
Journal of Artificial Intelligence Research 62 (2018) 153-192 Submitted 02/18; published 05/18

Resource-Bounded Norm Monitoring in Multi-agent Systems

Natalia Criado NATALIA.CRIADO@KCL.AC.UK

King’s College London
Bush House, WC2B 4BG, London, UK

Abstract
Norms allow system designers to specify the desired behaviour of a sociotechnical system. In

this way, norms regulate what the social and technical agents in a sociotechnical system should
(not) do. In this context, a vitally important question is the development of mechanisms for moni-
toring whether these agents comply with norms. Proposals on norm monitoring often assume that
monitoring has no costs and/or that monitors have unlimited resources to observe the environment
and the actions performed by agents. In this paper, we challenge this assumption and propose the
first practical resource-bounded norm monitor. Our monitor is capable of selecting the resources to
be deployed and use them to check norm compliance with incomplete information about the actions
performed and the state of the world. We formally demonstrate the correctness and soundness of
our norm monitor and study its complexity. We also demonstrate in randomised simulations and
benchmark experiments that our monitor can select monitored resources effectively and efficiently,
detecting more norm violations and fulfilments than other tractable optimization approaches and
obtaining slightly worse results than intractable optimal approaches.

1. Introduction

Norms allow system designers to specify the desired behaviour of a sociotechnical system (Jones,
Artikis, & Pitt, 2013; Singh, 2013). As an illustrative example, we can think of a smart home as
a sociotechnical system. Assuming that initially the smart home allows users to perform actions
freely, governance norms overriding this default rule and defining which actions cannot/must be
done can be easily defined using prohibitions and obligations. For example, in this environment a
reasonable norm can be to forbid users from opening any window if the air conditioner is function-
ing. Regimenting norms in sociotechnical systems (e.g., locking windows when the air conditioner
is on) may not only be undesirable (e.g., users can get frustrated if they cannot open the window) but
also insecure (i.e., it is unrealistic to assume that the norm designer has considered all the potential
exceptions to a norm). Hence, it is impossible to prove that the behaviours of the users in the smart
home will abide by the norms, since behaviour cannot be predicted a priori, which makes impossible
the application of traditional verification techniques (Keller, 1976) such as model checking (Günay,
Liu, & Zhang, 2016) and testing (Winikoff & Cranefield, 2014). In such complex systems, it is more
desirable to allow norm violations to happen and to implement norm enforcement mechanisms.

Norm enforcement mechanisms (Grossi, Aldewereld, & Dignum, 2007) persuade agents (e.g.,
users in our smart home scenario) to comply with norms by signalling norm violations and ful-
filments and applying sanctions and rewards, respectively. A key element of such mechanisms is
norm monitoring; i.e., the process by which agent’s actions are observed and checked against the
norms. Norm monitoring requires the deployment of different types of resources (i.e., sensors and
controllers such as motion sensors, temperature controls, window and door lock sensors) that con-
trol the execution of actions and also sense properties of the environment (e.g., temperature controls

c©2018 AI Access Foundation. All rights reserved.

CRIADO

allow users to turn on/off the air conditioner and sense the temperature). The actions and proper-
ties observed through deployed resources are used by norm monitors to check norm compliance.
However, resources can be expensive and usually there is a limited budget that can be spent on
monitoring norm compliance (Criado, 2017). Hence, an important question is how to determine
which resources need to be deployed to check compliance with a set of norms given a budget.

In this paper, we propose the first practical norm monitor that selects the resources to be de-
ployed based on their cost and value to norm monitoring. The paper contributions can be sum-
marised as follows: (i) for the first time, we propose a method to monitor norm compliance online
under incompleteness demonstrating its correctness and soundness; (ii) we propose a method to
analyse offline the guarantees offered by our norm monitor; (iii) we propose a tractable algorithm
to select the resources to be deployed based on their cost and value to norm monitoring (their ca-
pabilities to detect norm violations and fulfilments); and (iv) we experimentally demonstrate that
our resource selection mechanism obtains solutions near optimal and surpasses other tractable opti-
mization approaches.

This paper is organized as follows. Section 2 contains the preliminary definitions used in this
paper. Section 3 defines our resource-bounded norm monitor and describes its information model.
Section 4 contains the algorithms executed by our norm monitor. Our proposal is experimentally
evaluated in Section 5. Related work is discussed in Section 6. Finally, conclusions are contained
in Section 7.

2. Preliminaries

We make use of a finite set of propositional symbols, denoted by P , that characterise the properties
of the world relevant to norm monitoring. Given a proposition p, we denote by lit(p) the literals
that can be built using p; i.e., the set formed by p and its negation ¬p. We extend this definition to
sets of propositions P = {p1, ..., pn} as follows: lit(P) =

⋃
lit(pi). Similarly, given a literal l we

denote by prop(l) the proposition contained in the literal. We also make use of the true (vs. false)
proposition > (vs. ⊥).

By a state, we mean the properties of the world that are true at a particular moment; i.e., a state
is built on a “closed world assumption” and defined by a set of properties s ⊆ P that hold at a given
moment. A “closed world assumption” (Reiter, 1978) establishes that states are complete and that
any property p that holds in a state s is also known to hold in that state; i.e., s � p iff p ∈ s, and
s 6� p iff p 6∈ s.

We define that a state s ⊆ P satisfies a condition represented as a literal l ∈ lit(P), denoted by
s � l, iff l ∈ s ∨ l̄ 6∈ s, where l̄ denotes the negation of literal l. We extend this definition to sets of
literals c ⊆ lit(P); i.e., s � c, iff ∀l ∈ c : l ∈ s ∨ l̄ 6∈ s. We also give the common semantics to the
true (vs. false) proposition; i.e., for any state s, s � > (vs. s 6� ⊥)
Example 1. In our smart home scenario let us assume that the finite set of propositional symbols
representing the state of the world is defined as:

P = {openWindow , onAC , tUp, tDown,>,⊥}

where: openWindow represents that the window is open, onAC represents that the air conditioner
is on, and tUp and tDown represent that the temperature of the thermostat has been increased or
decreased, respectively. For example, a possible initial state s0 could be defined as follows:

s0 = ∅

154

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

Note that by the closed world assumption propositions onAC , tUp, tDown and openWindow are
false in the initial state.

2.1 Action Definition

In line with the existing literature (Boutilier & Brafman, 2001), actions are represented using pre-
conditions and postconditions1. If a state satisfies the precondition, then the action can be executed
transforming the current state into a new state in which the postcondition holds; i.e., the propositions
in the negative (vs. positive) literals appearing in the postcondition are deleted from (vs. added to)
the state.

Definition 1 (Action). An action is a tuple 〈pre, post〉 where:

• pre ⊆ lit(P) is a set of literals representing the action precondition;

• post ⊆ lit(P) is a set of literals representing the action postcondition.

Given an action a, we denote by pre(a) and post(a) the action precondition, and postcondition.
Given a set of actions A = {a1, ...an}, we define pre(A) =

⋃
pre(ai) and post(A) =

⋃
post(ai).

We denote byA the set of actions that can be executed in a given scenario. We assume that these
actions are deterministic and the state evolves due to action execution only. We assume that each
agent performs at most one action at a time2, but that more than one agent can perform an action
at a given time. Note also that, by the definition of state, actions executed at a time are consistent;
i.e., there are no contradictions among the preconditions and postconditions of actions executed
simultaneously 3.
Example 2. In the smart home scenario there are four actions to set up the thermostat temperature:

increase : 〈{onAC ,¬tDown}, {tUp}〉

increaseToBaseline : 〈{onAC , tDown}, {¬tDown}〉
decrease : 〈{onAC ,¬tUp}, {tDown}〉

decreaseToBaseline : 〈{onAC , tUp}, {¬tUp}〉
the actions to open/close the window can be defined as follows:

open : 〈{¬openWindow}, {openWindow}〉

close : 〈{openWindow}, {¬openWindow}〉
and the actions to turn on/off the air conditioner can be defined as follows:

turnOn : 〈{¬onAC}, {onAC}〉

turnOff : 〈{onAC}, {¬onAC}〉
where increase, decrease, increaseToBaseline, decreaseToBaseline, open, close, turnOn and turnOff
are just identifiers used in this paper to represent the actions more compactly.

1. Without loss of generality, we assume actions are instantaneous, but this can be relaxed by decomposing durative
actions into sets of instantaneous actions.

2. This limitation can be relaxed by decomposing agents into groups of agents corresponding to agents’ actuators
(Boutilier & Brafman, 2001).

3. This is a realistic assumption as in many domains some of the inconsistent actions fail; e.g., a window cannot be open
and closed simultaneously. Relaxing this assumption is not desirable, as this would entail that contradictory actions
can be executed simultaneously leaving the world in an inconsistent state. Our monitor is agnostic about how this is
achieved; e.g., by design, by coordinating agent actions, by having a fine time granularity, etc.

155

CRIADO

2.2 Resource Definition

A resource is formed by coupled controls and sensors that have a unique cost. Controls manage the
execution of actions and therefore the execution of these actions by agents can be observed through
the resources, whereas sensors allow some properties of the world to be observed. For example, a
climatic resource can be deployed (brought into effective action) to control the interaction of users
with the air conditioner (i.e., to observe the execution of actions to set up the temperature and
activating the air conditioner) and to observe the thermostat. The deployment cost of a resource can
represent the economic cost of installing and maintaining it, the cost associated with processing the
sensor and control data obtained through the resource, etc.

Definition 2 (Resource). A resource is defined as a tuple 〈control, sensor, cost〉, where:

• control ⊆ A is the set of actions whose execution is controlled by the resource and that can
be observed if the resource is deployed;

• sensor ⊆ P is the set of properties of the world that can be observed if the resource is
deployed and, based on these observations, their truth value can be established;

• cost ∈ R≥0 is the cost of the resource.

Given a resource r, we define control(r), sensor(r) and cost(r) as the actions and properties
that can be observed through the resource and the cost of the resource.

Definition 3 (Discernible Literals). Given a resource r, the set of discernible literals that are ob-
served or can be inferred (i.e., deduced from the actions observed) through the resource is defined
as follows:

dis(r) = lit(sensor(r))
⋃(⋃

∀a∈control(r)

pre(a) ∪ post(a)

)
(1)

Again, we extend control, sensor, cost and dis definitions to sets of resources.
Example 3. Let us assume the existence of two different resources that can be deployed:

• A resource controlling the interaction with the air conditioner allowing users to turn it on/off
and to change the temperature:

r1 :〈{turnOn, turnOff , increase, decrease, increaseToBaseline, decreaseToBaseline,

{onAC , tUp, tDown}, 5〉

The literals discernible through resource r1 are as follows:

dis(r1) = {onAC , tUp, tDown,¬onAC ,¬tUp,¬tDown}

• A resource controlling the interaction with the window:

r2 : 〈{open, close}, {openWindow}, 1〉

The literals discernible through resource r2 are follows:

dis(r2) = {openWindow ,¬openWindow}

Again r1 and r2 are resource identifiers.

156

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

2.3 Norm Definition

The purpose of this paper is not to propose, compare or improve existing normative definitions, but
to make use of a well-known definition in proposing our norm monitor.

As in the related literature (Alechina, Dastani, & Logan, 2013; Lorini, 2012; Alechina, Dastani,
& Logan, 2014), we consider a “closed legal system”, where by default agents are permitted to do
(vs. not to do) any action, and obligation and prohibition norms define exceptions to this default
rule. In particular, in this paper we consider norms as formal statements that define patterns of
behaviour by means of deontic modalities; i.e., obligations and prohibitions (López y López, Luck,
& d’Inverno, 2006; Vasconcelos, Kollingbaum, & Norman, 2007). These patterns of behaviour
determine under which circumstances agents are obliged to or forbidden from performing certain
actions. The circumstances in which a norm becomes relevant and must be observed are defined in
terms of activation and expiration conditions as follows:

Definition 4 (Norm). A norm is defined as a tuple 〈deon, target , activ, expir〉, where:

• deon ∈ {O,F} is the deontic modality, determining if the norm is an obligation (O) or
prohibition (F);

• target ∈ A is the action whose execution is regulated by the norm, i.e., the mandatory or
forbidden action;

• activ is a set such that activ ⊆ lit(P) or activ = {>} or activ = {⊥} representing the
activation condition;

• expir is a set such that expir ⊆ lit(P) or expir = {>} or expir = {⊥} set of representing
the expiration condition.

Given a norm n, we define deon(n), target(n), activ(n) and expir(n) as the deontic modality,
the norm target, and the activation and expiration conditions, respectively. Again we extend these
definitions to sets of norms.

We define that a norm (n) becomes relevant in a specific state (s) when the activation condition
is satisfied by the state (s � activ(n)). Similarly, we define that a relevant norm expires when
the expiration condition is satisfied by a state (s � expir(n)). Thus, the expiration condition
defines deadline conditions modelled as propositions (Dignum, Broersen, Dignum, & Meyer, 2004).
According to this definition, in those states where both the activation and expiration condition of
a norm are satisfied simultaneously, the norm is considered as not relevant. This norm definition
has been extensively used in the related literature (Meneguzzi, Modgil, Oren, Miles, Luck, & Faci,
2012; Criado & Such, 2016; Oren, Panagiotidi, Vázquez-Salceda, Modgil, Luck, & Miles, 2009;
Kollingbaum & Norman, 2002; Beheshti, Ali, & Sukthankar, 2015) to represent norms in a wide
range of problems and domains.

The semantics of norms depends on their deontic modality. In accordance with the standard
semantics of deontic logics (von Wright, 1981)4, a relevant obligation norm is fulfilled when the

4. In consonance with von Wright’s proposal, we do not represent the norm subject explicitly and, without loss of
generality, we consider that norms are addressed to all agents. However, our norm definition and norm monitoring
algorithms could be trivially extended to represent and consider the norm subject; i.e., the agent or agents responsible
for complying with a norm.

157

CRIADO

action in the norm target is performed before it expires and violated otherwise, while a relevant
prohibition norm is violated when the action in the norm target is performed before it expires and
fulfilled otherwise.
Example 4. In our example, let us assume that the following three norms have been defined:

• Two unconditional norms, which are always relevant, forbidding users from increasing and
decreasing the temperature of the thermostat (which has been previously set to an optimal
temperature). This can be formalised as follows:

n1 : 〈F , increase, {>}, {⊥}〉

n2 : 〈F , decrease, {>}, {⊥}〉
The activation and expiration conditions are defined as {>} and {⊥}, respectively. In this
case, the norm is an unconditional norm which is always relevant since the norm is activated
in all states and there is no state in which the norm expires.

• A conditional norm that forbids users from opening the window when the air conditioner
control is on. This is represented as follows:

n3 : 〈F , open, {onAC}, {¬onAC}〉

This norm becomes relevant when the air conditioner is on and it expires when the air condi-
tioner is off.

Again n1, n2 and n3 are norm identifiers used for compactness.

3. Norm Monitor

In this section we define our resource-bounded norm monitor and describe its information model.
The definition of norm monitor and the norm monitoring process have been adapted from our pre-
vious work (Criado & Such, 2016, 2017). In particular, that work proposes an information model
to monitor norm compliance under incomplete observations by predicting future actions (Criado &
Such, 2016) and reconstructing unobserved past actions (Criado & Such, 2017). In this section we
expand this information model with a method to select the resources deployed and also demonstrate
the soundness and correctness of the norm monitoring process.

Definition 5 (Norm Monitor). A norm monitor is defined as a tuple 〈R,N, b〉 where:

• R is a set of resources that can be deployed;

• N is the set of norms that regulate agents’ actions;

• b ∈ R≥0 represents the budget of the norm monitor.

The norm monitor has to solve two closely related problems: (i) how to use the actions and
properties observed through the deployed resources to monitor norm compliance; and (ii) how to
select a set of resources to be deployed satisfying the budget condition such that the detection
of norm violations and fulfilments is maximal. The solutions to these two problems are detailed
below5.

5. Note that the solution to these two problems will vary according to the normative definition used, but the problems
will be solved in a similar way. For instance, Appendix A illustrates how our monitor can deal with maintenance and
achievement norms defined over properties of the world, and with conjunction norms; whereas Appendix B shows
how our norm monitor can accommodate norm importance.

158

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

Norm enforcement is out of the scope of this work and has been covered extensively in the
related literature (Meneguzzi et al., 2012; Fornara & Colombetti, 2008b). Hence, we assume that
once the monitor detects a norm violation (vs. fulfilment), it applies the corresponding sanction (vs.
reward).
Example 5. In our example, there is a monitor defined as follows:

〈{r1, r2}, {n1, n2, n3}, 5〉

For the time being, assume that the smart home owner has decided to deploy resource r2, since it
has a lower cost.

3.1 Norm Monitoring Process

As aforementioned, the monitor has partial information about the state of the world. The monitor
represents the knowledge it has about the state of the word using an “open world assumption” as a
set of literals that are known in a state. An “open world assumption” (Reiter, 1978) determines that
the monitor’s knowledge about states is incomplete and the truth value of a proposition may be true
irrespective of whether or not it is known to be true.

We denote by a partial state, represented by ŝ, the norm monitor’s knowledge about the state
of the world (denoted by s). A partial state contains positive (vs. negative) literals representing
properties known to be true (vs. false) in the state. By the open world assumption if p ∈ ŝ, then
s � p (but s � p does not entail p ∈ ŝ); and if ¬p ∈ ŝ, then s 6� p (but s 6� p does not entail ¬p ∈ ŝ).
The rest of properties are unknown. Partial states also contain literals corresponding to the true and
false propositions; i.e., ∀ŝ : > ∈ ŝ and ¬⊥ ∈ ŝ.

We assume that the monitor has complete knowledge of the initial state. Thus, at t = 0 the
monitor knows which literals are true or false in the current state, i.e., the partial state ŝ0 is equiv-
alent to s0 (i.e., for all proposition p ∈ s0 it follows that p ∈ ŝ0, and for all proposition p ∈ P \ s0

it follows that ¬p ∈ ŝ0). From that moment on the actions executed by agents change the state of
the world; meaning that the actions executed at time t (denoted by Actt) evolve st into st+1 and,
as a consequence, the monitor’s knowledge ŝt also evolves into ŝt+1. Recall that actions executed
at a time are consistent; i.e., in Actt there are no contradictions among the action preconditions
(@l ∈ pre(Actt) : l, l̄ ∈ pre(Actt)) and postconditions (@l ∈ post(Actt) : l, l̄ ∈ post(Actt)),
so the monitor is aware of the fact that the states st and st+1 are consistent when it updates its
knowledge (i.e., the partial states ŝt and ŝt+1).
Example 6. In our example, the monitor knows which propositional formulas are true or false in the
initial state and ŝ0 is defined as follows:

ŝ0 = {¬onAC ,¬tUp,¬tDown,¬openWindow,>,¬⊥}

3.1.1 STATE UPDATE

The monitor uses the resources deployed (denoted by S ⊆ R) to observe the actions and the prop-
erties of the world. We assume observations may be incomplete, but are accurate (not noisy). At
time t the monitor observes some of the actions performed by agents and the truth value of some of
the properties describing the state of the world. In particular, the actions observed by the monitor
(denoted by Âctt) are defined as those executed actions that are controllable by selected resources:

Âctt ← Actt ∩ control(S) (2)

159

CRIADO

The actions observed are used to increase the knowledge about the current state. In particular,
the current partial state ŝt is updated considering the preconditions of observed actions Âctt as
follows:

ŝt ← ŝt
⋃
pre(Âctt) (3)

Similarly, the truth values of the properties that can be observed can be used to define the new
resulting partial state (i.e., the following equation adds literals corresponding to those properties
that hold and do not hold in the next state and can be sensed):

ŝt+1 ←(sensor(S) ∩ st+1) ∪ {¬p|p ∈ (sensor(S) ∩ (P \ st+1))} (4)

As Âctt ⊆ Actt, the monitor cannot be sure about the effects of non-observable actions (i.e.,
actions whose execution is not controlled by any resource deployed). Thus, the new partial state
ŝt+1 is extended by: considering that the postconditions of the observed actions hold, determining
which dynamic properties have not been modified by the observed and non-observable actions, and
considering that the rest of dynamic propositions are unknown. In particular, the new partial state
ŝt+1 is updated considering the effect of actions Âctt executed in ŝt as follows:

ŝt+1 ←ŝt+1 ∪ post(Âctt) ∪ inv(ŝt) (5)

where inv is formed by invariant literals; i.e., literals of ŝt that cannot be modified by any non-
observable plausible action. An action is considered as plausible within the context of a partial state
ŝ if the action could have been applied in state ŝ. More formally, an action a is plausible within the
context of a partial state ŝ iff @l ∈ pre(a) : l̄ ∈ ŝ. The invariant literals are defined as:

inv(ŝ) =
⋃

∀l∈ŝ∧prop(l)∈:P
@a∈{a|a∈(A\control(S))}:
l̄∈post(a)∧(@l′∈pre(a):l̄′∈ŝ)

l

(6)

Note that the truth literals > and ¬⊥ are always invariants.

Theorem 1 (Correctness). The partial states generated by the norm monitor must be in accordance
with the state of the world. More formally, partial states constructed at time t using equations 2,3,
4 and 7 are correct; i.e., any partial state ŝt must be satisfied by st , denoted by st � ŝt.

Proof. We will demonstrate this by induction. We assume the monitor has complete knowledge of
the initial state and we have that s0 � ŝ0. Then we assume that st−1 � ŝt−1 and we demonstrate
that st � ŝt by contradiction. Let us assume st 6� ŝt, thus there is at least one literal l ∈ ŝt such that
st 6� l (i.e., st � l̄).

1. If the proposition in l can be observed through S, then l̄ ∈ ŝt by Equation 4, which contradicts
our premise.

2. If not, there are two different cases:

160

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

2.1. The truth value of the proposition in l has changed due to an action executed at time
t− 1; i.e., ∃a ∈ Actt−1 : l̄ ∈ post(a) and we have two different cases:

2.1.1. If a ∈ Âctt−1, then l̄ ∈ ŝt since Equation 7 will add post(Âctt−1) to ŝt, which
contradicts the premise.

2.1.2. Else a 6∈ Âctt−1 and a ∈ A \ control(S) : l̄ ∈ post(a) ∧ (@l′ ∈ pre(a) : l̄′ ∈ ŝt),
then Equation 7 cannot conclude that l is an invariant and l,¬l 6∈ ŝt, which also
contradicts the premise.

2.2. The truth value of the proposition in l has not changed by any action executed at time
t− 1. In this case, st−1 � l̄ and l 6∈ ŝt−1 by the induction hypothesis.

2.2.1. If l̄ ∈ ŝt−1 and @a ∈ A \ control(S) : l ∈ post(a) ∧ (@l′ ∈ pre(a) : l̄′ ∈ ŝt),
then Equation 7 will determine that l̄ is an invariant and l̄ ∈ ŝt which contradicts
our premise.

2.2.2. Else, Equation 7 cannot determine that l̄ is an invariant and l,¬l 6∈ ŝt which con-
tradicts our premise.

Example 7. In our example, let us assume that in the initial state action turnOn is executed and
the resulting state is:

s1 = {onAC}

However, the monitor does not observe the action turnOn, because this action is not controlled by
a deployed resource (recall S = {r2}); i.e., Âct0 = ∅. Thus, the monitor infers the next partial state
as follows:

ŝ1 = {¬openWindow,>,¬⊥}

Note that the monitor knows that the window is not open, as this literal is an invariant (i.e., the truth
value of this proposition cannot be changed by a non-observable plausible action). Literals >, ¬⊥
are also invariants. The truth value of the rest of the propositions is unknown.

3.1.2 NORM COMPLIANCE

The monitor analyses norm compliance both offline, determining compliance with which norms is
guaranteed to be detected and to what degree; and online, by checking if agents’ actions abide by
the norms.

Offline Norm Compliance. Given the set S, the monitor determines the guarantees offered by
this set with regard to norm monitoring; i.e., which norm violations or fulfilments can be detected
using the resources deployed. In particular, it is possible that compliance with a norm is: (i) always
detected —i.e., the satisfaction of its expiration/activation conditions is always known since the
propositions in their literals are sensed through deployed resources and its target is also controlled by
these resources; (ii) partially detected —i.e., the satisfaction of its expiration/activation conditions
may eventually be known since some of their literals are discernible but not sensed and can only be
inferred from actions controlled by deployed resources, whereas its target is controlled by deployed
resources; or (iii) non-detected —e.g., when the norm target is not-observable.

Definition 6 (Perfectly Detectable Norm). We define that compliance with a norm n ∈ N is per-
fectly detectable by a set of resources S ⊆ R if it satisfies the following 3 properties:

161

CRIADO

i) target(n) ∈ control(S).

ii) activ(n) ⊆ lit(sensor(S)) or activ(n) = {>} or activ(n) = {⊥}.

iii) expir(n) ⊆ lit(sensor(S)) or expir(n) = {>} or expir(n) = {⊥}.

Definition 7 (Partially Detectable Norm). We define that compliance with a norm n ∈ N is partially
detectable by a set of resources S ⊆ R if it satisfies the following 4 properties:

i) n is not perfectly detectable.

ii) target(n) ∈ control(S) .

iii) activ(n) ⊆ dis(S) or activ(n) = {>} or activ(n) = {⊥}.

iv) expir(n) ⊆ dis(S) or expir(n) = {>} or expir(n) = {⊥}.

Definition 8 (Non-Detectable Norm). We define that compliance with a norm n ∈ N is non-
detectable by a set of resources S ⊆ R when it is neither perfectly detectable nor partially de-
tectable.

Example 8. Given the resources selected (S = {r2}), norms n1 and n2 are non-detectable since
their targets are non-observable; whereas norm n3 is also non-detectable since the truth value of
its activation and expiration condition cannot determined with r2.

Online Norm Compliance. In order to determine norm compliance online, the monitor needs to
represent the normative state; i.e., the information about the norms that are (vs. not) relevant at a
particular state. To this aim, for each norm n ∈ N we define a proposition αn representing that
norm n is relevant. Given that the monitor has partial knowledge about the state of the world, the
monitor should control norms only when it is completely sure that the norms are relevant to ensure
that the norm monitoring process is sound (e.g., the monitor cannot indicate that a violation has
occurred when it has not in fact occurred). Without loss of generality, we assume that norms are
not relevant in the initial state (i.e., ∀n ∈ N : ¬αn ∈ ŝ0 ∧ s0 � ¬αn). From that moment on, the
monitor checks the current state to determine which norms are relevant in the next state.

Definition 9 (Relevance Update). Given a partial state ŝt, the next partial state ŝt+1, and a set of
norms to be checked N ; the next partial state is updated with the norm relevance information as
follows:

ŝt+1 ← ŝt+1 ∪ relevanceUpdate(ŝt, N)

where relevanceUpdate is a function that updates the normative state:

relevanceUpdate(ŝ, N) =

⋃
∀n∈N :

(activ(n)⊆ŝ∨αn∈ŝ)
∧∃l∈expir(n):l̄∈ŝ

αn

⋃

⋃
∀n∈N :

expir(n)⊆ŝ

¬αn

162

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

A norm is known to be not relevant when it is known that the expiration condition was satisfied
in the previous state. Similarly, a norm is known to be relevant when it is known that the norm has
not expired since it became activated. Otherwise, the relevance of a norm is unknown6.

Once the monitor has determined which norms are relevant, it checks compliance with these
norms. To this aim, the monitor needs to represent which relevant obligation and prohibition norms
have been fulfilled and violated, respectively. Thus, for each norm n ∈ N , we define a proposition
βn denoting that the execution of the action in the norm target has been observed while it was
relevant.

Definition 10 (Compliance Update). Given a partial state ŝt, the next partial state ŝt+1, the set
of norms to be checked N , and the set of observed actions Âctt at time t; the next partial state is
updated with the norm compliance information as follows:

ŝt+1 ← ŝt+1 ∪ complianceUpdate(ŝt+1, ŝt, N, Âctt)

where complianceUpdate is a function that updates the normative state:

complianceUpdate(ŝt+1, ŝt, N, Âctt) =

⋃

∀n∈N :αn∈ŝt+1∧
(¬αn∈ŝt∨

(αn∈ŝt∧target(n)6∈Âctt∧¬βn∈ŝt))

¬βn

⋃

⋃
∀n∈N :αn∈ŝt+1∧αn∈ŝt∧
(target(n)∈Âctt∨βn∈ŝt)

βn

When the monitor knows that a norm has just become relevant, then it defines that the target
has not been observed —i.e., if αn ∈ ŝt+1 and ¬αn ∈ ŝt, then literal ¬βn is added to the next
partial state ŝt+1. If the norm was already relevant in the previous time step, then the norm monitor
checks the actions executed at time t to determine if the target has been observed. If so, it defines
that the target has been observed —i.e., if αn ∈ ŝt+1, αn ∈ ŝt and target(n) ∈ Âctt, then literal
βn is added to ŝt+1. If the target was not observed at time t, then any information (if any) about the
observance of the norm target is copied from the previous partial state —i.e., if αn ∈ ŝt+1, αn ∈ ŝt,
then: literal βn is added to ŝt+1 iff βn ∈ ŝt and target(n) 6∈ Âctt; or literal ¬βn is added to ŝt+1 iff
¬βn ∈ ŝt.

Finally, the information about relevant norms, actions executed and norm compliance is taken
into account to determine which norms have been violated and fulfilled.

Definition 11 (Norm Compliance Check). Given a partial state ŝt, the previous partial state ŝt−1,
a norm n and a set of actions observed at time t (Âctt) , the norm is defined as:

fulfilled iff αn ∈ ŝt and deon(n) = O and target(n) ∈ Âctt (10a)
fulfilled iff ¬αn ∈ ŝt and αn ∈ ŝt−1 and deon(n) = F ∧ ¬βn ∈ ŝt−1 and target(n) ∈ control(S) (10b)
violated iff αn ∈ ŝt and deon(n) = F and target(n) ∈ Âctt (10c)
violated iff ¬αn ∈ ŝt and αn ∈ ŝt−1 and deon(n) = O ∧ ¬βn ∈ ŝt−1 and target(n) ∈ control(S) (10d)
unknown otherwise

6. Note that by Equation 4, partial states are initialised in each time step, and in accordance with Equation 6 no literal
relating to a proposition αn can be considered as an invariant.

163

CRIADO

Just by observing the actions executed, the norm monitor may determine which relevant obliga-
tions are fulfilled and which prohibitions are violated. When the monitor knows that a norm has ex-
pired, then it may be able determine the violation of obligations and fulfilment of prohibitions based
on the available information about the performance of the norm target. In particular, if an obligation
norm expires and the target was not executed while it was relevant, then the obligation is violated.
Similarly, when the target of a prohibition norm is not executed while the norm is relevant, then the
prohibition is fulfilled. Since the monitor only has partial knowledge of the actions executed, the
fact that the target of a norm has not been observed does not mean that it has not been executed.
Therefore, the monitor can only determine that obligations are violated and prohibitions are fulfilled
when the execution of their targets is controlled by selected resources (target(n) ∈ control(S)).

Theorem 2 (Soundness). The norm compliance checking is sound; i.e., the norm monitor only
detects violations (vs. fulfilments) when agents do not (vs. do) comply with norms.

Proof. By exhaustion, we consider the fowling cases:

1. Definition 11 uses the same condition to detect the fulfilment of obligation norms and the
violation of prohibition norms (corresponding to cases (10a) and (10c), respectively). Hence,
in our proof we consider a norm n and assume that at time t the current partial state is ŝt, the
monitor observes actions Âctt and that case (10a) or (10c) applies (i.e., the monitor deter-
mines that n has been violated or fulfilled depending on its deontic modality), which entails
that target(n) ∈ Âctt and αn ∈ ŝt. There are two main reasons why this detection could not
be sound:

1.1. The action target(n) might have not been executed at time t (target(n) 6∈ Actt), which
is not possible since Âctt ⊆ Actt by Equation 2.

1.2. The norm was not relevant in st. There are two reasons why a norm might not be
relevant at time t:

1.2.1. The norm has never become relevant; i.e., the activation condition was never satis-
fied. This entails that at some point in the past t′ < t the activation condition did
not hold ∃l ∈ activ(n) : st′ � l̄ but l ∈ ŝt′ which according to Theorem 1 is not
possible as st′ � ŝt′ .

1.2.2. The norm was relevant but expired; i.e., at some point in the past t′ < t the expira-
tion condition has been satisfied st′ � expir(n) but ∃l ∈ expir(n) : l̄ ∈ ŝt′ which
is not possible since st′ � ŝt′ .

2. Definition 11 also uses the same condition to detect the fulfilment of prohibition norms and the
violation of obligation norms (corresponding to cases (10b) and (10d), respectively). Consider
a norm n and assume that case (10b) or (10d) applies (i.e., the monitor determines that the
norm has expired at time t and that it has been fulfilled or violated), which entails that: ¬αn ∈
ŝt and αn ∈ ŝt−1, target(n) ∈ control(S), and ¬βn ∈ ŝt−1. There are three main reasons
why this detection could not be sound:

2.1. The action target(n) was executed at some point t′ < t, but it was not observed
(target(n) 6∈ Âctt′), which is not possible since target(n) ∈ control(S) and Âctt′ =
Actt′ ∩ control(S) by Equation 2.

164

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

2.2. The action target(n) was executed and observed at some point t′ < t while the norm
was relevant but the monitor did not know that the norm was relevant. In such case αn 6∈
ŝ′t and by Definition 10 no information about the compliance with n would have been
added to ŝt′+1 making impossible that ¬βn ∈ ŝt−1, which contradicts our hypothesis.

2.3. The norm has not expired. There are two reasons why a norm might not expire:

2.3.1. The norm was never relevant or the norm was relevant but expired in the past, which
have already being demonstrated in case 1.2 not to be possible.

2.3.2. The norm still relevant, which is not possible as it entails that at some point t′ < t
∃l ∈ expir(n) : st′ � l̄ and l ∈ ŝt′ which according to Theorem 1 is not possible.

Example 9. The norm monitor uses the information about ŝ0 to update the new partial state with
the normative information as follows:

ŝ1 = {¬open, αn1 , αn2 ,¬αn3 ,>,¬⊥}

In particular, the norm monitor determines that the two unconditional norms are relevant adding
αn1

and αn2
to the next partial state. The monitor also determines that norm n3 is not relevant as

its expiration condition was true in ŝ0.
No norm was relevant in the initial state and the monitor determines that the norms n1 and n2

have just become relevant in t = 1 updating ŝ1 with ¬βn1 and ¬βn2 to reflect that the targets of
these norms have not been observed yet:

ŝ1 = {¬open, αn1
, αn2

,¬αn3
,¬βn1

,¬βn2
,>,¬⊥}

The monitor does not need to check norm compliance at t = 0 as no action was observed and no
norm was relevant.

In the next time step (t = 1), action increase is executed violating norm n1. The monitor cannot
observe this action through deployed resources (Âct1 = ∅) and the next partial state is defined as:

ŝ2 = {¬open, αn1
, αn2

,¬βn1
,¬βn2

,>,¬⊥}

In this case, the monitor knows that norms n1 and n2 are still relevant and compliance informa-
tion about them is copied from the previous partial state, whereas the relevance of norm n3 is
unknown. Again the monitor cannot check norm compliance as no action or norm expiration has
been observed and the violation of n1 is not detected.

In the next time step (t = 2), action open is executed violating norm n3. This action is observed
through S (Âct2 = {open}) and the next state is defined as:

ŝ3 = {open, αn1 , αn2 ,¬βn1 ,¬βn2 ,>,¬⊥}

However, the violation of n3 is also undetected as the monitor does not know that norm n3 was
relevant at t = 2 (i.e., αn3

6∈ ŝ2). In this example, the two norm violations are not detected due to
the fact that deployed resources have not been properly selected. Next, we describe a method by
which the norm monitor can select the resources deployed to maximize the detection of violations
and fulfilments.

165

CRIADO

3.2 Selection of the Resources to be Deployed

The goal of the monitor is to select the resources to be deployed to maximize the detection of norm
violations and fulfilments in accordance with the process defined in the previous section. This is an
optimization problem such as:

max
S⊆R

v(S) subject to cost(S) ≤ b

where v is a function determining the value of a set of resources to norm monitoring.

3.2.1 RESOURCE VALUE

There are different ways in which the value of resources can be computed. In this paper we propose
to calculate the value of a set of resources as an estimation of the number of norms that can be
checked through these resources; i.e., the resources coverage of norm compliance as follows:

v(S) =
∑
n∈N

cover(S, n)

where cover(S, n) is the coverage of a norm provided by a set of resources, which measures the
elements (i.e., actions and literals) belonging to a norm that can be observed through a set of re-
sources. The norm monitoring process described in the previous section determines that to detect
compliance with a norm its target must be controlled by deployed resources and its activation and
expiration conditions must be discernible at least.

Definition 12 (Coverage). Given a norm n ∈ N , and a set of resources S; we define its coverage
(cover(S, n)) as the ratio quantifying how many of the elements needed to determine compliance
with n are discernible through or controlled by S as follows7:

- {target(n)} ∩ control(S) - + - activ(n) ∩ dis(S) - + - expir(n) ∩ dis(S) -
1+ - activ(n) - + - expir(n) -

where - is a modified version of the set cardinality defined as follows:

- X -=
{

0 iff X = {⊥} or X = {>}
|X| otherwise

Example 10. Now let us assume that the monitor has the capability to select the resources to be
deployed to maximize the detection of norm violations and fulfilments. In particular, the value of the
different sets of resources is calculated as follows:

v({r1}) =
1

1
+

1

1
+

0 + 1 + 1

3
=

8

3

v({r2}) =
0

1
+

0

1
+

1 + 0 + 0

3
=

1

3

v({r1, r2}) =
1

1
+

1

1
+

1 + 1 + 1

3
=

9

3

7. Our aim is not to analyse operations for information fusion, as this is done by Bloch (1996). We just make use of a
ratio since it is well-known and efficient calculation satisfying submodularity.

166

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

Obviously, the set of resources that offers a better coverage of the three norms is the set {r1, r2}.
Deploying these two resources would allow the monitor to observe the target of all norms and the
conditions under which these norms become relevant; i.e., with these resources all norms would
be perfectly detectable. However, the cost of this set exceeds the monitor budget and the monitor
selects the best alternative satisfying the budget condition, which is the set {r1}. This resource
allows the norm monitor to observe the target of the unconditional norms; i.e., two of the norms are
perfectly detectable. Note that resource r2 only offers a partial coverage of the conditional norm
and no coverage of the two unconditional norms, being the resource with less potential to help the
monitor to detect norm violations and fulfilments.

If resource r1 is selected, then when action turnOn is executed at t = 0, the monitor would
observe it (Âct0 = {turnOn}) and infer the next partial state as follows:

ŝ1 = {onAC ,¬tDown,¬tUp, αn1 , αn2 ,¬αn3 ,¬βn1 ,¬βn2}

In this case the monitor knows that the temperature has not changed, as literals ¬tDown and ¬tUp
are invariants. The monitor does not need to check norm compliance since no norm is relevant at
t = 0.

In the next time step (t = 1), action increase is executed violating norm n1. The monitor
observes this action through r1 (Âct1 = {increase}) and the next partial state is defined as:

ŝ2 = {onAC ,¬tDown, tUp, αn1 , αn2 , αn3 , βn1 ,¬βn2 ,¬βn3}

In this case, onAC and ¬tDown are invariants. When the monitor checks norm compliance it
detects the violation of norm n1 and registers that the action in its target has been observed while
it was relevant adding βn1

to ŝ2.
In the next time step (t = 2), action open is executed violating norm n3. The monitor does not

observe this action through r1 (Âct2 = ∅) and the next partial state is defined as:

ŝ3 = {onAC ,¬tDown, tUp, αn1
, αn2

, αn3
, βn1

,¬βn2
,¬βn3

}

In this case, onAC ,¬tDown and tUp are invariants. The violation of norm n3 is not detected as
the action in the target cannot be observed. However, thanks to our resource selection method the
monitor has been able to detect one of the two norm violations.

3.2.2 RESOURCE SELECTION

Finding the optimal solution to the resource selection problem is NP-hard8 and infeasible for real
world problems. However, the resource value function presents an interesting property that allows
us to compute efficient suboptimal solutions with a given guarantee. In particular, this function is
submodular; i.e., it exhibits a diminishing property: selecting a resource when few resources have
been selected has more value (i.e., provides more information about norm violations and fulfilments)
than selecting it after more resources have been selected. More formally, we can prove that:

Theorem 3 (Submodularity). For all sets of resourcesA ⊆ B ⊆ R and resource s ∈ R\B, it holds
that:

v(A ∪ {s})− v(A) ≥ v(B ∪ {s})− v(B)

Proof. Again we will consider the different cases.

8. This problem can be modelled as a submodular maximization problem subject to knapsack constraints, which is
NP-hard (Iyer & Bilmes, 2013).

167

CRIADO

1. Firstly, let us consider the case when v(A ∪ {s}) − v(A) = 0; i.e., when adding s to A
does not improve the value. This happens when there is not an element (action or discernible
literal) in s such that this element is not in A and it is contained by a norm. More formally,
@e : (e ∈ control(s) ∨ e ∈ dis(s)) ∧ e 6∈ control(A) ∧ e 6∈ dis(A) ∧ (e ∈ activ(N) ∨ e ∈
expir(N) ∨ e ∈ target(N)). Since A ⊆ B, it is obvious to demonstrate that @e : (e ∈
control(s)∨e ∈ dis(s))∧e 6∈ control(B)∧e 6∈ dis(B)∧(e ∈ activ(N)∨e ∈ expir(N)∨e ∈
target(N)) and hence v(B ∪ {s})− v(B) = 0.

2. Secondly, let us consider the case when v(A ∪ {s}) − v(A) > 0; i.e., when adding s to A
improves the value. This happens when the set E = {e|(e ∈ control(s) ∨ e ∈ dis(s)) ∧ e 6∈
control(A)∧ e 6∈ dis(A)∧ (e ∈ activ(N)∨ e ∈ expir(N)∨ e ∈ target(N))} is not empty.
In this case v(A ∪ {s}) − v(A) > 0. Since A ⊆ B, it is possible that all elements in E are
contained in B and hence v(B ∪ {s}) − v(B) = 0 which is lower than v(A ∪ {s}) − v(A).
The other extreme situation is that all the elements in E are not contained in B, in this case
it is trivial to demonstrate that v(A ∪ {s}) − v(A) = v(B ∪ {s}) − v(B). In any other case
(where some elements of E are in B) v(A ∪ {s})− v(A) > v(B ∪ {s})− v(B).

In the following section, we describe the algorithm executed by our norm monitor, including a
greedy function for selecting deployed resources that leverages this submodularity property.

4. Norm Monitoring Algorithms

Algorithm 1 contains the pseudocode executed by the norm monitor. The monitor performs an
initialisation step to select the resources to be deployed given a budget b (line 1). In each time
step, the monitor uses the selected resources to observe the actions executed and properties of the
world (lines 5 and 7), updates the knowledge about the state of the world (lines 5-9), and checks
for each norm if it has been violated and/or fulfilled (lines 10-25). Function OBSERVEACTIONS

returns observed executed actions as defined by Equation 2 and Function OBSERVEPROPOSITIONS

returns the truth value of sensed propositions as defined by Equation 4. The asymptotic cost of the
norm monitoring process (corresponding to the while process in lines 4-26) is given by the cost of
checking for each norm if it is relevant (line 7) and if its target has been executed (line 8). More
formally, the cost is given by O(|N | × |P |) or O(|N | × |A|), whichever is bigger. The resource
selection algorithm and its cost is described below.

Function 2 contains the pseudocode for the resource selection function. In particular, our mon-
itor uses the CELF algorithm (Leskovec et al., 2007) to select deployed resources. The CELF
algorithm performs: (i) a greedy search that uses the value to rank resources ignoring costs (lines
2-5) —i.e., the resource with the highest value is selected and added to the solution, this process
is followed until it is not possible to add more resources without exceeding the budget; and (ii) a
greedy search that uses the ratio value by cost to rank resources (lines 6-9) —i.e., the resource with
the highest ratio value by cost is selected and added to the solution, this process is followed until it
is not possible to add more resources without exceeding the budget. Then, the algorithm returns the
solution with the highest value (line 10). This algorithm is known to obtain good approximate solu-
tions to submodular maximization problems. In particular, it has been demonstrated that the CELF
algorithm achieves an approximation guarantee of 1

2(1− 1
e), whereas the empirical results show that

168

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

Algorithm 1 Norm Monitoring Algorithm
Require: R,N, b, s0

1: S ← RESOURCESELECTION(R,N, b)
2: t← 0
3: ŝ−1 ← ∅
4: while true do
5: Âctt ← OBSERVEACTIONS(S)

6: ŝt ← ŝt ∪ pre(Âctt)
7: ŝt+1 ← OBSERVEPROPOSITIONS(S) ∪ post(Âctt) ∪ inv(ŝt)
8: ŝt+1 ← ŝt+1 ∪ relevanceUpdate(ŝt, N)

9: ŝt+1 ← ŝt+1 ∪ complianceUpdate(ŝt+1, ŝt, N, Âctt)
10: for all n ∈ N do
11: if αn ∈ ŝt ∧ target(n) ∈ Âctt then
12: if deon(n) = O then
13: Obligation Fulfilment
14: else
15: Prohibition Violation
16: end if
17: end if
18: if ¬αn ∈ ŝt ∧ αn ∈ ŝt−1 ∧ ¬βn ∈ ŝt ∧ target(n) ∈ control(S) then
19: if deon(n) = F then
20: Prohibition Fulfilment
21: else
22: Obligation Violation
23: end if
24: end if
25: end for
26: end while

169

CRIADO

this bound is much tighter. The asymptotic cost the algorithm is O(|R|2 × |N | × |P | × |A|). Note,
however, that the submodular property can be exploited to reduce the number of resource valuations
needed.

Function 2 Resource Selection Algorithm
1: procedure RESOURCESELECTION(R,N, b)
2: S1 ← ∅
3: while ∃r ∈ R \ S1 : cost(S ∪ {r}) ≤ b do
4: S1 ← S1 ∪ argmin

r∈R\S1:cost(S∪{r})≤b
v(S ∪ {r})

5: end while
6: S2 ← ∅
7: while ∃r ∈ R \ S2 : cost(S ∪ {r}) ≤ b do

8: S2 ← S2 ∪ argmin
r∈R\S2:cost(S∪{r})≤b

v(S ∪ {r})
cost(r)

9: end while
10: return arg max

s∈{S1,S2}
v(s)

11: end procedure

5. Empirical Evaluation

In this section, we compare our resource-bounded monitor against tractable and intractable op-
timization approaches for selecting deployed resources. In particular, we compared our monitor
against the following monitors:

• A max-resources monitor that maximizes the number of resources selected by selecting the
resources with the lowest cost until no more resources can be selected according to the budget
condition.

• A dynamic monitor using the algorithm proposed by Criado and Such (2016) to predict the
actions of agents in each time step and select the resources to be deployed in each time
step using dynamic programming according to the number of violations/fulfilments that are
predicted to be observed through each resource. In particular, the dynamic monitor uses
dynamic programming to select online the resources as in a 0-1 knapsack problem. To be
able to use this dynamic programming algorithm the costs of the resources need to be integers
(although the solution we propose on this paper does not require this constraint).

• An optimal monitor that obtains the best results in terms of the detection of norm violations
and fulfilments at run-time. Note this monitor is intractable for reasonable-sized problems as
it is obtained by testing exhaustively all resource sets satisfying the budget condition.

We have evaluated our proposal in a series of random experiments, which allow us to evaluate
our proposal under a wide range of different situations and parameter values. For comparability
reasons, we have also evaluated our proposal using benchmark problems.

170

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

5.1 Random Experiments

We implemented a simulator in which a set of agents perform actions in an environment randomly
generated. We conducted experiments in which the number of resources R took a random value
within the J10, 50K interval and the number of agents G is set to 100. Besides that, to be able to
compare with the optimal monitor, we also considered small scenarios only, in which the number
of resources R took a random value within the J5, 10K and the number of agents G is set to 5, as
exploring all the subsets of resources is intractable for most of the cases with the default intervals.

The environment is defined as propositional symbols that are randomly initialised as being true
or false. The number of propositions P takes a random value within the J2R, 10RK interval.

Actions allow agents to change the state of the environment. At the beginning of each simu-
lation, a set of actions is randomly generated. For each action 〈pre, post〉 the elements pre and
post are defined as a set of consistent literals where each literal is defined over a randomly selected
proposition from P which is negated with a 50% probability. To avoid that actions have too many
constraints, which would be unrealistic and make actions to be only executed on a few situations
making the monitoring problem over simplistic, the number of literals in pre and post follows a
Poisson9 distribution with λ set to 1. The number of actions A takes a random value within the
JR, 2P K interval (i.e., there is at maximum one action per each truth value of a proposition and at
minimum one action per resource so there are no resources that do not control any action). Besides
these actions, a NOP action, which has empty preconditions and postconditions, is created. In each
step of the simulation, each agent selects randomly one action to execute.

Agents’ actions are regulated by a randomly-created set of norms. For each norm 〈deontic,
target , activ, expir〉 the elements are defined as follows: deontic is randomly initialised with a
deontic operator; activ and expir are defined as a set of consistent literals where each literal is
defined over a randomly selected proposition from P which is negated with a 50% probability; and
action is randomly initialised with an action from A. Again, to allow that norms become relevant,
the number of literals in activ and expir follows a Poisson distribution with λ set to 1. The number
of norms takes random value within the JA/2, AK (i.e., there is at maximum one norm per each
action).

We randomly assign actions and propositions to resources. In particular, actions and proposi-
tions are uniformly distributed across resources with an overlap randomly defined within the interval
[0%, 10%]. The cost of each resource is randomly defined as 1 plus a random noise generated by
a Poisson distribution with λ depending on the size of the resource (i.e., the more elements in the
control and sensor sets, the more expensive the resource is). Finally, we randomly set the budget
ratio, which is the budget divided by the cost of all the resources in a simulation, to a random value
within the [0, 1] interval.

5.1.1 BUDGET

To analyse the performance of monitors with regard to their budget, we performed an experiment
varying the budget ratio. In the experiment, we performed 1000 runs.

9. Different distributions could be employed, we have just make use of a well-known distribution for generating natural
numbers.

171

CRIADO

Table 1 shows the offline norm compliance analysis; i.e., the average percentage of norms that
are perfectly and partially detectable per each type of monitor10. This analysis cannot be performed
in case of the dynamic monitor as it selects a different set of resources in each time step and the
detectability of norms varies at run-time. Note that the resource-bounded monitor maximises the
percentage of detectable norms. However, this does not necessarily entails that it detects more
violations and fulfilments at run-time, because some norms may never become relevant or some
actions may never be executed during the simulations. This also explains why the percentage of
detectable norms for the optimal monitor may be lower than for the other monitors (e.g., when
the budget ratio is set to 100% the optimal monitor achieves on average a 63+21 percentage of
detectable norms, whereas the resource-bounded and the max-resources achieve on average a 91+1
percentage of detectable norms). Recall that the optimal monitor is obtained by exhaustively trying
all possible combinations of resources that satisfy the budget condition and selecting one of the
combinations that achieve the best results online (not offline); i.e., that detects more violations and
fulfilments. Note that there may be more than one set of resources that obtains the best results at
run-time. For example, if the budget allows the optimal monitor to select all resources, then it has
full observation capabilities and can detect all norm violations and fulfilments at run-time. However,
note that due to the overlap between resources and to the fact that not all norms become relevant
and not all actions are executed in the simulations, it is also possible that the norm monitor does not
need to have full observation capabilities to detect all norm violations and fulfilments happening
at run-time (i.e., it is possible there are other combinations of resources that also detect all norm
violations and fulfilments). As what is observed through resources at run-time depends on the run-
time circumstances (i.e., location, agent behaviour, etc.), we analyse the run-time performance of
the four monitors below.

Figure 1 shows the 95% confidence intervals for the percentage of detected violations and fulfil-
ments at run-time for each monitor. Obviously, the detection of violations and fulfilments increases
as the budget increases and more resources are deployed, which increases the information available
to all monitors. Our resource-bounded monitor outperforms simple optimization approaches, offer-
ing on average a 7%-16% performance increase over a max-resources monitor. As can be observed
in the figure, the confidence intervals obtained by our monitor and the max-resources monitor do not
overlap (with the exception of scenarios with no observability and complete observability), which
gives us an indication of the fact that these differences are significative. Indeed, a t-test (α < 0.05)
confirmed this hypothesis. Our monitor only suffers a 1%-4% decrease over a dynamic monitor,
which, as next shown, is a costly solution that selects deployed resources in each time step. In this
case, a t-test (α < 0.05) failed to demonstrate that there are significant differences between the
results obtained by our monitor and a dynamic monitor. When compared to an optimal monitor in
small scenarios, our resource-bounded monitor is near optimal (it detects 89% of the violations and
fulfilments detected by an optimal monitor). Note that the optimal monitor detects more violations
and fulfilments at run-time since it has a better coverage of the norms that are actually violated and
fulfilled, but it is intractable for reasonably sized problems.

Figure 2 shows the 95% confidence intervals for the time (in ms) needed by each norm mon-
itor. This time includes the time needed for selecting deployed resources and the time needed for
monitoring norm compliance. Given that the optimal monitor is obtained by exhaustively trying all
resource sets satisfying the budget condition, this type of monitor does not select deployed resources

10. For compactness, Table 1 does not include the 95% confidence intervals for the average percentage of norms that are
perfectly and partially detectable. However, these intervals are lower or equal to 1% in all cases.

172

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

Budget Ratio Resource-bounded Max-Resources Optimal
0% 0+0 0+0 0+0

20% 11+4 7+4 10+5

40% 24+16 20+12 23+17

60% 41+23 38+18 41+23

80% 62+21 61+18 50+24

100% 91+9 91+9 63+21

(a) R ∈ J5, 10K and G = 5

Budget Ratio Resource-bounded Max-Resources
0% 0+0 0+0

20% 30+14 26+13

40% 52+19 50+16

60% 67+18 67+15

80% 79+15 78+13

100% 89+11 89+11

(b) R ∈ J10, 50K and G = 100

Table 1: Average Percentage of Detectable Norms (Perfectly + Partially)

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%
0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

Resource-Bounded Dynamic Max-Resources Optimal

(a) R ∈ J5, 10K and G = 5 (b) R ∈ J10, 50K and G = 100

Figure 1: 95% Confidence Intervals for the Percentage of Detected Violations and Fulfilments (Y-
axis) per Budget Ratio (X-axis)

and displaying its execution time makes no sense. The execution time of both resource-bounded,
max-resources and dynamic monitors increases as size of the problem increases. However, this in-
crease is significantly higher in case of the dynamic monitor, because predicting agent actions to
adapt the resources to be deployed in each time step requires considerably more time. On average
the resource-bounded monitor requires 71%-94% less time than a dynamic monitor, while obtaining
a reasonably good performance in terms of the percentage of violations and fulfilments detected.

173

CRIADO

1

10

100

1000

10000

100000

0% 20% 40% 60% 80% 100%

1

10

100

1000

10000

100000

0% 20% 40% 60% 80% 100%

Resource-Bounded Dynamic Max-Resources

(a) R ∈ J5, 10K and G = 5 (b) R ∈ J10, 50K and G = 100

Figure 2: 95% Confidence Intervals for the Execution Time in ms and Logarithmic Scale (Y-axis)
per Budget Ratio (X-axis)

5.1.2 RESOURCES

To analyse the performance of monitors with regard to the number of resources, we performed
different experiments varying the number of resources from 5 to 10 in small scenarios and from 10
to 50 in large scale scenarios. Again, we performed 1000 runs of the experiment. Note that this
experiment is aimed at studying how well the different monitors scale with respect to an increasing
number of resources. Hence, in the following we report the results obtained for the percentage of
detected violations and fulfilments and the execution time.

Figure 3 shows the percentage of detected violations and fulfilments at run-time for each mon-
itor. As the number of resources increases, the probability of overlaps between resources also
increases, which entails that more violations and detections can be detected for all monitors. Note
also that our resource-bounded monitor scales better with the number of resources; i.e., its per-
formance becomes closer to the dynamic monitor as the number of resources increases. Figure 4
shows the time needed by each norm monitor. Obviously, the more resources, the more time is
needed to select resources and to check norm compliance as more actions are observed. On average
the resource-bounded monitor requires 66%-88% less time than a dynamic monitor, while it detects
92%-94% of the violations detected by a dynamic monitor.

5.1.3 NORMS

To analyse the performance of monitors with respect to the number of norms, we performed an
experiment varying the number of norms from 2 to 100 in small scenarios and from 5 to 995 in
large scale scenarios. Again, we performed 1000 runs of the experiment.

Figure 5 shows the percentage of detected violations and fulfilments at run-time for each mon-
itor. As the number of norms increases, the difference between the resource-bounded and the dy-
namic monitor reduces. As the number of norms increases, the number of norm violations and
fulfilments increases and almost any resource can detect a violation or fulfilment at any point in
time. Regarding the execution time (see Figure 6), note the dynamic monitor is less affected by
the number of norms and, as a result, its execution time in small scenarios remains quite stable
regardless of the increase of norms. On the contrary, the execution time of resource-bounded and

174

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

0

20

40

60

80

100

10 15 20 25 30 35 40 45

0

20

40

60

80

100

5 6 7 8 9 10

Resource-Bounded Dynamic Max-Resources Optimal

(a) G = 5 (b) G = 100

Figure 3: 95% Confidence Intervals for the Percentage of Detected Violations and Fulfilments (Y-
axis) per number of Resources (X-axis)

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

10 15 20 25 30 35 40 45 50

H
u
n
d
re
d
s

0.01

0.1

1

10

100

1000

5 6 7 8 9 10

H
u
n
d
re
d
s

Resource-Bounded Dynamic Max-Resources

(a) G = 5 (b) G = 100

Figure 4: 95% Confidence Intervals for the Execution Time in ms and Logarithmic Scale (Y-axis)
per number of Resources (X-axis)

max-resources monitors depends on the number of norms and they may even need more time than
a dynamic monitor to monitor norms. Note this only happens on small scenarios; in large scale
scenarios, the increase on the number of agents and resources entails that the dynamic monitor is
the monitor requiring significantly more time.

5.1.4 PROPOSITIONS

To analyse the performance of monitors with respect to the number of propositions, we performed
an experiment varying the number of propositions from 10 to 100 in small scenarios and from 260
to 450 in large scale scenarios. Again, we performed 1000 runs of the experiment.

As the number of propositions increases, the difference between the resource-bounded and the
dynamic monitor decreases and they obtain almost the same performance (see Figure 7). Regarding
the execution time (see Figure 8), all monitors are affected by this factor in a similar way. On

175

CRIADO

0

20

40

60

80

100

0 200 400 600 800

0

20

40

60

80

100

0 20 40 60 80 100

Resource-Bounded Dynamic Max-Resources Optimal

(a) R ∈ J5, 10K and G = 5 (b) R ∈ J10, 50K and G = 100

Figure 5: 95% Confidence Intervals for the Percentage of Detected Violations and Fulfilments (Y-
axis) per Number of Norms (X-axis)

0.01

0.1

1

10

100

1000

10000

100000

0 200 400 600 800

H
u
n
d
re
d
s

0.01

0.1

1

10

100

1000

0 20 40 60 80 100

H
u
n
d
re
d
s

Resource-Bounded Dynamic Max-Resources

(a) R ∈ J5, 10K and G = 5 (b) R ∈ J10, 50K and G = 100

Figure 6: 95% Confidence Intervals for the Execution Time in ms and Logarithmic Scale (Y-axis)
per Number of Norms (X-axis)

average, the resource-bounded monitor requires 68%-85% less time than a dynamic monitor, while
it detects 93%-98% of the violations detected by a dynamic monitor.

5.1.5 ACTIONS

To analyse the performance of monitors with respect to the number of actions, we performed an
experiment varying the number of actions from 5 to 195 in small scenarios and from 10 to 505 in
large scale scenarios. Again, we performed 1000 runs of the experiment.

As the number of actions increases, the performance of the dynamic monitor deteriorates and
resource-bounded detects more violations and fulfilments (see Figure 9). This is due to the fact that
more action possibilities make impossible for the dynamic monitor to predict the next action to be
executed. Regarding the execution time (see Figure 8), the more actions, the more time is needed
to select deployed resources. The resource-bounded monitor requires 52%-90% less time than a
dynamic monitor.

176

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

0

20

40

60

80

100

250 300 350 400 450

0

20

40

60

80

100

10 30 50 70 90

Resource-Bounded Dynamic Max-Resources Optimal

(a) R ∈ J5, 10K and G = 5 (b) R ∈ J10, 50K and G = 100

Figure 7: 95% Confidence Intervals for the Percentage of Detected Violations and Fulfilments (Y-
axis) per Number of Propositions (X-axis)

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

250 300 350 400 450

H
u
n
d
re
d
s

0.01

0.1

1

10

100

1000

10 30 50 70 90

H
u
n
d
re
d
s

Resource-Bounded Dynamic Max-Resources

(a) R ∈ J5, 10K and G = 5 (b) R ∈ J10, 50K and G = 100

Figure 8: 95% Confidence Intervals for the Execution Time in ms and Logarithmic Scale (Y-axis)
per Number of Propositions (X-axis)

5.2 Benchmark Domains

To conduct a more comparable experimentation, we used four domains from a benchmark dataset
provided by Ramı́rez and Geffner (2009), comprising of hundreds of problem descriptions. In par-
ticular, we used the domains: blocks-words, easy-grid-navigation, intrusion-detection, and logistics.
These domains will allow future research on resource-bounded norm monitoring to compare against
our approach and have been used in similar problems as plan recognition with limited observation
capabilities (Keren, Gal, & Karpas, 2016), monitoring commitment abandonment (Pereira, Oren,
& Meneguzzi, 2017b, 2017a), and selecting norm monitoring placements with limited resources
(Krzisch, Oren, & Meneguzzi, 2017).

In each run, we randomly select one of the problem descriptions defined in the dataset and we
initialise the set of actions and propositions as the actions and propositions in the selected problem
description. In each time step of the simulation, an agent executes one action. In particular, the

177

CRIADO

0

20

40

60

80

100

0 100 200 300 400 500

0

20

40

60

80

100

0 50 100 150 200

Resource-Bounded Dynamic Max-Resources Optimal

(a) R ∈ J5, 10K and G = 5 (b) R ∈ J10, 50K and G = 100

Figure 9: 95% Confidence Intervals for the Percentage of Detected Violations and Fulfilments (Y-
axis) per Number of Actions (X-axis)

0.01

0.1

1

10

100

1000

10000

100000

1000000

0 100 200 300 400 500

0.01

0.1

1

10

100

1000

0 50 100 150 200

H
u
n
d
re
d
s

Resource-Bounded Dynamic Max-Resources

(a) R ∈ J5, 10K and G = 5 (b) R ∈ J10, 50K and G = 100

Figure 10: 95% Confidence Intervals for the Execution Time in ms and Logarithmic Scale (Y-axis)
per Number of Actions (X-axis)

agent uses a Heuristic Search Planner to decide its actions and achieve the goal in the problem
description11.

Note that these problems do not contain any norm, so we randomly create a set of norms in each
run. Again, each norm 〈deontic, target , activ, expir, 〉 is defined as follows: deontic is randomly
initialised with a deontic operator; activ and expir are defined as a set of consistent literals where
each literal is defined over a randomly selected proposition from the domain which is negated with a
50% probability; and action is randomly initialised with an action from the domain. Again, to allow
that norms become relevant, the number of literals in activ and expir follows a Poisson distribution
with λ set to 1. The number of norms takes random value within the J1, AK, where A is the number
of actions in a problem domain.

11. The simulation is executed 50 steps, which ensures that the goal in the problem description is achieved. When the
goal in the problem description has been achieved we randomly generate a new goal for that particular problem and
situation.

178

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

We also create a set of resources by randomly assigning uniformly actions and propositions
to resources with an overlap randomly defined within the interval [0%, 10%]. The cost of each
resource is again defined as 1 plus a random noise generated by a Poisson distribution depending
on the resource size. In each simulation the number of resources R took a random value within the
J10, AK interval.

Note that the time needed for checking norm compliance and the offline norm compliance anal-
ysis do depend on the particular actions taken by agents in each environment. Therefore, in the
benchmark experiments we focus our attention on the online norm compliance analysis, as this pro-
cess is the only one affected by the actions executed by agents (which are determined by the problem
description). Again to analyse the performance of monitors with respect to their budget, we varied
budget ratio and conducted 1000 runs of each experiment. Figure 11 shows the 95% confidence
intervals for the percentage of detected violations and fulfilments for each monitor in each domain.
Our monitor obtains significant improvements over dynamic and max-resources monitors. Again,
this was confirmed by t-tests with α < 0.05. In particular, it obtains a 17%-114% improvement
over a dynamic monitor and a 7%-12% improvement over a max-resources monitor. We can also
observe that in three of these domains (namely block-words, easy-grid-navigation and logistics) the
performance of the dynamic monitor is noticeably worse than that of the other two monitors. This
is due to the fact that these domains are somewhat constrained (i.e., almost all actions are possible)
and it is not possible for the dynamic monitor to make a precise prediction about the next action to
be executed. Even when the budget is high and the dynamic monitor observes most of the actions
and environment propositions, the dynamic monitor cannot detect the violation of obligations and
the fulfilment of prohibitions as the selected resources change at run-time (i.e., it cannot be sure that
the target of relevant norms has not been executed). On the contrary, our resource-bounded monitor
shows a consistent good performance across all domains.

5.3 Summary

The conclusions of our evaluation are threefold:

1. Our resource-bounded monitor is more effective (i.e., detects more norm violations and ful-
filments) than a simple resource maximization approach. Both in the benchmark and in the
random experiments our monitor improved by a 7%-29% the detection of violations and ful-
filments when compared to a max-resources monitor.

2. Our monitor is slighting less effective than an optimal monitor. In particular, our monitor
detects an 83-89% of the violations and fulfilments detected by an optimal monitor. However,
an optimal approach is intractable for reasonably sized problems.

3. Our monitor is better suited for practical applications than the dynamic monitor since: (i)
the greedy approach is significantly more efficient than the dynamic approach, achieving a
77%-94% reduction in time for reasonable sized problems; (ii) our monitor offers guarantees
about the norms that are detectable, whereas the dynamic monitor does not because selected
resources are changed at run-time; (iii) our monitor obtains significantly better results in
somehow constrained domains (achieving a 17%-117% improvement in the detection of norm
violations and fulfilments), and similar results in over-constrained domains (suffering just
a 1%-8% decrease in the detection of norm violations and fulfilments); and (iv) in many
domains it is not feasible to change the resources monitored at run-time; e.g., in a smart home

179

CRIADO

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

Resource-Bounded Dynamic Max-Resources

(a) Blocks-words (b) Easy-grid-navigation

	

0	

20	

40	

60	

80	

100	

0%	 20%	 40%	 60%	 80%	 100%	
0	

20	

40	

60	

80	

100	

0%	 20%	 40%	 60%	 80%	 100%	

(c) Intrusion-detection (d) Logistics

Figure 11: 95% Confidence Intervals for the Percentage of Detected Violations and Fulfilments
(Y-axis) per Budget Ratio (X-axis)

environment it is not possible/easy to change the monitored resources once they have been
bought and installed.

6. Related Work

Our work has strong relations with norm representation, which have inspired our norm definition,
and norm enforcement mechanisms, which encompasses the norm monitoring problem considered
in this paper. In the following we briefly review the main literature in these two areas and position
the contributions of this paper with respect to them.

6.1 Normative Systems

The term normative system was defined by Alchourrón and Bulygin (1971) as a set of statements in
which there are some normative statements or norms.

Norms are usually formalised as specifications of deontic statements (defining an action as
obligatory, forbidden, or permitted) aimed at regulating the life of software and/or human agents
and the interactions among them (Rubino & Sartor, 2008). In particular, deontic logics (McNamara,

180

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

2014), which is the branch of symbolic logic focused on the formal analysis of norms and proposi-
tions about norms, is taken as a reference in many norm definitions. The standard version of deontic
logics (von Wright, 1981) assumes that norms are coherent; i.e., that there are no conflicts between
obligations, permissions and prohibitions. However, this assumption has been challenged by nu-
merous authors aiming at representing and reasoning about legal and regulatory domains (Hansen,
Pigozzi, & Van Der Torre, 2007; Dung & Sartor, 2011), giving rise to the development of variants
of deontic logics using priorities (Hansen, 2008), norm hierarchies (Boella & van der Torre, 2003),
etc. For the sake of clarity and simplicity, we base our norm definition on standard deontic logics
and our running example does not include conflicting norms. However, our paper is agnostic with
respect to the existence of conflicts, we do not constrain norms in a particular scenario to be conflict
free (it is up to de system designer to define such requirement) and we have carried out experiments
that include random norms that do not necessarily are conflict free. In scenarios with conflicting
norms, our monitor will detect the violation and/or fulfilment of more than one norm for a single
action executed, the decision of which norm prevails in this case is left to the norm enforcer entity,
which will determine if a sanction or reward is applicable depending on the circumstances (Criado,
Black, & Luck, 2016) or on the norm hierarchy (Boella & van der Torre, 2003).

Von Wright’s classical approach also assumes a “closed legal system” in which obligations and
prohibitions define exceptions to a default permission rule. Therefore, the notion of permission
norm is not necessary, since a permission to execute an action is just the non-existence of any obli-
gation or prohibition to perform that action. In this paper we also take this assumption as it is
consistent with socio-technical systems. However, legal and regulatory domains are usually more
complex (i.e., norm specifications are dynamic and formed by several normative systems), which
has led to interesting questions as the need for weak (implicit or default) permissions and strong (ex-
plicit) permissions (Alchourrón & Bulygin, 1981), norm dynamics (Alchourrón & Bulygin, 1971)
and defeasible logics (Governatori, Olivieri, Rotolo, & Scannapieco, 2013).

6.2 Norm Enforcement

Recent work has also addressed the problem of how to give a computational interpretation to norms
so that they can be used in the design and execution of different types of systems (Criado, Argente,
& Botti, 2011). In the following we describe proposals on this topic classified into off-line and
on-line norm enforcement.

6.2.1 OFF-LINE NORM ENFORCEMENT

The term off-line norm enforcement (also known as regimentation, see Fornara & Colombetti,
2008a; Grossi et al., 2007) covers works that are applied at design time to ensure that the resulting
systems will satisfy norms. These works can be further classified into mediation and compliance by
design.

Mediation approaches (Bradshaw et al., 2003) consist in making the violation of norms impos-
sible by controlling both the resources and the communication channel so that agents are prevented
from deviating from ideal behaviour. For example, Garcı́a-Camino, Rodrı́guez-Aguilar, Sierra, and
Vasconcelos (2006) proposed a formalism based on rules for representing constraints on agent be-
haviours. This formalism is conceived as a “machine language” for implementing other higher level
normative languages. As aforementioned, the regimentation of all actions can be not only diffi-
cult and/or costly, but also it may be inevitable or even preferable to allow agents to violate norms

181

CRIADO

(Castelfranchi, 2003). The reasons behind desirability of norm violations are either that it is impos-
sible to take a thorough control of all actions; or that it is possible to obtain higher benefits when
norms are occasionally violated.

Compliance by design approaches (Sadiq, Governatori, & Namiri, 2007) propose to incorpo-
rate norm compliance issues within systems design methodology. For example, Lu, Sadiq, and
Governatori (2007) have developed a method to quantitatively measure the compliance degree of
a given business process model against a set of control objectives or norms. Within the context
of socio-technical systems, Kafali, Ajmeri, and Singh (2016) proposed a revision tool (based on
model checking) to ensure that specifications of socio-technical systems satisfy privacy norms. Our
proposal, also performs some off-line analysis of norm compliance, but our aim is not to make the
violation of norms impossible, but to determine which norms can be enforced on-line.

6.2.2 ON-LINE NORM ENFORCEMENT

The term on-line norm enforcement includes proposals on the enforcement of norms at run time.
Given that our proposal falls into this category, this section reviews in more detail the most relevant
control mechanisms that allow norms to have an effective influence on agent behaviours at run-time.

Most of the existing proposals on practical norm enforcement (Esteva, Rosell, Rodrı́guez-
Aguilar, & Arcos, 2004; Cardoso & Oliveira, 2007; Criado, Argente, Noriega, & Botti, 2013;
Vasconcelos, Garcı́a-Camino, Gaertner, Rodrı́guez-Aguilar, & Noriega, 2012; Gaertner, Garcia-
Camino, Noriega, Rodriguez-Aguilar, & Vasconcelos, 2007) assume that monitors have unlimited
resources to observe the actions performed by agents and the environment. In that case, checking
norm compliance is easy as monitors have complete information about norm violations and fulfil-
ments.

Exceptions to these complete monitoring approaches are four recent proposals (Bulling, Das-
tani, & Knobbout, 2013; Alechina et al., 2014; Criado & Such, 2017, 2016). Bulling et al. (2013)
addressed the partial observability problem combining different norm monitors to build ideal mon-
itors (i.e., monitors that together are able to detect the violation of a given set of norms). Alechina
et al. (2014) proposed to synthesise an approximate set of norms that can be monitored given the
observational capabilities of a monitor. However, there are circumstances in which norms cannot
be modified (e.g., contract and law monitoring) or ideal monitors are expensive and/or not feasi-
ble. Criado and Such (2017) addressed partial observability by proposing methods to reconstruct
the unobserved actions, but ignore the problem of resource selection and assume that a expert se-
lects the resources deployed using domain knowledge. Only Criado and Such (2016) and Krzisch
et al. (2017) have addressed norm monitoring with limited resources. In particular, Criado and Such
(2016) proposed to dynamically select the agents under surveillance by predicting agent actions (re-
call this is the dynamic monitor in our experiments in Section 5). However, we have demonstrated
that Criado & Such’s approach has some issues related to its efficiency, efficacy and other limitations
constraining its practical applicability. Krzisch et al. (2017) proposed to select monitors based on
just their costs or their observation capabilities. This approach has limitations in terms of formal re-
sults (i.e., no guarantees about the quality of the solution proposed are given), norm expressiveness,
problem assumptions (e.g., agents cannot execute actions simultaneously), and experimental results
(i.e., they do not evaluate the performance of their monitor at run-time), which make impossible to
compare against them in experiments.

182

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

Within the verification area, run-time verification has also tackled the problem of verifying that
execution traces satisfy policies expressed as logical formulas (Leucker & Schallhart, 2009). Also
in this area few approaches have tackled the real-world problem of dealing with incomplete infor-
mation (or lossy traces, which is the term used in run-time verification literature). In particular,
there has been a probabilistic approach (Stoller et al., 2012), that assigns probabilities to the events
that could have occurred during an information gap and, based on these probabilities, calculates the
probability that a policy has been violated. There are two main drawbacks with this approach: it
requires a training set to calculate event probabilities, which in most cases is not available before-
hand; and, more importantly, the detection of violations is not sound and monotonic (i.e., the later
recovery of some unobserved events may change the verdict of the monitor). Joshi, Tchamgoue,
and Fischmeister (2017) have also proposed methods to identify monitorable policies (similarly to
Alechina et al., 2014), whereas Basin, Klaedtke, Marinovic, and Zalinescu (2012) have proposed
use three-valued logics to monitor policies with lossy traces. However, none of these proposals has
considered the question how to strategically decide which resources should be deployed so that the
detection of policy violations over execution traces is optimal.

7. Conclusion

Norm monitors have applications in a wide range of information and communication technologies
for sociotechnical systems. These applications range from network monitoring and abnormal de-
tection tools for controlling security policies (Basin, Klaedtke, & Müller, 2010), to compliance
monitors that check that actions of human and software agents in a given system comply with the
organisation policies (Kafali et al., 2016). All these application areas could benefit from having
advanced algorithms for run-time norm monitoring. In particular, the existing solutions (Cardoso
& Oliveira, 2007; Criado et al., 2013; Gaertner et al., 2007; Meneguzzi et al., 2012; Modgil et al.,
2009; Leucker & Schallhart, 2009) for norm monitoring are ineffective for these application do-
mains due to the inherent incompleteness of observations; e.g., network monitoring tools have lim-
ited resources to obtain information about the network, cannot monitor all events in the system and
can be partially evaded by hackers. Even those solutions that try to overcome the partial observ-
ability problem cannot be applied to these domains as monitoring tools should be able to operate
in real-time with limited resources and the policies cannot be modified, which entails that solutions
ignoring norm monitoring costs (Criado & Such, 2016; Basin et al., 2012), solutions proposing
to increase the monitoring resources (Bulling et al., 2013), and solutions proposing the adaptation
of norms to what is observable (Alechina et al., 2014; Joshi et al., 2017) are all unsuitable for
sociotechnical systems.

In this paper, we propose the first practical resource-bounded norm monitor, formally demon-
strate its correctness, soundness, and study its complexity. We also evaluate empirically its effec-
tiveness and efficiency; showing that our monitor is more robust and adaptable to different domains
and problem sizes, and it obtains significantly better results than other tractable optimization ap-
proaches and slightly worse results than intractable optimal approaches. The information model and
algorithms proposed in this paper will be of interest to a wide range of practical applications within
the socio-technical systems field. For example, monitoring is already used widely check compliance
with security and privacy policies (specified as norms) in socio-technical systems. Besides that, the
algorithms we propose for selecting deployed resources and monitoring norm compliance can be

183

CRIADO

applied into other domains such as controlling autonomous systems, robotics and cyber-physical
systems.

Acknowledgements

The author wish to thank Jose Such for his comments on draft versions of this paper. We also thank
the anonymous reviewers for their comments.

Appendix A. Complex Norms

Without loss of generality, in this paper we have considered simple action norms; i.e., norms that
regulate the execution of a single action. However, the monitor proposed here can also be adapted
to deal with more complex norms such as:

• Attribute norms that regulate properties of the world. Our monitor can accommodate these
types of norms making the following changes:

– Norm Definition. An attribute norm can be represented as a tuple 〈deon, target , activ,
expir〉 where deon, activ and expir are defined as in Definition 4 and target ∈ lit(P).
Achievement obligations define properties that should be brought about at some point
while the norm is relevant, whereas maintenance prohibitions define properties that
should not be brought about while the norm is relevant12.

– Offline Norm Compliance. An attribute norm n is:

∗ perfectly detectable when the following 3 conditions are satisfied:
i) target(n) ∈ lit(sensor(S)),

ii) activ(n) ⊆ lit(sensor(S)) or activ(n) = {>} or activ(n) = {⊥}.
iii) expir(n) ⊆ lit(sensor(S)) or expir(n) = {>} or expir(n) = {⊥}.

∗ partially detectable when the following 4 conditions are satisfied:
i) n is not perfectly detectable.

ii) target(n) ∈ dis(S)

iii) activ(n) ⊆ dis(S) or activ(n) = {>} or activ(n) = {⊥}.
iv) expir(n) ⊆ dis(S) or expir(n) = {>} or expir(n) = {⊥}.

∗ non-detectable otherwise.

– Norm Compliance Information. The norm compliance information in case of attribute
norms can be updated considering the literals that are known in each partial state as
follows:

⋃
∀n∈N :αn∈ŝt+1∧

(¬αn∈ŝt∨
(αn∈ŝt∧target(n) 6∈ŝt∧¬βn∈ŝt)

¬βn

⋃

⋃
∀n∈N :αn∈ŝt+1∧αn∈ŝt∧

(target(n)∈ŝt∨βn∈ŝt)

βn

12. Note that a maintenance obligation stating that a property p should be maintained while the norm is relevant can be

defined as a prohibition to maintain not p while the norm is relevant.

184

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

– Norm Compliance Checking. Compliance with an attribute norm n is defined as fol-
lows:

fulfilled iff αn ∈ ŝt and deon(n) = O and target(n) ∈ ŝt
fulfilled iff ¬αn ∈ ŝt and αn ∈ ŝt−1 and deon(n) = F and ¬βn ∈ ŝt−1∧

target(n) ∈ lit(sensor(S))
violated iff αn ∈ ŝt and deon(n) = F and target(n) ∈ ŝt
violated iff ¬αn ∈ ŝt and αn ∈ ŝt−1 and deon(n) = O and ¬βn ∈ ŝt−1 and

target(n) ∈ lit(sensor(S))
unknown otherwise

– Resource Coverage. Given an attribute norm n, and a set of resources S; we define its
coverage as:

- {target(n)} ∩ dis(S) - + - activ(n) ∩ dis(S) - + - expir(n) ∩ dis(S) -
1+ - activ(n) - + - expir(n) -

Note that the theorems and proofs contained in this paper remain valid in case of attribute
norms.

• Conjunction norms are norms that control the execution or achievement of a set of actions.
Our monitor can accommodate them making the following changes:

– Norm Definition. A conjunction norm is defined as a tuple 〈deon, target , activ, expir〉
where deon, activ and expir are defined as in Definition 4 and target ⊆ A. Thus, an
obligation to execute a set of actions is interpreted as an obligation to execute all the
actions in the target while the obligation is relevant. Similarly, a prohibition to execute
a set for actions should be interpreted as a prohibition to execute all of the actions
contained in the target while the prohibition is relevant13.

– Offline Norm Compliance. A conjunction norm n is:

∗ perfectly detectable when the following conditions are satisfied:
i) activ(n) ⊆ lit(sensor(S) or activ(n) = {>} or activ(n) = {⊥}.

ii) expir(n) ⊆ lit(sensor(S)) or expir(n) = {>} or expir(n) = {⊥}.
iii) target(n) ⊆ control(S).

∗ partially detectable when the following conditions are satisfied:
i) n is not perfectly detectable.

ii) activ(n) ⊆ dis(S) or activ(n) = {>} or activ(n) = {⊥}.
iii) expir(n) ⊆ dis(S) or expir(n) = {>} or expir(n) = {⊥}.
iv) target(n) ⊆ control(S).

∗ non-detectable otherwise.

13. Note disjunction norms can be rewritten as norms referring to a single action; e.g., 〈F , a ∨ b, activ, expir〉 ≡
〈F , a, activ, expir〉, 〈F , b, activ, expir〉.

185

CRIADO

– Norm Compliance Information. For each norm n, we define a set of propositions βnai

such that for each action ai in target(n), βnai
denotes that the execution of action ai in

the norm target has been observed while the norm was relevant. The norm compliance
information in case of conjunction norms is updated as follows:

⋃
∀n∈N :αn∈ŝt+1∧∀ai∈target(n):

(¬αn∈ŝt∨
(αn∈ŝt∧ai 6∈Âctt∧¬βnai

∈ŝt)

¬βnai

⋃

⋃
∀n∈N :αn∈ŝt+1∧∀ai∈target(n):

αn∈ŝt∧(ai∈Âctt∨βnai
∈ŝt)

βnai

– Norm Compliance Checking: compliance with a conjunction norm n is defined as fol-

lows:

fulfilled iff αn ∈ ŝt and deon(n) = O and ∀ai ∈ target(n) : βai ∈ ŝt
fulfilled iff ¬αn ∈ ŝt and αn ∈ ŝt−1 and deon(n) = F and

target(n) ⊆ control(S) and ∃ai ∈ target(n) : ¬βai ∈ ŝt−1

violated iff αn ∈ ŝt and deon(n) = F and ∀ai ∈ target(n) : βai ∈ ŝt
violated iff ¬αn ∈ ŝt and αn ∈ ŝt−1 and deon(n) = O

target(n) ⊆ control(S) and ∃ai ∈ target(n) : ¬βai ∈ ŝt−1

unknown otherwise

– Resource Coverage: given a conjunction norm n, and a set of resources S; we define its
coverage (cover(S, n)) as:

- target(n) ∩ control(S) - + - activ(n) ∩ dis(S) - + - expir(n) ∩ dis(S) -
- target(n) - + - activ(n) - + - expir(n) -

Again, the theorems and proofs contained in this paper remain valid.

• Mixed norms, which target is defined over a set formed by actions and literals can also be
supported by our monitor by combining the changes proposed for attribute and conjunction
norms.

Appendix B. Norm Importance

In this paper we assumed that norms are of equal importance. However, it is also common that
norms have different importance. This importance is related to the consequences of norm viola-
tions/fulfilments (e.g., the violation of some norms can be more severe than others) and is usually
modelled by: predefined sanctions and rewards (Alechina et al., 2012), a preference relation over
norms (Dignum, Morley, Sonenberg, & Cavedon, 2000), or a relative severity function (Gasparini,
Norman, & Kollingbaum, 2017).

The process by which our monitor checks compliance with norms does not depend on norm
importance. However, to maximize the detection of violations and fulfilments of more important
norms, our norm monitor can take norm importance into account when selecting the resources to
be deployed. Here we will assume that norms are annotated with a number denoting their absolute

186

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

or relative importance (importance(n)); i.e., the more important a norm is, the higher their impor-
tance. The norm monitor can account for the importance of norms in the resource value calculation
so that more important norms contribute more than others when calculating the value of a set of
resources:

v(S) =

∑
n∈N

importance(n)× cover(S, n)∑
n∈N

importance(n)

Note that norm importance does not depend on the resources selected and our theorems and proofs
remain valid.

Appendix C. Resource Failure

In this paper we assumed perfect resources that do not fault; i.e., a perfect resource always observes
the execution of the actions that are controlled by it or the properties of the environment that are
sensed by tit. However, it is also common that faulty resources cannot observe everything due to
resource limited capabilities, defects, etc. For example, logging systems in networked environments
may become temporary unavailable and unable to record actions happening in the network (Basin
et al., 2012). The reliability of a resource is usually modelled by the probability of failure (Braband,
Vom Hövel, & Schäbe, 2009); i.e., likelihood that a piece of equipment will fail at a given time.

To maximize the detection of violations and fulfilments, our norm monitor can take resource
failure into account when selecting the resources to be deployed. In particular, we will assume that
any resource r is annotated with its probability of failure (failure(n)); i.e., failure(n) > 0 in case
of faulty resources; and failure(n) = 0 in case of non-faulty resources. The norm monitor can
account for the probability of failure in the resource selection so that more faulty resources are less
likely to be selected:

max
S⊆R

∏
ri∈S

(1− failure(ri))× v(S) subject to cost(S) ≤ b

Note also that the process by which our monitor checks compliance with norms assumes that
resources are not faulty. Relaxing this assumption will entail that the monitor can no longer assume
that some properties are invariant since some controlled actions (i.e., actions controlled by deployed
resources) may have not been observed due to faults. In particular, the new partial state ŝt+1 after the
observation of some actions Âctt is updated considering just the effect of actions Âctt as follows:

ŝt+1 ←ŝt+1 ∪ post(Âctt) (7)

Resource failure also entails that no norm is perfectly detectable and that the detection of the
violation of obligations and the fulfilment of permissions is no longer possible, since controlled
actions may not be observed due to resource failure. In particular, the norm compliance check
function should be redefined as:

fulfilled iff αn ∈ ŝt and deon(n) = O and target(n) ∈ Âctt
violated iff αn ∈ ŝt and deon(n) = F and target(n) ∈ Âctt
unknown otherwise

187

CRIADO

Faulty resources may lead to lower norm compliance detection rates, but note that our soundness
and correctness results remain valid.

References

Alchourrón, C. E., & Bulygin, E. (1971). Normative Systems. Springer.

Alchourrón, C. E., & Bulygin, E. (1981). The expressive conception of norms. In New studies in
deontic logic, pp. 95–124. Springer.

Alechina, N., Dastani, M., & Logan, B. (2012). Programming norm-aware agents. In Proc. of
the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp.
1057–1064.

Alechina, N., Dastani, M., & Logan, B. (2013). Reasoning about normative update. In Proc. of the
International Joint Conference on Artificial Intelligence, pp. 20–26.

Alechina, N., Dastani, M., & Logan, B. (2014). Norm approximation for imperfect monitors. In
Proc. of the International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), pp. 117–124.

Basin, D. A., Klaedtke, F., Marinovic, S., & Zalinescu, E. (2012). Monitoring compliance policies
over incomplete and disagreeing logs.. In Proc. of the International Conference on Runtime
Verification (RV), pp. 151–167. Springer.

Basin, D. A., Klaedtke, F., & Müller, S. (2010). Policy monitoring in first-order temporal logic.. In
Proc. of the International Conference on Computer-Aided Verification, Vol. 6174, pp. 1–18.
Springer.

Beheshti, R., Ali, A. M., & Sukthankar, G. R. (2015). Cognitive social learners: An architecture for
modeling normative behavior.. In Proc. of the AAAI Conference on Artificial Intelligence, pp.
2017–2023.

Bloch, I. (1996). Information combination operators for data fusion: a comparative review with clas-
sification. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on, 26(1), 52–67.

Boella, G., & van der Torre, L. (2003). Permissions and obligations in hierarchical normative
systems. In Proc. of the International Conference on Artificial Intelligence and Law, pp.
109–118. ACM.

Boutilier, C., & Brafman, R. I. (2001). Partial-order planning with concurrent interacting actions.
Journal of Artificial Intelligence Research, 14(1), 105–136.

Braband, J., Vom Hövel, R., & Schäbe, H. (2009). Probability of failure on demand–the why and
the how. Computer Safety, Reliability, and Security, 46–54.

Bradshaw, J., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M., Acquisti, A., Benyo, B.,
Breedy, M., Carvalho, M., et al. (2003). Representation and reasoning for DAML-based
policy and domain services in KAoS and Nomads. In Proc. of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 835–842. ACM.

Bulling, N., Dastani, M., & Knobbout, M. (2013). Monitoring norm violations in multi-agent sys-
tems. In Proc. of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 491–498.

188

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

Cardoso, H., & Oliveira, E. (2007). Institutional reality and norms: Specifying and monitoring agent
organizations. International Journal of Cooperative Information Systems, 16(1), 67–95.

Castelfranchi, C. (2003). Formalising the informal? Dynamic social order, bottom-up social control,
and spontaneous normative relations. Journal of Applied Logic, 1(1-2), 47–92.

Criado, N., Argente, E., & Botti, V. (2011). Open issues for normative multi-agent systems. AI
Communications, 24(3), 233–264.

Criado, N. (2017). A practical resource-constrained norm monitor. In Proc. of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1508–1510.

Criado, N., Argente, E., Noriega, P., & Botti, V. (2013). MaNEA: A distributed architecture for
enforcing norms in open MAS. Engineering Applications of Artificial Intelligence, 26(1),
76–95.

Criado, N., Black, E., & Luck, M. (2016). A coherence maximisation process for solving normative
inconsistencies. Autonomous Agents and Multi-Agent Systems, 30(4), 640–680.

Criado, N., & Such, J. M. (2016). Selective norm monitoring. In Proc. of the International Joint
Conference on Artificial Intelligence, pp. 208–214.

Criado, N., & Such, J. M. (2017). Norm monitoring under partial action observability. IEEE
transactions on cybernetics, 47(2), 270–282.

Daskalopulu, A., Dimitrakos, T., & Maibaum, T. (2002). Evidence-based electronic contract per-
formance monitoring. Group Decision and Negotiation, 11(6), 469–485.

Dastani, M., Grossi, D., Meyer, J.-J. C., & Tinnemeier, N. (2009). Normative multi-agent programs
and their logics. In Knowledge Representation for Agents and Multi-Agent Systems, pp. 16–
31.

Dignum, F., Broersen, J., Dignum, V., & Meyer, J.-J. (2004). Meeting the deadline: Why, when and
how. In International Workshop on Formal Approaches to Agent-Based Systems, pp. 30–40.

Dignum, F., Morley, D., Sonenberg, E. A., & Cavedon, L. (2000). Towards socially sophisticated
BDI agents. In Proc. of the International Conference on MultiAgent Systems, pp. 111–118.
IEEE.

Dung, P. M., & Sartor, G. (2011). The modular logic of private international law. Artificial Intelli-
gence and Law, 19(2-3), 233.

Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J. A., & Arcos, J. L. (2004). AMELI: an agent-based
middleware for electronic institutions. In Proc. of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pp. 236–243.

Fornara, N., & Colombetti, M. (2008a). Specifying and enforcing norms in artificial institutions.
In Proc. of the international conference on Autonomous Agents and Multiagent Aystems (AA-
MAS), Vol. 3, pp. 1481–1484. ACM.

Fornara, N., & Colombetti, M. (2008b). Specifying and enforcing norms in artificial institutions. In
International Workshop on Declarative Agent Languages and Technologies, pp. 1–17.

Gaertner, D., Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.-A., & Vasconcelos, W. (2007).
Distributed norm management in regulated multiagent systems. In Proc. of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 624–631.

189

CRIADO

Garcı́a-Camino, A., Rodrı́guez-Aguilar, J. A., Sierra, C., & Vasconcelos, W. (2006). A rule-
based approach to norm-oriented programming of electronic institutions. ACM SIGecom
Exchanges, 5(5), 33–40.

Gasparini, L., Norman, T. J., & Kollingbaum, M. J. (2017). Severity-sensitive norm-governed multi-
agent planning. Autonomous Agents and Multi-Agent Systems, 1–33.

Governatori, G., Olivieri, F., Rotolo, A., & Scannapieco, S. (2013). Computing strong and weak
permissions in defeasible logic. Journal of Philosophical Logic, 42(6), 799–829.

Grossi, D., Aldewereld, H., & Dignum, F. (2007). Ubi lex, ibi poena: Designing norm enforcement
in e-institutions. In Coordination, organizations, institutions and norms in agent systems II,
pp. 101–114.

Günay, A., Liu, Y., & Zhang, J. (2016). Promoca: Probabilistic modeling and analysis of agents in
commitment protocols. Journal of Artificial Intelligence Research, 57, 465–508.

Hansen, J. (2008). Prioritized conditional imperatives: problems and a new proposal. Autonomous
Agents and Multi-Agent Systems, 17(1), 11–35.

Hansen, J., Pigozzi, G., & Van Der Torre, L. (2007). Ten philosophical problems in deontic logic.
In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Havelund, K., & Rosu, G. (2002). Synthesizing monitors for safety properties. In TACAS, Vol. 2,
pp. 342–356. Springer.

Iyer, R. K., & Bilmes, J. A. (2013). Submodular optimization with submodular cover and sub-
modular knapsack constraints. In Advances in Neural Information Processing Systems, pp.
2436–2444.

Jones, A. J., Artikis, A., & Pitt, J. (2013). The design of intelligent socio-technical systems. Artificial
Intelligence Review, 39(1), 5–20.

Joshi, Y., Tchamgoue, G. M., & Fischmeister, S. (2017). Runtime verification of ltl on lossy traces.
In Proceedings of the Symposium on Applied Computing, pp. 1379–1386. ACM.

Kafali, Ö., Ajmeri, N., & Singh, M. P. (2016). Revani: Revising and verifying normative specifica-
tions for privacy. IEEE Intelligent Systems, 31(5), 8–15.

Keller, R. M. (1976). Formal verification of parallel programs. Communications of the ACM, 19(7),
371–384.

Keren, S., Gal, A., & Karpas, E. (2016). Goal recognition design with non-observable actions. In
Proc. of the AAAI Conference on Artificial Intelligence, pp. 3152–3158.

Kollingbaum, M. J., & Norman, T. J. (2002). Supervised interaction: creating a web of trust for
contracting agents in electronic environments. In Proc. of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 272–279.

Krzisch, G., Oren, N., & Meneguzzi, F. (2017). Bounded-monitor placement in normative environ-
ments. In Proceedings of the Workshop on Linked Democracy. CEUR-WS.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., & Glance, N. (2007). Cost-
effective outbreak detection in networks. In Proc. of SIGKDD, pp. 420–429.

Leucker, M., & Schallhart, C. (2009). A brief account of runtime verification. The Journal of Logic
and Algebraic Programming, 78(5), 293–303.

190

RESOURCE-BOUNDED NORM MONITORING IN MULTI-AGENT SYSTEMS

López y López, F., Luck, M., & d’Inverno, M. (2006). A normative framework for agent-based
systems. Computational & Mathematical Organization Theory, 12(2-3), 227–250.

Lorini, E. (2012). On the logical foundations of moral agency. In Deontic Logic in Computer
Science, pp. 108–122.

Lu, R., Sadiq, S., & Governatori, G. (2007). Compliance aware business process design. In Inter-
national Conference on Business Process Management, pp. 120–131. Springer.

McNamara, P. (2014). Deontic logic. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy
(Winter 2014 edition). Metaphysics Research Lab, Stanford University.

Meneguzzi, F., Modgil, S., Oren, N., Miles, S., Luck, M., & Faci, N. (2012). Applying electronic
contracting to the aerospace aftercare domain. Engineering Applications of Artificial Intelli-
gence, 25(7), 1471–1487.

Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., & Luck, M. (2009). A framework for
monitoring agent-based normative systems. In Proc. of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pp. 153–160.

Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., & Miles, S. (2009). Towards
a formalisation of electronic contracting environments. In Coordination, organizations, insti-
tutions and norms in agent systems IV, pp. 156–171.

Pereira, R. F., Oren, N., & Meneguzzi, F. (2017a). Detecting commitment abandonment by moni-
toring sub-optimal steps during plan execution. In Proc. of the International Conference on
Autonomous Agents and MultiAgent Systems, pp. 1685–1687. International Foundation for
Autonomous Agents and Multiagent Systems.

Pereira, R. F., Oren, N., & Meneguzzi, F. (2017b). Monitoring plan optimality using landmarks
and domain-independent heuristics. In Proc. of the Workshop on Plan, Activity, and Intent
Recognition, pp. 867–873.

Ramı́rez, M., & Geffner, H. (2009). Plan recognition as planning. In Proc. of the International Joint
Conference on Artificial Intelligence, pp. 1778–1783.

Reiter, R. (1978). On closed world data bases. In Logic and data bases, pp. 55–76. Springer.

Rubino, R., & Sartor, G. (2008). Preface. Journal of Artificial Intelligence and Law, 16(1), 1–5.

Sadiq, S., Governatori, G., & Namiri, K. (2007). Modeling control objectives for business process
compliance. In Business process management, pp. 149–164.

Singh, M. P. (2013). Norms as a basis for governing sociotechnical systems. ACM Transactions on
Intelligent Systems and Technology, 5(1), 21.

Stoller, S. D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S. A., & Zadok, E. (2012).
Runtime verification with state estimation. In Proc. of the International Conference on Run-
time Verification (RV), pp. 193–207, Berlin, Heidelberg. Springer-Verlag.

Vasconcelos, W. W., Garcı́a-Camino, A., Gaertner, D., Rodrı́guez-Aguilar, J. A., & Noriega, P.
(2012). Distributed norm management for multi-agent systems. Expert Systems with Ap-
plications, 39(5), 5990–5999.

Vasconcelos, W., Kollingbaum, M. J., & Norman, T. J. (2007). Resolving conflict and inconsis-
tency in norm-regulated virtual organizations. In Proc. of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 632–639. ACM.

191

CRIADO

von Wright, G. H. (1981). On the logic of norms and actions. In New studies in deontic logic, pp.
3–35. Springer.

Winikoff, M., & Cranefield, S. (2014). On the testability of BDI agent systems. Journal of Artificial
Intelligence Research, 51(1), 71–131.

192

