs among all minimized nogoods, no further faithful
io-nogoods prune the search space more effectively. Still, there might be further correct nogoods
(non-io ones and/or depending on the program).

In the following, we call a theory-specific learning function Λl(·, ·) io-complete for an external
source &g , if for every partial assignment A′ ⊆ A and input list ~p, it holds that Λl(&g [~p],A) is the
least set that contains A′∪{σe&g[~p](~c)} for every output list~c such that f&g(A

′, ~p,~c) = σ ∈ {T,F};
otherwise, we call Λl(·, ·) partial. That is, Λl learns all and only io-nogoods with a premise over
the current partial assignment which resemble the semantics of &g .

As it turns out, learning using io-complete theory-specific learning functions and nogood mini-
mization are closely related. Let min⊆(S) = {N ∈ S | @N ′ ∈ S s.t. N ′ ( N} be the restriction
of S to subset-minimal nogoods.7 Then:

7. Despite similar names, minimize differs from min⊆ as it minimizes wrt. oracle results while min⊆ just selects the
minimal sets.

681



EITER, KAMINSKI, REDL, & WEINZIERL

Algorithm 2: Simultaneous Nogood Minimization
Input: A set S of faithful io-nogoods N with NI = {σ1a1, . . . , σnan}
Output: A set of minimal faithful io-nogoods

ch ← ∅ // cache for oracle calls
for each signed literal σiai ∈ NI do

(a)for each io-nogood N ′ ∈ S with N ′
O = {σn+1e&g[~p](~c)} do

N s ← N ′
I \ {σiai} // smaller oracle input

(b)if 〈N s , ·〉 6∈ ch then
ch ← ch ∪

{〈
N s , {σe&g[~p](~c′) | f&g(N s , ~p, ~c′) =σ 6= U}

〉}
(c)if σn+1e&g[~p](~c) ∈ output for 〈N s , output〉 ∈ ch then

Replace N ′ by N s ∪ {σn+1e&g[~p](~c)} in S

return S

Proposition 6. Let Λl be an io-complete theory-specific learning function for an external source
&g . Then, for all partial assignments A and input lists ~p we have minimize(Λu(&g [~p],A)) =
min⊆(Λl(&g [~p],A)).

This proposition implies that we have alternative techniques to learn all nogoods that prune the
search space in an optimal (cf. Proposition 5) way. As above, it considers only faithful io-nogoods
while further correct nogoods may exist. Notably, the equality holds only under the premises of
exhaustive minimization in the first case and an io-complete theory-specific learning function in the
second; otherwise, different sets of nogoods may be produced. As both operations are expensive
and impractical, it makes sense to support both (incomplete) minimization and (incomplete) theory-
specific learning functions.

5.1 Sequential Nogood Minimization

In practice, we use Algorithm 2 to compute only one minimal io-nogood for each learned io-nogood.
Instead of minimizing each nogood separately and to avoid redundant queries, we proceed in parallel
and use a cache for the external atom output of a set S of io-nogoods with identical input but
different outputs. The algorithm works by sequentially removing the same literal simultaneously
from the premises of all N in S in Part (a), and checking whether the output for the resulting
premises is already in the cache, in Part (b). If not, all outputs~c′ s.t. f&g(A, ~p,~c

′) 6= U are computed
(this is a single call in the implementation) and stored in the cache. Otherwise, no external source
call is needed. It is then checked if the resulting nogood is still faithful in Part (c), andN is replaced
by its reduced equivalent in S in this case. Formally:

Proposition 7. For a set S of faithful io-nogoods with equal input parts and distinct output parts,
Algorithm 2 yields exactly one faithful io-nogood N ′ ∈ minimize(N) for each N ∈ S.

5.2 Divide-and-Conquer Strategy for Nogood Minimization

Even when io-nogoods with the same input parts are minimized simultaneously, removing each
literal from the respective input separately and checking the output of the corresponding oracle
function may result in a large number of external calls, which directly depends on the length of the
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Algorithm 3: QuickXplain Nogood Minimization
Input: A faithful io-nogood N = {σ1a1, . . . , σnan, σn+1e&g[~p](~c)}
Output: A minimal faithful io-nogood N ′ ∈ minimize(N)

(a)if f&g(∅, ~p,~c) =σn+1 then return {σn+1e&g[~p](~c)}
(b)return quickXplain(∅, ∅,NI ) ∪ {σn+1 e&g[p̃](c̃)}

function quickXplain(B ,D ,N ′)
(c)if D 6= ∅ and f&g(B, ~p,~c) =σn+1 then return ∅
(d)if |N ′| = 1 then return N ′

(e)Partition N ′ into two non-empty sets N1 and N2

D1 ← quickXplain(B ∪N2 ,N2 ,N1 )
D2 ← quickXplain(B ∪D1 ,D1 ,N2 )
return D1 ∪D2

input part. In cases where io-nogoods are large or the external evaluation requires a lot of time, the
additional computational effort required for nogood minimization may outweigh the positive effect
of obtaining smaller nogoods, or even make minimization infeasible. While in the worst case, i.e.
when an io-nogood is already minimal, this situation cannot be improved, it can be more efficient to
remove several literals from a nogood at once before evaluating the external source when the input
part contains many irrelevant literals.

The QUICKXPLAIN algorithm, which has been introduced by Junker (2004) for efficiently com-
puting minimal conflict sets in the context of constraint programming, can be used for this purpose
as an alternative algorithm for minimizing io-nogoods. It implements a divide-and-conquer strategy
producing a binary search tree, and can be employed for computing a minimal nogood from a given
io-nogood more efficiently if the nogood contains many irrelevant literals, especially when the input
part of the io-nogood is large. In this way, given an io-nogood with input part of size n, instead of
n calls to the oracle function, only O(log2n) external calls are required. However, in the worst
case, i.e. when no literal can be removed from a given nogood, O(n) calls are necessary. Conse-
quently, the algorithm can behave either better or worse than a sequential algorithm, depending on
the properties of the io-nogoods that are minimized.

Algorithm 3 is a variant of the QUICKXPLAIN algorithm as presented by Shchekotykhin, Jan-
nach, and Schmitz (2015), adapted to our specific setting of io-nogood minimization. The algorithm
receives a faithful io-nogood N = {σ1a1, . . . , σnan, σn+1e&g[~p](~c)} and first checks whether the
literal in the output part NO depends on a non-empty input part NI , in Part (a). Subsequently, a
recursive function is called in Part (b), which during its execution checks if different subsets of NI

imply the same external replacement literal in NO as NI .
The first argument B of the function quickXplain(B ,D ,N ′) contains the current subset of

the input part NI wrt. which the oracle function f&g(B, ~p,~c) is evaluated in Part (c). The second
argument D indicates if the oracle function needs to be evaluated for a given B, which is only
the case if D is non-empty as only then B has changed since the last external evaluation. If B is
determined to imply the same truth value for e&g[~p](~c) as NI in Part (c), no further literals from N ′

need to be added to B and thus, the empty set is returned. In case the subset N ′ of the input part NI

of literals that can still be added to B to obtain the correct value for f&g(B, ~p,~c) is a singleton, it is
returned in Part (d). Finally, in Part (e), the provided subset N ′ of the input part NI is partitioned
into two nonempty sets N1 and N2, and the function is called recursively, once for each partition
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N1 and N2 of N ′. The result D1 of the first call, where N1 is provided as new subset of the input
part NI , contains all literals from N1 that need to be added to B ∪N2 such that the oracle function
still evaluates to σn+1. Similarly, all literals from NI that need to be added to B ∪ D1 such that
the oracle function still evaluates to σn+1 are stored in D2. As a result, no literal can be removed
from D1 or D2 such that f&g(B ∪D1 ∪D2, ~p,~c) =σ still holds, and the input part D1 ∪D2, which
together with {σn+1e&g[~p](~c)} yields a minimal io-nogood, is returned.

The computation of a minimal io-nogood by Algorithm 3 is illustrated by the following example.

Example 12 (Ex. 8 cont’d). Reconsider f ′&geq from Example 8 and the faithful io-nogood N =
{Fedge(a, a), Tedge(b, b),Tedge(a, b), Tedge(b, a), Fe&geq[edge,2]()}. When Algorithm 3 is exe-
cuted with input N , the function call quickXplain(∅, ∅,NI ) is performed with NI = {Fedge(a, a),
Tedge(b, b),Tedge(a, b), Tedge(b, a)}. Since D = ∅ and |N | 6= 1 hold wrt. the first call,
N ′ = NI is partitioned into two sets, for example N1 = {Fedge(a, a),Tedge(b, b)} and N2 =
{Tedge(a, b),Tedge(b, a)}.

Subsequently, the first recursive call of the function quickXplain returns ∅, which is assigned
to D1, as f ′&geq(N2, edge, 2) = T, i.e. {Tedge(a, b),Tedge(b, a), Fe&geq[edge,2]()} ⊂ N is still
a faithful io-nogood. Accordingly, the second recursive call in Part (e) corresponds to the call
quickXplain(∅, ∅,N2 ), in which N2 is partitioned again into {Tedge(a, b)} and {Tedge(b, a)}.
Because each of the sets has cardinality 1 but none of them suffices to derive &geq [edge, 2](), N1

andN2 are returned from the two recursive calls in Part (e), respectively. Thus, N1∪N2 is returned
by the second recursive call in the outer function call, which is assigned to D2. Consequently,
∅ ∪ {Tedge(a, b),Tedge(b, a)} is returned by the function called in Part (b). Finally, the minimal
io-nogood {Tedge(a, b),Tedge(b, a),Fe&geq[edge,2]()} is returned by Algorithm 3.

Algorithm 3 always finds a minimal faithful io-nogood, which follows directly from Proposi-
tion 6 and Theorem 1 by Junker (2004):

Proposition 8. Given a faithful io-nogood N , Algorithm 3 terminates and returns exactly one fait-
hful io-nogood N ′ ∈ minimize(N).

Like Algorithm 2, Algorithm 3 returns exactly one minimal io-nogood for a given input. A
straightforward way to obtain multiple minimal io-nogoods consists in re-running Algorithm 3 with
different partition heuristics in Part (e); and every minimal io-nogood can be obtained in this way.

6. Interleaving External Evaluation and Unfounded Set Search

So far, we have only considered external evaluations based on partial assignments which are perfor-
med during the search for compatible sets. As described in Section 2, not every compatible set is also
an answer set, due to the possibility of cyclic support involving external atoms, and an additional
minimality check (cf. Part (d) in Algorithm 1) is required for finding answer sets of HEX-programs.
The basic approach for ensuring minimality of answer sets wrt. the FLP-reduct (called explicit FLP
check by Eiter et al., 2014a) consists in explicitly constructing the FLP-reduct for a given compati-
ble set A and searching for a model A′ of the reduct for which A′ ⊆ A holds. In general, it is also
necessary to evaluate external atoms again for finding smaller models of the FLP-reduct because
their truth value might change when the truth value of some ordinary atoms is switched from true to
false. In the previous approach, similar as in the case of the main search, this evaluation could only
be performed after the complete input to an external atom in a potential smaller model had been
decided since input atoms were not allowed to be unassigned.
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In this section, we discuss how, based on three-valued assignments, the evaluation of external
atoms can be interleaved with the search in the minimality check. As before, the goal is to increase
the efficiency by evaluating external atoms as early as possible and thus, to potentially avoid many
wrong guesses. Improving the efficiency of the minimality check for HEX-programs is of special
interest as the check accounts for many programs to a large share of the total runtime. In addition,
the models of the FLP-reduct (built for a complete assignment) often outnumber the compatible
sets of the program (cf. Eiter et al., 2014a), and for each such set the guesses for the truth values of
external atoms need to be verified.

Here, we consider a more sophisticated variant of the FLP check that utilizes the concept of un-
founded sets in order to ensure minimality of answer sets in HEX, i.e., that they amount to minimal
models of the FLP-reduct with the complete interpretation encoded by a compatible set. An unfoun-
ded set of a HEX-program Π wrt. an assignment A is a set of atoms that can be jointly set to false
without violating any rule in Π because they only circularly support each other wrt. A. Formally:

Definition 12 (adapted from Eiter et al., 2014a). Let Π be a HEX-program and let A and U be
complete assignments over A(Π). Then, U is an unfounded set for Π wrt. A if, for each rule
r with H(r) ∩ {a | Ta ∈ U} 6= ∅, at least one of the following holds, where A ∪̇ ¬.U =
(A \ {Ta | Ta ∈ U}) ∪ {Fa | Ta ∈ U}:

(1) some literal of B(r) is false wrt. A,

(2) some literal of B(r) is false wrt. A ∪̇ ¬.U, or

(3) some atom of H(r) \ {a | Ta ∈ U} is true wrt. A.

Note that unlike previous literature, we define unfounded sets as complete assignments rather
than sets of atoms. This is in order to make the operator ∪̇ reusable for additional results below.
However, conceptually an unfounded set U still represents a set of atoms, given by the true atoms
Ta ∈ U.

Answer sets of a HEX-program Π correspond exactly to those models M of Π where the true
part ofM does not intersect with any unfounded set for Π wrt.M , i.e. {Ta | Ta ∈M ∩U} = ∅ for
every unfounded set U for Π wrt. M (Faber, 2005; Eiter et al., 2014a). Eiter et al. (2014a) showed
that ensuring the absence of unfounded sets is a more efficient strategy for verifying minimality
than applying the explicit FLP check, due to the fact that smaller models of the FLP-reduct do not
have to be generated explicitly in the former case. However, truth values of external atoms still need
to be checked as described above to verify that candidate unfounded sets that have been detected
actually constitute unfounded sets.

Example 13 (Ex. 5 cont’d). Reconsider the program Π = {p ← &id [p]().} from Example 5. As
observed, A = {Tp} is not an answer set of the program since it is not a subset-minimal model of
fΠA = Π. This is because there is an unfounded set U = {Tp}, which intersects with the true
atoms in A: the only rule whose head intersects with {a |Ta ∈ U} is p ← &id [p](), for which
condition (2) is satisfied.

To enable external checks at any point during the search for unfounded sets, even before a can-
didate unfounded set has been detected, we introduce a novel algorithm for unfounded set checking
that exploits external evaluations based on partial assignments. Subsequently, we show the cor-
rectness and completeness of the new algorithm. At this, interleaving unfounded set search with
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Algorithm 4: HEX-UFSCheck
Input: A HEX-program Π, a complete assignment A, a set of nogoods ∇ of Π
Output: true if the true part of A intersects with an unfounded set for Π wrt. A and false

otherwise, learned nogoods added to ∇
Ω′

Π ← ΩΠ ∪ AA ∪ {TΩ(N) | N is an io-nogood in ∇} // SAT instance with
// assumptions and
// io-nogoods from main
// search

S← {Ua | a ∈ A(Ω′
Π)} // all atoms unassigned

dl ← 0 // decision level
while true do

(a)S← Propagation(Ω′
Π,S)

(b)if some nogood in Ω′
Π violated by S then

if dl = 0 then return false
Analyze conflict, add learned nogood to Ω′

Π, set dl to backjump level
(c)else if S is complete then

isUFS ← true
for all external atoms &g [~p](~c) in Π do
∇ ← ∇∪ Λ(&g [~y],A ∪̇ ¬.S)
Ω′

Π ← Ω′
Π ∪ {TΩ(N) | N ∈ Λ(&g [~y],A ∪̇ ¬.S)}

if Te&g[~p](~c) ∈ S, A 6|= &g [~p](~c) and A ∪̇ ¬.S 6|= &g [~p](~c) then
isUFS ← false

if Fe&g[~p](~c) ∈ S, A |= &g [~p](~c) and A ∪̇ ¬.S |= &g [~p](~c) then
isUFS ← false

if isUFS then
Let N be a nogood learned from the UFS
∇ ← ∇∪ {N}
if {Ta | Ta ∈ A ∩ S} 6= ∅ then return true

else
Ω′

Π ← Ω′
Π ∪ {S}

(d)else if Heuristics evaluates &g [~y] and Λ(&g [~y],A ∪̇ ¬.S) 6⊆ ∇ then
∇ ← ∇∪ Λ(&g [~y],A ∪̇ ¬.S)
Ω′

Π ← Ω′
Π ∪ {TΩ(N) | N ∈ Λ(&g [~y],A ∪̇ ¬.S)}

(e)else
Guess σa with σ ∈ {T,F} for some variable a with Ua ∈ S
dl ← dl + 1
S← (S \ {Ua}) ∪ {σa}

external evaluations can initiate backjumping as soon as it can be determined that guesses for ex-
ternal atoms violate the conditions for unfounded sets. So far, this could only be detected by means
of a post-check. As before, input-output relations learned from oracle calls wrt. partial assignments
can also be exploited to avoid wrong guesses in the further unfounded set search.

We start by providing background on the previous unfounded set check for HEX-programs (Eiter
et al., 2014a), which we extend to partial evaluations in the following.
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6.1 Background on Unfounded Set Search

For detecting unfounded sets of a HEX-program Π wrt. a complete assignment A, Eiter et al. (2014a)
introduced an encoding ΩΠ that is represented by a set of nogoods such that solutions to the enco-
ding that are compatible with the semantics of external sources used in the program Π correspond
exactly to the unfounded sets of Π wrt. A. The encoding is uniform wrt. all executions of the
unfounded set check, i.e. it does not depend on the current assignment and thus, only needs to be
generated once. Accordingly, a compatible set A for which the check is performed needs to be
injected by adding a set of so-called assumptions AA, represented by a consistent set of signed
literals, that fix the truth values of dedicated atoms. In this way, the encoding does not have to be
regenerated for each compatible set from scratch, and in an implementation, assumptions can be
treated in a special way such that part of the solver state can be maintained when assumptions are
changed. As a result, a SAT solver can be utilized to detect unfounded set candidates by searching
for a solution to ΩΠ with assumptions AA.

Because external replacement atoms in ΩΠ do not encode the truth values of external atoms
wrt. a solution S of the SAT encoding, but relative to a compatible set modified by S, faithful io-
nogoods learned wrt. S cannot be added directly to the encoding. For this reason, Eiter et al. (2014a)
defined a nogood transformation TΩ that ranges over io-nogoods and yields corresponding nogoods
that imply the correct truth value for external replacement atoms in ΩΠ. We do not go into the
details of the particular encoding and the nogood transformation here, as they are not relevant for
our purposes; we refer to the work of Eiter et al. (2014a) for more information.

6.2 Extension to Partial Assignments

As in the search for compatible sets, we can also add the input-output relations that are learned
from external evaluations based on partial assignments for the SAT encoding in form of nogoods
to the SAT solver. However, here we have to take into account that external replacement atoms do
not encode the truth values of external atoms under a partial assignment in the solver, but represent
their evaluation relative to the current compatible set modified by the respective partial assignment
for ΩΠ with assumptions AA. For this reason, we generalize the definition of A ∪̇ ¬.X as follows,
considering also partial assignments for the SAT encoding.

Definition 13. Given a complete assignment A and a partial assignment X, let A ∪̇ ¬.X = (A \
{Ta | Ta ∈ X or Ua ∈ X}) ∪ {Fa | Ta ∈ X} ∪ {Ua | Ua ∈ X and Ta ∈ A}.

In contrast to Definition 12, where U is considered to be a complete assignment, atoms which
are unassigned in X and true in A remain unassigned in A ∪̇ ¬.X; those atoms can potentially be
set to false in A ∪̇ ¬.X′ wrt. some assignment X′ � X. Atoms that are true in X and A are false
under A ∪̇ ¬.X as before.

Example 14. Consider the complete assignment A = {Tp,Tq,Tr} and the assignment X =
{Tp,Fq,Ur}. We then obtain A ∪̇ ¬.X = {Fp,Tq,Ur}.

We note that due to assignment monotonicity of three-valued oracle functions, extending in a
partial assignment A ∪̇ ¬.X the set X does not change the value of an oracle function call that is
determined (i.e., yields true or false). Formally:

Proposition 9. Let A be a complete assignment, X be a partial assignment, and f&g be an as-
signment monotonic three-valued oracle function. Then, f&g(A ∪̇ ¬.X, ~p,~c) = X , X ∈ {T,F},
implies for every assignment X′ � X that f&g(A ∪̇ ¬.X′, ~p,~c) = X .
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The proposition implies that early external evaluations during the unfounded set search wrt. an
assignment A ∪̇ ¬.X yield nogoods N s.t. f&e(A ∪̇ ¬.X′, ~p,~c) = σ(NO) for all extensions X′ of
X. The fact that faithful io-nogoods added via the transformation TΩ to the encoding ΩΠ do not
remove unfounded sets, as stated in Proposition 15 by Eiter et al. (2014a), is based on the latter
property.

We are now ready to present our new algorithm for detecting unfounded sets which also exploits
learning wrt. partial assignments.

6.3 New Algorithm for Unfounded Set Detection

Our new procedure for detecting unfounded sets, which is formalized by Algorithm 4, extends
the unfounded set check procedure described by Eiter et al. (2014a).8 It is used in Part (d) of
Algorithm 1 in order to check whether a compatible set A for a HEX-program Π is an answer set,
i.e. its true part does not intersect with an unfounded set for Π wrt. A.

Algorithm 4 receives as input a HEX-program Π, a complete assignment A representing a com-
patible set of Π, and a set ∇ of nogoods that have been generated by Algorithm 1. It returns true
if Π has an unfounded set wrt. A that intersects with the true part of A, and false otherwise, i.e.
when A is an answer set of Π. At first, the assumptions AA and the transformations of io-nogoods
already learned in the main search are added to the encoding ΩΠ. In our implementation, elements
in AA are marked as assumptions and hence, they can be removed from the encoding without the
need to reinitialize the SAT solver completely.

Similar to Algorithm 1, Algorithm 4 explores the search space in one loop based on the well-
known CDCL procedure (Marques-Silva, Lynce, & Malik, 2009), where unit propagation is perfor-
med in Part (a), conflict learning and backjumping in Part (b), and guessing in Part (e). However,
to take the semantics of external atoms into account, there are two additional parts integrated into
the CDCL procedure, where the first is necessary to ensure correctness of the algorithm, while the
second potentially increases its efficiency.

On the one hand, in Part (c), after a solution S to Ω′Π has been found, it is checked for each
&g [~p](~c) in Π whether the truth value assigned to the replacement atom e&g[~p](~c) is compatible with
the evaluation of the corresponding oracle function under A ∪̇ ¬.S. It has been shown that when the
truth value of an external atom &g [~p](~c) under A coincides with the one for e&g[~p](~c) assigned by
S, the check for ensuring that S represents an unfounded set can be skipped (cf. Eiter et al., 2014a).

If a solution S passes the external checks, an unfounded set for Π wrt. A has been detected
and the algorithm returns true in case S intersects with the true part of the complete assignment A;
otherwise, S is added to Ω′Π and the search continues. The io-nogoods learned from the external
evaluations are added to the nogood store∇ for use in the search for compatible sets and to Ω′Π via
the nogood transformation TΩ, in order to avoid wrong guesses for replacement atoms in the further
unfounded set search.

On the other hand, external evaluations can also be performed based on partial assignments for
Ω′Π, which are triggered by a heuristics in Part (d). Accordingly, the respective oracle function is
evaluated in Part (c) under an assignment A ∪̇ ¬.S as in Definition 13. As before, learned nogoods
are added to ∇ and (via the nogood transformation) to Ω′Π, respectively.

8. The algorithm by Eiter et al. (2014a) further implements a decision criterion that allows to skip the UFS check
entirely for some syntactic HEX-program classes where answer set existence is known to be in NP . The criterion is
independent of the techniques presented in this paper and can thus be readily used also for the extended algorithm
with no further change; we thus omit this criterion here for simplicity.
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While the details of how the learned nogood N is constructed are not relevant in the following,
we stress that using the unfounded set itself as learned nogood is in general not correct.

Example 15. Consider the program Π = {a ∨ b ←; c ← b; b ← c}, which has two answer sets
A1 = {Ta,Fb,Fc} and A2 = {Fa,Tb,Tc}. Note that U = {b, c} is an unfounded set of Π
wrt. A = {Ta,Tb,Tc}. Using {Tb,Tc} as learned nogood (constructed from the atoms in U )
would eliminate the answer set A2. Informally, this is the case because U is unfouneded only
wrt. the current assignment, which must be respected in nogood learning. In this case, the nogood
learned from U is N = {Ta,Tb} (or, alternatively, N ′ = {Ta,Tc}).

For details on the construction of N we refer to the work of Eiter et al. (2014a). Note that
Algorithm 4 is parametric on the learning function Λ used in Parts (c) and (d). Because the nogood
transformation TΩ by Eiter et al. (2014a) can only be applied to faithful io-nogoods, we assume
that Λ only returns faithful io-nogoods in Algorithm 4. That is, all other nogoods returned by the
learning function Λ are simply ignored. In practice, we employ the learning functions Λu and Λmu.

6.4 Properties

The following proposition, adapted from Theorem 10 by Eiter et al. (2014a), states that by the
checks in Part (c) of Algorithm 4, we can determine whether a complete solution S corresponds to
an unfounded set for Π wrt. A:

Proposition 10. Let Π be a HEX-program and let A be a complete assignment over A(Π). If there
is a solution S for ΩΠ with assumptions AA such that for all external atoms &g [~p](~c) in Π it holds
that

(1) Te&g[~p](~c) ∈ S and A 6|= &g [~p](~c) implies A ∪̇ ¬.S 6|= &g [~p](~c), and

(2) Fe&g[~p](~c) ∈ S and A |= &g [~p](~c) implies A ∪̇ ¬.S |= &g [~p](~c),

then U =
{
Xa | a ∈ A(Π), Xa ∈ S, X ∈ {T,F}

}
is an unfounded set for Π wrt. A.

Moreover, we can show that for every unfounded set U for Π wrt. A where U intersects with
the true part of A, a solution to ΩΠ with assumptions AA can be generated that passes the checks
in Part (c) of Algorithm 4, and that the nogoods added in Part (d) of Algorithm 4 do not eliminate
the solution:

Proposition 11. Let Π be a HEX-program, let A be a complete assignment over A(Π) and sup-
pose Algorithm 4 is executed with Π and A as inputs. If there is an unfounded set U for Π wrt.
A s.t. {Ta | Ta ∈ A ∩ U} 6= ∅, then there is a solution S for ΩΠ with assumptions AA, s.t.
{Ta | Ta ∈ A ∩ S} 6= ∅, that satisfies conditions (1) and (2) of Proposition 10 and all transfor-
med nogoods TΩ(N) added to Ω′Π in Part (d) of Algorithm 4.

We remark that in case the learning function Λu is used in Part (d), backjumping is triggered by
the added nogoods as soon as it can be determined that a partial assignment cannot be extended to
a solution satisfying conditions (1) and (2). However, we refrain from a formal statement and proof
of this behavior in the special case, as it would require to delve into the very details of the uniform
encoding and the particular nogood transformation (the respective conflict involves a transformed
nogood).
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Example 16. Consider the HEX-program Π = {r ← &id [q](). ; q ← . ; p← &id [p]().}, the com-
plete assignment A = {Tp,Tq,Tr} and a partial assignment S s.t. S ⊇ {Fe&id [~q](),Fe&id [~r](),
Tr, Fq,Up}. Note that S cannot be extended s.t. it corresponds to an unfounded set of Π wrt. A.
Accordingly, by performing external evaluations wrt. S, we find that it violates condition (2) of Pro-
position 10 as Fe&id [q]() ∈ S, A |= &id [q]() and f&id(A ∪̇ ¬.S, q) = T. This demonstrates that
we can detect that S cannot be extended to a solution corresponding to an unfounded set without
constructing a complete solution to Ω′Π.

Correctness and completeness of Algorithm 4 can be derived from the facts that it returns only
solutions for ΩΠ with assumptionsAA that satisfy conditions (1) and (2) of Proposition 10, and that
no such solution is removed due to the nogoods learned in Part (d).

Theorem 2 (Soundness and Completeness of Algorithm 4). Given a HEX-program Π and a com-
plete assignment A over A(Π) as inputs, Algorithm 4 returns true if there is an unfounded set U
for Π wrt. A s.t. {Ta | Ta ∈ A ∩U} 6= ∅, and false otherwise.

Thus, by employing Algorithm 4, we are now also able to exploit partial assignments for evalu-
ating external sources at any point during the unfounded set search, and for learning corresponding
io-nogoods that can decrease the number of unfounded set candidates which need to be generated.

7. Implementation and Evaluation

In this section, we present the results of an experimental evaluation of our techniques. To this
end, we integrated them into DLVHEX 2.5.0 with GRINGO 4.4.0 and CLASP 3.1.1 as backends. The
system’s website is http://www.kr.tuwien.ac.at/research/systems/dlvhex; its source code is available
from https://github.com/hexhex. External sources are realized as plugins to the DLVHEX reasoner,
which are lazily called by the reasoner only when the value of an external atom under an assignment
needs to be known.

We remark that although CLINGO 5 is known for its theory solving capabilities (Gebser, Kamin-
ski, Kaufmann, Ostrowski, Schaub, & Wanko, 2016), also previous versions of GRINGO resp. CLASP

had similar features, which are exploited by DLVHEX; CLINGO 5 makes these features more acces-
sible. While we plan to upgrade our backend to CLINGO 5 as part of future work, this will mainly
simplify the interfaces, but will not allow for algorithmic improvements, hence there is no interfe-
rence with the techniques presented in this paper. For a more detailed discussion of the differences
to CLINGO 5 we refer to Section 8. We remark that DLVHEX can also handle ordinary ASP pro-
grams with some well-known extensions such as aggregates, weak constraints, choice rules, etc.
The overhead when evaluating an ASP program with DLVHEX compared to ordinary ASP solvers
is typically negligible since after the initialization, the program is basically directly handed to the
GRINGO and CLASP backends.

7.1 Experimental Setup

In the following we first describe the platform used for carrying out our benchmarks and the confi-
gurations we are going to compare. We then describe the benchmark suite used for the evaluation.
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7.1.1 EVALUATION PLATFORM

All benchmarks were run on a Linux machine with two 12-core AMD Opteron 6238 SE CPUs and
512 GB RAM; the timeout was 300 seconds and the memout was 8 GB per instance. We used
the HTCondor load distribution system (HTCondor Website, 2018) to ensure robust runtimes (i.e.,
deviations of runs on the same instance are negligible). The average runtime of 50 instances per
problem size is reported (in seconds) for computing all answer sets respectively the first answer set;
the number of timeouts is shown in parentheses and furthermore, the average number of solutions,
where ‘≥’ respects timeouts. Line chart representations of the benchmark results can be found in
Appendix B. All instances and details on the experiments can be found at http://www.kr.tuwien.ac.at/
research/projects/inthex/partialeval.

7.1.2 BENCHMARK CONFIGURATIONS

Naturally, there is a tradeoff between the information that can be gained from additional external
evaluations under partial assignments during solving, and the runtime that has to be invested for the
respective external calls. For this reason, we used different heuristics for controlling the number of
external evaluations, and investigated the impact of 10 different solver configurations.

Initially, we tested 3 heuristics for additional external source calls during the main search for
compatible sets (cf. Algorithm 1, Part (e)) without nogood minimization, namely

• never: no additional calls, i.e. DLVHEX without the new techniques;

• periodic: partial evaluation at each 10th heuristics call; and

• always: partial evaluation at every heuristics call.

Moreover, we tested two heuristics for interleaving external evaluations with the search for unfoun-
ded sets (cf. Algorithm 4, Part (d)), namely

• ufs-p: partial evaluation at each 10th heuristics call during unfounded set search, and

• ufs-a: partial evaluation at every heuristics call during unfounded set search.

In addition, we investigated the effect of enabling external evaluations based on partial assignments
both during the main search and the unfounded set search, i.e. combining configurations always
and ufs-a. We then tested nogood minimization instead of additional calls (i.e., only for complete
assignments), where we used the algorithm for simultaneous nogood minimization (cf. Algorithm 2)
and the QUICKXPLAIN algorithm (cf. Algorithm 3), respectively, for minimizing either

• all nogoods in conditions ngm and qxp, or

• the currently conflicting ones, i.e. those which violate the current solver assignment and trig-
ger backjumping, in conditions ngm-c and qxp-c.

For benchmarks where external atoms have output values, we also compared simultaneous mi-
nimization with sequential minimization (ngm-sq), i.e. minimizing each io-nogood separately. We
omit results for minimization combined with periodic, always, ufs-p or ufs-a, as this was al-
ways significantly slower than some other configuration (due to many more external calls with little
gain).
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7.1.3 BENCHMARK PROBLEMS

We have considered encodings of three problems in the evaluation:

• Pseudo-boolean (PB-)problems, also known as 0-1 integer linear programs, representing li-
near constraints over boolean variables, which are among Karp’s famous 21 NP-complete
problems (Karp, 1972).

• Assignment of taxi drivers to customers under constraints, where queries to an external on-
tology, expressed in the lightweight description logic (DL) DL-Lite, are made via external
atoms to find out locations and classify customers and drivers (Taxi Assignment with Onto-
logy Access) (Eiter, Fink, Redl, & Stepanova, 2014b; Eiter, Fink, & Stepanova, 2016). Note
that despite a similar scenario, our benchmark is different from the one used by Eiter et al.
(2014b), as it admits multiple solutions due to nondeterministic guessing of customer assign-
ments.

• Different variants of the well-known Strategic Companies problem (Cadoli, Eiter, & Gottlob,
1997), which is popular with ASP competitions, extended with externally stored conflicts
among companies (Conflicting Strategic Companies) and externally computed control among
companies based on shares (Strategic Companies (with Nonmonotonic) External Controls
Relation).

The problems have different characteristics with regard to the computational complexity and the
external atoms and their usage. While query answering wrt. the DL-Lite ontology used in our taxi
assignment benchmark is tractable (Calvanese, De Giacomo, Lembo, Lenzerini, & Rosati, 2007),
and solving PB-problems is NP-complete, computing strategic companies is located at the second
level of the polynomial hierarchy. Moreover, the general learning function Λu is used for the PB-
problems benchmark and the variant of the strategic companies benchmark where a nonmonotonic
external control relation is added. Due to monotonicity of external sources, the learning function
Λmu can be utilized in all other benchmarks. A further difference consists in the fact that external
atoms are used to formulate integrity constraints in the PB-problems and the conflicting strategic
companies benchmark, and output values are only derived in the other benchmarks.

7.2 Investigating the Effect of Partial Evaluation in the Main Search

First, we used the three different benchmark problems to investigate the effect of partial evaluati-
ons during the main search using different heuristics. In addition, we compared the results to the
runtimes achieved by employing our new algorithms for nogood minimization.

7.2.1 HYPOTHESES

We started our investigation with the following hypotheses regarding the employment of partial
evaluation in the main search:

(H1) The heuristics periodic and always decrease the runtime over never if useful informa-
tion is obtainable by early evaluation with little runtime overhead, and increase it otherwise,
whereby the effect is stronger for always.

(H2) The heuristics periodic performs better than always if more runtime needs to be invested
for each external call, mitigating the tradeoff between information gain and runtime invested
in additional calls.
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trueAt(X) ∨ falseAt(X)←atom(X).

←&pbCheck [trueAt ,PBInst ]().

Figure 2: Pseudo-Boolean Problems Rules.

(H3) The tradeoff between information gain and runtime invested in additional calls can be miti-
gated even more effectively by just minimizing io-nogoods on complete assignments using
ngm or ngm-c instead of evaluating early.

(H4) Using qxp or qxp-c instead of ngm or ngm-c decreases the runtime when io-nogoods
contain many irrelevant literals, but does not increase it significantly otherwise.

7.2.2 PSEUDO-BOOLEAN PROBLEMS

Pseudo-boolean (PB-)problems constitute sets of pseudo-boolean constraints of the form C0p0 +
...+Cn−1pn−1 ≥ Cn, where all pi are literals and allCi are integers (Roussel & Manquinho, 2009).
A solution to a PB-problem P is a truth assignment to the boolean variables occurring in P such
that all inequalities in P are satisfied, where a true literal is interpreted as the value 1 and a false
literal as the value 0. Several dedicated PB-solvers have been developed (cf. Manquinho & Silva,
2005), and CLASP can also be employed for efficient PB-problem solving.

Here, however, our goal is not to implement a reasoner for solving PB-problems that can com-
pete with tailored solvers, but to specify external constraints of a HEX-program in the form of
PB-problems such that answer sets are restricted to those assignments that also represent solutions
to the respective PB-problem. This strict separation of the guess and the check part results in bench-
mark instances that are well-suited for investigating the effect of a tighter integration of the solving
algorithm and the evaluation of external constraints.9 Moreover, applying an analogous pattern for
outsourcing constraints in HEX-programs is a common strategy to avoid the explicit generation of
all forbidden combinations of atoms during grounding (Eiter, Redl, & Schüller, 2016).

In our benchmark implementation, we search for solutions to a PB-problem P by guessing an
interpretation of the atoms occurring in P utilizing a disjunctive rule, and we restrict the answer sets
of the program to solutions of P by employing the external atom &pbCheck [trueAt ,PBInst ]() in
a program constraint. This results in a simple encoding shown in Figure 2, where a fact atom(a)
is added for each atom a occurring in P . At this, the variable PBInst is instantiated by a string
containing the path to a file encoding the instance P , and the true extension of the predicate trueAt
wrt. an assignment A represents those atoms occurring in P that are mapped to true by A. The
external atom &pbCheck [trueAt ,PBInst ]() evaluates to true wrt. a complete assignment A iff the
interpretation of the atoms occurring in P represented by A constitutes a solution for P . We extend
the semantics of the associated evaluation function to partial assignments A as follows:

f&pbCheck ′(A, trueAt ,PBInst) =


T if every PB-constraint C0p0 + ...+ Cn−1pn−1 ≥ Cn

in P fulfills
∑
{c |TtrueAt(c)∈A}|=pi Ci ≥ Cn;

F if some PB-constraint C0p0 + ...+ Cn−1pn−1 ≥ Cn
in P fulfills

∑
{c |FtrueAt(c)/∈A}|=pi Ci < Cn;

U otherwise.

9. Note that for the purpose of solving PB-problems as part of a HEX-program (possibly in combination with other
external sources), the external source could directly interface a dedicated PB solver.
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All Answer Sets

# never periodic always ngm ngm-c qxp qxp-c solutions

4 0.13 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.14 (0) 0.14 (0) 2.06
8 0.34 (0) 0.33 (0) 0.22 (0) 0.24 (0) 0.22 (0) 0.26 (0) 0.23 (0) 4.82

12 4.82 (0) 3.95 (0) 0.80 (0) 0.59 (0) 0.50 (0) 0.60 (0) 0.46 (0) 10.96
16 280.02 (1) 71.99 (0) 3.28 (0) 1.29 (0) 1.11 (0) 1.23 (0) 0.94 (0) 12.66
20 300.00 (50) 300.00 (50) 18.87 (0) 2.63 (0) 2.16 (0) 2.41 (0) 1.62 (0) 24.56
24 300.00 (50) 300.00 (50) 76.75 (1) 4.28 (0) 3.58 (0) 3.69 (0) 2.42 (0) 32.00
28 300.00 (50) 300.00 (50) 247.06 (32) 9.92 (0) 7.25 (0) 9.48 (0) 4.61 (0) 82.28
32 300.00 (50) 300.00 (50) 294.05 (47) 20.49 (0) 11.18 (0) 22.03 (1) 6.94 (0) 269.24
36 300.00 (50) 300.00 (50) 300.00 (50) 36.44 (1) 17.31 (0) 39.27 (3) 10.28 (0) 519.20
38 300.00 (50) 300.00 (50) 298.99 (49) 38.66 (1) 19.48 (0) 40.86 (2) 10.90 (0) 451.78
40 300.00 (50) 300.00 (50) 300.00 (50) 37.13 (0) 23.89 (0) 36.04 (0) 12.70 (0) 233.50

Table 1: Results for random PB-problems with 4 to 40 variables (all answer sets).

First Answer Set

# never periodic always ngm ngm-c qxp qxp-c

4 0.12 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0)
8 0.23 (0) 0.22 (0) 0.16 (0) 0.18 (0) 0.18 (0) 0.18 (0) 0.18 (0)

12 2.23 (0) 1.82 (0) 0.35 (0) 0.34 (0) 0.33 (0) 0.31 (0) 0.30 (0)
16 123.32 (0) 38.42 (0) 1.32 (0) 0.83 (0) 0.81 (0) 0.70 (0) 0.67 (0)
20 259.72 (42) 237.47 (32) 7.92 (0) 1.59 (0) 1.58 (0) 1.22 (0) 1.17 (0)
24 294.30 (49) 286.30 (46) 31.13 (0) 2.90 (0) 2.84 (0) 1.96 (0) 1.89 (0)
28 300.00 (50) 300.00 (50) 96.86 (7) 5.30 (0) 5.26 (0) 3.32 (0) 3.20 (0)
32 300.00 (50) 300.00 (50) 179.38 (21) 8.05 (0) 8.00 (0) 4.71 (0) 4.60 (0)
36 300.00 (50) 300.00 (50) 272.92 (42) 12.29 (0) 12.30 (0) 6.65 (0) 6.58 (0)
38 300.00 (50) 300.00 (50) 264.80 (40) 13.66 (0) 13.76 (0) 7.23 (0) 7.10 (0)
40 300.00 (50) 300.00 (50) 289.35 (46) 17.26 (0) 17.11 (0) 8.74 (0) 8.68 (0)

Table 2: Results for random PB-problems with 4 to 40 variables (first answer set).

By exploiting this three-valued semantics, inconsistent partial assignments to the atoms occurring
in P can be detected earlier. As a result, potentially large parts of the search space can be pruned
and the inconsistent partial assignments can be learned in form of io-nogoods to avoid revisiting the
same partial assignments subsequently.

First, we tested randomly generated problems with N ∈ [4, 40] variables and 4×N PB-
constraints with n = 6 and Ci ∈ [1, 5] for 0 ≤ i ≤ n. The results are shown in Tables 1 and 2.

The specific ratio between the number of variables and the number of constraints ensures that
only a small fraction of all assignments are answer sets. A clear improvement over never is obser-
ved whenever external atoms are evaluated early. The configuration always shows the best perfor-
mance, with periodic falling in-between always and never; hence learning the io-behavior of
the external source as early as possible outweighs the runtime overhead for querying it additionally.
When minimizing io-nogoods only after a complete assignment has been generated in condition
ngm, the overhead of many external calls can be reduced, while similar information can be obtai-
ned from them, resulting in much lower runtimes. Nogood minimization is even more effective
when only conflicting nogoods are minimized in condition ngm-c. The reason is that in this bench-
mark, the external atom is only used in a program constraint such that it must evaluate to false wrt.
any answer set of the program. Accordingly, the truth value of the external atom is never guessed
to be true and non-conflicting io-nogoods, i.e. those which imply a false evaluation of the external
atom, cannot prune the search space. The conditions qxp and qxp-c perform better than ngm and
ngm-c, respectively, which is explained by the fact that in this benchmark io-nogoods typically
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All Answer Sets

# never periodic always ngm ngm-c qxp qxp-c solutions

2 51.59 (0) 23.31 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.13 (0) 0.00
4 61.01 (0) 29.80 (0) 0.42 (0) 0.32 (0) 0.31 (0) 0.24 (0) 0.24 (0) 0.04
6 70.69 (0) 40.36 (0) 9.87 (0) 5.32 (0) 2.21 (0) 7.20 (0) 2.18 (0) 286.58
8 75.15 (0) 58.03 (0) 66.40 (0) 72.73 (0) 14.78 (0) 98.86 (0) 15.04 (0) 6178.00

10 78.48 (0) 78.48 (0) 150.24 (0) 191.57 (0) 43.80 (0) 242.41 (0) 44.13 (0) 18297.76
12 87.54 (0) 98.84 (0) 222.71 (0) 258.52 (1) 72.83 (0) 282.77 (16) 73.49 (0) 26785.20
14 95.24 (0) 111.57 (0) 267.78 (0) 275.09 (3) 90.38 (0) 269.99 (7) 91.07 (0) 30629.80
16 103.85 (0) 123.68 (0) 299.38 (37) 281.36 (6) 103.35 (0) 245.74 (2) 103.38 (0) 32141.44
18 113.89 (0) 135.02 (0) 300.00 (50) 285.74 (5) 114.60 (0) 221.97 (0) 114.31 (0) 32538.18
20 122.84 (0) 146.10 (0) 300.00 (50) 294.55 (12) 123.51 (0) 205.68 (0) 123.65 (0) 32685.16

Table 3: Results for random PB-problems with PB-constraint length of 2 to 20 (all answer sets).

First Answer Set

# never periodic always ngm ngm-c qxp qxp-c

2 51.91 (0) 23.21 (0) 0.12 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.13 (0)
4 60.33 (0) 29.36 (0) 0.42 (0) 0.32 (0) 0.31 (0) 0.24 (0) 0.24 (0)
6 2.48 (0) 1.87 (0) 0.31 (0) 0.50 (0) 0.48 (0) 0.48 (0) 0.45 (0)
8 0.20 (0) 0.18 (0) 0.18 (0) 0.25 (0) 0.22 (0) 0.28 (0) 0.23 (0)

10 0.14 (0) 0.14 (0) 0.16 (0) 0.19 (0) 0.16 (0) 0.22 (0) 0.17 (0)
12 0.13 (0) 0.13 (0) 0.17 (0) 0.18 (0) 0.14 (0) 0.20 (0) 0.14 (0)
14 0.13 (0) 0.13 (0) 0.18 (0) 0.17 (0) 0.13 (0) 0.19 (0) 0.12 (0)
16 0.13 (0) 0.13 (0) 0.19 (0) 0.18 (0) 0.13 (0) 0.19 (0) 0.13 (0)
18 0.13 (0) 0.13 (0) 0.19 (0) 0.18 (0) 0.13 (0) 0.19 (0) 0.13 (0)
20 0.12 (0) 0.14 (0) 0.20 (0) 0.18 (0) 0.13 (0) 0.19 (0) 0.13 (0)

Table 4: Results for random PB-problems with PB-constraint length of 2 to 20 (first answer set).

contain many irrelevant literals. Overall, qxp-c shows the best performance wrt. all instance sizes.
Regarding computing the first answer set we observe a similar pattern.

Second, to investigate the behavior when large parts of the search space contain solutions, i.e.
when there is less room for pruning it, we fixed the number of variables and PB-constraints to 15 and
60, respectively, and tested different lengths N ∈ [2, 20]. The results are shown in Tables 3 and 4.

The solution count increases with length, and for N > 14 nearly all assignments are answer
sets. As expected, periodic and always are slower than never if many (more than about half
of) the candidates are solutions. Frequent evaluation is detrimental here, as runtime investment has
no pay-off in information gain or early search termination. Likewise, minimizing all io-nogoods
in conditions ngm and qxp performs worse than never as identical nogoods are computed for
many complete assignments. However, the configuration ngm-c is very efficient and finds valuable
io-nogoods without investing much runtime because it focuses on valuable (i.e. conflicting) io-
nogoods. Hence, the overhead of ngm-c compared to never is also small for instance sizes 18
and 20, where hardly useful information for pruning the search space is available. In contrast to
Table 1, qxp-c performs slightly worse than ngm-c because conflicting io-nogoods now contain
mostly relevant literals. As the search space contains a large number of solutions for instances with
N > 6, the first answer set is always found very fast for such instances.

7.2.3 TAXI ASSIGNMENT WITH ONTOLOGY ACCESS

To facilitate query access for logic programs to external description logics knowledge bases (DL-
KBs) was one of the early motivating applications of the HEX-formalism, which has been syn-
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drives(X,Y )←driver(X), customer(Y ),&DL[n,n,n,n, isIn](X,A), (r1)

&DL[n,n,n,n, isIn](Y,A), region(A), notndrives(X,Y ).

ndrives(X,Y )←driver(X), customer(Y ),not drives(X,Y ). (r2)

driven(Y )←drives( , Y ). (r3)

←not driven(Y ), customer(Y ). (r4)

←drives(X,Y ), drives(X1, Y ), X 6= X1. (r5)

r+(“drivesECust”, X, Y )←drives(X,Y ),&DL[n,n, r+,n,ECust ](Y ). (r6)

←#count{Y : drives(X,Y )} > 4, driver(X). (r7)

←drives(X,Y ), not&DL[n,n, r+,n,ECust ](Y ),&DL[n,n, r+,n,EDrv ](X). (r8)

←drives(X,Y ),&DL[n,n, r+,n,ECust ](Y ),not&DL[n,n, r+,n,EDrv ](X). (r9)

Figure 3: Taxi Assignment Rules.

tactically framed by so-called DL-programs (Eiter, Ianni, Lukasiewicz, Schindlauer, & Tompits,
2008). Common reasoning tasks wrt. DL-ontologies are concept and role retrieval, i.e. deriving all
individuals respectively pairs of individuals that are instances of a given concept respectively role
relationship. For integrating concept and role queries into ASP, DL-programs provide so-called DL-
atoms, which can be represented by external atoms of the form &DL[c+, c−, r+, r−, q ]( ~X). Here
the inputs c+ and c− are binary predicates that declare positive and negative assertions of ontology
concept instances, respectively. More specifically an atom c+(“C”, a) (resp. c−(“C”, a)) encodes
that C(a) (resp. ¬C(a)) should be asserted in the DL-KB. Similarly, r+ and r− are ternary pre-
dicates where r+(“R”, a, b) (resp. r−(“R”, a, b)) encodes that R(a, b) (resp. ¬R(a, b)) should be
asserted in the DL-KB. Evaluating the DL-atom retrieves all instances of the query q, which is either
a concept or a role name, relative to the modified ontology. In this way, a bidirectional interaction
between the rules of a logic program and the DL-KB is enabled. Accordingly, DL-programs con-
stitute a special type of HEX-programs; using the DL-Lite plug-in for DLVHEX (Eiter et al., 2014b),
one can evaluate DL-programs with a DL-KB formulated in the DL-Lite language.

For our experiments, we employ the DL-program shown in Figure 3, which assigns taxi drivers
to customers under constraints. Our encoding is similar to the one by Eiter, Fink, and Stepanova
(2016), but guesses assignments of drivers to customers such that different combinations are possi-
ble, whereby non-permissible ones can possibly be detected early by partial evaluation. An external
DL-KB formulated in DL-Lite holds part of the information, e.g. about locations of individuals,
about e-customers (customers demanding electric cars), and about e-drivers (drivers of electric cars).
At this, exactly one driver is assigned to each customer by the rules (r1)-(r5), where the respective
driver must be located in the same region as the customer. The latter condition is enforced by using
information regarding the regions in which drivers and customers are located that is imported via the
DL-atom &DL[n,n,n,n, isIn](X,A) from the external DL-KB. Customers may share the driver,
where a taxi fits at most four customers according to rule (r7). Based on information about which
customers are e-customers and which drivers are e-drivers, which is imported via the DL-atoms
&DL[n,n, r+,n,ECust ](Y ) and &DL[n,n, r+,n,EDrv ](X), e-customers must be assigned to
e-drivers and normal customers to normal drivers according to rules (r8) and (r9), respectively. Mo-
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All Answer Sets

# never periodic always ngm-sq ngm ngm-c qxp qxp-c solutions

4 0.20 (0) 0.18 (0) 0.22 (0) 0.19 (0) 0.18 (0) 0.17 (0) 0.18 (0) 0.17 (0) 7.88
6 0.33 (0) 0.26 (0) 0.32 (0) 0.29 (0) 0.26 (0) 0.22 (0) 0.26 (0) 0.22 (0) 17.44
8 1.13 (0) 0.41 (0) 0.60 (0) 0.57 (0) 0.47 (0) 0.33 (0) 0.41 (0) 0.33 (0) 36.08

10 7.61 (0) 0.89 (0) 1.42 (0) 1.60 (0) 1.15 (0) 0.66 (0) 0.88 (0) 0.65 (0) 93.76
12 228.44 (18) 2.19 (0) 3.98 (0) 5.50 (0) 2.98 (0) 1.49 (0) 2.65 (0) 1.75 (0) 329.92
14 300.00 (50) 9.25 (0) 12.71 (0) 24.52 (1) 15.44 (1) 5.15 (0) 6.78 (0) 6.45 (0) 651.52
16 300.00 (50) 15.34 (1) 24.22 (1) 55.81 (2) 33.73 (1) 12.31 (1) 16.89 (1) 13.27 (1) ≥964.68
18 300.00 (50) 67.38 (5) 79.43 (4) 131.03 (12) 87.58 (9) 47.30 (3) 51.88 (4) 58.43 (3) ≥2767.34
20 300.00 (50) 79.94 (6) 108.65 (7) 186.26 (21) 139.49 (14) 50.26 (3) 76.36 (5) 67.77 (6) ≥3783.20
22 300.00 (50) 146.88 (15) 201.91 (23) 265.82 (42) 209.16 (27) 160.66 (17) 167.53 (17) 178.43 (18) ≥5665.76
24 300.00 (50) 194.62 (25) 243.07 (32) 286.70 (46) 249.06 (34) 216.56 (28) 212.44 (25) 209.65 (26) ≥5840.56
26 300.00 (50) 265.54 (41) 284.26 (45) 294.01 (49) 290.69 (47) 261.73 (39) 275.54 (43) 265.89 (40) ≥5743.16
28 300.00 (50) 248.42 (39) 253.66 (42) 258.08 (43) 254.46 (42) 243.08 (39) 252.00 (41) 247.76 (40) ≥5057.28
30 300.00 (50) 293.90 (48) 294.02 (49) 294.01 (49) 294.01 (49) 292.78 (48) 294.02 (49) 294.01 (49) ≥5322.62

Table 5: Results for taxi assignment with ontology access (all answer sets).

reover, drivers of e-customers are positively asserted for the concept drivesECust by rule (r6), which
affects subsequent inferences in the DL-KB.

The answer sets of the program with the rules in Figure 3 and further facts driver(d), customer(c)
and region(r) for drivers d, customers c and regions r encode legal assignments. For a complete
assignment A, a ground DL-atom &DL[c+, c−, r+, r−, q ](~c) evaluates as follows:

f&DL(A, c+, c−, r+, r−, q) =

{
T if q(~c) is derivable from KB ∪Assrt(A),
F otherwise,

whereAssrt(A) consists of all assertions c(i) such that Tc+(“C”, i) ∈ A, all assertions¬c(i) such
that Tc−(“C”, i) ∈ A, all assertions r(i1, i2) such that Tr+(“r”, i1, i2) ∈ A and all assertions
¬r(i1, i2) such that Tr−(“r”, i1, i2) ∈ A. Exploiting monotonicity of DLs, the evaluation of the
associated three-valued oracle function is as follows:

f&DL′(A, c
+, c−, r+, r−, q) =


T if q(~c) is derivable from KB ∪Assrt(A),
F if q(~c) is not derivable from KB ∪Assrt(Amax),
U otherwise,

where Amax ⊇ A is the (unique) assignment leading to the largest addition set of assertions.
For instance, the atom &DL[n,n, r+,n,EDrv ](d) is true wrt. partial assignment A if KB ∪

{r(i1, i2) | Tr+(“r”, i1, i2) ∈ A} |= EDrv(d); it is false if KB ∪ {r(i1, i2) | Fr+(“r”, i1, i2) 6∈
A} 6|= EDrv(d); and it is unassigned otherwise. The input parameters n in Figure 3 are dummies
that, as they do not occur in rule heads or in facts added, have empty extent in every answer set.

In our tests, we increased the number N of drivers and customers gradually from 4 to 30, which
were put in N/2 regions randomly, where the drivers were balanced among regions. Furthermore,
half of the customers were e-customers. The results are shown in Tables 5 and 6.

As DL-atoms have output constants, simultaneous minimization (ngm) and sequential minimi-
zation (ngm-sq) yield different results in this benchmark and we tested both configurations. All
configurations that exploit partial evaluations are significantly faster than never. The configura-
tion periodic now shows better results than always because the external DL calls are costly, and
waiting a bit until issuing the next one can pay off. Since the premise of an io-nogood can be large
but the output often depends only on a small part, minimization can drastically shrink io-nogoods.
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First Answer Set

# never periodic always ngm-sq ngm ngm-c qxp qxp-c

4 0.15 (0) 0.15 (0) 0.16 (0) 0.15 (0) 0.16 (0) 0.15 (0) 0.16 (0) 0.15 (0)
6 0.18 (0) 0.16 (0) 0.18 (0) 0.18 (0) 0.18 (0) 0.17 (0) 0.18 (0) 0.18 (0)
8 0.36 (0) 0.17 (0) 0.20 (0) 0.22 (0) 0.21 (0) 0.22 (0) 0.21 (0) 0.22 (0)

10 1.24 (0) 0.18 (0) 0.23 (0) 0.25 (0) 0.25 (0) 0.33 (0) 0.25 (0) 0.32 (0)
12 23.56 (0) 0.22 (0) 0.27 (0) 0.33 (0) 0.33 (0) 0.44 (0) 0.30 (0) 0.43 (0)
14 139.70 (16) 0.25 (0) 0.32 (0) 0.41 (0) 0.44 (0) 1.10 (0) 0.36 (0) 1.08 (0)
16 273.78 (40) 0.29 (0) 0.37 (0) 0.49 (0) 0.63 (0) 7.39 (1) 0.42 (0) 7.50 (1)
18 300.00 (50) 0.40 (0) 0.42 (0) 0.59 (0) 0.73 (0) 23.39 (2) 0.50 (0) 26.53 (3)
20 300.00 (50) 0.34 (0) 0.46 (0) 0.66 (0) 2.00 (0) 2.12 (0) 0.56 (0) 9.62 (1)
22 300.00 (50) 0.43 (0) 0.69 (0) 0.64 (0) 0.53 (0) 61.87 (4) 0.67 (0) 53.99 (3)
24 300.00 (50) 0.46 (0) 0.76 (0) 0.72 (0) 0.60 (0) 113.78 (12) 0.77 (0) 88.03 (9)
26 300.00 (50) 0.52 (0) 0.86 (0) 0.85 (0) 0.68 (0) 59.02 (6) 0.85 (0) 84.77 (10)
28 300.00 (50) 0.56 (0) 1.00 (0) 0.90 (0) 0.74 (0) 76.59 (5) 0.88 (0) 95.74 (14)
30 300.00 (50) 0.63 (0) 1.10 (0) 1.04 (0) 0.83 (0) 112.02 (11) 1.05 (0) 103.03 (11)

Table 6: Results for taxi assignment with ontology access (first answer set).

However, this comes at the price of many external calls due to the large size of the io-nogoods,
such that ngm-sq is slower than periodic and always. The costs of minimization can be reduced
by minimizing nogoods with the same premise simultaneously, or applying binary search in form
of the QUICKXPLAIN algorithm. Accordingly, both ngm and qxp perform better than ngm-sq.
Moreover, we observe that qxp is slightly faster than ngm, even though io-nogoods with identical
input parts are not minimized simultaneously by the QUICKXPLAIN algorithm. As for the previous
benchmark, minimizing only conflicting nogoods in conditions ngm-c and qxp-c yields the best
results.

Notably, by employing partial evaluations, the first solution can be found rapidly and much
faster than in condition never, except for the configurations ngm-c and qxp-c. In contrast to
the PB-problems benchmark, here the use of external atoms is not limited to constraints such that
minimal nogoods obtained from non-conflicting io-nogoods may contain valuable information. As
a result, the missing information leads to timeouts for certain instances even before the first answer
set is found, while for other instances the set of all answer sets can be computed faster by ngm-c
and qxp-c than by other configurations.

7.2.4 CONFLICTING STRATEGIC COMPANIES

Strategic Companies is a business problem that is a popular benchmark for ASP competitions,
located at the second level of the polynomial hierarchy (Cadoli et al., 1997; Leone et al., 2006).
The scenario is that a set C = {c1, ..., cm} of companies and a set G = {g1, ..., gn} of goods are
given, where each company ci ∈ C produces some goods Gi ⊆ G and is possibly controlled by a
consortium of owner companies Oi ⊆ C. A set of companies C ′ ⊆ C constitutes a strategic set if
(1) the companies in C ′ produce all the goods in G, (2) if Oi ⊆ C ′ for some 1 ≤ i ≤ m, then ci
is in C ′ as well, and (3) C ′ is subset-minimal wrt. conditions (1) and (2) (Leone et al., 2006). The
knowledge about which companies belong to a strategic set can be crucial for a holding owning the
companies in C, e.g. if it has to sell some of its companies and does not want to suffer a loss in
economic power. The problem can be encoded concisely in ASP by exploiting the minimality of
answer sets, so that each answer set corresponds to one strategic set.

In our benchmark setting, we assume that each product is produced and each company is control-
led by at most four companies in C. We further assume an additional conflict relation R ⊆ C×C,
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EXPLOITING PARTIAL ASSIGNMENTS FOR EFFICIENT EVALUATION OF HEX-PROGRAMS

All Answer Sets

# never periodic always ngm ngm-c qxp qxp-c solutions

5 0.15 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.15 (0) 0.14 (0) 0.14 (0) 1.72
10 0.13 (0) 0.13 (0) 0.14 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0) 3.22
15 0.20 (0) 0.19 (0) 0.21 (0) 0.16 (0) 0.16 (0) 0.15 (0) 0.15 (0) 8.08
20 0.65 (0) 0.49 (0) 0.51 (0) 0.25 (0) 0.21 (0) 0.20 (0) 0.20 (0) 23.42
25 3.49 (0) 1.60 (0) 1.35 (0) 0.43 (0) 0.31 (0) 0.29 (0) 0.27 (0) 53.50
30 26.79 (0) 7.61 (0) 5.30 (0) 1.09 (0) 0.55 (0) 0.50 (0) 0.44 (0) 105.32
35 193.38 (0) 33.34 (0) 17.46 (0) 5.72 (0) 1.05 (0) 1.07 (0) 0.87 (0) 282.26
40 300.00 (50) 135.66 (0) 46.70 (0) 45.95 (3) 1.82 (0) 2.03 (0) 1.53 (0) 507.08
45 300.00 (50) 297.18 (49) 139.51 (5) 131.44 (15) 5.46 (0) 13.53 (1) 4.97 (0) 1794.60
50 300.00 (50) 300.00 (50) 267.27 (33) 227.98 (31) 10.25 (0) 27.46 (1) 9.59 (0) 3453.50
55 300.00 (50) 300.00 (50) 295.25 (46) 262.83 (42) 35.64 (0) 108.24 (14) 35.15 (0) 5419.98
60 300.00 (50) 300.00 (50) 300.00 (50) 297.71 (49) 56.68 (1) 147.00 (16) 55.26 (1) ≥6300.94
65 300.00 (50) 300.00 (50) 300.00 (50) 295.89 (49) 151.06 (11) 242.18 (35) 150.19 (11) ≥7531.40
70 300.00 (50) 300.00 (50) 300.00 (50) 293.64 (48) 194.48 (21) 267.46 (41) 192.18 (22) ≥7005.06

Table 7: Results for conflicting strategic companies (all answer sets).

s(C1) ∨ s(C1) ∨ s(C3) ∨ s(C4)←producedBy( , C1, C2, C3, C4).

s(C)←controlledBy(C,C1, C2, C3, C4), s(C1), s(C2), s(C3), s(C4).

←&stratConflict [s]().

Figure 4: Conflicting Strategic Companies Rules.

such that companies which are related by R cannot occur together in a strategic set. This con-
straint makes sense when certain companies may not be kept simultaneously, e.g. due to legisla-
tion. The program in Figure 4 encodes the strategic sets that satisfy the conflict relation in its
answer sets. In this program, we check the conflict constraint on strategic sets via the external atom
&strategicConflict [strategic](), where strategic contains all companies in the strategic set; on
complete assignments, it evaluates to true if some companies ci, cj in strategic are in conflict, i.e.,
(ci, cj) ∈ R holds (where R is externally stored).

Since finding a strategic set is computationally hard, excluding candidate strategic sets with a
conflict early in the search by partial evaluations should noticeably decrease the runtime. We use
for such evaluations a three-valued oracle function f&strategicConflict ′(A, s), defined as follows:

f&strategicConflict ′(A, s) =


T if Ts(ci),Ts(cj) ∈ A holds for some (ci, cj) ∈ R,
F if Fs(ci) ∈ A or Fs(cj) ∈ A for every (ci, cj) ∈ R,
U otherwise.

We ran tests on instances with N ∈ [5, 70] companies, at most N randomly assigned control
relations, 5 ×N products with randomly assigned producers, and N/2 randomly created conflicts.
The results are shown in Tables 7 and 8.

The external conflict constraint cuts more than 90% of the strategic sets (i.e., solution candida-
tes). Thus, like in the first PB-problems benchmark, only a small part of the search space contains
solutions. Accordingly, we observe a similar pattern as in Tables 1 and 2, where partial evalua-
tion significantly decreases the runtime in all conditions. The configuration qxp-c again exhibits
the best results. Since strategic sets are minimal, io-nogoods learned on complete assignments do
not provide any valuable information, such that we did not observe a difference when the learning
function Λu is used instead of Λmu in this case. Notably, for computing strategic sets containing a
specific company (which is ΣP

2 -hard in general) we obtain similar results.
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First Answer Set

# never periodic always ngm ngm-c qxp qxp-c

5 0.14 (0) 0.14 (0) 0.15 (0) 0.14 (0) 0.14 (0) 0.15 (0) 0.15 (0)
10 0.12 (0) 0.12 (0) 0.13 (0) 0.12 (0) 0.12 (0) 0.12 (0) 0.12 (0)
15 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.13 (0)
20 0.24 (0) 0.20 (0) 0.17 (0) 0.16 (0) 0.16 (0) 0.15 (0) 0.15 (0)
25 0.76 (0) 0.36 (0) 0.21 (0) 0.20 (0) 0.20 (0) 0.18 (0) 0.18 (0)
30 4.60 (0) 1.03 (0) 0.41 (0) 0.29 (0) 0.29 (0) 0.23 (0) 0.23 (0)
35 26.05 (0) 2.71 (0) 0.54 (0) 0.39 (0) 0.37 (0) 0.27 (0) 0.27 (0)
40 118.70 (12) 10.67 (0) 1.47 (0) 0.54 (0) 0.54 (0) 0.34 (0) 0.33 (0)
45 158.24 (22) 21.35 (0) 1.38 (0) 0.56 (0) 0.55 (0) 0.34 (0) 0.34 (0)
50 230.00 (32) 43.29 (3) 6.19 (0) 0.76 (0) 0.75 (0) 0.40 (0) 0.40 (0)
55 287.99 (47) 131.69 (15) 5.67 (0) 1.05 (0) 1.04 (0) 0.51 (0) 0.51 (0)
60 291.70 (47) 187.90 (26) 10.10 (0) 1.47 (0) 1.45 (0) 0.64 (0) 0.63 (0)
65 294.49 (49) 229.99 (35) 15.06 (0) 1.85 (0) 1.86 (0) 0.76 (0) 0.77 (0)
70 300.00 (50) 244.27 (39) 52.26 (1) 2.32 (0) 2.26 (0) 0.85 (0) 0.83 (0)

Table 8: Results for conflicting strategic companies (first answer set).

Regarding the results for finding the first answer set, the larger difference between never and
always in comparison to Table 2 is due to the higher computational effort required for finding
compatible sets, where learning based on partial assignments is able to guide the search towards a
compatible set which is also an answer set.

7.2.5 FINDINGS REGARDING PARTIAL EVALUATION IN THE MAIN SEARCH

In our experiments, we found that early evaluation in conditions always and periodic increased
the performance for all benchmarks, except for the case where nearly all candidate solutions cor-
respond to answer sets such that no useful information is obtainable from additional oracle calls.
This finding is in line with hypothesis (H1). Moreover, in the case of the taxi assignment ben-
chmark, where external calls require more runtime than in the other benchmark implementations,
periodic performed better than always due to less runtime overhead, which supports our hypot-
hesis (H2). Similar improvements could be achieved by minimizing all io-nogoods that are learned
based on complete assignments with configuration ngm. However, regarding hypothesis (H3), the
results are mixed because minimization performs worse when io-nogoods are large or contain many
relevant literals (cf. Tables 3 and 5). This overhead is avoided by only minimizing nogoods that
directly trigger backjumping in condition ngm-c. The configuration ngm-c performs well for all
benchmark problems and has only little overhead when no useful information is available, as can be
observed in Table 3. Finally, the fact that qxp performed better than ngm in the taxi assignment
benchmark, where io-nogoods typically contain many irrelevant literals, and did not increase the
runtime much when nearly all literals are relevant (as it is the case for the second experiment using
PB-problems) provides supporting evidence for hypothesis (H4). This effect results from the num-
ber of external calls that have to be performed in the best resp. the worst case by the QUICKXPLAIN

algorithm compared to sequential minimization.

Overall, minimization of conflicting nogoods by configuration ngm-c or qxp-c in most cases
yielded the best results with only small differences between the two conditions. Hence they are
suggested as the default configurations.
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EXPLOITING PARTIAL ASSIGNMENTS FOR EFFICIENT EVALUATION OF HEX-PROGRAMS

All Answer Sets

# never always ufs-p ufs-a always +
ufs-a qxp-c

4 0.19 (0) 0.22 (0) 0.20 (0) 0.48 (0) 0.53 (0) 0.17 (0)
6 0.35 (0) 0.35 (0) 0.38 (0) 1.64 (0) 1.78 (0) 0.22 (0)
8 1.27 (0) 0.70 (0) 1.02 (0) 8.70 (0) 8.31 (0) 0.33 (0)

10 7.86 (0) 1.41 (0) 3.67 (0) 33.22 (0) 30.28 (0) 0.65 (0)
12 228.11 (17) 4.16 (0) 37.50 (1) 139.01 (10) 93.41 (3) 1.75 (0)
14 300.00 (50) 12.25 (0) 186.79 (20) 281.62 (42) 190.64 (21) 6.45 (0)
16 300.00 (50) 24.42 (1) 292.14 (47) 300.00 (50) 273.96 (40) 13.27 (1)
18 300.00 (50) 81.46 (4) 300.00 (50) 300.00 (50) 295.59 (49) 58.43 (3)
20 300.00 (50) 110.71 (8) 300.00 (50) 300.00 (50) 300.00 (50) 67.77 (6)
22 300.00 (50) 203.06 (24) 300.00 (50) 300.00 (50) 288.02 (48) 178.43 (18)
24 300.00 (50) 243.39 (32) 300.00 (50) 300.00 (50) 294.02 (49) 209.65 (26)
26 300.00 (50) 284.93 (45) 300.00 (50) 300.00 (50) 294.01 (49) 265.89 (40)
28 300.00 (50) 253.71 (42) 300.00 (50) 300.00 (50) 258.15 (43) 247.76 (40)
30 300.00 (50) 294.02 (49) 300.00 (50) 300.00 (50) 294.02 (49) 294.01 (49)

Table 9: Results for taxi assignment with ontology access wrt. partial evaluation during unfounded
set search (all answer sets).

7.3 Investigating the Effect of Partial Evaluation in the Unfounded Set Search

In our benchmark programs, the one for the taxi assignment problem contains cyclic dependencies
through external atoms, while this is not the case for the pseudo-boolean and conflicting strategic
companies programs. The absence of such cyclic dependencies means that compatible sets of a
HEX-program already correspond to its answer sets and a minimality check can be skipped (Eiter
et al., 2014a). Consequently, partial evaluation during the search for unfounded sets did not have
an impact on the performance results for the pseudo-boolean and conflicting strategic companies
benchmarks.

For this reason, in addition to the taxi assignment benchmark, we have considered two vari-
ants of the conflicting strategic companies problem in order to test partial evaluation during the
unfounded set check with different heuristics.

7.3.1 HYPOTHESES

Our hypotheses concerning the use of partial evaluation in the unfounded set search were the follo-
wing:

(H5) The heuristics ufs-a and ufs-p decrease the runtime over never if useful information is
obtainable by early evaluation during the unfounded set search with little runtime overhead,
and increase it otherwise, whereby the effect is stronger for ufs-a.

(H6) The heuristics ufs-p performs better than ufs-a if external calls need more time or less in-
formation can be gained from them, mitigating the tradeoff between information gain and
runtime invested in additional calls.

(H7) If the heuristics ufs-a or ufs-p are combined with the heuristics always, there is a further
speedup in case many io-nogoods learned during the unfounded set search are not already
learned during the main search. Thus, the combination is expected to be more effective when
for learning the function Λu is used instead of Λmu.
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First Answer Set

# never always ufs-p ufs-a always +
ufs-a qxp-c

4 0.16 (0) 0.17 (0) 0.16 (0) 0.20 (0) 0.21 (0) 0.15 (0)
6 0.20 (0) 0.19 (0) 0.20 (0) 0.28 (0) 0.28 (0) 0.18 (0)
8 0.39 (0) 0.22 (0) 0.37 (0) 0.55 (0) 0.38 (0) 0.22 (0)

10 1.27 (0) 0.22 (0) 1.16 (0) 1.65 (0) 0.46 (0) 0.32 (0)
12 22.60 (0) 0.27 (0) 21.88 (0) 25.55 (1) 0.59 (0) 0.43 (0)
14 137.84 (15) 0.32 (0) 134.38 (14) 139.96 (15) 0.79 (0) 1.08 (0)
16 273.70 (40) 0.37 (0) 267.38 (39) 270.47 (40) 1.04 (0) 7.50 (1)
18 300.00 (50) 0.43 (0) 300.00 (50) 300.00 (50) 1.32 (0) 26.53 (3)
20 300.00 (50) 0.47 (0) 300.00 (50) 300.00 (50) 1.61 (0) 9.62 (1)
22 300.00 (50) 0.69 (0) 300.00 (50) 300.00 (50) 2.92 (0) 53.99 (3)
24 300.00 (50) 0.78 (0) 300.00 (50) 300.00 (50) 3.78 (0) 88.03 (9)
26 300.00 (50) 0.89 (0) 300.00 (50) 300.00 (50) 4.56 (0) 84.77 (10)
28 300.00 (50) 1.04 (0) 300.00 (50) 300.00 (50) 5.05 (0) 95.74 (14)
30 300.00 (50) 1.29 (0) 300.00 (50) 300.00 (50) 8.12 (0) 103.03 (11)

Table 10: Results for taxi assignment with ontology access wrt. partial evaluation during unfounded
set search (first answer set).

s(C1) ∨ s(C1) ∨ s(C3) ∨ s(C4)←producedBy( , C1, C2, C3, C4).

s(C)←&majority [s](C), company(C).

Figure 5: Strategic Companies with External Controls Relation Rules.

7.3.2 TAXI ASSIGNMENT

For testing the effect of partial evaluation during the unfounded set search wrt. the taxi assignment
benchmark, we used the same set of problem instances as before (cf. Table 5). The results are shown
in Tables 9 and 10, where we also report the running times of the conditions always and qxp-c for
comparison with partial evaluation during the main search.

For this benchmark, the compatible sets are identical to the answer sets, such that no unfounded
sets are detected during unfounded set search. However, due to cyclic dependencies through external
atoms, minimality wrt. the FLP-reduct still needs to be verified for each instance by means of
the unfounded set check. We observe that configurations ufs-p and ufs-a slightly improve the
efficiency over never, where ufs-p yields better results since calls to the external oracle are costly
in this benchmark. However, performing early evaluations during the main search in condition
always is much faster resulting in less timeouts; and combining early evaluation in the main and
the unfounded set search does not result in an additional speedup. This is expected: as reasoning in
a DL ontology is monotonic and for DL-Lite ontologies the io-nogoods are small, the information
that is obtained by early evaluation in the respective parts is largely overlapping.

7.3.3 STRATEGIC COMPANIES WITH EXTERNAL CONTROLS RELATION

We considered a second variant of the strategic companies problem, where the controls relation is
derived by means of an external atom of the form &majority [strategic](c), based on the company
shares that other companies own (cf. Figure 5). A company is then controlled by a suite of other
companies if their combined shares exceed 50 %. No conflict relations are added in this benchmark
as they only remove compatible sets and do not have a direct influence on the minimality check,
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EXPLOITING PARTIAL ASSIGNMENTS FOR EFFICIENT EVALUATION OF HEX-PROGRAMS

All Answer Sets

# never always ufs-p ufs-a always +
ufs-a qxp-c solutions /

compatible sets

2 0.13 (0) 0.14 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.14 (0) 1.18 / 1.68
4 0.15 (0) 0.17 (0) 0.16 (0) 0.19 (0) 0.21 (0) 0.17 (0) 1.70 / 2.96
6 0.19 (0) 0.25 (0) 0.21 (0) 0.31 (0) 0.36 (0) 0.26 (0) 2.56 / 4.46
8 0.29 (0) 0.41 (0) 0.33 (0) 0.58 (0) 0.71 (0) 0.50 (0) 4.20 / 6.42

10 0.63 (0) 0.81 (0) 0.76 (0) 1.27 (0) 1.49 (0) 0.95 (0) 7.44 / 10.10
12 1.80 (0) 1.56 (0) 1.91 (0) 2.86 (0) 2.95 (0) 1.89 (0) 9.30 / 13.62
14 4.97 (0) 3.14 (0) 5.09 (0) 6.96 (0) 6.31 (0) 3.49 (0) 18.08 / 24.46
16 15.88 (0) 5.98 (0) 15.03 (0) 16.97 (0) 12.81 (0) 6.65 (0) 26.96 / 35.04
18 59.10 (0) 13.52 (0) 50.48 (0) 47.16 (0) 26.65 (0) 13.86 (0) 36.52 / 47.56
20 169.77 (1) 30.46 (0) 132.65 (0) 124.17 (0) 55.99 (0) 31.44 (0) 64.30 / 79.58
22 297.81 (46) 59.32 (0) 285.57 (40) 275.11 (32) 108.75 (0) 61.88 (0) 97.02 / 116.22
24 300.00 (50) 128.94 (0) 300.00 (50) 300.00 (50) 210.98 (11) 127.59 (4) ≥154.66 / 195.84
26 300.00 (50) 255.72 (20) 300.00 (50) 300.00 (50) 269.39 (36) 235.22 (17) ≥242.22 / 366.26
28 300.00 (50) 292.88 (43) 300.00 (50) 300.00 (50) 295.10 (46) 279.55 (41) ≥121.64 / 402.66
30 300.00 (50) 300.00 (50) 300.00 (50) 300.00 (50) 300.00 (50) 298.91 (49) ≥102.06 / 548.94

Table 11: Results for strategic companies with external controls relation (all answer sets).

while the aim of this experiment is to investigate the effect of partial evaluation on the unfounded
set search.

Let shares(c1, c2) denote the fraction of shares of company c2 that company c1 owns. Given a
partial assignment A, a company c, and a predicate strategic representing a set of companies, the
corresponding three-valued oracle function f&majority(A, strategic, c) is defined as follows:

f&majority(A, strategic, c) =


T if

∑
Tstrategic(ci)∈A shares(ci, c) > 50 %;

F if
∑

Tstrategic(ci),Ustrategic(ci)∈A shares(ci, c) ≤ 50 %;
U otherwise.

As the oracle function behaves monotonically, we can employ the learning function Λmu.
For testing, we randomly generated instances withN ∈ [2, 30] companies, randomly distributed

50 % to 100 % of the shares of each company over 1 to 4 other companies, and added 5 × N
products with randomly assigned producers. The results are shown in Tables 11 and 12, again with
the running times of always and qxp-c.

In contrast to the taxi assignment benchmark, where all compatible sets were answer sets, now
around 20 % of the solution candidates are eliminated by the unfounded set check. While always
again significantly increases the performance, there is no clear winner among the conditions never,
ufs-p and ufs-a. For instance sizes smaller than 16, configuration never is faster than ufs-a, with
ufs-p falling in between. However, for instances with more than 16 companies, this pattern is
inverted and ufs-a exhibits a slightly better performance than the other two configurations. The
reason is that for larger instances, the unfounded set search requires a larger fraction of the overall
solving time. Thus, triggering backjumping earlier has a higher impact on the overall running time
of the unfounded set search wrt. larger instances. Overall, the effect of employing partial evaluations
only in the unfounded set search is small since monotonicity of the external source already allows
to learn small io-nogoods that are exploited by the unfounded set search. The fact that conditions
always and qxp-c are still very efficient indicates that nogoods learned in the main search help to
speed up the unfounded set search as well, but not the other way around. This is also supported by
the observation that exploiting early evaluations based on partial assignments both in the main and
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First Answer Set

# never always ufs-p ufs-a always +
ufs-a qxp-c

2 0.13 (0) 0.14 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.14 (0)
4 0.14 (0) 0.16 (0) 0.15 (0) 0.16 (0) 0.17 (0) 0.15 (0)
6 0.16 (0) 0.18 (0) 0.16 (0) 0.20 (0) 0.21 (0) 0.21 (0)
8 0.19 (0) 0.22 (0) 0.20 (0) 0.26 (0) 0.29 (0) 0.32 (0)

10 0.25 (0) 0.29 (0) 0.29 (0) 0.39 (0) 0.43 (0) 0.55 (0)
12 0.51 (0) 0.46 (0) 0.55 (0) 0.71 (0) 0.67 (0) 1.01 (0)
14 0.72 (0) 0.55 (0) 0.77 (0) 0.98 (0) 0.79 (0) 1.45 (0)
16 2.03 (0) 0.85 (0) 2.46 (0) 2.13 (0) 1.25 (0) 2.67 (0)
18 5.01 (0) 2.00 (0) 7.49 (0) 5.06 (0) 2.05 (0) 5.87 (0)
20 14.15 (0) 2.31 (0) 15.46 (0) 12.55 (0) 2.41 (0) 11.64 (0)
22 54.07 (2) 5.10 (0) 54.66 (3) 49.00 (3) 4.19 (0) 21.82 (0)
24 73.45 (3) 10.84 (0) 99.72 (4) 64.73 (2) 4.92 (0) 48.33 (1)
26 144.56 (12) 23.70 (1) 155.93 (15) 124.87 (10) 7.13 (0) 73.96 (7)
28 189.26 (21) 34.27 (2) 190.98 (25) 169.98 (22) 9.29 (0) 153.97 (20)
30 222.31 (31) 86.92 (7) 230.87 (35) 190.72 (27) 11.35 (0) 172.17 (22)

Table 12: Results for strategic companies with external controls relation (first answer set).

in the unfounded set search in condition always + ufs-a decreases the performance compared to
always.

Notably, configuration always + ufs-a significantly outperforms all other conditions for com-
puting the first answer set. This is explained by the fact that, in this case, different io-nogoods are
learned in the main and the unfounded set search, respectively, while the overlap increases when
more answer sets are computed. Accordingly, nogoods learned in each of the two search procedures
are more likely to complement each other, resulting in lower running times.

7.3.4 STRATEGIC COMPANIES WITH NONMONOTONIC EXTERNAL CONTROLS RELATION

We considered a second variant of the strategic companies problem with an external controls relation
to test the effect of early external evaluation during the unfounded set check when the external source
behaves nonmonotonically. In this case, the general learning function Λu has to be used instead of
Λmu. As a result, io-nogoods are less general because they also contain the negative input part (cf.
Definition 10) and thus, nogoods learned in the main search are less likely to be also useful in the
unfounded set search.

Here, the same problem instances as in the previous monotonic case are used, but the semantics
of the oracle function associated with the external atom &majority [strategic](c) is modified as
follows:

f&majority ′(A, strategic, c) =



T if
∑

Tstrategic(ci)∈A shares(ci, c) > 50 %, and∑
Tstrategic(ci),Ustrategic(ci)∈A shares(ci, c) < 100 %;

F if
∑

Tstrategic(ci),Ustrategic(ci)∈A shares(ci, c) ≤ 50 %, or∑
Tstrategic(ci)∈A shares(ci, c) = 100 %;

U otherwise.

Accordingly, a company is only added to a candidate strategic set via the external atom if its
shares owned by other companies in the set exceed 50 %, but are less than 100 %. This is motivated
by the fact that selling the full shares, i.e., the entire company, might result in a higher payoff than
selling only bits; hence a holding might be inclined to not keep a company that it owns fully. The
corresponding results are shown in Tables 13 and 14.
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All Answer Sets

# never always ufs-p ufs-a always +
ufs-a qxp-c solutions /

compatible sets

2 0.13 (0) 0.13 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.13 (0) 1.18 / 1.68
4 0.14 (0) 0.17 (0) 0.15 (0) 0.18 (0) 0.20 (0) 0.17 (0) 1.70 / 2.96
6 0.19 (0) 0.24 (0) 0.21 (0) 0.30 (0) 0.34 (0) 0.28 (0) 2.56 / 4.46
8 0.41 (0) 0.43 (0) 0.44 (0) 0.63 (0) 0.66 (0) 0.56 (0) 4.20 / 6.42

10 1.48 (0) 1.03 (0) 1.65 (0) 1.91 (0) 1.66 (0) 1.31 (0) 7.44 / 10.10
12 5.48 (0) 2.31 (0) 5.65 (0) 5.68 (0) 3.33 (0) 3.14 (0) 9.30 / 13.62
14 21.73 (0) 5.42 (0) 21.90 (0) 18.82 (0) 8.16 (0) 8.85 (0) 18.08 / 24.46
16 82.33 (0) 10.30 (0) 85.19 (1) 62.76 (0) 16.58 (0) 16.81 (0) 26.96 / 35.04
18 295.92 (38) 27.77 (0) 276.44 (25) 223.77 (5) 31.65 (0) 51.90 (2) 36.52 / 47.56
20 300.00 (50) 66.34 (1) 300.00 (50) 300.00 (50) 66.86 (0) 104.89 (7) 64.30 / 79.58
22 300.00 (50) 128.22 (6) 300.00 (50) 300.00 (50) 130.16 (1) 141.36 (13) ≥96.84 / 116.22
24 300.00 (50) 216.67 (15) 300.00 (50) 300.00 (50) 237.73 (15) 234.66 (27) ≥143.32 / 195.74
26 300.00 (50) 291.04 (43) 300.00 (50) 300.00 (50) 277.07 (39) 278.78 (38) ≥131.10 / 311.74
28 300.00 (50) 295.25 (47) 300.00 (50) 300.00 (50) 295.78 (46) 286.65 (45) ≥120.28 / 280.04
30 300.00 (50) 300.00 (50) 300.00 (50) 300.00 (50) 299.88 (49) 300.00 (50) ≥108.38 / 267.14

Table 13: Results for strategic companies with nonmonotonic external controls relation (all answer
sets).

We do not observe a difference regarding the number of solutions compared to the previous ben-
chmark as 100 % of controlled shares are usually not reached wrt. the used instances. Nevertheless,
the external source needs to ensure that this limit cannot be reached, before returning the truth value
T for a particular company in the output. Consequently, the learning function Λu has to be utilized
such that nogoods are typically larger than in the previous benchmark. Due to the altered semantics
of the external source, running times in general increase, while the overall pattern remains similar
to the one encountered for the previous benchmark. However, we observe that the running times
for configuration never increase to a higher degree relative to the other conditions. This indicates
that exploiting external evaluations wrt. partial assignments has an additional benefit when the ex-
ternal source behaves nonmonotonically. Now, for instances containing more than 12 companies we
always observe an advantage of ufs-a and ufs-p over never, whereby ufs-a is faster than ufs-p.

Again, condition always + ufs-a proved to be very efficient for computing only the first answer
set. Even though the running times for computing one solution in all other conditions significantly
increase compared to the previous benchmark setting, the running times for configuration always
+ ufs-a are similar to before. This is because, on the one hand, less information about the exter-
nal source semantics is available to the solver from the preceding search before the first answer
set has been computed. On the other hand, io-nogoods learned in conditions always and ufs-a,
respectively, are now less likely to be useful for the main search and the unfounded set search si-
multaneously, due to nonmonotonicity of the external source. In contrast, configuration always +
ufs-a enables the learning of io-nogoods tailored to each of the two search procedures.

7.3.5 FINDINGS REGARDING PARTIAL EVALUATION IN THE UNFOUNDED SET SEARCH

We found that configurations ufs-p and ufs-a improve the performance in all benchmarks conside-
red for testing partial evaluation in the unfounded set search. However, the improvement was not as
pronounced as the one we found for partial evaluation in the main search, and depends on how much
room there is for decreasing the runtime of the unfounded set search by detecting conflicts earlier.
Thus, hypothesis (H5) is partly supported by our experimental results. In the experiments employing
strategic companies problems, where external calls are inexpensive, condition ufs-a showed lower
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First Answer Set

# never always ufs-p ufs-a always +
ufs-a qxp-c

2 0.13 (0) 0.13 (0) 0.12 (0) 0.13 (0) 0.14 (0) 0.13 (0)
4 0.14 (0) 0.15 (0) 0.14 (0) 0.15 (0) 0.16 (0) 0.15 (0)
6 0.15 (0) 0.17 (0) 0.16 (0) 0.19 (0) 0.20 (0) 0.21 (0)
8 0.22 (0) 0.22 (0) 0.23 (0) 0.27 (0) 0.27 (0) 0.33 (0)

10 0.46 (0) 0.35 (0) 0.49 (0) 0.55 (0) 0.43 (0) 0.70 (0)
12 1.51 (0) 0.63 (0) 1.57 (0) 1.53 (0) 0.73 (0) 1.62 (0)
14 3.79 (0) 1.11 (0) 3.77 (0) 3.49 (0) 0.98 (0) 4.11 (0)
16 13.33 (0) 2.91 (0) 20.98 (1) 10.42 (0) 1.51 (0) 10.99 (0)
18 47.45 (0) 10.23 (0) 74.04 (5) 38.08 (0) 2.49 (0) 41.02 (2)
20 147.18 (8) 27.06 (0) 154.22 (12) 129.44 (6) 3.18 (0) 79.82 (6)
22 241.06 (31) 58.19 (5) 242.13 (32) 237.55 (29) 5.53 (0) 104.79 (12)
24 280.97 (45) 90.34 (7) 280.88 (44) 277.49 (42) 6.14 (0) 179.49 (23)
26 294.46 (48) 125.64 (16) 294.04 (48) 294.23 (48) 8.90 (0) 153.72 (21)
28 300.00 (50) 154.06 (22) 300.00 (50) 300.00 (50) 10.48 (0) 210.73 (33)
30 300.00 (50) 194.76 (29) 300.00 (50) 300.00 (50) 12.76 (0) 198.39 (31)

Table 14: Results for strategic companies with nonmonotonic external controls relation (first answer
set).

running times than ufs-p, while for the taxi benchmark with more costly external evaluations it was
the other way around. This is in line with hypotheses (H5) and (H6). In support of hypothesis (H6),
ufs-p also performs better than ufs-a for small instances of the strategic companies benchmarks,
where the information obtained from external calls is less useful due to less time required by the
minimality check and low usefulness of learned nogoods wrt. the main search.

Finally, we found that for computing all answer sets the combination always + ufs-a does not
increase the efficiency compared to only utilizing partial evaluation in the main search. However,
the combination is very efficient when only the first answer set is computed, where the sets of io-
nogoods learned in the main and the unfounded set search, respectively, are less likely to overlap.
Moreover, we observed that the combination has an even higher advantage over other conditions
when a nonmonotonic external source is accessed as this as well increases the chance of learning
different nogoods in the main search and the unfounded set search, respectively. Accordingly, our
experiments confirm hypothesis (H7).

We conclude that even when partial evaluation during the unfounded set search does not increase
the efficiency for computing all answer sets compared to other configurations, it can be highly
effective in combination with partial evaluation during the main search in case only one solution is
required.

8. Discussion and Conclusion

In this section, we first continue and extend our review of related work, and we then conclude with
a summary and outlook on ongoing and future issues.

8.1 Related Work

As mentioned in the introduction, our work is most closely related to SMT solving, in particu-
lar to theory propagation there (Nieuwenhuis, Oliveras, & Tinelli, 2006), and naturally to con-
straint ASP solving, as developed by Gebser, Ostrowski, and Schaub (2009), and theory solving in
CLINGO 5 (Gebser et al., 2016).
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As for the relation to SMT solving, we observe that the latter typically considers fixed types of
theories, while HEX is more general and geared towards supporting heterogeneous theories. Using a
fixed type of theory is a characteristics of several extensions of ASP with SMT, such as DINGO (Jan-
hunen, Liu, & Niemelä, 2013), which uses difference logic, NLP-DL (Eiter, Ianni, Schindlauer, &
Tompits, 2005a), which uses description logics, and ASPMT (Lee & Meng, 2013).

Moreover, the abstract level of semantics in terms of input-output relations accommodates even
arbitrary non-logical theories. However, there is closer similarity regarding integration schemas
and learning techniques. Typical integration schemas for SMT have been identified (Balduccini &
Lierler, 2013b), which apply to ASP modulo theories as well (a comparison is given by Balduccini
& Lierler, 2013a):

• In black-box integration, the SAT solver blindly generates a model and passes it for checking
to the theory solver. If it passes the check, the model is returned, otherwise it is added in
constraint form to the instance and the solver restarts. This allows for easy coupling with
arbitrary theories but does not enable search space pruning.

• In grey-box integration, the theory solver is only called for complete models of the SAT
instance, but the SAT solver is merely suspended during checking and can continue its search
afterwards; integration is still relatively simple.

• Only in clear-box integration, the SAT solver is interleaved with the theory solver, which is
called already for partial assignments and in turn may propagate further truth values or detect
inconsistencies. However, the integration is much more challenging as the theory solver
must identify atoms implied by the given partial assignment, or by inconsistency reasons,
respectively.

Examining HEX, the grey-box schema corresponds to the evaluation algorithms in use before ex-
ternal behavior learning was introduced by Eiter et al. (2012); black-box integration, i.e. resorting
to complete restarts, has never been used for HEX solving. With incorporation of such learning,
the algorithms fit an intermediate schema between grey- and clear-box integration: external sources
were still only evaluated under complete assignments, but the learned nogoods possibly pruned the
search space.

Compared to constraint ASP solving, the HEX formalism is more general as it supports access to
arbitrary external sources which are largely black boxes, and without (implicit) assumptions of their
properties. In this respect, constraint ASP can be considered as a special case of HEX with theory-
specific knowledge. There are a number of integrations of ASP with constraint programming, as
realized e.g. in CLINGCON (Ostrowski & Schaub, 2012), LC2CASP (Cabalar, Kaminski, Ostrowski,
& Schaub, 2016), EZCSP (Balduccini, 2009), and EZSMT (Susman & Lierler, 2016); we refer to the
work of Lierler, Maratea, and Ricca (2016) for an overview of systems. Here, we focus on the work
of Ostrowski and Schaub (2012), who considered nogood minimization as we do, but used different
algorithms that avoid expensive resets of the constraint solver. However, this is only possible by
exploiting properties of the specific theory at hand (monotonic constraint satisfaction), which in
our more general setting do not always apply (e.g., for nonmonotonic external atoms); furthermore,
the user-friendly plug-and-play integration of external sources does not provide control over the
external algorithms. On the other hand, other possibilities for optimizations arise, e.g., simultaneous
io-nogood minimization since external atoms can have multiple output values for the same input.
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Unlike HEX-programs, theory solving in CLINGO 5 (and constraint ASP as a special instance
thereof) does not support external atoms with dedicated input and output. Instead, certain atoms
in the logic program are declared as theory atoms whose truth values are set via the external the-
ory. In that, CLINGO 5 follows a global perspective rather than the local one of external atoms in
HEX-programs, where the scope is the rule body (as customary in logic programming), whereby
theory atoms may be shared by different rules. Another more distinguishing difference concerns the
actual semantics of programs, and here in particular foundedness of answer sets. Roughly speaking,
CLINGO 5 fixes a valuation of the theory atoms and computes then an answer set of the program
relative to this valuation; this amounts to using a GL-style reduct where theory atoms are removed
from rules. In contrast, for evaluating HEX-programs all external atoms remain in the rules, accor-
ding to the FLP reduct. While CLINGO 5 makes no further minimality check, for HEX-programs
an unfounded set check is launched which may eliminate a candidate answer set. For example,
CLINGO 5 would return A2 = {Tp} as an answer set for the program Π = {p← &id [p]().} (adap-
ted to the different formalism), which is eliminated by the unfounded set check for HEX-programs.
Notably, the need for external evaluation calls in the unfounded set check leaves room for different
evaluation heuristics as presented in Section 6.

In ordinary ASP solving, one can distinguish unfounded sets due to positive cycles and un-
founded sets due to disjunctions with head cycles. The check for the former is done a priori over
partial assignments and is feasible in linear time; the check for the latter is coNP-hard and typically
done a posteriori under complete assignments only. We performed some experiments with UFS
checking over partial assignments, i.e., running Algorithm 4 also over partial input assignments, but
it soon turned out that the additional cost of more UFS checks exceeded the benefits by far. Also
Gebser, Kaufmann, and Schaub (2013) conducted some experiments with unfounded set checking
for disjunctive ordinary ASP over partial assignments. However, they also reported only moderate
computational benefits, although their UFS check is cheaper than ours due to absence of external
calls. Therefore, we did not pursue the idea of UFS checking over partial assignments further.

Related to techniques for nogood minimization, nowadays most SAT-solvers integrate techni-
ques for learned clause minimization, which remove redundancies from learned clauses by com-
putationally inexpensive procedures (Sörensson & Biere, 2009). However, the role of io-nogoods
learned from external source evaluations in HEX and the role of nogoods learned from conflicts by
a respective ASP-solver, even though both serve the purpose of guiding the search procedure, are
very different. While conflict nogoods are usually obtained by resolution based on an available
implication graph such that minimization techniques as the ones by Sörensson and Biere can be ap-
plied, io-nogoods are not learned using an implication graph but from single oracle calls. Due to the
black box nature of these oracles, they can only be used to retrieve all correct outputs for external
atoms wrt. a given assignment. Hence, techniques for learned clause minimization are not directly
applicable for learning smaller io-nogoods. Nevertheless, such techniques can still be exploited in
our approach for conflict nogood minimization, depending on whether the respective solver used
for performing the main CDNL-search implements them.

Other related work comprises alternative solving techniques, such as the one by Eiter et al.
(2014b), where the semantics of external atoms is captured by so-called support sets, which are si-
milar to our faithful io-nogoods and related to implicants of logical theories (Darwiche & Marquis,
2002; Reiter & de Kleer, 1987). However, different from our approach, the main idea there is to
learn all or sufficiently many support sets at the beginning of the solving process, such that satis-
faction and unsatisfaction of an external atom under given input is completely covered. External
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atom evaluation can then be accomplished by matching the support sets against the interpretation;
this eliminates external calls during solving entirely, but comes at the price of learning up to expo-
nentially many support sets. A related support-set based approach goes a step further and encodes
the semantics of external atoms straight into the ASP-program (Redl, 2017). The exponential worst-
case blowup suggests to use these approaches only for external atoms with a compact and small
representation by support sets. Moreover, since they genuinely depend on exhaustive learning of
support sets at the beginning, they cannot directly benefit from the possibility of partial evaluation
as presented in the previous sections.

The notion of three-valued oracle functions has also been used to extend HEX with lazy-ground-
ing techniques (Eiter, Kaminski, & Weinzierl, 2017), where not only the evaluation of external
atoms is postponed, but also the grounding of the HEX-program itself, by employing as backend-
solver the lazy-grounding ASP solver ALPHA (Weinzierl, 2017).

Finally, Antic, Eiter, and Fink (2013) considered partial HEX-semantics before, by employing
Approximation Fixpoint Theory (AFT) (Denecker, Marek, & Truszczyński, 2000; Denecker, Marek,
& Truszczynski, 2004) that works on intervals in the power set lattice. While our partial oracle
functions amount to their three-valued oracle functions, we only consider two-valued answer sets
and we do not apply a fixpoint construction to define the answer set semantics. Similarly, Pelov,
Denecker, and Bruynooghe (2004) have defined a family of partial stable model semantics for logic
programs with aggregates using AFT. Assignment-monotonic oracle functions are also related to
their approximating aggregate relations which must be precision-monotone and generalize ordinary
aggregate relations to a three-valued semantics.

8.2 Summary and Outlook

In this article, we have pushed efficient evaluation techniques for ASP with external source access,
by introducing three-valued evaluation of external atoms under partial (incomplete) truth value as-
signments. The techniques we introduced yield a full-fledged clear-box integration. Moreover, due
to automatic nogood minimization, developers of external sources do not need to manually describe
implied truth values or inconsistency reasons, but only need to implement a three-valued oracle
function, which keeps the integration of sources simple.

In our experiments, the new techniques yielded a speedup of up to two orders of magnitude;
unsurprisingly, their ranking depends on the instances. This is similar to the observations by Os-
trowski and Schaub (2012), who reported mixed results for different propagation delays. Our results
are also in line with results in SMT, where theory propagation, if doable with small overhead, is
crucial for performance (Dutertre & de Moura, 2006; Lahiri, Nieuwenhuis, & Oliveras, 2006; Nieu-
wenhuis & Oliveras, 2005). We observed that in most cases learning from complete assignments
plus minimization of conflicting nogoods (based on partial assignments) outperforms learning du-
ring search; hence, this setting is suggestive as a default. This is explained by the fact that in this
case, learning focuses on nogoods that are useful for conflict resolution, thus the information gain
is similar and the overhead much smaller. This is in line with the observation by Nieuwenhuis et al.
(2006) that conflict analysis uses only a small fraction of the lemmas learned by theory propagation,
which can be addressed with lazy explanations (Gent, Miguel, & Moore, 2010). The speedup can be
exponential, as evidenced by an external atom whose truth value is definite after assigning a single
input atom, e.g. &empty [p]() to check whether an atom over p is true. Each naive nogood elimi-
nates one of exponentially many assignments, but a linear number of minimized ones eliminate all
wrong guesses.
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There are different directions for ongoing and future work. One topic is to include further heu-
ristics for deciding whether external evaluation is invoked or skipped at some point. This decision
might be based, for instance, on the past information gain; other criteria are conceivable. Another
topic is further improvement of nogood minimization. To this end, the divide-and-conquer strategy
borrowed from Junker’s QUICKXPLAIN algorithm (2004) might be replaced by a more sophistica-
ted one, e.g. the one that Shchekotykhin et al. (2015) developed for their MERGEXPLAIN algorithm.
By the latter, multiple minimal conflict sets (resp., nogoods) can be found during one program run;
this could be integrated into our approach for obtaining multiple minimal io-nogoods.

Acknowledgments

We would like to thank the reviewers for their helpful and constructive comments to improve the
presentation of this article. This work has been supported by the Austrian Science Fund (FWF) via
the projects P24090 and W1225-N23. Antonius Weinzierl is currently supported by the Academy
of Finland, project 251170.

Appendix A. Proofs

Proposition 1. For every HEX-program Π and external predicate &g defined by a two-valued oracle
function, one can redefine &g by an assignment-monotonic three-valued oracle function without
changing the answer sets of Π.

Proof. For each external predicate &g we introduce a new external predicate &g ′, construct program
Π′ by replacing all occurrences of &g in Π by &g ′, and define f&g′(A, ·, ·) = f&g(A, ·, ·) if A is
complete over Π and f&g′(A, ·, ·) = U otherwise. Since under complete assignments all external
atoms in Π have the same truth values as the corresponding external atoms in Π′, and answer sets
are complete assignments by definition, it follows immediately that AS(Π) = AS(Π′).

Theorem 1 (Soundness and Completeness of Algorithm 1). If Algorithm 1 returns for an in-
put program Π (i) an assignment A, then A is an answer set of Π; (ii) the symbol ⊥, then Π is
inconsistent.

Proof. The algorithm extends the conflict-driven algorithm for ordinary ASP as follows:

• The check for compatibility of Â and for minimality wrt. fΠA in the if-block of Part (c) is
added.

• The evaluation of external atoms and addition of nogoods in Part (e).

Without these changes, soundness and completeness of the algorithm for ordinary ASP (as
presented by Drescher et al., 2008) implies that the algorithm returns the projection of some answer
set Â of Π̂ to A(Π) if Π̂ is consistent, and ⊥ otherwise. We now show that the changes adopt the
behavior as desired.

First, the added if-block in Part (c) eliminates those answer sets of Π̂ which are either not
compatible sets of Π, or not minimal models wrt. fΠA. The remaining answer sets of Π̂ projected
to the atoms in Π are exactly the answer set of Π (cf. Definition 2). Thus, the algorithm with the
added if-block in Part (c) but without the addition of Part (e) has exactly the desired behavior.
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Second, the addition of Part (e) is only an optimization and we need to justify that it does not
eliminate answer sets of Π. But this follows from the correctness of Λ(·, ·), which implies that
assignments forbidden by such nogoods would be incompatible with the external sources anyway;
therefore they cannot be compatible sets and also not answer sets.

Proposition 2. If N is a faithful io-nogood such that NO = {σn+1e&g[~p](~c)}, then N is correct
wrt. all programs Π that use e&g[~p](~c).

Proof. Consider a faithful io-nogood N = {σ1a1, . . . , σnan}∪{σn+1e&g[~p](~c)}. Then faithfulness
implies f&e(NI , ~p,~c) = σ(NO). Suppose an assignment A violates N . Then A ⊇ NI and thus
f&e(A, ~p,~c) = σ(NO) = σn+1. However, since σn+1e&g[~p](~c) ∈ A, it follows that A cannot be a
compatible set of any program.

Proposition 3. Let &g [~p](·) be an external atom in a HEX-program Π. Then for all assignments
A, the nogoods Λu(&g [~p],A) in Definition 9 are correct wrt. Π.

Proof. The added nogood for an output tuple ~c such that f&g(A, ~p,~c) = σ, σ ∈ {T,F}, is
{σe&g[~p](~c)} ∪ {σ′p(~c′) ∈ A | p ∈ ~p, σ′ 6= U}. If the nogood is violated by an assignment
A′, then the guess for e&g[~p](~c) wrt. A′ was wrong as the replacement atom is guessed false (resp.
true) but the tuple ~c is in the output (resp. not in the output). Hence, the assignment A′ is not
compatible and cannot be a compatible set anyway.

Proposition 4. Let &g [~p](·) be an external atom in a HEX-program Π. Then for all assignments
A, the nogoods Λmu(&g [~p],A) in Definition 10 are correct wrt. Π.

Proof. The added nogood for an output tuple ~c such that f&g(A, ~p,~c) = σ, σ ∈ {T,F}, is
{σe&g[~p](~c)} ∪ {σ′p(~c′) ∈ A | p ∈ ~p, p 6∈ ~pm, σ

′ 6= U} ∪ {σp(~c′) ∈ A | p ∈ ~pm}. If
the nogood is violated by an assignment A′, then the guess for e&g[~p](~c) wrt. A′ was wrong
as the replacement atom is guessed false (resp. true) but the tuple ~c is in the output (resp. not
in the output). The previous holds despite the fact that literals of form Tp(~c) (resp. Fp(~c)),
where p ∈ ~pm, are omitted from io-nogoods implying a false (resp. true) evaluation of the oracle
function because {Tp(~c) | Tp(~c) ∈ A′} ≥ {Tp(~c) | Tp(~c) ∈ A} (resp. {Fp(~c) | Fp(~c) ∈ A′} ⊇
{Fp(~c) | Fp(~c) ∈ A}) must hold for all p ∈ ~pm, and we have that f&g(A, ~p,~c) = T implies that
f&g(A

′′, ~p,~c) = T for every A′′ ≥ A (resp. that f&g(A, ~p,~c) = F implies that f&g(A
′′, ~p,~c) = F

for every A′′ s.t. {Fp(~c) | Fp(~c) ∈ A′′} ⊇ {Fp(~c) | Fp(~c) ∈ A}), due to the definition of mono-
tonic input parameters. Hence, the assignment A′ is not compatible and cannot be a compatible set
anyway.

Proposition 5. Let A be a partial assignment and N be a faithful io-nogood for &g [~p] over the
atoms in A. Then some N ′ ∈ minimize(Λu(&g [~p],A)) exists such that N ′ ⊆ N .

Proof. The nogood N can be reduced to a subset-minimal set M such that M is a faithful io-
nogood but f&g(N

′′, ~p,~c) = U for all N ′′ with N ′′I ( MI , N ′′O = MO. We observe that M ∈
minimize(Λu(&g [~p],A)) and M ⊆ N .

Proposition 6. Let Λl be an io-complete theory-specific learning function for an external source
&g . Then, for all partial assignments A and input lists ~p we have minimize(Λu(&g [~p],A)) =
min⊆(Λl(&g [~p],A)).
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Proof. Let A be a partial assignment and let ~p be an input list.
(⇒) Let N ∈ minimize(Λu(&g [~p],A)) be an io-nogood learned from Λu after minimiza-

tion. Since f&g(NI , ~p,~c) = σ(NO) by faithfulness, it follows from completeness of Λl that
N ∈ Λl(&g [~p],A). Moreover, since N is minimal, it follows that f&g(N

′
I , ~p,~c) = U for all

N ′ = N ′I ∪NO with N ′I ( NI . Therefore, there can be no N ′ ( N with N ′ ∈ Λl(&g [~p],A), thus
N ∈ min⊆(Λl(&g [~p])).

(⇐) Let N ∈ min⊆(Λl(&g [~p],A)) be a subset-minimal nogood learned from Λl. Since
f&g(NI , ~p,~c) = σ(NO) (due to faithfulness) we have N ∈ Λu(&g [~p],A) by definition of Λu.
Moreover, since N is subset-minimal among the nogoods Λl(&g [~p],A) and Λl is io-complete, we
have that f&g(N

′
I , ~p,~c) = U for all N ′ = N ′I ∪ {σ(NO)e&g[~p](~c)}. But then no atom from N can

be removed as by Definition 11, thus N ∈ minimize(Λu(&g [~p],A)).

Proposition 7. For a set S of faithful io-nogoods with equal input parts and distinct output parts,
Algorithm 2 yields exactly one faithful io-nogood N ′ ∈ minimize(N) for each N ∈ S.

Proof. Let S be a set of faithful io-nogoods with identical input parts and distinct output parts. To
distinguish between the input and the output of Algorithm 2, we denote by So the altered set which
is returned by the algorithm given input S.

First of all, S is only manipulated in Part (c) by replacing the input part of nogoods in S. Hence,
it holds that |S| = |So|. Moreover, all N ∈ S have different output parts which are not changed
in Part (c). As a result, after every replacement exactly one element in the resulting set S′ can be
associated with each nogood in the initial set S. This proves that each input has a corresponding
output nogood. It remains to show that these are minimal faithful io-nogoods.

Let N ∈ S and No ∈ So the corresponding output nogood, i.e. NO = No
O = σn+1e&g[~p](~c).

We have to show that No ∈ minimize(N). According to Definition 11, this means we have to
show that No ⊆ N , that No is a faithful io-nogood, and that f&g(N

′′, ~p,~c) = U for all N ′′ ( No
I .

Clearly, it holds that No ⊆ N since elements are only removed from NI by Algorithm 2.
Next, we prove that No is a faithful io-nogood by showing that faithful io-nogoods in S are

only replaced by faithful io-nogoods, in Algorithm 2. Let S′ be an arbitrary state of S during the
execution of Algorithm 2, and N ′ ∈ S′ a faithful io-nogood. We need to show that N s ∪N ′O is also
a faithful io-nogood for N s = N ′I \ σiai where σiai ∈ N ′I . Since N s ⊂ N ′I , it holds that N s ∪N ′O
is an io-nogood. In Part (c),N ′I is replaced byN s in S only ifN ′O ∈ output for 〈N s , output〉 ∈ ch ,
which is the case only if f&g(N

s , ~p,~c) =σ(N ′O) 6= U, due to Part (b) of the algorithm. Note that
it is ensured in Part (b) that for N s there is exactly one 〈N s , output〉 ∈ ch . Further, we know
that σ(N ′O) 6= U as N ′ is an io-nogood. Due to assignment-monotonicity of f&g, we have that
f&g(N

s , ~p,~c) = X , X ∈ {T,F}, implies f&g(A, ~p,~c) = X for all partial assignments A � N s ,
by Definition 6. We derive that f&g(A, ~p,~c) = σ(N ′O) for all partial assignments A ⊇ N s and
thus, that N s ∪ N ′O is in fact a faithful io-nogood. Since we know that N is a faithful io-nogood,
we conclude that No is a faithful io-nogood as well.

Finally, we prove that f&g(N
′′, ~p,~c) = U for all N ′′ ( No

I . Assume to the contrary that we
have f&g(N

′′, ~p,~c) 6= U for some N ′′ ( No
I , and let σiai ∈ No

I \ N ′′. Since σiai ∈ No
I , we

have that N s = N ′I \ σiai holds for some N ′ that is chosen during the execution of Algorithm 2
in Part (a) (i.e. in the iteration when it is tried to obtain smaller nogoods by removing σiai), with
N ′O = σn+1e&g[~p](~c) andN ′I ⊆ No

I . As we have that σiai ∈ No
I , we derive that f&g(N

s , ~p,~c) = U.
OtherwiseN ′ would be replaced byN s∪N ′O in Part (c), and we would obtain σiai 6∈ No

I . However,
we obtain that f&g(N

′′, ~p,~c) 6= U, f&g(N
s , ~p,~c) = U and N s ⊃ N ′′, which together contradicts
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that f&g is assignment-monotonic. This proves that indeed f&g(N
′′, ~p,~c) = U for all N ′′ ( No

I

and thus, No ∈ minimize(N).

Proposition 9. Let A be a complete assignment, X be a partial assignment, and f&g be an
assignment monotonic three-valued oracle function. Then, f&g(A ∪̇ ¬.X, ~p,~c) = X , X ∈ {T,F},
implies for every assignment X′ � X that f&g(A ∪̇ ¬.X′, ~p,~c) = X .

Proof. Let A be a complete assignment, X a partial assignment, and f&g an assignment monotonic
three-valued oracle function. Further let f&g(A ∪̇ ¬.X, ~p,~c) = X , where X ∈ {T,F}, and let X′

be an arbitrary partial assignment s.t. X′ � X. We need to show that f&g(A ∪̇ ¬.X′, ~p,~c) = X .
First, we show that A ∪̇ ¬.X′ � A ∪̇ ¬.X. Recall that A ∪̇ ¬.X = (A \ {Ta | Ta ∈ X or Ua ∈
X}) ∪ {Fa | Ta ∈ X} ∪ {Ua | Ua ∈ X and Ta ∈ A}, according to Definition 13. Since
X′ � X, we have that {Ta ∈ X} ∪ {Fa | Fa ∈ X} ⊆ X′, due to the definition of “�”. Hence,
we derive that {Ta | Ta ∈ X or Ua ∈ X} � {Ta | Ta ∈ X′ or Ua ∈ X′}. It follows that
(A \ {Ta | Ta ∈ X′ or Ua ∈ X′}) � (A \ {Ta | Ta ∈ X or Ua ∈ X}). It is also easy to
see that {Fa | Ta ∈ X′} � {Fa | Ta ∈ X} and {Ua | Ua ∈ X′ and Ta ∈ A} � {Ua |
Ua ∈ X and Ta ∈ A}. Consequently, we infer that A ∪̇ ¬.X′ � A ∪̇ ¬.X. Because we have
that f&g(A ∪̇ ¬.X, ~p,~c) = X , and due to assignment monotonicity according to Definition 6, from
A ∪̇ ¬.X′ � A ∪̇ ¬.X it follows that f&g(A ∪̇ ¬.X′, ~p,~c) = X .

Proposition 10. Let Π be a HEX-program and let A be a complete assignment over A(Π). If there
is a solution S for ΩΠ with assumptions AA such that for all external atoms &g [~p](~c) in Π it holds
that

(1) Te&g[~p](~c) ∈ S and A 6|= &g [~p](~c) implies A ∪̇ ¬.S 6|= &g [~p](~c), and

(2) Fe&g[~p](~c) ∈ S and A |= &g [~p](~c) implies A ∪̇ ¬.S |= &g [~p](~c),

then U =
{
Xa | a ∈ A(Π), Xa ∈ S, X ∈ {T,F}

}
is an unfounded set for Π wrt. A.

Proof. The proof is identical to the proof for Theorem 10 by Eiter et al. (2014a) modulo the different
representation of assignments by sets of ground atoms used by Eiter et al. (2014a).

Proposition 11. Let Π be a HEX-program, let A be a complete assignment over A(Π) and sup-
pose Algorithm 4 is executed with Π and A as inputs. If there is an unfounded set U for Π wrt.
A s.t. {Ta | Ta ∈ A ∩ U} 6= ∅, then there is a solution S for ΩΠ with assumptions AA, s.t.
{Ta | Ta ∈ A ∩ S} 6= ∅, that satisfies conditions (1) and (2) of Proposition 10 and all transfor-
med nogoods TΩ(N) added to Ω′Π in Part (d) of Algorithm 4.

Proof. Let Π be a HEX-program, let A be a complete assignment over A(Π) and suppose Algo-
rithm 4 is executed with Π and A as inputs. Further, let there be an unfounded set U for Π wrt. A
s.t. {Ta | Ta ∈ A ∩U} 6= ∅. According to Proposition 8 by Eiter et al. (2014a), there is a solution
S for ΩΠ with assumptions AA s.t. {Ta | Ta ∈ A ∩ S} 6= ∅. In addition, it follows directly from
Proposition 11 by Eiter et al. (2014a) that S satisfies conditions (1) and (2) of Proposition 10.

It is easy to see that any faithful io-nogood as defined in Definition 8 is also a valid input-output-
relationship according to Definition 9 by Eiter et al. (2014a). Moreover, we only consider faithful
io-nogoods returned by the learning function Λ. Consequently, we infer that S also satisfies all
transformed nogoods TΩ(N) added to Ω′Π in Part (d) of Algorithm 4 according to Proposition 15 by
Eiter et al. (2014a).
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Theorem 2 (Soundness and Completeness of Algorithm 4). Given a HEX-program Π and a
complete assignment A over A(Π) as inputs, Algorithm 4 returns true if there is an unfounded set
U for Π wrt. A s.t. {Ta | Ta ∈ A ∩U} 6= ∅, and false otherwise.

Proof. Let Π be a HEX-program, let A be a complete assignment over A(Π) and suppose Algo-
rithm 4 is executed with Π and A as inputs.

We first show that Algorithm 4 returns true if there is an unfounded set U for Π wrt. A such
that {Ta | Ta ∈ A ∩U} 6= ∅. Consider the case that there is an unfounded set U for Π wrt.
A such that {Ta | Ta ∈ A ∩U} 6= ∅. According to Proposition 11, a solution S for ΩΠ with
assumptions AA exists, such that {Ta | Ta ∈ A ∩ S} 6= ∅, which does not violate any nogood
added to Ω′Π in Part (d) of Algorithm 4. Consequently, the complete assignment S is generated
by Algorithm 4 and Part (c) is executed. Since S satisfies conditions (1) and (2) of Proposition
10, according to Proposition 11, the variable isUFS is not set to false in Part (c), and because
{Ta | Ta ∈ A ∩ S} 6= ∅ the algorithm returns true .

Now we show that Algorithm 4 returns false if there is no unfounded set U for Π wrt. A such
that {Ta | Ta ∈ A ∩U} 6= ∅. Towards contradiction, suppose that there is no unfounded set U
for Π wrt. A such that {Ta | Ta ∈ A ∩U} 6= ∅ and that Algorithm 4 does not return false . This
means that false is not returned in Part (b) because true is returned before the search space has
been completely explored. Accordingly, a complete assignment S is generated by Algorithm 4
and Part (c) is executed, which satisfies conditions (1) and (2) of Proposition 10. Moreover, it
must hold that {Ta | Ta ∈ A ∩ S} 6= ∅ because otherwise true would not be returned in Part (c).
However, from Proposition 10 we know that U =

{
Xa | a ∈ A(Π), Xa ∈ S, X ∈ {T,F}

}
is an unfounded set for Π wrt. A. Since we have that {Ta | Ta ∈ A ∩ S} 6= ∅, we have that
{Ta | Ta ∈ A ∩U} 6= ∅ and hence, we infer that there is an unfounded set U for Π wrt. A such
that {Ta | Ta ∈ A ∩U} 6= ∅. Thus, we derive a contradiction, and infer that Algorithm 4 returns
false if there is no unfounded set U for Π wrt. A such that {Ta | Ta ∈ A ∩U} 6= ∅.

Appendix B. Line Chart Representations of Benchmark Results

In this section, we present line chart representations of our empirical results from Section 7 as an
alternative visualization. At this, each chart corresponds to one table from Section 7. The instance
sizes are shown on the x-axis, and the running times in seconds on the y-axis.
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Figure 6: Results for random PB-problems with 4 to 40 variables (all answer sets).
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Figure 7: Results for random PB-problems with 4 to 40 variables (first answer set).
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Figure 8: Results for random PB-problems with PB-constraint length of 2 to 20 (all answer sets).
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Figure 9: Results for random PB-problems with PB-constraint length of 2 to 20 (first answer set).
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Figure 10: Results for taxi assignment with ontology access (all answer sets).

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

50

100

150

200

250

300

Instance Size

R
un

ni
ng

Ti
m

e
in

Se
co

nd
s

never
periodic
always
ngm-sq

ngm
ngm-c
qxp

qxp-c

Figure 11: Results for taxi assignment with ontology access (first answer set).
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Figure 12: Results for conflicting strategic companies (all answer sets).
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Figure 13: Results for conflicting strategic companies (first answer set).
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Figure 14: Results for taxi assignment with ontology access wrt. partial evaluation during unfounded
set search (all answer sets).

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

50

100

150

200

250

300

Instance Size

R
un

ni
ng

Ti
m

e
in

Se
co

nd
s

never
always
ufs-p
ufs-a

always + ufs-a
qxp-c

Figure 15: Results for taxi assignment with ontology access wrt. partial evaluation during unfounded
set search (first answer set).
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Figure 16: Results for strategic companies with external controls relation (all answer sets).
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Figure 17: Results for strategic companies with external controls relation (first answer set).
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Figure 18: Results for strategic companies with nonmonotonic external controls relation (all answer
sets).
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Figure 19: Results for strategic companies with nonmonotonic external controls relation (first ans-
wer set).
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