
Journal of Artificial Intelligence Research 62 (2018) 233-268 Submitted 12/2017; published 6/2018

Solving Large Problems with Heuristic Search:
General-Purpose Parallel External-Memory Search

Matthew Hatem mhatem at cs.unh.edu

Ethan Burns eaburns at cs.unh.edu

Wheeler Ruml ruml at cs.unh.edu

Department of Computer Science

University of New Hampshire

Durham, NH 03824 USA

Abstract

Classic best-first heuristic search algorithms, like A*, record every unique state they
encounter in RAM, making them infeasible for solving large problems. In this paper, we
demonstrate how best-first search can be scaled to solve much larger problems by exploiting
disk storage and parallel processing and, in some cases, slightly relaxing the strict best-
first node expansion order. Some previous disk-based search algorithms abandon best-first
search order in an attempt to increase efficiency. We present two case studies showing that
A*, when augmented with Delayed Duplicate Detection, can actually be more efficient than
these non-best-first search orders. First, we present a straightforward external variant of
A*, called PEDAL, that slightly relaxes best-first order in order to be I/O efficient in both
theory and practice, even on problems featuring real-valued node costs. Because it is easy to
parallelize, PEDAL can be faster than in-memory IDA* even on domains with few duplicate
states, such as the sliding-tile puzzle. Second, we present a variant of PEDAL, called
PE2A*, that uses partial expansion to handle problems that have large branching factors.
When tested on the problem of Multiple Sequence Alignment, PE2A* is the first algorithm
capable of solving the entire Reference Set 1 of the standard BAliBASE benchmark using a
biologically accurate cost function. This work shows that classic best-first algorithms like
A* can be applied to large real-world problems. We also provide a detailed implementation
guide with source code both for generic parallel disk-based best-first search and for Multiple
Sequence Alignment with a biologically accurate cost function. Given its effectiveness as a
general-purpose problem-solving method, we hope that this makes parallel and disk-based
search accessible to a wider audience.

1. Introduction

Best-first graph search algorithms such as A* (Hart, Nilsson, & Raphael, 1968) are widely
used for solving problems in artificial intelligence. Graph search algorithms typically main-
tain an open list, containing nodes that have been generated but not yet expanded, and
a closed list, containing all expanded nodes,1 in order to prevent duplicated search effort
when the same state is generated via multiple paths. As the size of problems increases, the
memory required to maintain the open and closed lists makes algorithms like A* imprac-
tical. For example, an application of A* to random instances of the 15-puzzle using the

1. This data structure’s name is indeed unfortunate, as it often holds more than just “closed” nodes in
order to catch duplicates on the frontier and is rarely implemented as a list!
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Manhattan distance heuristic will exhaust 8 GB of RAM in approximately two minutes on
a modern computer (Burns, Hatem, Leighton, & Ruml, 2012).

The A* algorithm, as it is described in most literature, cannot scale beyond what are
considered easy problems today. This motivates linear-space variants of A* that are able
to solve problems that A* cannot solve while using only a fraction of the memory. It-
erative Deepening A* (IDA*, Korf, 1985) and Recursive Best-first Search (RBFS, Korf,
1993) achieve linear-space complexity by eliminating the open and closed lists. As a result,
they are limited to a narrow class of problems: those that do not form highly connected
spaces. Without a closed list, these algorithms are not able to detect duplicate paths to
the same state and are doomed to repeatedly explore the same states multiple times before
finding a solution. For example, a depth-first search to depth three on a grid with four-way
movement generates 52 states while a breadth-first search that recognizes duplicates gen-
erates only 26. Furthermore, in the absence of an open list these methods use a depth-first
search. For IDA*, this means a best-first search order is only possible if the heuristic is
admissible. RBFS simulates a best-first search order even with an inadmissible heuristic
but, like IDA*, it suffers from unbounded node regeneration overhead for problems that do
not exhibit a narrow range of edge costs (however see Hatem, Kiesel, & Ruml, 2015; Burns
& Ruml, 2013; Russell, 1992). IDA* and RBFS work well when there are few duplicates
and a narrow range of edge costs. However, real-world problems such as Multiple Sequence
Alignment form highly connected search spaces and require a wide range of edge costs to
model biologically plausible results.

In order to apply heuristic search to large problems that form highly connected spaces,
we need scalable techniques for processing duplicates. In this paper we define scalable
techniques as those that are capable of exploiting external memory and multiple CPUs
to solve larger problems efficiently. External memory search algorithms take advantage
of cheap secondary storage, such as magnetic disks, to solve much larger problems than
algorithms that only use main memory. A näıve implementation of disk-based A* would
exhibit poor performance because it relies on random access in order to process duplicates.
The closed list, normally stored as a hash-table in RAM, provides quick random access to
states that have already been explored by the search. While sequential access to disk can
take upwards of two orders of magnitude longer than accessing RAM, random access to disk
can take several orders of magnitude more time than sequential access. Storing the closed
list as a hash table on disk is impractical. To implement an efficient disk-based best-first
search, great care must be taken to access data sequentially to minimize seeks and exploit
caching. The same techniques used by external search can be used to distribute search
effort across multiple CPUs.

This paper presents simple modifications to classic A* search and demonstrates that
they result in a general scalable algorithm: one that can exploit external storage and addi-
tional CPUs to solve larger problems efficiently. In section 2, we discuss the technique of
delayed duplicate detection in detail and present empirical results for an efficient external
memory variant of A* (A*-HBDDD). As far as we are aware, we are the first to present
results for HBDDD using A* search, other than the anecdotal results mentioned briefly by
Korf (2004). These results provide evidence that A*-HBDDD performs well on unit-cost
domains and that efficient parallel external memory search can surpass serial in-memory
search. Although many regard disk-based search as slow and unwieldy, we hope this result
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encourages practitioners to take another look at these techniques. In section 3, we show
that previous approaches are unable to solve problems that exhibit a wide range of edge
costs. To this end, we introduce Parallel External Dynamic A* Layering (PEDAL Hatem,
Burns, & Ruml, 2011), an extension of A*-HBDDD that is able to solve problems with arbi-
trary costs. In section 4, we introduce the problem of Multiple Sequence Alignment (MSA).
Previous approaches do not scale to the hardest instances of a popular MSA benchmark.
In this section, we introduce a second extension to A*-HBDDD that uses the technique of
partial expansions to solve the entire benchmark set.

This work demonstrates that parallel external-memory search does not need to com-
pletely abandon the best-first search principle. Instead only a small relaxation is needed to
significantly improve its efficiency. We hope that it demystifies scalable search and encour-
ages wider use of these techniques, which match so well with modern multi-core commodity
hardware.

2. External Memory Search

Delayed Duplicate Detection (DDD, Korf, 2003) is a simple way to make use of external
storage that places newly generated nodes in external memory and then processes them
at a later time. The original description of DDD, also referred to as sorting-based DDD
(SBDDD), divides the search process into two phases, an expand phase and a merge phase.
The expand phase writes newly generated nodes directly to a file on disk. The merge
phase performs a disk-based sort on the file so that duplicate nodes are brought together.
Duplicate merging is accomplished by performing a linear scan of the sorted file, writing
only unique nodes to a new file. This newly merged file becomes the search frontier for
the next expand phase. The search continues, interleaving expand and merge phases, until
a goal node is expanded. Files can in theory be made arbitrarily small and only one file
needs to be kept in memory at a time. Unfortunately, the time complexity of this technique
is O(n log n) where n is the total number of nodes encountered during search. For large
problems, this technique incurs more overhead than is desirable.

Structured Duplicate Detection (SDD, Zhou & Hansen, 2004) is an alternative to DDD
that exploits connectivity in the state space to avoid writing duplicates to disk. SDD
uses a projection function to localize memory references and performs duplicate merging
immediately in main memory. Unlike DDD, SDD does not store duplicate states to disk
and requires less external storage. However, this efficiency comes at the cost of increased
time complexity, as SDD can read and write the same states to disk multiple times during
duplicate processing (Zhou & Hansen, 2009). The benefits of SDD are limited to the amount
of main memory available on a single machine and it is not obvious how to deploy SDD in
a distributed setting. In this paper we focus on DDD because it is simple to implement and
has been shown to easily scale beyond a single machine.

External A* (Edelkamp, Jabbar, & Schrdl, 2004) combines A* with a variant of SBDDD
whereby nodes with the same g and h values are grouped together in a bucket which maps to
a file on external storage. The search proceeds by iteratively expanding layers of buckets for
which the g and h values sum to the minimum f value among the search frontier. Delayed
duplicate detection is performed by appending nodes to their respective buckets and later
sorting and scanning each bucket to eliminate duplicate nodes. In External A*, the g and h
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buckets must be expanded in lowest-g-value-first order which is equivalent to the A* search
order with worst-case tie breaking and can therefore result in many more node expansions
than a regular A* search. Moreover, because of the way buckets are organized according to
two values, it is not obvious how to dynamically relax the best-first search order.

To avoid the overhead of disk-based sorting, Korf (2004) presents an efficient form of
DDD called Hash-Based Delayed Duplicate Detection (HBDDD). HBDDD uses two hash
functions, one to assign nodes to buckets (which map to files on disk) and a second hash
function to identify duplicate states within a bucket. Because duplicate nodes will hash to
the same value, they will always be assigned to the same file. When removing duplicate
nodes, only those nodes in the same file need to be in main memory. This technique
increases the minimum memory requirements over SBDDD, requiring that the size of the
largest bucket fit in main memory. However, this is easily achieved by using a hash function
with an appropriate range. HBDDD has been shown to perform better than SBDDD when
a search is limited by time rather than available storage (Korf, 2016).

Korf (2008a) described how HBDDD can be combined with A* search (A*-HBDDD). A*-
HBDDD proceeds in two phases: an expansion phase and a merge phase. In the expansion
phase, all nodes that have an f that is equal to the minimum solution cost estimate fmin of
all open nodes are expanded. Unlike External A*, nodes are not grouped according to their
g and h values so each bucket containing qualifying nodes must be scanned. The expanded
nodes and the newly generated nodes are stored in their respective files. We define recursive
expansion to be an expansion that is performed immediately to a generated node, without
performing any duplicate checking. If a generated node has an f ≤ fmin, then it is recursively
expanded. Once all nodes within fmin are expanded, the merge phase begins: each file is
read into a hash-table in main memory and duplicates are removed in linear time. During
the expand phase, HBDDD requires only enough memory to read and expand a single node
from the open file; successors can be stored to disk immediately. During the merge phase,
it is possible to process a single file at a time to reduce main memory requirements.

HBDDD may also be used as a framework to parallelize search (Korf, 2008a). Because
duplicate states will be located in the same file, the merging of delayed duplicates can be
done in parallel, with each file assigned to a different thread. Expansion may also be done
in parallel. As nodes are generated, they are stored in the file specified by the hash function.
It is possible that two threads might generate nodes that need to be placed in the same
file. Therefore, a lock (often provided by the OS) must be placed around each file so that
a thread can obtain exclusive access to the file while writing. A carefully constructed hash
function, one that bounds the number of buckets than need to be written to when expanding
a node, can help minimize lock contention. See literature on SDD, for example, the work
by Burns, Lemons, Ruml, and Zhou (2010) for discussion on abstraction based hashing and
balance between locality and parallelism. For our experiments we verified that a lock was
provided by examining the source code for the I/O modules. For example, the source code
for the Glibc standard library 2.12.90 does contain such a lock.

Because the main contributions of this paper build on the framework of A*-HBDDD.
We will discuss A*-HBDDD in detail and present empirical results.
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Search(initial)
1. bound ← f (initial); bucket ← hash(initial)
2. write(OpenFile(bucket), initial)
3. while ∃bucket ∈ Buckets : min f (bucket) ≤ bound
4. for each bucket ∈ Buckets : min f (bucket) ≤ bound
5. ThreadExpand(bucket)
6. if incumbent break
7. for each bucket ∈ Buckets : NeedsMerge(bucket)
8. ThreadMerge(bucket)
9. bound ← min f (Buckets)

ThreadExpand(bucket)
10. for each state ∈ Read(OpenFile(bucket))
11. if f (state) ≤ bound
12. RecurExpand(state)
13. else append(NextFile(bucket), state)

RecurExpand(n)
14. if IsGoal(n) incumbent ← n; return
15. for each succ ∈ expand(n)
16. if f (succ) ≤ bound
17. RecurExpand(succ)
18. else
19. append(NextFile(hash(succ)), succ)
20. append(ClosedFile(hash(n)),n)

ThreadMerge(bucket)
21. Closed ← read(ClosedFile(bucket)); Open ← ∅
22. for each n ∈ NextFile(bucket)
23. if n /∈ Closed ∪Open or g(n) < g(Closed ∪Open[n])
24. Open ← (Open −Open[n]) ∪ {n}
25. write(OpenFile(bucket), Open)
26. write(ClosedFile(bucket), Closed)

Figure 1: Pseudocode for A*-HBDDD.
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2.1 A*-HBDDD in Detail

To understand the algorithm in more detail, we present pseudocode of A*-HBDDD in
Figure 1. Search nodes are mapped to buckets using a hash function. Each bucket is backed
by a set of three files 2 on disk: 1) a file of frontier nodes that have yet to be expanded, 2) a
file of newly generated nodes (and possibly duplicates) that have yet to be checked against
the closed list and 3) a file of closed nodes that have already been expanded.

A*-HBDDD begins by placing the initial node in its respective bucket based on the
supplied hash function (lines 1–2). The cost bound for the first iteration is set to the f
value of the initial state (line 1). All buckets that contain a state with f less than or equal
to the minimum bound are divided among a pool of threads to be expanded (lines 4–20).
Alternatively, references to these buckets can be stored in a work queue, guarded by a lock.
Free threads would acquire exclusive access to this queue for jobs.

Recall that each bucket is backed by three files: OpenFile, NextFile and ClosedFile.
The OpenFile contains all open nodes for a bucket. The set of OpenFiles among all buckets
collectively represent the open list for the search. When processing an expansion job for a
given bucket, a thread proceeds by expanding all of the frontier nodes with f values that
are within the current bound from the OpenFile of the bucket (lines 10–13). Nodes that
are chosen for expansion are appended to the ClosedFile for the current bucket (line 20).
The set of ClosedFiles among all buckets collectively represent the closed list for the search.
Nodes that were not chosen for expansion and successor nodes that exceed the bound are
appended to the NextFile for the current bucket (lines 13 & 19). The set of NextFiles
collectively represent the search frontier and require duplicate detection in the following
merge phase. Finally, if a successor is generated with an f value that is within the current
bound then it is expanded immediately as a recursive expansion (lines 12 & 17). To improve
efficiency, individual states are not written to disk immediately upon generation. Instead
each bucket has an internal buffer to hold states. When the buffer becomes full, the states
are written to disk.

If an expansion thread generates a goal state (line 15) within the bound (lines 16 and
11), a reference to the incumbent solution is updated (line 14) and (assuming the heuristic is
admissible) the search terminates (line 6). If the heuristic is admissible, then the incumbent
is admissible because of the strict best-first search order on f . Solution recovery is performed
by walking backward from the goal state using an inversion operator to generate each parent
state along the path to the initial state. This requires storing an inversion operator for each
node. Each parent state generated during this solution recovery process needs to be mapped
and loaded from its respective bucket. If a solution has not been found, then all buckets
that require merging are divided among a pool of threads to be merged in the next phase
(lines 7–8).

In order to process a merge job, each thread begins by reading the ClosedFile for its
bucket into a hash-table (line 21) called Closed . A*-HBDDD requires enough internal
memory to store all closed nodes and unique nodes on the frontier in all buckets currently
being merged by active threads. The size of a bucket can be easily tuned by varying the
granularity of the hash function. Next, all frontier nodes in the NextFile are streamed
in and checked for duplicates against the closed list (lines 22–26). The nodes that are not

2. With the exception of the init file our files roughly correspond to those described by Korf (2008b)
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duplicates or that have been reached via a better path and therefore have a lower g value are
written back out to OpenFile so that they remain on the frontier for latter phases of search
(lines 23–25). The hash-table is updated to contain these nodes as well. All other duplicate
nodes are ignored. Finally, the open and closed nodes are flushed to disk (lines 25 and 26).

To save external storage, Korf (2008a) suggests that instead of proceeding in two phases,
merge jobs may be interleaved with expansion jobs. With this optimization, a bucket may
be merged if all of the buckets that contain its predecessor nodes have been expanded.
An undocumented ramification of this optimization for HBDDD, however, is that it does
not permit recursive expansions. Because of recursive expansions, one cannot determine
the predecessor buckets and therefore all buckets must be expanded before merges can
begin. Our variant of A*-HBDDD implements recursive expansions and therefore it does
not interleave expansions and merges. One technique for detecting when predecessor nodes
have been expanded is Structured Duplicate Detection (SDD, Zhou & Hansen, 2004). SDD
is an alternative to DDD that exploits connectivity in the state space to avoid writing
duplicates to disk.

2.2 Empirical Results

We evaluated the performance of A*-HBDDD on the sliding-tile puzzle. We compared A*-
HBDDD with highly optimized implementations of internal A*, IDA* and Asynchronous
Parallel IDA* (AIDA*, Reinefeld & Schnecke, 1994). AIDA* is a parallel version of IDA*
that works by performing a breadth-first search to some specified depth and the resulting
frontier is then divided evenly among all available threads. Threads perform an IDA*
search in parallel for each node in its queue. The upper bounds for all IDA* searches are
synchronized across all threads so that a strict best-first search order is achieved given an
admissible and consistent heuristic. AIDA* can be seen as a parallel approximation to
Simplified Memory-Bounded A* (SMA*, Russell, 1992) with large f layers.

To verify that we had efficient implementations of these algorithms, we compared our
implementations (in Java) to highly optimized versions of A* and IDA* written in C++
(Burns et al., 2012). The Java implementations use many of the same optimizations. In
addition we use the High Performance Primitive Collection (HPPC) in place of the Java
Collections Framework (JCF) for many of our data structures. This improves both the time
and memory performance of our implementations (Hatem, Burns, & Ruml, 2013).

We also compared A*-HBDDD to an alternative external algorithm, breadth-first heuris-
tic search (BFHS, Zhou & Hansen, 2006) with delayed duplicate detection (BFHS-DDD).
BFHS attempts to reduce the memory requirement of search, in part by removing the need
for a closed list. BFHS proceeds in a breadth-first ordering by expanding all nodes within
a given upper bound on f at one depth before proceeding to the next depth. To prevent
duplicated search effort Zhou and Hansen (2006) use a strategy first introduced by Korf
(1999), which guarantees that, in an undirected graph, checking for duplicates against the
previous depth layer and the frontier is sufficient to prevent the search from leaking back
into previously visited portions of the space. While BFHS is able to do away with the
closed list, for many problems it will still require a significant amount of memory to store
the exponentially growing search frontier. This motivates combining BFHS with HBDDD.
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Machine Threads Time Expanded Nodes/Sec

A* (Java) A 1 925 1,557,459,344 1,683,739

A* (C++) A 1 516 1,557,459,344 3,018,332

IDA* (Java) B 1 1,104 18,433,671,328 16,697,166

IDA* (C++) B 1 634 18,433,671,328 29,075,191

AIDA* (Java) B 24 222 14,994,333,240 67,542,041

BFHS-DDD (Java) B 24 3,355 10,978,208,032 3,272,193

A*-HBDDD (Java) B 24 1,014 3,492,457,298 3,444,237

A*-HBDDDtt (Java) B 24 433 1,489,553,397 3,440,077

Table 1: Performance summary on the 100 random 15-puzzle instances from (Korf, 1985).
Times reported in wall clock seconds for solving all instances.

Like IDA*, BFHS uses an upper bound on f values to prune nodes. If a bound is
not available in advance, iterative deepening can be used. However, since BFHS does not
store a closed list, the full path to each node from the root is not maintained and it must
use divide-and-conquer solution reconstruction (Korf, Zhang, Thayer, & Hohwald, 2005) to
rebuild the solution path. Our implementation of BFHS-DDD does not perform solution
reconstruction and therefore the results presented give a lower bound on its actual solving
times.

The 15-puzzle is a standard search benchmark. We used the 100 instances from Korf
(1985) and the Manhattan distance heuristic. For the algorithms using HBDDD, we selected
a hash function that maps states to buckets by ignoring all except the position of the blank,
one and two tiles. This hash function results in 3,360 buckets and the number of buckets that
need to be considered for writing newly generated nodes when expanding a node is bound
by the maximum number of actions applicable in any given state. A random hash function
would probably provide even better load balancing among files. We use the minimum f
value of any generated node greater than the current bound to update the cost bounds for
both A*-HBDDD and BFHS-DDD.

The first set of rows in Table 1 summarizes the performance of internal A*, IDA* and
AIDA*. The results for A* were generated on Machine-A, a dual quad-core (8 cores)
machine with Intel Xeon X5550 2.66 GHz processors and 48 GB RAM. A* needs roughly
30 GB of RAM to solve all 100 instances. All other results were generated on Machine-B, a
dual hexa-core machine (12 cores) with Xeon X5660 2.80 GHz processors, 12 GB of RAM
and 12 320 GB disks. In-memory A* is not able to solve all 100 instances on this machine
due to memory constraints. Our version of AIDA* used 24 threads and generated a frontier
of 24,000 nodes, using an A* search, to seed the parallel phase of the search. From these
results, we see that the Java implementation of A* is just a factor of 1.7 slower than the
most optimized C++ implementation known. These results provide confidence that our
comparisons reflect the true ability of the algorithms rather than misleading aspects of
implementation details.
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The second set of rows in Table 1 shows a summary of the performance results for
A*-HBDDD compared to in-memory search. We used 24 threads and the states generated
by the external algorithms were distributed across all 12 disks. A*-HBDDD outperforms
BFHS-DDD because it expands fewer nodes. We discuss this in more detail in section 3.
The results show that the base Java implementation of A*-HBDDD is just 1.7× slower
than the C++ implementation of IDA* but slightly faster than the Java implementation.
Note that A*-HBDDD expanded almost 3.5 billion nodes while A* expanded fewer than
1.6 billion. We believe this is due to duplicate states generated during recursive expansion,
when the closed list is not consulted. We can improve the performance of A*-HBDDD
by exploiting available RAM with the simple technique of using transposition tables to
avoid expanding duplicate states during recursive expansions (A*-HBDDDtt). With this
improvement, A*-HBDDD is 1.4× faster than the highly optimized C++ IDA* solver and
2.5× faster than the optimized Java IDA* solver. A*-HBDDDtt is within a factor of two of
a highly optimized implementation of parallel AIDA*, which cannot cope with state spaces
with many duplicate nodes. Moreover, it is possible for AIDA* to expand more nodes than
serial IDA* since it can expand parts of the tree that would not be reached by serial IDA* if
serial IDA* finds a solution early, or it can expand fewer nodes than serial IDA* if the first
solution that serial IDA* would find comes late in the search. AIDA* is able to outperform
A*-HBDDD and A*-HBDDDtt even when it expands 5 to 10 times as many nodes because
node expansion in the sliding-tiles domain is cheap. For many practical problems node
expansion is much more expensive, and A*-HBDDD and A*-HBDDDtt may outperform
AIDA*. While A*-HBDDDtt running on 12 cores (last line of table) has only 2x speed up
over serial A* running on 1 core (first line of table), note that it is an external algorithm
that trades slow access to disk for the ability to solve problems beyond the confines of
RAM. Given that disk is millions of times slower than RAM, it is exciting to see that
external-memory search can be faster than internal-memory search.

While these results show that A*-HBDDD performs well compared to IDA* on problems
like the sliding-tile puzzle, the strictly best-first layered search does not work well for other
domains, preventing it from serving as a general-purpose search method for large problems.
In the next two sections we discuss two important limitations of A*-HBDDD that motivate
the main contributions of this paper.

3. External Memory Search With Non-Uniform Edge Costs

A*-HBDDD achieves sequential I/O behavior by dividing the search into f layers. Each
layer refers to nodes with the same lower bound on solution cost f . At each iteration
of search, nodes are read sequentially from external memory and expanded only if their
f value is within the current lower bound on solution cost. Many real-world problems
have real-valued costs, giving rise to a large number of f layers with few nodes in each,
substantially eroding performance. A*-HBDDD reads all open nodes from files on disk and
expands only the nodes within the current f bound. If there is only a small number of
nodes in each f layer, the algorithm pays the cost of reading the entire frontier only to
expand a few nodes. Then in the merge phase, the entire closed list is read only to merge
the same few nodes. Additionally, when there are many distinct f values, the successors
of each node tend to exceed the current f bound, resulting in fewer I/O-efficient recursive
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expansions. Korf (2004) speculated that the problem of many distinct f values could be
remedied by somehow expanding more nodes than just those with the minimum f value.
In this section we present an algorithm, Parallel External Dynamic A* Layering (PEDAL)
that does exactly this. PEDAL improves on A*-HBDDD by relaxing the strictly best-
first ordering of the search in order to perform a constant number of expansions per I/O
operation.

We begin by reviewing previous work in section 3.1. In section 3.2 we describe PEDAL
in more detail and prove that it is I/O efficient. In an empirical evaluation in section 3.3,
we compare PEDAL to IDA*, IDA*CR (Sarkar, Chakrabarti, Ghose, & Sarkar, 1991), A*-
HBDDD and BFHS-DDD using a variant of the sliding-tile puzzle with non-unit edge costs
and a more realistic dockyard planning domain. The results show that PEDAL gives the
best performance on the sliding-tile puzzle and is the only practical approach for the real-
valued problems among the algorithms tested in our experiments. PEDAL demonstrates
that relaxed best-first heuristic search can be effective for large problems with arbitrary
costs.

3.1 Previous Work

In this section, we present relevant previous work that PEDAL builds on, as well as alter-
native techniques. IDA* and BFHS were introduced in a previous section but we include
descriptions here with further details.

3.1.1 Iterative Deepening A*

Iterative-deepening A* (IDA*, Korf, 1985) is an internal memory technique that requires
memory only linear in the maximum depth of the search. This reduced memory complexity
comes at the cost of repeated search effort. IDA* performs iterations of a bounded depth-
first search where a path is pruned if f(n) becomes greater than the bound for the current
iteration. After each unsuccessful iteration, the bound is increased to the minimum f value
among the nodes that were generated but not expanded in the previous iteration.

Each iteration of IDA* expands a super-set of the nodes in the previous iteration. If the
number of nodes expanded in each iteration grows geometrically, then the total number of
nodes expanded by IDA* is O(n), where n is the number of nodes that A* would expand
(Sarkar et al., 1991). In domains with real-valued edge costs, there can be many unique f
values and the standard minimum-out-of-bound bound layering of IDA* may lead to only
a few new nodes being expanded in each iteration. Because of this, the number of nodes
expanded by IDA* can be O(n2) (Sarkar et al., 1991) in the worst case when the number
of new nodes expanded in each iteration is constant. To alleviate this problem, Sarkar
et al. introduce IDA*CR. IDA*CR tracks the distribution of f values of pruned nodes (the
nodes that were generated but not expanded during an iteration of search). This distribution
used to find a good threshold for the next iteration. This is achieved by selecting the bound
that will cause the desired number of pruned nodes to be expanded in the next iteration.
To guarantee efficiency, the desired number must follow a geometric progression (at least
doubling). If the successors of these pruned nodes are not expanded in the next iteration
then this scheme is often able to accurately double the number of nodes between iterations.
If the successors do fall within the bound on the next iteration then more nodes may be
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expanded than desired. Since the threshold is increased liberally, nodes are not expanded
in a strict best-first order. Therefore, branch-and-bound must be used on the final iteration
of search to ensure optimality. In branch-and-bound, we continue the search after finding a
solution until all nodes whose lower bounds are less than the incumbent solution cost have
been expanded, ensuring that the solution is optimal. Any nodes whose lower bound is
equal or greater than the incumbents cost can be pruned, as they cannot lead to a better
solution. IDA*CR is effective for problems that exhibit a wide range of f values but may
still achieve poor performance for domains where the branching does not allow for doubling
the number of expanded nodes for each iteration.

IDA* and IDA*CR suffer from an additional source of node regeneration overhead on
search spaces that form highly connected graphs. Because they use depth-first search, they
cannot detect duplicate search states except those that form cycles in the current search
path. Even with cycle checking, the search will perform extremely poorly if there are many
paths to each node in the search space. This motivates the use of a closed list in classic
algorithms like A*.

3.1.2 Breadth-First Heuristic Search

In this section we provide more details for BFHS, introduced in section 2.2. BFHS attempts
to reduce the memory requirement of search by removing the need for a closed list. BFHS
proceeds in a breadth-first ordering by expanding all nodes within a given upper bound on
f at one depth before proceeding to the next depth. If a bound is not available in advance,
iterative deepening can be used, however, as discussed earlier, iterative-deepening fails on
domains with many distinct f values. To provide a suitable comparison to PEDAL, we
propose a novel variant of BFHS that uses the same technique of IDA*CR for updating
the upper bound at each iteration of search. One side effect of the breadth-first search
order is that BFHS is not able to break ties among nodes with the same f value. A* with
optimal tie-breaking (expanding nodes with highest g first) expands nodes with higher g
values first (deeper nodes first in domains with uniform edge costs). BFHS needs to expand
all nodes n with f(n) ≤ C∗ at all depth-layers prior to the depth layer that contains the
goal. The search order of BFHS is equivalent to the search order of A* with worst-case tie
breaking (expanding nodes with lower g first) and can expand up to twice as many unique
nodes as A* with optimal tie breaking. When combined with iterative deepening, BFHS
can expand up to four times as many nodes as A* (Zhou & Hansen, 2006). Furthermore,
when combined with the bound setting technique of IDA*CR, it can expand many nodes
with f values greater than the optimal solution cost which are not strictly necessary for
optimal search. BFHS is not able to benefit substantially from branch-and-bound in the
final iteration because goal states are generated in the deepest layers of the search and it
must expand all nodes within the final inflated upper bound whose depths are less than the
goal depth.

3.2 Parallel External Dynamic A* Layering

A*-HBDDD suffers from excessive I/O overhead when there are a small number of nodes in
each f layer. PEDAL solves this problem by relaxing the best-first search order, allowing it
to solve problems with arbitrary f cost distributions. PEDAL can be seen as a combination
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Search(initial)
27. bound ← f (initial); bucket ← hash(initial)
28. write(OpenFile(bucket), initial)
29. while ∃bucket ∈ Buckets : min f (bucket) ≤ bound
30. for each bucket ∈ Buckets : min f (bucket) ≤ bound
31. ThreadExpand(bucket)
32. if incumbent break
33. for each bucket ∈ Buckets : NeedsMerge(bucket)
34. ThreadMerge(bucket)
35. bound ← NextBound(f dist)

ThreadMerge(bucket)
36. Closed ← read(ClosedFile(bucket)); Open ← ∅
37. for each n ∈ NextFile(bucket)
38. if n /∈ Closed ∪Open or g(n) < g(Closed ∪Open[n])
39. Open ← (Open −Open[n]) ∪ {n}
40. f distribution add(f dist , f (n))
41. write(OpenFile(bucket), Open)
42. write(ClosedFile(bucket), Closed)

Figure 2: Pseudocode for PEDAL.

of A*-HBDDD and an estimation technique inspired by IDA*CR to dynamically layer the
search space.

Like HBDDD-A*, PEDAL proceeds in two phases: an expansion phase and a merge
phase. However, during the merge phase, it tracks the distribution of the f values of the
frontier nodes that were determined not to be duplicates. As we explain in detail below,
this distribution is used to select the f bound for the next expansion phase that will give
a constant number of expansions per node I/O. The pseudo-code for PEDAL, given in
Figure 2, is adapted from the pseudo-code for A*-HBDDD given in Figure 1. The main
difference is at lines 35 and 40 where PEDAL records the f value of all nodes that are
added to the frontier and uses this distribution to select the next bound for the following
expansion phase. Another critical difference is that, since PEDAL relaxes the best-first
search order, it must perform branch-and-bound after an incumbent solution is found.

3.2.1 Overhead

PEDAL maintains a layering such that the number of nodes expanded in each layer is at
least a constant fraction of the amount of I/O (the number of nodes read and written to
external memory) at each iteration. It keeps a histogram of f values for all nodes on the
open list and a count of the total number of nodes on the closed list. The cost bound for
each layer is selected so that a constant fraction of the sum of nodes on the open and closed
lists will be expanded. We found a value of 1/2 worked well in practice for the domains
tested. Unlike IDA*CR which only provides a heuristic for the desired doubling behavior,
the technique used by PEDAL is guaranteed to give only bounded I/O overhead. That is,

244



Solving Large Problems with Heuristic Search

Closed List = 300 Open List = 500

Expanded Nodes = 400

f  distribution   

Figure 3: PEDAL keeps a histogram of f values on the open list and uses it to update the
threshold to allow for a constant fraction of the number of nodes on open and
closed to be expanded in each iteration.

the number of nodes expanded is at least a constant fraction of the number of nodes read
from and written to disk. We assume a constant branching factor b and that the number
of frontier nodes remaining after duplicate detection is always large enough to expand the
desired number of nodes. We begin with a few useful lemmata. Let o be the number of
nodes on the open list, c be the number of nodes on the closed list, e be the number of
nodes expanded in an iteration and r be the number of recursively expanded nodes in an
iteration.

Lemma 1 The number of I/O operations during the expand phase is at most 2o+eb+rb+r.

Proof: During the expand phase we read o open nodes from disk. We write at most eb
nodes plus the remaining o − e nodes, that were not expanded, to disk. We also write at
most rb recursively generated nodes and e + r expanded nodes to disk. �

Lemma 2 The number of I/O operations during the subsequent merge phase is at most
c + e + 2(r + eb + rb).

Proof: During the merge phase we read at most c + e + r nodes from disk and eb + rb
newly generated nodes from disk. We write at most r recursively expanded nodes to the
closed list and eb + rb new nodes to the open list. �

Lemma 3 The total number of I/O operations is at most 2o + c + e(3b + 1) + r(3b + 3).

Proof: From Lemma 1, Lemma 2 and

total I /O

= expanded I /O + merged I /O

= (2o + eb + rb + r) + (c + e + 2(r + eb + rb))

= (2o + eb + rb + r) + (c + e + 2r + 2eb + 2rb))

= 2o + c + (3eb + e) + (3rb + 3r)

= 2o + c + e(3b + 1) + r(3b + 3)

�
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Threads Time Expanded Nodes/Sec

IDA*CR 1 14,009 80,219,537,668 5,726,285

AIDA*CR 24 1,052 48,744,622,573 46,335,192

BFHS-DDD 24 3,147 7,532,248,808 2,393,469

PEDAL 24 1,066 6,585,305,718 6,177,585

Table 2: Performance summary for 15-puzzle with square root costs. Times reported in
seconds for solving all instances.

Theorem 1 If the number of nodes expanded e is chosen to be k(o + c) for some constant
0 < k ≤ 1, and there is a sufficient number of frontier nodes, o ≥ e, then the number of
nodes expanded is bounded from below by a constant fraction of the total number of I/O
operations for some constant q.

Proof:

total I /O

= e(3b + 1) + r(3b + 3) + 2o + c by Lemma 3

< e(3b + 3) + r(3b + 3) + 2o + c

= ze + zr + 2o + c for z = (3b + 3)

= zko + zkc + zr + 2o + c for e = ko + kc

= o(zk + 2) + c(zk + 1) + zr

< o(zk + 2) + c(zk + 2) + zr

< qko + qkc + qr for q ≥ (zk + 2)/k

= q(ko + kc + r)

= q(e + r) because e = k(o + c)

= q · total expanded

Because q ≥ (zk + 2)/k = (3b + 3) + 2/k is constant, the theorem holds. �

3.3 Empirical Evaluation

We evaluated the performance of PEDAL on two domains with a wide range of edge costs:
the square root sliding-tile puzzle and a dockyard robot planning domain. For these exper-
iments, we implemented a novel variant of BFHS-DDD that uses the IDA*CR technique for
setting the upper bound at each iteration. As in the previous experiments, our implemen-
tation of BFHS-DDD does not perform solution reconstruction and therefore the results
presented give a lower bound on its actual solution times. All algorithms were written in
Java as described in section 2.2 and were run on Machine-B.

3.3.1 The Square Root 15-Puzzle

The classic sliding-tile puzzle lacks an important feature that many real-world applications
of heuristic search have: real-valued costs. In order to evaluate PEDAL on a domain with
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Figure 4: Comparison between PEDAL, IDA*CR, AIDA*CR, and BFHS-DDD. The axes
show log10 CPU time.

real-valued costs that is simple, reproducible and has well understood connectivity, we use a
variant of the puzzle proposed by Hatem et al. (2011), in which each move costs the square
root of the number on the tile being moved. This gives rise to many distinct f values.

The plots in Figure 4 show a comparison between PEDAL, IDA*CR, AIDA*CRand BFHS-
DDD on the square root version of the 100 tiles instances used by Korf (1985). The x
axes show log10 CPU time in seconds: points below the diagonal y = x line represent
instances where PEDAL solved the problems faster than the respective algorithm. The first
square root tiles plot shows a comparison between PEDAL and IDA*CR. We can see from
this plot that IDA*CR solved the easier instances faster because it does not have to go to
disk, however PEDAL greatly outperformed IDA*CR on the more difficult problems. The
advantage of PEDAL over IDA*CR grew quickly as the problems required more time. The
center plot shows a comparison between PEDAL and AIDA*CR and Table 2 includes results
for AIDA*CR. The node expansion rate of AIDA*CR is nearly 7.5 times that of PEDAL but
has roughly the same solving time because it cannot detect duplicates. Both algorithms
achieve a speedup of approximately 13x when run on this 24-core machine.

The square root tiles plot on the left compares PEDAL to BFHS-DDD. PEDAL was
much faster on easier instances and gave consistently superior performance throughout the
range of problem difficulties. As discussed above, the search order of BFHS is equivalent
to A* with worst-case tie breaking and when combined with iterative deepening, it can
expand up to four times as many nodes as A* (Zhou & Hansen, 2006). Moreover, since
BFHS-DDD and PEDAL use a loose upper bound, they can expand many nodes with f
values greater than the optimal solution cost which are not strictly necessary for optimal
search. However, unlike PEDAL, BFHS is not able to effectively perform branch-and-bound
in the final iteration and must expand all nodes within the final inflated upper bound that
are shallower than the goal.
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Dockyard Robot
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Time Expanded Nodes/Sec

BFHS-DDD 4,993 4,695,394,966 940,395

PEDAL 1,765 1,983,155,888 1,123,601

Table 3: Performance summary for Dockyard Robot. Times reported in seconds for solving
all instances using 12 cores and 24 threads. The axes show log10 CPU time.

3.3.2 Dockyard Robot Planning

The sliding-tile puzzle does not have many duplicate states and it is, for some, perhaps
not a practically compelling domain. We implemented a planning domain inspired by the
dockyard robot example used throughout the textbook by Ghallab, Nau, and Traverso
(2004). In the dockyard robot domain, which is NP-hard, containers must be moved from
their initial locations to their desired destinations via a robot that can carry only a single
container at a time. The containers at each location form a stack from which the robot can
only access the top container by using a crane that resides at the given location. Accessing
a container that is not at the top of a stack therefore requires moving the upper container
to a stack at a different location. The available actions are: load a container from a crane
into the robot, unload a container from the robot into a crane, take the top container from
the pile using a crane, put the container in the crane onto the top of a pile and move the
robot between locations. There is a connection between all locations.

The load and unload actions have a constant cost of 0.01, accessing a pile with a crane
costs 0.05 times the height of the pile plus 1 (to ensure non-zero-cost actions) and movement

248



Solving Large Problems with Heuristic Search

between locations costs the distance between locations. For these experiments, the location
graph was created by placing random points on a unit square. The length of each edge
was the Euclidean distance between the locations. Every location is connected to all other
locations - the location graph is fully connected. All connections are undirected. The
heuristic lower bound sums the distance of each container’s current location from its goal
location. We conducted these experiments on a configuration with 5 locations, cranes, and
piles and 8 containers. We used a total of 50 instances and selected a hash function that
maps states to buckets by ignoring all except the position of the robot and three containers.
We used IEEE double-precision floating point to represent all costs.

The search space for dockyard robot planning forms a highly connected graph, and thus
there are many ways to reach the same state. For example moving the robot from location A
to B to C then back to A forms a cycle of length 3. Search algorithms that cannot remember
duplicates will perform extremely poorly. Such is the case for IDA*CR, which failed to solve
any instance within the time limit so we do not show results for it (in the sliding-tiles
puzzle domain where IDA*CRis merely slow rather than failing catastrophically the shortest
cycles are of length 12). PEDAL and BFHS-DDD were able to solve all instances. Table 3
shows a performance comparison between PEDAL and BFHS-DDD. Again, points below the
diagonal represent instances where PEDAL had the faster solution time. We can see from
the plot that all of the points lie below the y = x line and therefore PEDAL outperformed
BFHS-DDD on every instance.

These results provide evidence to suggest that a relaxed best-first search order is compet-
itive in an external memory setting. It significantly reduces the number of nodes generated
which corresponds to many fewer expensive I/O operations. BFHS uses a breadth-first
search strategy to reduce the space complexity by removing the closed list. However, the
performance bottleneck for the search problems examined in this section is the rapidly
growing search frontier, not the closed list. Thus, the breadth-first search order of BFHS
provides no advantage. In the next section, we show how PEDAL can be extended to out-
perform alternative approaches for large problems that have large branching factors and
thus achieve a new state-of-the-art for the problem of Multiple Sequence Alignment.

4. External Memory Search With Large Branching Factors

The branching factor for the sliding-tile puzzle is relatively small since there are few actions
that can be taken from any state. Each time a node is expanded, the search generates at
most 3 new nodes if the parent of a node is not generated as one of its children. In some
domains there can be many possible actions to take at every state, resulting in a rapidly
increasing search frontier. For domains with practical relevance, these actions can take on
a wide range of costs and many of the new nodes that are generated are never expanded by
the search because their costs exceed the cost of an optimal solution. For external memory
search, this results in a lot of wasted I/O overhead as these nodes that are never expanded
are read from and written to disk at each iteration of the search.

One real-world application of heuristic search with practical relevance (Korf, 2012) is
Multiple Sequence Alignment (MSA). MSA can be formulated as a shortest path problem
where each sequence represents one dimension in a multi-dimensional lattice and a solution
is a least-cost path through the lattice. To achieve biologically plausible alignments, great
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care must be taken in selecting the most relevant cost function. The scoring of gaps is
of particular importance. Altschul (1989) recommends affine gap costs, described in more
detail below, which increase the size of the state space by a factor of 2k for k sequences.
Whereas the dockyard problem has a fixed set of actions, MSA has a large branching factor
of 2k − 1, a value which increases rapidly as the number of sequences to be aligned grows.
This means that the performance bottleneck for MSA is the memory required to store the
frontier of the search.

Although dynamic programming is the classic technique for solving MSA (Needleman &
Wunsch, 1970), heuristic search algorithms can achieve better performance than dynamic
programming by pruning much of the search space, computing alignments faster and using
less memory (Ikeda & Imai, 1999). Unfortunately, for challenging MSA problems, the
memory required to store the open list makes A* impractical. Yoshizumi, Miura, and
Ishida (2000) present a variant of A* called Partial Expansion A* (PEA*) that reduces
the memory needed to store the open list by storing only the successor nodes that appear
most promising. This technique can significantly reduce the size of the open list. However,
like A*, PEA* is limited by the memory required to store the open and closed list and for
challenging alignment problems PEA* can still exhaust memory.

One previously proposed alternative to PEA* is Iterative Deepening Dynamic Program-
ming (IDDP, Schroedl, 2005), a form of bounded dynamic programming that relies on an
uninformed search order to reduce the maximum number of nodes that need to be stored
during search. The memory savings of IDDP comes at the cost of repeated search effort and
divide-and-conquer solution reconstruction. IDDP forgoes a best-first search order and, as
a result, it is possible for IDDP to visit many more nodes than a version of A* with optimal
tie-breaking. Moreover, because of the wide range of edge costs found in the MSA domain,
IDDP must rely on the bound setting technique of IDA*CR (Sarkar et al., 1991). With this
technique, it is possible for IDDP to visit four times as many nodes as A* (Schroedl, 2005).
And, even though IDDP reduces the size of the frontier, it is still limited by the amount of
memory required to store the open nodes. For large MSA problems, this can exhaust main
memory.

Rather than suffer the overhead of an uninformed search order and divide-and-conquer
solution reconstruction, we propose solving large MSA problems by using external memory
search. In this section we present an extension of PEDAL, called Parallel External Partial
Expansion A* (PE2A*), that combines the external memory search of PEDAL with the
best-first partial expansion technique of PEA*. We compare PE2A* with in-memory A*,
PEA* and IDDP for solving challenging instances of MSA. As in the previous section, the
results show that parallel external memory best-first search can outperform serial in-memory
search and is capable of solving large problems that cannot fit in main memory. Contrary to
the assumptions of previous work, we find that storing the open list is much more expensive
than storing the closed list. We also demonstrate that PE2A* is capable of solving, for the
first time, the entire Reference Set 1 of the BAliBASE benchmark for MSA (Thompson,
Plewniak, & Poch, 1999) using a biologically plausible cost function that incorporates affine
gap costs. And just as with PEDAL, PE2A* shows that a relaxed external best-first search
can effectively use heuristic information to surpass methods that rely on uninformed search
orders.
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Figure 5: Optimal sequence alignment using a lattice and scoring matrix.

4.1 Multiple Sequence Alignment

We first discuss the MSA problem in more detail, including computing heuristic estimates.
Then we review the most popular applicable heuristic search algorithms.

4.1.1 MSA as a Shortest Path Problem

DNA sequences are composed of just four nucleotides. A sequence of three nucleotides
form a triplet codon. Protein sequences are composed of a sequence of amino acids, each
of which are coded by one or more codons but the alignment techniques we discuss in this
paper make no distinction. We use nucleotide sequences in our figures and examples for
simplicity. The sequences used in our experiments are protein sequences.

In bioinformatics, alignments are computed in order to identify the most similar regions
between two or more sequences of DNA. An alignment also represents the most likely set
of changes necessary to transform one sequence into the other. One way to compute an
alignment is to find an optimal placement of gaps in each of the sequences that maximizes
the size of overlapping regions.

In the case of aligning two sequences, an optimal (most plausible) pair–wise alignment
can be represented by a shortest path between the two corners of a two-dimensional lattice
where columns and rows correspond to the sequences being aligned. An example is given
in Figure 5. A move vertically in the lattice represents the insertion of a gap in the se-
quence that runs along the horizontal axis of the lattice. A move horizontally represents
the insertion of a gap in the vertical sequence. Biologically speaking, a gap represents a
mutation whereby one nucleotide has either been inserted or deleted; commonly referred
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to as an indel. A diagonal move represents either a conservation or mutation whereby one
nucleotide has either been conserved or substituted for another.

In a shortest-path formulation, the indels and substitutions have associated costs; rep-
resented by weighted edges in the lattice. A solution is a least-cost path through the lattice.
The cost of a path is computed by summing all indel and substitution costs along the path.
The biological plausibility of an alignment depends heavily on the cost function used to
compute it. A popular technique for assigning costs that accurately models the mutations
observed by biologists is with a Dayhoff scoring matrix (Dayhoff, Schwartz, & Orcutt, 1978)
that contains a score for all possible amino acid substitutions and gaps. Each value in the
matrix is calculated by observing the differences in closely related proteins. Edge weights
are constructed accordingly. It is straightforward to transform a score matrix into costs for
shortest path solving. Figure 5 shows how the cost of an optimal alignment is computed
using a cost matrix. This technique can be extended to a multiple alignment by taking the
sum of all pair-wise alignments induced by the multiple alignment, also referred to as the
standard some-of-pairs cost function.

The scoring of gaps is particularly important. Altschul (1989) found that assigning a
fixed cost for gaps did not yield the most biologically plausible alignments. Biologically
speaking, a mutation of n consecutive indels is more likely to occur than n separate muta-
tions of a single indel. Altschul et al. construct a simple approximation called affine gap
costs. In this model the cost of a gap is a + b ∗ x where x is the length of a gap and a and
b are some constants. Figure 6 shows an example that incorporates affine gap costs. The
cost of the edge E depends on the preceding edge; one of h, d, v. If the preceding edge is h
then the cost of E is less because the gap is being extended.

A pair-wise alignment is easily computed using dynamic programming (Needleman &
Wunsch, 1970). This method could be extended to multiple alignments (alignments of k
sequences where 2 < k) in the form of a k dimensional lattice. However, for alignments of
higher dimensions, the Nk time and space required render dynamic programming infeasible.
This motivates the use of heuristic search algorithms that are capable of finding an optimal
solution by pruning much of the search space with the help of an admissible heuristic.
While affine gap costs have been shown to improve accuracy, they also increase the size of
the state space. This is because each state is uniquely identified not only by the lattice
coordinates but also by the incoming edge, indicating whether a gap is being extended.
This increases the state space by a factor of 2k for aligning k sequences. Affine gap costs
also make the MSA domain implementation more complex and require more memory for
storing the heuristic.

4.1.2 Admissible Heuristics

To apply heuristic search to the most challenging MSA problems, it is imperative that
we develop good heuristics. Admissible heuristics guarantee that A* will find optimal
solutions. For a heuristic to be admissible it must always provide a lower bound on the
cost to reach the goal from any state. Carrillo and Lipman (1988) show that the cost of
an optimal alignment for k sequences is greater than or equal to the sum of the optimal
alignments of a disjoint partitioning of the k sequences. Partitions are disjoint if any two
sequences do not appear in more than one subset. Therefore, we can construct a lower
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Figure 6: Computing edge costs with affine gaps. The cost of edge E depends on the
incoming edge; one of h, d or v. If the incoming edge is v or d, then E represents
the start of a gap, and incurs a gap start penalty of 8. However, if the incoming
edge is h then E represents the continuation of a gap and incurs no gap start
penalty.

bound on the cost of an optimal alignment of k sequences by partitioning the sequences
into n disjoint subsets, computing an optimal alignment of each subset, and taking the sum
of the n optimal alignments. Partitions with larger subsets yield stronger heuristics. For
example, one possible partitioning of six sequences has a maximum size of two sequences
per subset. A stronger heuristic uses a maximum size of three sequences per partition.
Larger subsets require more memory to compute optimal alignments and thus a feasible
partitioning depends on the amount of memory available.

Using the results above, we can construct a lower bound on the cost to complete a
partial optimal alignment of k sequences by computing the optimal alignments of each
subset in reverse; starting in the lower right corner of the lattice and finding a shortest path
to the upper left corner using dynamic programming. The lattice computed by the reverse
alignment stores the cost of a path from the goal to every coordinate and thus the cost-to-go
from every coordinate to the goal. The forward lattice coordinates of a partial alignment
are then used in all reverse lattices to look up the cost-to-go estimate. Figure 7 shows
how to construct a cost-to-go estimate for aligning 3 sequences. All pairwise alignments
([Seq1, Seq2], [Seq1, Seq3] and [Seq2, Seq3]) are computed using dynamic programming in
reverse order, starting in the bottom right corner and finishing in the top left. The values
computed at each location in the corresponding lattices represent the cost to go from that
location to the bottom right corner. The bottom right corner of Figure 7 shows how the
cost-to-go is computed from the sum of the three reverse alignments (right) for the state in
the lattice that corresponds to the partial alignment (left). A lower bound on the cost-to-go
for completing the partial alignment of all 3 sequences is given by the sum of values in the
corresponding locations in each lattice. Lermen and Reinert (2000) use this technique in a
heuristic function for solving MSA with the classic A* algorithm. This heuristic is referred
to as hall,m.

Higher quality admissible heuristics can be obtained by computing optimal alignments
with larger subsets. Unfortunately the time and space complexity of this technique make it
challenging to compute and store optimal alignments of subsets of size m > 2. Kobayashi
and Imai (1998) show that splitting the k sequences into two subsets and combining the
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Figure 7: Computing cost-to-go by solving the lattice in reverse.

costs for the optimal alignments of the subsets with all disjoint pair-wise alignments between
subsets is admissible. For example, given a set of sequences S we can define two subsets
S1 ⊂ S, S2 ⊂ S such that S1 ∩ S2 = ∅. A lower bound on the cost of an optimal alignment
of all sequences in S can be computed by taking the sum of the optimal alignments for S1,
S2 and all pair-wise alignments for sequences x ∈ S1, y ∈ S2. This heuristic is referred to
as the hone,m heuristic where one refers to the number of splits. The accuracy of the hone,m
heuristic is similar to hall,m but it requires much less time and memory to compute. An
example of the hone,m heuristic for six sequences would compute two 3-fold alignments, one
for each subset, and nine pairwise alignments, one for each pair of sequences that are not
contained in the same subset.

4.1.3 BAliBASE

Randomly generated sequences do not accurately reflect the sequences found in biology
and provide no means of measuring the biological plausibility of the alignments that are
produced. A popular benchmark for MSA algorithms is BAliBASE, a database of multiple
sequence alignment problems specifically designed for the evaluation and comparison of
multiple sequence alignment programs (Thompson et al., 1999). Of particular interest to
our study is a set of instances known as Reference Set 1. Each instance in this set contains
4 to 6 protein sequences that range in length from 58 to 993. The sequences in this set
are challenging for optimal MSA programs because they are highly dissimilar, requiring
that much of the state space be explored to find an optimal alignment. To the best of our
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knowledge, no one has been able to compute optimal alignments for the entire Reference
Set 1 using affine gap costs.

4.2 Previous Work

In this section we discuss previous work.

4.2.1 Iterative-Deepening Dynamic Programming

Iterative Deepening Dynamic-Programming (IDDP, Schroedl, 2005) is an iterative deepen-
ing search that combines dynamic programming with an admissible heuristic for pruning.
IDDP uses a pre-defined search order much like the dynamic programming algorithm by
Needleman and Wunsch (1970). The lattice state space is divided into levels. Levels can
be defined by rows, columns or diagonals (lower-left to upper-right). IDDP proceeds by
expanding nodes one level at a time. To detect duplicates, only the adjacent levels are
needed. All other previously expanded levels may be deleted. This pre-defined expansion
order reduces the amount of memory required to store open nodes: if levels are defined by
antidiagonals then only k levels need to be stored in the open list during search, where k
is the number of sequences being aligned. In this case the maximum size of the open list is
O(kNk−1) for sequences of length N . This is one dimension smaller than the entire space
which is O(Nk).

Because IDDP deletes closed nodes, divide-and-conquer solution reconstruction is re-
quired to recover the solution. As we will see later, deleting closed nodes provides a limited
advantage since the size of the closed list is just a small fraction of the number of nodes
generated during search.

IDDP uses a heuristic function, similar to A*, to prune unpromising nodes and in
practice the size of the open list is much smaller than the worst case. At each iteration
of the search, an upper bound b on the solution cost is estimated and only the nodes with
f ≤ b are expanded. IDDP uses the same bound setting technique of IDA*CR (Sarkar et al.,
1991) to estimate an upper bound that is expected to double the number of nodes expanded
at each iteration.

In order to achieve memory savings, IDDP expands nodes in an uninformed pre-defined
expansion order. In contrast to a best-first expansion order, a node in one level may be
expanded before a node in another level with a lower f . As a result, it is possible for IDDP
to expand many more nodes in the final f layer than A* with optimal tie-breaking. Like
BFHS, the expansion order of IDDP approximates worst-case tie-breaking. The preferred
tie-breaking policy for A* is to break ties by expanding nodes with higher g first. The g of
a goal node is maximal among all nodes with equal f . Therefore, as soon as the goal node
is generated it is placed at the front of its f layer in the open list and search can terminate
on the next expansion from that layer. In contrast, IDDP will expand all non-goal nodes
n with f(n) ≤ C∗ where C∗ is the cost of an optimal solution. This is because in the final
iteration the bound is set to b ≥ C∗ and all nodes n with f(n) ≤ C∗ ≤ b are expanded at
each level. The level containing the goal is always processed last and therefore all non-goal
nodes n with f(n) ≤ C∗ must be expanded first.

The situation is even worse when relying on the bound setting technique of IDA*CR. This
technique estimates each bound in an attempt to double the number of expanded nodes at
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each iteration. Since the search order of IDDP is not best-first, it must visit all nodes in
the final iteration to ensure optimality, which can include many nodes with f > C∗. Even
if perfect doubling is achieved, it is possible for IDDP to visit four times as many nodes as
A* (Schroedl, 2005).

Schroedl (2005) was able to compute optimal alignments for 80 of the 82 instances
in Reference Set 1 of the BAliBASE benchmark using IDDP with a cost function that
incorporated affine gap costs. Edelkamp and Kissmann (2007) extend IDDP to external
memory search using sorting-based DDD but were only able to solve one additional instance,
gal4 which alone required over 182 hours (7.5 days) of solving time.

4.2.2 Partial Expansion A*

When expanding a node, search algorithms typically generate and store all successor nodes,
many of which have an f that is greater than the optimal solution cost. These nodes take
up space on the open list, yet are never expanded. PEA* (Yoshizumi et al., 2000) reduces
the memory needed to store the open list by pruning the successor nodes that do not appear
promising i.e., nodes that are not likely to be expanded. A node appears promising to PEA*
if its f does not exceed the f of its parent node plus some constant C. Partially expanded
nodes are put back on the open list with a new f equal to the minimum f of the successor
nodes that were pruned below it. We designate the updated f values as F (n).

Yoshizumi et al. (2000) show that for MSA, PEA* is able to reduce the memory require-
ment of the classic A* algorithm by up to a factor of 100. The reduced memory comes at
the cost of having to repeatedly expand partially expanded nodes until all of their succes-
sors have been generated. However, these re-expansions can be controlled by adjusting the
constant C. With C = 0, PEA* will only store nodes with f value that is less than or equal
to the cost of an optimal solution but will give the worst case overhead of re-expansions.
With C =∞ PEA* is equivalent to A* and does not re-expand any nodes. Yoshizumi et al.
show that selecting a reasonable value for C can lead to dramatic reductions in the number
of nodes in the open list while only marginally increasing the number of expansions.

PEA* is an effective best-first approach to handling problems with large branching
factors such as MSA. However, it is still limited by the memory required to store open and
closed nodes. This limitation motivates combining it with PEDAL.

4.3 Parallel External Memory PEA*

The second main contribution of this paper is an extension of PEDAL that combines the
partial expansion technique of PEA* with HBDDD to exploit external memory and paral-
lelism with bound estimation for robustness. We call this new algorithm Parallel External
Partial Expansion A* (PE2A*). Like PEDAL, PE2A* maps nodes to buckets using a hash
function and proceeds by iterating two phases: an expansion phase and a merge phase.
PE2A* partially expands the set of frontier nodes n whose updated f values, F (n) fall
within the current upper bound. Partially expanded nodes are written back to the open
list. Successor nodes that exceed the upper bound are generated but immediately discarded.

The pseudo code for PE2A* is given in Figure 8. PE2A* extends PEDAL by modi-
fying the ThreadExpand and RecurExpand functions. An expansion thread proceeds by
expanding all frontier nodes that fall within the current upper bound. Expansion generates
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ThreadExpand(bucket)
43. for each state ∈ Read(OpenFile(bucket))
44. if F (state) ≤ bound
45. RecurExpand(state)
46. else append(NextFile(bucket), state)

RecurExpand(n)
47. if IsGoal(n) incumbent ← n; return
48. SUCCp ← {np |np ∈ succ(n), f (np) ≤ F (n) + C}
49. SUCCq ← {nq |nq ∈ succ(n), f (nq) > F (n) + C}
50. for each succ ∈ SUCCp

51. if f (succ) ≤ bound
52. RecurExpand(succ)
53. else
54. append(NextFile(hash(succ)), succ)
55. if SUCCq = ∅
56. append(ClosedFile(hash(n)),n)
57. else
58. F (n)← min f (nq),nq ∈ SUCCq

59. append(NextFile(hash(n)),n)

Figure 8: Pseudocode for the PE2A* algorithm.

two sets of successor nodes for each expanded node n; nodes with f ≤ F (n) +C and nodes
with f > F (n) + C (lines 48–49). Successor nodes that do not exceed the upper bound are
recursively expanded. Nodes that exceed the upper bound but do not exceed F (n) +C are
appended to files that collectively represent the frontier of the search and require duplicate
detection in the following merge phase. Partially expanded nodes that have no pruned suc-
cessor nodes are appended to files that collectively represent the closed list (lines 55–56).
Partially expanded nodes with pruned successor nodes are updated with a new F and ap-
pended to the frontier (lines 58–59). PE2A* approximates optimal tie-breaking by sorting
buckets before each iteration according to the minimum F of all nodes in each bucket.

4.4 Empirical Evaluation

To determine the effectiveness of this approach, we compared A*, PEA*, IDDP, A*-HBDDD
and PE2A* on the problem of multiple sequence alignment using the PAM 250 Dayhoff sub-
stitution matrix with affine gap costs and alignment problems from the BAliBASE Reference
Set 1 benchmark. All experiments were run on Machine-B, a dual hexa-core machine (12
cores) with Xeon X5660 2.80 GHz processors, 12 GB of RAM and 12 320 GB disks. The
files generated by the external memory search algorithms were distributed uniformly among
all 12 disks to enable parallel I/O. We found that using a number of threads that is equal to
the number of disks gave best performance. We tried a range of values for C from 0 to 500
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Threads Expanded Generated Time

IDDP 1 163,918,426 474,874,541 1,699

A* 1 56,335,259 1,219,120,691 1,054

PEA* 1 96,007,627 242,243,922 1,032

A*-HBDDD 1 90,846,063 1,848,084,799 8,936

PE2A* 1 177,631,618 351,992,993 3,470

A*-HBDDD 12 90,840,029 1,847,931,753 1,187

PE2A* 12 177,616,881 351,961,167 577

Table 4: Results for the 75 easiest instances. Times reported in seconds for solving all 75
instances.

and found that 100 performed best. We found the bound setting technique of PEDAL did
not provide a significant advantage over the standard layering used by A*-HBDDD because
the use of the PAM 250 substitution matrix results in integer edge costs.

One advantage of an uninformed search order is that the open list does not need to be
sorted. IDDP was implemented using an open list that consisted of an array of linked lists.
We found IDDP to be sensitive to the number of bins used to represent the distribution that
is used to estimate the next bound; 500 bins performed well. We stored all closed nodes
in a hash table and to improve time performance did not implement the SparsifyClosed
procedure (a procedure that removes unneeded nodes from the closed list) as described by
Schroedl (2005). Since we did not remove any closed nodes, we did not have to implement
divide-and-conquer solution reconstruction.

We used the pair-wise (hall,2) heuristic to solve 80 of the 82 instances in the BAliBASE
Reference Set 1 benchmark. This was primarily because the memory required to store the
hall,3 heuristic exceeded the amount of memory available. For example, instance 1taq has
a maximum sequence length of 929. To store just one 3-fold alignment we would need
to store a matrix of 9293 different values. Using affine gap costs each cell of the matrix
requires storing 23− 1 values, one value for each possible gap opening in each sequence, for
a total of approximately 21 GB, assuming 32-bit integers. The maximum sequence length
for the hardest two instances is 573, allowing us to fit the hone,3 heuristic in memory for
those instances. For the 75 easiest instances, we used a hash function that used the lattice
coordinate of the longest sequence. For all other instances, we used a hash function that
used the lattice coordinates of the two longest sequences.

Table 4 shows results for solving the 75 easiest instances of BAliBASE Reference Set 1
(the instances that A* is able to solve) for comparison. The first set of rows are intended to
show how the serial internal algorithms compare to each other and to show that our results
are consistent with those reported elsewhere.

In the first set of rows we see that IDDP expands 1.7 times more nodes than PEA*
and nearly 3 times more nodes than A*. The total solving time for IDDP is approximately
1.6 times longer than A* and PEA*. These results are consistent with results reported by
Schroedl (2005) for alignments consisting of 6 or fewer sequences. We also see that the
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A*-HBDDD PE2A*

Expanded Generated Time Expanded Generated Time

2myr 50 761 38:31 122 269 8:49

arp 64 2,012 55:53 180 417 17:05

2ack 209 6,483 6:47:50 962 2,884 1:45:32

1taq 1,328 41,195 2:10:04:05 4,280 8,856 8:19:04

1lcf 2,361 148,793 3:02:13:07 11,306 31,385 1:00:10:08

ga14 1,160 35,963 2:01:31:55 3,632 8,410 9:30:00

1pamA 14,686 455,291 32:14:01:48 67,730 173,509 9:08:42:39

Table 5: Results for the 7 hardest instances of the BAliBASE Reference Set 1. Ex-
panded and generated counts reported in millions and times reported in
days:hours:minutes:seconds using 12 cores and 24 threads.

partial expansion technique is effective in reducing the number of nodes generated by a
factor of 5. IDDP generates 1.96 times more nodes than PEA*.

In all instances, A* generates and stores many more nodes than it expands. For example,
for instance 1sbp A* generates approximately 64,230,344 unique nodes while expanding only
3,815,670 nodes. The closed list is a mere 5.9% of all nodes generated during search. This
means that simply eliminating the closed list would not significantly reduce the amount of
memory required by search. PEA* stores just 5,429,322 nodes and expands just 5,185,887
nodes, reducing the number of nodes generated by a factor of 11.8 while increasing the
number of nodes expanded by a factor of just 1.3.

In the second set of rows of Table 4, we show results for serial and parallel versions of
A*-HBDDD and PE2A*. PE2A* expands nearly twice as many nodes as serial A*-HBDDD
but generates about 5 times fewer nodes; as a result PE2A* incurs less I/O overall and is
over 2.6 times faster than serial A*-HBDDD. The parallel versions of A*-DDD and PE2A*
show good speedup, solving instances faster on average by a factor of approximately 8 and 6
respectively. Parallel A*-HBDDD is faster than IDDP and just 1.1 times slower than serial
in-memory A*. PE2A* outperforms all other algorithms and is nearly 1.8 times faster than
serial in-memory PEA* despite using external memory. It achieves a speedup of 6x on this
12-core machine. Again, it is exciting to see that external search can be faster than internal
given that disk can be millions of times slower than RAM.

The external memory algorithms expand and generate more nodes than their in-memory
counterparts for two reasons: 1) the search expands all nodes within the current bound a
bucket at a time and therefore is not able to perform optimal tie-breaking and 2) recursive
expansions blindly expand nodes without first checking whether they are duplicates and as
a result duplicate nodes are expanded and their successors are included in the generated
counts. However, we approximate optimal tie-breaking by sorting buckets, and recursive
expansions do not incur I/O, so their effect on performance appears minimal.

Finally, Table 5 shows results for solving the 7 most difficult instances of BAliBASE
Reference Set 1 using the scalable external memory algorithms, Parallel A*-HBDDD and
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PE2A*. We used Machine-A, a dual quad-core (8 cores) machine with Intel Xeon X5550
2.66 GHz processors and 48 GB RAM, to solve the hardest two instances (gal4 and 1pamA).
The additional RAM was necessary to store the hone,3 heuristic. For all instances PE2A*
outperforms A*-HBDDD by a significant margin and only PE2A* is able to solve the hardest
instance (1pamA) in less than 10 days. To the best of our knowledge, we are the first to
present results for solving this instance optimally using affine gap costs or on a single
machine. The most relevant comparison we can make to related work is to External IDDP,
which took over 182 hours (7.5 days) to solve gal4 (Edelkamp & Kissmann, 2007) with a
slightly stronger heuristic. PE2A* takes just 9.5 hours and even A*-HBDDD takes just 2
days.

5. Discussion

We have explored best-first heuristic search in a parallel external memory setting. The
results presented in previous sections provide evidence that approximating a best-first search
order is beneficial. Alternative algorithms attempt to improve performance by omitting the
closed list with techniques, such as IDDP, that rely on a non-best-first search order. However
for many problems, such as MSA, the performance bottleneck is the rapidly growing frontier,
not the closed list. While BFHS and IDDP avoid costly I/O by using the previous depth
layer for duplicate checking, this savings is minimal compared to the savings afforded by
a relaxed best-first search order, as with PEDAL and PE2A*. A predefined search order
results in many more node expansions than best-first search. Moreover, divide-and-conquer
solution reconstruction is required when omitting the closed list, contributing overhead and
complexity to the search.

Algorithms that use an upper bound such as IDDP and BFHS enjoy the advantage of
not having to generate and store nodes that exceed the upper bound. This can avoid costly
I/O for an entire frontier layer. However, the use of such an upper bound often requires
iterative-deepening search which can increase search effort and I/O overhead by a constant
factor. Moreover, this advantage is quickly diminished when combined with the bound
estimation technique of IDA*CR. With a best-first search order and optimal tie breaking,
the goal node is often expanded before many of the nodes in the final frontier layer are
generated. Furthermore, the partial expansion technique of PE2A* also avoids generating
many nodes in this layer, saving unnecessary and costly I/O. Another advantage of PEDAL
and PE2A* is that they enjoy the benefits of recursive expansions. These expansions do
not incur any I/O and allow for much faster solving times. IDDP and BFHS cannot benefit
from recursive expansions.

The recursive expansion technique can give poor performance on domains where there
are many paths to the same node with equal or similar cost. Because duplicate checking is
deferred, many duplicate nodes may be generated that need to be stored in external memory
and later accessed to perform merging. This can result in significant I/O overhead. One
way to deal with this is to bound the depth of recursive expansions, and in effect bound
the number of duplicate nodes that can be generated during the expand phase. Another
technique, demonstrated in section 2, is to employ transposition tables during the expansion
phase. Each thread keeps a local and bounded-size closed list in order to avoid generating
many duplicate nodes.
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If the closed list is large compared to the size of the open list, then techniques like
BFHS and IDDP may provide superior performance. BFHS and IDDP need only the
current and previous depth layers to check duplicates. Structuring the I/O to support this
is straightforward because of the depth-layered scheme of these algorithms. Algorithms
based on A*-HBDDD may perform unnecessary I/O if many of the nodes that are stored
in the closed list are not needed for duplicate merging. However, the pruning technique of
Sparse Memory Graph Search (Zhou & Hansen, 2003a) may provide the same performance
benefit for A*-HBDDD based algorithms. We leave this for future work.

6. Related Work

In this section, we discuss other related work.

6.1 Parallel Frontier A*

Niewiadomski, Amaral, and Holte (2006) combine parallel Frontier A* search with DDD
(PFA*-DDD). A sampling based technique is used to adaptively partition the workload at
run-time. PFA*-DDD was able to solve the two most difficult problems (gal4 and 1pamA)
of the BAliBASE benchmark using a cluster of 32 dual-core machines. However, affine gap
costs were not used, simplifying the problem and allowing for stronger heuristics to be com-
puted and stored with less memory. The hardest problem required 16 machines with a total
of 56 GB of RAM. In their experiments, only the costs of the alignments were computed.
Because Frontier Search deletes closed nodes, recovering the actual alignments requires
extending PFA*-DDD with divide-and-conquer solution reconstruction. Niewiadomski et
al. report that the parallelization of the divide-and-conquer strategy with PFA*-DDD is
non-trivial.

6.2 DDD with Map-Reduce

The two phase (expand and merge) framework of DDD bares a striking resemblance to the
two step (map and reduce) framework of MapReduce (Dean & Ghemawat, 2008). Reinefeld
and Schütt (2010) applied MapReduce to frontier search. In this setting, the map step
is analogous to the expand phase and the reduce step is analogous to the merge phase.
Map and reduce jobs are distributed across multiple processors and nodes are read and
written to a distributed file system. This distributed variant of DDD was used to generate
the complete search space of the 15-puzzle (approximately 10 trillion states) in 66 hours
utilizing 128 processors and is bound only by the speed and capacity of the I/O subsystems.

6.3 Sweep A*

Sweep A* (Zhou & Hansen, 2003b) is a space-efficient algorithm for domains that exhibit a
partial order graph structure. IDDP can be viewed as a special case of Sweep A*. Sweep A*
differs slightly from IDDP in that a best-first expansion order is followed within each level
in the partially ordered graph. This helps find the goal sooner in the final level. However, if
levels are defined by antidiagonals in MSA, then the final level contains very few nodes and
they are all goals. Therefore, the effect of best-first sorting at each level is minimal. Zhou
and Hansen (2004) combine Sweep A* with SDD on a subset of the BAliBASE benchmark
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without affine gap costs. In our experiments we compared with IDDP as the algorithms
are nearly identical and results provided by Schroedl (2005) and Edelkamp and Kissmann
(2007) for IDDP used affine gap costs and are thus more relevant to our study.

6.4 Enhanced Partial Expansion A*

In practice, PEA* generates all successor nodes and discards the nodes that do not appear
promising. In some cases, it is possible to avoid some of the overhead of generating the
unpromising successor nodes. This observation motivates Enhanced PEA* (EPEA*, Felner,
Goldenberg, Sharon, Stern, Beja, Sturtevant, Schaeffer, & Holte, 2012). EPEA* is an
enhanced version of PEA* that improves performance by predicting the cost of nodes,
generating only the promising successors. Unfortunately it is not clear how to efficiently
predict successor costs in MSA since the cost of an operator cannot be known a priori.

7. Conclusion

Previous approaches to scaling heuristic search, such as BFHS and IDDP, have focused
on eliminating the closed list and abandoning best-first search order in an attempt to
increase efficiency. However, the performance bottleneck of many practically motivated
domains, such as the MSA problem, is the memory requirement for storing the frontier of
the search, not the closed list. We feel that best-first search techniques such as A* have
largely been overlooked in combination with external search. In this paper we showed that
a best-first and relaxed best-first search orders provide significant advantages over rigidly
predefined search orders. We presented the first empirical results for A*-HBDDD, studied
its limitations and presented two extensions to address these limitations, making it more
practical.

In section 2 we discussed techniques for external memory search in detail. We presented
pseudo-code for A*-HBDDD and presented the first empirical results for the sliding-tile
puzzle, comparing A*-HBDDD with internal memory search algorithms and BFHS. These
results provide evidence that external-memory search benefits from a best-first search order
and performs well on unit-cost domains and that efficient general-purpose parallel external-
memory search can surpass serial in-memory search. Although many regard disk-based
search as slow and unwieldy, we hope this result encourages practitioners to take another
look at these techniques.

In section 3 we presented PEDAL, a new parallel external-memory search that combines
ideas from A*-HBDDD and IDA*CR to address performance limitations for real problems.
We proved that a simple layering scheme allows PEDAL to guarantee a constant I/O over-
head. In addition, we showed empirically that PEDAL gives very good performance in prac-
tice, solving a real-cost variant of the sliding-tile puzzle more quickly than both IDA*CR and
BFHS and it surpasses BFHS on the more practically motivated dockyard robot planning
domain. PEDAL demonstrates that a relaxed best-first heuristic search can outperform
alternative approaches for large problems that have real costs.

In section 4 we presented PE2A*, an extension to PEDAL that combines the partial
expansion technique of PEA* with hash-based delayed duplicate detection to deal with
problems that have large branching factors. We showed empirically that PE2A* performs
very well in practice, solving 80 of the 82 instances of the BAliBASE Reference Set 1
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benchmark with the weaker hall,2 heuristic and the hardest two instances using the hone,3
heuristic. In our experiments, PE2A* outperformed serial PEA*, IDDP and parallel A*-
HBDDD and was the only algorithm capable of solving the most difficult instance in less
than 10 days using the more biologically plausible affine gap costs.

Finally, we invite the reader to examine our source code (available at Hatem, Burns,
& Ruml, 2014) to see that parallel external-memory search need not be a scary exotic
nightmare. Given its scalability and advantages over IDA*, we hope it becomes more
widely taught and used. We also include source code for the MSA domain with affine gap
costs, a non-trivial implementation that can be used to evaluate other search algorithms in
a practical setting.
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Appendix A. Appendix A. Implementing an External Memory Search

Here we discuss additional implementation details for disk-based search. We wrote all
algorithms in Java, however, many of the implementation details are applicable to other
programming languages. Source code is available at Hatem et al. (2014).

A.1 Data Structures

While the speed of an external search is dominated by the latency of I/O, the choice
of internal data structures can have some effect on performance. The most critical data
structures for an external search are the same for an internal search; a heap to manage the
expansion order for buckets and a closed list to perform duplicate detection. For the open list
we used a standard binary heap. For the closed list we used the High Performance Primitives
Collection (HPPC) package, an alternative to the standard Java collections package. HPPC
provides implementations of common data structures that make efficient use of memory and
are written specifically for each primitive value type so there is no unnecessary overhead from
casting. Specifically, we used LongByteOpenHashMap, a hash-table with open addressing
and linear probing for collision detection. Keys are stored as long primitives and values as
byte primitives in arrays.

A.2 Efficient I/O

For the disk-based algorithms we used Java’s New I/O (NIO) for high performance I/O
operations. Each bucket is backed by several files and each file has a corresponding NIO
ByteBuffer. These buffers are not thread safe so access to the buffers must be synchronized.
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We sized each buffer to be a multiple of the file system’s block size. To minimize I/O we
packed the state of each node into the fewest bits possible (without resorting to compression
techniques). For example a 4x4 sliding-tiles puzzle state can be stored in just 60 bits. For
each tile we record its location which falls within a range of 0 to 15, representable by just
4 bits. We can pack all values into a 64-bit integer. If the hash function uses the location
of tiles (to ensure that duplicates fall within the same bucket) then all the states within
a bucket share the locations of some common set of tiles. In this case you can reduce
the number of bits required even further by storing the locations of the common tiles just
once e.g., in the file name or file header. We found that reducing the amount of memory
required per state on disk yielded some of the greatest speedups. These speedups benefited
all external memory algorithms. We did not investigate the many possible compression
techniques that might further reduce I/O per state. Many state spaces admit clever encoding
or ranking techniques that reduce the number of bits required to store states (Schmidt &
Zhou, 2011 and Bonet, 2008). Nor did we investigate optimizations at the device level such
RAID arrays, short-stroking disks, solid-state disks or RAM clouds. We believe these are
natural directions for future research.

A.3 Concurrency

We used Java’s concurrency.utils package to manage multiple threads with instances of
the ThreadPoolExecutor class. For each phase we create a list of tasks where each task
corresponds to a bucket that needs to be processed. A ThreadPoolExecutor takes a list of
task objects to process and each task is processed in parallel. For some algorithms, this
list was sorted based on the cost of the nodes in the file — buckets with smaller f are
processed first. The main search loop starts the expand phase by identifying all buckets
that contain open nodes with an f equal to the current bound and adding an expand task to
the list for each one. The expand task encapsulates information about which bucket needs
to be expanded and keeps track of information such as the current minimum f of all nodes
in the bucket, node expansion and generation counts and which other buckets have been
given newly generated nodes. Buckets that received new nodes during the expand phase
are marked with a dirty flag. Only dirty buckets are processed during the merge phase. A
merge task is added to a new list for each dirty bucket. Following the expansion phase all
dirty buckets are processed in a similar fashion. All threads are joined between phases.

A.4 Solution Recovery

Normally a solution is recovered by following parent pointers, starting from the goal node
and continuing until the initial state is reached. However, with external memory search it is
not possible to store pointers (in the form of memory references) to disk since the memory
being referenced is freed once a node is written to disk. One way to recover solutions with
external memory search is by recursively regenerating parent states, mapping the state to
its respective bucket (file) and continuing until the initial state is reached. In order to
regenerate parent states, the operator that generates each child state must be stored with
its respective node. A parent state is regenerated by simply reversing the stored operator.
The initial state is identified as not having a stored operator. Solution recovery cannot be
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done in parallel. However, the time spent recovering the solution is a tiny fraction of the
total solving time.

Appendix B. Appendix B. Multiple Sequence Alignment

Multiple Sequence Alignment (MSA) is a challenging domain to implement, especially vari-
ants that incorporate state-of-the-art heuristics and scoring techniques like affine gap costs.
We arrived at an efficient implementation after months of trial and error and borrowing
some code from other implementations.

B.1 State Space Representation

We follow the popular choice of modeling the state space as an n-dimensional lattice, where
n is the number of sequences being aligned. A state is simply an index into this lattice. Each
component of the index can be interpreted as the number of elements in the sequence that
have been considered. For example, imagine an alignment between the sequences AGTC
and AGCC. The index (2, 2) indicates that the first two elements from each sequence have
been aligned. Additionally, the index (1, 3) would indicate the first element from the first
sequence has been aligned with the first three elements from the second sequence and thus
contains two gaps. Identifying duplicate states is trivial.

Expanding a node involves computing the costs and heuristics for 2d generated states
where d is the number of sequences being aligned. This can become computationally inten-
sive for large d. To reduce the total amount of computation required by each expansion,
we use a state generation scheme based on grey codes. Each newly generated state is the
result of a small incremental change to the previously generated state. This allows us to
reuse cost and heuristic computations from previously generated states.

B.2 Computing Heuristics

We use the algorithm by Needleman and Wunsch (1970), a dynamic programming technique,
to compute the heuristic, an estimate of the cost-to-go for every state. We used the popular
table based implementation of Needleman-Wunsch whereby an n-dimensional table of values
is computed one row at a time. Implementing this algorithm for two dimensional alignments
is trivial and extending it to three dimensions is straight forward. However, incorporating
affine gap costs can be challenging. Each entry in the lattice needs to store three different
values, corresponding to whether a gap is being started or extended. A detailed explanation
of how to implement affine costs is beyond the scope of this paper. For details we refer you
to our source code.

References

Altschul, S. F. (1989). Gap costs for multiple sequence alignment. Journal of Theoretical
Biology, 138 (3), 297–309.

Bonet, B. (2008). Efficient algorithms to rank and unrank permutations in lexicographic
order. In AAAI-Workshop on Search in AI and Robotics.

265



Hatem, Burns, & Ruml

Burns, E., Hatem, M., Leighton, M. J., & Ruml, W. (2012). Implementing fast heuristic
search code. In Proceedings of the Symposium on Combinatorial Search (SoCS-12).

Burns, E., Lemons, S., Ruml, W., & Zhou, R. (2010). Best-first heuristic search for multicore
machines. Journal of Artificial Intelligence Research, 39, 689–743.

Burns, E., & Ruml, W. (2013). Iterative-deepening search with on-line tree size prediction.
Annals of Mathematics and Artificial Intelligence, S68, 1–23.

Carrillo, H., & Lipman, D. (1988). The multiple sequence alignment problem in biology.
SIAM J. on Applied Mathe- matics, 48 (5), 1073–1082.

Dayhoff, M. O., Schwartz, R. M., & Orcutt, B. C. (1978). A model of evolutionary change
in proteins. Atlas of protein sequence and structure, 5 (suppl 3), 345–351.

Dean, J., & Ghemawat, S. (2008). Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51 (1), 107–113.

Edelkamp, S., Jabbar, S., & Schrdl, S. (2004). External A*. In Advances in Artificial
Intelligence, Vol. 3238, pp. 226–240. Springer Berlin / Heidelberg.

Edelkamp, S., & Kissmann, P. (2007). Externalizing the multiple sequence alignment prob-
lem with affine gap costs. In KI 2007: Advances in Artificial Intelligence, pp. 444–447.
Springer Berlin / Heidelberg.

Felner, A., Goldenberg, M., Sharon, G., Stern, R., Beja, T., Sturtevant, N. R., Schaeffer,
J., & Holte, R. (2012). Partial-Expansion A* with selective node generation. In
Proceedings of AAAI-2012.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions of Systems Science and Cybernetics,
SSC-4 (2), 100–107.

Hatem, M., Burns, E., & Ruml, W. (2011). Heuristic search for large problems with real
costs. In Proceedings of AAAI-2011.

Hatem, M., Burns, E., & Ruml, W. (2013). Faster problem solving in java with heuristic
search..

Hatem, M., Burns, E., & Ruml, W. (2014). Research code for heuristic search.
https://github.com/matthatem. Accessed June 28, 2014.

Hatem, M., Kiesel, S., & Ruml, W. (2015). Recursive best-first search with bounded over-
head. In Proceedings of AAAI-2015.

Hatem, M., & Ruml, W. (2013). External memory best-first search for multiple sequence
alignment. In Proceedings of AAAI-2013.

Ikeda, T., & Imai, H. (1999). Enhanced A* algorithms for multiple alignments: optimal
alignments for several sequences and k-opt approximate alignments for large cases.
Theoretical Computer Science, 210 (2), 341–374.

Kobayashi, H., & Imai, H. (1998). Improvement of the A* algorithm for multiple sequence
alignment. In Proceedings of the 9th Workshop on Genome Informatics, pp. 120–130.

266



Solving Large Problems with Heuristic Search

Korf, R. (2012). Research challenges in combinatorial search. In Proceedings of AAAI-2012.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27 (1), 97–109.

Korf, R. E. (1993). Linear-space best-first search. Artificial Intelligence, 62 (1), 41–78.

Korf, R. E. (1999). Divide-and-conquer bidirectional search: First results. In Proceedings
of the Sixteenth International Joint Conference on Articial Intelligence (IJCAI-99),
Vol. 99, pp. 1184–1189.

Korf, R. E. (2003). Delayed duplicate detection. In Proceedings of the Eighteenth Interna-
tional Joint Conference on Articial Intelligence (IJCAI-03), pp. 1539–1541.

Korf, R. E. (2004). Best-first frontier search with delayed duplicate detection. In Proceedings
of the Nineteenth National Conference on Artificial Intelligence (AAAI-04), pp. 650–
657. AAAI Press.

Korf, R. E. (2008a). Linear-time disk-based implicit graph search. Journal of the ACM,
55 (6).

Korf, R. E. (2008b). Minimizing disk I/O in two-bit breadth-first search. In Proceedings of
AAAI-08, pp. 317–324.

Korf, R. E. (2016). Comparing search algorithms using sorting and hashing on disk and
in memory. In Proceedings of the Twenty-Fifth International Joint Conference on
Articial Intelligence (IJCAI-16), pp. 610–616.

Korf, R. E., Zhang, W., Thayer, I., & Hohwald, H. (2005). Frontier search. Journal of the
ACM, 52 (5), 715–748.

Lermen, M., & Reinert, K. (2000). The practical use of the A* algorithm for exact multiple
sequence alignment. Journal of Computational Biology, 7 (5), 655–671.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for
similarities in the amino acid sequences of two proteins. Journal of Molecular Biology,
48, 443–453.

Niewiadomski, R., Amaral, J. N., & Holte, R. C. (2006). Sequential and parallel algorithms
for Frontier A* with delayed duplicate detection. In Proceedings of AAAI-2006, pp.
1039–1044. AAAI Press.

Reinefeld, A., & Schnecke, V. (1994). Aida*-asynchronous parallel ida*. In Proceedings of
the Biennial Conference-Canadian Society for Computational Studies of Intelligence,
pp. 295–302.
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