
Journal of Artificial Intelligence Research 62 (2018) 579-664 Submitted 10/17; published 07/18

ScottyActivity: Mixed Discrete-Continuous
Planning with Convex Optimization

Enrique Fernández-González efernan@csail.mit.edu
MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar St, Office: 32-224 Cambridge, MA 02139 USA

Brian Williams williams@csail.mit.edu
MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar St, Office: 32-224 Cambridge, MA 02139 USA

Erez Karpas karpase@technion.ac.il

Technion Israel Institute of Technology

Technion City, Haifa 32000, Israel

Abstract

The state of the art practice in robotics planning is to script behaviors manually, where
each behavior is typically generated using trajectory optimization. However, in order for
robots to be able to act robustly and adapt to novel situations, they need to plan these
activity sequences autonomously. Since the conditions and effects of these behaviors are
tightly coupled through time, state and control variables, many problems require that the
tasks of activity planning and trajectory optimization are considered together. There are
two key issues underlying effective hybrid activity and trajectory planning: the sufficiently
accurate modeling of robot dynamics and the capability of planning over long horizons.
Hybrid activity and trajectory planners that employ mixed integer programming within a
discrete time formulation are able to accurately model complex dynamics for robot vehicles,
but are often restricted to relatively short horizons. On the other hand, current hybrid
activity planners that employ continuous time formulations can handle longer horizons but
they only allow actions to have continuous effects with constant rate of change, and restrict
the allowed state constraints to linear inequalities. This is insufficient for many robotic
applications and it greatly limits the expressivity of the problems that these approaches can
solve. In this work we present the ScottyActivity planner, that is able to generate practical
hybrid activity and motion plans over long horizons by employing recent methods in convex
optimization combined with methods for planning with relaxed plan graphs and heuristic
forward search. Unlike other continuous time planners, ScottyActivity can solve a broad
class of robotic planning problems by supporting convex quadratic constraints on state
variables and control variables that are jointly constrained and that affect multiple state
variables simultaneously. In order to support planning over long horizons, ScottyActivity
does not resort to time, state or control variable discretization. While straightforward
formulations of consistency checks are not convex and do not scale, we present an efficient
convex formulation, in the form of a Second Order Cone Program (SOCP), that is very fast
to solve. We also introduce several new realistic domains that demonstrate the capabilities
and scalability of our approach, and their simplified linear versions, that we use to compare
with other state of the art planners. This work demonstrates the power of integrating
advanced convex optimization techniques with discrete search methods and paves the way
for extensions dealing with non-convex disjoint constraints, such as obstacle avoidance.

c©2018 AI Access Foundation. All rights reserved.

Fernández-González, Williams & Karpas

1. Introduction

Due to advances in mechanical design and control, the capabilities of robots have been im-
proving at a dramatic rate over the last few years. However, most robots operating in the
real world are not autonomous. For example, in the recent DARPA Robotics Challenge,
participants demonstrated very impressive humanoid robot behaviors, such as walking and
climbing stairs, grabbing and using power tools to drill holes and even driving cars (Fal-
lon, Kuindersma, Karumanchi, Antone, Schneider, Dai, D’Arpino, Deits, DiCicco, Fourie,
Koolen, Marion, Posa, Valenzuela, Yu, Shah, Iagnemma, Tedrake, & Teller, 2015). How-
ever, all of these behaviors were controlled remotely by a human operator. Other robots are
used routinely in scientific missions, such as the ones performed by Woods Hole Oceano-
graphic Institution (WHOI) in which autonomous underwater vehicles (AUVs) are sent to
collect data of scientific interest determined by experts. Although these robots operate
mostly on their own while the mission is underway, they often execute fixed scripts that are
hand-written by experts in a tedious, time-consuming and error-prone way. Teleoperation
or script-based methods do not scale in a cost efficient way and are not appropriate for
situations with long communication delays (e.g. space) or where not all the information
is known in advance. For this and other cases it is desirable to have autonomous robots
capable of reasoning about their goals and the environment they operate in.

Tasks that do not require reasoning over discrete conditions or effects are successfully
handled by modern control approaches, such as dynamic motion planning, model-predictive
control or trajectory optimization. While these methods show excellent results in dealing
with complex non-linear dynamics in tight environments, they do not scale for long time
horizons, and are often used either reactively or in very short missions, but not in long term
robotic mission planning.

In order to plan missions for autonomous robot vehicles with state-dependent goals
that are subject to temporal deadlines and coordination constraints, it becomes essential
to model their dynamics with sufficient accuracy. Planners handling these missions need
to consider, as a minimum, the allowed velocities that these vehicles can travel with, as
well as be able to subject these robots to complex state constraints, such as being inside
regions or maintaining certain distances with other robots. Planning for these missions
involves reasoning over discrete and continuous conditions and effects, as well as the pre-
viously mentioned robot dynamics, coordination constraints and temporal deadlines. As
a consequence, the times, states and control variables of these robots become tightly cou-
pled. In order to find high quality feasible plans, it becomes necessary to perform joint
hybrid activity and trajectory planning. Finally, typical missions often span many hours
or days. Often, some activities execute in short times, such as activating or deactivating
sensor suites, while others can take very long, such as traversing long distances. Since all
these activities can be intrinsically connected, it is essential to handle all of them effectively
over long horizons.

Over the last few years, the robotics community has had tremendous success with trajec-
tory optimization and other sophisticated methods to control robots with many degrees of
freedom and very complicated dynamics. It is now common to see, not only in simulation,
but even more impressively, in real hardware, demonstrations of robots walking in com-
plex terrains, climbing stairs, running and even jumping. However, as impressive as these

580

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

demonstrations are, the robotics community has not often considered the activity planning
problem, and researchers have resorted to sequencing these complex behaviors computed
using trajectory optimization by hand. These approaches have been, in general, restricted
to limited horizons in which fixed time discretization works well. Therefore, these methods
do not address the problem of planning missions of robot vehicles over long horizons in
which autonomous activity planning is required.

In order to reason effectively with both the discrete and continuous behaviors that
robots exhibit, Kongming (Li & Williams, 2008; Li, 2010) was introduced as the first
approach that merged activity planning and trajectory optimization to generate practical
plans for real robots. By reasoning with both discrete and continuous effects depending
on control variables, Kongming made important advances in merging both worlds, and
demonstrated its practical usefulness in real underwater robot missions. Unfortunately,
Kongming’s approach requires a fixed time discretization that hinders its ability to scale
well to missions with long horizons in which short and long lived activities coexist.

On the other hand, heuristic forward search (HFS) approaches for activity planning
have shown over the last two decades immense progress in the scale of the problems that
they can solve. A large part of their success comes from the use of very effective heuristics
such as delete-relaxations (Hoffmann & Nebel, 2001) or, more recently, landmarks (Richter
& Westphal, 2010). The COLIN planner (Coles, Coles, Fox, & Long, 2012), for exam-
ple, presented a heuristic forward search with delete relaxations approach to handle both
temporal planning and continuous time-dependent effects. Like previous planners such as
LPSAT (Wolfman & Weld, 1999) and LPGP (Long & Fox, 2003) that interleaved linear
programming with discrete search, COLIN uses linear programs to test the consistency of
partial states. Since COLIN does not discretize time, it can handle long horizons with
short and long activities well. However, COLIN is not sufficiently expressive for solving
robot hybrid activity and trajectory planning problems. COLIN only supports continuous
time-dependent effects with constant rates of change and state variable constraints that are
simple linear inequalities. While it can be used for some robotic hybrid activity and tra-
jectory planning problems, this requires defining many activities with multiple discretized
values for the different desired rates of change of the continuous effects (such as the ve-
locities of each robot). This does not scale well to practical problems, as we demonstrate
in our empirical evaluation section. Furthermore, many typical robot planning problems
like the ones that will be discussed in this work cannot be modeled with COLIN since the
state constraints are only limited to simple linear inequalities. As we will discuss later,
our approach draws inspiration from COLIN in that we also interleave discrete heuristic
forward search with the solving of mathematical programs.

Finally, over the last few years, the robotics community has shown a great interest in the
combined Task and Motion Planning problem (TAMP) (Srivastava, Fang, Riano, Chitnis,
Russell, & Abbeel, 2014; Cambon, Alami, & Gravot, 2009; Garrett, Lozano-Perez, & Kael-
bling, 2014; Lozano-Pérez & Kaelbling, 2014). Many of these approaches combine state of
the art discrete activity planners with specialized motion planners for robotic applications.
In order to do that, these approaches often discretize the robot states on demand as they
need to, and commit early to these discretized states as soon as they find one that works.
Most of the work in TAMP has focused on manipulation tasks, where planners need to
handle very complex and highly non-linear and non-convex constraints over many degrees

581

Fernández-González, Williams & Karpas

of freedom. While these approaches have shown impressive results in this domain, they
are often limited to classical activity planning, with no temporal constraints, and in which
dynamics are largely ignored. They often use discretized steps and are limited to short
horizons, and therefore these approaches are generally not applicable to the robot vehicle
mission planning problems that we target in this work.

In this work we present ScottyActivity, a hybrid activity and trajectory planner de-
signed to effectively plan missions for robot vehicles over long horizons. By supporting
convex state constraints and control variables that often model controllable rates of change
or robot velocities, ScottyActivity can model a wide range of real robotic missions. By using
a continuous time formulation, ScottyActivity scales effectively to missions with long dura-
tions, even in the presence of both short and long span activities. ScottyActivity exploits
recent advances in convex optimization and avoids discretizing state or control variables,
which in turn prevents early commitment to bad discretization choices. ScottyActivity uses
continuous convex optimization to choose these continuous states, control variables and
times, but leaves this choice open until the final plan is found, allowing a great amount of
flexibility to the optimizer until the end, which others have shown to provide great advan-
tages (Toussaint, 2015).

Our planner is possible thanks to three insights. First, due to recent advances in op-
timization, a restricted form of quadratically constrained programs, called Second Order
Cone Programs (SOCPs), can be solved efficiently for real world problems. Second, nearly
all of the requirements of the robot vehicle missions that ScottyActivity targets can be
encoded with cone constraints, with the exception of a non-convex term resulting from
the product of control variables and time. Third, an encoding trick allows us to eliminate
this non-convex term, resulting in a SOCP encoding that is very fast to solve and that
our planner repeatedly uses to test the consistency of partial plans. Our SOCP encoding
allows us to impose upper bound constraints on the norm of vectors of control variables
(e.g. v2

x +v2
y ≤ v2

max), enforce convex quadratic state constraints (such as being inside ellip-
soidal regions or ensuring a maximum distance between objects) and use the same control
variables in as many simultaneous effects as needed. We do this without resorting to time,
state or control variable discretization, which allows us to maintain the high performance
of continuous time heuristic forward search (HFS) planners. While SOCPs are harder to
solve than the linear programs that other continuous time planners use, our encoding natu-
rally degrades to a, more efficient, linear program when the features that require quadratic
constraints are not used in the problem.

The work presented here is an extension of our earlier work in which we introduced the
SOCP optimization model (Fernandez-Gonzalez, Karpas, & Williams, 2017) and our initial
iteration of the ScottyActivity planner (Fernandez-Gonzalez, Karpas, & Williams, 2015).
Our first version introduced the use of control variables in a continuous hybrid planning
approach but uses a much more restrictive consistency checking method and is limited to
significantly less expressive robot applications. Compared to our later publication, this
work presents many additions. First, we introduce a new search algorithm called obj-EHC
that attempts to produce better plans by breaking heuristic ties with the problem objective
function. Second, we present extended benchmarks in which we compare the performance
of this new search algorithm to the standard EHC and we show that the returned plans
are significantly better in typical robotic planning problems. Third, we add a section in

582

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

which we prove that invariant convex conditions can be enforced efficiently by imposing
them at switch points. Fourth, we add additional benchmarks that show the importance
of using continuous time (by comparing with Kongming) and continuous control variables
(by comparing with POPF). Among the new benchmarks, we also include a comparison of
our approach against a mixed integer optimization method, and show that we find plans of
comparable or better quality two orders of magnitude faster. Finally, we provide many more
details and additional explanations in all sections of the paper, especially in the approach,
convex optimization model, heuristic and problem statement.

In order to plan efficiently over long horizons, ScottyActivity makes two fundamental
assumptions: the absence of obstacles and the restriction of robot behaviors to first-order
linear dynamics. In order to deal with obstacles, we propose the ScottyPath planner, that
uses heuristic forward search and the convex model described in this work to find obstacle-
free state trajectories for ScottyActivity plans. We expand the work presented here and we
describe ScottyPath and its interaction with ScottyActivity in another work (Fernandez-
Gonzalez, 2017). The dynamics restriction is strong, but ScottyActivity can still plan effec-
tively common long duration robotic missions, where robot behaviors can be approximated
with linear dynamics. Since ScottyActivity supports control variables and convex quadratic
state constraints, we can solve rich robotic planning missions that cannot be modeled with
current activity planners. However, in order to consider more detailed dynamics during plan
execution, we propose an additional planner, which we are currently developing, that uses
a receding-horizon formulation. This planner simultaneously combines a detailed dynamics
discrete-time formulation over a limited horizon with the same simplified linear dynamics
continuous-time formulation described in this work for the rest of the long horizon in the
plan.

The organization of this paper is as follows. In Section 2 we describe the background in
planning with continuous change that supports ScottyActivity. In Section 3 we present a
motivating scenario that illustrates a real world problem that could not be solved with ap-
proaches prior to our planner. Our problem statement is described in Section 4. Section 5
describes and justifies the piecewise linear restriction on trajectories that ScottyActivity
imposes and that allows us to handle complex convex conditions very efficiently. Section 6
describes the details of our planner. Our convex optimization model, one of the key innova-
tions of our work, is presented in Section 7. Section 8 presents the experimental evaluation
of our planner, including several new benchmarking domains that illustrate the new capa-
bilities of ScottyActivity. Finally, Section 9 presents the conclusions of this work as well as
avenues for future research. We leave for the appendix the new region-based system that we
use to succinctly represent the unique effects and constraints that ScottyActivity supports
and that are hard to express with regular Planning Domain Definition Language (PDDL)
(Appendix B).

2. Related Work

While no other planner that we are aware of solves the exact same problem that our planner
does, a multitude of approaches have emerged over the last decade to plan with mixed
discrete-continuous change or with combined task and motion planning, and researchers

583

Fernández-González, Williams & Karpas

have applied these planning techniques to real robotic missions. In this section we discuss
the most relevant approaches and their relation with ScottyActivity.

2.1 Planning Graph Approaches

One of the first attempts to integrate planning with continuous actions was made by the
Kongming planner (Li & Williams, 2008), that uses an approach that mixes an analog to the
Planning Graph from Graphplan (Blum & Furst, 1997) and mixed integer optimization. Due
to the features it supports, Kongming is perhaps the planner that is closest to ScottyActivity
in the type of problems that both can solve. Kongming is the first activity planner to support
control variables (such as controllable velocities in moving robots) affecting continuous
effects. One of the main innovations introduced by Kongming consists in representing
continuous effects with flow tubes, that are abstractions of the infinite number of trajectories
that a continuous action can produce. Another key innovation introduced by Kongming is
the Hybrid Flow Graph, the continuous analog to Graphplan’s Planning Graph. Hybrid
actions (i.e. actions with both discrete and continuous conditions or effects) connect initial
state regions to goal regions after some fixed duration using the flow tubes generated from
the system dynamics. Kongming expands the Hybrid Planning Graph with alternating
action and fact layers until the goal conditions are non-mutex in the last fact layer. The
problem is then encoded as a mixed logic linear (non-linear) program that contains the
system dynamics constraints on the state variables and logic constraints on binary variables
for the discrete conditions and effects and that is similar to Blackbox’s SAT encoding (Kautz
& Selman, 1999). Kongming alternates between trying to solve the ML(N)LP and adding
additional layers to the graph until the ML(N)LP solver returns a solution.

Later, the Kongming planner was extended to support temporally-extended goals by
reformulating them into durative actions with effects that add specific predicates that need
to hold at the end of the plan. This extension also added the capability of supporting
actions with flexible durations (Li, 2010; Li & Williams, 2011).

Although Kongming’s approach is innovative, it suffers from performance degradation
issues in medium to large problems due to the fixed time-step discretization that its graph
layers are subject to. In problems in which the planning horizon is moderately large and
where short and long lived activities coexist, this involves creating many layers. As the
number of layers increases, identifying mutex relations becomes exponentially more com-
plicated. This also slows down significantly the ML(N)LP solver, as each additional layer
adds many more additional variables and constraints. Kongming inspires ScottyActivity in
its representation of continuous effects that depend on continuous control variables.

2.2 Heuristic Forward Search Planners

Heuristic forward search approaches have dominated all planning competitions since the
development of the FF planner (Hoffmann & Nebel, 2001). This approach has been extended
to address problems requiring temporal coordination (Coles, Fox, Long, & Smith, 2008;
Eyerich, Matmüller, & Röger, 2009). Later, the COLIN planner (Coles et al., 2012) extended
these previous approaches to problems with linear time-varying processes. COLIN solves
temporal planning problems with continuous effects as defined in version 2.1 of the Planning
Domain Definition Language (PDDL2.1) (Fox & Long, 2003). In these problems actions can

584

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

have continuous time-varying effects, whose rate of change is specified by a fixed value. In
order to solve the mixed discrete-continuous planning problem, COLIN tests the consistency
of partial plans with linear programs, which have been used before by other planners such as
LPSAT (Wolfman & Weld, 1999) and LPGP (Long & Fox, 2003). In these linear programs
the decision variables are the continuous state variables and the times at which actions are
executed. The continuous linear time-varying effects and the temporal relations between
actions are encoded as constraints. The linear program is also used at each step of the
search to determine the minimum and maximum possible bounds for each state variable
in order to prune actions that cannot possibly be feasible at that point of the search.
COLIN’s heuristic is based on the Temporal Relaxed Planning Graph and delete relaxations.
Similarly to MetricFF (Hoffmann, 2003), COLIN’s planning graph expansion keeps track
of the bounds of state variables, that are only allowed to grow (and never get smaller) as a
result of the change produced by the continuous effects. Although COLIN is an efficient and
capable planner, it is not expressive enough to solve the kind of robotic problems we want
to target. COLIN only supports continuous effects with fixed rates of change, according to
the following equation:

x(tend) = x(tstart) + rate-of-change · (tend − tstart) (1)

COLIN’s formulation cannot represent continuous controllable rates of change (control
variables), that are required to model, for example, the controllable velocities of moving
vehicles. We can simulate this by creating multiple actions with discretized fixed rates of
change. However, as we will show later, this solution does not scale well, especially in the
case where multiple control variables actuating in multiple state variables are needed.

COLIN was later extended by POPF (Coles, Coles, Fox, & Long, 2010), that improves
its performance by using a partial order representation of the underlying state, and OP-
TIC (Benton, Coles, & Coles, 2012), that supports preferences as introduced in PDDL3
(Gerevini, Haslum, Long, Saetti, & Dimopoulos, 2009). Although these planners lack the
ability to represent robot behaviors naturally (due to, among others, the absence of control
variables), they have been used in multiple robotic applications due to their robustness and
scalability. For example, POPF was used to find automated inspection plans of underwater
installations (Cashmore, Fox, Larkworthy, Long, & Magazzeni, 2014). However, in this
case the planner did not explicitly consider the continuous motion of the robot, but instead
chose a mission path by selecting discrete waypoints that were previously generated using
random sampling motion planning techniques.

In some situations it is necessary to consider explicitly the robot motions during planning
to ensure, for example, that temporal and spatial constraints are always satisfied. This is
the reason why we have developed the ScottyActivity planner. ScottyActivity extends
the expressivity of previous heuristic forward search planning approaches by, among others,
adding support for continuous control variables, that are essential to model robotic domains.

However, ScottyActivity is not the only planner that has addressed the problem of plan-
ning with control parameters. Recently, POPCORN (Savas, Fox, Long, & Magazzeni, 2016)
formalized the notion of continuous control parameters as an additional element of actions
that are chosen by the planner. Contrary to ScottyActivity, POPCORN’s control parame-
ters can only be used in discrete numeric effects and not as rates of change in continuous

585

Fernández-González, Williams & Karpas

effects. Other recent approaches have also considered continuous control parameters, but
are limited to discrete time and change (Pantke, Edelkamp, & Herzog, 2016).

All the planning approaches discussed previously are limited to linear continuous ef-
fects. However, over the last few years the planning community has made attempts to use
the previous planning formalisms in non-linear settings. One popular approach consists in
interleaving temporal planning with an external domain-specific solver capable of reasoning
with complex non-linear change. This approach has been used successfully to solve power
balancing problems in an electricity network (Piacentini, Alimisis, Fox, & Long, 2013). An
alternative approach extends COLIN to handle a limited form of non-linear continuous
monotonic effects using an iterative convergence method that repeatedly solves linear pro-
grams (Bajada, Fox, & Long, 2015). However, the assumptions required by this approach
are not compatible with typical robot behaviors such as the ones that arise in the robotic
mission planning targeted by this work. Most of the other approaches to planning with
non-linear effects have focused on PDDL+ problems and are described in the next section.

2.3 PDDL+ Planners

PDDL+ (Fox & Long, 2006) significantly enhances the expressivity of PDDL by introduc-
ing processes, events and must-happen semantics. While non-linear change can also be
represented with PDDL2.1, the rich semantics of PDDL+ processes and events, that make
it easier to specify must-happen physical behaviors, has encouraged researchers to support
non-linear effects in most PDDL+ planners. The first of such planners was UPMurphi
(Della Penna, Magazzeni, Mercorio, & Intrigila, 2009), that uses an uninformed discretize
and validate approach. This approach was recently improved by the DiNo planner (Pi-
otrowski, Fox, Long, Magazzeni, & Mercorio, 2016) by introducing an efficient heuristic
that vastly outperforms UPMurphi. Lately, the planning community has also explored
SMT based techniques to solve PDDL+ planning problems with good results (Bryce, Gao,
Musliner, & Goldman, 2015; Bogomolov, Magazzeni, Minopoli, & Wehrle, 2015; Cashmore,
Fox, Long, & Magazzeni, 2016).

Most PDDL+ planners are, in general, more expressive than our planner in several ways,
like their support of processes, events, must-happen semantics and continuous change that
is non-linear in time. However, their semantics do not represent robot dynamics accurately,
since they do not support control variables and are unable to model, for example, the
motivating scenario described in Section 3.1. Several of these planners also suffer from
scalability issues since they require time and state discretization.

2.4 Combined Trajectory and Motion Planning Approaches (TAMP)

Over the last few years, the robotics community has recently expressed a significant interest
in the combined task and motion planning problem, and many interesting approaches have
emerged.

One of the most interesting ones integrates off-the-shelf task and motion planners by
using a novel representational symbolic abstraction (Srivastava et al., 2014). The architec-
ture of this planner alternates between solving discrete symbolic planning problems with
abstracted poses, verifying and refining those plans using a motion planner and generating
additional discrete poses when needed. This approach is innovative in that whenever the

586

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

motion planner is unable to find collision free paths between poses, objects are removed one
by one in order to discover which one is responsible for the plan failure. This information
is then added to the symbolic planning problem that can then decide that an object in the
way should first be moved to a different location. A related approach (Cambon et al., 2009)
also interweaves a symbolic planner (MetricFF) with a roadmap motion planner. In this
case the symbolic planning formulation is extended to include geometric constraints and a
roadmap for each movable element is maintained and extended as necessary.

On the other hand, the FFRob planner (Garrett et al., 2014) approaches this problem
by extending the heuristic ideas of the symbolic FF planner to motion planning by using a
semantic attachments strategy. A state for FFRob is composed of simple true/false literals
and also domain-dependent literals (such as reachability conditions) whose true/false value
is determined by a test function that is evaluated lazily on demand. FFRob maintains during
search a conditional reachability graph that represents the connectivity of the sampled
configurations.

Another interesting approach by Lozano-Perez et al frames this problem as a geometric
constraint-satisfaction problem (Lozano-Pérez & Kaelbling, 2014). The goal, in this case,
consists in finding a sequence of activities forming a plan skeleton in which the specific
robot and object poses are not bound until the CSP is solved by an off-the-shelf constraint
satisfaction solver. However, the domains of the unbound variables need to be arbitrar-
ily discretized in advance. Most of the planners discussed above approach the problem
by bringing the continuous world of motion planning into the discrete symbolic planning
formulation. This is often done by discretizing the continuous space either in advance or
lazily during runtime as needed. The main advantage of this idea is that they can then use
slightly modified off-the-shelf symbolic and motion planners. An important disadvantage,
though, is the need to perform a discretization whose size needs to be chosen in advance.

Alternative approaches have tried to go in the opposite direction, by bringing the discrete
symbolic world into the continuous space. These approaches use symbolic planning to
generate sequences of actions in which the values of the continuous variables are not bound
and then formulate large optimization problems to resolve these values. The main advantage
of these methods is that no arbitrary discretization is required and that the solver can
choose the best values for the continuous variables at the end in order to optimize for some
criteria. This approach would have seemed intractable a few years ago, but impressive
advances in trajectory optimization and non-linear solvers have made this a real possibility.
For instance, Toussaint (2015) demonstrates this approach in a manipulation problem in
which a robot picks and places cylinders and plates from a table in order to assemble the
highest possible stable tower. Toussaint generates action sequences using a relatively simple
symbolic planning approach but, more interestingly, solves a large optimization problem at
the end in order to find the best final and intermediate positions of all the objects in order
to assemble the highest tower.

Most of the approaches discussed so far have dealt almost exclusively with manipulation
problems, which present on itself very complicated domain specific challenges. These studies
often neglect temporal constraints or robot dynamics as these are not necessary in most
manipulation problems.

The ScottyActivity planner considers problems where the robot behaviors are subject
to dynamics and where temporal and state constraints are intrinsically connected. Scotty-

587

Fernández-González, Williams & Karpas

Activity needs to solve a problem in which robot behaviors and tasks need to be selected
while constructing control policies jointly, in order to satisfy the problem constraints. We
discuss this hybrid activity and motion planning problem in the next section and provide an
example scenario that we later use to construct our problem statement.

3. Hybrid Activity and Trajectory Planning

Common robotic applications require reasoning with continuous and discrete robot behav-
iors. These behaviors specify, for example, how robots move according to their dynamics
and are often subject to state constraints. Mission goals often involve a combination of
temporal and continuous and discrete state constraints in order to specify, for example,
that a robot needs to visit a certain location before the deadline, or that a sample has
to be acquired by the end of the mission. In order to satisfy the mission, a hybrid plan
needs to specify not only what robot behaviors have to be executed and when, but also
how to execute them by providing a control plan. These control plans specify, for exam-
ple, the velocities that the robots need to follow while executing a given behavior. Since
the robot behaviors and mission specifications are tightly connected by temporal and state
constraints, the selection of the robot behaviors, their schedule and their control plans and
trajectories need to be determined jointly. For example, a ship may need to meet an au-
tonomous underwater vehicle (AUV) to pick it up. The location where the pickup takes
place may not matter as long as it happens within the temporal deadlines and before the
AUV runs out of battery. By jointly considering the mission constraints and the dynamics
and actuation constraints of the vehicles, we can determine the appropriate location where
the pickup should take place and the trajectories of the vehicles in order to minimize the
distance traveled by the ship. The previous is an example of a hybrid activity and trajectory
planning problem, in which the behaviors/activities that need to be selected, their schedule
and their control and motion plan are selected jointly.

In order to solve robotic hybrid activity and trajectory planning problems we envision
the Scotty Planning System, that decomposes the problem into simpler ones that are solved
by specialized modules. First, the ScottyActivity planner, the object of this work, solves the
hybrid activity trajectory planning problem with two assumptions: the absence of obstacles,
and the restriction to first-order linear dynamics. In order to handle obstacles, the Scotty-
Path planner builds on ScottyActivity’s convex optimization model presented in this work
to compute obstacle free trajectories for activity plans found by ScottyActivity. These two
planners and their interaction are described in detail in another work (Fernandez-Gonzalez,
2017). In order to relax the assumption of first-order dynamics and offline planning, we
envision MPCScotty, the third planner in the Scotty system. This planner, which is under
active research at the moment, executes the plans found by the combination of the previous
two. MPCScotty uses a receding-horizon approach that can simultaneously handle detailed
dynamics with a discrete time formulation over a limited horizon and first-order dynamics
with continuous time over the rest of the plan. We describe the ScottyActivity planner in
this work. Therefore, we restrict the planning problems to those without obstacles and with
first-order linear dynamics.

588

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

B

A

C

start
ship AUV ROV

destination
region

ship-navigate

deploy-ROV
deploy-AUV

AU
V-

na
vig

at
e

ROV-navigate ROV-sample-region

tether range

AUV-take-images

recover-ROV

recover-AUV

(a)

ḃAUV (t) = �k · kvAUV k

kxROV � xShipk2  R2
tether

v2
xi

+ v2
yi
 v2

maxi

Vehicle motions

AUV Battery decrease

Max velocity constraints

ROV tether constraint

Recover constraints

Region constraints

kxAUV � xShipk2  d2
recover

xj 2 Ri

ẋi(t) = vxi

ẏi(t) = vyi

(b)

Figure 1: Our motivation scenario exhibits interesting constraints such as the maximum
distance constraint between the ship and the AUV (b). The solution returned by our planner
shows that ScottyActivity is able to select the best position of the ship for deploying and
recovering the AUV and the ROV in order to satisfy the constraints and without requiring
discretization (a).

We now describe a motivating example of a ScottyActivity hybrid activity and trajectory
planning problem that is based on a real mission. This example is also used to describe the
needs of our planner and to later provide a formal problem statement in Section 4.

3.1 Example Motivating Scenario

Our example scenario is modeled after a real underwater science mission to the Kolumbo
volcano off the coast of Santorini (Greece) that will take place in 2019. The Kolumbo volcano
is an active submarine volcano that is geologically and biologically very interesting due to
the hydrothermal vents present in its caldera. Moreover, subsea CO2 pools not known to
exist before were recently discovered nearby (Camilli, Nomikou, Escartin, Ridao, Mallios,
Kilias, Argyraki, Andreani, Ballu, Campos, Deplus, Gabsi, Garcia, Gracias, Hurtos, Magi,
Mevel, Moreira, Palomeras, Pot, Ribas, Ruzie, & Sakellariou, 2015). In 2019, Woods Hole
Oceanographic Institute (WHOI) will lead an expedition to the Kolumbo caldera in which
autonomous planning algorithms developed at MIT will be used to coordinate and plan the
activities and trajectories of multiple vehicles. This mission is funded in part by the NASA
PSTAR program as an analog mission to explore issues such as limited communications and
harsh environments that future robotic missions to Europa and other moons in the Solar
System will experience. In particular, in the third stage of this mission ScottyActivity
and other planners will be used to coordinate the trajectories and scientific activities of an
autonomous underwater vehicle (AUV), a ship and a Remotely Operated Vehicle (ROV)

589

Fernández-González, Williams & Karpas

tethered to the ship. We model our example scenario after this stage of the Kolumbo mission
(Figure 1).

In our example scenario, the ship is initially transporting both the AUV and the ROV
to the science site. The AUV needs to take images at region A, while the ROV needs to
take samples in regions B and C. All three vehicles need to reach the destination region at
the end, can navigate on their own and have their own vx, vy velocities. The velocities can
be freely chosen, but their norms are upper-bound constrained (v2

xi
+ v2

yi ≤ v2
maxi

∀i ∈
{ship,ROV,AUV}). Whenever the ROV is deployed, the ship needs to remain still at the
deployment location until the ROV is recovered again. Moreover, the ROV is tethered to
the ship, and therefore it can only move within a circle centered at the ship with radius
the tether length ((xR − xS)2 + (yR − yS)2 ≤ R2

tether). Both the AUV and the ROV can
be picked up when at most 2 meters away from the ship. The AUV can navigate on its
own once deployed, but it has a finite battery that limits how long it can travel on its own
(ḃAUV = −k · ‖vAUV‖).

Figure 1 shows a valid plan for this mission that presents interesting characteristics.
First, by stationing the ship and deploying the ROV at the appropriate location, both
sampling regions can be visited without violating the tether range constraint, which saves
time and fuel. Second, the AUV battery is not large enough to reach the destination region
on its own. Therefore, the ship meets the AUV at a non fixed nor discretized intermediate
location, picks it up and transports it to the destination region. Finally, the battery decrease
function is also interesting, as it depends on the norm of the velocity of the AUV. In this
work we show how ScottyActivity can solve this problem by integrating heuristic forward
search and convex optimization.

The example scenario described in this section showcases the needs that need to be
modeled in order to solve this type of problems. First, we need a way to express the
requirements of the robot behaviors that allow them to move according to their controllable
velocities, or the fact that the AUV battery gets drained according to the velocity that the
AUV moves at. Moreover we need to model the state constraints that have to be satisfied
at certain points in the mission: e.g. the ROV always satisfying the tether range and the
AUV staying within region A while the images are taken, to name a few. Finally, we need
to be able to specify an objective to minimize, such the total duration of the mission or the
distance traveled by the ship. The description of this example scenario in the PDDL-like
syntax used by ScottyActivity is shown in Section 4.

4. Problem Statement

In this section we define ScottyActivity’s problem statement. ScottyActivity is designed
to solve a broad range of robotic planning problems like the one presented in Section 3.1.
We first describe the elements we need to describe the hybrid problem we solve, which we
define at the end of this section.

4.1 State

Definition 1 (State). The state of the system, s = 〈x,p〉, is a tuple of state variables,
x, and propositional variables, p. The state variables are given by a vector of real valued

590

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

variables, x = 〈x1, x2, . . . , xn〉 ∈ Rn. The propositional variables are given by a vector of
propositions that can be true or false, p = 〈p1, p2, . . . , pl〉.

Definition 2 (Resource). A resource is a type of state variable that is subject to special
conditions that we describe later in this section.

In the example scenario, the state variables are the x and y coordinates of the ship,
the AUV and the ROV as well as the battery level of the AUV. Additionally, the battery
level is a state variable that is a resource. The propositional variables indicate, for example,
whether the images and samples have been taken, or whether the AUV and ROV are
deployed or onboard the ship.

4.2 Control Variables and Continuous Effects

State variables change their value through continuous effects operating on them. These
continuous effects may be seen as behaviors that enable or disable robot dynamics. The
change on the state variables due to the presence of continuous effects depends on the control
variables that these effects make use of.

Definition 3 (Control Variables, c). The control variables vector, c, is a vector of control
variables c = 〈c1, c2, . . . , cm〉, where each control variable cj is a real valued parameter that
is continuously controllable within its fixed lower and upper bounds, cj l and cju.

In the example scenario, the control variables vector is a vector of the vx, vy velocities
of the ship, the AUV and the ROV, c = 〈vxship, vyship, vxAUV , vyAUV , vxROV , vyROV 〉.

Control variables can be subject to control variable constraints. We restrict the control
variable constraints to convex quadratic constraints for reasons that will become apparent
when we describe, in Section 7, the convex optimization program that ScottyActivity uses.

Definition 4 (Convex Quadratic Control Variable Constraint). A convex quadratic control
variable constraint is a constraint in the form of g(c) ≤ 0, where g : Rm → R is a convex
quadratic function operating on the vector of control variables, c.

Recall that any quadratic function g : Rm → R can be written as g(c) = xTAx+kTx+b,
where A ∈ Rm×m, k ∈ Rm, and b ∈ R are constants. Function g is convex if and only if
A is a positive semidefinite matrix (Boyd & Vandenberghe, 2004). Note that since any
linear expression is also a convex quadratic expression, it is also possible under our model
to subject control variables to linear inequality constraints.

In the example scenario, there are three convex quadratic constraints operating on
the control variables. These three constraints limit the l2-norm of the velocities of each
of the three vehicles, ‖vv‖2 ≤ vmaxv ∀v ∈ {ship,ROV,AUV}. Since l2-norms are convex
quadratic functions, the previous constraint can be written as a convex quadratic constraint:
v2
xv

+ v2
yv − v2

maxi
≤ 0.

As described in the beginning of this section, continuous effects produce the change in
state variables. In order to maintain a continuous time formulation and enable ScottyActiv-
ity to plan efficiently for long horizons, we restrict continuous effects to first order dynamics.
That is, a continuous effect operating on a state variable induces a rate of change per unit
time in the state variable that is a function of the control variables vector and that does not

591

Fernández-González, Williams & Karpas

depend on time. In practice, this means that the change in state variables due to continuous
effects is linear in time.

Definition 5 (Continuous Effect). A continuous effect is a tuple 〈x, f〉 where x is the state
variable that is subject to the effect and f : Rm → R is a function of the control variables
vector. An active continuous effect eff on variable x induces a rate of change ẋeff (t) on x
such that ẋeff (t) = f(c(t)).

Note that while the change produced by a continuous effect is linear in time, the values
of the control variables are allowed to change throughout the duration of the continuous
effect. The change produced in state variable x due to continuous effect eff being active
from ta to tb is given by:

∆xeff (t) =

∫ t

ta

f(c(τ))dτ, ta ≤ t ≤ tb (2)

Continuous effects are additive. That is, multiple continuous effects can be operating
on a state variable x during an interval of time. In that case, the rate of change of state
variable x is the sum of the rates of change induced by each continuous effect:

ẋ(t) =
∑

eff∈Ex(ta,tb)

ẋeff , ta ≤t ≤ tb (3)

x(t) = x(ta) +
∑

eff∈Ex(ta,tb)

∆xeff (t), ta ≤t ≤ tb (4)

where Ex(ta, tb) is the set of active continuous effects operating on x between ta and tb.

Note that as we described above, state variables only change their value due to the
presence of continuous effects operating on them. Therefore, the schedule of what continuous
effects are applied to each state variable and when these effects are active, together with
the trajectory of the control variables, c(t), is sufficient to fully determine the trajectory of
all state variables, x(t).

While the description above can be used with any choice of f , we allow two types of
continuous effects in this work. These are described below.

4.2.1 Controllable Linear Time-Varying Continuous Effects

The first type of continuous effect that we describe induces a rate of change that is a linear
combination of the control variables.

Definition 6 (Controllable linear time-varying continuous effect, CLTE). A CLTE is de-
fined by a tuple 〈x,k〉, where x is the state variable subject to the effect and k ∈ Rm is a
constant vector. A CLTE changes a state variable linearly in time with a rate of change
that is a linear combination of its control variables. The change in state variable x up to
time t due to an ongoing CLTE that started at time 0 is given by

∆xCLTE(t) =

∫ t

0
kT · c(τ)dτ (5)

592

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

In the example scenario, the CLTEs allow the vehicles to move according to their control
variable velocities. There are six CLTE effects, one for each position variable of each of the
three vehicles. For example, the two CLTE effects operating each on xauv and yauv induce
the rates of change ẋAUV = vxAUV and ẏAUV = vyAUV .

4.2.2 Resource-Constrained Norm Effects

The other type of continuous effects that we allow describe a change in a state variable
that depends on the l2-norm of a vector of control variables. This type of effect is useful to
model, for example, how the battery of a vehicle decreases as a function of the magnitude
of the velocity that the vehicle moves with. For reasons that will become apparent when
we introduce our convex optimization model in Section 7, we restrict this effect to only be
applied to state variables that are resources.

Definition 7 (Resource-constrained norm effect, RNE). A RNE is defined by a tuple
〈x, k, ce, f〉, where k ∈ R>0 is a positive real constant, ce is a vector of m or fewer control
variables, and f : R≥0 → R≥0 is a real nonnegative function. A RNE decreases the value of
a constrained state variable (resource) x with a rate of change proportional to the function
f of the l2-norm of c, f(‖c‖2).

The change on a continuous state variable x up to time t due to an ongoing RNE that
started at time 0 is given by:

∆xRNE(t) = −
∫ t

0
k · f(‖ce(τ)‖)dτ, k ≥ 0 (6)

In this work we consider two types of RNEs. A linear norm effect (LNE), 〈x, k, ce, x→
x〉, produces a decrease rate proportional to the norm of ce. A linear squared norm effect
(LSNE), 〈x, k, ce, x→ x2〉, produces a decrease rate proportional to the square of the norm
of ce.

In the example scenario, the navigate activity has a LNE effect that makes the bat-
tery of the AUV decrease with a rate proportional to the norm of its velocity (ḃAUV (t) =
−k · ‖vAUV‖). This is equivalent to stating that the battery decrease is proportional to
the distance traveled by the AUV. The same effect depending on the square of the norm
(‖vAUV‖2) can be achieved by using a LSNE effect instead of the LNE one. Since contin-
uous effects are additive, it is also possible to define a change in the battery that is a linear
combination of these terms and other CLTE effects.

4.3 State Constraints

Robots are often subject to state constraints. Some of these constraints may be intrinsic
to their dynamics or modes of operation. For example, the AUV in the example scenario
can only continue moving while its battery level is greater than 0. Similarly, the ROV can
only separate from the ship a distance smaller than the length of the tether than connects
them. Other state constraints, however, are mission dependent. For example, in order to
successfully capture the images required for the mission, the AUV needs to be inside region
A while the pictures are taken.

593

Fernández-González, Williams & Karpas

We restrict the state constraints in our model to convex quadratic constraints. This
restriction allows us to perform efficient checks for constraints that need to be maintained
over arbitrarily long durations, as explained in Section 5, and to use an efficient convex
model and a state of the art convex quadratic solver, as explained in Section 7. However,
note that convex quadratic constraints are sufficient to express a wide range of real-world
constraints that appear in typical robotic missions, like the ones shown in the example
scenario.

Similarly to the convex quadratic control variable constraints defined in Section 4.2,
state variable constraints are defined as follows:

Definition 8 (Convex Quadratic State Constraint). A convex quadratic state constraint is
a constraint in the form of g(x) ≤ 0, where g : Rn → R is a convex quadratic function
operating on the vector of state variables, x.

Additionally, for reasons that we explain in Section 7, we restrict resources to only be
subject to greater or equal than constraints.

As mentioned before, the example scenario presents multiple state constraints. The
ROV tether constraint, for example, is represented with the convex quadratic constraint:
(xROV − xship)2 + (yROV − yship)2 − R2

tether ≤ 0. The constraint that forces the AUV to
remain inside the images region is also a convex quadratic constraint. In particular, the
images region is a polyhedron and the constraint is, therefore, a linear inequality constraint
in the form of A · xAUV ≤ b. The battery level of the AUV is a resource that is subject to
always be nonnegative, bAUV ≥ 0.

4.4 Hybrid Durative Activities

In the course of a typical robotic mission, robot behaviors may need to be engaged or
disengaged at different times and state constraints may become active depending on the
behaviour currently being executed or the goal that the robot is currently trying to achieve.
While the main focus of our planner is dealing with continuous behaviors efficiently over long
horizons, we also need to be able to reason with discrete conditions and effects in order to
find plans for typical robotic missions. We use durative activities like the ones that have long
been used by the activity planning community to model the switched behaviors described
before. In particular, we use hybrid durative activities, which are similar to PDDL2.1 (Fox
& Long, 2003) activities except for some differences that we highlight below.

Definition 9 (Hybrid Durative Activity). A hybrid durative activity a is given by the tuple
〈dur, pre`, eff `, pre↔, eff↔, prea, eff a〉, where:

• dur is the tuple 〈dl, du〉 that describes the minimum and maximum duration of a.
As in PDDL 2.1, the duration of the activity is assumed to be controllable by the
planner.

• pre`(prea) are the conditions that must hold at the start (end) of a. These conditions
can be of two types. First, a propositional condition can require a proposition pj ∈ p
to hold. Second, a condition can be a state variable constraint as defined in Section 4.3.

594

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

• eff `(eff a) are the starting (ending) effects of a that indicate the resulting change in
the state as a result of applying the activity. A set of effects eff x, x ∈ {`,a} consists
of:

– eff −x , the set of propositions to be deleted (set to false) from the state.

– eff +
x , the set of propositions to be added (set to true) to the state.

• pre↔ are the invariant conditions of a that must hold throughout the duration of the
activity. These can also be propositions that need to hold or state variable constraints.

• eff↔ are the continuous effects of a as defined in Section 4.2 that are active while the
activity is being executed.

The main differences between hybrid durative activities and PDDL2.1 durative activities
are two. First, we support continuous effects that depend on control variables. Second, we
support convex quadratic constraints. The PDDL2.1 standard allows arbitrary polynomial
expressions, which include convex quadratic constraints. However, most PDDL2.1 planners
support only linear constraints, and we are not aware of any other activity planner that
supports convex quadratic constraints.

4.5 The PDDL-S Problem

Having defined the elements that model robot behaviors, activities and constraints, we now
proceed to define formally the problem that the ScottyActivity planner solves. ScottyAc-
tivity solves a hybrid activity and trajectory optimization planning problem that we call a
PDDL-S planning problem.

Definition 10 (PDDL-S Problem). A PDDL-S problem is a planning problem given by
the tuple 〈I,G,CV,A,O〉, where:

• I = 〈x0,p0〉 is the initial state, which is a complete assignment to the state variables,
x0 = x(0), and propositional variables, p0 = p(0) at the beginning.

• G = 〈SG, PG〉 is the goal. The goal consists of a set of state variable constraints, SG,
that need to be satisfied at the end of the plan and a set of propositional variables
PG whose value needs to be true at the end of the plan.

• CV = 〈c, CC〉 is the tuple of the vector of control variables, c, and the convex
quadratic constraints operating on the control variables, CC, as defined in Section 4.2.

• A is the set of hybrid durative activities.

• O is the objective function.

The objective function of a PDDL-S problem is the function that the planner aims to
minimize. We restrict the objective O to a linear combination of one or more of the following
terms:

• The total duration of the plan (plan makespan).

595

Fernández-González, Williams & Karpas

• The value of a state variable at the end of the plan. In the case of resources, their
coefficients are limited to negative values (i.e. resources can only be maximized).

• The sumproducts of the norms (or squared norms) of a vector of control variables and

the durations it was active for, i.e.
∫ T

0 ‖ce(τ)‖{1,2} dτ .

For example, in the motivating scenario, one of the terms minimized is
∫
‖vSHIP‖ dt,

which minimizes the distance traveled by the ship. A similar term involving, instead, the
square of the norm is also possible. This is useful when the control effort needs to be
minimized. This is typically achieved by minimizing the sum of the squares of the control
variables throughout the plan, which is the same as minimizing the square of the norm of
a control variable vector of all control variables (

∫
‖c(τ)‖2 dτ =

∫ ∑
ci
c2
i (τ)dτ).

The main differences between PDDL2.1 problems and PDDL-S problems lie in the def-
inition of the continuous effects and control variables supported by our hybrid durative
activities.

4.6 Solution to a PDDL-S Problem

The solution to a PDDL-S problem is given by a plan.

Definition 11 (PDDL-S Plan). A PDDL-S Plan is a tuple 〈S, fc : R→ Rm〉, where

• S is the activity schedule, and is given by a list of triples 〈a, ts, d〉, where a is an
activity, ts its start time and d its duration. The latest end time of all activities is
denoted by T and corresponds to the plan makespan.

• fc : [0, T)→ Rm is the control trajectory. The control trajectory assigns a value to all
control variables at every time t between the start and the end of the plan.

For reasons explained in Section 5, the output of ScottyActivity is a PDDL-S plan with
piecewise constant control.

Definition 12 (PDDL-S Plan with Piecewise Constant Control). A PDDL-S Plan with
Piecewise Constant Control is a PDDL-S plan in which the control trajectory is a piecewise
constant function where the change points occur at the start and end times of the activities
in the plan schedule.

Given a PDDL-S plan, the trajectories of all state variables are fully determined at all
times throughout the duration of the plan. In order to compute the value of a state variable
xi at time t, xi(t), it suffices to apply from 0 to t the continuous effects of the activities for
the durations and values of the control variables specified in the plan.

A valid PDDL-S plan satisfies all constraints defined by the PDDL-S problem.

Definition 13 (Valid PDDL-S Plan). A valid PDDL-S plan is a PDDL-S plan such that:

1. For each activity a which starts at time t, all its discrete and continuous at start
conditions are satisfied right before time t.

2. For each activity a which ends at time t, all its discrete and continuous at end condi-
tions are satisfied right before time t.

596

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

3. For each activity a which is ongoing at time t, all its discrete and continuous over all
conditions are satisfied at time t.

4. The trajectories of the control variables satisfy each global control variable constraint
throughout the duration of the plan.

5. The final state at the end of the plan satisfies the goal constraints.

An optimal PDDL-S plan is a valid PDDL-S plan such that objective O takes the
minimum possible value. ScottyActivity finds valid PDDL-S plans but it is not guaranteed
to find optimal PDDL-S plans due to the greedy nature of its search algorithm, as will be
explained in Section 6.

5. Efficient Satisfaction of Convex Conditions over Arbitrarily Long
Horizons Through Piecewise Linear State Trajectories

In this section we present ScottyActivity’s approach to satisfying convex state constraints
through arbitrarily long durations in an efficient manner. State constraints are imposed
by activities as their at start, at end and over all conditions. One issue the planner must
address is to satisfy state constraints throughout continuous time, and not just at sampled
events. The second issue is that the method for satisfying state constraints must scale
computationally to long horizon problems.

Most robotic planning algorithms enforce these constraints by discretizing states at fixed
timesteps and imposing the constraints at each discretized state. Many of these algorithms
ignore the constraints between the discretized points of the trajectory. While this strategy
does not guarantee that the conditions are satisfied at all times, this usually works well
when the discretization time is sufficiently small. Unfortunately, these approaches do not
work well for long time horizons, or when different activities happen at a different time
scale.

One of the advantages of the ScottyActivity planner is that it performs equally well for
short and long time horizons and different time scales since time is not discretized. While
avoiding time discretization greatly helps performance, it imposes the challenge of how to
enforce maintenance conditions throughout horizons that can be arbitrarily long. In order
to enforce invariant conditions in an efficient manner, we restrict the trajectories of the
control variables chosen by the planner to be piecewise constant. We do not restrict how
many segments the planner can select. Therefore, the trajectories of the control variables
are given by:

c(t) =
[
c1(t), c2(t), . . . , c‖CV ‖(t)

]
= cj , tj ≤ t < tj+1, j ∈ 0 . . . N − 1 (7)

, where N is the total number of piecewise constant segments, tj , called a switch point, is
the starting time of segment j, c(t) is the vector of values of all control variables in CV
at time t and cj is the vector of constant values of all control variables during segment j,
between tj and tj+1.

As described in the problem statement (Section 4), continuous change in the state
variables only occurs as a result of the action of continuous effects. Recall that the change

597

Fernández-González, Williams & Karpas

in a state variable x subject to a continuous effect from the time the effect starts, ta, to
time t can be expressed as:

∆xeff (t) =

∫ t

ta

f(c(τ))dτ, ta ≤ t ≤ tb (8)

, where f is a function of the control variables that depends on the type of continuous
effect. Since the control variables are piecewise constant, f(c(τ)) is piecewise constant and
the previous equation can be simplified to:

∆xeff (t) = f(cl)(tl+1 − ta) +
l+n−1∑
k=l+1

f(ck)(tk+1 − tk) + f(cl+n)(t− tl+n) (9)

tl ≤ ta ≤ tl+1 ≤ . . . ≤ tl+n ≤ t (10)

, where tl is the last switch point before ta and there are n switch points between ta and t.
Equation (9) shows that the change in state variable x is linear in time. Since all continuous
effects can be expressed in this way and are additive, the piecewise constant restriction on
control variables results in state variable trajectories that are piecewise linear in time. The
beginning and ends of the linear segments correspond to the switch points of the trajectory
of control variables.

Therefore, the trajectory of the state variables in the linear segment l between consec-
utive switch points tl and tl+1 can be written as:

x(t) = x(tl) + Cx(tl → tl+1) · (t− tl), tl ≤ t ≤ tl+1 (11)

x(t) =
[
x1(t) . . . x‖V ‖(t)

]T
(12)

Cx(tl → tl+1) =
[
Cx1(tl → tl+1) . . . Cx‖V ‖(tl → tl+1)

]T
(13)

, where Cxi(tl → tl+1) is a constant value that represents the constant rate of change in
state variable xi due to all the continuous effects operating on the state variable and that
is a function of the constant vector of control variables cl at segment l.

The piecewise linear restriction on state variables is very useful for our planner. It allows
us to impose conditions over long horizons in an efficient way, without needing to resort to
time discretization. We can do this as long as the conditions are convex, which they are
given our problem statement. In effect, convexity properties ensure that a linear segment is
fully contained in a convex set as long as the ends of the segment are contained in the set.
As a consequence, in order to ensure that an invariant convex state condition is satisfied at
all times, we only need to ensure that the convex condition is satisfied at the switch points
of the state trajectory. The switch points can be separated in time arbitrarily and therefore
this is an efficient way to enforce invariant conditions. This is shown with the following
lemma and its corresponding proof.

Lemma 1. If the switch points of the piecewise linear state trajectory are contained in a
convex set, the full trajectory is contained in the convex set.

598

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

Proof. A set S ⊆ Rn is convex if and only if ∀a,b ∈ S and ∀λ ∈ [0, 1] we have that
(1− λ)a + λb ∈ S as well. Since equation (11) describes a straight line of a segment of the
piecewise linear trajectory, it can be reformulated in terms of the switch points (or extreme
points of the segments) as x(t) = x(ta) + t−ta

tb−ta (x(tb) − x(ta)). Taking a = x(ta),x =

x(tb), λ = t−ta
tb−ta , we get that x(t) = (1−λ)a+λb. Since S is a convex set and a, b ∈ S, from

the definition of convexity, x(t) ∈ S as well. This is true for any value of t ∈ [ta, tb] and for
any value of the control variables, as long as they are constant, which they are, given the
piecewise constant restriction imposed earlier.

The restriction of piecewise constant control variables and piecewise linear state trajec-
tories does not affect the completeness of our planner.

Theorem 1 (Completeness of PDDL-S Plans with Piecewise Constant Control). If a
PDDL-S problem has a solution, there always exists a solution that is a PDDL-S plan
with piecewise constant control.

Similarly, this restriction does not affect the optimality of the plans that can be obtained.

Theorem 2 (Optimality of PDDL-S Plans with Piecewise Constant Control). The optimal
solution to a PDDL-S problem, if one exists, is a PDDL-S plan with piecewise constant
control.

In effect, our linear time dynamics and the absence of obstacles, curvature constraints or
other non-convex constraints ensure that any problem solvable with an arbitrarily changing
state trajectory is also solvable with a piecewise linear one. Furthermore, since both the
state conditions and the objective are required to be convex, the piecewise linear restriction
of state variables does not affect optimality either under our action model (the optimal
solution is the piecewise linear one). We present the proof for both theorems in Appendix A.

As we will explain in Section 6, the maintenance conditions are only added or removed
whenever an activity starts or ends (an event). This means that the invariant conditions do
not change in between events. Therefore, our approach method will place the switch points
of the piecewise linear trajectories at the starts and ends of activities, as this is sufficient
to capture the requirements of the problem.

5.1 Typical Maintenance Convex Conditions in Robotic Applications

We now proceed to give examples of useful convex conditions that commonly arise in robotic
planning problems and that, as we have seen, our planner can enforce efficiently.

• Remain inside a convex region (Figure 2a). As explained in the previous region,
we can enforce that a robot remains inside a convex region while moving by imposing
that the switch points of the trajectory be inside the convex region. Since trajectories
are piecewise linear, ensuring that the switch points are contained in the convex region
guarantees that the full trajectory is also contained.

• Proximity constraint (Figure 2b). We can impose that agents A and B stay within
a maximum distance d while performing an activity. Let xA(t) and xB(t) be the
piecewise linear trajectories of A and B. Imposing that both agents are within distance

599

Fernández-González, Williams & Karpas

x1

x2

x3

x4

x(t)

(a)

xA1

xA2

xA3

xB1

xB2

xB3

x̄1d

xA(t)

xB(t)

(b)

xA1

xB1

xA2

xB2

xC(t)

xC1

xC2 r

x̂1

x̂2

xB(t)
xA(t)

(c)

x1

x2

x3

vi

r

(d)

Figure 2: Interesting convex conditions that arise in robotic planning problems.

d is equivalent to imposing that xA(t) − xB(t) ∈ Cd where Cd is a circle of radius d
centered in the origin. Since Cd is a convex set and xA(t) and xB(t) are piecewise
linear, x̄(t) = xA(t)− xB(t) is piecewise linear too, and we only need to impose that
x̄(tj) ∈ Cd at each switch point j to ensure that A and B are always within distance
d.

• N vehicles inside a circle of radius r (Figure 2c). The center of the n vehicles

is given by x̂(t) =
∑n xi(t)

n . The condition that all vehicles remain inside a circle
of radius r is equivalent to the n conditions ||xi(t) − x̂(t)|| ≤ r. Since xi(t) − x̂(t)
is piecewise linear due to being a linear combination of piecewise linear trajectories
and since the norm constraint defines a convex set, the n conditions only need to be

600

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

A B

C

R ⌘ x 2 A ^ x 2 B ^ x 2 C

Figure 3: Complex condition defined by the intersection of simple convex sets.

imposed at the switch points to ensure that all n vehicles are always inside the circle
of radius r at all times.

• Coverage constraint of a polygonal region (Figure 2d). We can similarly impose
that a circle of radius r centered at a moving vehicle always covers a fixed polygonal
region. This is equivalent to satisfying the convex constraints ||x(t)−vi|| ≤ r for each
of the v1 . . .vm vertices of the polygon. Again, since the m constraints are convex and
the motion of the vehicle is piecewise linear, we only need to impose the constraints
at each of the switch points of the trajectory of the vehicle.

Further since the intersection of convex sets is convex, we can represent complicated
convex regions by intersecting simple convex primitives. Figure 3 shows, for example,
how a complex region can be achieved by intersecting a circle, a triangle and a rectangle.
Ensuring that a vehicle remains inside such region can be achieved by imposing that the
switch points of the trajectories remain inside the circle, the rectangle and the triangle at
the same time.

6. Planning Approach

In this section we describe how the ScottyActivity planner works. We begin by providing
a high level overview of the ScottyActivity planner. We then describe how the successor
search states are generated, the heuristic that we use and the algorithms that guide the
search. A core element of the ScottyActivity planner is the convex mathematical program
that we use to test the consistency of partial states. As explained earlier, our formulation
makes it possible to use both continuous time and continuous control variables, which
allows ScottyActivity to plan for long horizons efficiently. Since this is one of the main
contributions of our work, we describe the full details of our mathematical program in
Section 7.

6.1 ScottyActivity In a Nutshell

Recall that the plan that ScottyActivity generates consists both of an activity schedule and
a control plan, given as a piecewise constant trajectory of the control variables. ScottyAc-
tivity generates the activity schedule and the control plan concurrently, through a heuristic
forward search that selects the order of the activities in the schedule and a mathematical
program that tests the feasibility of the schedule by finding a valid control trajectory, state
trajectory and the execution times of the activities. An informal diagram describing how

601

Fernández-González, Williams & Karpas

PDDL-S
Problem

Create Initial
State

Get Q front state

Is Goal?

For each
successor state

Is
consistent?

Compute state
variable bounds

Compute
heuristic

Compute control
trajectory and

schedule
Convex Optimization Model
(Second Order Cone Program)

add state to Q

YES

NO

min, max each
state variable

minimize problem
objective

is there any
solution?

Return plan

YES

Figure 4: Informal diagram describing the overall flow of the ScottyActivity planner. The
blue box indicates that the convex model is used as a module that is queried at different
stages of the planning process and is not part of the flow.

the ScottyActivity planner works is presented in Figure 4. We provide detailed descriptions
of each step of the algorithm in this section.

Our method draws inspiration from COLIN (Coles et al., 2012), LPGP (Long & Fox,
2003), LPSAT (Wolfman & Weld, 1999) and previous planners (Stefik, 1981) in that the
discrete search is interleaved with consistency checks using an optimization approach. We
use heuristic forward search to find an ordered sequence of starts and ends of activities that
are analogous to the start and end snap actions used by many temporal planners (Long
& Fox, 2003; Coles et al., 2008). We call each start or end of an activity an event. We
assume that no two events can co-occur, and that they are totally ordered. This allows the
planner to consider the introduction of only one event during each planning step. While
some heuristic forward search planners allow some flexibility in the order of these events
(Coles et al., 2010), we leave this extension for future work. Note that, while events cannot
co-occur, activities can (Figure 5).

We call a stage the period of time between consecutive events. In the piecewise constant
control trajectory that ScottyActivity finds, control variables have constant values during

602

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

event:
“start a”

activity a

activity b

activity c

e0 e1 e2 e3 e4 e5

s0 s1 s2 s3 s4t0 tj
x0 xj

cjc0

t

stage

Figure 5: A plan skeleton is given by an ordered sequence of start and end events, ej . Plan
skeletons do not have an assigned control or state trajectory, or event execution times. A
mathematical program is used to test the consistency of plan skeletons by finding feasible
values for the control trajectory c(t), state trajectory x(t) and event execution times, tj .

stages, and the value changes can happen at each event. As described in Section 5, the
state variables change linearly in time during stages.

Every search state defines a partial schedule of totally ordered events, that we call a plan
skeleton. The plan skeleton only defines the sequence of starts and ends of activities that
are selected and in what order. Search states are constructed so that their plan skeletons
satisfy all the discrete conditions imposed by the activities in the partial schedule. However,
plan skeletons do not define the control trajectory, the state trajectory or the execution
times of the events. In order to check that the plan skeleton can satisfy the continuous
constraints, we solve an optimization problem that tries to find a feasible control trajectory,
state trajectory and the execution times of the activities. For intermediate search states,
this optimization problem is used as a feasibility check. The values returned by the solver
are, therefore, discarded. When the search state that satisfies the goal conditions is found,
the optimization problem is used one more time to find the control trajectory and activity
execution times that minimize the problem objective. These values along with the event
schedule are returned as the solution plan.

Successor search states extend the parent plan skeleton with a new start or end event
at the end. The optimization problem for successor plan skeletons is solved from scratch
every time, and no intermediate control trajectories are reused. There are multiple reasons
why that is the case. First, we do not know what future events could be added to the
plan later, and therefore we want to avoid early commitment to values that could make
the plan infeasible later. Second, by not committing early to values found by the solver for
incomplete plan skeletons, we can optimize the problem objective throughout the complete
plan skeleton when the goal is found.

Like many other heuristic forward search planners, we use common greedy search algo-
rithms that work well for relatively large planning problems. Our heuristic is based on the
Temporal Relaxed Planning Graph (Coles et al., 2008) and it provides an estimate of the
remaining number of start and end activities to reach the goal.

Our mathematical program is convex. Therefore our consistency checks are complete.
However, we use an incomplete greedy search algorithm. As is standard with most greedy

603

Fernández-González, Williams & Karpas

HFS planners, we optionally resort to a complete A* search when the incomplete greedy
search algorithms fail. In practice, A* is much slower than the greedy search algorithms
and we do not report results using A* in this work.

ScottyActivity is not an optimal planner in that we do not guarantee that the returned
plan is the best possible plan according to the problem objective. However, since our
optimization problem is convex, we guarantee that the instantiation of the plan skeleton
selected based on the heuristic is optimal. That is, for the order of starts and ends of
activities found by the search, there exist no other control trajectories or activity execution
times than the ones returned by ScottyActivity that can produce a better objective value.

In the next sections, we describe the different components of our planner in detail.

6.2 Selecting Successor States

Algorithm 1: Get-Activities

Input: A PDDL-s planning problem (PP) and a search state (S).
Output: A list of helpful applicable activities AH and list of activities that are

applicable but not helpful at S, AA\H .

Algorithm
1 AH ← {}, AA\H ← {}
2 for a in PP.A do
3 if DISCRETE-APPLICABLE(S, a) and CONTINUOUS-CONSISTENT(S, a)
4 if IS-HELPFUL(S, a)
5 PUSH(AH , a)

else
6 PUSH(AA\H , a)

7 return AH , AA\H

Each search state contains a plan skeleton (ordered list of events), a set of predicates
that hold at this state, a set of activities that have started but not ended at this state, and
the independently achievable lower and upper bounds for each state variable (as will be
explained later).

In order to explore successor states, we need to determine what events (starts or ends
of activities) can be applied next. This entails checking that both the discrete and the
continuous conditions and effects of the event are consistent with the current state. Since
the discrete state is fully described by the search state, the discrete check can be done
directly (Line 3 of Algorithm 1). However, we cannot do the same with the continuous
conditions and effects, since the execution times, durations, state variables, and control
variables depend on each other in a complex way. In order to reject infeasible successor
states, we construct a mathematical program containing all the constraints defined by the
activities in the plan skeleton. Invalid states are those whose associated mathematical
programs do not have a feasible solution (Algorithm 2).

We use Second Order Cone Programs (SOCPs) for this check for the following reason.
First, SOCPs can effectively represent all the continuous conditions and dynamics that our

604

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

Algorithm 2: Test-Consistency

Input: A PDDL-S planning problem (PP) a search state (S) and the partial plan
leading to that state (p).

Output: A state with the independently achievable lower and upper bounds for
each state variable or nil if the state is not consistent.

Algorithm
1 prog ← BUILD-PROGRAM(PP , p)
2 if not IS-FEASIBLE(prog)
3 return nil

4 for x in PP.V do
5 xmin ← MINIMIZE(prog, x)
6 xmax ← MINIMIZE(prog, −x)
7 SET-BOUNDS (S, x, xmin, xmax)

8 return S

planner requires (as described in Section 4). Second, SOCPs are a class of convex opti-
mization problems and are commonly solved with complete algorithms that will return no
solution only when the program does not have a solution. This is an important character-
istic since it ensures that only infeasible states are pruned. Third, SOCPs can be solved
very efficiently with interior-point methods available in off-the-shelf solvers. Finally, be-
ing convex optimization problems, the solutions of the SOCPs returned by the solvers are
guaranteed to be optimal, which is important for reasons that will be explained later. Note
that gradient-based algorithms solving general non-linear programs do not present these
characteristics. They are orders of magnitude slower (which would directly translate into
the planning time since this is, by far, the dominant time). They are not complete (as they
can get stuck in local minima) and they are not optimal. Framing all the conditions and
dynamics as a convex program is not straightforward and is one of the key innovations of
our planner, and is described in detail in Section 7.

Solving the optimization for every candidate successor state that meets the discrete
conditions is expensive, and dominates the running time of our planner. For this reason, we
compute the feasible lower and upper bounds for each state variable independently with our
mathematical program. We do that using the same method that COLIN uses: we solve the
optimization problem twice per state variable to minimize and maximize the state variable at
the state (Lines 4-7 in Algorithm 2). These bounds constitute an over-approximation of the
reachable space at the last event of the plan skeleton. We use the bounds to prune activities
whose state conditions are necessarily not compatible with the state variable bounds, and,
therefore, can never be satisfied (CONTINUOUS-CONSISTENT method in Algorithm 1). For
linear inequality conditions in the form of

∑
kixi ≤ c, this can be done by computing the

lower bound of the expression according to the state variable bounds, and checking whether
it satisfies the condition. The lower bound on the expression can be computed with the
following equation:

lb =
∑

min(kiximin, kiximax) (14)

605

Fernández-González, Williams & Karpas

, where ki are the constant coefficients of the expression and ximin and ximax are the
bounds of state variable xi. The linear inequality can only be satisfied if lb ≤ c. Activities
having at least one linear constraint where this condition is not met are pruned from the
list of applicable activities at that point in the search. Note that since the optimization is
convex (and the returned solution is therefore optimal), the computed bounds of each state
variables are guaranteed to be the maximum and minimum values that the state variable
could reach. Therefore, this method only prunes infeasible activities. Note, however, that
this test using the variable bounds does not guarantee that the linear condition can be
satisfied in practice, as each variable lower and upper bound is computed independently.
This is not a problem, since the consistency check that uses the optimization model can
later reject states with unsatisfiable conditions.

Unfortunately, the previous test is not straightforward in the case of general convex
quadratic constraints, as it involves checking the intersection of arbitrary conic shapes (the
convex quadratic constraints) and hypercubes (given by the bounds of each state variable).
In practice, we use linear over-approximations for those conditions and handle them as
in the linear case. This linear over-approximations can be entered manually or computed
automatically using the region system described in Appendix B.4. Again, using linear over-
approximations only affects the efficiency of our pruning method, but not the completeness
of the algorithm.

Finally, the state variable bounds are also needed to define the first layer of the heuristic,
as we explain in the next section.

6.3 Relaxed Hybrid Plan Heuristic

The heuristic that ScottyActivity uses is based on the Temporal Relaxed Planning Graph
(TRPG). The TRPG assigns to each layer in the planning graph a timestamp corresponding
to the earliest time when each layer could be reached (Do & Kambhampati, 2003). In order
to handle continuous effects with control variables, such as vehicle dynamics, our heuristic
uses two ideas. First, we use flow tubes to represent all possible state trajectories resulting
from the application of activities with continuous effects. Second, each fact layer is anno-
tated with the minimum and maximum values that each state variable could independently
take in that layer. This idea of tracking the bounds for each state variable is borrowed from
MetricFF (Hoffmann, 2003).

A flow tube is a compact encoding that describes all possible trajectories resulting from
the application of a continuous effect on a state variable, that is, its reachability region.
Figure 6 shows a flow tube that represents the reachability region of state variable x when
subject to first order dynamics ẋ(t) = v(t) from x0 = x(t0) for a duration between dl and
du. Under first order dynamics, as is the case in ScottyActivity problems, the velocity
v(t) is a control variable that is continuously controllable within its actuation bounds of
vmin and vmax for the duration of the activity. The shaded region in Figure 6 is the flow
tube and is computed by propagating the initial point with the extremal actuation and
temporal constraints. This region represents the values that x can take at the end of the
activity. The blue line shows one possible trajectory. Note that the example final value
xend can be reached as soon as at ta if the maximum velocity value vmax is chosen, or
as late as to + du if a lower value is used. Flow tubes have been used successfully for

606

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

x0

t0

vmax

vmin

tend

xend

x(t)

t
t0 + dl t0 + du

ta

Figure 6: The shaded region is a flow tube that represents the reachable region for state
variable x when subject to a linear time-varying effect(∆x(t) = v(t) · t) for a duration
between dl and du

temporally and spatially flexible execution of hybrid plans, in applications such as biped
walking (Hofmann & Williams, 2006, 2017). Moreover, flow tubes are the basic building
block used by Kongming (Li & Williams, 2008) to represent continuous behaviors in its
Hybrid Flow Graph. In our heuristic, we use flow tubes to express how the reachable
bounds of state variables grow between the consecutive layers of the temporally relaxed
planning graph. In our case, the minimum and maximum actuation bounds are obtained
by combining the minimum and maximum bounds of all the continuous effects acting on
each state variable at a given time.

In practice, our heuristic works in a similar way to COLIN’s (Coles et al., 2008), except
for some differences that we describe in this section. As is the case for many other planners,
the heuristic value is the number of start or end events needed to reach the goal in the relaxed
graph. We follow the standard procedure to generate the relaxed planning graph that we
summarize next. The initial fact layer is defined by the state at which the heuristic is being
computed. The relaxed graph is generated by adding alternating activity and fact layers.
All activities that could be applied at a given fact layer are added to the current activity
layer. The procedure finishes when the goal conditions are contained in a fact layer, or when
no more activities can be added to the graph. The delete relaxation procedure ensures that
at the next fact layer additional activities may become applicable, but activities that were
previously applicable always remain applicable in posterior layers. In order to do that, only
the discrete add effects of an activity applied at a layer are incorporated into the next fact
layer, while the discrete delete effects are ignored (Hoffmann & Nebel, 2001).

In the spirit of MetricFF, the continuous conditions and effects are handled by tracking
the minimum and maximum bounds of each state variable at each fact layer. These bounds

607

Fernández-González, Williams & Karpas

are used to test whether an action is applicable at a given layer. The continuous effects
active between layers grow these bounds between consecutive layers. We describe now
how the bounds for each state variable are grown while creating the relaxed graph, since
the presence of control variables in ScottyActivity problems requires a slightly different
approach compared to COLIN. We later describe how these bounds are used to test whether
a continuous condition can be satisfied at a given layer.

When computing the heuristic for a state, the state variable bounds for the first layer
are known in advance. Recall from Section 6.2 that these bounds are computed by solving
the convex optimization problem twice per state variable in order to find the minimum
and maximum possible values. In order to compute the state variable bounds in the next
layers, COLIN keeps track of the maximum positive and lowest negative rates of change
(gradients) that each state variable could be subject to at each layer. These rates of change
are additive and come from the continuous effects of ongoing activities at the current layer.
The minimum and maximum possible bounds for each state variable in layer i + 1 are
computed by extending the bounds at layer i with the maximum positive and minimum
negative gradients multiplied by the time elapsed between layers i+ 1 and i, ∆t = ti+1− ti.
In the spirit of delete relaxations, the bounds can only grow from one layer to the next.
Contrary to COLIN, the rates of change in ScottyActivity are not fixed, as they depend
on the continuous controllable control variables, and these can take any value within their
actuation bounds. As explained in the beginning of this section, we use flow tubes to
represent how the bounds of the state variables grow in the presence of continuous effects
depending on continuous control variables. In practice, we use the minimum and maximum
actuation bounds of each control variable to compute the minimum negative and maximum
positive rates of change at a given layer. The growth of the state variable bounds from a
layer to the next are then computed in the same way as COLIN does.

As an example, consider a layer in which an activity navigate with linear time-varying
continuous effects ẋ(t) = vx(t) and ẏ(t) = vy(t) is active. Assume that the control variable
vx has actuation limits of (−1, 2) while vy is constrained to be within its (1, 3) bounds.
The minimum negative and maximum positive gradients operating on x at that layer are
then ∇x− = −1, ∇x+ = 2 respectively. The gradients on y are ∇y− = 0 and ∇y+ = 3.
Note that ∇y− = 0 since the bounds of state variables from one layer to the next are only
allowed to grow. These gradients define how the boundaries of the flow tubes grow with
time (as shown in Figure 6). If an activity turbo-boost-x that gave an additional boost to
the x velocity of (−2, 2) became active at a later layer, the minimum and maximum possible
gradients for x would become ∇x− = −3 and ∇x+ = 4 from that layer on, as effects are
additive. The lower and upper bounds for state variable x at layer i+ 1, xLi+1 and xU i+1

are then computed as:

xLi+1 = xLi +∇x− · (ti+1 − ti) (15)

xU i+1 = xU i +∇x+ · (ti+1 − ti) (16)

The bounds computed in the previous manner are used to test whether each continuous
condition of an activity can be satisfied at a given layer using the same method employed
by MetricFF. We now describe how this test is performed for linear inequalities. Any linear
inequality can be expressed as:

608

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

∑
j

kj · xj + c ≤ 0, (17)

where kj and c are constants and xj are the state variables. A linear equality condition
can be satisfied at a given layer i if the intersection between the half-space defined by the
inequality and the hypercube Ri = {z ∈ Rn | xjLi

≤ zj ≤ xjU i
} whose sides are the

bounds of each state variable at layer i is non null. For inequalities expressed in the form
of Equation (17), this condition is equivalent to asserting that the lower bound of the left
hand side of the inequality at layer i, Bi, is smaller or equal than 0. We can compute this
lower bound Bi using the bounds of the state variables with the following expression:

Bi =
∑
i

min(ki · xjLi
, ki · xjU i

) + c, (18)

Activities having linear inequality conditions that cannot be satisfied at a given layer
according to the previous test may become satisfiable in a future layer if there are active
continuous effects that expand the state variable bounds sufficiently in the right direction.
In order to ensure that the relaxed graph is fully expanded, COLIN iteratively computes
the next future time when one such unmet condition will become satisfiable and adds a
layer at that time until all activities become applicable or all linear conditions that could
ever be satisfied become satisfiable. The future point in time, if any, when an unsatisfiable
linear inequality will become satisfiable is computed as follows. The linear condition is
unsatisfiable because its lower bound Bi is greater than 0. By using the negative and
positive gradients of each state variable at that layer, we can compute the negative gradient
of the left hand side of the inequality, ∇e−i at layer i:

∇e−i =
∑
j

min(kj · ∇xj−i , kj · ∇xj+
i) ≤ 0 (19)

If ∇e−i < 0, the lower bound of the left hand side of the inequality, B, decreases with
time, and the linear inequality will become satisfiable when B becomes negative, which will
happen first after ∆te units of time.

∆te =
Bi

|∇e−i |
The next layer can then be created at time ti + ∆te, where ti is the time of the current
layer, with the hopes that satisfying this previously unmet linear condition may make some
new activity applicable at that time. If ∇e−i = 0 the linear inequality will never become
satisfiable in the future, unless another continuous effect that makes this gradient negative
becomes active in a later layer.

Also new in our heuristic is that we need to take into account convex quadratic condi-
tions, that COLIN does not support. As we have just described, computing the future times
when linear inequalities will become satisfiable can be done in a straightforward manner
using Section 6.3. However, computing the future times when an unmet arbitrary convex
quadratic condition will become satisfiable cannot be done with an analytical expression
in an efficient manner. Our solution is to use linear over-approximations to the quadratic

609

Fernández-González, Williams & Karpas

constraints in the heuristic, which are then handled as explained previously. In other words,
our heuristic operates on a relaxed problem, where the relaxation replaces convex quadratic
constraints with their linear over-approximation, on top of using the delete relaxation. If
the user specifies the convex quadratic conditions as primitives, such as ellipsoidal regions,
our planner computes the linear over-approximations automatically. For example, for el-
lipsoidal region conditions, we compute the axis aligned bounding box that contains the
region. Otherwise, the user can specify the approximations directly by providing lists of
linear inequalities. These linear over-approximations constitute valid relaxations since they
ensure that actions can always be executed earlier than they would be if the actual quadratic
constraints were used.

The final difference in our heuristic compared to COLIN’s is that resource-constrained
norm effects (RNE) also need to be considered. These effects only reduce the availability of
constrained resources and their application can only make activities infeasible (and never
new activities possible). Therefore, in the spirit of delete relaxations, these effects are ig-
nored in the heuristic. The optimization-based consistency check, that accurately computes
these effects, rejects states that become infeasible due to this and the search follows through
a different route. However, there is room to improve the current heuristic and make it aware
of these interactions. We leave handling these effects more accurately in the heuristic for
future work.

6.4 Search Strategies

ScottyActivity implements two search algorithms. The first is Enforced Hill-Climbing
(EHC) , which has been widely used with success by satisficing planners (Hoffmann &
Nebel, 2001). The second is a variation of EHC that we call obj-EHC that guides the
search to plans that produce better objectives more efficiently. Additionally, ScottyActiv-
ity can optionally fall back to A* when these incomplete search algorithms fail. However,
this is not discussed further in this work since our A* implementation is the standard one
commonly used in other planners.

EHC (Algorithm 3) is a very popular greedy search algorithm that drops the open list
every time it finds a state with a lower heuristic value. As a consequence, EHC is not
complete. Since the heuristic is the estimated number of start or end activities to reach the
goal, our EHC algorithm completely ignores the problem objective to guide the search. The
TEST-GOAL procedure (Line 15) checks that the goal has been reached and, in that case,
solves the optimization with the problem objective in order to generate the solution plan
with the activity schedule and control trajectory. This plan is guaranteed to be optimal
conditioned on the sequence of events chosen by the search.

While EHC is fast, ignoring the problem objective often leads to EHC making misguided
choices that result in highly suboptimal plans. This happens because states that have the
same heuristic value (in term of the number of activities to reach the goal) may have very
different costs as specified by the problem objective. In order to improve the quality of
the plans found by ScottyActivity, we introduce the obj-EHC algorithm (Algorithm 4),
that is a variation of EHC that attempts to improve this issue. The obj-EHC algorithm
uses a priority queue to sort the open states by the heuristic value (first) and, in case of a
tie, by the cost incurred in that state so far according to the problem objective (second).

610

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

Algorithm 3: Scotty-Plan-Ehc

Input: A PDDL-S planning problem PP .
Output: A valid PDDL-s plan or nil if no plan could be found.
Algorithm

1 S0 ← MAKE-STATE(PP.I)
2 p0 ← {}
3 hbest ← GET-HEURISTIC(S0)

4 Q ← [<S0, p0, h0 >]
5 while not IS-EMPTY(Q) do
6 S, p ← POP(Q)
7 has-valid-descendants ← nil
8 AH , AA\H ← GET-ACTIVITIES(PP , S)

9 for a in AH +AA\H do

10 Snew ← APPLY(S, a)
11 pnew ← p + {a}
12 Snew ← TEST-CONSISTENCY(PP , Snew, pnew)
13 if Snew
14 has-valid-descendants ← true
15 psol ← TEST-GOAL(Snew, pnew)
16 if psol
17 return psol

18 hnew ← GET-HEURISTIC(Snew)
19 if hnew < hbest
20 Q ← {<Snew, pnew >}
21 hbest ← hnew
22 break

else
23 if hnew <∞
24 PUSH(Q, < Snew, pnew >)

25 if all a ∈ AH explored
and has-valid-descendants
/* Do not explore non-helpful */

26 break

27 return nil

611

Fernández-González, Williams & Karpas

Algorithm 4: Scotty-Plan-Obj-Ehc

Input: A PDDL-S planning problem PP .
Output: A valid PDDL-s plan or nil if no plan could be found.
Algorithm

1 S0 ← MAKE-STATE(PP.I)
2 p0 ← {}
3 hbest ← GET-HEURISTIC(S0)

4 Q ← MAKE-PQUEUE()

5 PUSH(Q, < hbest, 0 >, < S0, p0 >)
6 while not IS-EMPTY(Q) do
7 S, p ← POP(Q)
8 has-valid-descendants ← nil
9 if S.h < hbest

10 hbest ← S.h
11 CLEAR(Q)

12 AH , AA\H ← GET-ACTIVITIES(PP , S)

13 for a in AH +AA\H do

14 Snew ← APPLY(S, a)
15 pnew ← p + {a}
16 Snew ← TEST-CONSISTENCY(PP , Snew, pnew)
17 if Snew
18 has-valid-descendants ← true
19 objnew ← MINIMIZE-OBJECTIVE(PP , pnew)
20 psol ← TEST-GOAL(Snew, pnew)
21 if psol return psol
22 hnew ← GET-HEURISTIC(Snew)
23 if hnew <∞
24 PUSH(Q, < hnew, objnew >, < Snew, pnew >)

25 if all a ∈ AH explored
and has-valid-descendants
/* Do not explore non-helpful */

26 break

27 return nil

612

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

Contrary to EHC, obj-EHC computes the heuristic value and the cost-so-far of all the
helpful descendants of the current state, as opposed to dropping the queue and descending
into a state as soon as a heuristic lower than the prior best one is seen. In the spirit of
EHC, obj-EHC drops the queue when a state with a lower heuristic than the incumbent is
removed from the priority queue. This provides a reasonable compromise between finding
better quality plan and preserving the speed of EHC. However, dropping the queue makes
obj-EHC also an incomplete search algorithm.

In order to compute the cost so far for a given state, we solve the same optimization
problem that we use to test consistency with the objective of minimizing the cost as specified
by the problem objective (Line 19). Note that the cost computed this way only provides an
indication of the cost incurred so far, but does not provide any estimate of the future cost
that may be incurred in by future activities. That is, this is the current cost of the plan
skeleton and not a heuristic. Computing an estimate of the future cost would probably help
the search considerably. However, this computation is not straightforward since it involves
solving an optimization over possible future choices of activities with their conditions and
effects. We leave this extension for future work.

Note that state expansion in obj-EHC is more computationally expensive than in EHC,
since obj-EHC requires solving one additional optimization problem (the one minimizing
the cost) on top of the optimization problems used to compute the bounds for each state
variable. Moreover, obj-EHC maintains a priority queue, which is not needed in EHC.
Finally, obj-EHC requires expanding all children of each state as opposed to stopping right
away when a state with a better heuristic value is found. In Section 8 we compare both,
discuss the advantages and disadvantages of each and show that the quality of the plans
returned by obj-EHC is significantly higher in general.

Both search algorithms explore by default only the helpful activities of each state. These
are the activities that appear in the first layer of the relaxed planning graph (Hoffmann &
Nebel, 2001). However, we cannot model accurately some of the non-linear effects in our
heuristic (i.e. resource-constrained norm effects, RNEs). As a result, the heuristic sometimes
fails to identify activities that need to take place as helpful when RNEs are used. To alleviate
this, we allow our search to explore the applicable, but non-helpful, descendant activities if
the current state does not have any valid successors (Line 25).

Finally, ScottyActivity can, like other planners, fall back to A* search if EHC or obj-
EHC do not find a plan. In practice A* search is very slow in non-trivial problems and we
do not show the performance of our planner using this search method.

7. Consistency Checking Through Convex Optimization

Recall that ScottyActivity’s convex optimization model is used for multiple purposes during
planning. First, the model is used to test the consistency of partial plans. Second, the
model is also used to compute the minimum and maximum reachable bounds for each state
variable at every search state. Third, to compute the cost of a state according to the
problem objective if the obj-EHC algorithm is being used. Fourth, the model is used one
last time when the goal is reached in order to compute the optimal activity execution times
and the control trajectory that minimizes the problem objective. In all these situations, the

613

Fernández-González, Williams & Karpas

model has the same decision variables and constraints. The difference lies in the objective
used.

The straightforward mathematical model that describes the characteristics of the contin-
uous effects and other constraints defined in Section 4 is non-linear and non-convex. A key
innovation of our work consists in describing an alternative encoding that is convex and can
be represented as a Second Order Cone Program (SOCP), a class of convex quadratically
constrained programs. Being able to use a SOCP model is important for several reasons.
First, there are very efficient solvers for SOCP problems that are orders of magnitude faster
than traditional gradient-based methods typically used to solve general non-linear problems.
Since every state needs a feasibility check, ScottyActivity solves thousands of optimization
problems for typical planning problems, and the runtime of the solver accounts for the
majority of ScottyActivity’s planning time. Second, unlike general non-linear problems,
convex optimization problems can be solved with complete algorithms. As a consequence,
ScottyActivity’s feasibility check is complete and we are guaranteed to only reject states
that are infeasible. Finally, unlike general non-linear problems, convex problems do not
have local minima. As a consequence, the solution returned by convex solvers is optimal.
This is important for two reasons. First, the minimum and maximum bounds computed for
each state variable are guaranteed to be as large as possible, which ensures that no valid
states are rejected when using the bounds check described in Section 6.2. Second, the plan
returned when the goal is found is guaranteed to produce the lowest possible objective for
the sequence of starts and ends of activities that the heuristic guided search finds.

SOCPs are harder to solve than LPs. However, they can still be solved in polynomial-
time with interior point algorithms. Moreover, our model only uses cone constraints
when the problem has convex quadratic state or control variable constraints, or resource-
constrained norm effects. When these characteristics are absent, our model becomes a linear
program. That is, we only suffer the performance degradation of transitioning from LP to
SOCP when the problem requires it.

An important advantage of our approach is that, since the optimization is solved in full
at every step of the search, we do not make early commitments to the event times or values
of the state or control variables. That is, the optimization can make some choices for event
times and state variables at some state in the search, and completely different ones at a
later descendant search node. This is important since we prevent early bad choices that
could lead to infeasible or suboptimal plans later on and we leave as much flexibility as
possible for the solver to make the best choice according to the objective (Toussaint, 2015).

We now present an example that we use throughout the rest of this section to illustrate
what the decision variables are and how the SOCP model is built.

7.1 Example

We present an example problem in which a vehicle has to visit regions A and B and stay
inside them for at least 20 seconds. While doing so, it must always stay inside the safe
region and travel with a maximum velocity of 2 m/s. The vehicle has a limited battery that
decreases at a rate proportional to the square of the norm of its velocity. At the end, the
vehicle must also reach the maximum possible x and y values.

614

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

navigate

visit-B

visit-A

e0 e1 e2 e3 e4

s0 s1 s2 s3 s4t0 tj
x0 xj

cjc0
t

x 2 A

x 2 B

enow

t2 � t1 � 20

�tj
t4 � t3 � 20

tnow

future ends of
activities

possible next
event (“now”)stage

event

ẋ = vx, ẏ = vy, ḃ = �k · kvk2
x 2 SafeRegion, b � 0, v2

x + v2
y  vmax

Figure 7: Example plan skeleton when the start of navigate, the start and end of visit-A
and the start and end of visit-B events have been added but the end of navigate is not part
of the plan yet.

This example problem is modeled with three activities: navigate, visit-A and visit-B.
Assume, for clarity, that the search has already found a plan skeleton with 5 events, in
which the start of navigate is the first event and the start and end of visit-B and visit-A
happen sequentially while navigate takes place. Assume, however, that the end of navigate
has not been placed in the plan yet. The corresponding plan skeleton is shown in Figure 7.
Recall that plan skeletons only define the order of the selected start or end events and that
the values of the times, and the control and state trajectory are determined by solving the
optimization problem. Figure 7 also shows the constraints imposed by this plan skeleton.

The solution to this example problem once the search is completed and the final end-
navigate event is placed is presented in Figure 8. Note that our planner automatically
chooses the intermediate points and the times of the vehicle state and control trajectory in
order to respect the constraints and minimize the objective. In particular note that while
the objective includes minimizing the total time, the planner chooses very small velocities
during the visit-B and visit-A activities. The reason for this apparent contradiction is that
these activities force the vehicle to remain inside their regions for at least 20 seconds. Since
there is no point in leaving these regions early, the planner decides to move very slowly since
large speeds decrease the vehicle battery significantly, and this battery is needed to move
in the x and y coordinates at the end of the plan. The solution shown is guaranteed to be
optimal with respect to the given choice of activities. Note, however, that if the planner had
chosen to visit A before B the solution returned would be very different and the objective
reached would be worse.

We describe throughout the rest of this section how our convex model is built.

615

Fernández-González, Williams & Karpas

t0

t1 t2

t3 t4

t5

safe region
A

B

sta
ge

s 0

s1

s2

s3

s4

(a)

VISIT-B VISIT-A

t0 t1 t2 t3 t4
∆t0 ∆t1 ∆t2 ∆t3 ∆t4

NAVIGATE

t5s0 s1 s2 s3 s4

stagesevents

State variables

Control variables

(b)

Figure 8: Resulting state and control trajectories for the example problem. The opti-
mization chooses the switch points in order to satisfy the constraints and obtain the best
objective of maximum x and y with minimum time.

7.2 Preliminary Definitions and Decision Variables

Recall that the events in a plan skeleton are totally ordered and that we call stage the period
of time between consecutive events. The control variables take constant values during stages
and, as a consequence, the state variables change linearly in time during these stages. Recall,
as well, that given the event execution times and the piecewise constant control trajectory,
the state trajectory is fully determined.

A plan skeleton with N events, e0, . . . eN−1, has N − 1 stages, labeled s0, . . . , sN−2. We
call stage j, sj , the one starting at event j and ending at event j + 1. Execution times
and state variable values are associated to events, while the constant values of the control
variable trajectory are associated to stages.

The execution times of the events, tj ∈ R, are decision variables in our model. The
values of the state variables at each event, xj = x(tj) ∈ Rn are also decision variables in our
model. While we need to determine the constant values of the control variables during each
stage, cj ∈ Rm, these are not decision variables in our model for reasons that we explain
later in this section. Instead, we use other proxy decision variables that we define later and
whose value we use to compute the values of the control variables once the optimization
problem is solved. For the sake of clarity in our model, we also define the duration of each
stage, ∆tj , as a decision variable whose value is constrained to be ∆tj = tj+1 − tj . Other
auxiliary decision variables are defined for different purposes, and are introduced as needed
in this section.

616

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

The execution time and the values of the state variables at the first event are constrained
to take the initial conditions defined in the PDDL-S problem. In our example, t0 = 0, x0 =
0, y0 = 50, battery0 = 80.

7.3 Temporal Constraints

Events in the plan skeleton are totally ordered. We enforce this order by constraining the
events to be separated by at least ε time (∆tj ≥ ε). This is consistent with the PDDL2.1
semantics (Fox & Long, 2003). We do this because solvers can only enforce non-strict
inequality constraints. For each event representing the end of an activity, the constraint
that the minimum and maximum duration of that activity is respected is added to the
program:

dl(a) ≤ te(a)− ts(a) ≤ du(a), ∀a ∈ P (20)

, where ts(a) and te(a) are the event times of the start and end of activity a, dl(a) and
du(a) are the lower and upper bounds of the duration and each a is an activity in the plan
skeleton.

In the example, the vehicle has to remain in regions A and B for at least 20 seconds.
Therefore, the constraints t2 − t1 ≥ 20 and t4 − t3 ≥ 20 are added to the program.

7.4 State Constraints

Each event is the start or end of an activity. For each event, ej , which is the start (end)
of an activity, we add the constraints that enforce that the value of the state variables, xj ,
satisfy the start (end) state conditions of the activity.

Moreover, the values of the state variables at ej , xj , need to satisfy all the maintain
(over all) state conditions of all the activities that have started before event ej but have not
ended yet. Recall from Section 5 that, since state conditions are restricted to be convex and
the state trajectories are piecewise linear, enforcing the maintain conditions of an activity
at all events that take place during the activity execution ensures that the conditions are
always satisfied at any continuous point in time during the activity.

In the example, the visit-B activity requires that the vehicle remains in region B while
the activity takes place. Since B is a polygonal region, this is achieved with the constraint
H(xj yj) ≤ h, j ∈ {1, 2}, where H ∈ R2×2 and h ∈ R2×1 are the constants of the linear
inequalities that represent the polygon. The conditions for the visit-A activity are similar,
except that the region is a circle and the constraints take the quadratic form of (xj− cx)2 +
(yj − cy)2 ≤ R2, j ∈ {3, 4}. Moreover, since events e1, e2, e3 and e4 take place while the
navigate activity is ongoing, the state variables at those events need to satisfy its over all
conditions: remain inside the safe region and keep the battery level above 0.

7.5 State Change

State variables change their value between consecutive events ej and ej+1 due to the presence
of continuous effects active during the stage between those events, sj . Therefore, the value
of state variable k at event j + 1 is given by:

617

Fernández-González, Williams & Karpas

xk(tj+1) = xk(tj) +
∑

effi∈Exk
(j)

∆xkeffi(j) (21)

, where Exk
(j) is the set of all active continuous effects operating on state variable xk at

stage j. Each ∆xkeffi(j) is a decision variable describing the change due to a continuous
effect during stage j. Each type of continuous effect imposes different constraints on this
value, as we describe in the next section.

7.6 Control Variables and Continuous Effects

The change produced by a controllable linear time-varying continuous effect (CLTE) on
state variable xk during stage j is described by:

∆xkCLTE(j) =

(∑
i

ki · ci(j)
)
· (tj+1 − tj) (22)

, where ci(j) is the constant value that the i-th control variable takes during stage j.
Given that the event times are decision variables, the previous equation is non-linear and
non-convex if the control variables are also decision variables. To overcome this problem,
the first version of ScottyActivity (Fernandez-Gonzalez et al., 2015) relaxes this non-linear
constraint to a linear interval equation on the state variables. With this relaxation, control
variables are not needed as decision variables and, instead, its lower and upper bounds are
used in the interval equations. Using this relaxation, however, limits the problems that can
be solved. For instance, with this relaxation the same control variable cannot be used in
more than one effect simultaneously, since the interval equations would, in practice, allow
the solver to choose two different values for the same control variable (e.g. a high velocity to
make a vehicle drive fast and simultaneously a low value to make it consume less battery).
Another important limitation of this relaxation is that control variables are completely
independent of each other and they can only be limited by fixed bounds. Other constraints
on the control variables are not possible within this framework. For instance, a moving
vehicle would only have independent bounded velocity control variables on x and y. The
magnitude of its velocity cannot be limited, as this requires a norm constraint acting on
both the vx and vy velocities. Therefore, the vehicle would essentially be able to move much
faster in diagonal directions than in the x and y directions.

These limitations are addressed here with a different encoding. Instead of using interval
equations, we define the decision variable ci∆tj for every control variable being used in each
stage j. This decision variable represents the value ci∆tj = ci ·∆tj . However this constraint
is not added directly, to avoid adding a non-linearity and non-convexity constraint. Instead,
the new decision variable ci∆tj is subject to the linear inequality constraints

cil ·∆tj ≤ ci∆tj ≤ ciu ·∆tj (23)

where cil and ciu are the constant lower and upper bounds of control variable ci. We can
use these new decision variables to turn (22) into a linear equation, as we describe later.

Note that, in effect, instead of asking the solver to pick a value for each control variable,
we ask the solver to pick the times of the events and the product of the values of the control

618

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

variables and the elapsed time between consecutive events. The key idea that makes this
encoding work is that, for most purposes, we only need the values of the products of control
variables and time intervals instead of the actual values of the control variables. A key
advantage of this formulation is that, contrary to the first version of ScottyActivity, control
variables can now be used in as many continuous effects as needed, since the ci∆t decision
variables can appear in other constraints, and the values will be consistent with each other.
Moreover, we can now impose constraints on the control variables. For example, we can
impose that two control variables, c1, c2 always satisfy c1 + c2 ≤ 5. The constraint cannot
be encoded directly since c1 and c2 are not explicit decision variables. However, we can
multiply the equation by ∆tj and impose the condition c1∆tj +c2∆tj ≤ 5 ·∆tj in every stage
in which they are active.

Similarly, we can also impose maximum l2-norm constraints on sets of control variables.
In many robotic applications, like the motivating example in Section 3.1, it is useful to
represent the velocity of a robot with its principal components (vx, vy) but still limit the
total velocity by some fixed amount. This can be expressed with the constraint ||c|| ≤ vmax,
where c = [vx, vy]T is a vector of control variables. To encode this constraint, we multiply
the whole equation again by ∆tj to obtain the equation

‖c‖ ·∆tj =
∥∥c∆tj

∥∥ ≤ vmax ·∆tj (24)

The previous inequality is not a linear constraint, but a particular case of a second order
cone constraint. Second order cone constraints are given by:

‖Ax + b‖ ≤ cTx + d (25)

where x is the vector of decision variables and the rest are constant parameters. Since
c∆t = [vx∆t, vy∆t]

T and ∆t are decision variables, we can transform (24) into (25) by
taking b = d = 0 and choosing constants A and c as needed.

In the example, the velocities of the vehicle, vx and vy are each restricted to be within
(−2, 2). Therefore, we define the variables vx∆tj and vy∆tj

for each stage and constraint

them as:

−2 ·∆tj ≤ vx∆tj ≤ 2 ·∆tj (26)

−2 ·∆tj ≤ vy∆tj
≤ 2 ·∆tj (27)

(28)

Moreover, the magnitude of the velocity of the vehicle is also constrained to not exceed
2. This is achieved with the following cone constraint for each stage:

vx∆tj
2 + vy∆tj

2 ≤ 22 ·∆tj2 (29)

7.6.1 CLTE Effects

Using the newly defined ci∆tj variables, the originally non-linear CLTE equation (22) can
then be rewritten as the linear equation

∆xkCLTE(j) =
∑
i

ki · ci∆tj (30)

619

Fernández-González, Williams & Karpas

As an example, consider that the change in state variable x during stage s1 (during the
visit-B activity) in the example scenario is given by:

x2 = x1 + vx∆t1 (31)

7.6.2 RNE Effects

The second type of continuous effects, resource constrained norm effects (RNE), are de-
scribed with cone constraints. In this work we focus on linear norm effects (LNE) and
linear squared norm effects (LSNE). Recall that the change due to a LNE effect on a con-
strained resource (state variable rk) is given by

∆rkLNE(j) = −kLNE · ‖ce‖ ·∆tj , kLNE ≥ 0 (32)

where kLNE is a non-negative real constant and ce is the vector of the control variables
involved in the effect. Equation (32) is not convex and cannot be encoded directly. However,
we can transform (32) into a cone constraint by defining a new decision variable b that acts
as a bound. The equation is then rewritten as

‖c∆tj‖ ≤ b, b ≥ 0 (33)

∆rkLNE(j) = −kLNE · b (34)

Equations (32) and (34) do not represent the same, since b is simply an upper-bound on
||c∆tj ||. This is the reason why we have to restrict these effects to constrained resources.
In general, the bound b will not be tight and the computed value for resource rk may not
be accurate. However, these equations can accurately model that a constrained resource
decreases with the norm of a control variable vector and the bound will become tight to
ensure that a resource never dips below some threshold. This is useful to model, for example,
how a vehicle’s battery decreases as a function of the speed it is traveling at, regardless of the
x, y direction. Unfortunately, we cannot use resource constrained norm effects to impose
that a certain resource is below some level, since the artificial bound b could take any
arbitrary large value to satisfy the constraint trivially without changing the actual value of
the norm of the control variable vector. Modeling such condition would require handling a
constraint in the form of ||c∆tj || ≥ b. However, this is a non-convex constraint that we do
not support since it cannot be represented with a SOCP program. In practice, we have not
found many problems in which this is required, but we leave this extension for future work.

The second resource constrained norm effect that we support is the linear squared norm
effect (LSNE), which is subject to the same limitations as the LNE effect, but in which the
decrease rate of the resource variable is proportional to the squared norm:

∆rkLSNE(j) = −kLSNE · ‖c‖2 ·∆tj , kLSNE ≥ 0 (35)

Again, equation (35) is non-convex, but we can use the same principle as before to represent
it as a SOCP constraint. Since c∆tj = c ·∆tj , we can write

‖c‖2 ·∆tj =
c∆tj

T c∆tj

∆tj
≤ b, b ≥ 0 (36)

620

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

where b is, again, an auxiliary positive bound variable. Finally, equation (36) can be
rewritten as

c∆tj
T c∆tj ≤ b ·∆tj (37)

∆rkLSNE(j) = −kLSNE · b (38)

which is a rotated cone constraint, a valid type of convex SOCP constraint, since b and ∆tj
are positive.

In the example, the vehicle battery decreases with a rate proportional to the square of
the vehicle velocity. This is modeled with the LSNE effect present in the navigate activity.
As explained in the previous section, we use auxiliary decision variables to model this
change. For each stage, we define the upper bound decision variables uLSNE(j) for each
stage that are subject to the rotated cone constraint described in eq. (36). In particular,
the constraint takes the form:

v∆tj
Tv∆tj ≤ uLSNE(j) ·∆tj , uLSNE(j) ≥ 0 (39)

where v∆tj = (vx∆tj vy∆tj
). Then, the battery is updated in each stage according to

bj+1 = bj − kLSNE · uLSNE(j). Although the battery value computed with this model
may not be accurate (since the upper-bound decision variables could take arbitrarily large
values), these constraints ensure that the battery is never depleted.

7.7 Partial Skeleton Plans

The constraints presented so far are sufficient to represent full plans. However, ScottyAc-
tivity also needs to test the consistency of partial skeleton plans. In these partial plans
there may be ongoing activities that have started but not ended yet. We use the same tnow
trick that COLIN (Coles et al., 2012) uses to detect inconsistencies due to future temporal
constraints being violated. An event at tnow is placed after all the other events in the partial
plan. The state variables at this event are updated according to the active continuous effects
and subject to the invariant conditions of activities that have started but not ended yet.
For each of these ongoing activities, a decision variable describing the future time where it
will end is added and constrained to occur after tnow and to respect the activity duration
constraints. This helps identify partial plans that are not feasible because future temporal
deadlines cannot be met. The ‘now’ event is also the point at which each state variable is
minimized and maximized to find the bounds of each state variable at the end of the given
plan skeleton.

In the example problem activity navigate has not ended yet (Figure 7). Therefore, we
place the auxiliary ‘now’ event, enow, after the last event in the skeleton (the end of visit-A)
but before the future end of the navigate activity.

7.8 Objective

When the model is used to test the feasibility of a plan skeleton, no objective is needed.
When the model is used to compute the bounds of each state variable, the problem is solved

621

Fernández-González, Williams & Karpas

2n times to minimize and maximize each of the n state variables at the end of the plan.
The 2n objectives are, therefore: {xk(tnow),−xk(tnow)} 1.

The problem objective needs to be used in the model in two situations: when determin-
ing the accumulated cost of a plan skeleton if the obj-EHC algorithm is being used, and
when finding the optimal execution times and control trajectory for the full plan skeleton
that satisfies the goal discrete conditions. Recall that the problem objective is a linear
combination of the total plan time, the values of the state variables at the end and the
sumproducts of the norms (or squared norms) of vectors of control variables and the dura-
tions they are active for. The first two are straightforward to model, since the total plan
time and the values of the state variables are, respectively, the execution time of the last
event in the plan and the values of the state variables at that time. The last option allows
us to minimize actuation control.

The sumproduct of the norm of a control variable vector cv and the times it is active
for is given by ∑

j

‖cv‖ ·∆tj (40)

Note that if cv represents the velocity of a vehicle, the previous is equivalent to the distance
traveled by that vehicle. In order to minimize eq. (40) using our convex model, we use the
same approach we followed to represent LNE effects (eq. (33)). For each stage, we define a
bound decision variable bj that satisfies

||c∆tj || ≤ bj , bj ≥ 0 (41)

Then, minimizing
∑

j‖cv‖ ·∆tj is equivalent to minimizing the sum of the bound variables
for each stage (

∑
j bj). We use an analogous approach to minimize the sumproduct of the

squared norm. In this case the bound variables are constrained with rotated second order
cone constraints (as in the case of the LSNE effects):

c∆tj
T c∆tj ≤ bj ·∆tj , bj ≥ 0 (42)

In the example, the problem objective is a combination of minimizing the total time
and maximizing the sum of the x and y coordinates at the end. For the full plan as shown
in Figure 8a, this is achieved with the minimization objective 0.7t5 − x5 − y5.

8. Experimental Results

In this section we evaluate the scalability of our planner in both synthetic domains and real
expressive robotic scenarios. First, we use synthetic domains to illustrate why maintaining
both continuous time and continuous control variables, as ScottyActivity does, is essential
to plan efficiently over long horizons. We then present in Section 8.2 three robotic domains
that ScottyActivity is designed to solve efficiently and show the scalability of our approach
in these problems. Finally, we present in Section 8.3 a comparison of ScottyActivity against

1. For valid states, the bounds for the state variables always need to be computed after the feasibility
check. Therefore, for efficiency purposes, our model is never used without an objective in practice. The
first model solved is simultaneously determining the feasibility of the plan and minimizing the first state
variable.

622

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

a mixed-integer solution (MIP). This MIP approach uses the same model from Section 7 to
represent state and control variables, times and constraints. Instead of selecting activities
using heuristic forward search, the MIP method makes this decision with integer variables.
We show that our planner performs at least two orders of magnitude faster than the MIP
method in medium to large problems. In our tests, we used an Intel Core i7-3770 3.40 GHz
processor, and Gurobi 7 as ScottyActivity’s internal convex optimization solver.

8.1 Synthetic Benchmarks

In our first example, we compare the performance of ScottyActivity against Kongming in a
robotic sampling scenario that shows why Kongming’s time discretization can be a problem
in common applications and how ScottyActivity overcomes this issue. We then compare
ScottyActivity’s performance against POPF (Coles et al., 2010), a state of the art planner
capable of planning with continuous effects. Recall that POPF does not support control
variables and therefore needs to represent different rates of change with multiple discretized
actions. This example shows that representing control variables continuously is essential
in robotic applications and that the alternative discretization of control variables is not a
scalable approach.

8.1.1 Discretization of Time

Kongming is the first mixed discrete-continuous activity planner that performs simultaneous
activity and motion planning as a tightly coupled problem. It does so by allowing continuous
control variables and by using an efficient representation of all possible trajectories with
flow tubes. However, while Kongming’s approach is very innovative, we argued in Section 2
that its fixed time discretization hinders its performance in problems that require long
planning horizons and where both short and long lived activities coexist. In this section we
present a simple robotic scenario that highlights this issue and we show that ScottyActivity’s
continuous time formulation avoids this problem.

The problem consists of a simple autonomous underwater vehicle (AUV) sampling mis-
sion as shown in Figure 9. In this problem the AUV needs to reach a certain depth range
in order to take a sample. We parameterize this scenario in terms of such sampling depth.
The AUV can use the action descend to modify its depth according to the bounded control
variable descent-rate. Because Kongming discretizes time in constant time steps, increas-
ing the target sampling depth forces Kongming to create additional fact and action layers
and, additionally, more variables that the MILP solver needs to consider. As a result, the
performance of Kongming degrades very quickly with the target sampling depth as shown
in Figure 9. On the other hand, ScottyActivity’s performance is constant (and orders of
magnitude better than Kongming’s). This is an expected result. Because ScottyActivity
does not discretize time, it solves essentially the same problem regardless of the target
sampling depth. Only one descend activity is needed and it is only the parameters of the
mathematical optimization that change in each instance of the problem. For the sake of
completeness we also benchmarked ScottyActivity in other domains in which Kongming
was used. These domains, described in detail by Li (2010), typically showcase one or more
mobile robots moving in a 2D or 3D environment and completing objectives that involve

623

Fernández-González, Williams & Karpas

0.1
1

10
100

0 40 80 120 160

Kongming
Scotty

AeroAstro Doctoral Research Evaluation, January 2014 - Enrique Fernandez

3.2. Preliminary Results

�19

Pla
nn

ing
 Ti

me

(se
co

nd
s)

0.1

1

10

100

Sampling Depth

0 40 80 120 160

Kongming
Scotty

Results are preliminary. Ongoing work.

Scotty appears to solve some scaling issues that hinder Kongming’s
performance due to it’s use of discrete time

sampling
depth

sampling X

30 m

80 m

sampling
area

X = 0
depth = 0

descend1
descend2descend1

descend2

descend3

Example scenario:

Higher depth (larger
distance) requires more
time steps (layers) to find a
solution.

Kongming

Sampling Depth (m)

Pl
an

nin
g

Ti
m

e

Figure 9: Example scenario that shows the problems of discretizing time. Planning time is
shown in seconds.

2D AUV 1 2D AUV 2 3D AUV Firefighting 1 Firefighting 2

Kongming 3.633 9.736 13.063 1.505 20.202
ScottyActivity 0.054 0.025 0.192 0.03 0.372

Table 1: Comparison between Kongming and ScottyActivity in several domains. Results
show planning time in seconds.

visiting different locations. Table 1 shows that ScottyActivity exhibits a large performance
advantage over Kongming in these domains as well.

8.1.2 Discretization of Control Variables

In this section we argue that continuous control variables are essential to efficiently solve
robotic planning problems. In order to do this, we compare the performance of ScottyAc-
tivity and POPF in a synthetic robotic domain. While POPF is a very efficient planner,
it only supports linear continuous effects with previously defined, fixed rates of change, as
opposed to the continuously controllable rates of change (control variables) that ScottyAc-
tivity supports. In this synthetic domain a mobile vehicle needs to visit 6 regions. For the
sake of simplicity the order of the regions is fixed in this problem. The objective of this
problem consists in minimizing the plan makespan. In order to move, the vehicle uses the
navigate activity. This activity has two CLTE effects, each operating in state variables x
and y respectively:

(increase (x) (∗ (vx) #t))
(increase (y) (∗ (vy) #t))

624

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

Planner A t S L O l vavg

ScottyActivity (EHC) 1 0.81 24 24 151.11 203.65 1.35

P
O

P
F

4 directions 4 1.07 326 38 200.22 376.40 1.88
8 directions 8 1.77 531 36 192.22 415.90 2.16

5 steps 24 11.84 3530 36 277.17 413.92 1.49
7 steps 48 22.66 6168 32 342.56 413.01 1.21
9 steps 80 59.62 15037 32 469.92 459.06 0.98
11 steps 120 133.35 31160 32 430.13 446.35 1.04

vx

vy

-vmax

-vmax

vx

vy

-vmax

-vmax

vx

vy
4 directions 8 directions 5 steps

Table 2: Discretization example results. A: number of navigate actions in the domain;
t: Planning time in seconds; S: Number of nodes expanded; L: Plan length in number of
actions; O: Makespan (objective value) of the plan returned; l: Length of the path traveled;
vavg: Average speed of the vehicle throughout the plan. The diagrams on the right show
the discretization performed in some of the problem instances. Each black dot represents
a navigate activity with its given vx and vy. For ScottyActivity, any velocity value within
the square is allowed.

x

y

A

B

C

D

E
F

Scotty Solution (optimal)
l = 203.6, vavg = 1.35

(a)

x

y

A

B

C

D

E
F

POPF Solution (4 navigate actions)
l = 376.4, vavg = 1.88

(b)

x

y

A

B

C

D

E
F

POPF Solution (120 navigate actions)
l = 446.4, vavg = 1.04

(c)

Figure 10: Trajectories of the discretization example. In this domain, the solution returned
by ScottyActivity is optimal (a). With 4 navigate actions, the solution is worse than optimal
and harder to find (b). Adding more actions, the problem becomes much harder to solve,
and the solution returned gets worse (c)

For ScottyActivity, vx and vy are continuous control variables that can take any value
between −2 and 2. Since POPF only supports fixed rates of change, the values of vx and vy
have to be fixed in advance. Therefore, we create multiple navigate activities with different
discretization values for the velocities. We compare the performance of ScottyActivity using
EHC to POPF in problem instances using different discretization values (from 4 navigate
activities to up to 120 navigate activities).

The results are shown in Table 2. The diagrams on the right show the discretizations
performed for some of the problem instances. Since the visit order of the regions has been
fixed, the plan returned by ScottyActivity is optimal. Given that ScottyActivity only needs
one navigate activity to represent all possible velocities, this problem can be solved very

625

Fernández-González, Williams & Karpas

quickly. As expected, the results show that as the number of navigate activities increases,
it becomes harder for POPF to find a solution since it needs to explore more states.

Figure 10 shows the optimal trajectory returned by ScottyActivity and the trajectories
returned by POPF for different discretizations. A finer discretization (more navigate ac-
tivities), provides the chance of finding better plans, since more fine grained control of the
velocities is possible, which in turn allows better navigation headings to be selected. How-
ever, the results show that the plans returned by POPF are not only much harder to find,
but they also do not get better with more navigate activities. We hypothesize that this is
due to the greedy nature of the Enforced Hill Climbing algorithm that POPF uses, and the
fact that the number of actions to the goal and not the objective is what guides the search.
As an example consider the two first actions of the plan shown in Figure 10c, which are
the navigate activities with velocities (0.8, 0.8) and (−2,−0.4) respectively. Because EHC
commits to those first two actions with their fixed velocities and headings, POPF’s linear
program has no other option than taking the vehicle all the way to the top right corner in
order to be able to reach region A afterwards.

This discretization example shows that even in simple domains, continuous control vari-
ables provide a large advantage over discretized rates of change.

8.2 Evaluation in Robotic Domains

To the best of our knowledge, there are currently no prior benchmarks available that can
exploit the features of our planner. Therefore, in order to showcase the new capabilities of
our planner and to show that our optimization framework is fast and scalable, we present
three new expressive robotic domains and benchmark our planner against them. Since
no other planner can solve these domains, we also provide simplified, linear version of
some of these domains that we use to compare our planner to POPCORN (Savas et al.,
2016). We compare against this planner since it supports control parameters, which are
essential for these domains. The simplified domains do not capture the full expressivity of
these problems. However, because POPCORN supports control parameters, we can still
represent some aspects of these problems within its formalism. We also compare against
the first version of our planner, Scotty1 (Fernandez-Gonzalez et al., 2015), since it uses a
much simpler optimization model than the one presented in this work.

We describe these domains in this section. The PDDL description of these that Scotty-
Activity takes as input is provided in Appendix D.

8.2.1 The AUV Domain

In this domain an Autonomous Underwater Vehicle (AUV) needs to visit and take samples
at multiple regions. This domain is similar to POPCORN’s 2D-AUV-Power domain, that
is based on prior Kongming and Scotty domains. There are two main differences between
POPCORN’s domain and ours. First, since POPCORN does not support controllable rates
of change, the effects of the glide action are modeled as discrete numeric displacements on
the x, y variables at the end of the action, whereas we model the motion as a continuous
effect that takes place while the action is being executed. Moreover, since POPCORN only
supports linear constraints, its authors model the maximum power of the vehicle as a simple
linear constraint on the displacements at the end of the action (e.g. 3dx + 4dy ≤ 60), while

626

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

we can use the new features of our SOCP model to limit the magnitude of the velocity
(v2

x + v2
y ≤ v2

max). The objective of this domain consists in minimizing the plan makespan.
The simplified linear version of this domain is similar except that we place no constraints
on the vx, vy velocities other than their simple independent bounds.

8.2.2 The ROV Domain

This domain is based on the motivating example presented in Section 3.1 but without an
AUV. As in the motivating example, the Remotely Operated Vehicle (ROV) needs to take
samples in multiple regions and end, together with the ship, in the destination region. Note
that our planner decides where to station the ship while the ROV is taking samples, and
that good selections of that position may allow the ROV to visit several regions without
having to be recovered by the ship first. The objective for this domain minimizes a linear
combination of the plan makespan and the distance traveled by the ship. Figure 11 shows
an example solution plan returned by our planner for problem 6 of this domain.

In the simplified linear version of this domain we remove the velocity norm constraints.
Furthermore, the maximum distance constraints, which are modeled with the convex quadratic
constraints of being inside a circle, are replaced by a simpler linear polygonal over approx-
imation of such a circle (an octagon in this case). Since we cannot model the distance
traveled by the ship without quadratic constraints, the simplified version only optimizes
the makespan of the plan.

A C

B

D

E

F

end

start

Figure 11: Trajectories of ship (blue) and ROV (orange) in problem 06 of the ROV-regions
domain. Note how the planner selects ship positions so that the ROV can take samples at
multiple regions without having to reposition the ship and while observing the tether range
constraint.

627

Fernández-González, Williams & Karpas

tanker

refuel-uav-1

refuel-uav-2

uav-1

uav-2

A
B

C
D

E
end

start

Figure 12: Example solution for instance 15 of the refueling domain with a tanker plane
(blue) and two UAVs (orange and green). Note that the planner finds a trajectory for the
tanker that allows it to refuel both UAVs as needed.

8.2.3 The Air Refueling Domain

In this domain an autonomous Unmanned Aerial Vehicle (UAV) needs to take pictures of
several regions before landing at the destination location. Since the UAV has limited fuel, it
needs to refuel in-air from a tanker plane. While refueling, both planes can keep moving but
they need to stay within a maximum distance. The UAV fuel decreases as a function of the
distance traveled and the square of the velocity (ḟ = −k1v−k2v

2). As in the ROV domain,
the objective for this domain is to minimize a linear combination of the plan makespan and
the distance traveled by the tanker plane. In instances 11-20 there is an additional UAV,
but only one UAV can refuel from the tanker plane at a time. Figure 12 shows an example
solution plan returned by our planner for instance 15 of this domain.

This domain is challenging for several reasons. First, the planner needs to consider the
simultaneous trajectories of multiple vehicles and also their fuel levels. Second, and more
importantly, while our optimization model supports the resource-constrained norm effects
(such as the fuel decrease depending on the norm or squared norm of the velocity), the
heuristic does not consider these effects directly. Therefore, our planner only chooses the
refuel activities when reaching other regions becomes infeasible due to having insufficient
fuel.

We do not present a simplified version of this domain because POPCORN would not be
able to solve a linear alternative. The reason is that the refuel activity requires continuous
effects since both the tanker and the UAV have to be flying simultaneously while staying
close to each other. POPCORN cannot model this since the numeric change can only be
applied at the beginning or end of an activity and not continuously in time. This domain
also requires that the fuel of each UAVs decreases as a function of the magnitude of their
velocities, which POPCORN does not support either.

628

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

AUV ROV Air Refueling

EHC obj-EHC EHC obj-EHC EHC obj-EHC
t L S N T t L S N T O% t L S N T t L S N T O% t L S N T t L S N T O%

01 0.53 4 4 17 2 0.54 4 4 21 2 0.0 1.16 16 19 153 3 1.20 16 19 172 3 0.0 0.97 8 11 111 3 1.08 8 12 133 3 -0.0
02 0.55 8 10 41 2 0.64 8 9 46 1 0.0 1.74 20 35 281 4 1.52 20 25 226 4 -0.0 1.68 12 19 191 5 1.93 12 20 221 6 -0.0
03 0.66 12 18 73 2 0.80 12 15 76 2 0.0 2.79 24 57 457 4 1.90 24 32 289 4 -0.1 2.44 16 30 301 6 2.72 16 28 309 6 -0.0
04 0.84 16 28 113 2 0.90 16 22 111 2 -5.7 4.34 36 79 633 5 3.51 36 48 433 6 -0.2 5.78 18 74 669 7 3.52 18 36 397 7 26.1
05 0.94 20 40 161 2 0.98 20 30 151 2 -4.0 7.26 40 119 953 6 4.32 40 55 496 7 -14.7 3.82 20 45 433 7 4.74 20 43 464 8 -8.5
06 0.89 20 40 161 2 0.97 20 30 151 2 -13.3 10.71 52 157 1225 7 7.24 52 74 651 9 -21.2 5.68 24 60 583 8 5.57 22 50 541 8 -12.1
07 1.18 24 54 217 2 1.11 24 39 196 2 -9.5 16.38 56 213 1665 9 9.05 56 83 734 11 -15.5 11.18 28 98 927 11 5.69 - 55 585 8 -
08 1.24 24 54 217 2 1.12 24 39 196 2 -31.4 19.75 68 236 1822 9 14.84 68 108 950 14 -12.1 10.93 32 96 916 11 11.13 30 77 808 12 -30.1
09 1.46 28 70 281 2 1.34 28 49 246 2 -19.1 32.24 72 338 2607 11 17.48 72 119 1053 15 -21.0 12.03 32 105 997 11 13.29 32 94 945 12 -77.0
10 1.49 28 70 281 2 1.50 28 49 246 3 -20.4 35.09 84 350 2659 12 21.96 84 136 1203 16 -4.7 17.14 38 115 1124 14 15.05 34 100 1041 13 -63.0
11 1.87 32 88 353 3 1.90 32 60 301 3 -14.0 40.10 88 392 2993 12 25.47 88 150 1313 17 -23.5 2.14 10 18 289 5 3.60 10 29 494 6 -0.5
12 1.86 32 88 353 3 1.62 32 60 301 3 -33.5 56.63 100 451 3410 15 31.83 100 176 1490 20 -21.7 10.77 14 64 1025 10 - - - - - -
13 2.29 36 108 433 3 1.92 36 72 361 3 -33.1 52.82 96 412 3094 15 34.41 104 186 1556 20 -23.2 15.43 16 80 1281 11 - - - - - -
14 2.30 36 108 433 3 2.03 36 72 361 3 -23.4 68.63 108 497 3683 17 39.55 108 207 1699 21 -25.9 21.33 18 98 1569 13 - - - - - -
15 2.85 40 130 521 3 2.35 40 85 426 3 -26.1 87.77 120 586 4315 18 45.00 120 224 1827 22 -16.6 49.61 22 165 2581 19 - - - - - -
16 2.75 40 130 521 3 2.34 40 85 426 3 -19.9 95.51 124 630 4659 18 48.94 124 237 1930 23 -17.6 60.67 24 191 2907 20 - - - - - -
17 3.57 44 154 617 3 3.10 44 99 496 4 -32.0 119.82 136 712 5301 20 58.95 136 259 2128 25 -21.9 78.57 26 222 3373 23 - - - - - -
18 4.48 48 180 721 4 3.42 48 114 571 4 -38.4 151.10 140 885 6531 21 64.24 140 272 2245 26 -19.7 658.30 32 1147 17003 38 - - - - - -
19 5.04 52 208 833 4 4.04 52 130 651 4 -35.9 161.05 144 923 6802 21 70.79 144 288 2373 27 -19.6 563.87 34 906 13972 39 - - - - - -
20 6.15 56 238 953 4 4.69 56 147 736 4 -40.8 218.39 156 1181 8658 22 82.21 156 314 2591 29 -20.5 249.25 36 419 6210 39 - - - - - -

Table 3: Benchmarking results. t: Planning time in seconds; L: Plan length in number
of actions; S: Number of nodes expanded; N: Number of optimization problems solved;
T: Mean optimization time for each optimization problem in milliseconds; O%: Relative
objective value achieved by obj-EHC compared to EHC. Values with ‘-’ denote problems
that could not be solved in 1200 seconds.

8.2.4 Results

We evaluated ScottyActivity with the two search approaches discussed in Section 6.4 in
these robotic domains. The results are shown in Table 3. As seen in column T, our convex
optimization model, a key contribution of our work, is solved very quickly. The mean
optimization time per problem grows for more complicated instances since these have more
state variables and require more activities, which results in far more decision variables
and constraints at later stages of the search. However, most optimization problems are
solved in less than 10 ms on average for small to medium domain instances and in less
than 50 ms for larger ones. This is important since large domain instances require solving
tens of thousands of optimization problems, as seen in the table (column N). This kind of
performance would not be possible if we used a non-convex non-linear optimization model
with a general purpose non-linear optimizer.

Table 3 also illustrates the performance characteristics of the EHC search algorithm
compared to the obj-EHC, that breaks heuristic ties based on the objective of each state,
as discussed in Section 6.4. Column O% shows the relative value of the objective of the
obj-EHC approach compared to EHC. Negative values indicate an improvement in the
objective. As expected, obj-EHC produces better plans in general. This improvement is
very significant in some instances, showing a reduction in the objective of more than 50%
(Figure 13). As explained in Section 6, obj-EHC is more computationally expensive as it
requires an extra optimization problem minimizing the objective per state and it checks all
the helpful descendants of each expanded node, as opposed to immediately picking the one
with lower than the incumbent best heuristic. Therefore, we expected that obj-EHC would
take longer than EHC to find plans. However, the results show that this is not the case,
and that obj-EHC explores less states, finds better plans and takes less time in general than
EHC. In particular, in the ROV domain, obj-EHC takes less than half the time to find

629

Fernández-González, Williams & Karpas

destination
region

start
A

B

H

C

F

G

D

E

I

ship

ROV

(a)

destination
region

start
A

B

H

C

F

G

D

E

I

ship

ROV

(b)

Figure 13: Plans found by ScottyActivity for problem 9 of the ROV domain using EHC
search (a) and obj-EHC (b). The objective is a combination of the plan makespan and the
distance traveled by ship. obj-EHC finds a better plan than EHC, with a 21% improvement
in the objective, by taking samples at closer regions first.

refuel1

refuel2 tanker

uav
start

destination
region

(a)

refuel1

refuel2

tanker
uav

start

destination
region

(b)

Figure 14: Plans found by ScottyActivity for problem 9 of the Air Refueling domain using
EHC search (a) and obj-EHC (b). The objective is a combination of the plan makespan
and the distance traveled by tanker plane. Note how the plan found by obj-EHC is much
better (77% improvement in the objective).

630

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

AUV-simplified ROV-simplified

ScottyAct(EHC) Scotty1 POPCORN ScottyAct(EHC) Scotty1 POPCORN
t L S N T t L t L t L S N T t L t L

01 0.54 4 4 17 2 0.48 4 0.05 4 0.86 16 19 153 2 0.89 16 0.57 16
02 0.55 8 10 41 1 0.49 8 0.15 8 1.25 20 35 281 2 1.48 20 1.95 20
03 0.61 12 18 73 1 0.56 12 0.30 12 1.74 24 57 457 2 2.33 24 3.59 24
04 0.72 16 28 113 1 0.64 16 0.58 16 2.54 36 79 633 3 5.58 36 6.53 36
05 0.80 20 40 161 1 0.77 20 0.94 20 4.07 40 119 953 3 7.54 40 16.34 40
06 0.83 20 40 161 1 0.74 20 0.91 20 5.46 52 156 1214 3 12.79 52 24.77 52
07 0.92 24 54 217 1 0.92 24 1.50 24 7.85 56 213 1621 4 16.73 56 49.84 56
08 0.99 24 54 217 1 0.94 24 1.52 24 9.06 68 233 1753 4 55.40 84 77.21 68
09 1.15 28 70 281 1 1.24 28 2.22 28 14.36 72 328 2478 5 86.75 96 107.27 72
10 1.13 28 70 281 1 1.14 28 2.23 28 15.53 84 345 2565 5 119.23 100 150.69 84
11 1.43 32 88 353 1 1.44 32 3.29 32 18.34 88 396 2952 5 96.59 96 175.83 88
12 1.42 32 88 353 1 1.43 32 3.26 32 24.79 100 450 3335 6 142.33 108 242.64 92
13 1.49 34 92 369 2 1.53 34 3.89 34 23.36 96 411 3023 6 126.13 104 278.46 96
14 1.48 34 92 369 2 1.57 34 3.90 34 30.35 108 495 3639 7 180.93 116 343.66 108
15 1.80 38 114 457 2 2.12 38 4.88 38 38.62 120 578 4261 7 254.07 128 460.56 112
16 1.75 38 114 457 2 2.19 38 5.60 38 45.26 124 660 4826 8 158.47 108 525.74 116
17 2.22 42 138 553 2 2.50 42 6.58 42 56.49 136 743 5469 8 204.34 120 617.31 128
18 2.81 46 164 657 2 3.53 46 9.91 46 68.51 140 890 6484 8 271.64 132 783.90 140
19 3.31 50 192 769 2 4.12 50 13.01 50 73.40 144 926 6737 9 391.01 152 834.64 136
20 3.93 54 222 889 2 5.30 54 17.18 54 98.11 156 1177 8479 9 500.96 164 1028.76 148

Table 4: Benchmarking results for simplified domains t: Planning time in seconds; L: Plan
length; S: Number of nodes expanded; N: Number of optimization problems solved; T:
Mean optimization time for each optimization problem in milliseconds.

plans than EHC for more difficult instances. We believe the objective guidance is being
very effective in these domains, in which taking a sample in a nearby region or a further
one looks the same in number of actions, but very different in terms of the objective.

However, obj-EHC is not always better than EHC. In particular, obj-EHC struggles in
the Air Refueling domain with two UAVs. This is a challenging domain since the need to
refuel is not accurately captured in the heuristic. Since the refueling activity requires the
tanker plane to move wherever the UAV that wants to refuel is, this activity is expensive in
terms of the objective, but is not deemed to be useful by the heuristic. This happens because
the fuel consumption is modeled with a resource constrained norm effect. Since this effect
is not considered by the heuristic, the heuristic cannot predict, in advance, that refueling
will be necessary. Therefore, the algorithm tends to prefer other irrelevant actions that are
not useful (such as taking the same sample over and over again). In some instances, this
causes the search to exhaust all options and fail (such as in problem 7), or to continuously
pick wrong activities until the time limit is reached (in problems 12 and higher).

Finally, we evaluate ScottyActivity in the simplified linearized versions of the domains
as described earlier (Table 4). Recall that our optimization model degrades gracefully to an
LP when the problem solved does not require quadratic constraints. Therefore, these results
let us answer the question of what is the performance penalty of switching from a linear
program formulation to a SOCP one. As seen in the table, the difference between the mean
optimization time for the linear problems solved in the simplified domains and the SOCP

631

Fernández-González, Williams & Karpas

ones from the full domains is very small for the simpler instances and significant for more
difficult instances. However, this difference is always well within an order of magnitude.
Moreover, we should highlight that the linearized version of the domains is significantly
simpler, as it not only linearizes some constraints (such as the ROV tether range ones) but
also drops many other constraints, like the norm ones or the ones required to minimize
the traveled distances. We can conclude that using SOCPs for consistency checking is not
only practical, but that the performance trade-off is well worth it considering the added
expressivity that they provide. Finally, we compare our planner in these simplified domains
against Scotty1 and POPCORN. Since our optimization model is significantly more complex
than theirs, even in these linear domains, given the extra variables and constraints that we
require, we expected that our planner would be slower. However, Table 4 shows that this is
not the case and our planner performs significantly better. We hypothesize that this is due
to the superior performance of the Gurobi solver compared to the solvers used by Scotty1
(CPLEX 12.4) and POPCORN (lpsolve 5.5). Additionally, POPCORN’s test were kindly
run on a slower i5-M540 2.53GHz processor by its authors, since they could not share the
planner binary with us.

8.3 Comparison with a Mixed Integer Approach

As we explain in Section 6, when the plan skeleton that describes the chosen starts and
ends of activities and their order is known, the state and control trajectories can be found
efficiently by solving a convex optimization problem. The hybrid activity and trajectory
planning problem reduces to finding the plan skeleton. This is hard due to the highly
combinatorial nature of the problem. In this work we argue that this problem is best solved
using heuristic forward search with a delete relaxation heuristic, as this method has proven
to be very effective in activity planning problems. However, this problem could also be
solved using a mixed-integer optimization approach. Mixed-integer solvers use branch and
bound search algorithms. The branch and bound search is often guided by the solution to
relaxed optimization problems in which the integer variables are allowed to take continuous
values. We show in this section that our approach based on heuristic forward search performs
at least two orders of magnitude better than an alternative mixed-integer approach.

The mixed-integer formulation that we use in this section employs the same decision
variables and constrains for the state and control variables and for the activity durations,
continuous conditions and effects, as presented in Section 7. An important difference be-
tween the mixed-integer approach that we use in this section and ScottyActivity is that the
former can only find the solution to a planning problem when it is provided with a fixed
length for the plan. This length indicates the maximum number of start and end activities
(events) that the plan can have. The reason for this limitation is that the decision variables
and constraints are fixed in the optimization problem. ScottyActivity, on the other hand,
determines the required number of start and end activities as part of its search process.
A well-known approach to solving planning problems with a mixed-integer approach when
the plan length is not known consists in iteratively solving the problem with increasing
plan lengths until a solution is found or the maximum plan length or time limit is exceeded.
However, in the results shown in this section we provided the MIP planner with a fixed plan

632

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

length, that matched, for each problem, the length of the plan found by ScottyActivity using
the obj-EHC algorithm.

In order to select the start and end activities and their order, the MIP approach uses
integer variables. For each step in the fixed length plan, we create a binary variable for
each start or end activity that indicates whether the activity is selected for such step in
the plan. The fixed plan length indicates the maximum number of start or end activities,
but the MIP planner is allowed to find a shorter plan by selecting no-op activities at the
last steps of the fixed length plan. Additional binary variables are created to represent the
propositions that hold at each step in the plan. We use the standard big-M method to
enable or disable constraints when an activity is selected.

We compared the performance of this MIP planner against ScottyActivity using the
obj-EHC algorithm in the AUV and ROV domains from Section 8.2. We used a time limit
of 2400 seconds for the MIP solver for each problem, and we used Gurobi 7.5 as the MIP
solver. The MIP solver was able to solve all the problems in the AUV domain (Figure 15a).
For small problems, up to instance 5, that require less than 20 events, the MIP planner
was able to find a solution faster than ScottyActivity. In many cases, this solution was also
the optimal (to 5% tolerance) for the given fixed length. However, the performance of the
MIP solver degrades quickly as the complexity of the problem increases. Problems needing
more than 40 events were solved two orders of magnitude slower than ScottyActivity. For
example, the MIP planner found a feasible solution for instance 19 of the AUV domain in
970 seconds, while ScottyActivity solved the same problem in about 5 seconds. The MIP
planner was able to find optimal solutions (proved to 5 % tolerance) for instances 14 and
lower, which need fewer than 36 events.

The ROV domain proved to be more challenging for the MIP solver (Figure 15b). In this
case, the MIP solver was only able to solve the first five problems within the maximum time
limit of 2400 seconds. Instance 5, requiring 40 events was solved by the MIP planner in 320
seconds. The same problem was solved by ScottyActivity using the obj-EHC algorithm in
about 7 seconds. One of the reasons why the ROV domain is more challenging for the MIP
planner is that the problems are more complex and require a higher number of activities.
However, we speculate that this is not the only reason. In the AUV domain, the MIP planner
was able to find solutions for problems requiring up to 56 events, while it was not able to
find a solution for a problem requiring 52 events in the ROV domain. The reason this may
happen is that the ROV domain not only requires longer plans, but the number of possible
activities is also significantly higher in this domain than in the AUV domain. Furthermore,
there are several activities that are mostly discrete, such as the deployment and recovery
activities. For this activities the planner is probably not finding useful relaxations.

Another interesting comparison between the ScottyActivity planner and the MIP ap-
proach is the quality of the returned plans. We report, in Figure 16, the objective of the
plans found by ScottyActivity and the MIP planner. For the MIP planner we are interested
in the objective of the first solution found, the best solution found within the time limit
and the optimal solution for the fixed plan length. The results show the ratio between the
objective of the MIP solutions and the ScottyActivity solution for the AUV (Figure 16a)
and ROV (Figure 16b) domains when using the obj-EHC algorithm. As seen in the figures,
the obj-EHC algorithm returns fairly high quality solutions. In particular, the solutions
found by ScottyActivity with the obj-EHC algorithms were always better than the first

633

Fernández-González, Williams & Karpas

01
4

02
8

03
12

04
16

05
20

06
20

07
24

08
24

09
28

10
28

11
32

12
32

13
36

14
36

15
40

16
40

17
44

18
48

19
52

20
56

Problem Number / # Start-End Actions

10 1

100

101

102

103
Pl

an
ni

ng
 T

im
e

(s
)

AUV Domain

ScottyActivity (obj-EHC)
MIP First Solution
MIP Optimal (5%)

(a)

01
16

02
20

03
24

04
36

05
40

06
52

07
56

08
68

09
72

10
84

11
88

12
100

13
104

14
108

15
120

16
124

17
136

18
140

19
144

20
156

Problem Number / # Start-End Actions

100

101

102

103

Pl
an

ni
ng

 T
im

e
(s

)

ROV Domain

ScottyActivity (obj-EHC)
MIP First Solution
MIP Optimal (5%)

(b)

0 20 40 60 80 100 120 140 160
Start-End Actions (Events)

10 1

100

101

102

103

Pl
an

ni
ng

 T
im

e
(s

)

Planning Time (AUV and ROV domains)

ScottyActivity (obj-EHC)
MIP First Solution
MIP Optimal (5%)

(c)

Figure 15: Planning time for ScottyActivity (obj-EHC algorithm) and the MIP approach in
the AUV (a) and ROV (b) domains. The planning time for the first MIP solution (green)
and optimal to 5% tolerance (red) are shown. Figure (c) shows the planning time for both
domains as a function of the required number of start/end actions to solve the problem. A
time limit of 2400 seconds was used.

634

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

01
4

02
8

03
12

04
16

05
20

06
20

07
24

08
24

09
28

10
28

11
32

12
32

13
36

14
36

15
40

16
40

17
44

18
48

19
52

20
56

Problem Number / # Start-End Actions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
O

bj
ec

tiv
e

M
IP

/S
co

tt
yA

ct
iv

ity
Objective Ratio (AUV Domain)

ScottyActivity (obj-EHC)
ScottyActivity (EHC)
MIP First Solution
MIP Best on Timeout
MIP Optimal (5%)

(a)

01
16

02
20

03
24

04
36

05
40

06
52

07
56

08
68

09
72

10
84

11
88

12
100

13
104

14
108

15
120

16
124

17
136

18
140

19
144

20
156

Problem Number / # Start-End Actions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

O
bj

ec
tiv

e
M

IP
/S

co
tt

yA
ct

iv
ity

Objective Ratio (ROV Domain)

ScottyActivity (obj-EHC)
ScottyActivity (EHC)
MIP First Solution
MIP Best on Timeout
MIP Optimal (5%)

(b)

Figure 16: Objective ratio between the MIP approach and ScottyActivity (obj-EHC algo-
rithm) in the AUV (a) and ROV (b) domains. The figures show the ratio achieved by the
first MIP solution (green), the optimal to 5% tolerance (red), and the best MIP solution
found before the timeout (purple). A time limit of 2400 seconds was used.

solution found by the MIP planner, even when this solution was often found two orders
of magnitude slower. This results show the improvement of the obj-EHC algorithm when
compared to the standard EHC algorithm, whose solutions are often comparable to the first
solutions found by the MIP planner. One of the benefits of the MIP approach is that it is
able to find optimal solutions for a fixed plan length. However, these solutions are often
computationally expensive to find.

These results indicate that the MIP approach does not scale to large planning problems.
Moreover, it is important to highlight that the MIP planner was provided with the number of
required events for each planning problem. The runtime performance would be significantly
worse if the MIP planner had to solve problems of increasing fixed-length until a solution

635

Fernández-González, Williams & Karpas

was found. Additionally, the Gurobi solver is designed to use multiple cores simultaneously,
while our search algorithm is single-core. While we do not believe that a mixed-integer
approach is the best method to solve large hybrid activity and trajectory planning problems,
it is a useful approach for solving small planning problems that require optimal solutions.
Moreover, it may be possible to use a mixed-integer formulation to improve plans that are
first found using a heuristic forward search approach. We leave this work for future research.

9. Conclusions and Future Work

While robots are quickly becoming more capable and accessible, there is still an unfulfilled
need for controlling them efficiently and autonomously. In this work, we have presented
ScottyActivity, a mixed discrete-continuous planner that aims to narrow the gap between
the needs of robotic missions and the capabilities of state of the art automated planning
techniques. We have shown that by allowing convex quadratic constraints on state variables
and control variables that are jointly constrained and that affect multiple state variables
simultaneously, we can model more realistic robotic missions that were not possible with
previous planning approaches. As seen in the experimental results, our approach is scalable
and performs equally or better than prior art in simplified problem instances that do not
use the extended capabilities of our planner.

The advances introduced by our planner are possible due to several insights. First,
we build upon previous work that inspires and makes possible our planner. Kongming
illustrated the need for tightly coupled task and motion planning within a single planning
framework and showed the expressive power of its approach in new robotic domains. COLIN
showed the effectiveness of using heuristic forward search to handle the discrete part of
the planning problem with linear programs handling the continuous effects and temporal
constraints. Second, recent advances in convex optimization from the operations research
community make it possible to solve Second Order Cone Programs (SOCPs) very efficiently,
to the point that we can solve several SOCPs to test the feasibility of each search state and
still solve the full planning problem in a reasonable time. Third, while the continuous
change equations that our planner handles are inherently non-linear and non-convex, we
propose an equivalent second order cone model that is efficient. This is enabled, in part,
through a clever selection of decision variables that reduces the non-convex component to a
linear constraint that restores convexity. Without this convex model ScottyActivity would
not be possible, since a general non-linear solver would have to be used, which would have a
performance orders of magnitude slower than SOCP solvers and, perhaps more importantly,
would not be complete due to local minima. Fourth, while the TRPG-based heuristic used
by COLIN and ScottyActivity is only applicable to linear state constraints, we show that
we can exploit this heuristic by first producing automatic linear over approximations to the
quadratic constraints and that these perform well in practice. Finally, we introduce several
new robotic domains that showcase the new capabilities of our planner and that can be
used as a benchmark by the planning community.

While this work advances the expressivity of the hybrid problems that can be solved with
heuristic forward search techniques, ScottyActivity makes strong assumptions that we ought
to address. First, our planner only supports linear dynamics and practical constraints such
as maximum curvature cannot be handled in our model. Moreover, ScottyActivity does not

636

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

consider obstacles, since their associated non-convex constraints cannot be directly encoded
in our convex optimization model. Finally, while returned plans are optimal conditioned on
the chosen sequence of activities, our heuristic does not explicitly take the objective into
account, and we cannot make any guarantees with respect to the optimality of the chosen
sequence. As described in Section 3, in order to handle obstacles the ScottyPath planner,
which we present in another work (Fernandez-Gonzalez, 2017), uses the convex model in-
troduced in this work to find obstacle free trajectories and schedules from ScottyActivity
plans. It does so by combining heuristic forward search and the convex model in order to
find sequences of obstacle-free safe convex regions for each robot throughout the mission.
In order to handle more complex dynamics, we propose MPC-Scotty, an additional online
receding-horizon planner that is currently under development. This planner uses a single
optimization model that combines a detailed dynamics discrete-time formulation over a lim-
ited horizon with a continuous-time linear dynamics formulation over the remaining long
horizon of the full mission.

Acknowledgments

This work was partially supported by the Exxon Mobil Corporation, and the United States -
Israel Binational Science Foundation (BSF). We would like to thank Emre Savas for running
the POPCORN benchmarks. We would also like to thank all the members of the MIT
MERS lab for endless insightful discussions and for their constant support throughout the
years. Finally, we would also like to acknowledge the JAIR reviewers and editor for their
thoughtful reviews, which helped us make significant improvements to this paper.

Appendix A. Proofs of Completeness and Optimality of PDDL-S Plans
with Piecewise Constant Control

In this section, we provide the proofs for the completeness and optimality theorems stated
in Section 5.

A.1 Completeness of PDDL-S Plans with Piecewise Constant Control

Assume the PDDL-S Problem has a valid PDDL-S Plan solution, p, with an arbitrary
control trajectory. This solution p is characterized by:

• The schedule of its N start or end events, given by their execution times ti with
i = 0, . . . , N − 1.

• The control trajectory c(t).

We prove the completeness of PDDL-S plans with piecewise constant control by con-
struction. We use the original valid PDDL-S plan p to construct the PDDL-S plan with
piecewise constant control pc in the following way:

• The execution times of the events, tci, are the same as the times of the original
solution, tci = ti. Since they are the same, we use refer to them as ti from this point.

637

Fernández-González, Williams & Karpas

• The control trajectory, cc(t), is a piecewise constant trajectory. Recall that a stage,
si, is the period of time between two consecutive events taking place at ti and ti+1.
The value of the vector of control variables is constant during each stage, cc(t) =
cci ∈ Rm, i ∈ [ti, ti+1), for i = 0, . . . , N − 2. Each constant value cci at each stage
takes the value of the average of the original control trajectory c(t) during that stage:

cci =
1

∆ti

∫ ti+1

ti

c(t)dt, (43)

where ∆ti = ti+1 − ti is the duration of the stage.

Lemma A.1. The piecewise constant control trajectory of pc, cc(t) satisfies all the control
variable constraints at all times.

Proof. Recall that each control variable constraint is restricted to be a convex constraint
on the control variable vector in the form of g(c(t)) ≤ 0. Using (43), we can write:

g(cci) = g

(
1

∆ti

∫ ti+1

ti

c(t)dt

)
(44)

We make use of Jensen’s Inequality to assist our proof (Jensen, 1906). Jensen’s Inequal-
ity states the following:

g

(∫ b

a
h(t)f(t)dt

)
≤
∫ b

a
g (h(t)) f(t)dt (45)

, where:

• f is a non-negative function such that
∫ b
a f(t)dt = 1.

• h is any real-valued measurable function.

• g is convex over the range [a, b].

We use the vector version of (45) on (44) by identifying terms as follows: a = ti, b = ti+1,
g = g, f(t) = 1

∆ti
, h(t) = c(t). Note that Jensen’s conditions hold since g is convex. This

allows us to write:

g(cci) = g

(
1

∆ti

∫ ti+1

ti

c(t)dt

)
≤
∫ ti+1

ti

g(c(t))
1

∆ti
dt (46)

Since p is a valid PDDL-S plan, g(c(t)) ≤ 0 at every stage and, therefore, (46) reduces
to g(cci) ≤ 0 during stage si. Since this is applicable for every stage and every control
variable constraint, we conclude that the piecewise constant control trajectory of pc, cc(t),
satisfies the control variable constraints.

Lemma A.2. The state variables that are not resources take the same values in the PDDL-S
plan with piecewise constant control, pc, as in the original plan, p.

638

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

Proof. Recall that state variables that are not resources can only change their value due to
active CLTE effects. Recall, as well, that the change in one such state variable xj during a
stage si is given by:

∆xj(j) =
∑

∆xjeff , (47)

where eff represents each of the active CLTE effects during stage si. Recall as well from
Section 4.2.1 that the change due to a CLTE on a state variable x during stage si is given
by:

∆xCLTE(j) =

∫ ti+1

ti

kT · cc(τ)dτ (48)

In the case of the plan with piecewise constant control, cc(t) takes the constant value
cci during stage si:

∆xCLTE(j) =

∫ ti+1

ti

kT · ccidτ = kT · 1

∆ti

∫ ti+1

ti

c(t)dt

∫ ti+1

ti

dτ =

∫ ti+1

ti

kT · c(τ)dτ (49)

(49) proves that the cumulative change due to CLTE effects during a stage si is the
same regardless of whether the original control trajectory c(t) or its averaged value during
the stage, cci, is used. Since the initial variables are the same, and the cumulative change
during each stage is the same, the values of the state variables that are not resources are
the same (xi = x(ti) = xc(ti) = xci) at each event in the original plan, p, and the plan with
piecewise constant control, pc.

Corollary A.1. The state trajectory of the PDDL-S plan with piecewise constant control,
pc, satisfies all the state constraints on the state variables that are not resources.

Proof. Since the values are the same at the events, xci = x(ti), and p is valid, pc satisfies
all the state constraints at the events. The overall maintenance conditions between events
are also satisfied by xc(t). This is the case because the overall conditions during stages
between consecutive events are convex by definition and need to be satisfied also at those
events. Section 5 proves by convexity that this is the case.

Lemma A.3. The resource variables take greater or equal values at the events in the PDDL-
S plan with piecewise constant control, pc, than in the original plan p.

Proof. The change during stages on resources due to CLTE effects is the same as in the
case of state variables that are not resources. The remaining change in resources is due to
LNE or LSNE effects.

Recall that the change during stage si in resource r due to LNE effect is given by:

∆rLNE(i) = −k ·
∫ ti+1

ti

‖cc(t)‖dt (50)

Substituting for the constant value of cc(t) during the stage:

639

Fernández-González, Williams & Karpas

∆rLNE(i) = −k ·
∥∥∥∥∫ ti+1

ti

c(t)
1

∆ti

∥∥∥∥∫ ti+1

ti

dt (51)

We can use Jensen’s inequality (45) again by identifying terms: a = ti, b = ti+1,
g(x) = ‖x‖, f(t) = 1

∆ti
, h(t) = c(t). The conditions for Jensen’s inequality hold since

norms are convex functions. Therefore, we obtain:∥∥∥∥∫ ti+1

ti

c(t)
1

∆ti

∥∥∥∥ ·∆ti ≤ ∫ ti+1

ti

‖c(t)‖ 1

∆ti
dt ·∆ti (52)

Note that (52) is the factor that multiplies −k for the cumulative decrease of the LNE
effect in the original plan with arbitrary control trajectory. Therefore, the decrease due to
the LSE effect is smaller in the case of the piecewise constant control trajectory than in the
plan with the arbitrary control trajectory.

Similarly, for LSNE effects, the change in a resource during stage si is given by:

∆rLSNE(i) = −k ·
∫ ti+1

ti

‖cc(t)‖2dt (53)

Substituting for the constant value of cc(t) during he stage:

∆rLSNE(i) = −k ·
∥∥∥∥∫ ti+1

ti

c(t)
1

∆ti

∥∥∥∥2 ∫ ti+1

ti

dt (54)

We can use Jensen’s inequality (45) one more time with the correspondence: a = ti,
b = ti+1, g(x) = ‖x‖2, f(t) = 1

∆ti
, h(t) = c(t). Jensen’s conditions hold again since g is

a convex function. It is a convex function because it is the composition of a convex non-
decreasing function (x2 is non-decreasing over the positive reals) and a convex function (the
norm function). We then obtain:∥∥∥∥∫ ti+1

ti

c(t)
1

∆ti

∥∥∥∥2

·∆ti ≤
∫ ti+1

ti

‖c(t)‖2 1

∆ti
dt ·∆ti (55)

Again, (55) is the factor that multiplies −k for the cumulative decrease of the LSNE
effect in the original plan with arbitrary control trajectory. Therefore, the decrease due to
the LSNE effect is also smaller in the case of the piecewise constant control trajectory.

From Lemma A.2, the change produced on resources due to CLTE effects is the same
in pc as in p. However, the resources in pc experience a smaller decrease in pc during stages
due to LSE or LSNE effects than in p. As a consequence, resources have always larger or
equal values at the events in pc with piecewise constant control trajectories than in p with
its arbitrary control trajectory.

Corollary A.2. The resource variables in the PDDL-S plan with piecewise constant control
satisfy all the constraints they are subject to.

Proof. Recall that resources can only be subject to greater than some value constraints.
Since p is a valid plan, the resources in p satisfy the constraints they are subject to. Since
the resources take values greater or equal at the events in pc than in p, the resources satisfy

640

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

all their constraints at the events. Due to convexity and as proved in Section 5, the resources
also satisfy the constraints at all intermediate points between events.

Lemma A.4. pc is a valid PDDL-S plan.

Proof. pc is a valid PDDL-S plan since:

1. All temporal constraints are satisfied since the event execution times of pc are the
same of p, and p satisfies all temporal constraints.

2. All the propositional constraints (discrete conditions and effects of activities) are
satisfied since p satisfies all propositional constraints and the ordering of the starts
and ends of activities is the same.

3. The piecewise constant control trajectory satisfies all the control variable constraints
(Lemma A.1)

4. The state variables satisfy all the state constraints (Corollaries A.1 and A.2).

Theorem 1 (Completeness of PDDL-S Plans with Piecewise Constant Control). If a
PDDL-S problem has a solution, there always exists a solution that is a PDDL-S Plan
with piecewise constant control.

Proof. For every valid PDDL-S plan with an arbitrary control trajectory, it is also possible
to construct a valid PDDL-S plan with a piecewise constant control trajectory (Lemma A.4).
Therefore, there are no solvable PDDL-S problems that cannot be solved with a PDDL-S
plan with piecewise constant control.

A.2 Optimality of PDDL-S Plans with Piecewise Constant Control

Recall that the minimization objective of a PDDL-S problem is given as a linear combination
of the following types of terms:

• The total duration of the plan (plan makespan)

• The value of a state variable at the end of the plan. In the case of a resource, its
coefficient can only be negative (i.e. resources can only be maximized).

•
∫ T

0 ‖ce(τ)‖dτ , where ce is a vector of control variables and T is the plan makespan.
Its coefficient can only be nonnegative (i.e. this term can be minimized but not max-
imized).

• A similar term with the same conditions with the square of the norm,
∫ T

0 ‖ce(τ)‖2dτ .

Corollary A.3. The makespan is the same in pc than in p.

Proof. All the events take place at the same time in pc than in p. Therefore, the last event
takes place at the same time in both plans.

641

Fernández-González, Williams & Karpas

Corollary A.4. Any state variable that is not a resource takes the same value at the end
in pc than in p.

Proof. Since the values of the state variables that are not resources take the same value at
all events in pc than in p (Lemma A.2), they also take the same value at the end of the
plan.

Corollary A.5. Any resource variable takes a larger value at the end of the plan in pc than
in p.

Proof. Since the values of the resources take larger value at all events in pc than in p
(Lemma A.3), they also take larger values at the end of the plan.

Lemma A.5.
∫ T

0 ‖ce(τ)‖dτ takes a smaller or equal value in pc than in p.

Proof. The proof is similar to that of Lemma A.3. We can write the term as a sum of
integrals over each stage in the plan:∫ T

0
‖ce(τ)‖dτ =

N−2∑
i=0

∫ ti+1

ti

‖ce(τ)‖dτ (56)

In a PDDL-S plan with piecewise constant control, ce(t) = cce(t) takes a constant value
ccei during each stage si. Therefore, each stage term can be written as:∫ ti+1

ti

‖ccei‖dτ =

∥∥∥∥∫ ti+1

ti

ce(t)
1

∆ti

∥∥∥∥ ·∆ti ≤ ∫ ti+1

ti

‖ce(t)‖
1

∆ti
dt ·∆ti (57)

, where the equality follows from the definition of cc (43), and the inequality is, again,
Jensen’s inequality (45), and it is applied in the same way as in (52). We can then write:

∫ T

0
‖cce(τ)‖dτ =

N−2∑
i=0

∫ ti+1

ti

‖cce(τ)‖dτ ≤
N−2∑
i=0

∫ ti+1

ti

‖ce(τ)‖dτ =

∫ T

0
‖ce(τ)‖dτ, (58)

which proves that the term is smaller for pc than for p.

Lemma A.6.
∫ T

0 ‖ce(τ)‖2dτ takes a smaller or equal value in pc than in p.

Proof. The proof is analogous to the proof for Lemma A.5. The difference is that Jensen’s
inequality is applied as in (55). That leads us to

∫ T

0
‖cce(τ)‖2dτ =

N−2∑
i=0

∫ ti+1

ti

‖cce(τ)‖2dτ ≤
N−2∑
i=0

∫ ti+1

ti

‖ce(τ)‖2dτ =

∫ T

0
‖ce(τ)‖2dτ, (59)

, which proves that the term is smaller for pc than for p.

Lemma A.7. A PDDL-S plan with piecewise constant control, pc, has better objective value
than the plan with arbitrary control trajectory that it was formed from, p.

642

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

Proof. The objective of a PDDL-S Plan is a linear combination of the terms presented
above. Due to Corollaries A.3 and A.4, all the terms that could be negative or positive
take the same value in pc than in p. Due to Corollary A.5, all the terms that can only
be negative are larger in pc than in p. Finally, due to Lemmas A.5 and A.6, all the terms
that can only be positive are smaller in pc than in p. Therefore, pc has a smaller or equal
objective value than p.

Theorem 2 (Optimality of PDDL-S Plans with Piecewise Constant Control). The optimal
solution to a PDDL-S problem, if one exists, is a PDDL-S Plan with piecewise constant
control.

Proof. Since there always exists a PDDL-S plan with piecewise constant control for any
valid PDDL-S plan for a PDDL-S problem (Theorem 1) and this plan always has a better
or equal objective value (Lemma A.7), the optimal plans for PDDL-S problems are PDDL-S
plan with piecewise constant control.

Appendix B. Expressing PDDL-S Problems

ScottyActivity uses control variables to define continuous change and allows more complex
state constraints than most activity planners. Since these features cannot be expressed with
standard PDDL, we define an additional syntax that we describe in this section. We base
our syntax in PDDL2.1 (Fox & Long, 2003) since it provides most of the expressiveness
that we need, except for control variables. While PDDL+ (Fox & Long, 2006) significantly
advances the expressiveness of PDDL2.1, its syntax does not define control variables (or
parameters) and its more advanced features, such as processes and events, are not supported
by our planner.

We now proceed to describe the additions to the PDDL syntax that we need to express
ScottyActivity domains. The rest of the PDDL2.1 syntax is the same. We conclude this
section by showing how the example scenario is expressed using this syntax.

B.1 Control Variables and Global Constraints on Control Variables

As opposed to Scotty (Fernandez-Gonzalez et al., 2015), where control variables were defined
to be local to activities, control variables are now global in ScottyActivity. The reason for
this change is twofold. First, in Scotty control variables could only affect one state variable
at a time, and therefore global control variables could offer no benefits and could, in fact,
lead to modeling errors. Second, allowing control variables to be global provides additional
flexibility in how domains are defined. For example, suppose that an electrical car recharge
station can recharge simultaneously cars A and B, but that the maximum current out of
the station is limited. We could use control variables iA and iB to represent the current
entering each car while recharging. While the recharge processes of each car could be
represented with independent activities, we could impose a global constraint iA + iB ≤ imax

that ensures that the maximum current of the recharge station is respected. This could not
be represented if the currents were local control variables to each recharge activity.

As explained in Section 4, each control variable ci ∈ CV is defined by its lower (cil) and
upper (ciu) bounds. Each control variable is defined with the following syntax, that needs
to appear before the definitions of activities:

643

Fernández-González, Williams & Karpas

(:control−variable <cvar−name>
:bounds (and (>= ? value <lower−bound>)

(<= ? value <upper−bound>)))

The global constraints on control variables can be of two types: linear constraints and
norm constraints. We use the keyword control-constraint to define named groups of
linear control variable constraints such as:

(:control−constraint <constraint−name>
:condition (and ({<= , >=} <l in−expr− l e f t> <l in−expr−r ight >)

. . .))

, where <lin-expr-{left,right}> are linear expressions on the control variables ci ∈ CV .

Norm constraints on control variables are expressed by first defining vectors of control
variables. Control variable vectors are lists of control variables that can optionally specify
a maximum norm according to the following syntax:

(:control−variable−vector <vector−name>
:control−variables ((<cv1> <cv2> . . . <cvn>))
:max−norm <max−norm−value>)

Control variable vectors are not formally required to define our effects or constraints and,
therefore, they are not presented in our problem statement section. However, they are prac-
tical to express norm constraints (e.g. ‖c‖ ≤ cmax), as well as RNE effects and objectives.
Therefore, we use them throughout the rest of this section.

B.2 Continuous Change with CLTE and RNE Effects

Since CLTE effects are effects in which the rate of change is expressed as a linear combination
of control variables, we use a syntax very similar to that of PDDL2.1 for continuous effects
with the difference that, instead of using constant rates of change, we use control variables.
In particular, activities can contain effects like the following:

({ i n c r e a s e , d e c r e a s e } <state−var> <cvar−time−expr>)

, where <cvar-time-expr> is a linear combination of control variables multiplied by the #t

term. As an example (increase (x) (∗ (vx) #t)) denotes that state variable x is subject to a
rate of change that corresponds to the control variable vx.

RNE effects, that depend on the norm of control variable vectors, are defined similarly
by using the keywords norm or norm-sq to denote the norm or squared norm of control
variable vectors. For example (decrease (b) (∗ 0.45 (norm (velocity) #t))) represents that the
state variable b is subject to a rate of change of −0.45‖velocity‖, where velocity is a
vector of control variables as defined above.

B.3 Objectives

Similarly to PDDL2.1, the optional objective of a planning problem is defined with the
keyword metric, according to the following syntax:

(:metric minimize <l inear−expr >)

As described in Section 4, the minimization objective is a linear combination of the following
types of terms:

644

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

• State variables at the end of the plan (xi ∈ V)

• Plan makespan (using the keyword total-time)

• Sum-products of the norms or squared norms of control variable vectors and the
durations they are active for. Since control variables are restricted to be piecewise
constant, the minimization objective given by the expression norm(velocity), for
example, minimizes the sum of the norm of the velocity control variable vector in
each segment multiplied by the duration of that segment (

∑
j‖v(j)‖ · ∆tj). In the

case of a velocity, this is equivalent to minimizing the distance traveled by a vehicle.
However, a similar term involving the squared norm of a control variable vector is also
possible.

B.4 Representing Advanced Convex State Constraints Through State Space
Regions

PDDL2.1 syntax allows activity conditions on state variables to be defined using polyno-
mial expressions. Since ScottyActivity only supports convex quadratic state conditions,
polynomial expressions are able to represent all the conditions that we can handle. How-
ever, manually specifying state conditions using polynomial equations is cumbersome and
repetitive, since the same conditions often need to be used in different parts of the domain
definition. Moreover, the convex quadratic conditions that ScottyActivity can handle can
become fairly complicated and hard to write using direct equations. Polynomial state con-
straints are still allowed in ScottyActivity. However, for the reasons outlined above, we have
developed a region-based system to express state conditions that arise naturally in robotic
scenarios in a more succinct and clear way.

We call a region the part of the state-space that is allowed by a condition. Regions are
defined as a collection of primitive regions defined on one or more parameters. Analogous to
the parameters in PDDL activities, the region parameters are placeholders that are replaced
by expressions of state variables when the regions are used in actual activity conditions.
Regions are defined before activities with the following syntax:

(:region <region−name>
:parameters (? par1 ? par2 . . .)
:condition (and <pr imi t ive− r eg ion1 (parameter−expr1)>

<pr imi t ive− r eg ion2 (parameter−expr2)>
. . .)

[:linear−approximation (and ({<= ,=,>=} <l in−exp− l e f t> <l in−exp−right >)
. . .)])

Regions defined in this way represent the intersection of the provided primitive regions.
Since the primitive regions are convex, their intersection is also convex. We only support
regions defined as intersections (and) and not disjunctions (or) because the latter are not
guaranteed to be convex. ScottyActivity supports both linear conditions as well as quadratic
conditions, as long as they are convex. For reasons that will be explained in Section 6, the
heuristic needs linear over-approximations for quadratic conditions. Our quadratic region
primitives, such as circles, automatically add these linear over-approximations (such as
surrounding boxes). In general, automatic linear over-approximations cannot be deduced
easily from arbitrary quadratic equations. Therefore, users specifying conditions manually

645

Fernández-González, Williams & Karpas

using quadratic equations need to provide a list of linear inequalities that over approximate
the quadratic region using the optional parameter linear-approximation.

Regions defined in this way can then be used in the at start, at end or over all conditions
of activities. Region conditions are defined with the following syntax:

(inside (<region−name> <par−expr1 (s t a t e−v a r i a b l e s)>
<par−expr2 (s t a t e−v a r i a b l e s)
. . .))

Note that we only support inside and not outside conditions. In effect, being inside
a convex region constitutes a convex condition, while being outside a convex region does
not. The quadratic solvers that ScottyActivity uses do not support non-convex conditions.
However, even if they did, we would not be able to guarantee that invariant conditions are
satisfied throughout a piecewise linear trajectory by only checking the switch points (like
we showed we can do with convex conditions in Section 5).

Regions used in conditions need to be supplied with a list containing the values to be
used in place of their parameters. Each parameter can be given as a state variable, or as
an expression involving one or more state variables. This provides additional flexibility to
compose complicated regions from simpler ones. As an example, let us consider a sampling
region defined by a rectangle.

(:region sampling−region
:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (5 −10) :width 20 :height 30)))

The region sampling-region(?x, ?y) has parameters ?x and ?y. Note that these pa-
rameters are not state variables, but simply placeholders that serve to indicate what the
internal primitive region in-rect should be defined with respect to. The primitive region
in-rect(?x, ?y) defines the rectangular 2d region given by the inequalities cornerx ≤?x ≤
cornerx + width and cornery ≤?y ≤ cornery + height. The sampling-region can now be
used to indicate, for example, that an AUV needs to remain inside the region while a sample
is being taken:

(over a l l (inside (sampling−region (x−auv) (y−auv))))

, where x-auv and y-auv are state variables that denote the position of the AUV. Note
that sampling-region can be reused in a different activity condition just by feeding a
different set of parameters as required. For example, we could indicate that the ship needs
to remain in the same region while another activity is being executing just by using (inside

(sampling−region (x−ship) (y−ship))). The expressions passed as parameters to the regions can
be arbitrarily complex, which makes it very simple to specify complex conditions. For
example, we could impose that instead of requiring the AUV or the ship to be inside the
region, we would like the center point of the two vehicles to remain in the region by using
the following expression:

(over a l l (inside (sampling−region (/ (+ (x−auv) (x−ship)) 2)
(/ (+ (y−auv) (y−ship)) 2))))

The internal expression engine in ScottyActivity propagates the parameter expressions in
order to obtain the resulting linear conditions cornerx ≤ 1

2(xAUV +xship) ≤ cornerx +width
and cornery ≤ 1

2(yAUV + yship) ≤ cornery + height. Expressions passed as parameters to

646

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

regions can be arbitrarily complex as long as the resulting final expression remains convex
quadratic, due to the reasons explained before.

B.4.1 Primitive Regions

In the current version of our planner we have implemented multiple primitive regions such
as in-rect. Because the robotic planning problems we have spent more time on can be
expressed with two dimensional coordinates, the primitives expressed here are 2d conditions.
However, our system is not restricted to two dimensions, and additional region primitives
can be defined for any number of dimensions naturally.

• Manual convex quadratic inequalities or linear equalities: ({<=,=,>=} <expr−left> <

expr−right>)

• Rectangles: (in−rect (?x ?y) :corner (<cx> <cy>) :width <w> :height <h>)

The rectangle primitive enforces the conditions cx ≤?x ≤ cx +w and cy ≤?y ≤ cy +h.
Since these conditions are linear, this primitive does not add linear approximations.

• Convex polygons: (in−poly (?x ?y) :vertices ((<v1x> <v1y>) ... (<vnx> <vny>)))

The convex polygon is given by a list of its vertices. Again, no linear approximation
equations are needed in this case.

• Circles: (in−circle (?x ?y) :center (<cx> <cy>) :r <r>)

The circle primitive enforces the convex quadratic condition (?x−cx)2+(?y−cy)2 ≤ r2.
This primitive also adds the linear over-approximation conditions of an square of
center (cx, cy) and side 2r surrounding the circle.

• Maximum distance between entities: (max−distance ((?x1 ?y1) (?x2 ?y2)) :d <d>)

This primitive ensures that point entities of positions (?x1, ?y1) and (?x2, ?y2) al-
ways remain within distance d by enforcing the quadratic condition (?x1−?x2)2 +
(?y1−?y2)2 ≤ d2. This primitive also provides the linear over-approximation given by
the equations |?x1−?x2| ≤ d and |?y1−?y2| ≤ d.

Note that, thanks to our powerful parameter expression system, the condition repre-
sented by max-distance can also be represented with a circle region in which the
parameters are the x,y components of the difference vector between the entities:

(:region max−distance−region
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (in−circle (− ?x1 ?x2) (− ?y1 ?y1)
:center (0 0) : r <d>))

• Other previously defined regions: (in−region <region−name> (<par−expr1> ...))

A region can also be composed by the intersection of previously defined regions. This
makes it easy to define complex regions from other simpler, reusable regions.

647

Fernández-González, Williams & Karpas

Appendix C. Example Scenario in PDDL-S Syntax

We now proceed to represent our motivation example from Section 3.1 with the syntax
we have defined in Appendix B. We start by defining the state variables of the problem,
which are the x, y positions of the ship, (xs, ys), the AUV, (xa, ya) and the ROV, (xr, yr).
Furthermore, the battery of the AUV is also a state variable in this problem. State variables
are defined using the same syntax from PDDL2.1:

(:functions
(xs) (ys) (xr) (yr)
(xa) (ya) (ba))

There are six control variables in our problem, the x, y velocities of each vehicle. The
maximum velocity of each vehicle is upper-bound constrained. As an example, the velocity
of the ship (vel-ship) is defined and constrained with the following declaration:

(:control−variable vx−s
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable vy−s
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable−vector vel−ship
:control−variables ((vx−s) (vy−s))
:max−norm 2)

We define the rectangular region mission-region to limit the area that any of the
vehicles can visit. Other regions, such as the sampling regions are polygons and are defined
with their vertices according to the following syntax:

(:region miss ion−reg ion
:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (0 −100) :width 500 :height 500)))

(:region regionA
:parameters (? x ?y)
:condition
(and (in−poly (? x ?y) :vert ices ((125 0) (130 −15) (115 −30) (100 0)))))

Since the ROV is tethered to the ship, it always needs to remain within a distance that
is the length of the tether. Moreover, the AUV and the ROV can only be recovered by the
ship when they are close enough. These two conditions are represented with the regions
rov-range and recover-range defined next:

(:region rov−range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and

(max−distance ((? x1 ?y1) (? x2 ?y2)) :d 60)))

(:region recover−range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and

(max−distance ((? x1 ?y1) (? x2 ?y2)) :d 2)))

In order to enforce the tether constraint, the ROV and the ship are forced to remain
in the rov-range region while they move. We present the navigate-ROV activity next to
show how this is expressed:

(:durative−action navigate−ROV

648

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 200))
:condition (and

(at start (r o v− s t i l l))
(over a l l (rov−deployed))
(over a l l (inside (miss ion−reg ion (xr) (yr))))
(over a l l (inside (rov−range (xr) (yr) (xs) (ys)))))

: e f f e c t (and
(at start (not (r o v− s t i l l)))
(at end (r o v− s t i l l))
(at start (not (rov−pos i t ioned)))
(at end (rov−pos i t ioned))

(increase (xr) (∗ (vx−r) #t))
(increase (yr) (∗ (vy−r) #t))))

As explained in the beginning of this section, the continuous change in the position of
the ROV is represented with a CLTE effect that indicates, for example, that the rate of
change of the position (xr) is proportional to the control variable that represents the vx
velocity of the ROV. RNE effects, such as the one that decreases the AUV battery are
expressed in a similar way. The continuous effects of the navigate-AUV activity are given
by:

(increase (xa) (∗ (vx−a) #t))
(increase (ya) (∗ (vy−a) #t))
(decrease (ba) (∗ 1 (norm (vel−auv)) #t))

, which indicates that the rate of change of the battery is proportional to the space traveled
by the AUV (ḃa = −‖va‖). The navigate-AUV also has an invariant condition (over all

(>= (ba) 0)) that ensures that the battery constraint is respected.

Finally, the minimization objective in this problem is the sum of the total plan length
and the distance traveled by the ship. This objective is defined as:

(:metric minimize (+ (∗ 1 (total−t ime))
(∗ 1 (norm (ve l−ship)))))

The other discrete conditions and effects, as well as the discrete objectives are defined
as in PDDL2.1 and are omitted here for the sake of brevity.

Appendix D. Benchmark Domains

In this appendix we provide the PDDL sources of some of the instances of the benchmark
domains described in Section 8.2.

D.1 The AUV Domain

The PDDL of instance 3 of the AUV domain is provided next. In this domain the AUV needs
to visit regions A, B and C. The other instances (1-20) are analogous. The only difference
between the original and the simplified, linearized version is that the later does not include
the maximum norm constraint (indicated with the :control−variable−vector statement).

The domain file (auv03-domain.pddl) is displayed next:

(define (domain auv−2D−3)
(:predicates

649

Fernández-González, Williams & Karpas

(sample−takenA)
(sample−takenB)
(sample−takenC)
(can−move))

(:functions (x) (y))

; ; Contro l Var iab l e s
(:control−variable vel−x
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable vel−y
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable−vector vel−auv
:control−variables ((vel−x) (vel−y))
:max−norm 2)

; ; Regions
(:region miss ion−reg ion

:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (0 0) :width 100 :height 100)))

(:region regionA
:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (80 70) :width 10 :height 10)))

(:region regionB
:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (55 40) :width 5 :height 5)))

(:region regionC
:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (30 30) :width 10 :height 10)))

; ; A c t i v i t i e s
(:durative−action g l i d e
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 200))
:condition (and (at start (can−move))

(over a l l (inside (miss ion−reg ion (x) (y)))))
: e f f e c t (and (at start (not (can−move)))

(at end (can−move))
(increase (x) (∗ (vel−x) #t))

(increase (y) (∗ (vel−y) #t))))

(:durative−action take−sampleA
:duration (and (>= ? durat ion 2) (<= ? durat ion 8))
:condition (and (at start (can−move))

(over a l l (inside (regionA (x) (y))))
(at end (inside (regionA (x) (y)))))

: e f f e c t (and (at start (not (can−move)))
(at end (can−move))
(at end (sample−takenA))))

(:durative−action take−sampleB
:duration (and (>= ? durat ion 2) (<= ? durat ion 8))
:condition (and (at start (can−move))

(over a l l (inside (regionB (x) (y))))
(at end (inside (regionB (x) (y)))))

: e f f e c t (and (at start (not (can−move)))
(at end (can−move))

650

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

(at end (sample−takenB))))

(:durative−action take−sampleC
:duration (and (>= ? durat ion 2) (<= ? durat ion 8))
:condition (and (at start (can−move))

(over a l l (inside (regionC (x) (y))))
(at end (inside (regionC (x) (y)))))

: e f f e c t (and (at start (not (can−move)))
(at end (can−move))
(at end (sample−takenC)))))

The problem file (auv03-problem.pddl) is displayed next:

(define (problem auv−3D−problem−3)
(:domain auv−2D−1)
(: i n i t

(can−move)
(= (x) 0) (= (y) 0))

(:goal (and
(sample−takenA)
(sample−takenB)
(sample−takenC))))

(:metric minimize (+ (∗ 1 (total−t ime))))

D.2 The ROV Domain

We provide the PDDL sources for instance 6 of the ROV domain. In this problem, the ROV
needs to visit regions A, B, C, D, E and F (Figure 11).

D.2.1 Original (Quadratic) Version

The domain file (rov06-domain.pddl) is displayed below:

(define (domain rov−6)
(:predicates

(rov−deployed) (rov−onboard)
(rov−navigat ing) (r o v− s t i l l)
(rov−pos i t ioned) (sh ip−arr ived)
(mission−ongoing)
(sample−takenA) (sample−takenB)

(sample−takenC) (sample−takenD)
(sample−takenE) (sample−takenF))

(:functions (xs) (ys) (xr) (yr))

; ; Contro l Var iab l e s
(:control−variable vx−s
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable vy−s
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable−vector vel−ship
:control−variables ((vx−s) (vy−s))
:max−norm 2)

(:control−variable vx−r
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable vy−r

651

Fernández-González, Williams & Karpas

:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))
(:control−variable−vector vel−rov
:control−variables ((vx−r) (vy−r))
:max−norm 2)

; ; Regions
(:region miss ion−reg ion

:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (0 0) :width 100 :height 100)))

(:region region−port
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((80 . 00000 80 .00000) (80 .00000

90 .00000) (90 .00000 90 .00000) (90 .00000 80 .00000) (80 .00000 80 .00000)))))
(:region regionA

:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((39 . 37217 36 .35934) (39 .62838

41 .83741) (33 .58334 38 .41339) (35 .90700 36 .75789) (39 .37217 36 .35934)))))
(:region regionB

:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((53 . 20386 24 .86533) (59 .77362

23 .94972) (60 .97144 25 .64728) (58 .46709 27 .47164) (53 .20386 24 .86533)))))
(:region regionC

:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((54 . 84244 42 .09887) (53 .85109

44 .74345) (48 .76991 42 .71553) (51 .70078 38 .83075) (54 .84244 42 .09887)))))
(:region regionD

:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((14 . 22096 82 .10052) (14 .54697

77 .25059) (17 .45469 76 .93250) (19 .08229 80 .64577) (14 .22096 82 .10052)))))
(:region regionE

:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((32 . 26246 85 .87668) (34 .33392

88 .33325) (34 .46927 90 .12637) (30 .73706 91 .88235) (32 .26246 85 .87668)))))
(:region regionF

:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((30 . 13904 62 .94699) (29 .93304

65 .07422) (25 .68036 65 .04391) (24 .56301 62 .75958) (30 .13904 62 .94699)))))

(:region rov−range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and (max−distance ((? x1 ?y1) (? x2 ?y2)) :d 10)))

(:region recover−range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and (max−distance ((? x1 ?y1) (? x2 ?y2)) :d 0 . 5)))

; ; A c t i v i t i e s
(:durative−action navigate−ship
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 200))
:condition (and (over a l l (mission−ongoing))

(over a l l (rov−onboard))
(over a l l (inside (miss ion−reg ion (xs) (ys))))
(over a l l (inside (miss ion−reg ion (xr) (yr)))))

: e f f e c t (and
(increase (xs) (∗ (vx−s) #t))
(increase (ys) (∗ (vy−s) #t))

652

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

; ; Also move ROV s t a t e v a r i a b l e s
(increase (xr) (∗ (vx−s) #t))
(increase (yr) (∗ (vy−s) #t))))

(:durative−action navigate−ROV
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 200))
:condition (and (over a l l (mission−ongoing))

(at start (r o v− s t i l l))
(over a l l (rov−deployed))
(over a l l (inside (miss ion−reg ion (xr) (yr))))
(over a l l (inside (rov−range (xr) (yr) (xs) (ys)))))

: e f f e c t (and (at start (not (r o v− s t i l l)))
(at end (r o v− s t i l l))
(at start (not (rov−pos i t ioned)))
(at end (rov−pos i t ioned))
(increase (xr) (∗ (vx−r) #t))
(increase (yr) (∗ (vy−r) #t))))

(:durative−action deploy−ROV
:duration (and (>= ? durat ion 10) (<= ? durat ion 10))
:condition (and (over a l l (mission−ongoing))

(at start (rov−onboard)))
: e f f e c t (and (at start (not (rov−onboard)))

(at end (r o v− s t i l l))
(at end (rov−deployed))))

(:durative−action recover−ROV
:duration (and (>= ? durat ion 40) (<= ? durat ion 40))
:condition (and (over a l l (mission−ongoing))

(at start (rov−deployed))
(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (inside (recover−range (xr) (yr) (xs) (ys)))))

: e f f e c t (and (at start (not (rov−deployed)))
(at end (rov−onboard))
(at start (not (rov−pos i t ioned)))))

(:durative−action arr ive−port
:duration (and (>= ? durat ion 2) (<= ? durat ion 2))
:condition (and (over a l l (rov−onboard))

(over a l l (inside (region−port (xs) (ys)))))
: e f f e c t (and (at end (sh ip−arr ived))

(at start (not (mission−ongoing)))))

(:durative−action take−sampleA
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionA (xr) (yr))))
(at end (inside (regionA (xr) (yr)))))

: e f f e c t (and (at end (sample−takenA))
(at end (not (rov−pos i t ioned)))))

653

Fernández-González, Williams & Karpas

(:durative−action take−sampleB
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionB (xr) (yr))))
(at end (inside (regionB (xr) (yr)))))

: e f f e c t (and (at end (sample−takenB))
(at end (not (rov−pos i t ioned)))))

(:durative−action take−sampleC
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionC (xr) (yr))))
(at end (inside (regionC (xr) (yr)))))

: e f f e c t (and (at end (sample−takenC))
(at end (not (rov−pos i t ioned)))))

(:durative−action take−sampleD
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionD (xr) (yr))))
(at end (inside (regionD (xr) (yr)))))

: e f f e c t (and (at end (sample−takenD))
(at end (not (rov−pos i t ioned)))))

(:durative−action take−sampleE
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionE (xr) (yr))))
(at end (inside (regionE (xr) (yr)))))

: e f f e c t (and (at end (sample−takenE))
(at end (not (rov−pos i t ioned)))))

(:durative−action take−sampleF
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionF (xr) (yr))))
(at end (inside (regionF (xr) (yr)))))

: e f f e c t (and (at end (sample−takenF))
(at end (not (rov−pos i t ioned))))))

654

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

The ROV instance 6 problem file:

(define (problem rov−problem−6)
(:domain rov−6)
(: i n i t (rov−onboard)

(r o v− s t i l l)
(mission−ongoing)
(= (xs) 2 0 . 0) (= (ys) 3 0 . 0)
(= (xr) 2 0 . 0) (= (yr) 30 . 0))

(:goal (and (sample−takenA) (sample−takenB)
(sample−takenC) (sample−takenD)
(sample−takenE) (sample−takenF)
(rov−onboard) (sh ip−arr ived))))

(:metric minimize (+ (∗ 0 .1 (tota l−t ime))
(∗ 2 .5 (norm−sq (ve l−ship)))))

D.2.2 Simplified, Linearized Version

In the linearized version the velocities of the AUV and the ship are not norm constrained
and therefore, the :control−variable−vector statements do not appear in the domain file.
Moreover, the original convex quadratic constraints that represent the maximum distance
between the ROV and the ship (represented with the rov-range and recover-range re-
gions) are replaced by linear approximations (in particular, octagon over-approximations).
Therefore the rov-range and recover-range regions are described in the following way:

(:region rov−range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and

(<= (+ (∗ 1 .0 (− ?x1 ?x2)) (∗ 2 .414 (− ?y1 ?y2))) 24 .142)
(<= (+ (∗ −1.0 (− ?x1 ?x2)) (∗ 2 .414 (− ?y1 ?y2))) 24 .142)
(<= (+ (∗ −2.414 (− ?x1 ?x2)) (∗ −1.0 (− ?y1 ?y2))) 24 .142)
(<= (+ (∗ −2.414 (− ?x1 ?x2)) (∗ 1 .0 (− ?y1 ?y2))) 24 .142)
(<= (+ (∗ −1.0 (− ?x1 ?x2)) (∗ −2.414 (− ?y1 ?y2))) 24 .142)
(<= (+ (∗ 1 .0 (− ?x1 ?x2)) (∗ −2.414 (− ?y1 ?y2))) 24 .142)
(<= (+ (∗ 2 .414 (− ?x1 ?x2)) (∗ −1.0 (− ?y1 ?y2))) 24 .142)
(<= (+ (∗ 2 .414 (− ?x1 ?x2)) (∗ 1 .0 (− ?y1 ?y2))) 24 .142)))

(:region recover−range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and

(<= (+ (∗ 1 .0 (− ?x1 ?x2)) (∗ 2 .414 (− ?y1 ?y2))) 1 . 207)
(<= (+ (∗ −1.0 (− ?x1 ?x2)) (∗ 2 .414 (− ?y1 ?y2))) 1 . 207)
(<= (+ (∗ −2.414 (− ?x1 ?x2)) (∗ −1.0 (− ?y1 ?y2))) 1 . 207)
(<= (+ (∗ −2.414 (− ?x1 ?x2)) (∗ 1 .0 (− ?y1 ?y2))) 1 . 207)
(<= (+ (∗ −1.0 (− ?x1 ?x2)) (∗ −2.414 (− ?y1 ?y2))) 1 . 207)
(<= (+ (∗ 1 .0 (− ?x1 ?x2)) (∗ −2.414 (− ?y1 ?y2))) 1 . 207)
(<= (+ (∗ 2 .414 (− ?x1 ?x2)) (∗ −1.0 (− ?y1 ?y2))) 1 . 207)
(<= (+ (∗ 2 .414 (− ?x1 ?x2)) (∗ 1 .0 (− ?y1 ?y2))) 1 . 207)))

D.3 The Air Refueling domain

As an example, we provide the PDDL sources for instance 15 of the Air Refueling domain.
In this problem there are two UAVs that need to take images in six regions, while refueling

655

Fernández-González, Williams & Karpas

from a single tanker airplane. For the reasons explained in Section 8.2.3, no linearized
version is provided for this domain.
Domain (onair15-domain.pddl):

(define (domain onair−re fue l−15)
(:predicates

(can−start)
(uav−canfly) (uav− f ly ing) (uav−avai lable)
(uav2−canfly) (uav2− f ly ing) (uav2−avai lable)
(tanker− f l y ing)
(mission−ongoing)
(a r r i v ed)
(photo−takenA) (photo−takenB)
(photo−takenC) (photo−takenD) (photo−takenE))

(:functions (xt) (yt) (xb) (yb) (bb) (xb2) (yb2) (bb2))

; ; Contro l Var iab l e s
(:control−variable vx−t
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable vy−t
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable−vector vel−tanker
:control−variables ((vx−t) (vy−t))
:max−norm 2)

(:control−variable vx−b
:bounds (and (>= ? value −3.0) (<= ? value 3 . 0)))

(:control−variable vy−b
:bounds (and (>= ? value −3.0) (<= ? value 3 . 0)))

(:control−variable−vector vel−uav
:control−variables ((vx−b) (vy−b))
:max−norm 3)

(:control−variable vx−b2
:bounds (and (>= ? value −3.0) (<= ? value 3 . 0)))

(:control−variable vy−b2
:bounds (and (>= ? value −3.0) (<= ? value 3 . 0)))

(:control−variable−vector vel−uav2
:control−variables ((vx−b2) (vy−b2))
:max−norm 3)

(:control−variable vx−b−ref
:bounds (and (>= ? value −0.5) (<= ? value 0 . 5)))

(:control−variable vy−b−ref
:bounds (and (>= ? value −0.5) (<= ? value 0 . 5)))

(:control−variable−vector vel−uav−ref
:control−variables ((vx−b−ref) (vy−b−ref))
:max−norm 0 . 5)

(:control−variable bat−recharge−rt
:bounds (and (>= ? value 0 . 5) (<= ? value 10)))

; ; Regions
(:region miss ion−reg ion
:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (0 0) :width 100 :height 100)))

(:region end−region
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((30 . 00000 80 .00000) (30 .00000

90 .00000) (40 .00000 90 .00000) (40 .00000 80 .00000) (30 .00000 80 .00000)))))

656

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

(:region regionA
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((69 . 28348 48 .10923) (68 .00933

45 .38239) (73 .61835 42 .22267) (74 .51618 48 .55133) (69 .28348 48 .10923)))))
(:region regionB
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((8 . 00984 57 .59487) (7 .01760

51 .92697) (9 .45458 50 .25484) (14 .20403 53 .92992) (8 .00984 57 .59487)))))
(:region regionC
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((23 . 52966 20 .52394) (28 .28920

22 .87291) (25 .77673 27 .59659) (22 .34778 24 .69332) (23 .52966 20 .52394)))))
(:region regionD
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((49 . 99606 18 .74888) (54 .37759

24 .80803) (52 .85137 25 .66706) (49 .60897 24 .57518) (49 .99606 18 .74888)))))
(:region regionE
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((59 . 35168 78 .26495) (57 .61885

83 .77747) (52 .45846 80 .30299) (56 .94561 76 .10759) (59 .35168 78 .26495)))))

(:region re fue l− range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and (max−distance ((? x1 ?y1) (? x2 ?y2)) :d 2)))

; ; A c t i v i t i e s
(:durative−action f ly− tanker
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 2000))
:condition (and (at start (can−start))

(over a l l (inside (miss ion−reg ion (xt) (yt)))))
: e f f e c t (and (at start (not (can−start)))

(at start (mission−ongoing))
(at end (not (mission−ongoing)))
(at start (tanker− f l y ing))
(at end (not (tanker− f l y ing)))
(increase (xt) (∗ (vx−t) #t))
(increase (yt) (∗ (vy−t) #t))))

(:durative−action f ly−uav
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 2000))
:condition (and (at start (mission−ongoing))

(at start (uav−canfly))
(over a l l (inside (miss ion−reg ion (xb) (yb))))
(over a l l (>= (bb) 0)))

: e f f e c t (and (at start (not (uav−canfly)))
(at start (uav− f ly ing))
(at end (not (uav− f ly ing)))
(increase (xb) (∗ (vx−b) #t))
(increase (yb) (∗ (vy−b) #t))
(decrease (bb) (∗ 0 .1 (norm−sq (vel−uav)) #t))
(decrease (bb) (∗ 1 .1 (norm (vel−uav)) #t))))

(:durative−action f ly−uav2
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 2000))
:condition (and (at start (mission−ongoing))

657

Fernández-González, Williams & Karpas

(at start (uav2−canfly))
(over a l l (inside (miss ion−reg ion (xb2) (yb2))))
(over a l l (>= (bb2) 0)))

: e f f e c t (and (at start (not (uav2−canfly)))
(at start (uav2− f ly ing))
(at end (not (uav2− f ly ing)))
(increase (xb2) (∗ (vx−b2) #t))
(increase (yb2) (∗ (vy−b2) #t))
(decrease (bb2) (∗ 0 .1 (norm−sq (vel−uav2)) #t))
(decrease (bb2) (∗ 1 .1 (norm (vel−uav2)) #t))))

(:durative−action re fue l−uav
:duration (and (>= ? durat ion 0 . 5) (<= ? durat ion 20))
:condition (and (over a l l (tanker− f l y ing))

(over a l l (uav− f ly ing))
(over a l l (<= (bb) 100))
(at start (uav−avai lable))
(over a l l (inside (re fue l− range (xt) (yt) (xb) (yb)))))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(increase (bb) (∗ (bat−recharge−rt) #t))))

(:durative−action re fue l−uav2
:duration (and (>= ? durat ion 0 . 5) (<= ? durat ion 20))
:condition (and

(over a l l (tanker− f l y ing))
(over a l l (uav− f ly ing))
(over a l l (<= (bb2) 100))
(at start (uav2−avai lable))
(over a l l (inside (re fue l− range (xt) (yt) (xb2) (yb2)))))

: e f f e c t (and
(at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(increase (bb2) (∗ (bat−recharge−rt) #t))))

(:durative−action a r r i v e−a i r po r t
:duration (and (>= ? durat ion 2) (<= ? durat ion 2))
:condition (and (at start (mission−ongoing))

(at start (uav− f ly ing))
(at start (uav2− f ly ing))
(at start (uav−avai lable))
(at start (uav2−avai lable))
(over a l l (inside (end−region (xt) (yt))))
(over a l l (inside (end−region (xb) (yb))))
(over a l l (inside (end−region (xb2) (yb2)))))

: e f f e c t (and (at end (a r r i v e d))
(at start (not (mission−ongoing)))))

(:durative−action take−photoA
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav− f ly ing))
(over a l l (inside (regionA (xb) (yb))))
(at end (inside (regionA (xb) (yb))))
(at start (uav−avai lable)))

658

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(at end (photo−takenA))))

(:durative−action take−photoA2
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav2− f ly ing))
(over a l l (inside (regionA (xb2) (yb2))))
(at end (inside (regionA (xb2) (yb2))))
(at start (uav2−avai lable)))

: e f f e c t (and (at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(at end (photo−takenA))))

(:durative−action take−photoB
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav− f ly ing))
(over a l l (inside (regionB (xb) (yb))))
(at end (inside (regionB (xb) (yb))))
(at start (uav−avai lable)))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(at end (photo−takenB))))

(:durative−action take−photoB2
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav2− f ly ing))
(over a l l (inside (regionB (xb2) (yb2))))
(at end (inside (regionB (xb2) (yb2))))
(at start (uav2−avai lable)))

: e f f e c t (and (at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(at end (photo−takenB))))

(:durative−action take−photoC
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav− f ly ing))
(over a l l (inside (regionC (xb) (yb))))
(at end (inside (regionC (xb) (yb))))
(at start (uav−avai lable)))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(at end (photo−takenC))))

(:durative−action take−photoC2
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav2− f ly ing))
(over a l l (inside (regionC (xb2) (yb2))))
(at end (inside (regionC (xb2) (yb2))))
(at start (uav2−avai lable)))

659

Fernández-González, Williams & Karpas

: e f f e c t (and (at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(at end (photo−takenC))))

(:durative−action take−photoD
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav− f ly ing))
(over a l l (inside (regionD (xb) (yb))))
(at end (inside (regionD (xb) (yb))))
(at start (uav−avai lable)))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(at end (photo−takenD))))

(:durative−action take−photoD2
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav2− f ly ing))
(over a l l (inside (regionD (xb2) (yb2))))
(at end (inside (regionD (xb2) (yb2))))
(at start (uav2−avai lable)))

: e f f e c t (and (at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(at end (photo−takenD))))

(:durative−action take−photoE
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav− f ly ing))
(over a l l (inside (regionE (xb) (yb))))
(at end (inside (regionE (xb) (yb))))
(at start (uav−avai lable)))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(at end (photo−takenE))))

(:durative−action take−photoE2
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav2− f ly ing))
(over a l l (inside (regionE (xb2) (yb2))))
(at end (inside (regionE (xb2) (yb2))))
(at start (uav2−avai lable)))

: e f f e c t (and (at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(at end (photo−takenE)))))

Problem (onair15-problem.pddl):

(define (problem onair−problem−1)
(:domain onair−re fue l−1)
(: i n i t (can−start)

(uav−canfly) (uav−avai lable)
(uav2−canfly) (uav2−avai lable)
(= (xt) 7 0 . 0) (= (yt) 1 0 . 0)

660

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

(= (xb) 70 . 0) (= (yb) 10 . 0)
(= (xb2) 7 0 . 0) (= (yb2) 1 0 . 0)
(= (bb) 100)(= (bb2) 100))

(:goal (and
(photo−takenA) (photo−takenB)
(photo−takenC) (photo−takenD)
(photo−takenE)

(a r r i v e d))))
(:metric minimize (+ (∗ 5 (total−t ime))

(∗ 20 (norm (vel−tanker)))))

References

Bajada, J., Fox, M., & Long, D. (2015). Temporal Planning with Semantic Attachment of
Non-Linear Monotonic Continuous Behaviours. In IJCAI 2015, Proceedings of the 24th
International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina,
July 25-31, 2015.

Benton, J., Coles, A. J., & Coles, A. (2012). Temporal Planning with Preferences and Time-
Dependent Continuous Costs. In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo,
Brazil, June 25-19, 2012.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90 (1), 281–300.

Bogomolov, S., Magazzeni, D., Minopoli, S., & Wehrle, M. (2015). PDDL+ Planning
with Hybrid Automata: Foundations of Translating Must Behavior. In Proceedings of
the Twenty-Fifth International Conference on Automated Planning and Scheduling,
ICAPS 2015, Jerusalem, Israel, June 7-11, 2015., pp. 42–46.

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press,
New York, NY, USA.

Bryce, D., Gao, S., Musliner, D. J., & Goldman, R. P. (2015). SMT-Based Nonlinear
PDDL+ Planning.. AAAI-17, 3247–3253.

Cambon, S., Alami, R., & Gravot, F. (2009). A Hybrid Approach to Intricate Motion,
Manipulation and Task Planning. The International Journal of Robotics Research,
28 (1), 104–126.

Camilli, R., Nomikou, P., Escartin, J., Ridao, P., Mallios, A., Kilias, S. P., Argyraki, A.,
Andreani, M., Ballu, V., Campos, R., Deplus, C., Gabsi, T., Garcia, R., Gracias, N.,
Hurtos, N., Magi, L., Mevel, C., Moreira, M., Palomeras, N., Pot, O., Ribas, D., Ruzie,
L., & Sakellariou, D. (2015). The Kallisti Limnes, carbon dioxide-accumulating subsea
pools. Scientific Reports, 5 (1), srep12152.

Cashmore, M., Fox, M., Larkworthy, T., Long, D., & Magazzeni, D. (2014). AUV mission
control via temporal planning. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6535–6541. IEEE.

Cashmore, M., Fox, M., Long, D., & Magazzeni, D. (2016). A Compilation of the Full
PDDL+ Language into SMT. In Proceedings of the Twenty-Sixth International Con-

661

Fernández-González, Williams & Karpas

ference on Automated Planning and Scheduling, ICAPS 2016, London, UK, June
12-17, 2016., pp. 79–87.

Coles, A. J., Coles, A., Fox, M., & Long, D. (2010). Forward-Chaining Partial-Order Plan-
ning. In Proceedings of the 20th International Conference on Automated Planning and
Scheduling, ICAPS 2010, Toronto, Ontario, Canada, May 12-16, 2010, pp. 42–49.

Coles, A. J., Coles, A., Fox, M., & Long, D. (2012). COLIN: Planning with continuous
linear numeric change. Journal of Artificial Intelligence Research (JAIR), 44, 1–96.

Coles, A., Fox, M., Long, D., & Smith, A. (2008). Planning with Problems Requiring
Temporal Coordination. In Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pp. 892–
897.

Della Penna, G., Magazzeni, D., Mercorio, F., & Intrigila, B. (2009). UPMurphi: A Tool
for Universal Planning on PDDL+ Problems. In Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009.

Do, M. B., & Kambhampati, S. (2003). Sapa: A Multi-objective Metric Temporal Planner.
J Artif Intell Res(JAIR), 20, 155–194.

Eyerich, P., Matmüller, R., & Röger, G. (2009). Using the Context-enhanced Additive
Heuristic for Temporal and Numeric Planning. In Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009.

Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., D’Arpino,
C. P., Deits, R., DiCicco, M., Fourie, D., Koolen, T., Marion, P., Posa, M., Valen-
zuela, A., Yu, K.-T., Shah, J., Iagnemma, K., Tedrake, R., & Teller, S. (2015). An
architecture for online affordance-based perception and whole-body planning. Journal
of Field Robotics, 32 (2), 229–254.

Fernandez-Gonzalez, E. (2017). Generative Multi-Robot Task and Motion Planning Over
Long Horizons. Ph.D. thesis, Massachusetts Institute of Technology.

Fernandez-Gonzalez, E., Karpas, E., & Williams, B. C. (2015). Mixed Discrete-Continuous
Heuristic Generative Planning Based on Flow Tubes. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pp. 1565–1572.

Fernandez-Gonzalez, E., Karpas, E., & Williams, B. C. (2017). Mixed Discrete-Continuous
Planning with Convex Optimization. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, pp. 1–7.

Fox, M., & Long, D. (2003). PDDL2. 1: An Extension to PDDL for Expressing Temporal
Planning Domains.. J Artif Intell Res(JAIR).

Fox, M., & Long, D. (2006). Modelling Mixed Discrete-Continuous Domains for Planning.
J Artif Intell Res(JAIR).

Garrett, C. R., Lozano-Perez, T., & Kaelbling, L. P. (2014). Ffrob: An efficient heuristic for
task and motion planning. In International Workshop on the Algorithmic Foundations
of Robotics (WAFR).

662

ScottyActivity: Mixed Discrete-Continuous Planning with Convex Optimization

Gerevini, A. E., Haslum, P., Long, D., Saetti, A., & Dimopoulos, Y. (2009). Deterministic
planning in the fifth international planning competition: PDDL3 and experimental
evaluation of the planners. Artificial Intelligence, 173 (5-6), 619–668.

Hoffmann, J. (2003). The Metric-FF Planning System: Translating ”Ignoring Delete Lists”
to Numeric State Variables. J Artif Intell Res(JAIR), 20, 291–341.

Hoffmann, J., & Nebel, B. (2001). The FF Planning System: Fast Plan Generation Through
Heuristic Search. J Artif Intell Res(JAIR), 14, 253–302.

Hofmann, A., & Williams, B. C. (2006). Exploiting spatial and temporal flexibility for plan
execution of hybrid, under-actuated systems. AAAI 2006.

Hofmann, A. G., & Williams, B. C. (2017). Temporally and spatially flexible plan execution
for dynamic hybrid systems. Artificial Intelligence, 247, 266 – 294. Special Issue on
AI and Robotics.

Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta Mathematica, 30 (0), 175–193.

Kautz, H. A., & Selman, B. (1999). Unifying SAT-based and Graph-based Planning. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pp.
318–325.

Li, H., & Williams, B. C. (2011). Hybrid Planning with Temporally Extended Goals for
Sustainable Ocean Observing. In Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11,
2011.

Li, H. X. (2010). Kongming: a generative planner for hybrid systems with temporally ex-
tended goals. Ph.D. thesis, Massachusetts Institute of Technology.

Li, H. X., & Williams, B. C. (2008). Generative Planning for Hybrid Systems Based on
Flow Tubes. In Proceedings of the Eighteenth International Conference on Automated
Planning and Scheduling, ICAPS 2008, Sydney, Australia, September 14-18, 2008, pp.
206–213.

Long, D., & Fox, M. (2003). Exploiting a Graphplan Framework in Temporal Planning. In
Proceedings of the Thirteenth International Conference on Automated Planning and
Scheduling (ICAPS 2003), June 9-13, 2003, Trento, Italy, pp. 52–61.

Lozano-Pérez, T., & Kaelbling, L. P. (2014). A constraint-based method for solving sequen-
tial manipulation planning problems. In Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on, pp. 3684–3691. IEEE.

Pantke, F., Edelkamp, S., & Herzog, O. (2016). Symbolic discrete-time planning with
continuous numeric action parameters for agent-controlled processes. Mechatronics,
34, 38–62.

Piacentini, C., Alimisis, V., Fox, M., & Long, D. (2013). Combining a temporal planner
with an external solver for the power balancing problem in an electricity network.
In Proceedings of the Twenty-Third International Conference on Automated Planning
and Scheduling, ICAPS 2013, Rome, Italy, June 10-14, 2013.

663

Fernández-González, Williams & Karpas

Piotrowski, W. M., Fox, M., Long, D., Magazzeni, D., & Mercorio, F. (2016). Heuristic
Planning for PDDL+ Domains. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15
July 2016, pp. 3213–3219.

Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research.

Savas, E., Fox, M., Long, D., & Magazzeni, D. (2016). Planning Using Actions with Control
Parameters. In ECAI 2016 - 22nd European Conference on Artificial Intelligence,
29 August-2 September 2016, The Hague, The Netherlands - Including Prestigious
Applications of Artificial Intelligence (PAIS 2016), pp. 1185–1193.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S. J., & Abbeel, P. (2014). Combined
task and motion planning through an extensible planner-independent interface layer.
In 2014 IEEE International Conference on Robotics and Automation, ICRA 2014,
Hong Kong, China, May 31 - June 7, 2014, pp. 639–646. IEEE.

Stefik, M. (1981). Planning with constraints (MOLGEN: Part 1). Artificial Intelligence,
16 (2), 111–139.

Toussaint, M. (2015). Logic-Geometric Programming: An Optimization-Based Approach
to Combined Task and Motion Planning. In Proceedings of the Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pp. 1930–1936.

Wolfman, S. A., & Weld, D. S. (1999). The LPSAT Engine & Its Application to Resource
Planning.. IJCAI 2016.

664

