
Journal of Artificial Intelligence Research 61 (2018) 723-759 Submitted 11/17; published 03/18

When Subgraph Isomorphism is Really Hard, and Why This
Matters for Graph Databases

Ciaran McCreesh ciaran.mccreesh@glasgow.ac.uk
Patrick Prosser patrick.prosser@glasgow.ac.uk
University of Glasgow, Glasgow, Scotland

Christine Solnon christine.solnon@insa-lyon.fr
INSA-Lyon, LIRIS, UMR5205, F-69621, France

James Trimble j.trimble.1@research.gla.ac.uk

University of Glasgow, Glasgow, Scotland

Abstract

The subgraph isomorphism problem involves deciding whether a copy of a pattern
graph occurs inside a larger target graph. The non-induced version allows extra edges in
the target, whilst the induced version does not. Although both variants are NP-complete,
algorithms inspired by constraint programming can operate comfortably on many real-world
problem instances with thousands of vertices. However, they cannot handle arbitrary in-
stances of this size. We show how to generate “really hard” random instances for subgraph
isomorphism problems, which are computationally challenging with a couple of hundred
vertices in the target, and only twenty pattern vertices. For the non-induced version of the
problem, these instances lie on a satisfiable / unsatisfiable phase transition, whose location
we can predict; for the induced variant, much richer behaviour is observed, and constrained-
ness gives a better measure of difficulty than does proximity to a phase transition. These
results have practical consequences: we explain why the widely researched “filter / verify”
indexing technique used in graph databases is founded upon a misunderstanding of the
empirical hardness of NP-complete problems, and cannot be beneficial when paired with
any reasonable subgraph isomorphism algorithm.

1. Introduction

The non-induced subgraph isomorphism problem is to find an injective mapping from the
vertices of a given pattern graph to the vertices of a given target graph which preserves
adjacency—in essence, we are “finding a copy of” the pattern inside the target. The induced
variant of the problem additionally requires that the mapping preserve non-adjacency, so
there are no “extra edges” in the copy of the pattern that we find. We illustrate both
variants in Figure 1. Although these problems are NP-complete (Garey & Johnson, 1979),
modern subgraph isomorphism algorithms based upon constraint programming techniques
can handle problem instances with many hundreds of vertices in the pattern graph, and
up to ten thousand vertices in the target graph (Solnon, 2010; Audemard, Lecoutre, Mod-
eliar, Goncalves, & Porumbel, 2014; McCreesh & Prosser, 2015; Kotthoff, McCreesh, &
Solnon, 2016), and subgraph isomorphism is used successfully in application areas includ-
ing computer vision (Damiand, Solnon, de la Higuera, Janodet, & Samuel, 2011; Solnon,
Damiand, de la Higuera, & Janodet, 2015), biochemistry (Giugno, Bonnici, Bombieri, Pul-
virenti, Ferro, & Shasha, 2013; Carletti, Foggia, & Vento, 2015), and pattern recognition
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Figure 1: On the left, an induced subgraph isomorphism. On the right, a non-induced
subgraph isomorphism: the extra dashed edge is not present in the pattern graph.

(Conte, Foggia, Sansone, & Vento, 2004). A labelled version of subgraph isomorphism is
also one of the key components in supporting complex queries in graph databases, which
we discuss in detail in Section 6.

However, subgraph isomorphism algorithms cannot handle arbitrary instances involv-
ing hundreds or thousands of vertices. Experimental evaluations of subgraph isomorphism
algorithms are usually performed using randomly generated pairs of pattern and target
graphs, sometimes together with a mix of real-world graphs, for example biochemistry and
computer vision problems. Using random instances to evaluate algorithm behaviour can be
beneficial, because it provides a way of generating many instances cheaply, and reduces the
risk of over-fitting when tuning design parameters. It also allows experimenters to control
graph parameters such as order, density, or degree distribution, and to study scaling proper-
ties of algorithms with respect to these parameters. The random instances used in previous
evaluations come from common datasets (Santo, Foggia, Sansone, & Vento, 2003; Zampelli,
Deville, & Solnon, 2010), which were generated by taking a random subgraph of a random
(Erdős-Rényi, scale-free, bounded degree, or mesh) graph and permuting the vertices. Such
instances are guaranteed to be satisfiable—Anton and Olson (2009) exploited this property
to create large sets of random satisfiable boolean satisfiability instances. This is the most
common approach to generating random subgraph isomorphism instances, meaning existing
benchmark suites contain relatively few non-trivial unsatisfiable instances (although a few
of the patterns in the instances by Zampelli et al. have had extra edges added, making them
unsatisfiable). Also, the satisfiable instances tend to be computationally fairly easy, with
most of the difficulty being in dealing with the size of the model. This has led to bias in
algorithm design, to the extent that some proposed techniques, such as those of Battiti and
Mascia (2007), will only work on satisfiable instances.

The first contribution of this paper is to present and evaluate new methods for creating
random pattern / target pairs. The method we introduce in Section 2 generates both sat-
isfiable and unsatisfiable instances, and can produce computationally challenging instances
with only a few tens of vertices in the pattern, and 150 vertices in the target. Note that the
lack of unsatisfiable instances for testing purposes cannot be addressed simply by taking
a pattern graph from one of the existing random suites with the “wrong” target graph,
as this tends to give either a trivially unsatisfiable instance, or a satisfiable instance. (In
particular, it is not the case that a relatively small random graph is unlikely to appear in
a larger random graph.)

This work builds upon the phase transition phenomena observed in satisfiability and
graph colouring problems first described by Cheeseman, Kanefsky, and Taylor (1991) and
Mitchell, Selman, and Levesque (1992). For subgraph isomorphism in Erdős-Rényi random
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graphs, we identify three relevant control parameters: we can independently alter the edge
probability of the pattern graph, the edge probability of the target graph, and the relative
orders (number of vertices) of the pattern and target graphs. For non-induced isomorphisms,
with the correct choice of parameters we see results very similar to those observed with
boolean satisfiability problems: there is a phase transition (whose location we can predict)
from satisfiable to unsatisfiable, and we see a solver-independent complexity peak near
this phase transition. Additionally, understanding this behaviour helps us to design better
search strategies, by improving variable- and value-ordering heuristics (that is, by improving
the order in which pattern and target vertices are selected for guessed assignments). This
is the second contribution of this paper.

In Section 3 we look at the induced subgraph isomorphism problem. For certain choices
of parameters, there are two phase transitions, going from satisfiable to unsatisfiable, and
then from unsatisfiable back to satisfiable. Again, when going from satisfiable to unsatisfi-
able (from either direction), instances go from being trivial to really hard to solve. However,
each of the three solvers we test also finds the central unsatisfiable region to be hard, de-
spite it not being near a phase transition. To show that this is not a simple weakness
of current subgraph isomorphism algorithms, we verify that this region is also hard for
boolean satisfiability, pseudo-boolean, and mixed integer solvers, and under reduction to
the clique problem. Interestingly, the constrainedness measure proposed by Gent, MacIn-
tyre, Prosser, and Walsh (1996) does predict this difficult region—the third contribution of
this paper is to use these instances to provide evidence in favour of constrainedness, rather
than proximity to a phase transition, being an accurate predictor of difficulty, and to show
that constrainedness is not simply a refinement of a phase transition prediction.

What about other random graph models? In Section 4 we see that graphs where every
vertex has the same degree (known as k-regular) exhibit very similar characteristics. How-
ever, when labels on vertices are introduced (as is commonly seen in real-world applications
and in graph database systems), richer behaviour emerges, particularly when moving away
from a uniform labelling scheme, and the popular VF2 algorithm (Cordella, Foggia, San-
sone, & Vento, 2004) behaves much worse than two more recent constraint-based algorithms
(Solnon, 2010; McCreesh & Prosser, 2015) in certain cases. In Section 5 we take a close
look at these cases, and argue that they should be easy to solve.

This is not simply a theoretical curiosity. A labelled version of subgraph isomorphism
is one of the key components in supporting complex queries in graph databases—typically,
these systems store a fixed set of target graphs, and for a sequence of pattern queries, they
must return every target graph which contains that pattern. One common approach to
this problem is to combine a subgraph isomorphism algorithm with an indexing system
in a so-called “filter / verify” model, where invariants are used to attempt to pre-exclude
unsatisfiable instances to avoid the cost of a subgraph isomorphism call. In this context,
the terms matching and verification are often used for the subgraph isomorphism step (or
a slightly broader problem, for example permitting wildcards).

In Section 6 we look at some of the datasets commonly used to test graph database
systems, which the literature suggests are hard to solve. Simple experiments show that the
entire perceived difficulty of each of these datasets comes down to the widespread use of
particular subgraph isomorphism algorithms, rather than inherent hardness. Our fourth
contribution is to show that the simplest constraint programming approach, even without
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the more sophisticated recent advances in subgraph algorithms, makes the entire graph
database filter / verify paradigm unnecessary. Finally, we explain why filter / verify and
other recently proposed techniques cannot be beneficial even on more challenging instances,
unless the chosen subgraph isomorphism algorithm exhibits unnecessarily poor behavior on
certain classes of instance.

1.1 Definitions

Throughout, our graphs are undirected, and do not have any loops. In some cases vertices
have labels, which are treated as integers; we write `(v) for the label of vertex v. Two
vertices are adjacent if there is an edge between them. The neighbourhood of a vertex is
the set of vertices to which it is adjacent, and the degree of a vertex is the cardinality of its
neighbourhood. The order of a graph is the cardinality of its vertex set. We write V(G) for
the vertex set of a graph G. The complement of a graph G, denoted G, is the graph with
the same vertex set as G, and with an edge between distinct vertices v and w if and only if
v and w are not adjacent in G.

An Erdős-Rényi random graph, written G(n, p), is a graph with n vertices, and an edge
between each distinct unordered pair of vertices with independent probability p (Gilbert,
1959; Erdős & Rényi, 1959).1

A non-induced subgraph isomorphism from a graph P (called the pattern) to a graph T
(called the target) is an injective mapping i from V(P ) to V(T ) which preserves adjacency—
that is, for every adjacent vertices v and w in V(P ), the vertices i(v) and i(w) are adjacent in
T . Where labels are present, the mapping must also preserve labels, so `(v) = `(i(v)) for any
v. An induced subgraph isomorphism additionally preserves non-adjacency—that is, if v and
w are not adjacent in P , then i(v) and i(w) must not be adjacent in T . We use the notation
i : P � T for a non-induced isomorphism, and i : P ↪→ T for an induced isomorphism.
Observe that an induced isomorphism i : P ↪→ T is a non-induced isomorphism i : P � T
which is also a non-induced isomorphism i : P � T . Deciding whether a subisomorphism
of either form exists between two given graphs exists is NP-complete.

1.2 Experimental Setup

The experiments in this paper are performed on systems with Intel Xeon E5-4650 v2 CPUs
and 768GBytes RAM, running Scientific Linux release 6.7. We will be working with four
subgraph isomorphism solvers: the Glasgow solver (McCreesh & Prosser, 2015; Kotthoff
et al., 2016); LAD (Solnon, 2010); VF2 (Cordella et al., 2004); and VF3 (Carletti, Foggia,
Saggese, & Vento, 2017). Each was compiled using GCC 4.9 with the “-O3” option. The
Glasgow, LAD, and VF2 solvers support both non-induced and induced isomorphisms (al-
though neither Glasgow nor LAD were designed with the induced version in mind), whilst
VF3 supports only the induced problem.

1. Note that elsewhere, this same name sometimes instead refers to a graph G(n,E) chosen uniformly from
among all graphs with n vertices and exactly E edges.
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1.3 Subgraph Isomorphism Solvers

The Glasgow and LAD solvers are constraint programming inspired algorithms (although
they use dedicated data structures, and do not use a constraint programming toolkit).
Constraint programming is a field concerned with solving constraint satisfaction problems.
In such a problem, we have a set of variables, each of which has a domain of values. We also
have a set of constraints. The objective is to assign each variable a value from its domain,
whilst respecting every constraint. This is done using a combination of inference, which
eliminates infeasible values from domains, and backtracking search. This search is driven
by variable-ordering heuristics, which select which unassigned variable to branch on, and
value-ordering heuristics, which select which value to try giving that variable.

In the case of subgraph isomorphism, the basic constraint model is to have a variable
for each pattern vertex, with each variable’s domain being the set of target vertices. An
all-different constraint ensures injectivity, whilst the adjacency rules can be expressed as
extensional constraints by listing allowed tuples. With this model, the backtracking search
builds up partial assignments of pattern vertices to target vertices, until either a complete
assignment is reached (and the instance is satisfiable), or search establishes that no such
assignment can exist (and it is unsatisfiable). Hence, the role of the variable-ordering
heuristic for subgraph isomorphism is to select a pattern vertex, whilst value-ordering tells
us the order in which to try different candidate target vertices for that pattern vertex. If
at any point during search a domain wipeout occurs (that is, if every value is removed from
any domain), the search will backtrack immediately.

For example, in Figure 2, we would have three variables A, B and C, each of which
has a domain {1, 2, 3, 4, 5, 6}. Suppose initially we guessed the assignment A = 1: inference
would tell us that vertices adjacent to A must be mapped to vertices adjacent to 1, and
so the value 6 would be eliminated from the domains of both B and C, whilst injectivity
would eliminate 1 from B and C. Now suppose we then guessed B = 2: this would leave no
suitable values for C, and so we would backtrack and try a new assignment for B. Guessing
B = 3 will similarly give a wipeout on C, but guessing B = 4 will leave the value 5 in the
domain of C, and we could then guess C = 5 to obtain a complete assignment.

This model can be extended with additional constraints. These allow more inference to
be performed, and so a solution may be found (or the lack of solution may be proven) with
less search. The simplest example is that a pattern vertex of degree d may only be mapped
to a target vertex of degree at least d, and so constraints can be posted which eliminate
values corresponding to target vertices of low degree from domains corresponding to pattern
vertices of high degree. In the example in Figure 2, this rule would eliminate the values 2, 3

A

B C

12 3

4 5 6

Figure 2: An example used to illustrate the simple constraint programming model for the
problem: the pattern graph is on the left, and the target graph on the right.
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and 6 from every domain at the top of search. Richer constraints involving neighbourhood
degree sequences (Zampelli et al., 2010), neighbourhood difference constraints (Solnon,
2010), and distances and paths (Audemard et al., 2014; McCreesh & Prosser, 2015; Kotthoff
et al., 2016) are also possible.

The Glasgow and LAD solvers both use extensions of this basic model, but differ in
terms of the additional constraints used (and hence the inference which is performed), their
choices of underlying data structures and algorithms, and in the details of their variable-
and value-ordering heuristics.

The approach used by VF2 and VF3 is different: domains of variables are not stored
(so the algorithm operates in the style of conventional backtracking), and wipeouts are not
detected until an assignment is made. Instead, an assignment is built up by repeatedly
branching only on vertices which are adjacent to a previously-assigned vertex.

Our experiments will primarily measure the number of search nodes (that is, the number
of recursive calls made, or the number of guessed assignments), not runtimes. We are not
aiming to give a simple comparison of absolute performance between solvers; rather, we
are looking for solver-independent patterns of difficulty. However, roughly speaking, on
the small graphs used in the following sections, Glasgow manages around 300,000 recursive
calls per second on our hardware, whilst LAD and VF2 perform around 1,000 and 70,000
recursive calls per second respectively. All experiments use a timeout of 1,000 seconds,
which is enough for the Glasgow solver to solve nearly all instances (whose orders were
selected with this timeout in mind), although we may slightly overestimate the proportion
of unsatisfiable instances for extremely sparse or dense pattern graphs. The LAD, VF2,
and VF3 solvers experienced many more failures with this timeout, so our picture of just
how hard the hardest instances are with these solvers is less detailed.

2. Non-induced Subgraph Isomorphisms

We begin by introducing a way of randomly generating a mix of satisfiable and unsatisfiable
instances for the non-induced problem, and by measuring the empirical difficulty of such
instances.

2.1 A Phase Transition when Varying Pattern Edge Probability

Suppose we arbitrarily decide upon a pattern graph order of 20, a target graph order of 150,
a fixed target edge probability of 0.40, and no vertex labels. As we vary the pattern edge
probability from 0 to 1, we would expect to see a shift from entirely satisfiable instances (with
no edges in the pattern, we can always find a match) to entirely unsatisfiable instances (a
maximum clique in this order and edge probability of target graph will usually have between
9 and 12 vertices). The move from green circles (satisfiable) to blue crosses (unsatisfiable)
in Figure 3 shows that this is the case. For densities of 0.67 or greater, no instance is
satisfiable; with densities of 0.44 or less, every instance is satisfiable; and with a density of
0.55, roughly half the instances are satisfiable.

The line plots arithmetic mean search effort using the Glasgow solver: for sparse pat-
terns, the problem is trivial; for dense patterns, proving unsatisfiability is not particularly
difficult; and we see a complexity peak around the point where half the instances are sat-
isfiable. We also plot the search cost of individual instances, as points. The behaviour we
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Figure 3: With a fixed pattern graph order of 20, a target graph order of 150, a target edge
probability of 0.40, and varying pattern edge probability, we observe a phase tran-
sition and complexity peak with the Glasgow solver in the non-induced variant.
Each point (x, y) represents one instance i, where x is the pattern edge probabil-
ity used to generate i, y is the number of search nodes needed by the Glasgow
solver to solve i, and the point is drawn as a green circle if i is satisfiable, and a
blue cross otherwise. The black line plots the evolution of the arithmetic mean
number of search nodes when increasing the pattern edge probability from 0 to 1
in steps of 0.01, using a larger sample size of 1, 000.

observe looks remarkably similar to random 3SAT problems—compare, for example, Fig-
ure 1 of the work of Leyton-Brown, Hoos, Hutter, and Xu (2014). In particular, satisfiable
instances tend to be easier, but show greater variation than unsatisfiable instances, and
there are exceptionally hard satisfiable instances (Smith & Grant, 1997).

2.2 Phase Transitions when Varying Pattern and Target Edge Probabilities

What if we alter the edge probabilities for both the pattern graph and the target graph?
In the top row of Figure 4 we show the satisfiability phase transition for the non-induced
variant, for patterns of order 10, 20 and 30, targets of order 150, and varying pattern (x-
axis) and target (y-axis) edge probabilities. Each axis runs over 101 edge probabilities, from
0 to 1 in steps of 0.01. For each of these points, we generate ten random instances. The
colour denotes the proportion of these instances which were found to be satisfiable. Inside
the red region, at the bottom right of each plot, every instance is unsatisfiable—here we are
trying to find a dense pattern in a sparse target. In the green region, at the top left, every
instance is satisfiable—we are looking for a sparse pattern in a dense target (which is easy,
since we only have to preserve adjacency, not non-adjacency). The white band between
the regions shows the location of the phase transition: here, roughly half the instances are
satisfiable. (We discuss the black line below.)
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Figure 4: Behaviour of algorithms on the non-induced variant, using target graphs of 150
vertices, and pattern graphs of 10, 20, or 30 vertices. For each plot, the x-axis is
the pattern edge probability and the y-axis is the target edge probability, both
from 0 to 1. Along the top row, we show the proportion of instances which are
satisfiable; the white bands show the phase transitions, and the black lines are
the predictions using equation (1) of where the phase transition will occur. On
the subsequent three rows, we show the average number of search nodes used
by the Glasgow, LAD and VF2 solvers over ten instances; the dark regions indi-
cate “really hard” instances, and black points indicate that at least one timeout
occurred.

On subsequent rows, we show the average number of search nodes used by the different
algorithms. Darker regions indicate harder difficulties, and black is used to indicate that
at least one timeout occurred. In general, satisfiable instances are easy, until very close
to the phase transition. As we hit the phase transition and move into the unsatisfiable
region, we see complexity increase. Finally, as we pass through the phase transition and
move deeper into the unsatisfiable region, instances become easier again. This behaviour is
largely solver-independent, although VF2 has a larger hard region than Glasgow or LAD.
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Thus, although we have moved away from a single control parameter, we still observe the
easy-hard-easy pattern seen in many NP-complete problems.

Finally, a close look at the very bottom left of the plots shows that VF2 will sometimes
give a timeout on instances where the target is empty but the pattern is not—this turns
out to be extremely important, and we return to it in Sections 5 and 6.

2.3 Locating the Phase Transition

We can approximately predict the location of the phase transition by calculating (with
simplifications regarding rounding and independence) the expected number of solutions
for given parameters. Since we are trying to find an injective mapping from a pattern
P = G(p, dp) to a target T = G(t, dt), there are

tp = t · (t− 1) · . . . · (t− p+ 1)

possible injective assignments of target vertices to pattern vertices. If we assume the pattern
has exactly dp ·

(
p
2

)
edges, we obtain the probability of all of these edges being mapped to

edges in the target by raising dt to this power, giving an expected number of solutions of

〈Sol〉 = tp · dtdp·(
p
2). (1)

This formula predicts a very sharp phase transition from 〈Sol〉 � 1 to 〈Sol〉 � 1, which
may easily be located numerically. We plot where this occurs using black lines in the first
row of Figure 4.

This prediction is generally reasonably accurate, except that for very low and very high
pattern densities, we overestimate the satisfiable region. This is due to variance: although
an expected number of solutions much below one implies a high likelihood of unsatisfiability,
it is not true that a high expected number of solutions implies that any particular instance
is likely to be satisfiable. (Consider, for example, a sparse graph which has several isolated
vertices. If one solution exists, other symmetric solutions can be obtained by permuting the
isolated vertices. Thus although the expected number of solutions may be one, there cannot
be exactly one solution.) A similar behaviour is seen with random constraint satisfaction
problems (Smith & Dyer, 1996).

2.4 Variable- and Value-Ordering Heuristics

The Glasgow and LAD solvers are driven by ordering heuristics: variable-ordering tells us
which pattern vertex to branch on, whilst value-ordering tells the order in which we should
try target vertices for that pattern vertex. Various general principles have been considered
when designing variable- and value-ordering heuristics for backtracking search algorithms—
one of these is to try to maximise the expected number of solutions inside any subproblem
considered during search (Gent, MacIntyre, Prosser, Smith, & Walsh, 1996). This is usually
done by cheaper surrogates, rather than direct calculation. When branching, both LAD
and Glasgow pick a variable with fewest remaining values in its domain: doing this will
generally reduce the first part of the 〈Sol〉 equation (i.e. tp) by as little as possible. When
two or more domains are of equal size, LAD breaks ties lexicographically, whereas Glasgow
will pick a variable corresponding to a pattern vertex of highest degree. This strategy was
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determined empirically, but could have been derived from the 〈Sol〉 formula: picking a
pattern vertex of high degree will make the remaining pattern subgraph sparser, which will
decrease the exponent in the second half of the formula, maximising the overall value. LAD
does not apply a value-ordering heuristic, but Glasgow does: it prefers target vertices of
highest degree. Again, this was determined empirically, but it has the effect of increasing
〈Sol〉 by leaving as many vertices as possible available for future use. The search strategy
used by VF2, in contrast, is based around preserving connectivity, which gives very little
discrimination except on the sparsest of inputs.

3. Induced Subgraph Isomorphisms

So far we have looked at the non-induced problem, where extra edges in the target graph
are permitted. In the first five rows of Figure 5 we repeat our experiments, now searching
for induced isomorphisms. With a pattern of order 10, we get two independent phase
transitions: the bottom right halves of the plots resemble the non-induced results, and the
top left halves are close to a mirror image. This second phase transition comes from the
fact that an empty pattern is not an induced subgraph of a complete target: an empty
pattern of order k is an induced subgraph only if there exist k vertices in the target that
are not pairwise adjacent. The central satisfiable region, which is away from either phase
transition, is computationally easy, but instances near the phase transition are hard.

For larger patterns of order 20 and 30, we have a large unsatisfiable region in the
middle. Despite not being near either phase transition, instances in the centre remain
computationally challenging for every solver. We also plot patterns of orders 14, 15 and 16,
to show the change between the two behaviours.

We might expect these complexity plots to be symmetric along the diagonal, since for
the induced problem, if we replace both inputs with their complements, the solutions remain
the same. For the Glasgow solver, this is almost the case. This should be expected, because
this complement property is precisely how the Glasgow solver handles the induced variant
(although the heuristics may differ between the two, which we discuss below). For LAD,
some of the very dense patterns are slightly harder than their diagonal opposites (LAD
reasons about degrees, but not about complement-degrees).

It is interesting to note that for larger target graphs, VF2 finds all dense pattern graphs
difficult. Meanwhile, VF3 behaves better than VF2 in some regions, but worse than VF2
in others, and has a larger hard region than either domain-based algorithm.2 VF3 also
occasionally finds some instances with sparse target graphs (along the bottom of the plot)
extremely difficult, whilst other solvers do not.

3.1 Predictions and Heuristics

To predict the location of the induced phase transition, we repeat the argument for locating
the non-induced phase transition and additionally consider non-edges, to get an expected

2. The version of VF3 supplied by its inventors will crash if given an empty pattern graph. We have chosen
to treat these results as successes taking zero search, even though empty pattern graphs are not trivial
for the induced problem. If the reader prefers to interpret a crash as a timeout, the VF3 plots would
contain an additional area of black points down the left-hand side.
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Figure 5: Behaviour of algorithms on the induced variant with target graphs of 150 vertices,
shown in the style of Figure 4. The sixth row plots constrainedness using equa-
tion (3): the darkest region is where κ = 1, and the lighter regions show where
the problem is either over- or under-constrained. The final row shows when the
Glasgow algorithm performs better when given the complements of the pattern
and target graphs as inputs—the solid lines show the empirical location of the
phase transition, and the dotted lines are dt = 0.5 and the dp = dt diagonal.
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number of solutions of

〈Sol〉 = tp · dtdp·(
p
2) · (1− dt)(1−dp)·(p2). (2)

We plot this using black lines on the top row of Figure 5—again, our prediction is accurate
except for very sparse or very dense patterns.

We might guess that degree-based heuristics would just not work for the induced prob-
lem: for any claim about the degree, the opposite will hold for the complement constraints.
Should we therefore resort to just using “smallest domain first”, abandoning degree-based
tiebreaking and the value-ordering heuristic? Empirically, this is not the case: on the final
row of Figure 5, we show whether it is better to use the original pattern and target as the
input to the Glasgow algorithm, or to take the complements. (The only steps performed
by the Glagsow algorithm which differ under taking the complements are the degree-based
heuristics. LAD, VF2, and VF3 are not symmetric in this way: LAD performs a filtering
step using degree information, but does not consider the complement degree, and VF2 and
VF3 use connectivity.)

For patterns of order 10, it is always better to try to move towards the satisfiable re-
gion: if we are in the bottom right diagonal half, we are best retaining the original heuristics
(which move us towards the top left), and if we are in the top left we should use the com-
plement instead. This goes against a suggestion by Walsh (1998) that switching heuristics
based upon an estimate of the solubility of the problem may offer good performance.

For larger patterns, more complex behaviour emerges. If we are in the intersection
of the bottom half and the bottom right diagonal of the search space, we should always
retain the original heuristic, and if we are in the intersection of the top half and the top
left diagonal, we should always use the complements. This behaviour can be predicted by
taking the partial derivatives of 〈Sol〉 in the −dp and dt directions. However, when inside
the remaining two eighths of the parameter space, the partial derivatives of 〈Sol〉 disagree
on which heuristic to use, and using directional derivatives is not enough to resolve the
problem. A close observation of the data suggests that the actual location of the phase
transition may be involved—and perhaps Walsh’s (1998) suggestion applies only in these
conditions. In any case, 〈Sol〉 is insufficient to explain the observed behaviour in these two
eighths of the parameter space.

In practice, this is unlikely to be a problem: most of the real-world instances we have
seen tend to be relatively sparse. In this situation, these experiments justify reusing the
non-induced heuristics on induced problems.

3.2 Is the Central Region Genuinely Hard?

The region in the parameter space where both pattern and target have medium density is
far from a phase transition, but nevertheless contains instances that are hard for all four
solvers. We would like to know whether this is due to a weakness in current solvers (perhaps
our solvers cannot reason about adjacency and non-adjacency simultaneously?), or whether
instances in this region are inherently difficult to solve. Thus we repeat the experiments
on smaller pattern and target graphs, using different solving techniques. Although these
techniques are not competitive in absolute terms, we wish to see if the same pattern of
behaviour occurs. The results are plotted in Figure 6.

734



When Subgraph Isomorphism is Really Hard

G(10, x) ↪→ G(12, x) ↪→ G(14, x) ↪→ G(16, x) ↪→ G(18, x) ↪→ G(25, x) ↪→
G(75, y) G(75, y) G(75, y) G(75, y) G(75, y) G(75, y)

S
a
ti

sfi
a
b

le
?

none

half

all

G
la

sg
o
w

fail

100
102
104
106
108

C
la

sp
(P

B
)

fail

100
102
104
106
108

G
lu

co
se

(S
A

T
) fail

100
102
104
106
108

G
u

ro
b

i
(M

IP
) fail

100
102
104
106
108

B
B

M
C

(C
li
q
u

e) fail

100
102
104
106
108

Figure 6: Behaviour of other solvers on the induced variant using smaller target graphs with
75 vertices, shown in the style of Figure 4. The second row shows the number
of search nodes used by the Glasgow algorithm, the third and fourth rows show
the number of decisions made by the pseudo-boolean and SAT solvers, the fifth
shows the number of search nodes used on the MIP encoding, and the final row
the clique encoding.
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The pseudo-boolean (PB) encoding is as follows. For each pattern vertex v and each
target vertex w, we have a binary variable which takes the value 1 if and only if v is
mapped to w. Constraints are added to ensure that each pattern vertex maps to exactly
one target vertex, that each target vertex is mapped to by at most one pattern vertex,
that adjacent vertices are mapped to adjacent vertices, and that non-adjacent vertices are
mapped to non-adjacent vertices. We use the Clasp solver (Gebser, Kaufmann, Kaminski,
Ostrowski, Schaub, & Schneider, 2011) version 3.1.3 to solve the pseudo-boolean instances.
The instances that are hard for the Glasgow solver remain hard for the PB solver, including
instances inside the central region, and the easy satisfiable instances remain easy. Similar
results are seen with the Glucose SAT solver (Audemard & Simon, 2014) using a direct
encoding. We also show an integer program encoding: the Gurobi solver is only able to solve
some of the trivial satisfiable instances, and was almost never able to prove unsatisfiability
within the time limit.

The association graph encoding of a subgraph isomorphism problem is a reduction to
the clique decision problem. McCreesh, Ndiaye, Prosser, and Solnon (2016) describe and
study this approach in more detail. Briefly, the association graph is constructed by creating
a new graph with a vertex for each pair (p, t) of vertices from the pattern and target graphs
respectively. There is an edge between vertex (p1, t1) and vertex (p2, t2) if mapping p1 to t1
and p2 to t2 simultaneously is permitted, i.e. p1 is adjacent to p2 if and only if t1 is adjacent
to t2. A clique of size equal to the order of the pattern graph exists in the association
graph if and only if the problem is satisfiable (Levi, 1973). We used this encoding with
an implementation of San Segundo, Rodŕıguez-Losada, and Jiménez’s (2011) bit-parallel
maximum clique algorithm BBMC, modified to solve the decision problem rather than the
optimisation problem. Again, our results show that the instances in the central region
remain hard, and additionally, some of the easy unsatisfiable instances become hard.

Together, these experiments suggest that the central region may be genuinely hard,
despite not being near a phase transition. The clique results in particular rule out the
hypothesis that subgraph isomorphism solvers only find this region hard due to not reasoning
simultaneously about adjacency and non-adjacency, since the constraints in the association
graph encoding consider compatibility rather than adjacency and non-adjacency.

3.3 Constrainedness

Constrainedness, denoted κ, is an alternative measure of difficulty designed to refine the
phase transition concept, and to generalise hardness parameters across different combina-
torial problems (Gent et al., 1996). An ensemble of problem instances with κ < 1 is said to
be underconstrained, and is likely to be made up of satisfiable instances; an ensemble with
κ > 1 is overconstrained, and is likely to be made of unsatisfiable instances. Empirically,
problem instances from an ensemble with κ close to 1 are hard, and problem instances
drawn from an ensemble where κ is very small or very large are usually easy.

By handling injectivity as a restriction on the size of the state space rather than as a
constraint, we derive

κ = 1−
log

(
tp · dtdp·(

p
2) · (1− dt)(1−dp)·(p2)

)
log tp

(3)
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for induced isomorphisms, which we plot on the sixth row of Figure 5. We see that con-
strainedness predicts that the central region will still be relatively difficult for larger pattern
graphs: although a family of instances generated with these parameters is overconstrained,
it is less overconstrained than in the regions the Glasgow and LAD solvers found easy.
Thus it seems that rather than just being a unification of existing generalised heuristic
techniques, constrainedness also gives a better predictor of difficulty than proximity to a
phase transition—our method generates collections of instances where constrainedness and
“close to a phase transition” give very different predictions, and constrainedness closely
matches the empirical results.

Unfortunately, constrainedness does not give additional heuristic information: minimis-
ing constrainedness gives the same predictions as maximising the expected number of solu-
tions.

4. k-Regular Graphs

What about richer graph structures? In this section we briefly look at what happens with
the non-induced problem if we use k-regular graphs rather than the Erdős-Rényi model, and
then in the following section we see the effects of introducing vertex labels. Both models still
exhibit phase transition behaviour, although with sufficiently many labels the “satisfiable”
region now contains a mix of satisfiable and unsatisfiable instances.

By R(n, k) we mean a random graph with n vertices, each of which has degree k. In
Figure 7 we recreate Figure 4, using the NetworkX implementation (Hagberg, Schult, &
Swart, 2008) of the Steger and Wormald (1999) algorithm to generate regular graphs. The
x-axes range from degree 0 to degree n− 1 where n ∈ {10, 20, 30} is the number of pattern
vertices, and the y-axes range from degree 0 to degree 149 (one less than the number of
target vertices). The satisfiable / unsatisfiable plots show very similar results to the non-
induced problem on Erdős-Rényi random graphs, with a similarly sharp phase transition,
and again only instances near the phase transition are difficult.

Regularity means that degree-based heuristics have no information to work with. Ad-
ditionally, the degree-based filtering techniques used by Glasgow and LAD have no effect
on these graphs at the top of search, and so initially every domain is identical. However,
once a guessed assignment has been made, selecting from small domains first remains an
effective strategy to guide the remainder of the search.

5. Labelled Graphs

So far, we have looked at unlabelled graphs. What happens when labels on vertices are
introduced? This is common in real-world applications—for example, when working with
graphs representing chemical molecules, mappings are typically expected only to match
carbon atoms with carbon atoms, hydrogen atoms with hydrogen atoms, and so on. We
will look at the non-induced variant, as this seems to be more common in the literature.

5.1 Predictions and Empirical Hardness

Suppose our labels are drawn randomly from a set L = {1, . . . , k}, where k is reasonably
small compared to the number of pattern vertices p. Recall that `(v) is the label of vertex
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Figure 7: Behaviour of algorithms on the non-induced problem on random k-regular graphs,
as the pattern degree (x-axis) and target degree (y-axis) are varied from 0 to
|V(G)| − 1, using target graphs of 150 vertices, and pattern graphs of 10, 20, and
30 vertices.

v. By defining
V(P )|x = {v ∈ V(P ) : `(v) = x}

to be the set of vertices with label x, we can partition the pattern vertices by label into dis-
joint sets {V(P )|1, . . . ,V(P )|k} , each of which is expected to contain p/k vertices. Similarly,
we may partition the target vertices into disjoint sets {V(T )|1, . . . ,V(T )|k}.

Without labels, there are tp = t · (t− 1) · . . . · (t− p+ 1) possible injective assignments
of target vertices to pattern vertices. With labels, observe that for any label x, vertices
in V(P )|x may only be mapped to vertices in V(T )|x. Thus for each label x, we have an
expected p/k variables, each of whose domains contain t/k values. We would like to say that
the size of the state space is now

|S| =
(

(t/k)
p/k

)k
,

but to do this we must state what ab means when b is fractional. The gamma function
Γ(n) is equal to (n − 1)! for integers n ≥ 1 (Davis, 1959), but is also defined for positive
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Figure 8: On the top row, predicted and actual location of the phase transition for labelled
non-induced random subgraph isomorphism, with a pattern order of 20, a target
order of 150, varying pattern (x-axis) and target (y-axis) density, and varying
numbers of labels. On subsequent rows, the average number of search nodes
needed to solve an instance, for three different solvers

real numbers, obeying the identify Γ(x+ 1) = xΓ(x). By noting that tp = t!/(t−p)!, we may
obtain a reasonable continuous extension by taking

|S| =
(

Γ (t/k + 1)

Γ (t/k − p/k + 1)

)k

.

As before, we expect the pattern to have dp ·
(
p
2

)
edges, and so if we simplify by assuming

the pattern will have exactly this many edges, we obtain the probability of all of these edges
being mapped to edges in the target by raising dt to this power, giving an estimate of

〈Sol〉 =

(
Γ (t/k + 1)

Γ (t/k − p/k + 1)

)k

· dtdp·(
p
2) . (4)

So how good are these predictions? The black lines on the first row of heatmaps in
Figure 8 plot where we calculate 〈Sol〉 = 1 will occur. For small numbers of labels, our
predictions are slightly better than in the unlabelled case: there seems to be less of a
variance problem for very dense patterns. Even as the number of labels becomes relatively
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large, the prediction of the phase transition still occurs in the right place, but with ten
labels we start to see sporadic unsatisfiable instances deep inside the satisfiable region.
With twenty labels, we instead get a kind of phase transition from “all unsatisfiable” to
“mixed satisfiable and unsatisfiable”. We can understand this intuitively: with sufficiently
many labels, we might generate, say, a red vertex adjacent to a blue vertex in the pattern,
but not in the target. With twenty labels, we even sometimes generate no vertices with
a particular label in the target at all. This in many ways resembles “flaws” generated
by certain random constraint satisfaction problem instance generators (Achlioptas, Molloy,
Kirousis, Stamatiou, Kranakis, & Krizanc, 2001; Gent, MacIntyre, Prosser, Smith, & Walsh,
2001).

What about empirical hardness? As before, some instances on the phase transition
are hard for all solvers (although as the number of labels increases, the hardest instances
become easier). Instances far from the phase transition are easy, except for VF2, which
occasionally finds some of the instances with larger numbers of labels very difficult. This
behaviour occurs both on satisfiable instances, and on the flawed unsatisfiable instances
deep inside the “satisfiable” region. It is interesting to observe that all such unsatisfiable
instances that VF2 finds difficult have a very small proof of unsatisfiability, with neither
Glasgow nor LAD requiring more than one hundred recursive calls.

5.2 Richer Label Models

Why does VF2 find some of these instances so hard? Unlike Glasgow and LAD, VF2 does
not track domains, and so cannot detect that there are no suitable target vertices available
for a given pattern vertex until it branches on that vertex. It also cannot detect small
domains, and only uses “adjacency to an existing assignment” as a branching heuristic.
This can make it very hard for VF2 to detect that it is in an obviously failed state, or that
an instance or subproblem is trivially unsatisfiable.

To illustrate this point further, we now look at some instances created using a slightly
more structured random model. We create a family of one thousand labelled instance pairs,
as follows. To create a pattern graph, we create ten vertices with label zero, with edges
between these vertices with probability 0.2. We then add another ten vertices, with labels
chosen randomly between one and thirty, and add edges between these vertices and the
zero-labelled vertices with probability 0.1. To generate a target, we follow a similar process:
we have fifty vertices with label zero and edge probability 0.2, fifty vertices with labels
randomly between one and thirty, and edges from the first set of vertices to the second
set with probability 0.3. This model was selected and the parameters tuned to provide
a demonstration of particular behaviours of VF2, not because of any natural property
(although inspiration came from seeking a very crude approximation of chemical graphs,
which often contain a lot of carbon in the centre, and other atoms around the outside).
From our set of one thousand such instances, sixty six are satisfiable.

We plot the cumulative number of instances solved over time for these instances in
Figure 9: for a given runtime choice along the x-axis, the y value for a given algorithm
shows how many instances, individually, took at most x milliseconds to solve with that
algorithm. Both Glasgow and LAD find all of these instances trivial, with no instance
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Figure 9: The cumulative number of instances solved over time, using the richer model of
randomness described in Section 5.2.

requiring even ten milliseconds to solve. VF2, in contrast, finds many of them extremely
difficult, and cannot solve 352 of the 1,000 instances with a one thousand second timeout.

The “VF2↔” line shows what happens with VF2 if the graphs are permuted, so that
the non-zero labelled vertices are given lower vertex numbers rather than higher vertex
numbers. In other words, we permute pattern vertices in such a way that the first ten
vertices have non-zero labels, and the ten last vertices have zero labels (and similarly for
the target graphs). This makes VF2 behave better, but still very poorly compared to the
other two solvers; the motivation behind this modification will become clear later in this
paper. It will also be important to remember that both VF2 variations find some satisfiable
and some unsatisfiable instances extremely hard.

An even more extreme example of VF2’s misbehaviour can be seen in Figure 10. Here we
have a pattern graph and a target graph, both of which are cliques plus one isolated vertex,
and the isolated vertices have different unique labels. This is trivially unsatisfiable (and
Glasgow and LAD detect this without search), but unless the labelled vertex is given the
lowest vertex number (so it is branched on first), VF2 takes nearly a million recursive calls
to detect this: VF2 will try to map every adjacent vertex in the clique before considering
the unmatchable isolated vertex. This example can be extended slightly to fool any simple
static heuristic, or any simple label counting mechanism (for example, by attaching an
additional vertex with a unique label to the clique). Note also the resemblance to the cases
seen in the bottom left of the VF2 plots in Figure 4, where a pattern graph which has a
few edges combined with a target graph with no edges gives a timeout.

These experiments further highlight that VF2 occasionally finds some instances which
should be easy hard. But does this cause problems in practice? The literature suggests that
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Figure 10: A trivially unsatisfiable subgraph isomorphism instance which VF2 finds expo-
nentially difficult. The pattern (left) and target (right) both consist of a clique,
plus one extra vertex which has a different label in each graph.

it does. For example, Grömping (2014) uses VF2 in a package for the R statistics language,
and states

“There are (not so many) instances for which creation of a clear design is pro-
hibitively slow in the current implementation that evaluates subgraph isomor-
phism with the VF2 algorithm . . . Recent experiences with a few of these showed
that the LAD algorithm was very fast in ruling out impossible matches, where
VF2 took a long time.” (p. 44)

Similarly, Murray (2012) uses VF2 inside a compiler, and observes extremely variable (and
prohibitively high) compile times in some cases due to the expense of subgraph isomorphism
calls—given the heavily labelled nature of these graphs, we conjecture that any domain-
based algorithm would eliminate this cost.

However, by far the biggest problem is in graph databases. The following section shows
how widespread use of certain non-constraint-based subgraph isomorphism algorithms has
not just led to overly pessimistic conclusions regarding performance, but has misdirected
the design of larger systems.

6. Querying Graph Databases

A particularly common use of subgraph isomorphism algorithms is inside graph databases.
The general problem these systems solve is, for a set of target graphs, to process a pattern
query and return every target graph which is subgraph-isomorphic to that pattern. The
set of target graphs is usually seen as fixed, or at least rarely-changing, whilst the patterns
arrive dynamically. This has led to the development of systems which perform extensive
computations on the target graphs beforehand, in the hope of reducing the response times
for individual pattern queries. The most popular of these strategies is a form of indexing
which is often named filter / verify.

6.1 The Filter / Verify Paradigm

The filter / verify approach has an interesting history, of which we now give an abridged
overview. Our description is biased by a general modern understanding of the empirical
hardness of NP-complete problems, which was not widely known at the time of the earlier
papers we discuss. The common theme of all of the following papers is that pre-computed
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information is used to eliminate certain unsatisfiable instances from consideration, without
performing a subgraph isomorphism test. For example, an index might contain a bit of
information expressing whether a target graph contains at least two red vertices. When a
pattern graph with two red vertices is used as a query, any target whose feature set does not
have this bit set would not be considered, and so a subgraph isomorphism call would not
be made for that pattern / target pair. (In practice, feature hashing is often used, which
can lead to false positives, but this is not relevant to our discussion.)

An early graph database system by Shasha, Wang, and Giugno (2002) uses a filter-
ing heuristic to eliminate unsatisfiable instances based upon simple structural elements. It
is not clear whether the aim is to reduce I/O costs, or to reduce the number of queries
which must be tested, and the experiments do not answer whether the indexing is effective.
However, the work was influenced by a commercial graph database system, whose docu-
mentation (Daylight Chemical Information Systems, Inc., 2011) states that indexing is used
to minimise disk accesses.

Subsequently, in a widely cited3 paper, Yan, Yu, and Han (2004) introduce an indexing
system called gIndex. Again, this system handles queries by first producing a set of candi-
dates by eliminating certain unsatisfiable instances, this time by using substructures. They
argue that the query response time, which is to be minimised, is governed by the equation

T = Tsearch + |Cq| · Tiso test ,

where Tsearch is the time taken to search for a candidate set of potential solutions of size
|Cq|, and Tiso test is the cost of a subgraph isomorphism test. They reason that since
subisomorphism testing is NP-complete, by making |Cq| as small as possible, the query
response time will be reduced. (Importantly, it is not the time taken to load graphs from
disk which contributes to the per-candidate cost, but rather the time to perform a subgraph
isomorphism call.) They conclude that “graph indexing plays a critical role at efficient query
processing in graph databases” (p. 345).

This equation is repeated and expanded upon by Yan, Yu, and Han (2005) to explicitly
separate I/O and subisomorphism testing costs into Tio and Tiso test respectively, obtaining
a query response time of

Tsearch + |Cq| · (Tio + Tiso test).

The authors explicitly state that “the value of Tiso test does not change much for a given
query” (p. 996). The argument presented is that

“Sequential scan is very costly because one has to not only access the whole
graph database but also check subgraph isomorphism. It is known that subgraph
isomorphism is an NP-complete problem. Clearly, it is necessary to build graph
indices in order to help processing graph queries.” (p. 961)

We reassess these claims in light of what we now know about the behaviour of modern sub-
graph isomorphism algorithms and the nature of solving NP-complete problems. Contrary
to the authors’ claims, we do not expect Tiso test to be anything like a constant, even if
the orders of the input graphs are similar. In particular, any instance which can be ex-
cluded based upon filtering must have a very small proof of unsatisfiability. These instances

3. 685 citations according to Google Scholar in February 2018.
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should be trivial with any domain-based subgraph isomorphism algorithm. Thus, all fil-
tering should be doing is eliminating the startup costs of a trivial subgraph isomorphism
call. The fact that filtering was successful empirically should make us wonder whether the
subgraph isomorphism algorithm used was substantially weaker than the state of the art.
Indeed, the algorithm is described only as “the simplest approach” in the paper. Addition-
ally, the experiments focus on reducing the size of the candidate set, without considering
the time taken to verify different candidate set instances. The claim that Tiso test does not
change much is not justified experimentally, and no consideration is given as to whether
this would hold true for other subgraph isomorphism algorithms.

Moving forwards, the (simpler form of the) query response time equation is repeated
by Zhao, Yu, and Yu (2007). Again, the work has a focus on reducing the candidate set
size through indexing. The authors appear to believe that the cost of the subisomorphism
test is not a major factor in influencing the result, and focus on the remaining terms in the
equation. They use the “average cost” of a subgraph isomorphism test as a constant, without
considering that the average cost could be influenced by the character of the candidate set.

The equation is also used by Jiang, Wang, Yu, and Zhou (2007), who claim that “usu-
ally the verification time dominates the Query Response Time [s]ince the computational
complexity of Tiso test is NP-Complete”. They note that

“Approximately, the value of Tiso test does not change too much with the differ-
ence of query. Thus, the key to reducing query response time is to minimize the
size of the candidate answer set”. (p. 568)

This claim becomes understandable when one examines the subgraph isomorphism algo-
rithm chosen for the verification step (Ullmann, 1976): as the algorithm predates techniques
like generalised arc-consistent all-different propagation (Régin, 1994), it cannot immediately
detect unsatisfiability in simple cases like there being two red vertices in the pattern but
only one in the target.4

Without using the equation, Cheng, Ke, Ng, and Lu (2007) state that since subgraph
isomorphism is NP-complete, processing by a sequential scan is infeasible. They introduce
new filtering techniques to try to avoid the subgraph isomorphism step. A similar claim
is made by Zhang, Hu, and Yang (2007) in an introduction of another indexing technique:
“obviously it is inefficient to perform a sequential scan on every graph in the database,
because the subgraph isomorphism test is expensive” (p. 966).

Muddying the waters slightly, a survey by Han, Cheng, Xin, and Yan (2007) states that
“large volumes of data” (not NP-completeness) is the reason for using indexing in these
systems. However, in a description of a system tailored to biological networks, Zhang, Li,
and Yang (2009) state that

“Since the size of the raw database graph is small, it can be easily fit in the
main memory. However, the query (matching) time will be very long due to the
NP-hard complexity.” (p. 193)

They suggest that indexing is a way of avoiding this. Similarly, Zhao and Han (2010) argue
that “the graph query problem is hard in that . . . it requires subgraph isomorphism checking

4. Although interestingly, this algorithm effectively maintains (binary) arc consistency, and has a variable-
ordering heuristic, before these concepts appeared in the constraints literature.
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. . . which has proven to be NP-complete” and that working with large networks is hard or
impossible “due to the lack of scalable graph indexing mechanisms” (p. 340).

Cao, Yang, Wang, Ren, and Lou (2011) propose a privacy-preserving cloud graph
database system using filter / verify, stating that “checking subgraph isomorphism is NP-
complete, and therefore it is infeasible to employ such a costly solution” (p. 393) which
simply checks every graph for a match. Wang, Wang, Yang, and Yu (2012) look at indexing
large sparse graphs. They state that “because subgraph isomorphism is an NP-complete
problem, a filter-and-verification method is usually employed to speed up the search effi-
ciency of graph similarity matching over a graph set” (p. 441). Similarly, after reviewing
the literature, Yuan and Mitra (2013) argue that subgraph querying is costly because it
is NP-complete, and that indices can improve the performance of graph database queries.
Again, new indexing techniques are introduced. Subsequently, Katsarou, Ntarmos, and
Triantafillou (2015) perform a comprehensive comparison of graph database filtering tech-
niques. They state that performing a query against each graph in the dataset “obviously
does not scale, as subgraph isomorphism is NP-complete” (p. 1566). In describing a system
which returns a special subset of graphs which match a query, Zheng, Lian, Zou, Hong,
and Zhao (2016) suggest that it is “NP-hard to check the graph isomorphism” (meaning
subgraph isomorphism), and “in order to improve the time efficiency” they use an indexing
system to “avoid as many costly subgraph isomorphism checkings as possible” (p. 1806).
Their index takes tens of thousands of seconds to build, and they suggest that Ullmann’s
algorithm and VF2 are state of the art for verification. Peng, Zou, Chen, Lin, and Zhao
(2016) state that “obviously, it is impossible to employ some subgraph isomorphism algo-
rithm, such as Ullmann or VF2”, and argue that “in order to speed up query processing”,
they need to create indices (p. 418). And Azaouzi and Romdhane (2016) argue that “since
the subgraph isomorphism test is expensive, checking all graphs of a large database can be
unfeasible”, saying that “naturally, the verification step is computationally more expensive
since it requires a subgraph isomorphism” (p. 251); their experiments look at candidate set
reduction sizes, and their choice of subgraph isomorphism algorithm is not mentioned.

The filter / verify paradigm also influences other research. For example, it is used
by Tian and Patel (2008) in an approximate subgraph searching system: they state that
Ullmann’s algorithm “is prohibitively expensive for querying against [a] database with a
large number of graphs”, and that indices are used “to filter out graphs that do not match the
query” (p. 964). More recently, Yuan, Mitra, and Giles (2013) continue a line of supergraph
search work, again using a filtering step to avoid subgraph isomorphism calls (in the opposite
direction, so queries are now target graphs). Hong, Zou, Lian, and Yu (2015) look at graph
database subgraph isomorphism with an additional set-similarity constraint, and state that
Ullmann’s algorithm and VF2 are “usually costly for large graphs” because they “do not
utilize any index structure” (p. 2509). They propose an indexing structure, which takes
over 2,000 seconds to construct, and uses nearly 2GBytes of space. There is also research
into maintaining indices when the set of target graph changes: for example Yuan, Mitra,
Yu, and Giles (2015) look at algorithms for updating graph indices. And describing a
system for reusing results of queries which are sub- or super-graphs of previous queries,
Wang, Ntarmos, and Triantafillou (2016) state that querying is a “very costly operation
as it entails the NP-complete problem of subgraph isomorphism” (p. 41), and place “an
emphasis on the number of unnecessary subgraph isomorphism tests” (p. 42).
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After some early ambiguity, then, it becomes clear that the intent behind filter / verify
systems is to reduce the number of subgraph isomorphism calls, and that the cost of loading
graphs from disk is not considered to be problematic. It is worth noting that the entire
test datasets from most of these papers will comfortably fit in RAM on a modern desktop
machine, even when an adjacency matrix representation is used.

Thus we can see that there are two critical beliefs underlying all of this work—firstly,
that subgraph isomorphism is necessarily hard because it is NP-complete, and secondly,
that there are ways of identifying unsatisfiable instances using short proofs that a subgraph
isomorphism algorithm will not detect, but that an indexing system can. Throughout,
the cost models used assume that the time for a subgraph isomorphism query does not
particularly depend upon the instance, and nowhere is it considered that a good subgraph
isomorphism algorithm should be able to eliminate obviously-unsatisfiable instances with a
similar time requirement to an indexing system.

These beliefs are not entirely unfounded: none of the subisomorphism algorithms con-
sidered in these papers will immediately detect if a pattern contains two red vertices, whilst
the target graph contains only one. This kind of flaw should be picked up at the top of
search by an all-different propagator (Régin, 1994). However, as Katsarou et al. (2015)
note, VF2 (Cordella et al., 2004) or a similar algorithm is the usual subgraph isomorphism
algorithm of choice for graph database systems, although Ullmann’s algorithm is sometimes
chosen. Other approaches have been considered, albeit not with algorithms strong enough
to establish all-difference. For example, Shang, Zhang, Lin, and Yu (2008) propose an al-
gorithm which makes use of the frequency of various features to guide search; Lee, Han,
Kasperovics, and Lee (2012) determine experimentally that this technique tends to be very
effective, even on families of graphs for which it was not designed.

We therefore believe it would be unlikely to cause too much astonishment if we sug-
gested that a better subgraph isomorphism algorithm could be dropped in as a black box
replacement in graph databases systems to improve their performance. This is not our
claim. Instead, this paper shows that better algorithms invalidate the premise underlying
the entire filter / verify approach. We will now demonstrate empirically that filter / ver-
ify is simply a limited workaround for a subset of the weaknesses in non-constraint-based
subgraph isomorphism algorithms that we demonstrated towards the end of the previous
section.

6.2 Is Filtering Necessary?

To show that a pure subgraph isomorphism approach is feasible, with no indexing or sup-
porting preprocessing, we look at four datasets commonly used in graph indexing evalua-
tions. We do not claim that these are high-quality datasets or that the associated queries
are sensible, merely that following the example of Giugno et al. (2013), they are widely used.
Each dataset has labels on vertices (but not on edges), and we will look at the non-induced
problem.

• The AIDS dataset contains graphs representing 40,000 chemical molecules. These
graphs are labelled, and are fairly small (mean 45 vertices) and sparse. Following
Giugno et al., the queries are compounds with 8, 16 or 32 edges.
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• The PDBS dataset (He, Lin, Chipman, Bator, Baker, Shoham, Kuhn, Medof, &
Rossmann, 2002) contains 30 labelled graphs representing DNA, RNA, and proteins,
each duplicated twenty times to give a dataset of 600 graphs. These can be relatively
large, having up to tens of thousands of vertices, but are extremely sparse. The queries
are randomly selected connected subgraphs and do not have a real-world meaning.

• The PCM dataset (Vehlow, Stehr, Winkelmann, Duarte, Petzold, Dinse, & Lappe,
2011) contains 50 protein contact maps, each duplicated four times to give a dataset of
200 graphs. These graphs have under a thousand vertices and below twenty thousand
edges; they are slightly less sparse than the previous two datasets. As for PDBS, the
queries are randomly generated and do not have a particular meaning.

• The PPI dataset contains 20 protein interaction networks, with up to ten thousand
vertices. The queries have either four or eight vertices.

Rather than the modern techniques used by Glasgow and LAD, we deliberately select a
very simple starting point: a constraint programming model implemented in Gecode 5.1.0
using only toolkit-provided constraints and heuristics. The model uses a “smallest domain
first” variable ordering heuristic with tie-breaking on degree, an all-different constraint,
extensional constraints for adjacency, and labelled-degree filtering at the top of search.
Even this simple approach finds nearly every instance in each of the four datasets trivial,
and no exponential behaviour is observed. As we show in Figure 11, the hardest instance
for the AIDS dataset requires 287 recursive calls, and 149,268 of the instances can be solved
without search; furthermore, no instance individually requires more than 12ms. For both
PCM and PPI, the hardest problem requires 23 recursive calls, and no instance takes more
than 12ms and 282ms respectively. For PDBS, the hardest problem requires 3,161 recursive
calls (which occurs 20 times, due to duplicated queries); however, Gecode struggles on these
instances due to its general purpose data structures not scaling well to the large target graph
sizes, and some of these instances can take as long as 30s to solve.

In other words, none of these instances are in any way computationally hard even
for a simple domain-based algorithm, even before introducing stronger filtering, inference,
or heuristics, and the only difficulties arise from Gecode requiring the use of extensional
constraints rather than the specialised adjacency data structures used by Glasgow and LAD.
Furthermore it is certainly not the case that a sequential scan is infeasible as so many filter /
verify papers claim. In contrast, with VF2, the hardest instance in PDBS requires 31,189
recursive calls; in AIDS, 168,569 calls; in PCMS, 6,476,072 calls; and in PPI, 2,913. In
other words, any exponential behaviour seen in these instances is purely down to the choice
of subgraph isomorphism algorithm, and these instances are not inherently “really hard”.

6.3 Benefits of Constraint Programming over Filter / Verify

There are at least four benefits beyond simplicity towards abandoning filter / verify in
favour of a purely constraint programming inspired approach:

• Domain filtering is useful on both satisfiable and unsatisfiable instances, whilst fil-
tering can only eliminate trivially unsatisfiable instances, and is entirely wasted on
satisfiable instances. Domain filtering is also useful even on relatively hard instances,
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Figure 11: The cumulative number of instances solved as a function of search space size,
using four graph database datasets, and either VF2 or a simple constraint pro-
gramming subgraph isomorphism algorithm implemented in Gecode. The x-axis
shows recursive calls, using a log scale, and each line ends at the x value where
every instance has been solved.

since the information cuts down the search space rather than providing a simple “yes”
or “no”.

• Domain-based heuristics are widely studied and well-understood (Gent et al., 1996),
and unlike VF2’s adjacency branching rules, provide discrimination even on dense and
low-diameter graphs. Picking from small domains dynamically allows search to focus
on the hardest part of the problem, and can exploit conditional structure which is not
visible at the top of search.

• Domain-based algorithms automatically combine features. For example, a pattern /
target pair may have matching label features, and matching degree features, but if
the only red pattern vertex has degree three whilst no red target vertex has degree
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more than two, domain filtering will detect this immediately. When combined with
all-different propagation and maintained during search, this effect is even stronger.

• Finally, as indexing systems get more and more complex in an attempt to filter out
a few more instances where VF2 performs poorly, the cost of index construction and
maintenance is considerable. Indices proposed in the literature often take many hours
to build, and can consume much more space than the original graphs (Hong et al.,
2015).

In other words, using domain-based algorithms would not simply be a viable alternative
to filter / verify with VF2, but rather would be a much better solution.

6.4 Other Implications

Indexing is not the only incorrect design choice being made in systems built around subgraph
isomorphism algorithms, and lessons from constraint programming can be applied to other
subgraph-related research. We illustrate this by looking at several recent papers on subgraph
isomorphism, discussing how a deeper understanding of the empirical hardness of subgraph
isomorphism could lead the reader to different conclusions than the ones presented.

Katsarou, Ntarmos, and Triantafillou (2017) present approaches to improve the run
times for what they call “straggler queries”—the small subset of queries that they observe
taking much longer than others to solve. They observe that permuting graphs (for example,
by using degree or label frequency information) before running the subgraph isomorphism
algorithm can improve run times by orders of magnitude. However, the connection between
this approach and variable- and value-ordering heuristics is not noted, and no consideration
is given to dynamic ordering heuristics such as “smallest domain first” (Haralick & Elliott,
1980). Of the orderings proposed, those involving placing rare labels first are effectively
approximations to a static “smallest domain at top of search first” ordering, whilst the
remainder use degree as we did earlier in this paper. Katsarou et al. do not investigate any
algorithm which employs strong variable- or value-ordering heuristics, all-different propa-
gation, or even domains, and do not consider that the apparent successes of their approach
could be due to VF2’s weaknesses rather than an inherent property of NP-completeness.

We saw in the previous sections that although permuting input graphs could improve
VF2’s behaviour on some instances, doing so does not make its performance come close to
that of domain-based algorithms. Katsarou et al. (2017) say they “hope that our findings
will open up new research directions, striving to find appropriate, per-query, isomorphic
rewritings, in combination with alternate per-query sub-iso algorithms that can yield large
improvements” (p. 36). We believe it is important instead to emphasise previous research
directions that have already solved most of this problem, and to help ensure that these
techniques become more widely known.

Katsarou et al.’s (2017) second claim is that “different algorithms find different queries
hard” (p. 30). To address this, they run many subgraph isomorphism algorithms and input
permutations in parallel; the extensive literature on parallel portfolios in general (Gomes &
Selman, 2001), and the approach by Battiti and Mascia (2007) for subgraph isomorphism
in particular, is not noted. (Nor is the portfolios literature referenced when they say that
“using machine learning models to predict which version . . . to employ per query is of high
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interest”, p. 36). The evidence so far in this paper suggests that we should carefully examine
the reasons behind these speedups. It is certainly true that there are some instances that all
algorithms find hard, and there are good theoretical reasons to believe that these instances
genuinely are really hard. Furthermore, algorithm portfolios are also well-known to be a
successful technique, and are beneficial even with modern subgraph isomorphism algorithms
(Kotthoff et al., 2016). However, in Section 5 we saw that there are many instances that
VF2 finds hard that should not be hard, and that are not hard for other algorithms. If
permuting graphs sometimes addresses the difficulty of some of these instances, then it is
likely that they are not genuinely hard instances at all. Perhaps then, it would be better
simply to use an algorithm with domain tracking and domain-based ordering heuristics.

To test this suggestion, we return briefly to the experiments on the datasets discussed
earlier in this section. What if we modify our solver so that it does not use “smallest
domain first”, and does not detect domain wipeouts until attempting to branch on an
empty variable? In this case, three of the four datasets become extremely hard, with many
instances now timing out after making hundreds of millions of recursive calls, and the
PPI dataset now requires hundreds of thousands of calls for some queries. Furthermore,
slight changes to the input vertex ordering can now make some of these “hard” instances
easy again. This verifies our intuition: the apparent success of Katsarou et al.’s (2017)
technique is due to the ease of sometimes getting better results out of a poor algorithm.
Obtaining huge improvements from an algorithm portfolio consisting only of variations of
poor algorithms is not sufficient to demonstrate a genuine improvement over the state of
the art.

Improved search orderings for VF2-style algorithms also appear in recent work by Car-
letti et al. (2015) and Carletti (2016), cumulating in VF3 (Carletti et al., 2017; Carletti,
Foggia, Saggese, & Vento, 2017), and by Shen and Zou (2017). We have seen in Section 5
that such an approach could give improvements, but will not bring an algorithm that does
not use domains close to the performance of one that does on harder instances. We thus
believe that a significant amount of effort in designing algorithms for and systems involving
subgraph isomorphism has been misdirected due to a lack of familiarity with the constraint
programming literature.

Another such lesson is the importance of choosing a good set of benchmark instances.
As Gent (1998) observes:

“Benchmark problems should be hard. I report on the solution of the five open
benchmark problems introduced . . . for testing bin packing problems. Since the
solutions were found either by hand or by using very simple heuristic methods,
these problems would appear to be easy. In four cases I give improved packings
to refute conjectures that previously reported packings were optimal, and I give
a proof that the fifth conjecture was correct. . . . Future experimenters should be
careful to perform tests on problems that can reasonably be regarded as hard.”
(p. 299)

We hope that this paper provides some much-needed help in this direction, as some
recent evaluations work only with extremely easy instances. For example, Bonnici and
Giugno (2017) compared various non-constraint-based approaches to LAD using benchmark
sets whose difficulties are measured between microseconds and milliseconds. Their results
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suggest that LAD is an order of magnitude slower than other approaches. This should not
surprise us: the initialisation costs of LAD are non-trivial due to it constructing domains,
calculating neighbourhood degree sequences, and performing all-different filtering. However,
the risks of occasionally encountering exponential performance from weaker algorithms on
easy instances should now be clear.

Carletti et al. (2017) correctly observe that “a performance improvement on [hard in-
stances] has a far greater practical impact than it would have on easier graphs, since the
saved time can be of several hours or even days” (p. 805). To evaluate VF3, they intro-
duce a new dataset consisting entirely of satisfiable instances created by taking a connected
subgraph of a randomly generated graph and permuting the nodes. They conclude that
VF3 is the best algorithm based upon its performance solving the enumeration problem on
these new instances. We urge a more cautious interpretation of these results: as we saw in
Section 3, being genuinely hard (rather than simply larger or denser) is a subtle property,
and care must be taken when empirically evaluating algorithms. In particular, if one only
considers large, easy instances, then the simpler the algorithm, the better it scales. Indeed,
we saw in Figure 5 that VF3 performs worse than VF2 on genuinely harder instances, and
additionally behaves erratically in parts of the parameter space that every other solver finds
easy; finally, an induced analogue of Figure 8 confirms that VF3 also still struggles with
many obviously unsatisfiable instances.

Of course, hard random instances of the kind we describe in Sections 2 and 3 are also
atypical, and should not form the sole basis for benchmarking. In particular, distance-
based filtering (Audemard et al., 2014; McCreesh & Prosser, 2015; Kotthoff et al., 2016)
has little to no effect on these instances, but is extremely beneficial on other kinds of graph,
including those from real-world applications. These graphs also have a low degree spread
and very little structure to exploit, which could mislead experimenters as to the value of
certain kinds of inference. Gent and Walsh (1995) give an example of an exam timetabling
graph which contains an unexpected ten-vertex clique, which would be extremely unlikely
in a randomly generated graph with a similar order and density. We therefore emphasise
the importance of working with a diverse set of benchmark instances, and of performing a
careful family-by-family analysis of the results.

7. Conclusion

We have shown how to generate small but hard instances for the non-induced and induced
subgraph isomorphism problems, which will help offset the bias in existing datasets. For
non-induced isomorphisms, behaviour was as in many other hard problems, but for induced
isomorphisms we uncovered several interesting phenomena: there are hard instances far
from a phase transition, constrainedness predicts this, and existing general techniques for
designing heuristics do not work in certain portions of the parameter space.

We note that these “really hard” instances have a very particular structure, which
is unlikely to arise naturally. Indeed, the successes seen with constraint programming
approaches on the instances in Section 6, and in the wider range of application instances
used by Kotthoff et al. (2016), suggest that the real-world instances encountered so far
are generally fairly easy for a good algorithm. Nonetheless, carefully designed synthetic
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instances provide a good starting point for scientific experiments, and can help improve the
behaviour of algorithms on real-world instances too.

For example, when labels were introduced, we saw that VF2 found some instances hard
which other algorithms found easy. We looked at this kind of instance in more detail, and
argued that this was due to shortcomings in VF2’s design, rather than an interesting prop-
erty of NP-completeness. Although inevitably there will be instances that every algorithm
finds hard, we see it as a serious weakness for an algorithm to exhibit exponential behaviour
in such trivial cases as when there are two red vertices in the pattern but only one in the
target.

Unfortunately, we saw that this aspect of VF2’s performance has had practical conse-
quences, with the most notable being the misdesign of graph database systems. By not
trying even the simplest constraint programming techniques from the literature, and disre-
garding all that is known about the empirical hardness of NP-complete problems, members
of the graph databases community have reached the mistaken conclusion that extensive
research into supporting techniques is important. With this new understanding of what
does and does not make subgraph isomorphism hard, it is time for a radical rethink of how
graph database systems work.

We do not claim that the ultimate “big data” subgraph matching algorithm already
exists: on the contrary, there is likely to be plenty of room for future improvement now
that we understand the importance of getting algorithm design right. For example, a major
disadvantage of using domains is the relatively expensive initialisation costs, which quickly
add up when dealing with large numbers of trivial instances. Employing a presolver is an
obvious approach—and VF2 is in fact good in this role (Kotthoff et al., 2016)—but there
are other possibilities. For example, minimal or lazy forward-checking (Dent & Mercer,
1994; Bacchus & Grove, 1995; Dent, 1996; Larrosa & Meseguer, 1998) avoids constructing
every domain upfront, although adopting this may require alternatives to “smallest domain
first” and to all-different. Such an approach may also be beneficial for huge target graphs,
where having domains range over the entire target is impractical. Indeed, we saw that a
raw constraint programming approach using Gecode suffered from relatively long runtimes
on the very large but sparse PDBS instances, despite finding the instances very easy in
terms of number of recursive calls. An algorithm which is capable of performing most of
the reasoning of the Glasgow and LAD solvers, but without needing to store domains and
adjacency matrices, could represent a major breakthrough.

There is also scope for precalculating supporting information about target graphs. For
example, neighbourhood degree sequences and supplemental graphs could both be pre-
computed and stored. The aim here is to reduce the initialisation costs of a good subgraph
isomorphism algorithm, and not to provide indexing (although additionally using this in-
formation as an index may not hurt, if initialisation is still costly).

We must stress that we are not simply concluding that graph database systems should
use a better subgraph isomorphism algorithm. Instead, this paper has shown that such
systems need to be designed in light of a modern understanding of the empirical hardness
of NP-complete problems, that subgraph isomorphism algorithms should not be treated as
a black box, and that lessons learned in constraint programming and artificial intelligence
should not go unheeded in other domains.
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pp. 566–575.

Katsarou, F., Ntarmos, N., & Triantafillou, P. (2015). Performance and scalability of indexed
subgraph query processing methods. PVLDB, 8 (12), 1566–1577.

Katsarou, F., Ntarmos, N., & Triantafillou, P. (2017). Subgraph querying with parallel use
of query rewritings and alternative algorithms. In Markl, V., Orlando, S., Mitschang,
B., Andritsos, P., Sattler, K., & Breß, S. (Eds.), Proceedings of the 20th International
Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-
24, 2017., pp. 25–36. OpenProceedings.org.

Kotthoff, L., McCreesh, C., & Solnon, C. (2016). Portfolios of subgraph isomorphism algo-
rithms. In Festa, P., Sellmann, M., & Vanschoren, J. (Eds.), Learning and Intelligent
Optimization - 10th International Conference, LION 10, Ischia, Italy, May 29 - June
1, 2016, Revised Selected Papers, Vol. 10079 of Lecture Notes in Computer Science,
pp. 107–122. Springer.

Larrosa, J., & Meseguer, P. (1998). Partial lazy forward checking for MAX-CSP. In ECAI,
pp. 229–233.

Lee, J., Han, W., Kasperovics, R., & Lee, J. (2012). An in-depth comparison of subgraph
isomorphism algorithms in graph databases. PVLDB, 6 (2), 133–144.

Levi, G. (1973). A note on the derivation of maximal common subgraphs of two directed
or undirected graphs. CALCOLO, 9 (4), 341–352.

Leyton-Brown, K., Hoos, H. H., Hutter, F., & Xu, L. (2014). Understanding the empirical
hardness of NP -complete problems. Commun. ACM, 57 (5), 98–107.

McCreesh, C. (2017). Solving Hard Subgraph Problems in Parallel. Ph.D. thesis, University
of Glasgow.

McCreesh, C., Ndiaye, S. N., Prosser, P., & Solnon, C. (2016). Clique and constraint
models for maximum common (connected) subgraph problems. In Rueher, M. (Ed.),
Principles and Practice of Constraint Programming - 22nd International Conference,
CP 2016, Toulouse, France, September 5-9, 2016, Proceedings, Vol. 9892 of Lecture
Notes in Computer Science, pp. 350–368. Springer.

756



When Subgraph Isomorphism is Really Hard

McCreesh, C., & Prosser, P. (2015). A parallel, backjumping subgraph isomorphism al-
gorithm using supplemental graphs. In Pesant, G. (Ed.), Principles and Practice of
Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland,
August 31 - September 4, 2015, Proceedings, Vol. 9255 of Lecture Notes in Computer
Science, pp. 295–312. Springer.

McCreesh, C., Prosser, P., & Trimble, J. (2016). Heuristics and really hard instances for sub-
graph isomorphism problems. In Kambhampati, S. (Ed.), Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016, pp. 631–638. IJCAI/AAAI Press.

Mitchell, D. G., Selman, B., & Levesque, H. J. (1992). Hard and easy distributions of SAT
problems. In Swartout, W. R. (Ed.), Proceedings of the 10th National Conference on
Artificial Intelligence. San Jose, CA, July 12-16, 1992., pp. 459–465. AAAI Press /
The MIT Press.

Murray, A. C. (2012). Customising compilers for customisable processors. Ph.D. thesis, The
University of Edinburgh.

Peng, P., Zou, L., Chen, L., Lin, X., & Zhao, D. (2016). Answering subgraph queries over
massive disk resident graphs. World Wide Web, 19 (3), 417–448.
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México, pp. 963–972. IEEE Computer Society.

Ullmann, J. R. (1976). An algorithm for subgraph isomorphism. J. ACM, 23 (1), 31–42.

Vehlow, C., Stehr, H., Winkelmann, M., Duarte, J. M., Petzold, L., Dinse, J., & Lappe, M.
(2011). Cmview: Interactive contact map visualization and analysis. Bioinformatics,
27 (11), 1573.

Walsh, T. (1998). The constrainedness knife-edge. In Mostow, J., & Rich, C. (Eds.),
Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth
Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, July
26-30, 1998, Madison, Wisconsin, USA., pp. 406–411. AAAI Press / The MIT Press.

Wang, G., Wang, B., Yang, X., & Yu, G. (2012). Efficiently indexing large sparse graphs
for similarity search. IEEE Trans. Knowl. Data Eng., 24 (3), 440–451.

Wang, J., Ntarmos, N., & Triantafillou, P. (2016). Indexing query graphs to speedup graph
query processing. In Pitoura, E., Maabout, S., Koutrika, G., Marian, A., Tanca, L.,
Manolescu, I., & Stefanidis, K. (Eds.), Proceedings of the 19th International Con-
ference on Extending Database Technology, EDBT 2016, Bordeaux, France, March
15-16, 2016, Bordeaux, France, March 15-16, 2016., pp. 41–52. OpenProceedings.org.

Yan, X., Yu, P. S., & Han, J. (2004). Graph indexing: A frequent structure-based approach.
In Weikum, G., König, A. C., & Deßloch, S. (Eds.), Proceedings of the ACM SIGMOD
International Conference on Management of Data, Paris, France, June 13-18, 2004,
pp. 335–346. ACM.

Yan, X., Yu, P. S., & Han, J. (2005). Graph indexing based on discriminative frequent
structure analysis. ACM Trans. Database Syst., 30 (4), 960–993.

Yuan, D., & Mitra, P. (2013). Lindex: a lattice-based index for graph databases. VLDB J.,
22 (2), 229–252.

Yuan, D., Mitra, P., & Giles, C. L. (2013). Mining and indexing graphs for supergraph
search. PVLDB, 6 (10), 829–840.

Yuan, D., Mitra, P., Yu, H., & Giles, C. L. (2015). Updating graph indices with a one-pass
algorithm. In Sellis, T. K., Davidson, S. B., & Ives, Z. G. (Eds.), Proceedings of the

758



When Subgraph Isomorphism is Really Hard

2015 ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pp. 1903–1916. ACM.

Zampelli, S., Deville, Y., & Solnon, C. (2010). Solving subgraph isomorphism problems
with constraint programming. Constraints, 15 (3), 327–353.

Zhang, S., Hu, M., & Yang, J. (2007). Treepi: A novel graph indexing method.. In Chirkova
et al. (Chirkova et al., 2007), pp. 966–975.

Zhang, S., Li, S., & Yang, J. (2009). GADDI: distance index based subgraph matching
in biological networks. In Kersten, M. L., Novikov, B., Teubner, J., Polutin, V.,
& Manegold, S. (Eds.), EDBT 2009, 12th International Conference on Extending
Database Technology, Saint Petersburg, Russia, March 24-26, 2009, Proceedings, Vol.
360 of ACM International Conference Proceeding Series, pp. 192–203. ACM.

Zhao, P., & Han, J. (2010). On graph query optimization in large networks. PVLDB, 3 (1),
340–351.

Zhao, P., Yu, J. X., & Yu, P. S. (2007). Graph indexing: Tree + delta >= graph. In Koch, C.,
Gehrke, J., Garofalakis, M. N., Srivastava, D., Aberer, K., Deshpande, A., Florescu,
D., Chan, C. Y., Ganti, V., Kanne, C., Klas, W., & Neuhold, E. J. (Eds.), Proceedings
of the 33rd International Conference on Very Large Data Bases, University of Vienna,
Austria, September 23-27, 2007, pp. 938–949. ACM.

Zheng, W., Lian, X., Zou, L., Hong, L., & Zhao, D. (2016). Online subgraph skyline analysis
over knowledge graphs. IEEE Trans. Knowl. Data Eng., 28 (7), 1805–1819.

759


