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Abstract

Belief change within the framework of fragments of propositional logic is one of the
main and recent challenges in the knowledge representation research area. While previ-
ous research works focused on belief revision, belief merging, and belief contraction, the
problem of belief update within fragments of classical logic has not been addressed so far.
In the context of revision, it has been proposed to refine existing operators so that they
operate within propositional fragments, and that the result of revision remains in the frag-
ment under consideration. This approach is not restricted to the Horn fragment but also
applicable to other propositional fragments like Krom and affine fragments. We generalize
this notion of refinement to any belief change operator. We then focus on a specific belief
change operation, namely belief update. We investigate the behavior of the refined up-
date operators with respect to satisfaction of the KM postulates and highlight differences
between revision and update in this context.

1. Introduction

Belief update consists in incorporating into an agent’s beliefs new information reflecting
a change in her environment. The problem of belief update first appeared in the domain
of databases for updating deductive databases (Fagin, Ullman, & Vardi, 1983). Signifi-
cant links quickly emerged with works developed in artificial intelligence on belief change,
especially on belief revision.

Keller and Winslett (1985), and later Katsuno and Mendelzon (1992) contributed to
a better understanding regarding the distinction between belief revision and belief update
when they proposed a common framework to represent these operations. Belief revision
happens when new information is introduced in a static environment, while belief update
occurs in a changing environment. From a logical point of view, when the agent’s beliefs
are represented by a logical formula, revision makes the models of this formula evolve as
a whole towards the closest models of new information. In contrast, update makes each
model of this formula locally evolve towards the closest models of new information.
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Postulates characterizing the rational behavior of update operators have been proposed
by Katsuno and Mendelzon (KM) (1992) in the same spirit as the seminal AGM postulates
for revision (Alchourrón, Gärdenfors, & Makinson, 1985). Belief update gave rise to several
studies, in most cases within the framework of propositional logic, and concrete belief
update operators have been proposed mainly according to a semantic (model-based) point
of view (Forbus, 1989; del Val & Shoham, 1994; Dubois & Prade, 1993; Zhang & Foo, 2000;
Boutilier, 1998; Friedman & Halpern, 1999; Herzig & Rifi, 1999; Doherty, Lukaszewicz, &
Madalinska-Bugaj, 2000; Lang, 2007; Delgrande, Jin, & Pelletier, 2014).

Many studies focused on belief change within the framework of propositional logic frag-
ments, particularly on belief contraction (Booth, Meyer, Varzinczak, & Wassermann, 2011;
Zhuang & Pagnucco, 2014; Delgrande & Wassermann, 2013), on belief revision (Cadoli &
Scarcello, 2000; Delgrande & Peppas, 2015; Zhuang, Pagnucco, & Zhang, 2013; Putte, 2013;
Creignou, Papini, Pichler, & Woltran, 2014) and more recently on belief merging (Creignou,
Papini, Rümmele, & Woltran, 2016). However, as far as we know, the problem of belief
update within fragments of propositional logic has not been addressed so far, except for
complexity results in the Horn case (Eiter & Gottlob, 1992; Liberatore & Schaerf, 2001).
The motivation of such a study is twofold. First, in many applications, the language is
restricted a priori. For instance, a rule-based formalization of expert knowledge is much
easier to handle for standard users. In the case of update they expect an outcome in the
same language. Second, some fragments of propositional logic allow for efficient reasoning
methods, and then an outcome of update within such a fragment can be evaluated effi-
ciently. It seems thus natural to investigate how known update operators can be refined
such that the result of update remains in the fragment under consideration.

Formally, let L1 be a propositional fragment and given two formulas ψ, µ P L1, the main
obstacle hereby is that there is no guarantee that the outcome of an update, denoted by
ψ˛µ, remains in L1 as well. Let us consider the following example inspired from the one used
by Katsuno and Mendelzon (1992) where the beliefs describe two objects A and B inside a
room. There is a table in the room and the objects may be on the table or not. Suppose a
means “object A is on the table” and b means “object B is on the table”. Assume that the
agent’s beliefs are represented by the formula ψ “ a, which expresses that object A is on
the table. Suppose a robot is sent into the room with the instruction to achieve a situation
in which either object A or object B is not on the table. This change is represented by
the formula µ “  a _  b. The formulas ψ and µ are Horn formulas, however updating ψ
by µ in using Forbus’ (1989) or Winslett’s operator (1988) results in a formula equivalent
to φ “ pa _ bq ^ p a _  bq, which is not a Horn formula and is not equivalent to any
Horn formula (because its set of models is not closed under intersection, while this property
characterizes the formulas in Horn, 1951)1.

In this paper, we generalize the notion of refinement, initially defined for revision
(Creignou et al., 2014), to any belief change operator defined from L ˆ L to L where L
denotes propositional logic. A refinement adapts a belief change operator defined in a
propositional setting such that it can be applicable in a propositional fragment. The basic
properties of a refinement are first to guarantee the outcome of the belief change operation
to remain within the fragment and second to approximate the behavior of the original belief

1. Note that in this example, revision and update do not coincide.
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change operator, in particular to keep the behavior of the original operator unchanged if the
result already fits in the fragment. We characterize these refined operators in a constructive
way.

We exploit the notion of refinement for belief update operators. We then study how
refined belief update operators behave with respect to satisfaction of the KM postulates
that characterize rational update operators. Indeed, we show that the basic KM postulates
pU1q ´ pU4q are preserved for any refinement in any fragment. We study the limits of the
preservation of the other postulates, as well. For this we focus on the refinements of Forbus’
(1989) and Winslett’s operators (1988) within the Horn, Krom and affine fragments. Our
approach handles a natural extension that consists in investigating update when only the
formula representing the initial agent’s beliefs, and not necessarily the formula reflecting
the new information, is in the fragment. All along this study we shed some light on subtle
differences between update and revision.

The paper is organized as follows. We start with some preliminaries. In Section 2.1 we
recall some basic facts about propositional logic. In Section 2.2 we define the fragments of
propositional logic we are interested in. In Section 2.4 we give a short reminder of belief
update. Section 3 deals with refinements in the general context of belief change. In Section
4 we focus on refinements of update operators. Finally we conclude in Section 5.

2. Preliminaries

In this section we give the relevant material on propositional logic, characterizable frag-
ments, belief revision and belief update.

2.1 Propositional Logic

Let L be the language of propositional logic built on an infinite countable set of variables
(atoms) denoted by V and equipped with standard connectives Ñ, _, ^,  , the exclusive
or connective ‘, and constants J, K. A literal is an atom or its negation. A clause is a
disjunction of literals. A clause is called Horn if at most one of its literals is positive; Krom
if it consists of at most two literals. A ‘-clause is defined like a clause but using exclusive
- instead of standard - disjunction.

We identify LHorn (resp., LKrom , Laffine) as the set of all formulas in L being conjunctions
of Horn clauses (resp., Krom clauses, ‘-clauses).

Let U be a finite set of atoms. An interpretation over U is represented either by a
set m Ď U of atoms (corresponding to the variables set to true) or by its corresponding
characteristic bit-vector of length |U |, the atoms being considered in lexicographical order.
For instance if we consider U “ tx1, . . . , x6u, the interpretation x1 “ x3 “ x6 “ 1 and
x2 “ x4 “ x5 “ 0 will be represented either by tx1, x3, x6u or by p1, 0, 1, 0, 0, 1q.

For any formula φ, let Varpφq denote the set of variables occurring in φ. As usual, if
an interpretation m defined over U satisfies a formula φ such that Varpφq Ď U , we call m a
model of φ. By Modpφq we denote the set of all models (over U) of φ.

A formula ψ is complete over U if Varpψq Ď U and if for any µ P L such that Varpµq Ď U ,
we have ψ |ù µ or ψ |ù  µ. In an equivalent way, a satisfiable formula ψ is complete over
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U 2 if it has exactly one model over U . Moreover, ψ |ù φ if Modpψq Ď Modpφq and ψ ” φ
if Modpψq “ Modpφq. For fragments L1 Ď L, we use TL1pψq “ tφ P L1 | ψ |ù φu.

2.2 Characterizable Fragments of Propositional Logic

Let B be the set of Boolean functions β : t0, 1uk Ñ t0, 1u with k ě 1, that are symmetric
(i.e., for all permutations σ, βpx1, . . . , xkq “ βpxσp1q, . . . , xσpkqq), and 0- and 1-reproductive
(i.e., for every x P t0, 1u, βpx, . . . , xq “ x). Examples of such functions are: The binary AND
function denoted by ^, the ternary MAJORITY function, maj3px, y, zq “ 1 if at least two
of the variables x, y and z are set to 1, and the ternary XOR function ‘3px, y, zq “ x‘y‘z.

Recall that we consider interpretations also as bit-vectors. We thus extend Boolean func-
tions to interpretations by applying coordinate-wise the original function. So, ifm1, . . . ,mk P

t0, 1un, then βpm1, . . . ,mkq is defined by

pβpm1r1s, . . . ,mkr1sq, . . . , βpm1rns, . . . ,mkrnsqq,

where mris is the i-th coordinate of the interpretation m. The next definition gives a general
formal definition of closure.

Definition 1. Given a set M Ď 2U of interpretations and β P B, we define ClβpMq, the
closure of M under β, as the smallest set of interpretations that contains M and that is
closed under β, i.e., if m1, . . . ,mk P ClβpMq, then βpm1, . . . ,mkq P ClβpMq.

For instance it is well-known that the set of models of any Horn formula is closed under
^, and actually this property characterizes Horn formulas.

Closures satisfy monotonicity: if M Ď N , then ClβpMq Ď ClβpN q. Moreover, if
|M| “ 1, then ClβpMq “M (because by assumption β is 0- and 1-reproducing); finally,
we always have ClβpHq “ H.

We can now use these concepts to identify fragments of propositional logic. Additionally,
we want fragments to fulfill some natural properties and for technical reasons we require
closure under conjunction.

Definition 2. Let β P B. A set L1 Ď L of propositional formulas is a β-fragment (or
a characterizable fragment) if: (i) For all ψ P L1, Modpψq “ ClβpModpψqq. (ii) For all
M Ď 2U with M “ ClβpMq there exists ψ P L1 with Modpψq “M. (iii) If φ, ψ P L1 then
φ^ ψ P L1.

We will often (implicitly) use the following fact: Let µ be a formula in L and L1 be a
β-fragment. Let µ̃ be a formula in L1 such that Modpµ̃q “ ClβpModpµqq (such a formula
exists according to (ii) in Definition 2). Then TL1pµq “ TL1pµ̃q.

Many fragments of propositional logic allow for efficient reasoning methods. When rep-
resenting knowledge, storing beliefs as a formula of a known tractable class is thus of interest.
The most famous characterizable fragments, which are the largest in which satisfiability is
tractable, are: LHorn which is an ^-fragment, LKrom which is a maj3-fragment and Laffine

which is a ‘3-fragment (Horn, 1951; Schaefer, 1978).

2. When U is not mentioned, it implicitly means that U is the set of variables occurring in formulas under
consideration
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An immediate generalization of our framework to fragments characterized by a closure
property under a finite number of functions (and not only one), leads to infinitely many
fragments, which are organized in a lattice, known as Post’s (1941) lattice. The complexity
of many computational tasks has been studied in these fragments (see the survey in Creignou
& Vollmer, 2008). The complexity of reasoning tasks within the Krom fragment has been
recently investigated (Creignou, Pichler, & Woltran, 2017).

2.3 Belief Revision

Belief revision consists in incorporating a new belief, changing as few as possible of the
original beliefs while preserving consistency. More formally, a revision operator denoted by
˝, is a function from Lˆ L to L that maps two formulas ψ (the initial agent’s beliefs) and
µ (new information) to a new formula ψ ˝ µ (the revised agent’s beliefs).

In the AGM paradigm (Alchourrón et al., 1985), postulates were proposed for belief
revision when beliefs are modeled by a theory (or belief set), Katsuno and Mendelzon
(1991) reformulated them when a theory is represented by a propositional formula. We
recall the KM postulates for belief revision.

Let ψ,ψ1, ψ2, µ, µ1, µ2 P L.
(R1) ψ ˝ µ |ù µ.
(R2) If ψ ^ µ is satisfiable, then ψ ˝ µ ” ψ ^ µ.
(R3) If µ is satisfiable, then so is ψ ˝ µ.
(R4) If ψ1 ” ψ2 and µ1 ” µ2, then ψ1 ˝ µ1 ” ψ2 ˝ µ2.
(R5) pψ ˝ µq ^ φ |ù ψ ˝ pµ^ φq.
(R6) If pψ ˝ µq ^ φ is satisfiable, then also ψ ˝ pµ^ φq |ù pψ ˝ µq ^ φ.

The meaning of these postulates is the following. Postulate (R1) specifies that the added
formula belongs to the revised belief set. Postulate (R2) is concerned with following issue:
if the added formula does not contradict the initial belief set then the revised belief set is
represented by the conjunction of the added formula and the formula representing the initial
belief set, in other words if the incorporation of new information does not cause problem,
we just add the new belief to the existing knowledge. Postulate (R3) ensures that no
inconsistency is introduced in the revised belief set. Postulate (R4) expresses the principle
of irrelevance of the syntax, and (R5) and (R6) state that revising by the conjunction of two
pieces of information amounts to a revision by the first one and a conjunction of the second
one whenever possible (whenever the second piece of information does not contradict any
belief resulting from the first revision).

Katsuno and Mendelzon (1991) showed that a revision satisfying the AGM postulates
is equivalent to a total preorder on interpretations, which reflects a plausibility ordering on
interpretations. More formally, a faithful assignment is a function that maps any proposi-
tional formula ψ to a pre-order over interpretations ďψ such that:

1) If ω |ù ψ and ω1 |ù ϕ, then ω “ψ ω
1.

2) If ω |ù ψ and ω1 |ù ψ, then ω ăψ ω
1.

3) If ψ1 ” ψ2 then ďψ1“ďψ2 .

They provided the following representation theorem.
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Theorem 3. (Katsuno & Mendelzon, 1991) A revision operator ˝ satisfies the postulates
(R1)–(R6) if and only if there exists a faithful assignment that maps each formula ψ to a
total preorder ďψ such that Modpψ ˝ µq “ MinpModpµq,ďψq.

2.4 Belief Update

Belief update consists in incorporating into an agent’s beliefs new information reflecting a
change in her environment. More formally, an update operator, denoted by ˛, is a function
from L ˆ L to L that maps two formulas ψ (the initial agent’s beliefs) and µ (new infor-
mation) to a new formula ψ ˛ µ (the updated agent’s beliefs). We recall the KM postulates
for belief update (Katsuno & Mendelzon, 1991).

Let ψ,ψ1, ψ2, µ, µ1, µ2 P L.

(U1) ψ ˛ µ |ù µ.
(U2) If ψ |ù µ, then ψ ˛ µ ” ψ.
(U3) If ψ and µ are satisfiable then so is ψ ˛ µ.
(U4) If ψ1 ” ψ2 and µ1 ” µ2, then ψ1 ˛ µ1 ” ψ2 ˛ µ2.
(U5) pψ ˛ µq ^ φ |ù ψ ˛ pµ^ φq.
(U6) If pψ ˛ µ1q |ù µ2 and pψ ˛ µ2q |ù µ1, then ψ ˛ µ1 ” ψ ˛ µ2.
(U7) If ψ is complete, then pψ ˛ µ1q ^ pψ ˛ µ2q |ù ψ ˛ pµ1 _ µ2q.
(U8) pψ1 _ ψ2q ˛ µ ” pψ1 ˛ µq _ pψ2 ˛ µq.
(U9) If ψ is complete and pψ ˛ µq ^ φ is satisfiable,

then ψ ˛ pµ^ φq |ù pψ ˛ µq ^ φ.

These postulates have been discussed in several papers (e.g., Herzig & Rifi, 1999). Pos-
tulate pU1q says that the models of the updated agent’s beliefs have to be models of new
information. Postulate pU4q states the irrelevance of syntax. Postulate pU5q expresses mini-
mality of change. The three postulates pU1q, pU4q and pU5q directly correspond to the belief
revision postulates pR1q, pR4q and pR5q respectively. Postulate pU2q differs from pR2q, the
latter stating that if ψ ^ µ is satisfiable then ψ ˝ µ ” ψ ^ µ. A consequence of pU2q for
update is that once an inconsistency is introduced in the initial beliefs there is no way to
eliminate it (Katsuno & Mendelzon, 1991). Note that this is not the case for belief revision.
Furthermore, pU3q is a weaker version of pR3q. The latter states that if µ is satisfiable then
so is ψ ˝ µ, while in order to ensure the consistency of the result of update pU3q requires
an additional condition, namely that the initial beliefs be consistent as well. Postulates
pU6q, pU7q and pU8q are specific to update operators. The eighth postulate pU8q, which
means that an update operator should give each of the models of the initial beliefs equal
consideration, is considered as the most “uncontroversial” one. Finally, pU9q is a weaker
version of pR6q, it is similar but restricted to complete formulas ψ.

Katsuno and Mendelzon (1991)showed that an update operator corresponds to a set of
preorders on interpretations. More formally, a pointwise faithful assignment is a function
that maps any interpretation m to a pre-order over interpretations ďm, such that for any
interpretation m1, if m1 ‰ m then m ăm m1. They provided the following representation
theorem.

Theorem 4. (Katsuno & Mendelzon, 1992)
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• An update operator ˛ satisfies the postulates (U1)–(U9) if and only if there exists a
pointwise faithful assignment that maps each interpretation m to a total preorder ďm
such that Modpψ ˛ µq “

Ť

mPModpψq minpModpµq,ďmq.

• An update operator ˛ satisfies the postulates (U1)–(U8) if and only if there exists a
pointwise faithful assignment that maps each interpretation m to a partial preorder
ďm such that Modpψ ˛ µq “

Ť

mPModpψq minpModpµq,ďmq.

The representation theorems, Theorem 3 and Theorem 4, pinpoint the differences be-
tween revision and update. Update stems from a pointwise minimization, model by model
of ψ, while revision stems from a global minimization on all the models of ψ. Update oper-
ators, for each model m of ψ, select the set of models of µ that are the closest to m, while
revision operators select the set of models of µ that are the closest to the set of models of
ψ. Note that when there exists only one model of ψ (which is the case when ψ is complete)
revision and update coincide.

The following example illustrates the difference between revision and update.

Example 5. We come back to the example given in the introduction where the beliefs
describe two objects A and B inside a room. The agent’s beliefs are represented by the
formula ψ “ a, which expresses that object A is on the table. Let us recall that a robot
is sent into the room with the instruction to achieve a situation in which either object A
or object B is not on the table. This change is represented by the formula µ “  a _  b.
We have ψ, µ P L with Modpψq “ ttau, ta, buu and Modpµq “ ttau, tbu,Hu. Let m,m1

be two interpretations, m∆m1 denotes the symmetric difference between m and m1. The
global minimization of the cardinality of the symmetric difference between the models of ψ
and the models of µ provides Modpψ ˝ µq “ ttauu. In contrast, the minimization of the
cardinality of the symmetric difference between each model of ψ and the models of µ gives
Modpψ ˛ µq “ ttau, tbuu. Note that revision selects tau as the only model of the changed
beliefs. However after the robot’s action, all we know is that either object A or object B is
not on the table. There is no reason to conclude that only object B is not on the table as
does revision, which excludes the situation where object A is not on the table.

Several update operators have been proposed. We now recall the two best known model-
based update operators on which we will focus, namely Forbus’ (1989) and Winslett’s
operators (1988). In these model-based update operators the closeness between models
relies on the symmetric difference between models, that is the set of propositional variables
on which they differ.

Forbus’ (1989) operator was introduced in the context of qualitative physics. This
operator is analogous to Dalal’s (1988) revision operator and measures minimality of change
by cardinality of model change. More formally, let ψ and µ be two propositional formulas,
and m and m1 be two interpretations, m∆m1 denotes the symmetric difference between m
and m1 and |∆|minm pµq denotes the minimum number of variables in which m and a model of
µ differ and is defined as mint|m∆m1| : m1 P Modpµqu. Forbus’ operator is now defined as:
Modpψ ˛F µq “

Ť

mPModpψqtm
1 P Modpµq : |m∆m1| “ |∆|minm pµqu. This operator satisfies

(U1)-(U8) (Katsuno & Mendelzon, 1991) and (U9) (Herzig & Rifi, 1999). This update
operator is illustrated in the following example.
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Modpψq Modpµq

{b,c} {c,d} {a,b,d} {c} {d} {b} H

{a,b,c} 1 3 2 2 4 2 3

{a,b,c,d,e} 3 3 2 4 4 4 5

Table 1: Example for ˛F

Modpψq Modpµq

{b,c} {c,d} {a,b,d} {c} {d} {b} H

{a,b,c} {a} {a,b,d} {c,d} {a,b} {a,b,c,d} {a,c} {a,b,c}
{a,b,c,d,e} {a,d,e} {a,b,e} {c,e} {a,b,d,e} {a,b,c,e} {a,c,d,e} {a,b,c,d,e}

Table 2: Example for ˛W

Example 6. Let ψ, µ P L such that Modpψq “ tta, b, cu, ta, b, c, d, euu and Modpµq “
ttb, cu, tc, du, ta, b, du, tcu, tdu, tbu,Hu. The result of update could be read in Table 1. Each
line of the table gives the cardinalities of the symmetric differences between the corresponding
model of ψ and the models of µ. The minimal cardinalities are written in bold. Hence
Modpψ ˛F µq “ ttb, cu, ta, b, duu.

Winslett’s (1988) operator, also called PMA (Possible Models Approach) was introduced
for reasoning about actions and change. This operator is analogous to Satoh’s (1988) revi-
sion operator and interprets minimal change in terms of set inclusion instead of cardinality
on model difference. More formally, ∆min

m pµq denotes the minimal difference between m and
a model of µ and is defined as minĎptm∆m1 : m1 P Modpµquq. Winslett’s operator is now
defined as: Modpψ ˛W µq “

Ť

mPModpψqtm
1 P Modpµq : m∆m1 P ∆min

m pµqu. This operator
satisfies pU1q´ pU8q (Katsuno & Mendelzon, 1991) but does not satisfy pU9q (Ktari, 2016).
Winslett’s operator ˛W behaves differently from Forbus’ operator ˛F (1989) as illustrated
in the following example.

Example 7. Let ψ, µ P L from Example 6. The result of update could be read in Table 2.
Each line of the table gives the symmetric differences between the corresponding model of ψ
and the models of µ. The minimal subsets with respect to set inclusion are written in bold.
Hence Modpψ ˛W µq “ ttb, cu, tc, du, ta, b, duu ‰ Modpψ ˛F µq.

In this paper, we are interested in update operators which are tailored for certain frag-
ments. We say that ˛ satisfies the postulates (Ui) pi P t1, . . . , 9uq in a fragment L1 Ď L if
these postulates hold when restricted to formulas from L1.

3. Refinements of Belief Change Operators

Refinements have been defined within the context of belief revision (Creignou et al., 2014)
and may be naturally considered for any belief change operation.

The idea is to use well-established belief change operators in order to define rational
belief change operators that are well-suited for characterizable fragments of propositional
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logic. Given a propositional fragment L1 and a propositional belief change operator 4, a
refinement of 4 consists of a new operator N, which is built from 4 and not too different
from4, that operates within L1 and is such that the result of change remains in L1. Roughly
speaking the goal is that the difference of behavior between4 and N obeys a kind of principle
of minimal change in the sense that if the original operator 4 gives a result that is already
in the fragment, then the refined operator should do nothing more, and in any case it should
not increase the logical consequences of the original result. In the following we first define
formally a few natural basic properties for refinements, then we show how such refinements
can be explicitly obtained.

Definition 8. Let L1 be a propositional fragment and 4 : L ˆ L Ñ L a belief change
operator. We call an operator N : L1 ˆ L1 Ñ L1 a 4-refinement for L1 if it satisfies the
following properties, for each ψ,ψ1, µ, µ1 P L1.

• consistency: ψNµ is satisfiable if and only if ψ4µ is satisfiable.

• equivalence: If ψ4µ ” ψ14µ1 then, ψNµ ” ψ1Nµ1.

• containment: TL1pψ4µq Ď TL1pψNµq.

• invariance: If ψ4µ P L1, then TL1pψNµq “ TL1pψ4µq.

Let us briefly discuss these properties. The first two conditions are rather independent
from L1, but relate the refined operator N to the original belief change 4 in certain ways.
To be more precise, consistency states that the refined operator N should yield a consistent
belief change exactly if the original operator 4 does so. Equivalence means that the defini-
tion of the N-operator should not be syntax-dependent, belief changes which are equivalent
w.r.t 4 are also equivalent w.r.t. N. Containment ensures that N can be seen as a form of
approximation of 4 when applied in the L1 fragment, while invariance states that in case
4 behaves as expected (i.e., the belief change is contained in L1) there is no need for N to
do something additional.

When considering a model-based operator 4 it seems that such a refinement can be
obtained as follows. Let L1 be a β-fragment and ψ and µ two formulas in L1. Let 4 be
a model-based belief change operator. In order to set a refinement, we first compute the
set of models of ψ4µ, denoted by M, we then apply a mapping to M in order to obtain
a set of models N that is a set of models of a formula in L1. We call such a mapping a
β-mapping since N has to be closed under β. In the following we prove that indeed all
possible refinements can be obtained that way.

This characterization of all possible refinements requires the definition of the notion of
β-mapping.

Definition 9. Given β P B, we define a β-mapping, fβ, as an application from sets of

models into sets of models, fβ : 22U ÝÑ 22U , such that for every M Ď 2U :

1. ClβpfβpMqq “ fβpMq, i.e., fβpMq is closed under β.

2. fβpMq Ď ClβpMq.
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3. if M “ ClβpMq, then fβpMq “M.

4. If M ‰ H, then fβpMq ‰ H.

As explained above the underlying idea of functions fβ is to take a set of models
Modpψ4µq and to return a set of models fβpModpψ4µqq, thus defining a refinement of
the operator 4. The outcome has to be closed under β (1) since we want to get a belief
change into formulas from the β-fragment, and should not add any further interpretations
(2) in order to satisfy containment, cf. Definition 8. Since we want to capture refinements
of operators there is no need to change the behavior of the original operator as long as it
provides a result in the desired fragment (3). Property (4) takes care of consistency, cf.
Definition 8.

Thus, the concept of β-mapping allows us to define a family of refined operators for the
fragments of propositional logic as follows.

Definition 10. Let 4 : LˆL ÝÑ L be a belief change operator and L1 Ď L be a β-fragment
of propositional logic with β P B. For a β-mapping fβ, we denote with 4fβ : L1 ˆL1 ÝÑ L1

the belief change operator for L1 defined as Modpψ4fβµq :“ fβpModpψ4µqq. The class
r4,L1s contains all operators 4fβ where fβ is a β-mapping.

The next proposition is central in reflecting that the above class captures all refined
operators we had in mind. A similar result was obtained in Creignou et al. (2014) for basic
(revision) operators, i.e., operators satisfying J4µ ” µ. This assumption was used to prove
that any 4-refinement can be defined through a β-mapping. We give here an alternative
proof that does not rely on this assumption.

Proposition 11. Let 4 : L ˆ L ÝÑ L be a belief change operator and L1 Ď L be a
characterizable fragment of propositional logic. Then, r4,L1s is the set of all 4-refinements
for L1.

Proof. Since L1 is a characterizable fragment it is also a β-fragment for some β P B. We
first show that any operator from the class r4,L1s is a 4-refinement of L1.

Let 4fβ P r4,L1s. We have to show that it satisfies the properties of Definition 8. Con-
sistency for 4fβ : Let ψ, µ P L1. If Modpψ4µq ‰ H then Modpψ4fβµq “ fβpModpψ4µqq ‰
H by Property 4 in Definition 9. In case, Modpψ4µq “ H, we make use of the fact that
ClβpHq “ H holds for all β P B. By Property 2 in Definition 9, we get Modpψ4fβµq “
fβpModpψ4µqq Ď ClβpModpψ4µqq “ H.

Equivalence for 4fβ is clear by definition and since fβ is defined on sets of models.

To show containment for 4fβ , let φ P TL1pψ4µq, i.e., φ P L1 and Modpψ4µq Ď Modpφq.
We have ClβpModpψ4µqq Ď ClβpModpφqq by monotonicity of Clβ. By Property 2 of
Definition 9, Modpψ4fβµq Ď ClβpModpψ4µqq. Since φ P L1 we have ClβpModpφqq “
Modpφq. Thus, Modpψ4fβµq Ď Modpφq, i.e., φ P TL1pψ4fβµq.

Finally, we require invariance for 4fβ : In case ψ4µ P L1, we have ClβpModpψ4µqq “
Modpψ4µq since L1 is a β-fragment. By Property 3 in Definition 9, we have Modpψ4fβµq “
fβpModpψ4µqq “ Modpψ4µq. Thus TL1pψ4fβµq “ TL1pψ4µq as required.

For the converse, let N be a 4-refinement for L1. We show that N P r4,L1s. Let f be
defined as follows for any set M of interpretations: fpHq “ H and for M ‰ H, if there
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exists a pair pψM, µMq of formulas from L1 such that ModpψM4µMq “M, then we define
fpMq “ ModpψMNµMq, otherwise fpMq “ ClβpMq. Thus the refined operator N behaves
like the operator 4f .

We show that such a mapping f is a β-mapping. Note that since N is a β-refinement,
it satisfies the property of equivalence, thus the actual choice of the pair pψM, µMq is
not relevant, i.e., given M, and pairs pψM, µMq, pψ

1
M, µ

1
Mq such that ModpψM4µMq “

Modpψ1
M4µ1

Mq “ M, we have that ψMNµM is equivalent to ψ1
MNµ

1
M. Thus, f is well-

defined.

We continue to show that the four properties in Definition 9 hold for f . Property 1 is
ensured since for everyM, fpMq is closed under β. Indeed, either fpMq “ ModpψMNµMq
and since ψMNµM P L1 its set of models is closed under β, or fpMq “ ClβpMq. Let us
show Property 2 , i.e., fpMq Ď ClβpMq for any set of interpretations M. It is obvious
when M “ H (then fpMq “ H), as well as when fpMq “ ClβpMq. Otherwise fpMq “
ModpψMNµMq and since N satisfies containment ModpψMNµMq Ď ClβpModpψM4µMq.
Therefore in any case we have fpMq Ď ClβpMq. For showing Property 3 let us consider
M ‰ H such that M “ ClβpMq. If fpMq “ ClβpMq, then fpMq “ M. Otherwise,
fpMq “ ModpψMNµMq where ψM, µM P L1 such that ModpψM4µMq “ M. Since N
satisfies invariance ModpψMNµMq “ M. Thus, in any case, fpMq “ M. Property 4 is
ensured by consistency of N.

Hence, β-mappings allow us to define refined belief change operators. We give some
examples of β-mappings in the next section (see Section 4.2) and study how they perform
to refine update operators.

4. Update Operators within Fragments

The previous section presented refinements for any belief change operation. We now focus
on refinements for belief update. We recall that a belief update operator is a function ˛
: L ˆ L to L that maps a formula ψ representing the initial agent’s beliefs and a formula
µ encoding a change in her environment to a new formula ψ ˛ µ representing the updated
agent’s beliefs.

In this section we first present some update operators that are well-suited for any charac-
terizable fragment (Section 4.1). Then we turn to update operators that require refinements.
We first propose some β-mappings (Section 4.2) and then study the logical properties of
the refined operators they define (Section 4.3). Finally we address the question of refining
update operators so that they can handle the case where only the formula representing the
agent’s beliefs is in the fragment (Section 4.4).

4.1 Dependence-Based Update Operators

There exists a family of update operators that is well-suited for any characterizable frag-
ment, i.e., that provides a result in the fragment, namely dependence-based update opera-
tors (Herzig & Rifi, 1999).

More formally, a dependence is a function that assigns each atom a a set of atoms deppaq.
This dependence function is extended to formulas by deppµq “

Ť

aPVarpµq deppaq.

817



Creignou, Ktari, & Papini

Herzig’s update operator (Herzig & Rifi, 1999) is a dependence-based update operator
denoted by ˛HZ and defined by

Modpψ ˛HZ µq “ tm
1 P Modpµq|Dm P Modpψq : m∆m1 Ď deppµqu.

Hegner’s (1987) operator, denoted by ˛H , is a special case of Herzig’s operator where
deppµq “ Varpµq, and thus is defined by

Modpψ ˛H µq “ tm1 P Modpµq|Dm P Modpψq : m∆m1 Ď Varpµqu.

The following proposition shows that these two update operators are well-suited for any
characterizable fragments.

Proposition 12. Let L1 be a characterizable fragment of propositional logic. Given two
formulas ψ, µ P L1, then ψ ˛HZ µ P L1 (in particular, ψ ˛H µ P L1).

Proof. Let L1 be a β-fragment, ψ and µ two formulas of L1. Let n1, ..., nk P Modpψ ˛HZ µq.
According to the definition of Herzig’s operator (Herzig & Rifi, 1999), there exist models
m1, ...,mk P Modpψq, such that for each i “ 1, ..., k, we have ni∆mi Ď deppµq. Consider
βpn1, ..., nkq∆βpm1, ...,mkq. If x R deppµq then for each i, we have nipxq “ mipxq, and
thus, βpn1pxq, ..., nkpxqq “ βpm1pxq, ...,mkpxqq. Therefore, βpn1, ..., nkq∆βpm1, ...,mkq Ď

deppµq. Moreover, we have µ P L1, thus βpn1, ..., nkq P Modpµq. Similarly, ψ P L1, thus
βpm1, ...,mkq P Modpψq. Hence, βpn1, ..., nkq P Modpψ ˛HZ µq. Therefore, Modpψ ˛HZ µq is
closed under β, hence ψ ˛HZ µ P L1.

The following example illustrates the behavior of these dependence-based update oper-
ators.

Example 13. Let ψ “  a ^  b and µ “ a be Horn formulas. We have Modpψq “ tHu,
Modpµq “ ttau, ta, buu and Varpµq “ tau. Suppose deppµq “ ta, bu, we have Modpψ˛HZµq “
ttau, ta, buu and Modpψ ˛H µq “ ttauu. Therefore, the result of update is also in LHorn .

All update operators considered in this paper proceed as follows to compute the update
of ψ by µ: A model m1 of µ is a model of the updated beliefs if there is a model m of ψ
such that the “distance” between m and m1, measured by their symmetric difference m∆m1,
satisfies some property. An important feature of the dependence-based update operators,
not shared by Forbus’ (1989) and Winslett’s operators (1988), is that the property m∆m1

has to satisfy depends on µ, and not on m.

We now turn to update operators that are not directly suited for fragments of propo-
sitional logic and for which refinements make sense. Thanks to Proposition 11, given ˛ an
update operator, the family of all its possible update refinements, [˛,L1], is the set of op-
erators ˛fβ where fβ is a β-mapping. For this reason we first present different β-mappings
and next study the logical properties of the refined operators they define.
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4.2 Examples of Refined Belief Update Operators

We now give some examples of β-mappings. In the following, let 4 : L ˆ L Ñ L be a
belief change operator, and L1 Ď L be a fragment of propositional logic such that L1 is a
β-fragment for some β P B.

A natural β-mapping is the Clβ function that leads to the definition of a closed-
based refined belief change operator denoted by 4Clβ and given by Modpψ4Clβµq “
ClβpModpψ4µqq.

In the following all refined belief change operators are illustrated in the particular case
of belief update operators.

The following examples illustrate the closed-based refinement for several propositional
fragments.

Example 14. Let ψ and µ be Horn formulas such that Modpψq “ tta, b, cu, ta, b, c, d, euu
and Modpµq “ ttb, cu, tc, du, ta, b, du, tcu, tdu, tbu,Hu as in Example 6. Such formulas ex-
ist since their sets of models are closed under intersection. We have Modpψ ˛F µq “
ttb, cu, ta, b, duu and Modpψ ˛W µq “ ttb, cu, tc, du, ta, b, duu that are not closed under
intersection. So, neither ψ ˛F µ nor ψ ˛W µ is in LHorn . The refined operators ˛Cl^F

and ˛Cl^W are defined as Modpψ ˛Cl^F µq “ Cl^pModpψ ˛F µqq “ ttb, cu, ta, b, du, tbuu and

Modpψ ˛Cl^W µq “ Cl^pModpψ ˛W µqq “ ttb, cu, tc, du, ta, b, du, tbu, tcu, tdu,Hu.

We give now an example that holds both in the Horn and the Krom fragments.

Example 15. Consider ψ “ a^ b^ c and µ “ p a_ bq ^ p b_ cq ^ p a_ cq. These
two formulas are both Horn and Krom. Their respective set of models Modpψq “ tta, b, cuu
and Modpµq “ ttau, tbu, tcu,Hu are closed under intersection and under majority. We have
Modpψ ˛F µq “ Modpψ ˛W µq “ ttau, tbu, tcuu, which is closed neither under intersection
nor under majority. So ψ˛F µ is neither in LHorn nor in LKrom . The refined operators ˛Cl^F

and ˛Cl^W are defined as Modpψ ˛Cl^F µq “ Modpψ ˛Cl^W µq “ ttau, tbu, tcu,Hu. The refined

operators ˛
Clmaj3
F and ˛

Clmaj3
W operate similarly.

We now give an example in the affine fragment.

Example 16. Let ψ and µ be affine formulas such that Modpψq “ tta, b, cu, ta, duu
and Modpµq “ ttau, tb, cu, ta, bu, tcuu. Such formulas exist since these sets of models
are closed under the ternary XOR function. We have Modpψ ˛F µq “ Modpψ ˛W µq “
ttau, ta, bu, tb, cuu, which is not closed under the ternary XOR function. So ψ ˛F µ is not in

Laffine . The refined operators ˛
Cl‘3
F and ˛

Cl‘3
W for Laffine are defined as Modpψ ˛

Cl‘3
F µq “

Modpψ ˛
Cl‘3
W µq “ ttau, ta, bu, tb, cu, tcuu.

Given a total order over interpretations, another β-mapping is the Minβ function that
selects the minimal model in this order when the set of models is not closed.

Definition 17. Let β P B and ď be a fixed total order on the set 2U of interpretations. We
define the function Minβ as

MinβpMq “
"

M if ClβpMq “M
tminďpMqu otherwise
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The Minβ function allows us to define a min-based refined belief change operator, de-
noted by 4Minβ and given by Modpψ4Minβµq “ MinβpModpψ4µqq.

Example 18. Let ψ, µ P LHorn from Example 14. Recall that Modpψ ˛F µq “

ttb, cu, ta, b, duu and Modpψ ˛W µq “ ttb, cu, tc, du, ta, b, duu. Consider the following or-
der over interpretations: tc, du ă tb, cu ă ta, b, du. We thus have Modpψ ˛Min^

F µq “

Min^pModpψ ˛F µqq “ ttb, cuu and Modpψ ˛Min^

W µq “ Min^pModpψ ˛W µqq “ ttc, duu.

The two β-mappings Clβ and Minβ represent two extreme functions, the former selecting
the closure of the set of interpretations M, the latter selecting only one interpretation of
M.

In between these extremes there is a variety of possible β-mappings. As an example
we define an intermediary function, denoted by Proxβ, which selects a closed subset of
interpretations of ClβpMq that is the closest to M.

For M ‰ H, let FpMq be the set of nonempty subsets of ClβpMq which are closed
under β. This set is defined more formally as follows.

FpMq “ tN | H Ă N Ď ClβpMq and N “ ClβpN qu.

Let FppMq be the set of elements of FpMq that are the closest to M (in terms of
cardinality of the symmetric difference). This set is defined more formally as follows, for all
M ‰ H.

FppMq “ tN P FpMq | @ N 1 P FpMq, |M∆ N | ď |M∆ N 1|u

We assign to any fixed total order over interpretations a lexicographic order over subsets
of interpretations, denoted by ďlex. The following example illustrates this assignment.

Example 19. Let m1, m2 and m3 be models such that m1 ď m2 ď m3. Consider the two
sets of models M1 “ tm1,m3u and M2 “ tm2u. These sets are respectively represented by
their characteristic vector, 101 and 010, therefore, M2 ďlexM1.

We now formally define the Proxβ function as follows.

Definition 20. Let β P B, let ď be a fixed total preorder over interpretations, ďlex its
corresponding lexicographic order over subsets of interpretations and M Ď 2U a set of
interpretations. The function Proxβ is defined as follows:

ProxβpMq “

$

&

%

M if ClβpMq “M
ClβpMq if ClβpMq ‰M and ClβpMq P FppMq
tminďlexpFppMqqu otherwise

Indeed, Proxβ is a β-mapping and the refined belief change operator denoted by 4Proxβ
is given by Modpψ4Proxβµq “ ProxβpModpψ4µqq.

Example 21. We come back to Example 14 in the Horn fragment, where Modpψq “
tta, b, cu, ta, b, c, d, euu and Modpµq “ ttb, cu, tc, du, ta, b, du, tcu, tdu, tbu,Hu. We consider
the following order over interpretations : H ă tbu ă tcu ă tdu ă tb, cu ă tc, du ă ta, b, du.
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H tbu tcu tdu tb, cu tc, du ta, b, du

ttb, cuu 0 0 0 0 1 0 0

ttc, du 0 0 0 0 0 1 0

tta, b, duu 0 0 0 0 0 0 1

ttb, cu, tc, du, tcuu 0 0 1 0 1 1 0

ttb, cu, ta, b, du, tbuu 0 1 0 0 1 0 1

ttc, du, ta, b, du, tduu 0 0 0 1 0 1 1

Table 3: Lexicographic order on subsets of models

We remind that M “ Modpψ ˛F µq “ ttb, cu, ta, b, duu.
There are three subsets of Cl^pMq that are ^-closed and at distance 1 from M, and

Cl^pMq is one of them. Therefore, Modpψ ˛
Proxβ
F µq “ ttb, cu, ta, b, du, tbuu.

Now let us consider M “ Modpψ ˛W µq “ ttb, cu, tc, du, ta, b, duu. Observe that
Cl^pMq “ ttb, cu, tc, du, ta, b, du, tbu, tcu, tdu,Hu. There is no closed subset of Cl^pMq
which is at distance 1 from M, and six of them are at distance 2, therefore FppMq is made
of these six subsets. Since Cl^pMq R FppMq we have to determine which of its element
is the lexicographically minimal one. For this we focus on Table 3 where we can read the
lexicographic order assigned to the different elements of FppMq.

Hence, Modpψ ˛
Proxβ
W µq “ tM3u “ tta, b, duu.

Observe that in this example the three refinements we have considered give different

results, Modpψ ˛
Proxβ
W µq ‰ Modpψ ˛

Clβ
W µq ‰ Modpψ ˛

Minβ
W µq.

4.3 Logical Properties of Refined Belief Update Operators

In this section we investigate how our refined update operators behave with respect to
satisfaction of the KM postulates. We first show that our update refinements preserve the
first four KM postulates.

Proposition 22. Let ˛ be an update operator and L1 Ď L a characterizable fragment. For
i “ 1, . . . , 4, if ˛ satisfies postulate pUiq, then so does any refinement of this operator in L1,
� P r˛,L1s.

Proof. Suppose L1 is a β-fragment. Thus we can assume that � P r˛,L1s is an operator of the
form ˛fβ where fβ is a suitable β-mapping. Since postulates (U1) and (U4) are exactly the
same postulates as (R1) and (R4), and since satisfaction of (U3) follows from satisfaction
of (R3), according to Creignou et al. (2014, Prop. 6) we only have to deal with (U2). By
definition Modpψ�µq “ fβpModpψ ˛ µqq. Since ˛ satisfies postulate (U2), if ψ |ù µ, then
ψ ˛ µ ” ψ, i.e., Modpψ ˛ µq “ Modpψq. Therefore, fβpModpψ ˛ µqq “ fβpModpψqq. Since
ψ P L1, fβpModpψqq “ Modpψq. Thus, ψ�µ ” ψ.

A natural question is whether there exist refined update operators that satisfy more
postulates. We focus on Forbus’ (1989) and Winslett’s operators (1988) (that satisfy re-
spectively all KM postulates and the first eight ones) refined by Clβ, Minβ and Proxβ
(other update operators as well as other refinements have been studied in Ktari, 2016). We
discuss the postulates that are expressible in our fragments, namely (U5), (U6) and (U9).
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In the following, within a characterizable fragment, it is implicit that any β-mapping
we refer to, uses the Boolean function β which characterizes the fragment. This means that
within LHorn (resp. LKrom , Laffine) a β-mapping is an ^-mapping (resp., maj3-mapping,
‘3-mapping).

We first show that Proposition 22 cannot be extended to postulate (U5). Indeed we get
the following negative result for (U5).

Proposition 23. Let ˛ P t˛F , ˛W u. The refined update operators ˛Clβ , ˛Minβ and ˛Proxβ

violate postulate (U5) in any L1 P tLHorn ,LKrom ,Laffineu.

Proof. The proof is in the appendix.

Observation 1. Let us emphasize that this result shows a difference between revision and
update. Indeed, let us recall that Forbus’ operator ˛F (1989) can be considered as the update
counterpart of Dalal’s (1988) revision operator, ˝D. The refinements of these two operators
by the function Minβ show a different behavior. While Creignou et al. (2014) proved that

˝
Minβ
D satisfies (R5), the above proposition shows that ˛

Minβ
F violates (U5). Interestingly the

proof that ˝
Minβ
D satisfies (R5) relies on the fact that Dalal’s operator ˝D satisfies both (R5)

and (R6). In the context of update (U9) is a weaker version of (R6), that applies only to
complete formulas. While Forbus’ operator ˛F satisfies (U9) it can be proved that it does
not satisfy (R6) (see the example given in the proof of Proposition 23 for the min refinement
in the Horn fragment). This explains the difference of behavior of the two operators, Dalal
and Forbus, with respect to the preservation of the fifth postulate, resp. (R5) and (U5).

For the ninth postulate (U9), we obtain a rather general negative result, which is similar
to the result obtained for (R6) in the context of revision (Creignou et al., 2014), but which
nevertheless requires new examples to be proven, since in the case of update we need
complete formulas.

Proposition 24. Let ˛ P t˛F , ˛W u and L1 P tLHorn ,LKrom ,Laffineu. Then any refined
operator � P r˛,L1s violates postulate (U9) in L1.

Observe that in order to prove this proposition the examples proposed in Creignou et al.
(2014) cannot be used since they do not involve complete formulas and we have to provide
new ones.

Proof. The proof is in the appendix.

The status of the sixth postulate (U6) is less clear than the ones we have investigated
so far. Indeed, the two following propositions show that the satisfaction of (U6) depends
on the β-mapping that is used to define the refinement.

Proposition 25. Let ˛ be an update operator and L1 a β-fragment. If ˛ satisfies (U6),
then so does the refined operator ˛Clβ in L1.

Proof. Suppose that pψ ˛Clβ µ1q |ù µ2 and pψ ˛Clβ µ2q |ù µ1. Thus, ClβpModpψ ˛ µ1qq Ď

Modpµ2q and ClβpModpψ ˛ µ2qq Ď Modpµ1q. Moreover, Modpψ ˛ µ1q Ď ClβpModpψ ˛ µ1qq

and also Modpψ ˛ µ2q Ď ClβpModpψ ˛ µ2qq. Therefore, Modpψ ˛ µ1q Ď Modpµ2q and
Modpψ ˛ µ2q Ď Modpµ1q. Since ˛ satisfies (U6), we get ψ ˛ µ1 ” ψ ˛ µ2. According to the
equivalence property cited in Definition 8, we have finally ψ ˛Clβ µ1 ” ψ ˛Clβ µ2.
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Refined operators Postulates
(U5) (U6) (U9)

˛
Clβ
F ˆ ‘ ˆ

˛
Clβ
W ˆ ‘ ˆ

˛
Minβ

F ˆ ˆ ˆ

˛
Minβ

W ˆ ˆ ˆ

˛
Proxβ

F ˆ ˆLHorn
ˆ

˛
Proxβ

W ˆ ˆLHorn
ˆ

Table 4: An overview of the satisfied postulates by the refined operators.

Proposition 26. Let ˛ P t˛F , ˛W u. The refined operator ˛Minβ violates postulate (U6) in
any L1 P tLHorn ,LKrom ,Laffineu.

Proof. The proof is in the appendix.

The refinement by Proxβ of Forbus’ (1989) and Winslett’s operators (1988) does not
seem to behave better than the refinements by Clβ and Minβ. It is rather difficult to find
counterexamples in all fragments and we obtain only a partial result in LHorn .

Proposition 27. Let ˛ P t˛F , ˛W u. The refined operator ˛Proxβ violates postulate (U6) in
LHorn .

Proof. The proof is in the appendix.

Let us briefly summarize and discuss the results obtained in this section so far. Proposi-
tion 22 is positive: Given an update operator satisfying the four basic postulates (U1)-(U4),
any refinement of it (in any fragment) satisfies them as well. The other results, obtained for
refinements of Forbus’ (1989) and Winslett’s operators (1988), look less promising. Nev-
ertheless they raise interesting issues. On the one hand one might ask whether postulates
(U5), (U6) and (U9) should be adapted to refinements, which correspond to a specific way
of building update operators. On the other hand one has to bear in mind that Forbus’ oper-
ator is not the only one satisfying all postulates. Indeed representation theorems (in terms
of preorders as discussed in Section 4) characterize operators satisfying all postulates. Some
of these operators might lead to refinements satisfying more postulates. A classification of
operators that satisfy all postulates and can be refined in such a way to preserve (U5), (U6)
and (U9) in some fragment is beyond the scope of this paper and left as future work.

Table 4 gives a general overview of the properties of our refined update operators in
terms of satisfaction of the postulates (U5), (U6) and (U9). We put

‘

if the refined
operator satisfies the considered postulate, ˆ if it violates it in all fragments, and ˆLHorn

it
is only known that the refined operator violates the postulate in LHorn .

Finally observe that (U7) and (U8) are not applicable in our study since they use
disjunction of formulas while our fragments are not closed under disjunction (given µ1 and
µ2 in L1, µ1 _ µ2 does not necessarily belong to L1). These postulates would require to
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be reformulated in order to fit into fragments while still characterizing rational behavior
of update operators. This is an interesting issue, which is beyond the scope of this paper.
An adapted formulation of these postulates would ideally be validated by a representation
theorem.

Let us nevertheless discuss postulate (U8), which is the most uncontroversial postulate
for belief update in the context of full propositional logic. It reflects the central fact that a
rational update operator should give each model of the original beliefs equal consideration
(a property that distinguishes update from revision). Unfortunately (U8) fails playing this
role in fragments of propositional logic that are not closed under disjunction. Indeed, the
union of closed sets of models obtained after having considered independently each model
of the formula representing the belief set, has no reason to be a closed set of models.

However, note that by construction our refined operators first compute the result ob-
tained through an original operator, and then, as a post-processing step, apply a β-mapping
to it. Therefore, starting from an update operator that satisfies (U8) the models of the for-
mula will equally contribute to the update in the first step. So at least the spirit is preserved,
even if of course one has to perform a post-processing in order to remain in the fragment.
Observe that for the refinement by the closure Clβ, since for for all formulas ψ and µ in L1,
Modpψ ˛Clβ µq “ ClβpModpψ ˛ µqq, we have TL1pψ ˛Clβ µq “ TL1pψ ˛ µq. Therefore, roughly
speaking ˛Clβ is the best approximation of ˛ in L1, and if ˛ can be considered as a rational
update operator, then so can ˛Clβ in L1.

4.4 When Only the Formula Representing the Agent’s Beliefs is in the
Fragment

When working within fragments a very natural situation is that the formula representing the
initial agent’s beliefs is indeed in the fragment, while the formula reflecting new information,
which potentially comes from an external source, is not. In order to iterate the process one
is interested in a result that still belongs to the fragment. An interesting issue is thus to
decide whether our approach allows us to refine well-established belief update operators
which starting from a formula ψ in the fragment and a formula µ not necessarily in the
fragment, give a result in the fragment. This is what we address in this section (for sake
of completeness, the symmetric case, which is much less natural, and in which only new
information is required to be in the fragment is addressed in Ktari, 2016).

Given an update operator ˛, we call � : L1 ˆ L Ñ L1 a ˛-left-refinement (for L1) if it
satisfies all properties given in Definition 8 with ψ P L1 and µ P L.

It is then easy to check that the characterization given in Proposition 11 still holds, that
is that any ˛-left-refinement can be defined as ˛fβ for some β-mapping fβ. So, we are in a
position to study the logical properties of such refined operators in terms of satisfaction of
postulates.

On the one hand note that the negative results obtained in the initial framework a
fortiori hold in this generalized case. On the other hand, the seventh postulate (U7),
which did not apply in the previous section, makes sense in this context. For these reasons,
we shall examine postulates (U1)-(U4), (U6) and (U7).

We first give a general positive result for three of the four basic postulates.
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Proposition 28. Let ˛ be an update operator and L1 Ď L a β-fragment. For i “ 2, 3, 4, if
˛ satisfies pUiq, then each ˛-left-refinement for L1, � : L1ˆLÑ L1, satisfies postulate pUiq.

Proof. The proof is similar to the one used in Proposition 22, since ψ P L1 is not used for
the preservation of (U2)-(U4).

Contrary to (U2), (U3) and (U4), the first postulate (U1) could be violated. The
success postulate (U1) says that the models of the updated beliefs have to be models of new
information, i.e., ψ ˛ µ |ù µ. In the case of a refined operator ˛fβ , since Modpψ ˛fβ µq “
fβpModpµqq, the problem is that the application of fβ can generate new models that are not
necessarily models of µ, and thus the postulate (U1) is not necessarily preserved. We show
that this is indeed the case, and actually we prove that the preservation of (U1) depends
on the β-mapping that is used for the refinement.

Proposition 29. Let ˛ P t˛F , ˛W u be an update operator and L1 Ď L a β-fragment. The
˛-left-refinement ˛Clβ violates postulate (U1) in any L1 P tLHorn ,LKrom ,Laffineu.

Proof. Let ˛ P t˛F , ˛W u. Consider ψ P L1 such that Modpψq “ tHu. This set is closed
under ^, maj3 and ‘3. Let µ P L such that Modpµq “ ttau, tbu, tcuu, we get Modpψ ˛ µq “
ttau, tbu, tcuu. Thus, Modpψ ˛Clβ µq “ ttau, tbu, tcu,Hu. Observe that Modpψ ˛Clβ µq Ę
Modpµq, hence ˛Clβ violates (U1).

However, some β-mappings behave better, in particular the β-mappings f we call con-
tracting, which are characterized by the property fpMq ĎM for any set of interpretations
M. Observe that Minβ is such a contracting mapping.

Proposition 30. Let ˛ be an update operator and L1 Ď L be a β-fragment. If ˛ satisfies
(U1) and if fβ is a contracting β-mapping, then the ˛-left-refinement, ˛fβ : L1 ˆ L Ñ L1,
satisfies postulate (U1).

Proof. Since ˛ satisfies (U1), we have ψ ˛ µ |ù µ. Thus, Modpψ ˛ µq Ď Modpµq. Besides, fβ
is contracting, thus fβpModpψ ˛ µqq Ď Modpψ ˛ µq Ď Modpµq. Therefore, Modpψ ˛fβ µq Ď
Modpµq, i.e., ψ ˛fβ µ |ù µ. Hence ˛fβ satisfies (U1).

So interestingly contracting β-mappings allow us to refine rational update operators
in order to obtain update operators defined from L1 ˆ L to L1 that satisfy the four basic
postulates. Observe that this is in sharp contrast with belief revision. No refinement of
a rational revision operator provides a revision operator defined from L1 ˆ L to L1 that
satisfies the first four basic postulates. Indeed, the second postulate for revision (R2) (if
pψ^µq is satisfiable then ψ ˝µ ” ψ^µ) is not compatible with an operator from L1ˆL to
L1. For instance let us consider ψ ” J and µ a satisfiable formula which is not equivalent to
any formula in L1. The formula ψ^ µ is satisfiable since ψ^ µ ” µ, whereas ψ ˝ µ ı ψ^ µ
by assumption on the choice of µ.

Another way to deal with (U1) is to consider a weaker version of this postulate that
would be more appropriate to fragments in this particular case, where new information does
not necessarily belong to the fragment. In full propositional logic (U1) means that TLpµq Ď
TLpψ ˛µq. In a fragment L1 it would be reasonable to require only that TL1pµq Ď TL1pψ ˛µq.
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Since for any β-fragment L1 and any formula µ, TL1pµq “ TL1pµ̃q where µ̃ P L1 is such that
Modpµ̃q “ ClβpModpµqq, we propose the following weaker version of (U1):

Let L1 be a β-fragment, ψ P L1, and µ P L.

(Ũ1) ψ ˛ µ |ù µ̃, where µ̃ P L1 is such that Modpµ̃q “ ClβpModpµqq.

Interestingly, with this more adequate formulation the success postulate is preserved by
left-refinements.

Proposition 31. Let ˛ be an update operator and L1 Ď L a β-fragment. If ˛ satisfies pU1q,
then each ˛-left-refinement for L1, � : L1 ˆ LÑ L1, satisfies postulate pŨ1q.

Proof. Since ˛ satisfies (U1), we have ψ ˛ µ |ù µ. Thus, Modpψ ˛ µq Ď Modpµq. According
to Definition 9, for any β-mapping fβ we have fβpModpψ ˛ µqq Ď ClβpModpψ ˛ µqq, and
since Clβ is monotone ClβpModpψ ˛ µqq Ď ClβpModpµqq, thus proving that (Ũ1) holds.

The status of postulate (U6) seems to be unchanged in this generalized framework
compared to the original one.

Proposition 32. Let ˛ be an update operator and L1 Ď L be a β-fragment. If ˛ satisfies
(U6), then the ˛-left-refinement, ˛Clβ : L1 ˆ LÑ L1, satisfies postulate (U6).

Proof. The proof is similar to the one used in Proposition 25, since µ P L1 is not used.

In the previous section, the seventh postulate (U7) was not applicable since the con-
sidered fragments are not closed under disjunction, however for ˛-left-refinements, there is
no constraint on new information µ anymore and this postulate makes sense. We get a
negative result for this postulate.

Proposition 33. Let ˛ P t˛F , ˛W u. The ˛-left-refinement ˛Minβ violates postulate (U7) in
LHorn .

Proof. Let ψ be a formula in LHorn such that Modpψq “ ttb, c, duu and let µ1 and µ2 be two
formulas in L such that Modpµ1q “ tta, b, cu, tcuu and Modpµ2q “ tta, b, cu, tduu. Observe
that Modpµ1q YModpµ2q is not closed under ^ and thus µ1 _ µ2 is not equivalent to any
formula in LHorn . Consider the following order: tcu ă ta, b, cu ă tdu. We get Modpψ ˛
µ1q “ tta, b, cu, tcuu, which is closed under ^, thus Modpψ ˛Min^ µ1q “ tta, b, cu, tcuu.
Moreover we have Modpψ ˛ µ2q “ tta, b, cu, tduu which is not closed under ^, this leads to
Modpψ ˛Min^ µ2q “ tta, b, cuu. Therefore Modpψ ˛Min^ µ1q XModpψ ˛Min^ µ2q “ tta, b, cuu.
Besides, we get Modpψ ˛ pµ1 _ µ2qq “ tta, b, cu, tcu, tduu, which is not closed under ^ thus
Modpψ˛Min^ pµ1_µ2qq “ ttcuu. Consequently we have Modpψ˛Min^µ1qXModpψ˛Min^µ2q Ę

Modpψ ˛Min^ pµ1 _ µ2qq. Hence, ˛Minβ violates (U7) in LHorn .

To conclude this section let us recall that Herzig’s update operators ˛HZ (Herzig & Rifi,
1999), and in particular Hegner’s (1987) operator ˛H , are well-suited for update in any
characterizable fragment when both the formula representing the agent’s beliefs and the
formula reflecting new information are in the fragment (see Proposition12). However, this
is not the case anymore when new information is not required to be in the fragment, as
illustrated in the following example.
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Example 34. Let two formulas ψ and µ such that ψ “  a ^  b ^ c and µ “ a _ b. We
have Modpψq “ ttcuu, Modpµq “ ttau, tbu, ta, bu, ta, cu, tb, cu, ta, b, cuu and Varpµq “ ta, bu.
Clearly, ψ is in LHorn but µ is not equivalent to any Horn formula. Assume deppµq “ ta, bu,
we get Modpψ ˛HZ µq “ tta, cu, tb, cu, ta, b, cuu, which is not closed under intersection.
Therefore, within this more general framework (˛-left-refinement), Herzig’s update operators
˛HZ (Herzig & Rifi, 1999), and in particular Hegner’s (1987) operator ˛H , would deserve
to be refined.

5. Conclusion

We have investigated to which extent well-established model-based belief change operators
can be refined to work within propositional fragments. We have first defined desired prop-
erties any refined belief change operator should satisfy and provided a characterization of
all such refined operators. Then, we focused on the belief update operation, which has been
neglected so far. We showed that any refinement of an update operator preserves the basic
KM update postulates pU1q ´ pU4q (Katsuno & Mendelzon, 1992) for any fragment. We
then focused on Forbus’ (1989) and Winslett’s update operators (1988) within Horn, Krom
and affine fragments.

We showed that all the proposed refinements violate the fifth postulate pU5q. This
result is very interesting since it highlights a difference between revision and update. An
interesting issue is whether this postulate is indeed violated by any refined update operator.
Regarding the sixth postulate pU6q the situation is less clear since the refinement by the
closure preserves this postulate, while the other studied refinements do not. It would be
interesting to characterize the refined operators that preserve it. We also showed that none
of the refinements of Forbus’ (1989) and Winslett’s operators (1988) satisfies the ninth
postulate pU9q.

We also studied a natural extension, when only the formula representing the agent’s
beliefs is in the fragment, and not necessarily new information, that is operators from L1ˆL
to L1. Our approach can handle this extension. Using β-mappings that are contracting
allows us to define refined update operators, which—contrary to revision—satisfy the first
four basic postulates.

There are several interesting issues for future work. The first one concerns the postulates.
The KM postulates (Katsuno & Mendelzon, 1992) that are meaningful in propositional
fragment, namely pU5q, pU6q and pU9q, are not all satisfied by refined operators. An
interesting issue is how to weaken them in such a way that some refinements, notably
the closure-based refinement, satisfy them. Other KM postulates are not expressible in
fragments, namely pU7q and pU8q. For them, an additional difficulty is to modify them so
that they are expressible in fragments, regardless of refinement operators. A challenging task
would be to find an appropriate formulation of these postulates that leads to a representation
theorem for update in fragments, as it was already done for revision (Delgrande & Peppas,
2015) and merging (Haret, Rümmele, & Woltran, 2017) within the Horn fragment.

Besides, we plan to continue our study in exploring other belief change operations, such
as belief erasure and belief forget, which are defined by means of update operators. Finally,
an ambitious issue is the study of the computational complexity of the refined update
operators.
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Appendix A.

Proposition 35. Let ˛ P t˛F , ˛W u. The refined update operators ˛Clβ , ˛Minβ and ˛Proxβ

violate postulate (U5) in any L1 P tLHorn ,LKrom ,Laffineu.

Proof. We give first the proof for the refinement by Clβ. For LHorn and LKrom , consider
ψ, µ, φ in LHorn (resp. LKrom) such that Modpψq “ tta, b, cuu, Modpµq “ ttau, tbu, tcu,Hu
and Modpφq “ ttcu,Hu. Such formulas exists since these sets of models are closed under
^ and maj3. For ˛ P t˛F , ˛W u, we have Modpψ ˛ µq “ ttau, tbu, tcuu which is not closed
under ^ nor under maj3. We get Modpψ ˛Clβ µq “ ttau, tbu, tcu,Huu and Modppψ ˛Clβ µq^
φq “ ttcu,Huu. Besides, Modpψ ˛Clβ pµ ^ φqq “ ttcuu, therefore Modppψ ˛Clβ µq ^ φq |ù
Modpψ ˛Clβ pµ^ φqq. Hence, ˛Clβ violates (U5) in LHorn and LKrom .

For L1 “ Laffine , consider ψ, µ, φ in Laffine such that Modpψq “ ttau, ta, b, cuu, Modpµq “
tH, ta, bu, ta, cu, ta, du, ta, eu, tb, cu, tb, du, tb, eu, tc, du, tc, eu, td, eu, ta, b, c, du, ta, b, c, eu,
ta, b, d, eu, ta, c, d, eu, tb, c, d, euu and Modpφq “ ttd, eu,Hu. Note that ψ, φ P Laffine since
the corresponding sets of models are closed under ‘3 and the set of models of µ is
the set of solutions of the equation a ‘ b ‘ c ‘ d ‘ e “ 0. We have Modpψ ˛ µq “
tH, ta, bu, ta, cu, ta, du, ta, eu, tb, cu, ta, b, c, du, ta, b, c, euu. The closure of this set under ‘3

is exactly Modpµq. Hence, Modpψ˛Clβ µq “ Modpµq. We now use φ P Laffine with Modpφq “
ttd, eu,Hu. We obtain Modppψ ˛Clβ µq^φq “ tH, td, euu. But, Modpψ ˛Clβ pµ^φqq “ tHu.

Thus, pψ ˛Clβ µq^φ |ù ψ ˛Clβ pµ^φq, hence ˛
Clβ
F and ˛

Clβ
W violate postulate (U5) in Laffine .

Let us now turn to the refinement by Minβ. We give first the proof for LHorn

and LKrom . Let ˛ P t˛F , ˛W u. Let ψ, µ and φ in LHorn (resp. LKromq such that
Modpψq “ tta, b, c, d, e, fu, tb, c, d, e, fuu, Modpµq “ tH, tcu, ta, bu, tc, du, te, fu, ta, b, cuu
and Modpφq “ tta, bu, tc, du, te, fu,Hu. Observe that since these sets of models are closed
under ^ (resp. under maj3) such formulas exist. Consider the following order ta, bu ă
tc, du ă te, fu ă ta, b, cu. On the one hand we obtain Modpψ ˛ µq “ ttc, du, te, fu, ta, b, cuu,
and thus Modpψ ˛Minβ µq “ ttc, duu. Therefore, Modppψ ˛Minβ µq ^ φq “ ttc, duu. On the
other hand, Modpψ ˛ pµ^φqq “ tta, bu, tc, du, te, fuu, thus Modpψ ˛Minβ pµ^φqq “ tta, buu.

It is then clear pψ ˛Minβ µq ^ φ |ù ψ ˛Minβ pµ^ φq, hence ˛
Minβ
F and ˛

Minβ
W violate postulate

(U5) in LHorn and LKrom .

For L1 “ Laffine , we can consider the formulas ψ, µ in Laffine with the same set of
models as in the case of the refinement by Clβ and let φ P Laffine such that Modpφq “
ttb, cu, tb, du, tb, eu, tb, c, d, euu. Note that φ P Laffine exists since the corresponding set
of models is closed under ‘3. Let us suppose that tb, du and tb, cu are the two smallest
interpretations with respect to ď with tb, du ă tb, cu. We have on the one hand Modpψ˛µq “
tH, ta, bu, ta, cu, ta, du, ta, eu, tb, cu, ta, b, c, du, ta, b, c, euu which is not closed under ‘3 and
so Modpψ ˛Minβ µq “ ttb, cuu. Hence, Modppψ ˛Minβ µq ^ φq “ ttb, cuu. On the other hand,
we have Modpψ ˛ pµ ^ φqq “ ttb, cu, tb, du, tb, euu, which is not closed under ‘3, and thus
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Modpψ ˛Minβ pµ ^ φqq “ ttb, duu. It is obvious that pψ ˛Minβ µq ^ φ |ù ψ ˛Minβ pµ ^ φq.

Therefore, ˛
Minβ
F and ˛

Minβ
W violate postulate (U5) in Laffine .

We now consider the refinement by Proxβ. We give first the proof for LHorn and
LKrom . Let ψ, µ and φ in LHorn (resp. LKrom) such that Modpψq “ tta, b, cuu,
Modpµq “ ttau, tbu, tcu,Hu and Modpφq “ ttcu,Hu. For ˛ P t˛F , ˛W u, we have
Modpψ˛µq “ ttau, tbu, tcuu, which is not closed under ^ (resp. maj3). Since FppModpψ˛µqq
consists in a single set ttau, tbu, tcu,Hu, which is equal to ClβpModpψ ˛ µqq, we have
Modpψ ˛Proxβ µq “ ttau, tbu, tcu,Hu and Modppψ ˛Proxβ µq ^ φq “ ttcu,Hu. On the
other hand, Modpψ ˛ pµ ^ φqq “ ttcuu, which is closed under ^ (resp. maj3). There-
fore Modpψ ˛Proxβ pµ ^ φqq “ ttcuu. It is then clear pψ ˛Proxβ µq ^ φ |ù ψ ˛Proxβ pµ ^ φq,

thus proving that ˛
Proxβ
F and ˛

Proxβ
W violate postulate (U5) in LHorn and LKrom .

For L1 “ Laffine consider ψ, µ and φ in Laffine such that Modpψq “ tta, b, cuu,
Modpµq “ tH, ta, bu, tc, du, tc, eu, td, eu, ta, b, c, du, ta, b, c, eu, ta, b, d, euu and Modpφq “
ttc, du, tc, eu, ta, bu, ta, b, d, euu. Note that such formulas exists in Laffine since the corre-
sponding sets of models are closed under ‘3. For ˛ P t˛F , ˛W u, we have Modpψ ˛ µq “
tta, bu, ta, b, c, du, ta, b, c, euu which is not closed under ‘3. On the one hand Modpψ ˛Prox‘

µq “ Clβptta, bu, ta, b, c, du, ta, b, c, euuq “ tta, bu, ta, b, c, du, ta, b, c, eu, ta, b, d, euu, because
ClβpModpψ ˛µqq is at distance 1 from Modpψ ˛µq and hence in FppModpψ ˛µqq. Therefore
Modppψ ˛Prox‘ µq^φq “ tta, bu, ta, b, d, euu. On the other hand we have Modpψ ˛pµ^φqq “
tta, buu. This set of models is closed under ‘3. Thus, Modpψ ˛Prox‘ pµ ^ φqq “ tta, buu.

Therefore, pψ ˛Prox‘ µq^φ |ù ψ ˛Prox‘ pµ^φq. Hence, ˛
Proxβ
F and ˛

Proxβ
W violate postulate

(U5) in Laffine .

Proposition 36. Let ˛ P t˛F , ˛W u and L1 P tLHorn ,LKrom ,Laffineu. Then any refined
operator � P r˛,L1s violates postulate (U9) in L1.

Proof. First, let us treat the case L1 “ LHorn . Consider � “ ˛f where f is a
^-mapping. Let ψ and µ in LHorn such Modpψq “ tta, b, c, duu and Modpµq “

tta, bu, ta, cu, tau, ta, b, eu, ta, b, c, euu.

We obtain M “ Modpψ ˛ µq “ tta, bu, ta, cu, ta, b, c, euu. Consider the possibilities for
Modpψ�µq “ fpMq. Recall that fpMq Ď Cl^pMq “ tta, bu, ta, cu, ta, b, c, eu, tauu. We
consider two cases:

First assume that tau P fpMq. Let φ be such that Modpφq “ ttau, ta, b, euu “ N .
Clearly, such a φ exists in LHorn . Also note that Modpφq Ď Modpµq. We get Modpψ�pµ^
φqq “ Modpψ�φq “ fpModpψ ˛ φqq “ fpttau, ta, b, euuq “ N (N is closed under ^, fpN q “
N holds by definition of refined operators), but Modppψ�µq^φq “ fpMqXModpφq “ ttauu.

Otherwise tau R fpMq. Since fpMq ‰ H and fpMq is closed under ^, by symmetry
of the role played by the variables b and c, it is sufficient to examine three possibilities for
fpMq: either fpMq “ tta, buu or fpMq “ tta, b, c, euu or fpMq “ tta, bu, ta, b, c, euu.

• If fpMq “ tta, buu or fpMq “ tta, b, c, euu, let us consider the formula φ such
that Modpφq “ tta, bu, ta, b, c, euu. Clearly, such a φ exists in LHorn . We obtain
Modpψ�pµ^φqq “ tta, bu, ta, b, c, euu, whereas Modppψ�µq^φq “ fpMqXModpφq “
fpMq.
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• If fpMq “ tta, bu, tta, b, c, euu. Consider φ in LHorn such that Modpφq “

tta, cu, ta, b, c, euu. Observe that Modpψ�pµ ^ φqq “ tta, cu, ta, b, c, euu, but
Modppψ�µq ^ φq “ fpMq XModpφq “ tta, b, c, euu.

Therefore, in any case Modppψ�µq ^ φq ‰ H and Modpψ�pµ^ φqq Ę Modppψ�µq ^ φq,
thus proving that pψ�µq ^ φ is satisfiable, whereas ψ�pµ^ φq |ù pψ�µq ^ φ in LHorn .

For L1 “ LKrom , the formulas ψ, µ P LKrom with Modpψq “ tta, b, c, d, euu,
Modpµq “ tta, b, cu, tb, c, du, tb, c, eu, tb, cu, ta, buu can be employed. For ˛ P t˛F , ˛W u,
we have M “ Modpψ ˛ µq “ tta, b, cu, tb, c, du, tb, c, euu. Observe that Clmaj3pMq “
tta, b, cu, tb, c, du, tb, c, eu, tb, cuu. Let us consider the possibilities for Modpψ�µq “ fpMq.
By definition of refined operators, we know that ta, bu R fpMq since ta, bu R Clmaj3pMq.
We consider two cases:

First assume tb, cu P fpMq: Let φ be such that Modpφq “ ttb, cu, ta, buu “ N . Clearly
such a φ exists in LKrom . Besides note that Modpφq Ď Modpµq. We get Modpψ�pµ^φqq “
Modpψ�φq “ fpModpψ ˛ φqq “ ttb, cu, ta, buu “ N , whereas Modppψ�µq ^ φq “ ttb, cuu.

Otherwise, we have tb, cu R fpMq. Since fpMq ‰ H and fpMq is already closed under
maj3, by symmetry of the role played by the variables a, d and e, it is sufficient to consider
two cases for fpMq : either fpMq “ tta, b, cu, tb, c, duu or fpMq “ tta, b, cuu.

• If fpMq “ tta, b, cu, tb, c, duu, let us consider the formula φ such that Modpφq “
tta, b, cu, tb, c, euu. Clearly, such a φ exists in LKrom . We obtain thus Modpψ�pµ ^
φqq “ tta, b, cu, tb, c, euu. Nevertheles, Modppψ�µq^φq “ fpMqXModpφq “ tta, b, cuu.

• If fpMq “ tta, b, cuu. We select φ in LKrom with Modpφq “ tta, b, cu, tb, c, duu. Then,
Modpψ�pµ^φqq “ tta, b, cu, tb, c, duu, whereas Modppψ�µq^φq “ fpMqXModpφq “
fpMq “ tta, b, cuu.

It is then clear that in any case Modppψ�µq ^ φq ‰ H and Modpψ�pµ ^ φqq Ę
Modppψ�µq^φq, thus showing eventually that pψ�µq^φ is satisfiable, whereas ψ�pµ^φq |ù
pψ�µq ^ φ in LKrom .

For L1 “ Laffine , we use formulas ψ, µ P Laffine with Modpψq “ tta, b, cuu and Modpµq “
tH, ta, bu, tc, du, tc, eu, td, eu, ta, b, c, du, ta, b, c, eu, ta, b, d, euu. Observe that the set of mod-
els of µ is the set of solutions of the following equations system: (a‘ b “ 0, c‘ d‘ e “ 0).
We have M “ Modpψ ˛ µq “ tta, bu, ta, b, c, du, ta, b, c, euu. For ˛ P t˛F , ˛W u, we have
Cl‘3pMq “ Modpψ ˛Cl‘3 µq “ tta, bu, ta, b, c, du, ta, b, c, eu, ta, b, d, euu. Let us consider the
possibilities for Modpψ�µq “ fpMq. We distiguish two cases.

First, assume ta, b, d, eu P fpMq: let φ be such that Modpφq “ tta, b, d, eu, ta, buu.
Clearly, such a φ exists in Laffine . Also note that Modpφq Ď Modpµq. We obtain on the
one hand Modpψ�pµ ^ φqq “ Modpψ�φq “ fpModpψ ˛ φqq “ tta, buu and on the other
hand Modppψ�µq ^ φq contains tta, b, d, euu. Otherwise, we have ta, b, d, eu R fpMq. Since

fpMq ‰ H and fpMq is closed under ‘3, by symmetry of the role played by the variables
d and e, it is sufficient to distinguish four cases for fpMq: either fpMq “ tta, buu or
fpMq “ tta, b, c, euu or fpMq “ tta, bu, ta, b, c, euu or fpMq “ tta, b, c, du, ta, b, c, euu:

• If fpMq “ tta, buu or fpMq “ tta, b, c, euu, we consider the formula φ such that
Modpφq “ tta, bu, ta, b, c, euu. Clearly, such a φ exists in Laffine . We obtain Modpψ�pµ^
φqq “ tta, bu, ta, b, c, euu, whereas Modppψ�µq ^ φq “ fpMq XModpφq “ fpMq.
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• If fpMq “ tta, bu, ta, b, c, euu. In this case, let consider φ in Laffine such that Modpφq “
tta, bu, ta, b, c, duuu. Observe that while Modpψ�pµ ^ φqq “ tta, bu, ta, b, c, duu,
Modppψ�µq ^ φq “ fpMq XModpφq “ tta, buu.

• If fpMq “ tta, b, c, du, ta, b, c, euu, we use φ P Laffine with Modpφq “

tta, bu, ta, b, c, duu. While Modpψ�pµ^φqq “ tta, bu, ta, b, c, duu, we get Modppψ�µq^
φq “ fpMq XModpφq “ tta, b, c, duu.

Obviously, Modppψ�µq ^ φq ‰ H and Modpψ�pµ^ φqq Ę Modppψ�µq ^ φq in all cases,
thus proving that pψ�µq ^ φ is satisfiable, whereass ψ�pµ^ φq |ù pψ�µq ^ φ in Laffine .

Proposition 37. Let ˛ P t˛F , ˛W u. The refined operator ˛Minβ violates postulate (U6) in
any L1 P tLHorn ,LKrom ,Laffineu.

Proof. Let ˛ P t˛F , ˛W u. We give first the proof for LHorn . Let ψ, µ1, µ2 P LHorn with
Modpψq “ ttbu, ta, b, c, duu, Modpµ1q “ ttau, ta, bu, ta, cu, ta, b, c, euu and Modpµ2q “ tta, bu,
ta, b, c, euu. Suppose that ta, bu ă ta, cu ă ta, b, c, eu. On the one hand, we have Modpψ ˛
µ1q “ tta, bu, ta, cu, ta, b, c, euu which is not closed under ^. Thus, Modpψ ˛Min^ µ1q “

Min^ptta, bu, ta, cu, ta, b, c, euuq “ tta, buu Ď Modpµ2q. On the other hand, we have Modpψ˛
µ2q “ tta, bu, ta, b, c, euu, a set of models closed under ^. Therefore, Modpψ ˛Min^ µ2q “

tta, bu, ta, b, c, euu Ď Modpµ1q. But, ψ ˛Min^ µ1 ı ψ ˛Min^ µ2, hence ˛Minβ violates (U6) in
LHorn .

For L1 “ LKrom , we use ψ, µ1, µ2 P LKrom with Modpψq “ tta, b, cu, ta, buu, Modpµ1q “

ttau, tbu, tcu,Hu and Modpµ2q “ ttau, tcuu and we suppose that tau ă tbu ă tcu. We have
on the one hand Modpψ ˛ µ1q “ ttau, tbu, tcuu, this set is not closed maj3. Consequently,
Modpψ ˛Minmaj3 µ1q “ Minmaj3pttau, tbu, tcuuq “ ttauu Ď Modpµ2q. On the other hand,
Modpψ ˛ µ2q “ ttau, tcuu is closed under maj3. Hence, Modpψ ˛Minmaj3 µ2q “ ttau, tcuu Ď
Modpµ1q. Let us notice that Modpψ ˛Minmaj3 µ1q ‰ Modpψ ˛Minmaj3 µ2q, hence ˛Minβ violates
(U6) in LKrom .

Finally, for L1 “ Laffine , the formulas ψ, µ1 and µ2 P

Laffine with Modpψq “ tta, b, c, d, eu, ta, b, cuu, Modpµ1q “

tH, ta, bu, tc, du, te, fu, ta, b, c, du, ta, b, e, fu, tc, d, e, fu, ta, b, c, d, e, fuu and Modpµ2q “

tta, bu, tc, du, ta, b, e, fu, tc, d, e, fuu can be used to show the assertion. Indeed,
the set of models of µ is the set of solutions of the following equation system:
(a‘b “ 0, c‘d “ 0, e‘f “ 0). Let us suppose that ta, bu is the smallest interpretation with
respect to ď. On the one hand, we have Modpψ ˛ µ1q “ tta, bu, ta, b, c, du, ta, b, c, d, e, fuu,
a set not closed under ‘3. We obtain thus Modpψ ˛min‘3 µ1q “ tta, buu Ď Modpµ2q. On
the other hand, Modpψ ˛ µ2q “ tta, bu, tc, du, ta, b, e, fu, tc, d, e, fuu which is already closed
under ‘3. Therefore, Modpψ ˛min‘3 µ2q “ tta, bu, tc, du, ta, b, e, fu, tc, d, e, fuu. Hence,
Modpψ ˛min‘3 µ2q Ď Modpµ1q. Nevertheless, Modpψ ˛min‘3 µ1q ‰ Modpψ ˛min‘3 µ2q, hence
˛Minβ violates (U6) in Laffine .

Proposition 38. Let ˛ P t˛F , ˛W u. The refined operator ˛Proxβ violates postulate (U6) in
LHorn .
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Proof. Consider ψ and µ1 two formulas in LHorn such that Modpψq “ tta, b, c, duu
and Modpµ1q “ tta, bu, ta, cu, tau, ta, b, eu, ta, b, c, euu. Note that these sets of mod-
els are closed under ^. We get Modpψ ˛ µ1q “ tta, bu, ta, cu, ta, b, c, euu, which is
not closed by intersection. Observe that ClβpModpψ ˛ µ1qq is at distance 1 from
Modpψ ˛ µ1q, and hence Cl^pModpψ ˛ µ1qq P FppModpψ ˛ µ1qq. Thus, Modpψ ˛Prox^

µ1q “ Cl^ptta, bu, ta, cu, ta, b, c, euuq “ tta, bu, ta, cu, ta, b, c, eu, tauu. Let µ2 be a
formula in LHorn such that Modpµ2q “ tta, bu, ta, cu, ta, b, c, eu, tau, tb, cu, tbu, tcu,Hu,
we observe that Modpψ ˛Prox^ µ1q Ď Modpµ2q. Besides, Modpψ ˛ µ2q “

tta, bu, ta, cu, ta, b, c, eu, tb, cuu is not closed by intersection. We have FppModpψ ˛ µ2qq “

ttta, bu, ta, b, c, euu, tta, bu, ta, cu, ta, b, c, eu, tauu, tta, bu, tb, cu, ta, b, c, eu, tbuu, tta, cu, t
b, cu, ta, b, c, eu, tcuuu, it does not contain ClβpModpψ ˛ µ2qq.

Consider the following order on models of µ2:

ta, bu ă ta, b, c, eu ă tau ă ta, cu ă tb, cu ă tbu ă tcu.

It induces the following lexicographical order on the sets of models of FppModpψ ˛
µ2qq: tta, bu, ta, b, c, euu ă tta, bu, ta, b, c, eu, tau, ta, cuu ă tta, bu, ta, b, c, eu, tb, cu, tbuu ă
tta, b, c, eu, ta, cuu ă tta, cu, tb, cu, ta, b, c, eu, tcuu. Thus, Modpψ ˛Prox^ µ2q “

tta, bu, ta, b, c, euu Ď Modpµ1q. We observe that Modpψ ˛Prox^ µ1q ‰ Modpψ ˛Prox^ µ2q,
thus proving that ˛Proxβ violates (U6) in LHorn .
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