
Journal of Artificial Intelligence Research 62 (2018) 1-32 Submitted 11/16; published 05/18

An Exhaustive DPLL Algorithm for Model Counting

Umut Oztok umut@cs.ucla.edu

Adnan Darwiche darwiche@cs.ucla.edu

Computer Science Department

University of California, Los Angeles

Los Angeles, CA 90095

Abstract

State-of-the-art model counters are based on exhaustive DPLL algorithms, and have
been successfully used in probabilistic reasoning, one of the key problems in AI. In this
article, we present a new exhaustive DPLL algorithm with a formal semantics, a proof of
correctness, and a modular design. The modular design is based on the separation of the
core model counting algorithm from SAT solving techniques. We also show that the trace of
our algorithm belongs to the language of Sentential Decision Diagrams (SDDs), which is a
subset of Decision-DNNFs, the trace of existing state-of-the-art model counters. Still, our
experimental analysis shows comparable results against state-of-the-art model counters.
Furthermore, we obtain the first top-down SDD compiler, and show orders-of-magnitude
improvements in SDD construction time against the existing bottom-up SDD compiler.

1. Introduction

Model counting is the problem of determining the number of satisfying assignments of
a propositional formula. Being a #P-complete problem (Valiant, 1979), model counting is
central to many AI problems such as probabilistic reasoning (Roth, 1996; Darwiche, 2002b),
and state-of-the-art model counters have been successfully used for doing probabilistic in-
ference (Chavira & Darwiche, 2005; Sang et al., 2005; Chavira et al., 2006; Chavira &
Darwiche, 2008; Fierens et al., 2015). Up-to-date, state-of-the-art model counters have
been based on exhaustive DPLL algorithm (Birnbaum & Lozinskii, 1999), which counts the
models of a Boolean formula by searching the space of truth assignments until identifying
all the satisfying ones. Those counters are divided into two main categories: ones that
save the trace of the search performed by exhaustive DPLL algorithm (Huang & Darwiche,
2007), and ones not saving the trace.1 In the latter case, one immediately obtains the model
count, whereas the former case constructs a graph structure over which the model count
can be obtained easily and efficiently. Furthermore, these model counters generally augment
exhaustive DPLL with some other effective techniques, such as component analysis (Ba-
yardo & Pehoushek, 2000) and component caching (Majercik & Littman, 1998). The latter
technique is used to avoid counting the models of the same components multiple times.
The former technique is used to identify disconnected components and count their models
independently to improve efficiency. Component analysis has been done using two methods:
either a static one identifying the components a priori search (Darwiche, 2002a, 2004), or
a dynamic one identifying the components during the search (Bayardo & Pehoushek, 2000;
Sang et al., 2004). For instance, cachet (Sang et al., 2004) performs dynamic component

1. See Section 4 for a detailed discussion of the trace of an exhaustive search algorithm.

c©2018 AI Access Foundation. All rights reserved.

Oztok & Darwiche

analysis and does not save the trace, whereas c2d (Darwiche, 2004) performs static com-
ponent analysis and saves the trace. Another model counter sharpSAT (Thurley, 2006)
performs dynamic component analysis and does not save the trace. Yet, DSharp (Muise
et al., 2012) is obtained by simply saving the trace of sharpSAT. For all these model
counters, the trace of the search (regardless of saved or not) is in a propositional language,
called Decision-DNNF (Huang & Darwiche, 2007), which is tractable for model counting.

In this article, we introduce yet another exhaustive DPLL algorithm. Our algorithm
uses static component analysis, which is performed by using a new structure, called decision
vtree (Oztok & Darwiche, 2014). Because of this new structure, our algorithm comes with a
new trace in the language of Sentential Decision Diagrams (SDDs) (Darwiche, 2011) that is
a subset of Decision-DNNF. As such, it can be seen as performing more work compared to
other model counters. Despite this fact, we empirically show that its performance is compa-
rable against state-of-the-art model counters. Further, by saving the trace of our algorithm,
we obtain the first top-down SDD compiler, which shows orders-of-magnitude improvements
in compilation times against the state-of-the-art SDD compiler (Choi & Darwiche, 2013b).

Our algorithm has a modular design that enables easy integration with SAT solving
techniques. This is due to a new interface that separates the core model counting algorithm
from SAT solving technology, allowing one to plugin different SAT solvers without changing
the counting algorithm. Beyond significantly enhancing the clarity of our source code,2 this
modularity is critical for the formal semantics of the counting algorithm and its proof of
correctness, both of which are lacking in the previous model counters. Our hope is that
this will facilitate the development of model counters, particularly, their extensibility and
easier integration with new SAT solvers. For instance, clause-learning is a crucial technique
in the success of modern SAT solvers. Indeed, there exists various clause-learning schemes
implemented by SAT solvers, leading to significant performance gains depending on the
class of CNFs used (see, e.g., Pipatsrisawat & Darwiche, 2008a). We believe that similar
gains could be obtained for model counting by using our new framework.

This paper is organized as follows. Section 2 introduces some background and reviews
the core algorithm behind modern SAT solvers. It also introduces the new formal frame-
work that our model counting algorithm will be based on. Section 3 describes the new
model counting algorithm in detail, together with its proof of correctness and experimental
evaluation. Section 4 reviews the close connection between exhaustive DPLL algorithm and
knowledge compilation by showing that the traces of exhaustive DPLL algorithms corre-
spond to certain knowledge compilation languages. It also shows how our model counting
algorithm can be used in the context of knowledge compilation (i.e., in the compilation of
SDDs), along with an empirical evaluation of the algorithm as a knowledge compiler. After
the related work in Section 5, we conclude the paper. The appendix contains the proofs.

2. SAT Solving by CDCL

In this section, we will review the CDCL algorithm that forms the basis of modern SAT
solvers, and will introduce a new formal framework that will be used in our model counter.
We start by defining some technical preliminaries.

2. The source code of our system, miniC2D, is available at http://reasoning.cs.ucla.edu/minic2d.

2

An Exhaustive DPLL Algorithm for Model Counting

Algorithm 1: SAT(∆)

Input: ∆ : a CNF
Output: > if ∆ is satisfiable; ⊥ otherwise

1 Γ← {} // learned clauses

2 D ← 〈〉 // decision sequence

3 while true do
4 if unit resolution detects a contradiction in ∆ ∧ Γ ∧D then
5 if D = 〈〉 then return ⊥
6 α← asserting clause for (∆,Γ, D)
7 m← the assertion level of α
8 D ← the first m decisions of D
9 Γ← Γ ∪ {α} // learning clause α

10 else
11 if ` is a literal where neither ` nor ¬` are implied by unit resolution from ∆ ∧ Γ ∧D then
12 D ← D; ` // add a new decision to D

13 else return >

Upper-case letters (e.g., X) denote variables and lower-case letters (e.g., x) denote their
instantiations. That is, x is a literal denoting X or ¬X. Bold upper-case letters (e.g., X)
denote sets of variables and bold lower-case letters (e.g., x) denote their instantiations. A
Boolean function f(Z) maps each instantiation z of variables Z to true (>) or false (⊥). A
conjunctive normal form (CNF) is a set of clauses, where each clause is a disjunction of
literals. For instance, the CNF {X∨¬Y ∨¬Z, Y ∨Z, ¬X} represents the Boolean function
(X ∨¬Y ∨¬Z)∧ (Y ∨Z)∧¬X. Conditioning a CNF ∆ on a literal `, denoted ∆|`, amounts
to removing literal ¬` from all clauses and then dropping all clauses that contain literal `.
For two CNFs ∆ and Γ, we write ∆ |= Γ to mean that ∆ entails Γ. For a CNF ∆, we write
∆ ` I to mean that I is the set of literals derived from ∆ using unit resolution.

Modern SAT solvers utilize two powerful and complementary techniques: unit resolution
and clause learning. Unit resolution is an efficient, but incomplete, inference rule which
identifies some of the literals implied by a CNF. Clause learning is a process which identifies
clauses that are implied by a CNF, then adds them to the CNF so as to empower unit
resolution (i.e., allows it to derive more literals). These clauses, also called asserting clauses,
are learned when unit resolution detects a contradiction in the given CNF. We will neither
justify asserting clauses, nor delve into the details of computing them, since these clauses
have been well justified and extensively studied in the SAT literature (see, e.g., Moskewicz
et al., 2001). We will, however, employ asserting clauses in our model counter (we employ
first-UIP asserting clauses as implemented in RSat, Pipatsrisawat & Darwiche, 2007).

We now present in Algorithm 1 a modern SAT solver that is based on unit resolution
and clause learning (a.k.a, a conflict-driven clause learning (CDCL) solver). This algorithm
takes as input a CNF ∆. It maintains a set of clauses Γ (for learned clauses) and a decision
sequence D (for literal assignments), both of which are initially empty. Given ∆,Γ, and D,
the solver repeatedly performs the following process. A literal ` is chosen and added to the
decision sequence D (we say that ` has been decided at level |D|). After deciding the literal
`, unit resolution is performed on ∆ ∧ Γ ∧D. If no contradiction is found, another literal
is decided. Otherwise, an asserting clause α is identified. A number of decisions are then

3

Oztok & Darwiche

Macro : decide literal(`, S = (∆,Γ, D, I))
D ← D; ` // add a new decision to D
if unit resolution detects a contradiction in ∆ ∧ Γ ∧D then

return an asserting clause for (∆,Γ, D)

I ← literals implied by unit resolution from ∆ ∧ Γ ∧D
return success

Macro : undo decide literal(`, S = (∆,Γ, D, I))
erase the last decision ` from D
I ← literals implied by unit resolution from ∆ ∧ Γ ∧D

Macro : at assertion level(α, S = (∆,Γ, D, I))
m← assertion level ofα
if there are m literals in D then return true
else return false

Macro : assert clause(α, S = (∆,Γ, D, I))
Γ← Γ ∪ {α} // add learned clause to Γ
if unit resolution detects a contradiction in ∆ ∧ Γ ∧D then

return an asserting clause for (∆,Γ, D)

I ← literals implied by unit resolution from ∆ ∧ Γ ∧D
return success

Figure 1: Macros for some SAT-solver primitives.

erased until we reach the decision level corresponding to the assertion level of clause α, at
which point α is added to Γ.3 The solver terminates under one of two conditions: either
a contradiction is found under an empty decision sequence D (Line 5), or all literals are
successfully decided (Line 13). In the first case, the input CNF must be unsatisfiable. In
the second case, the CNF is satisfiable with D as a (partial) satisfying assignment.4

As we discussed earlier, one of our goals is to obtain a model counter that can benefit
from the advances in SAT solving in a modular manner. This requires an interface that
separates SAT solving techniques from the core model counting algorithm. This way, by
only changing the implementation of the interface (e.g., using a different SAT solver), one
can immediately improve the performance of the model counter. For that, we will abstract
the primitives used in SAT solvers (Figure 1), viewing them as operations on what we shall
call a SAT state.

Definition 1 (SAT State). A SAT state is a tuple S = (∆,Γ, D, I) where ∆ and Γ are
sets of clauses, D is a sequence of literals, and I is a set of literals, such that ∆ |= Γ and
∆ ∧ Γ ∧D ` I. The number of literals in D is called the decision level of S. Moreover, S
is said to be satisfiable iff ∆ ∧D is satisfiable.5

Here, ∆ is the input CNF, Γ is the set of learned clauses, and D is the decision sequence.

3. The assertion level is computed when the clause is learned. It equals the lowest decision level at which
unit resolution is guaranteed to derive a new literal using the learned clause (Moskewicz et al., 2001).

4. Note that D can be partial as the algorithm will stop instantiating variables once all variables are implied.
When D is partial, the variables not appearing in D can take any value assignment.

5. Without loss of generality, ∆ has no empty or unit clauses. If ∆ has an empty clause, one can immediately
detect that it is unsatisfiable, leading to model count of 0. If ∆ has unit clauses, ∆ is equivalent to I∧∆|I
where ∆ ` I, leading to the model count of ∆ being equal to the model count of ∆|I. So, counting the
models of ∆|I (which has no unit clauses) is enough to obtain the model count of ∆.

4

An Exhaustive DPLL Algorithm for Model Counting

We now provide a small description of the primitives in Figure 1:

– decide literal(`, S = (∆,Γ, D, I)) takes as input a literal ` and a SAT state S. It then
adds literal ` to the decision sequence D and runs unit resolution. If unit resolution
detects a conflict in the SAT state, it then constructs an asserting clause and returns
it. Otherwise, it simply updates the set of implied literals I.

– undo decide literal(`, S = (∆,Γ, D, I)) takes as input a literal ` and a SAT state S. It
simply removes literal ` from the decision sequence D and updates the set of implied
literals I.

– at assertion level(α, S = (∆,Γ, D, I)) takes as input a clause α and a SAT state S.
It decides if the assertion level of clause α is the same as the number of literals in the
decision sequence D (i.e., whether the decision level is the same as the assertion level
of clause α).

– assert clause(α, S = (∆,Γ, D, I)) takes as input a clause α and a SAT state S =
(∆,Γ, D, I)). It then adds α to the set of learned clauses Γ and runs unit resolution.
If unit resolution detects a conflict in the SAT state, it then constructs an asserting
clause and returns it. Otherwise, it simply updates the set of implied literals I.

To further prepare for our model counting algorithm, we now present in Algorithm 2 a
CDCL solver that makes use of the new SAT interface. Note that this algorithm is recursive,
just like our model counting algorithm will be.

Algorithm 2: SAT(S)

Input: S : a SAT state (∆,Γ, D, I)
Output: success or ⊥

1 find a literal ` where neither ` nor ¬` are implied by unit resolution from ∆ ∧ Γ ∧D
2 if there is no such literal ` then return success
3 ret← decide literal(`, S)
4 if ret is a success then ret← SAT(S)
5 undo decide literal(`, S)
6 if ret is a learned clause then
7 if at assertion level(ret, S) then
8 ret← assert clause(ret, S)
9 if ret is a success then return SAT(S)

10 else return ret

11 else return ret

12 else return success

3. Model Counting by Exhaustive DPLL

In this section, we will introduce a new model counting algorithm based on exhaustive
DPLL, together with its proof of correctness and experimental analysis.

Our algorithm will take as input a CNF and will return its model count. It will be
recursive and will utilize the SAT state and its associated primitives in Figure 1. Before

5

Oztok & Darwiche

Algorithm 3: #SAT(π, S)

Input: π : a variable order, S : a SAT state (∆,Γ, D, I)
Output: Model count of ∆ ∧D, or a clause

1 if there is no variable in π then return 1
2 X ← first variable in π
3 if X or ¬X belongs to I then return #SAT(π\{X}, S)
4 h← decide literal(X,S)
5 if h is success then h← #SAT(π\{X}, S)
6 undo decide literal(X,S)
7 if h is a learned clause then
8 if at assertion level(h, S) then
9 h← assert clause(h, S)

10 if h is success then return #SAT(π, S)
11 else return h

12 else return h

13 l← decide literal(¬X,S)
14 if l is success then l← #SAT(π\{X}, S)
15 undo decide literal(¬X,S)
16 if l is a learned clause then
17 if at assertion level(l, S) then
18 l← assert clause(l, S)
19 if l is success then return #SAT(π, S)
20 else return l

21 else return l

22 return h+ l

introducing the full algorithm, we will start with a simpler version for presentation purposes.
This is given in Algorithm 3, which is initially called with the SAT state (∆, {}, 〈〉, {}), along
with an order π of the variables of ∆. In a recursive call with a SAT state (∆, ., D, .), the
algorithm will attempt to count the models of ∆ ∧D. For that, we first pick a variable X
from order π (Line 2). If a literal ` of X is already implied in the current SAT state, then
we simply count the models of (∆ ∧D)|` recursively (Line 3) as it will be the same as the
model count of ∆ ∧ D. Otherwise, we try to count the models of ∆ ∧ D ∧ X recursively
(Lines 4–5). If the result is a model count (otherwise, see the below key observation), we
try to count the models of ∆∧D∧¬X recursively (Lines 13–14). If this second phase is also
successful, we then obtain the model count of ∆∧D (Line 22). What makes this algorithm
additionally useful for our presentation purposes is that it is exhaustive in nature. That is,
when considering variable X, it must process both its phases, X and ¬X. This is similar
to our model counting algorithm — but in contrast to SAT solvers which only consider one
phase of the variable. Moreover, Algorithm 3 employs the primitives of Figure 1 in the same
way that our model counter will employ them later.

The following is a key observation about Algorithm 3 (and our model counting algo-
rithm). When a recursive call returns a learned clause, instead of a model count, this only
means that while counting the models of the CNF ∆ ∧ D targeted by the call, unit reso-
lution has discovered an opportunity to learn a clause (and learned one). Hence, we must
backtrack to the assertion level, add the clause, and then try again (Lines 10 and 19). In
particular, returning a learned clause does not necessarily mean that the CNF targeted by

6

An Exhaustive DPLL Algorithm for Model Counting

1

X 2

3

Y Z

Q

Figure 2: A decision vtree for the CNF {Y ∨ ¬Z, ¬X ∨ Z, X ∨ ¬Y, X ∨Q}.

the recursive call is unsatisfiable. The only exception is the root call, for which the return
of a learned clause implies an unsatisfiable CNF (and, hence, a zero model count) since the
learned clause must be empty in this case.6

Our algorithm will augment Algorithm 3 with two additional techniques. First, we
will perform component analysis to identify disconnected CNF components and count their
models independently. For that, we will use a new control structure to guide the process of
decomposing a CNF into disconnected components. Second, we will employ a component
caching scheme to avoid counting the models of the same CNF component multiple times.
We next describe the new control structure.

3.1 Component Analysis by Decision Vtrees

A vtree (Pipatsrisawat & Darwiche, 2008b) is a full binary tree whose leaves are labeled with
variables; see Figure 2. The control structure we will use to guide our algorithm will be a
special type of vtree, called decision vtree (Oztok & Darwiche, 2014), defined specifically for
CNFs. To define decision vtrees, we first need to distinguish between internal vtree nodes
as follows. An internal vtree node is a Shannon node if its left child is a leaf, otherwise it is
a decomposition node. The variable labeling the left child of a Shannon node is called the
Shannon variable of the node. Vtree nodes 1 and 3 in Figure 2 are Shannon nodes, with X
and Y as their Shannon variables, respectively. Vtree node 2 is a decomposition node. The
left (resp., right) child of an internal vtree node v will be denoted by vl (resp., vr).

Definition 2 (Decision Vtree). A clause is compatible with an internal vtree node v iff the

clause mentions some variables inside vl and some variables inside vr. A vtree for CNF ∆
is a decision vtree for ∆ iff every clause in ∆ is compatible with only Shannon vtree nodes.

Figure 2 depicts a decision vtree for the CNF {Y ∨ ¬Z, ¬X ∨ Z, X ∨ ¬Y, X ∨Q}.
A decision vtree for a CNF can be thought of as an auxiliary structure that allows one

to perform static component analysis on the CNF, due to the following proposition.

Proposition 1. Consider a CNF and a corresponding decision vtree. Take a path from the
vtree root to a decomposition vtree node v. Then, on this path, as long as one conditions the
CNF at every Shannon vtree node on the corresponding Shannon variable, the conditioned

6. When the decision sequence D is empty, and unit resolution detects a contradiction in ∆ ∧ Γ, the only
learned clause is the empty clause, which implies that ∆ is unsatisfiable (since ∆ |= Γ).

7

Oztok & Darwiche

CNF associated with the vtree node v must be decomposed into two sub-components; one is
over the variables of the left child vl and the other is over the variables of the right child vr.

To see why Proposition 1 is correct, recall that each clause in the CNF can be compatible
with only Shannon vtree nodes. Hence, if the conditioned CNF does not decompose into
two sub-components, then it would imply that there is a clause that is compatible with a
decomposition vtree node, which contradicts with the vtree being a decision one. As such,
the input to our model counter will be a CNF and a corresponding decision vtree. Note
that we can always construct a decision vtree for any CNF (Oztok & Darwiche, 2014).7

3.2 A New Model Counting Algorithm

We are now ready to present the final version of our model counting algorithm. This is
given in Algorithm 4, which is called initially with the SAT state S = (∆, {}, 〈〉, {}) and a
decision vtree v for ∆. When the algorithm is applied to a Shannon vtree node, its behavior
is similar to Algorithm 3 (Lines 15–43). That is, it basically uses the Shannon variable X
and considers its two phases, X and ¬X. However, when applied to a decomposition vtree
node v (Lines 5–14), one is guaranteed that the CNF associated with v is decomposed into
two components, one associated with the left child vl and another with the right child vr

(due to Proposition 1). In this case, the algorithm counts the models for each component
independently and combines the results.

3.3 Soundness of the Algorithm

We will next show the soundness of the algorithm, which requires some additional defini-
tions. Let ∆ be the input CNF. Each vtree node v is then associated with the following:

– V ars(v): The variables inside v.

– CNF (v): The clauses of ∆ mentioning only variables inside v (clauses of v).

– ContextC(v): The clauses of ∆ mentioning some variables inside v and some outside v
(context clauses of v).

– ContextV (v): The Shannon variables of all vtree nodes that are ancestors of v (context
variables of v). ContextC(v) will only mention variables in V ars(v) ∪ ContextV (v).

– ContextL(v, I): The literals of ContextV (v) appearing in a given set of literals I.8

We start with the following invariant of Algorithm 4.

Theorem 1. Consider a call #SAT(v, S) with S = (., ., D, I). Then, D ⊆ ContextL(v, I)
and ContextL(v, I) contains exactly one literal for each variable of ContextV (v).

7. One can construct a decision vtree based on hypergraph partitioning or variable ordering (such as min-fill
order). The former would yield more balanced vtrees, whereas the latter would yield vtrees with lower
treewidth. In our experiments, we chose the latter to construct decision vtrees.

8. Note that ContextL(v, I) is a set of literals and ContextV (v) is a set of variables, and hence
ContextL(v, I) is not the same as ContextV (v) ∩ I.

8

An Exhaustive DPLL Algorithm for Model Counting

Algorithm 4: #SAT(v, S)

Input: v : a vtree node, S : a SAT state (∆,Γ, D, I)
Output: A model count or a clause

1 if v is a leaf node then
2 X ← variable of v
3 if X or ¬X belongs to I then return 1
4 else return 2

5 else if v is a decomposition vtree node then

6 left← #SAT(vl, S)
7 if left is a learned clause then

8 clean cache(vl)
9 return left

10 right← #SAT(vr, S)
11 if right is a learned clause then
12 clean cache(v)
13 return right

14 return left× right
15 else
16 key ← Key(v, S)
17 if cache(key) 6= nil then return cache(key)
18 X ← Shannon variable of v
19 if either X or ¬X belongs to I then
20 right← #SAT(vr, S)
21 if right is a learned clause then return right
22 return right

23 h← decide literal(X,S)
24 if h is success then h← #SAT(vr, S)
25 undo decide literal(X,S)
26 if h is a learned clause then
27 if at assertion level(h, S) then
28 h← assert clause(h, S)
29 if h is success then return #SAT(v, S)
30 else return h

31 else return h

32 l← decide literal(¬X,S)
33 if l is success then l← #SAT(vr, S)
34 undo decide literal(¬X,S)
35 if l is a learned clause then
36 if at assertion level(l, S) then
37 l← assert clause(l, S)
38 if l is success then return #SAT(v, S)
39 else return l

40 else return l

41 sum← h+ l
42 cache(key)← sum
43 return sum

Hence, when calling vtree node v, all its context variables must be either decided or implied.
We can now define the CNF component associated with a vtree node v at state S.

9

Oztok & Darwiche

Definition 3. The component of vtree node v and state S = (., ., ., I) is CNF (v, S) =
CNF (v) ∧ ContextC(v)|γ, where γ = ContextL(v, I).

Hence, component CNF (v, S) will only mention variables in vtree v, upon a call #SAT(v, S).
Further, the root component (CNF (v, S) with v being the root vtree node) is equal to ∆.

Following is the soundness result assuming no component caching (i.e., while omitting
Lines 8, 12, 16, 17 and 42). We break the result into two cases as follows.

Theorem 2. A call #SAT(v, S) with a satisfiable state S will return either the model count
of component CNF (v, S) or a learned clause. Moreover, if v is the root vtree node, then it
will return the model count of CNF (v, S).

Theorem 3. A call #SAT(v, S) with an unsatisfiable state S will return a learned clause, or
one of its ancestral calls #SAT(v′, .) will return a learned clause, where v′ is a decomposition
vtree node.

We now have our soundness result (without caching).

Corollary 1. If v is the root vtree node, then call #SAT(v, (∆, {}, 〈〉, {})) returns the model
count of ∆ if ∆ is satisfiable, and returns an empty clause if ∆ is unsatisfiable.

We are now ready to discuss the soundness of our caching scheme (Lines 8, 12, 16, 17
and 42). This requires an explanation of the difference in behavior between satisfiable
and unsatisfiable states (based on Thm. 1 of Sang et al., 2004). Consider the component
CNFs ∆X and ∆Y over disjoint variables X and Y, and let Γ be another CNF such that
∆X∧∆Y |= Γ (think of Γ as some learned clauses). Suppose that IX is the set of literals over
variables X implied by unit resolution from ∆X∧Γ. One would expect that ∆X ≡ ∆X∧ IX
(and similarly for ∆Y). Moreover, one would prefer to count the models of ∆X∧IX instead
of ∆X as the former can make unit resolution more complete, leading to a more efficient
counting algorithm. In fact, this is exactly what Algorithm 4 does, as it includes the learned
clauses Γ in unit resolution when counting a component. However, ∆X ≡ ∆X ∧ IX is not
guaranteed to hold unless ∆X ∧ ∆Y is satisfiable. When this is not the case, counting
the models of ∆X ∧ IX will only yield a lower bound on the model count of ∆X but is
not necessarily equivalent to it. However, this is not problematic for our algorithm, for
the following reason. If ∆X ∧ ∆Y is unsatisfiable, then either ∆X or ∆Y is unsatisfiable
and, hence, either ∆X ∧ IX or ∆Y ∧ IY will be unsatisfiable, and their conjunction will
be unsatisfiable. Hence, even though one of the components was counted incorrectly, the
conjunction remains a valid result. Without component caching, the incorrect model counts
will be discarded. However, with component caching, one also needs to ensure that incorrect
model counts are not cached (as observed by Sang et al., 2004).9

9. Another possible solution to this is to ensure that ∆X ∧ ∆Y is satisfiable before counting the models.
This can be achieved by two separate SAT calls on ∆X|IX ∧ IX and ∆Y|IY ∧ IY (which will appear
in the current SAT state). If either one of the components is unsatisfiable, then ∆X ∧ ∆Y will be
unsatisfiable, so that we can backtrack without doing any counting and caching. On the other hand, if
both components are satisfiable, then ∆X ∧ ∆Y will be satisfiable, and hence we can safely do model
counting and caching. One caveat here is that when both components are satisfiable, the SAT calls will
be redundant and will incur overhead. So, one needs to perform comprehensive experiments to compare
this method with our current solution which is to discard (possibly) wrong cache results.

10

An Exhaustive DPLL Algorithm for Model Counting

By Theorem 3, if we reach Line 8 or Line 12, then state S may be unsatisfiable and we
can no longer trust the results cached below v. Hence, clean cache(v) on Lines 8 and 12
removes all cache entries that are indexed by Key(v′, .), where v′ is a descendant of v. We
now discuss Lines 16, 17 and 42, which describe the way we cache results.

Definition 4. Let v be a vtree node, and let S = (., ., ., I) and S′ = (., ., ., I ′) corresponding
SAT states. Let x ⊆ I (resp., x′ ⊆ I ′) be the instantiation of variables appearing in
both v and ContextC(v). A function Key(v, S) is called a component key iff Key(v, S) =
Key(v, S′) implies that components CNF (v, S) ∧ x and CNF (v, S′) ∧ x′ are equivalent.10

Hence, as long as Line 16 uses a component key according to this definition, then caching
is sound. The following theorem describes the component key we used in our algorithm.

Theorem 4. Consider a vtree node v and a corresponding SAT state S = (., ., ., I). Define
Key(v, S) as the following bit vector: (1) each clause δ in ContextC(v) is mapped into one
bit that captures whether I |= δ, and (2) each variable X that appears in both vtree v and
ContextC(v) is mapped into two bits that capture whether X ∈ I, ¬X ∈ I, or neither.
Then function Key(v, S) is a component key.

3.4 Weighted Model Counting

In many applications (e.g., probabilistic inference), a generalized version of model counting
is required, called weighted model counting (e.g., Sang et al., 2005; Chavira & Darwiche,
2008), where the weighted model count of a CNF is defined as the sum of the weights of its
models — as opposed to only the number of models. The weight of a model is defined as
the multiplication of the weights of the literals the model has. So, if each literal has weight
1, then the problem reduces to model counting as we have discussed so far.

It is worth to mention here that our model counting algorithm can be trivially adapted
to do weighted model counting. All we need is to apply the changes in Table 1.

Line Modification
3 return weight(X) or weight(¬X) whichever X or ¬X belongs to I
4 return weight(X) + weight(¬X)
22 return weight(X)× right
41 sum← (weight(X)× h) + (weight(¬X)× l)

Table 1: Changes to adapt Algorithm 4 to do weighted model counting. weight(`) returns
the weight of a literal `.

3.5 Experiments

We will now present an empirical evaluation of our model counter miniC2D, which is
a C implementation of Algorithm 4. In our experiments we used 1392 CNFs available
at http://www.cril.univ-artois.fr/PMC/pmc.html, which come from different applica-
tions such as planning and product configuration. We compared our model counter against

10. This definition corrects Definition 5 in the work of Oztok and Darwiche (2015), which misses the sets x
and x′.

11

Oztok & Darwiche

0 500 1000 1500 2000 2500 3000 3500 4000
miniC2D timing (seconds)

0

500

1000

1500

2000

2500

3000

3500

4000

c2
d
 t

im
in

g
 (

se
co

n
d
s)

miniC2D vs. c2d

0 500 1000 1500 2000 2500 3000 3500 4000
miniC2D timing (seconds)

0

500

1000

1500

2000

2500

3000

3500

4000

ca
ch

e
t

ti
m

in
g
 (

se
co

n
d
s)

miniC2D vs. cachet

0 500 1000 1500 2000 2500 3000 3500 4000
miniC2D timing (seconds)

0

500

1000

1500

2000

2500

3000

3500

4000

sh
a
rp

S
A

T
 t

im
in

g
 (

se
co

n
d
s)

miniC2D vs. sharpSAT

Figure 3: Comparison of miniC2D against state-of-the-art model counters.

three different systems: cachet11, c2d12, sharpSAT13. All experiments were performed
on a 2.6GHz Intel Xeon X5650 CPU under 1 hour of time limit and with access to 8GB
RAM. Figure 3 presents the results using scattered plots. For each system mentioned above,
there is a plot that compares the corresponding system with miniC2D. In each plot, the
points represent timings for counting the models of a specific CNF using miniC2D and an-
other model counter. The points above the straight line denote instances where miniC2D
performs better. Here are a few observations. The model counts of the instances were the
same across all the systems. miniC2D was able to compute model counts of 1042 CNF
instances, whereas c2d, cachet, and sharpSAT were able to compute model counts of
1178, 1027, and 1040 CNF instances, respectively. Further, Table 2 shows a comparison of
the mentioned systems, by showing the number of CNF instances solved by one system but
not by another one. Finally, the average counting times were as follows: miniC2D took
164.27 seconds, c2d took 62.69 seconds, cachet took 116.49 seconds, and sharpSAT took
39.45 seconds. Finally, there were 12 instances solved by only miniC2D.

11. Available at http://www.cs.rochester.edu/users/faculty/kautz/Cachet.
12. Available at http://reasoning.cs.ucla.edu/c2d.
13. Available at https://sites.google.com/site/marcthurley/sharpsat.

12

An Exhaustive DPLL Algorithm for Model Counting

miniC2D c2d cachet sharpSAT
miniC2D X 42 147 133

c2d 178 X 201 181
cachet 132 50 X 12

sharpSAT 131 43 25 X

Table 2: Comparison among model counters. An entry (x, y) shows the number of instances
solved by the system x but not by the system y.

X

Y

unsat Z

unsat sat

Y

Z

unsat sat

sat

(a) Termination tree

or

and

or

and

⊥¬Y

and

Y
or

and

⊥ Z

and

¬Z >

¬X

and

X
or

and

or

and

⊥ Z

and

¬Z >

¬Y

and

Y >

(b) Equivalent NNF

Figure 4: The trace of an exhaustive DPLL.

Accordingly, despite being slower on average, our new model counter was able to solve
more instances than cachet and sharpSAT, only surpassed by c2d. This is indeed a
surprising result as the trace of our algorithm belongs to a strict subset of Decision-DNNFs
that is not as succinct. We will next show that the trace of our algorithm belongs to a
special class of Sentential Decision Diagrams.

4. Knowledge Compilation by Exhaustive DPLL

In this section, we will first review the close relationship between exhaustive DPLL (and
its variants) and knowledge compilation (Huang & Darwiche, 2007). We will then show
how our model counting algorithm can be used in the context of knowledge compilation. In
particular, we will describe a top-down SDD compiler that is based off of our algorithm.

Exhaustive DPLL counts the models of a Boolean formula by searching the space of
truth assignments until identifying all the satisfying ones. In particular, given a Boolean
formula ∆, it chooses a variable X of ∆, and then considers two cases recursively, which
correspond to ∆|X and ∆|¬X. It then obtains the model count of ∆ by adding up the
model counts of ∆|X and ∆|¬X. This procedure is similar to what we already described in
Algorithm 3, which is additionally augmented with powerful techniques from SAT literature.
In fact, exhaustive DPLL (and its variants) can be seen as constructing a tree. For example,
the tree in Figure4(a) shows all the paths that are traversed during an exhaustive DPLL

13

Oztok & Darwiche

on a Boolean formula. Each circled node represents a variable on which two decisions are
performed: the variable is either set to false (dashed edge) or set to true (solid edge). This
way, paths from the root to leaf nodes represent (partial) variable assignments. Each leaf
node then represents the result of the search when the variable assignment on the path
from the root to the leaf is applied on the Boolean formula, with the label unsat being
unsatisfiable and the label sat being satisfiable. This tree is called the trace of the search
performed by an exhaustive DPLL (Huang & Darwiche, 2007). Here one can think of each
circled node of the tree as an or node, by utilizing the following:

X

α β

or

and

¬X α

and

X β

Figure 4(b) shows the tree obtained from Figure 4(a) using the above conversion, and also
replacing each sat with >, and each unsat with ⊥. From this structure, by replacing
the same nodes with unique nodes, one would obtain a (rooted) DAG. In its most general
form, this DAG is known as Negation Normal Form (NNF) (Darwiche & Marquis, 2002):
a rooted DAG that has and nodes (representing conjunctions) and or nodes (representing
disjunctions) as internal nodes, and literals or constants as leaves. Indeed, as Huang and
Darwiche (2007) showed, the traces of exhaustive DPLL correspond to FBDDs, and they
become Decision-DNNFs when exhaustive DPLL is augmented with component analysis.14

This close connection between exhaustive DPLL and knowledge compilation has two
implications. First, it allows one to translate lower bounds on NNFs immediately into
lower bounds on the complexity of model counters. Second, it allows one to use model
counters as knowledge compilers, by simply bookkeeping the trace of the search. We will
next show how we can use our model counter in the context of knowledge compilation –
leading to orders of magnitude faster compilations.

4.1 Trace of Algorithm 4

Since Algorithm 4 is an exhaustive DPLL augmented with component analysis, we already
know that its trace is a Decision-DNNF. However, because we employ decision vtrees in the
algorithm, its trace is structured. As we will show later, the trace will be a special type
of Sentential Decision Diagram (SDD) (Darwiche, 2011), called Decision-SDD (Oztok &
Darwiche, 2015), which is introduced next.15

To define Decision-SDDs, we first need to distinguish between decision nodes. An
SDD node that is normalized for a Shannon (resp., decomposition) vtree node is called

14. An NNF node is called a decision node if it is >, ⊥, or an or node having the form (X ∧ α) ∨ (¬X ∧ β)
where X is a variable, and α and β are NNF nodes. A Free Binary Decision Diagram (FBDD) is an
NNF in which every node is a decision node (Blum et al., 1980). A Decision-DNNF is an NNF which
consists of decision nodes and and nodes having the form α ∧ β where the variables of α and β are
disjoint (Huang & Darwiche, 2007) – making FBDDs a strict subset of Decision-DNNFs.

15. The definition of SDD and related concepts are presented in Appendix A. Here, we directly introduce
Decision-SDDs with some insights on them. Some other interesting properties of Decision-SDDs are
discussed in Appendix B.

14

An Exhaustive DPLL Algorithm for Model Counting

5

 Q ⊥

3

Y Z ¬Y ⊥

3

¬Y ¬Z Y ⊥

3

¬Y Z Y ⊤

1

¬X

X

(a) A Decision-SDD

1

X 2

3

Y Z

Q

(b) A vtree

Figure 5: A Decision-SDD and its corresponding vtree.

a Shannon (resp., decomposition) decision node. A Shannon decision node has the form
{(X,α), (¬X,β)}, where X is a Shannon variable.

Definition 5 (Decision-SDD). A Decision-SDD is an SDD in which each decomposition
decision node has the form {(p, s1), (¬p, s2)} where s1 = >, s1 = ⊥, or s1 = ¬s2.

Figure 5 shows a Decision-SDD and a corresponding vtree for the CNF {Y ∨¬Z, ¬X∨Z, X∨
¬Y, X ∨ Q}. For further insights into Decision-SDDs, note that a decomposition decision
node must have the form {(f, g), (¬f,⊥)}, {(f,>), (¬f, g)}, or {(f,¬g), (¬f, g)}. Moreover,
these forms represent the Boolean functions f ∧ g, f ∨ g, and f⊕g, respectively, where f
and g are over disjoint sets of variables. We also note that Decision-DNNFs differ from
Decision-SDDs in two ways. First, Decision-DNNFs have no structure (that is, they are
not guided by a vtree). Second, other than decision nodes, Decision-DNNFs only support
nodes of the form f ∧ g where f and g are over disjoint sets of variables, whereas Decision-
SDDs also support f ∨ g and f⊕g. Moreover, Decision-SDDs cannot polynomially simulate
Decision-DNNFs. That is, there exists a Boolean function which has a polynomial size
Decision-DNNF, yet each Decision-SDD representation of it has exponential size.16

We will next show that the trace of Algorithm 4 belongs to the language of Decision-
SDDs. For that, we will present an algorithm that simulates Algorithm 4 by doing book-
keeping of its trace. This is given in Algorithm 5, whose overall structure is similar to
Algorithm 4, except that it constructs an NNF instead of counting the models.17

Theorem 5. If v is the root vtree node, then call c2s(v, (∆, {}, 〈〉, {})) returns a Decision-
SDD equivalent to ∆ if ∆ is satisfiable, and returns an empty clause if ∆ is unsatisfiable.

4.2 Top-Down SDD Compiler

SDDs have been used in different applications, such as probabilistic planning (Herrmann
& de Barros, 2013), probabilistic logic programs (Vlasselaer et al., 2015), probabilistic

16. The mentioned function was used to show that SDDs cannot polynomially simulate Decision-
DNNFs (Beame & Liew, 2015). As each Decision-SDD is an SDD, the same result applies between
Decision-SDDs and Decision-DNNFs.

17. To construct an SDD, Algorithm 5 needs to have certain negations are freely available (e.g., ¬p on
Line 14). Hence, its recursive calls return both an SDD and its negation, making all such negations
freely available.

15

Oztok & Darwiche

Algorithm 5: c2s(v, S)
unique(α) removes an element from α if its prime is ⊥. It then returns s if α = {(p1, s), (p2, s)} or α = {(>, s)};
returns p1 if α = {(p1,>), (p2,⊥)}; else returns the unique SDD node with elements α.

Input: v : a vtree node, S : a SAT state (∆,Γ, D, I)
Output: A Decision-SDD and its negation or a clause

1 if v is a leaf node then
2 X ← variable of v
3 if X or ¬X belongs to I then return the literal of X that belongs to I
4 else return >,⊥

5 else if v is a decomposition vtree node then
6 p,¬p← c2s(vl, S)
7 if p is a learned clause then
8 clean cache(vl)
9 return p, p

10 s,¬s← c2s(vr, S)
11 if s is a learned clause then
12 clean cache(v)
13 return s, s

14 α ← unique({(p, s), (¬p,⊥)})
15 ¬α← unique({(p,¬s), (¬p,>)})
16 return α,¬α

17 else
18 key ← Key(v, S)
19 if cache(key) 6= nil then return cache(key)
20 X ← Shannon variable of v
21 if either X or ¬X belongs to I then
22 p,¬p← the literal of X that belongs to I and its negation
23 s,¬s← c2s(vr, S)
24 if s is a learned clause then return s, s
25 α ← unique({(p, s), (¬p,⊥)})
26 ¬α← unique({(p,¬s), (¬p,>)})
27 return α,¬α

28 s1 ← decide literal(X,S)
29 if s1 is success then s1,¬s1 ← c2s(vr, S)
30 undo decide literal(X,S)
31 if s1 is a learned clause then
32 if at assertion level(s1, S) then
33 s1 ← assert clause(s1, S)
34 if s1 is success then return c2s(v, S)
35 else return s1, s1

36 else return s1, s1

37 s2 ← decide literal(¬X,S)
38 if s2 is success then s2,¬s2 ← c2s(vr, S)
39 undo decide literal(¬X,S)
40 if s2 is a learned clause then
41 if at assertion level(s2, S) then
42 s2 ← assert clause(s2, S)
43 if s2 is success then return c2s(v, S)
44 else return s2, s2

45 else return s2, s2

46 α ← unique({(X, s1), (¬X, s2)})
47 ¬α← unique({(X,¬s1), (¬X,¬s2)})
48 cache(key)← α,¬α
49 return α,¬α

16

An Exhaustive DPLL Algorithm for Model Counting

inference (Choi et al., 2013), verification of multi-agent systems (Lomuscio & Paquet, 2015),
and tractable learning (Kisa et al., 2014; Choi et al., 2015).

Almost all of these applications are based on the bottom-up SDD compiler developed
by Choi and Darwiche (2013a), which was also used to compile CNFs into SDDs (Choi
& Darwiche, 2013b). This compiler constructs SDDs by first compiling small pieces of a
knowledge base (KB) (e.g., clauses of a CNF). It then combines these compilations using
the Apply18 operation to build a compilation for the full KB.

An alternative to bottom-up compilation is top-down compilation. This approach starts
the compilation process with a full KB. It then recursively compiles the fragments of the
KB that are obtained through conditioning. The resulting compilations are then combined
to obtain the compilation of the full KB. All existing top-down compilers assume CNFs as
input, while bottom-up compilers can work on any input due to the Apply operation. Yet,
compared to bottom-up compilation, top-down compilation has been previously shown to
yield significant improvements in compilation time and space when compiling CNFs into
OBDDs (Huang & Darwiche, 2004). Thus, it has a potential to further improve the results
on CNF to SDD compilations. Indeed, Algorithm 5 is a top-down algorithm that constructs
Decision-SDDs. So, we will next show an empirical analysis of Algorithm 5 to see to what
extent it would be helpful in the compilation of SDDs.

In our experiments, we used two sets of benchmarks. First, we used some CNFs
from the iscas85, iscas89, and LGSynth89 suites, which consist of sequential and com-
binatorial circuits used in the CAD community. We also used some CNFs available at
http://www.cril.univ-artois.fr/PMC/pmc.html, which correspond to different applica-
tions such as planning and product configuration. We compiled those CNFs into SDDs and
Decision-SDDs. To compile SDDs, we used the SDD package (Choi & Darwiche, 2013a).19

All experiments were performed on a 2.6GHz Intel Xeon E5-2670 CPU under 1 hour of time
limit and with access to 50GB RAM. We next explain our results shown in Table 3.

The first experiment compares the top-down compiler against the bottom-up SDD com-
piler. Here, we first generate a decision vtree20 for the input CNF, and then compile the
CNF into an SDD using (1) the bottom-up compiler without dynamic minimization (de-
noted BU), (2) the bottom-up compiler with dynamic minimization (denoted BU+), and
(3) the top-down compiler (denoted TD), using the same vtree.21 Note that BU+ uses a
minimization method, which dynamically searches for better vtrees during the compilation
process, leading to general SDDs, whereas both BU and TD do not modify the input decision
vtree, hence generating Decision-SDDs with the same sizes. We report the corresponding
compilation times and sizes in Columns 2–4 and 6–7, respectively. The top-down Decision-
SDD compiler was consistently faster than the bottom-up SDD compiler, regardless of the
use of dynamic minimization. In fact, in Column 5 we report the speed-ups obtained by

18. The Apply operation combines two SDDs using any Boolean operator, and has its origins in the OBDD
literature (Bryant, 1986).

19. The SDD package was already shown to perform significantly better than a state-of-the-art OBDD
compiler (Choi & Darwiche, 2013b). Moreover, the comparison of c2d and miniC2D in Section 3.5
can also be seen as comparing miniC2D against a state-of-the-art Decision-DNNF compiler, since c2d
compiles into this form before it counts models.

20. We obtained decision vtrees as described by Oztok and Darwiche (2014).
21. Choi and Darwiche (2013b) used balanced vtrees constructed from the natural variable order, and manual

minimization. We chose to use decision vtrees as they performed better than balanced vtrees.

17

Oztok & Darwiche

Without post-processing With post-processing
Compilation time SDD size Compilation time SDD size

CNF BU TD BU+ Speed-up TD BU+ Ratio TD+ TD+
c1355 3423.95 189.0 1292.87 6.84 71,642,606 2,430,882 0.03 — —
c432 1.59 0.14 5.62 11.36 66,004 13,660 0.21 1.95 14,388
c499 1360.05 31.48 — 43.20 29,791,654 — — 1800.14 3,356,190
c880 3372.87 896.47 — 3.76 214,504,174 — — — —
s1196 763.39 1.86 709.93 381.68 2,381,672 245,549 0.10 131.53 97,641
s1238 1039.39 2.19 2114.01 474.61 1,539,440 139,475 0.09 74.42 76,690
s1423 1860.56 5.67 354.62 62.54 11,363,370 454,711 0.04 588.23 782,464
s1488 564.25 0.57 206.41 362.12 457,420 111,671 0.24 19.47 88,671
s1494 2672.46 0.59 1035.91 1755.78 465,092 98,812 0.21 21.33 91,690
s510 49.02 0.09 55.38 544.67 19,732 10,192 0.52 0.68 7,411
s641 3.84 0.28 4.54 13.71 257,322 13,910 0.05 5.36 14,623
s713 4.08 0.36 5.91 11.33 230,886 13,809 0.06 5.22 12,079
s832 80.94 0.33 28.45 86.21 501,098 30,841 0.06 11.23 28,773
s838 0.71 0.1 4.82 7.10 46,490 9,853 0.21 1.79 13,540
s953 — 1.92 — — 2,772,894 — — 90.06 161,056

9symml 6.15 0.08 5.29 66.12 59,616 15,572 0.26 1.57 14,453
alu2 1164.19 0.13 91.12 700.92 114,194 26,866 0.24 2.88 13,093
alu4 — 0.71 — — 2,147,052 — — 172.81 87,562

apex6 — 235.06 — — 156,430,304 — — — —
frg1 165.61 0.46 22.64 49.22 1,551,328 76,632 0.05 183.92 123,890
frg2 1876.64 49.76 690.63 13.88 21,820,292 235,761 0.01 2613.82 1,624,002

term1 517.52 25.36 454.08 17.91 5,545,908 249,372 0.04 468.92 818,343
ttt2 20.79 0.69 6.54 9.48 468,884 15,328 0.03 10.00 18,706
vda — 0.14 — — 126,152 — — 11.21 29,266
x4 21.22 0.36 12.04 33.44 252,530 23,920 0.09 9.16 27,102

2bitcomp 5 16.29 0.35 119.82 46.54 337,642 19,289 0.06 9.06 58,043
2bitmax 6 — 45.22 — — 153,512,364 — — — —
4blocksb 30.99 168.53 16.85 0.10 1,634 1,989 1.22 168.63 1,530
C163 FW 2457.58 10.55 — 232.95 3,909,336 — — 153.49 84,773
C171 FR 140.77 0.7 92.17 131.67 743,212 53,484 0.07 69.96 72,415

C210 FVF 1265.00 9.01 — 140.40 7,052,986 — — 426.93 165,582
C211 FS 7.80 0.17 3.93 23.12 111,004 8,590 0.08 3.00 9,243
C215 FC — 16.45 — — 11,625,728 — — 1294.15 431,589
C230 FR — 32.69 3320.03 101.56 38,975,404 571,611 0.01 2869.13 763,845

C638 FKA 497.18 5.21 50.35 9.66 1,106,488 17,930 0.02 61.95 25,669
ais10 — 2.6 1464.48 563.26 61,950 13,940 0.23 4.35 11,997

bw large.a 62.77 0.01 17.81 1781.00 1,512 1,642 1.09 0.16 1,290
bw large.b 3246.49 0.17 961.77 5657.47 5,552 4,309 0.78 0.63 3,698

cnt06.shuffled 2.03 0.04 27.74 50.75 3,004 2,874 0.96 0.10 2,994
huge 83.01 0.05 23.79 475.80 1,512 1,654 1.09 0.20 1,290
log-1 41.02 0.23 21.39 93.00 69,358 6,650 0.10 1.99 7,622
log-2 — 8.85 — — 11,249,348 — — — —
log-3 — 4.76 — — 440,868 — — 185.88 24,418

par16-1-c 224.79 1.22 116.10 95.16 1,220 1,204 0.99 1.23 1,214
par16-2-c 356.94 1.26 — 283.29 1,362 — — 1.32 1,242
par16-2 1098.42 1.28 1048.58 819.20 3,938 3,938 1.00 1.36 3,922
par16-3 666.46 4.46 713.34 149.43 3,960 3,960 1.00 4.54 3,934

par16-5-c 516.75 0.87 — 593.97 1,330 — — 0.93 1,226
par16-5 864.91 4.38 1722.34 197.47 3,960 4,000 1.01 4.46 3,934

prob004-log-a — 181.13 — — 212,553,140 — — — —
qg1-07 — 0.36 — — 4,576 — — 0.79 2,485
qg2-07 — 0.39 — — 8,072 — — 1.38 3,992
qg3-08 — 0.15 — — 18,310 — — 2.69 6,674
qg6-09 — 0.12 — — 6,458 — — 1.63 4,592
qg7-09 — 0.1 — — 6,712 — — 1.31 4,004

ra 269.96 4.77 — 56.60 619,146 — — 116.14 342,034
ssa7552-038 4.71 0.14 9.38 33.64 44,902 18,786 0.42 1.57 19,147

tire-2 6.98 0.18 5.58 31.00 75,472 4,013 0.05 1.27 4,487
tire-3 42.13 0.23 26.67 115.96 73,914 7,599 0.10 1.85 13,038
tire-4 593.53 0.28 98.75 352.68 164,996 17,129 0.10 5.07 8,395

uf250-026 — 1667.7 — — 8,880 — — 1667.91 1,013

Table 3: Bottom-up and top-down SDD compilations over iscas85, iscas89, LGSynth89,
and some sampled benchmarks. BU refers to bottom-up compilation without
dynamic minimization and BU+ with dynamic minimization. TD refers to top-
down compilation, and TD+ with a single minimization step applied at the end.

using the top-down compiler against the best result of the bottom-up compiler (i.e., either
BU or BU+, whichever was faster). There are 40 cases (out of 61) where we observe at
least an order-of-magnitude improvement in time. Also, there are 15 cases where top-down
compilation succeeded and both bottom-up compilations failed. However, the situation is
different for the sizes, when the bottom-up SDD compiler employs dynamic minimization.

18

An Exhaustive DPLL Algorithm for Model Counting

In almost all of those cases, BU+ constructed smaller representations. As reported in Col-
umn 8, which shows the relative sizes of SDDs generated by TD and BU+, there are 21
cases where BU+ produced an order-of-magnitude smaller SDDs. This is not a surprising
result though, given that BU+ produces general SDDs and our top-down compiler produces
Decision-SDDs, and that SDDs are a strict superset of Decision-SDDs.

Since Decision-SDDs are a subset of SDDs, any minimization algorithm designed for
SDDs can also be applied to Decision-SDDs. In this case, however, the results may not be
necessarily Decision-SDDs, but general SDDs. In our second experiment, we applied the
minimization method provided by the bottom-up SDD compiler to the compiled Decision-
SDDs (as a post-processing step). We then added the top-down compilation times to the
post-processing minimization times and reported those in Column 9, with the resulting
SDD sizes in Column 10. As is clear, the post-processing minimization step significantly
reduces the sizes of SDDs generated by our top-down compiler. In fact, the sizes are almost
equal to the sizes generated by BU+ (Column 7). The top-down compiler gets slower due
to the cost of the post-processing minimization step, but its total time still dominates the
bottom-up compiler. Indeed, it can still be an order-of-magnitude faster than the bottom-
up compiler (18 cases). This shows that one can also use Decision-SDDs as a representation
that facilitates the compilation of CNFs into general SDDs.

5. Related Work

The works by Sang et al. (2004), Darwiche (2004), Thurley (2006), and Muise et al. (2012)
are closest to ours, yielding the systems cachet, c2d, sharpSAT, and DSharp.

There are two main differences between cachet and our model counter miniC2D. We
use a static component analysis whereas cachet performs a dynamic one. Moreover, the
trace of cachet is a Decision-DNNF, whereas ours is a Decision-SDD. Finally, miniC2D
can be used as a knowledge compiler as we implemented a version of it that saves its trace.

The main differences between sharpSAT and miniC2D are the same ones as with
cachet. DSharp is simply a knowledge compiler that is obtained by saving the trace of
sharpSAT, which is a Decision-DNNF.

There are two main differences between c2d and our model counter miniC2D. To per-
form static component analysis we use decision vtrees, whereas c2d uses a different structure
called a dtree. Even though one can obtain vtrees from dtrees (Oztok & Darwiche, 2014), the
use of vtrees provides a simpler algorithm. Furthermore, c2d is a CNF to Decision-DNNF
compiler, whereas the trace of miniC2D belongs to Decision-SDDs.

The executive summary of the comparison is shown in Table 4. We note here that
since Decision-SDDs are more structured than Decision-DNNFs, our model counter can be
thought of as performing more work. Moreover, thanks to its modular design, our software
package can easily be integrated with different SAT solvers. Finally, we remark that the
works by Sang et al. (2004), Darwiche (2004), Thurley (2006), and Muise et al. (2012) do
not provide a proof of correctness of their methods, as we did in this paper.

19

Oztok & Darwiche

System Counter Compiler Component Analysis Trace SAT solver
cachet X X Dynamic Decision-DNNF zChaff
c2d X X Static Decision-DNNF RSat

sharpSAT X X Dynamic Decision-DNNF –
DSharp X X Dynamic Decision-DNNF –
miniC2D X X Static Decision-SDD RSat

Table 4: Comparison of related work.

6. Conclusion

In this article, we introduced a new exhaustive DPLL algorithm with a formal semantics, a
proof of correctness, and a modular design. The modular design was based on the separation
of the core model counting algorithm from SAT solving techniques, which allows one to eas-
ily integrate techniques from SAT solvers. We hope that this will facilitate the development
of model counters. Moreover, we showed that the trace of our algorithm belongs to a special
class of SDDs, which is a subset of Decision-DNNFs, the trace of existing state-of-the-art
model counters. Still, our extensive experimental evaluation showed comparable results
against state-of-the-art model counters. Finally, we obtained the first top-down SDD com-
piler by saving the traces of our model counting algorithm, and showed orders-of-magnitude
improvements in compilation times against the state-of-the-art bottom-up SDD compiler.
Our system, miniC2D, is publicly available at http://reasoning.cs.ucla.edu/minic2d.
The distribution provides the source codes for Algorithm 4 and Algorithm 5.

Appendix A. Sentential Decision Diagrams

A Boolean function f(X,Y), where X and Y are disjoint, can always be decomposed into

f(X,Y) =
(
p1(X) ∧ s1(Y)

)
∨ . . . ∨

(
pn(X) ∧ sn(Y)

)
,

such that pi 6= ⊥ for all i; pi ∧ pj = ⊥ for i 6= j; and
∨
i pi = >. A decomposition satisfying

the above properties is known as an (X,Y)-partition (Darwiche, 2011). Moreover, each pi
is called a prime, each si is called a sub, and the (X,Y)-partition is said to be compressed
when its subs are distinct, i.e., si 6= sj for i 6= j.

SDDs result from the recursive decomposition of a Boolean function using (X,Y)-
partitions. To determine the X/Y variables of each partition, we use a vtree. Consider now
the vtree in Figure 6(b), and also the Boolean function f = (A∧B)∨(B∧C)∨(C∧D). Node
v = 1 is the vtree root, whose left subtree contains variables X = {A,B} and right subtree
contains Y = {C,D}. Decomposing function f at node v = 1 amounts to generating an
(X,Y)-partition:

{(A ∧B︸ ︷︷ ︸
prime

, >︸︷︷︸
sub

), (¬A ∧B︸ ︷︷ ︸
prime

, C︸︷︷︸
sub

), (¬B︸︷︷︸
prime

, D ∧ C︸ ︷︷ ︸
sub

)}.

This partition is represented by the root node of Figure 6(a). This node, which is a circle,
represents a decision node with three branches, where each branch is called an element.
Each element is depicted by a paired box p s . The left box corresponds to a prime p and
the right box corresponds to its sub s. A prime p or sub s are either a constant, literal, or
pointer to a decision node. In this case, the three primes are decomposed recursively, but

20

An Exhaustive DPLL Algorithm for Model Counting

3

D C ¬D⊥

1

 ⊤ C ¬B

2

B ¬A¬B ⊥

2

B A

(a) An SDD

1

2

B A

3

D C

(b) A vtree

Figure 6: An SDD and a vtree for (A ∧B) ∨ (B ∧ C) ∨ (C ∧D).

using the vtree rooted at v = 2. Similarly, the subs are decomposed recursively, using the
vtree rooted at v = 3. This decomposition process moves down one level in the vtree with
each recursion, terminating at leaf vtree nodes.

SDDs constructed as above are said to respect the used vtree. These SDDs may con-
tain trivial decision nodes which correspond to (X,Y)-partitions of the form {(>, α)} or
{(α,>), (¬α,⊥)}. When these decision nodes are removed (by directing their parents to
α), the resulting SDD is called trimmed. Moreover, an SDD is called compressed when each
of its partitions is compressed. Compressed and trimmed SDDs are canonical for a given
vtree (Darwiche, 2011). Here, we restrict our attention to compressed and trimmed SDDs.
Figure 6(a) depicts a compressed and trimmed SDD for the above example. Finally, an SDD
node representing an (X,Y)-partition is normalized for the vtree node v with variables X
in its left subtree vl and variables Y in its right subtree vr. In Figure 6(a), SDD nodes are
labeled with vtree nodes they are normalized for.

Appendix B. Decision-SDDs

We will now provide some interesting properties of Decision-SDDs, and discuss their re-
lationship to OBDDs and SDDs. We first note that Decision-SDDs are a strict subset
of SDDs. In particular, if an SDD is based on a general vtree, it may or may not be a
Decision-SDD. However, a decision vtree guarantees a Decision-SDD.

Proposition 2. Let v be a decision vtree for CNF ∆. An SDD equivalent to ∆ that respects
vtree v must be a Decision-SDD.

Proof. Due to Theorem 5, Algorithm 5 constructs a Decision-SDD equivalent to ∆ that
respects vtree v. As SDDs are canonical for a given vtree, we are done. �

A vtree is called right-linear when every internal vtree node is a Shannon vtree node.
Consider an SDD that respects a right-linear vtree. In this case, the SDD corresponds to
an OBDD. Further, note that each OBDD is a Decision-SDD. Hence, Decision-SDDs are
a superset of OBDDs. Because of this, the language of Decision-SDDs is complete: every
Boolean function can be represented by a Decision-SDD using an appropriate vtree.

In terms of succinctness, a quasipolynomial separation between SDDs and OBDDs was
given by Razgon (2014).22 As it turns out, the SDDs used in this separation were indeed

22. A quasipolynomial grows slightly faster than a polynomial, but not exponentially fast.

21

Oztok & Darwiche

Decision-SDDs. Further, the following complements this result by showing that Decision-
SDDs can be simulated by OBDDs with at most a quasipolynomial increase in size.

Theorem 6 (Oztok & Darwiche, 2015). Each Decision-SDD over n variables and of size
N has an equivalent OBDD of size ≤ N1+logn.

Furthermore, Xue et al. (2012) have identified a class of Boolean functions fi, with
corresponding variable orders πi, such that the OBDDs based on orders πi have exponential
size, yet the SDDs based on vtrees that dissect orders πi have linear size.23 Interestingly,
the SDDs used in this result turn out to be Decision-SDDs as well. Hence, a variable order
that blows up an OBDD can sometimes be dissected to obtain a vtree that leads to a
compact Decision-SDD. This reveals the practical significance of Decision-SDDs despite the
quasipolynomial simulation of Theorem 6. We finally note that SDDs have been recently
shown to be exponentially separated from OBDDs (Bova, 2016). Due to this result and
Theorem 6, SDDs are also exponentially separated from Decision-SDDs.

Appendix C. Soundness of the Model Counting Algorithm

We will now present the proofs of the theorems that were used in the soundness of Algo-
rithm 4 (i.e., Theorems 1–3). We start by listing some assumptions/observations that will
be used in the rest of the paper. First, S will denote a state (∆,Γ, D, I), where ∆ and
Γ are sets of clauses, D is a sequence of literals, and I is a set of literals.24 Second, each
(recursive) call #SAT(v, S) of Algorithm 4 will take two inputs v and S such that v is a
vtree node belonging to a decision vtree for ∆ and S is a SAT state.25 The latter implies
that ∆ |= Γ and ∆ ∧ Γ ∧D ` I. This holds due to the following three facts: (1) initial call
is made with (∆, {}, 〈〉, {}), which is a SAT state as ∆ has no unit or empty clause is no
unit or empty clause in ∆; (2) any clause added to Γ is a learned clause, which must be
implied by ∆; and (3) literals I is always adjusted before making a call (see SAT primitives
in Figure 1). Finally, a SAT state S is said to be callable iff unit resolution does not detect
a contradiction in ∆ ∧ Γ ∧ D. Indeed, S will be callable for each call #SAT(v, S). This
is true due to the following two facts: (1) initial SAT state (∆, {}, 〈〉, {}) is callable as ∆
has no unit or empty clause; and (2) whenever a new SAT state, which is not callable, is
constructed during a call, Algorithm 4 backtracks until the contradiction is resolved. So, it
will initiate a call only on callable SAT states. We now prove Theorem 1.

Theorem 1. Consider a call #SAT(v, S) with S = (., ., D, I). Then, D ⊆ ContextL(v, I)
and ContextL(v, I) contains exactly one literal for each variable of ContextV (v).

Proof. Let γ = ContextL(v, I). We first show D ⊆ γ. For that, we show D ⊆ I and
V ars(D) ⊆ ContextV (v). The former is due to ∆ ∧ Γ ∧ D ` I. For the latter, note that
when Algorithm 4 decides on a literal (i.e., Line 23 and Line 32), it undoes its decision after
completing a recursive call on the next line (i.e., Line 25 and Line 34). Thus, when call
#SAT(v, S) is made, literals of D must come from recursive calls that are not completed.
Indeed, these calls can only be made on the ancestors of v. So, each literal of D must be

23. A vtree dissects a variable order if the order is generated by a left-right traversal of the vtree.
24. We will sometimes abuse notation to use D as a set of literals.
25. All calls considered in the proofs are assumed to be legal (i.e., can be generated by executing Algorithm 4).

22

An Exhaustive DPLL Algorithm for Model Counting

a literal of some context variable of v. That is, V ars(D) ⊆ ContextV (v). We next show γ
contains exactly one literal for each context variable of v. First, we show γ cannot contain
two literals of any variable. Assume otherwise. Then, since γ ⊆ I and ∆ ∧ Γ ∧ D ` I,
unit resolution detects a contradiction in ∆ ∧ Γ ∧ D, which is a contradiction. We now
show γ contains a literal for each context variable X of v. Assume otherwise. Let p be the
Shannon node whose Shannon variable is X. Then, variable X is not implied during the
corresponding ancestral call to p. As p is a Shannon node, Algorithm 4 will not recurse
on p’s right child before ensuring X is implied (see Lines 20, 24, and 33). That is, call
#SAT(v, S) cannot happen, which is a contradiction. So, a literal of X appears in I. Hence,
I contains a literal for each context variable of v, and so does γ. �

We remark that Algorithm 4 is recursive. As such, its execution can be viewed as con-
structing a tree whose nodes are labeled with recursive calls #SAT(., .), and whose edges are
from a recursive call R1 to another R2 if R2 is called within R1. As some of upcoming proofs
will be based on this tree, which we denote by T , we next present two useful observations.

Proposition 3. Consider an internal node #SAT(v, S) on T . Then, v is either a decom-
position node or a Shannon node.

Proof. As #SAT(v, S) is an internal node, it must have a child. Then, v cannot be a leaf
vtree node, as no recursive call is made on Lines 1–4. So, the proposition follows. �

Proposition 4. Consider a leaf node #SAT(v, S) on T . Then, either v is a leaf vtree
node or v is a Shannon node and call #SAT(v, S) returns a clause on Line 30 or Line 31.

Proof. Node #SAT(v, S) can be a leaf node iff no recursive call happens during call
#SAT(v, S). Due to Line 6, v cannot be a decomposition node. So, v is either a leaf vtree
node or a Shannon node. If v is a Shannon node, then the call can return on one of the
following lines: 21, 22, 29, 30, 31, 38, 39, 40, and 43. It is not hard to see that no recursive
call happens only when call #SAT(v, S) returns a clause on Line 30 or Line 31. �

To prove Theorem 2 and Theorem 3, we will next present some lemmas.

Lemma 1. Consider a call #SAT(v, S). Let S′ = (∆,Γ′, D′, I ′) be a callable SAT state that
appears during call #SAT(v, S). Then, we have ContextL(v, I) = ContextL(v, I ′).

Proof. Note that ∆ ∧ Γ ∧D ` I and ∆ ∧ Γ′ ∧D′ ` I ′. We first show Γ ⊆ Γ′ and D ⊆ D′,
which implies that I ⊆ I ′. The former holds as Algorithm 4 never erases learned clauses and
Γ is obtained before Γ′. The latter holds as call #SAT(v, S) does not undo any decision made
before its initiation. Hence, I ⊆ I ′. Let γ = ContextL(v, I). Since γ ⊆ I, γ ⊆ I ′. Also,
by Theorem 1, γ contains exactly one literal for each context variable of v. So, I ′ cannot
contain any other literal than γ for context variables of v. Otherwise, unit resolution detects
contradiction in ∆ ∧ Γ′ ∧D′, which violates S′ being callable. So, γ = ContextL(v, I ′). �

Corollary 2. Consider a call #SAT(v, S). Let S′ be a callable SAT state that appears
during call #SAT(v, S). Then, we have CNF (v, S) = CNF (v, S′).

Lemma 2. Let S be a SAT state and v be a decomposition node of a decision vtree for ∆.
Then, we have CNF (v, S) = CNF (vl, S) ∧ CNF (vr, S).

23

Oztok & Darwiche

Proof. Since the input vtree is a decision vtree, there is no clause compatible with v. Thus,
we have CNF (v) = CNF (vl) ∧ CNF (vr), ContextC(v) = ContextC(vl) ∧ ContextC(vr)
and ContextV (vl) = ContextV (vr), implying CNF (v, S) = CNF (vl, S) ∧ CNF (vr, S). �

Lemma 3. Consider a call #SAT(v, S) on a decomposition node v. Let S′ be a callable state
that appears during call #SAT(v, S). Then, CNF (v′, S) = CNF (v′, S′) for v’s child v′.

Proof. CNF (v, S) = CNF (v, S′) by Corollary 2. Further, due to Lemma 2, CNF (v, S) =
CNF (vl, S) ∧ CNF (vr, S) and CNF (v, S′) = CNF (vl, S′) ∧ CNF (vr, S′). This implies
CNF (vl, S) = CNF (vl, S′) and CNF (vr, S) = CNF (vr, S′), and thus the lemma holds. �

Lemma 4. Consider a call #SAT(v, S). Let v1, . . . , vn be the decomposition nodes on the
path from the vtree root to v (excluding v) and v′i the child of vi not appearing on the path.
Then, ∆|γ ≡

∧n
i=1CNF (v′i, S) ∧ CNF (v, S), where γ = ContextL(v, I).

Proof. Note that ∆ ≡
(∧n

i=1CNF (v′i) ∧ ContextC(v′i)
)
∧ CNF (v) ∧ ContextC(v) ∧ Σ,

where Σ is a set of clauses that only mention context variables of v. So, the following holds:

∆|γ ≡
(n∧
i=1

CNF (v′i)|γ ∧ ContextC(v′i)|γ
)
∧ CNF (v)|γ ∧ ContextC(v)|γ ∧ Σ|γ

≡
(n∧
i=1

CNF (v′i)|γ ∧ ContextC(v′i)|γ
)
∧ CNF (v)|γ ∧ ContextC(v)|γ (1)

≡
(n∧
i=1

CNF (v′i) ∧ ContextC(v′i)|γ
)
∧ CNF (v) ∧ ContextC(v)|γ (2)

≡
n∧
i=1

CNF (v′i, S) ∧ CNF (v, S). (3)

We now explain why Equations (1)–(3) hold. Equation (1) holds as Σ|γ ≡ >. To see this,
note that γ contains exactly one literal for each context variable of v (see Theorem 1),
so that Σ|γ ≡ ⊥ or Σ|γ ≡ >. If Σ|γ ≡ ⊥, then unit resolution detects a contradiction
in ∆ ∧ Γ ∧ D (since ∆ ∧ Γ ∧ D ` I and γ ⊆ I). So, Σ|γ ≡ >. Equation (2) holds as
CNF (v′i) and CNF (v) does not mention any context variable of v. Equation (3) holds as
CNF (v′i, S) ≡ CNF (v′i) ∧ ContextC(v′i)|γ (since ContextV (v′i) ⊆ ContextV (v)). �

Lemma 5. Consider a call #SAT(v, S). Then, ∆ ∧D ≡ ∆ ∧ γ where γ = ContextL(v, I).

Proof. Note that ∆∧Γ∧D ` I. Then, since γ ⊆ I, ∆∧Γ∧D |= γ. Further, since ∆ |= Γ,
∆ ∧ Γ ∧D ≡ ∆ ∧D. So, ∆ ∧D |= γ. By Theorem 1, D ⊆ γ. So, ∆ ∧D ≡ ∆ ∧ γ. �

Lemma 6. Consider a call #SAT(v, S). Then, S is satisfiable iff ∆|γ is satisfiable where
γ = ContextL(v, I).

Proof. By Lemma 5, ∆∧D ≡ ∆∧γ. Also, as γ is a set of literals, ∆∧γ ≡ ∆|γ ∧γ, and so
∆ ∧D ≡ ∆|γ ∧ γ. Thus, ∆ ∧D is satisfiable iff ∆|γ is satisfiable. So, the lemma holds. �

Lemma 7. Consider a call #SAT(v, S) on a Shannon node v with Shannon variable X. Let
S′ = (∆,Γ′, D′, I ′) be a callable SAT state that appears during call #SAT(v, S). If a literal
` of X appears in I ′, then CNF (vr, S′) ≡ CNF (v, S)|`.

24

An Exhaustive DPLL Algorithm for Model Counting

Proof. Assume a literal ` of X appears in I ′. We note that CNF (v) ∧ ContextC(v) ≡
CNF (vl)∧CNF (vr)∧ContextC(vr)∧Σ, where Σ = ContextC(vl) \ContextC(vr). Also,
CNF (vl) ≡ > as v is a Shannon node and there is no unit or empty clause. Then, the
following holds, where γ = ContextL(v, I):

CNF (v, S)|` ≡
(
CNF (v) ∧ ContextC(v)

)
|γ` ≡ CNF (vr) ∧

(
ContextC(vr) ∧ Σ

)
|γ`

≡ CNF (vr) ∧ ContextC(vr)|γ` (4)

≡ CNF (vr, S′). (5)

We now explain why Equations (4)–(5) hold. Note that ContextV (vr) = ContextV (v)∪{X}
and γ = ContextL(v, I ′) (see Lemma 1). Then, ContextL(vr, I ′) = γ`, and so Equation (5)
holds. Also, Equation (4) holds since Σ|γ` ≡ >. To see this, note that Σ is defined over
context variables of vr and γ` contains exactly one literal for each context variable of vr,
which implies that Σ|γ` ≡ ⊥ or Σ|γ` ≡ >. If Σ|γ` ≡ ⊥, then unit resolution must detect a
contradiction in ∆∧Γ′ ∧D′ (since ∆∧Γ′ ∧D′ ` I ′ and γ` ⊆ I ′). However, this contradicts
with S′ being callable. Hence, Σ|γ` ≡ >. �

Lemma 8. Consider a call #SAT(v, S) with a satisfiable state S. If a literal ` of some
variable inside v appears in I, then CNF (v, S) ≡ ` ∧ CNF (v, S)|`.

Proof. Assume a literal ` of some variable X inside v appears in I. Note that ∆∧Γ∧D ` I.
So, ∆ ∧ Γ ∧D |= `. Further, since ∆ |= Γ, ∆ ∧ Γ ∧D ≡ ∆ ∧D. So, ∆ ∧D |= `. Then, due
to Lemma 5, ∆ ∧ γ |= ` where γ = ContextL(v, I). Since γ cannot contain `, ∆|γ |= `. By
Lemma 4, ∆|γ ≡ Σ ∧ CNF (v, S) where Σ and CNF (v, S) are decomposable CNFs. Here,
CNF (v, S) mentions X but Σ does not. Then, given that ∆|γ is satisfiable (see Lemma 6),
we have CNF (v, S) |= `, which implies that CNF (v, S) ≡ ` ∧ CNF (v, S)|`. �

Lemma 9. Consider a call #SAT(v, S) with a satisfiable state S. Let ` be a literal of some
variable inside v. If ∆ ∧D ∧ ` is unsatisfiable, then CNF (v, S)|` is unsatisfiable.

Proof. Assume ∆ ∧D ∧ ` is unsatisfiable. Since S is satisfiable, ∆ ∧D is satisfiable. So,
(∆ ∧ D)|` must be unsatisfiable. Then, due to Lemma 5, (∆ ∧ γ)|` is unsatisfiable where
γ = ContextL(v, I). Since γ cannot contain `, ∆|γ` is unsatisfiable. Due to Lemma 4,
∆|γ ≡ Σ ∧ CNF (v, S) where Σ and CNF (v, S) are decomposable. As ∆|γ is satisfiable
(see Lemma 6), Σ is satisfiable. Since Σ does not mention any variable inside v, Σ|` ≡ Σ.
So, ∆|γ` ≡ Σ ∧ CNF (v, S)|`, and hence CNF (v, S)|` is unsatisfiable. �

Lemma 10. Consider a call #SAT(v, S) on a leaf node v labeled with variable X. Then,
CNF (v, S) is equivalent to one of the following: X,¬X, or >.

Proof. Note that CNF (v, S) = CNF (v) ∧ContextC(v)|γ where γ = ContextL(v, I). So,
by Theorem 1, CNF (v, S) must be equivalent to one of X,¬X,>, or ⊥. We show it cannot
be equivalent to ⊥. Assume otherwise. Note that ∆ has neither an empty clause nor a unit
clause. So, CNF (v, S) ≡ ContextC(v)|γ. Thus, ContextC(v) must include two clauses β1

and β2 such that β1|γ = X and β2|γ = ¬X. Note that ∆ ∧ Γ ∧D ` I. Then, since γ ⊆ I,
β1|γ = X, and β2|γ = ¬X, unit resolution must detect a contradiction in ∆ ∧ Γ ∧D. As
this is a contradiction, CNF (v, S) cannot be equivalent to ⊥. �

25

Oztok & Darwiche

Lemma 11. Consider a call #SAT(v, S). If CNF (v, S) is unsatisfiable, then call #SAT(v, S)
will return a (learned) clause.

Proof. Assume CNF (v, S) is unsatisfiable. We use strong induction on the height of node
#SAT(v, S) on T to show that call #SAT(v, S) returns a clause.

Basis: Consider a leaf node #SAT(v, S) (i.e., at height 0). Due to Lemma 10, v cannot
be a leaf vtree node. Then, by Proposition 4, call #SAT(v, S) must return a clause.

Inductive step: As an induction hypothesis (IH), assume that the statement holds for
the calls at height less than k where k ≥ 1. Consider an internal node #SAT(v, S) (i.e., at
height k). By Proposition 3, v is either a decomposition node or a Shannon node.

Assume v is a decomposition node. Then, CNF (v, S) = CNF (vl, S)∧CNF (vr, S) due
to Lemma 2. Since CNF (vl, S) and CNF (vr, S) are decomposable, one of them must be
unsatisfiable. Let Sl (resp., Sr) be the SAT state before the call on Line 6 (resp., Line 10).
Due to Lemma 3, CNF (vl, Sl) = CNF (vl, S) and CNF (vr, Sr) = CNF (vr, S). Then,
by IH, either Line 6 or Line 10 must construct a clause (whichever component CNF is
unsatisfiable), and hence call #SAT(v, S) returns a clause on either Line 9 or Line 13.

Assume v is a Shannon node with Shannon variable X. Since CNF (v, S) is unsatisfiable,
CNF (v, S)|` is unsatisfiable for any literal `. Suppose a literal ` ofX belongs to I. Then, the
call on Line 20 is made with SAT state S′ = S. By Lemma 7, CNF (vr, S′) ≡ CNF (v, S)|`,
and so is unsatisfiable. Thus, by IH, Line 20 returns a clause, so does call #SAT(v, S).
Suppose no literal ` of X belongs to I. We first show that the condition on Line 26 must be
satisfied. This can happen iff Line 23 or Line 24 constructs a clause. Note that if Line 23
does not construct a clause, then the call on Line 24 is made with a SAT state S′ = (., ., ., I ′)
where X ∈ I ′. By Lemma 7, CNF (vr, S′) ≡ CNF (v, S)|X, and so is unsatisfiable. So, by
IH, Line 24 returns a clause. That is, the condition on Line 26 must be satisfied. Hence,
call #SAT(v, S) must return on either Line 29, 30 or 31. As Line 30 and Line 31 both return
a clause, it remains to show Line 29 returns a clause. Let S′ be the state before the call on
Line 29. By Corollary 2, CNF (v, S) = CNF (v, S′). So, by IH, Line 29 returns a clause. �

Lemma 12. A call #SAT(v, S) with a satisfiable state S will return either the model count
of component CNF (v, S) or a (learned) clause.

Proof. We use strong induction on the height of node #SAT(v, S) on T to show that call
#SAT(v, S) returns either the model count of CNF (v, S) or a clause.

Basis: Consider a leaf node #SAT(v, S) (i.e., at height 0). By Proposition 4, either v
is a leaf vtree node or the call returns a clause. Assume v is a leaf vtree node labeled with
variable X. Then, by Lemma 10, CNF (v, S) is equivalent to one of X,¬X, or >. So, we
simply identify CNF (v, S) on Lines 1–4, and return its model count.

Inductive step: As an induction hypothesis (IH), assume that the statement holds for
the calls at height less than k where k ≥ 1. Consider an internal node #SAT(v, S) (i.e., at
height k). By Proposition 3, v is either a decomposition node or a Shannon node.

Assume v is a decomposition node. So, call #SAT(v, S) can return on one of the following
lines: 9, 13, or 14. Line 9 and Line 13 return clauses. So, assume the call returns on Line 14.
That is, Line 6 and Line 10 do not return clauses. Let Sl (resp., Sr) be the SAT state before
the call on Line 6 (resp., Line 10). Since S is satisfiable, both Sl and Sr are satisfiable (note
that decision sequence D stays the same). Then, by IH, Line 6 and Line 10 must return

26

An Exhaustive DPLL Algorithm for Model Counting

the model counts of CNF (vl, Sl) and CNF (vr, Sr), respectively. Further, due to Lemma 3,
CNF (vl, Sl) = CNF (vl, S) and CNF (vr, Sr) = CNF (vr, S). As the model count of
CNF (v, S) is equal to the product of the model counts of CNF (vl, S) and CNF (vr, S)
(due to Lemma 2), Line 14 returns the model count of CNF (v, S).

Assume v is a Shannon node with Shannon variable X. So, call #SAT(v, S) can return
on one of the following lines: 21, 22, 29, 30, 31, 38, 39, 40 or 43. Lines 21, 30, 31, 39, 40
return clauses. So, we study the remaining lines in the following:

[22] Here, a literal ` of X belongs to I. Then, by Lemma 7, CNF (vr, S) ≡ CNF (v, S)|`.
So, by IH, Line 20 returns the model count of CNF (v, S)|`. Since CNF (v, S) ≡ ` ∧
CNF (v, S)|` (see Lemma 8), Line 22 returns the model count of CNF (v, S).

[29, 38] Let S′ = (., ., D′, .) be the SAT state before the call on Line 29. It is easy
to see that D′ = D. Then, S′ is satisfiable (as S is satisfiable). Also, by Corollary 2,
CNF (v, S′) = CNF (v, S). So, by IH, Line 29 returns either the model count of CNF (v, S)
or a clause. We can use the same argument for Line 38.

[43] To reach this line, calls on Line 24 and Line 33 should not construct clauses. Note
that the call on Line 24 should be made with a SAT state S′ = (∆, ., DX, .). We now show
S′ is satisfiable. Assume otherwise. That is, ∆∧D∧X is unsatisfiable. Then, by Lemma 9,
CNF (v, S)|X is unsatisfiable. Note that CNF (vr, S′) ≡ CNF (v, S)|X by Lemma 7. That
is, CNF (vr, S′) is unsatisfiable. Then, by Lemma 11, Line 24 returns a clause, which is
a contradiction. So, S′ is satisfiable. Then, by IH, Line 24 returns the model count of
CNF (vr, S′), which is equivalent to CNF (v, S)|X. Similarly, we can show Line 33 returns
the model count of CNF (v, S)|¬X. So, Line 43 returns the model count of CNF (v, S). �

Lemma 13. A call #SAT(v, S) with a satisfiable state S cannot return on neither Line 30
nor Line 39.

Proof. Assume call #SAT(v, S) returns on Line 30. Then, Line 28 must construct a clause.
Let S′ = (∆,Γ′, D′, .) be the SAT state before the call on Line 28. So, unit resolution
must detect a contradiction in ∆ ∧ Γ′ ∧ D′. As ∆ |= Γ′, ∆ ∧ Γ′ ∧ D′ ≡ ∆ ∧ D′. So,
∆ ∧D′ is unsatisfiable. Yet, it is easy to see that D′ = D. That is, ∆ ∧D is unsatisfiable,
which contradicts with S being satisfiable. Thus, call #SAT(v, S) cannot return on Line 30.
Similarly, we can show that it cannot return on Line 39. �

Lemma 14. Consider a call #SAT(v, S) with a satisfiable state S. If call #SAT(v, S) returns
on either Line 31 or Line 40, then D 6= ∅.

Proof. Assume call #SAT(v, S) returns on Line 31. So, the condition on Line 27 must fail.
That is, the current decision level is strictly greater than the assertion level of the learned
clause, and hence D 6= ∅. Similarly, we can show D 6= ∅ if the call returns on Line 40. �

Lemma 15. Consider a call #SAT(v, S) with a satisfiable state S. If call #SAT(v, S) returns
a (learned) clause, then D 6= ∅.

Proof. Assume call #SAT(v, S) returns a clause. We use strong induction on the height of
node #SAT(v, S) on T to show that D 6= ∅.

Basis: Consider a leaf node #SAT(v, S) (i.e., at height 0). By Proposition 4, either v
is a leaf vtree node or the call returns a clause on Line 30 or Line 31. As call #SAT(v, S)

27

Oztok & Darwiche

returns a clause, v cannot be a leaf node (see Lines 1–4). Also, by Lemma 13, the call
cannot return on Line 30. So, by Lemma 14, D 6= ∅.

Inductive step: As an induction hypothesis (IH), assume that the statement holds for
the calls at height less than k where k ≥ 1. Consider an internal node #SAT(v, S) (i.e., at
height k). By Proposition 3, v is either a decomposition node or a Shannon node.

Assume v is a decomposition node. As call #SAT(v, S) returns a clause, it must return
on either Line 9 or Line 13. Suppose it returns on Line 9. So, Line 6 must construct a
clause. So, due to IH, D 6= ∅. Similarly, we can show D 6= ∅ if the call returns on Line 13.

Assume v is a Shannon node. As call #SAT(v, S) returns a clause, it must return on one
of the following lines: 21, 29, 30, 31, 38, 39 or 40. By Lemma 13, the call cannot return
on Line 30 or Line 39. If the call returns on either Line 31 or Line 40, then D 6= ∅ by
Lemma 14. For the remaining lines (21, 29, 38), using IH, one can easily see that D 6= ∅. �

We are now ready to prove Theorem 2 and Theorem 3.

Theorem 2. A call #SAT(v, S) with a satisfiable state S will return either the model count
of component CNF (v, S) or a learned clause. Moreover, if v is the root vtree node, then it
will return the model count of CNF (v, S).

Proof. Due to Lemma 12 and Lemma 15 (note that D = ∅ in the initial SAT state). �

Theorem 3. A call #SAT(v, S) with an unsatisfiable state S will return a learned clause, or
one of its ancestral calls #SAT(v′, .) will return a learned clause, where v′ is a decomposition
vtree node.

Proof. Let v1, . . . , vn be the decomposition vtree nodes on the path from the vtree root to v
(excluding v) and v′i the child of vi not appearing on the path. By Lemma 4 and Lemma 6,∧n
i=1CNF (v′i, S) ∧ CNF (v, S) is unsatisfiable. So, one of the (decomposable) components

CNF (v′i, S) and CNF (v, S) is unsatisfiable. Assume CNF (v, S) is unsatisfiable. Then, due
to Lemma 11, call #SAT(v, S) returns a clause. Assume one of CNF (v′i, S) is unsatisfiable.
Then, by Lemma 2, CNF (vi, S) is unsatisfiable. Consider the ancestral call #SAT(vi, Si)
of #SAT(v, S). By Corollary 2, CNF (vi, Si) = CNF (vi, S), and hence CNF (vi, Si) is
unsatisfiable. Thus, by Lemma 11, call #SAT(vi, Si) returns a clause. �

Appendix D. Computing Cache Key

Theorem 4. Consider a vtree node v and a corresponding SAT state S = (., ., ., I). Define
Key(v, S) as the following bit vector: (1) each clause δ in ContextC(v) is mapped into one
bit that captures whether I |= δ, and (2) each variable X that appears in both vtree v and
ContextC(v) is mapped into two bits that capture whether X ∈ I, ¬X ∈ I, or neither.
Then function Key(v, S) is a component key.

Proof. Let S′ = (., ., ., I ′) be a callable SAT state such that Key(v, S) = Key(v, S′). We
show CNF (v, S)∧x ≡ CNF (v, S′)∧x′, where x (resp., x′) is a term of variables appearing
in both v and ContextC(v) such that x ⊆ I (resp., x′ ⊆ I ′). Due to (2) in the key
definition, x and x′ are the same. So, it is enough to show CNF (v, S)|x ≡ CNF (v, S′)|x.
Let γ = ContextL(v, I) and γ′ = ContextL(v, I ′). By Theorem 1, γ and γ′ must include
exactly one literal for each variable in ContextV (v). Then, due to (1) in the key definition,
we have ContextC(v)|γx = ContextC(v)|γ′x. So, CNF (v, S)|x ≡ CNF (v, S′)|x. �

28

An Exhaustive DPLL Algorithm for Model Counting

Appendix E. Trace of the Model Counting Algorithm

Theorem 5. If v is the root vtree node, then call c2s(v, (∆, {}, 〈〉, {})) returns a Decision-
SDD equivalent to ∆ if ∆ is satisfiable, and returns an empty clause if ∆ is unsatisfiable.

Proof. The structure of Algorithm 5 is similar to Algorithm 4, except that it constructs an
NNF instead of counting models. So, due to Corollary 1, we can conclude that Algorithm 5
returns an NNF equivalent to ∆ if ∆ is satisfiable, and returns an empty clause otherwise.
To complete the proof, we show that the constructed NNF is a Decision-SDD. For that, note
that Algorithm 5 is guided by a decision vtree. That is, it generates an NNF structured
by a vtree. Further, it is clear from the pseudocode that generated NNF nodes are simply
(X,Y)-partitions appearing in Decision-SDDs. Thus, we generate a Decision-SDD. �

References

Bayardo, R. J., & Pehoushek, J. D. (2000). Counting Models Using Connected Components.
In Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence, pp. 157–
162.

Beame, P., & Liew, V. (2015). New Limits for Knowledge Compilation and Applications to
Exact Model Counting. In Proceedings of the Thirty-First Conference on Uncertainty
in Artificial Intelligence, pp. 131–140.

Birnbaum, E., & Lozinskii, E. L. (1999). The Good Old Davis-Putnam Procedure Helps
Counting Models. Journal of Artificial Intelligence Research, 10 (1), 457–477.

Blum, M., Chandra, A. K., & Wegman, M. N. (1980). Equivalence of Free Boolean Graphs
can be Decided Probabilistically in Polynomial Time. Information Processing Letters,
10 (2), 80–82.

Bova, S. (2016). SDDs are Exponentially More Succinct than OBDDs. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, pp. 929–935.

Bryant, R. E. (1986). Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35 (8), 677–691.

Chavira, M., & Darwiche, A. (2005). Compiling Bayesian Networks with Local Structure. In
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
pp. 1306–1312.

Chavira, M., & Darwiche, A. (2008). On Probabilistic Inference by Weighted Model Count-
ing. Artifical Intelligence, 172 (6-7), 772–799.

Chavira, M., Darwiche, A., & Jaeger, M. (2006). Compiling Relational Bayesian Networks
for Exact Inference. International Journal of Approximate Reasoning, 42 (1-2), 4–20.

Choi, A., & Darwiche, A. (2013a) http://reasoning.cs.ucla.edu/sdd.

Choi, A., & Darwiche, A. (2013b). Dynamic Minimization of Sentential Decision Diagrams.
In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, pp.
187–194.

Choi, A., Den Broeck, G., & Darwiche, A. (2015). Tractable Learning for Structured Prob-
ability Spaces: A Case Study in Learning Preference Distributions. In Proceedings

29

Oztok & Darwiche

of the Twenty-Fourth International Joint Conference on Artificial Intelligence, pp.
2861–2868.

Choi, A., Kisa, D., & Darwiche, A. (2013). Compiling Probabilistic Graphical Models using
Sentential Decision Diagrams. In Proceedings of the Twelfth European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp. 121–132.

Darwiche, A. (2002a). A Compiler for Deterministic, Decomposable Negation Normal Form.
In Proceedings of the Eighteenth National Conference on Artificial Intelligence, pp.
627–634.

Darwiche, A. (2002b). A Logical Approach to Factoring Belief Networks. In Proceedings of
the Eighth International Conference on Principles of Knowledge Representation and
Reasoning, pp. 409–420.

Darwiche, A. (2004). New Advances in Compiling CNF into Decomposable Negation Normal
Form. In Proceedings of the Sixteenth European Conference on Artificial Intelligence,
pp. 328–332.

Darwiche, A. (2011). SDD: A New Canonical Representation of Propositional Knowledge
Bases. In Proceedings of the Twenty-Second International Joint Conference on Arti-
ficial Intelligence, pp. 819–826.

Darwiche, A., & Marquis, P. (2002). A Knowledge Compilation Map. Journal of Artificial
Intelligence Research, 17 (1), 229–264.

Fierens, D., Den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens,
G., & De Raedt, L. (2015). Inference and Learning in Probabilistic Logic Programs
using Weighted Boolean Formulas. Theory and Practice of Logic Programming, 15 (3),
358–401.

Herrmann, R. G., & de Barros, L. N. (2013). Algebraic Sentential Decision Diagrams in
Symbolic Probabilistic Planning. In Proceedings of the 2013 Brazilian Conference on
Intelligent Systems, pp. 175–181.

Huang, J., & Darwiche, A. (2004). Using DPLL for Efficient OBDD Construction. In
Proceedings of the Seventh International Conference on Theory and Applications of
Satisfiability Testing, pp. 157–172.

Huang, J., & Darwiche, A. (2007). The Language of Search. Journal of Artificial Intelligence
Research, 29 (1), 191–219.

Kisa, D., Den Broeck, G., Choi, A., & Darwiche, A. (2014). Probabilistic Sentential Decision
Diagrams. In Proceedings of the Fourteenth International Conference on Principles of
Knowledge Representation and Reasoning.

Lomuscio, A., & Paquet, H. (2015). Verification of Multi-Agent Systems via SDD-based
Model Checking (Extended Abstract). In Proceedings of the 2015 International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 1713–1714.

Majercik, S. M., & Littman, M. L. (1998). Using Caching to Solve Larger Probabilistic
Planning Problems. In Proceedings of the Fifteenth AAAI Conference on Artificial
Intelligence, pp. 954–959.

30

An Exhaustive DPLL Algorithm for Model Counting

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engi-
neering an Efficient SAT Solver. In Proceedings of the 38th Annual Design Automation
Conference, pp. 530–535.

Muise, C., Mcilraith, S. A., Beck, J. C., & Hsu, E. (2012). DSHARP: Fast d-DNNF Com-
pilation with sharpSAT. In Proceedings of the Twenty-Fifth Canadian Conference on
Artificial Intelligence, pp. 356–361.

Oztok, U., & Darwiche, A. (2014). On Compiling CNF into Decision-DNNF. In Proceedings
of the Twentieth International Conference on Principles and Practice of Constraint
Programming, pp. 42–57.

Oztok, U., & Darwiche, A. (2015). A Top-Down Compiler for Sentential Decision Diagrams.
In Proceedings of the Twenty-Fourth International Joint Conference on Artificial In-
telligence, pp. 3141–3148.

Pipatsrisawat, K., & Darwiche, A. (2007). RSat 2.0: SAT Solver Description. Tech. rep.
D–153, UCLA.

Pipatsrisawat, K., & Darwiche, A. (2008a). A New Clause Learning Scheme for Efficient
Unsatisfiability Proofs. In Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, pp. 1481–1484.

Pipatsrisawat, K., & Darwiche, A. (2008b). New Compilation Languages Based on Struc-
tured Decomposability. In Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, pp. 517–522.

Razgon, I. (2014). On OBDDs for CNFs of bounded treewidth. CoRR, abs/1308.3829.

Roth, D. (1996). On the Hardness of Approximate Reasoning. Artificial Intelligence, 82 (1-
2), 273–302.

Sang, T., Bacchus, F., Beame, P., Kautz, H. A., & Pitassi, T. (2004). Combining Com-
ponent Caching and Clause Learning for Effective Model Counting. In The Seventh
International Conference on Theory and Applications of Satisfiability Testing.

Sang, T., Beame, P., & Kautz, H. A. (2005). Performing Bayesian Inference by Weighted
Model Counting. In Proceedings of the Twentieth AAAI Conference on Artificial
Intelligence, pp. 475–482.

Thurley, M. (2006). sharpSAT - Counting Models with Advanced Component Caching and
Implicit BCP. In Theory and Applications of Satisfiability Testing - SAT 2006, 9th
International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, pp.
424–429.

Valiant, L. G. (1979). The Complexity of Computing the Permanent. Theoretical Computer
Science, 8 (2), 189–201.

Vlasselaer, J., Den Broeck, G., Kimmig, A., Meert, W., & De Raedt, L. (2015). Anytime
Inference in Probabilistic Logic Programs with Tp-compilation. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, pp. 1852–
1858.

31

Oztok & Darwiche

Xue, Y., Choi, A., & Darwiche, A. (2012). Basing Decisions on Sentences in Decision Dia-
grams. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
pp. 842–849.

32

