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Abstract

Mutex groups are defined in the context of STRIPS planning as sets of facts out of
which, maximally, one can be true in any state reachable from the initial state. The
importance of computing and exploiting mutex groups was repeatedly pointed out in many
studies. However, the theoretical analysis of mutex groups is sparse in current literature.
This work provides a complexity analysis showing that inference of mutex groups is as
hard as planning itself (PSPACE-Complete) and it also shows a tight relationship between
mutex groups and graph cliques. This result motivates us to propose a new type of mutex
group called a fact-alternating mutex group (fam-group) of which inference is NP-Complete.
Moreover, we introduce an algorithm for the inference of fam-groups based on integer linear
programming that is complete with respect to the maximal fam-groups and we demonstrate
how beneficial fam-groups can be in the translation of planning tasks into finite domain
representation. Finally, we show that fam-groups can be used for the detection of dead-
end states and we propose a simple algorithm for the pruning of operators and facts as a
preprocessing step that takes advantage of the properties of fam-groups. The experimental
evaluation of the pruning algorithm shows a substantial increase in a number of solved tasks
in domains from the optimal deterministic track of the last two planning competitions (IPC
2011 and 2014).

1. Introduction

State invariants in domain-independent planning are certain intrinsic properties of a partic-
ular planning task that hold in all states reachable from the initial state. State invariants
(as well as other types of invariants) tell something about the internal structure of the
problem. This revealed structure can be further utilized in the process of solving the task.
State invariants can, for example, be used to design heuristic functions that can better
guide search algorithms. They can be used to prune the search space within which a plan
is searched for or even to reformulate the original problem to some more simple form as a
preprocessing step.

A mutual exclusion (mutex) invariant states that certain facts cannot be true at the
same time in any reachable state. This type of state invariant is especially interesting for
the purpose of translating planning tasks to a finite-domain representation (Helmert, 2009)
or for the construction of heuristic functions based on reachability analysis such as the
h™ heuristics (Haslum & Geffner, 2000). In this work, we are particularly interested in
the inference of state invariants called mutex groups consisting of facts that are pairwise
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mutually exclusive. Therefore, a mutex group states that any reachable state can contain
at most one fact from the mutex group.

The most straightforward application of mutex groups is in the translation to finite
domain representation (FDR, or SAS™) (Béackstrom & Nebel, 1995; Edelkamp & Helmert,
1999; Helmert, 2009). Given a set of mutex groups, the FDR can be constructed by creating
variables from those mutex groups that cover all facts. A special value “none of those” can
be added to some variables, if needed, to cover a situation where none of the facts from
the invariant is present in the state. Heuristic functions based on domain transition graphs
(DTG) (Helmert, 2006; Torreno, Onaindia, & Sapena, 2014) could also benefit from mutex
groups. These heuristics can be constructed either from FDR or directly from the set of all
inferred mutex groups.

State invariants (including mutex invariants) are also critical for improving the perfor-
mance of SAT planners (Kautz & Selman, 1992; Sideris & Dimopoulos, 2010). SAT planners
are based on a formulation of planning tasks as a problem of satisfiability of logical for-
mulas. State invariants expressed as a logical formula often significantly prune the search
space and, therefore, improve efficiency of the solvers.

Exploration of the state space in a symbolic search with Binary Decision Diagrams
(BDDs) is not carried out through the expansion of single states but rather by construction
of BDDs representing sets of states, which potentially provides an exponential saving in
memory consumption. State invariants are useful in the symbolic search for two reasons.
First, for the construction of FDR as the basis for smaller BDDs (Kissmann & Edelkamp,
2011). Second, state invariants encoded as BDDs can be used for the pruning of unreach-
able states during search and also during the preprocessing of the planning task for pruning
operators that generate dead-end states (Torralba & Alcazar, 2013). The connection be-
tween state invariants and dead-end states was recently studied by Lipovetzky, Muise, and
Gefner (2016).

This work is aimed mainly at the analysis and inference of mutex groups in the context
of STRIPS planning (Fikes & Nilsson, 1971). We introduce a new type of mutex group
called the fact-alternating mutex group and we discuss its relation to the general mutex
group and to the mutexes inferred by the heuristic h™ (Haslum & Geffner, 2000). We
also discuss, in detail, the properties of fact-alternating mutex groups, in particular their
connection to dead-end states.

We provide a complexity analysis showing that the inference of the maximum sized
mutex group is PSPACE-Complete whereas inferring the maximum sized fact-alternating
mutex group is NP-Complete. The complexity analysis leads to a novel inference algorithm
that is complete with respect to maximal fact-alternating mutex groups. The algorithm
is based on a direct translation of the definition of fact-alternating mutex groups into the
constraints of an integer linear program (ILP). The solution of the ILP provides only one
invariant at a time, so the ILP is refined in a cycle in such a way that all invariants are
eventually discovered.

The experimental evaluation of the inference algorithm includes the comparison to two
state-of-the-art algorithms, h™ and Helmert’s algorithm (2009) used in Fast Downward’s
translator from PDDL to finite domain representation. Moreover, we introduce an algo-
rithm for the pruning of operators and facts as an example of the applicability of the
fact-alternating mutex groups in solving planning tasks. We show that taking advantage of
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mutex invariants in a preprocessing stage (in particular the ability of the fact-alternating
mutex groups to detect operators that can produce only dead-end states) can lead to a
substantial increase in the coverage of the solved problems.

The paper is organized as follows. A list of a related work is laid out in Section 2 where
different types of invariants, as well as different approaches to the inference of invariants,
are discussed. After establishing a background for this work (Section 3), we formally define
two types of mutex groups and we discuss their properties and relationships between each
other (Section 4 and 5). The complexity analysis is provided in Section 6, followed by a
description of the relationship between mutexes generated by h™ and fact-alternating mutex
groups in Section 7. In Section 8, we describe a novel inference algorithm and we prove
it is complete with respect to the maximal fact-alternating mutex groups. In Section 9,
we propose a pruning algorithm utilizing the inferred fact-alternating mutex groups. The
experimental results are discussed in Section 10 and we conclude with Section 11.

2. Related Work

State invariants are formulas that are true in every state of a planning task reachable from
the initial state by the application of a sequence of operators. In this section, we provide
a brief discussion of different approaches to the inference of state invariants related to the
approach presented in this work.

One of the first approaches to the inference of state invariants was the DISCOPLAN
system proposed by Gerevini and Schubert (1998, 2000). The algorithm uses a guess, check,
and repair approach for generating invariants. Invariants are first hypothesized from the
definitions of the operators. The consecutive steps involve verification that the invariants
still hold in all reachable states and the unverified invariants are refined to form new invari-
ants that are then in turn verified again. The refinements are based on sets of candidate
supplementary conditions called “excuses” that are extracted during the verification phase.
These “excuses” are extracted through analysis considering all operators. The analysis al-
lows the algorithm to make more informed choices in the consequent refinement than the
“excuses” that would be derived only from the first operator violating the invariant. How-
ever, this comes with an increased computational burden as noticed by Helmert (2009).
The algorithm is able to generate a wide range of different types of state invariants (or state
constraints as they are called by Gerevini and Schubert) such as implicative constraints
of the form ¢ = 1) stating that every state satisfying formulae ¢ has to satisfy ¢ also,
static constraints providing type information about predicates, or zor constraints providing
information about the mutual exclusion of two literals given some additional conditions.

Type Inference Module (TIM) proposed by Fox and Long (1998) and further extended
by Cresswell, Fox, and Long (2002) takes the domain description possibly without any
information about types and infers (or enriches) a type structure from the functional re-
lationships in the domain. State invariants can be extracted from the way in which the
inferred types are partitioned.

Rintanen (2000) proposed an iterative algorithm for generating state invariants. The
algorithm uses a guess, check, and repair approach and it is polynomial in time due to
restrictions on the form and length of the invariants. The procedure starts with the iden-
tification of the initial set of candidate invariants corresponding to the grounded facts in
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the initial state. In the following steps, the initial set of candidates is expanded with new
invariants that are created by expanding invariant candidates from the previous step using
grounded operators. The invariant candidates that do not preserve their invariant property
are rejected and new candidates that are weaker in the sense that they hold in more states
than the original ones are created. An interesting property of this algorithm is that it
considers all invariant candidates during the creation of new ones instead of expanding one
invariant at a time.

Mukherji and Schubert (2005, 2006) proposed a completely different approach. Instead
of analyzing operators of the planning task, state invariants are inferred from one or more
reachable states. The set of reachable states can be obtained by random walks through state
space or by an exhaustive search with a bounded depth. State invariants are then inferred
by an any-time algorithm employing a data analysis of the provided reachable states. The
resulting invariants are not guaranteed to be correct in the sense that they do not have
to hold in all reachable states besides those provided, but the authors suggest that some
other algorithm, such that of Rintanen (2000), can be used for the quick verification of the
correctness of the invariants produced.

A generalization of the h™#* heuristic to a family of h™ heuristics (Haslum & Geffner,
2000; Haslum, 2009; Alcazar & Torralba, 2015) offers another method for the generation of
invariants. h™#* is a widely known and a well understood admissible heuristic for STRIPS
planning. The heuristic value is computed on a relaxed reachability graph as a cost of the
most costly fact from a conjunction of reachable facts. The heuristic works with single
facts, but it can be generalized to consider a conjunction of at most m facts instead. h'
would then be equal to h™® h? would build the reachability graph with single facts and
pairs of facts, h® would add triplets of facts also, and h™ would consider conjunctions of at
most m facts. This heuristic is not bound by h™ and is even equal to the optimal heuristic
for sufficiently large m. Unfortunately, the cost of the computation increases exponentially
in m.

The important property of h™ related to inference of invariants is its ability to provide
a set of fact conjunctions that are not reachable from the initial state. The facts that do
not appear in the reachability graph of h! (h™#) cannot affect the planning procedure.
The same can be said about the unreachable conjunctions of m facts in the case of h™. For
example, an unreachable pair of facts in case of h? can be interpreted as an invariant stating
that both facts from the pair cannot hold at the same time. Similarly, an unreachable triplet
of facts in case of h? corresponds to an invariant stating that there is no reachable state
that contains all three facts at the same time. Therefore, the h™ heuristic is able to find
mutex invariants of a cardinality up to m.

The state invariants inferred by the algorithm introduced by Rintanen (2008) have a
form of a disjunction of facts possibly with negations. The algorithm employs regression
operators and satisfiability tests to check whether the clauses form invariants. Each clause
initially consists of a single fact or a negation of a fact holding in the initial state. The clause
that is not approved as an invariant is replaced by a set of weaker clauses each containing
one additional fact (or its negation). Rintanen’s algorithm is able to produce invariants
in a more general form than h™ invariants, because an h™ invariant consisting of m facts
corresponds to the disjunction = f; V ... V = f,,. Moreover, it was proven that the algorithm
produces a superset of h™ invariants, therefore, it is a generalization of the h™ mutexes.
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feed-gorilla: (at c), (hungry), (carry-food) — (fed), —(hungry), —~(carry-food)

escape: (hungry) — (at c), =(at a), ~(at b), = (hungry), ~(carry-food)

Initial state (siniz): (at b), (hungry)

Goal (Sgoar): (fed)

Figure 1: The gorilla-feeding planning task.

An algorithm for translating PDDL planning tasks into a concise finite domain repre-
sentation (FDR) was proposed by Helmert (2009). The construction of the FDR is based on
identifying invariants in the form of mutex groups. A mutex group states that, at most, one
of the invariant facts can be present in any reachable state. The invariants are generated
using a guess, check, and repair procedure running on the lifted PDDL domain. The pro-
cedure is initialized with small invariants containing only a single atom. The following step
is proving the invariants through the identification of so called threats. A threat emerges
whenever there is an operator that has either two or more instances of invariant atoms in
its add effects or the instances in the add effects are not compensated by the same number
of instances in the delete effects. The threatened invariants are then either discarded or
refined by adding more atoms that could compensate the invariant in the delete effects. The
invariants that are not threatened are clearly invariants. The resulting invariants in a lifted
form are grounded to a set of facts and they are used in this final form for construction of
variables in FDR.

3. Background

Definition 1. A STRIPS planning task II is specified by a tuple Il = (F, O, sinit, Sgoal)
where F = {f1, ..., fn} is a set of facts, and O = {o1, ..., 0, } is a set of grounded operators.
A state s C F is a set of facts, si;y C F is an initial state and s, C F is a goal
specification. An operator o is a triple o = (pre(0),add(0), del(0)), where pre(o) C F is
a set of preconditions of the operator o, and add(o) C F and del(o) C F are sets of add
and delete effects, respectively. All operators are well-formed, i.e., add(o) N del(o) = 0 and
pre(o) Nadd(o) = 0. An operator o is applicable in a state s if pre(o) C s. The resulting
state of applying an applicable operator o in a state s is the state o[s] = (s\del(o))Uadd (o).
A state s is a goal state iff 5404 C s.

A sequence of operators m = (01, ...,0,) is applicable in a state sq if there are states
S1,...,Sp such that o; is applicable in s;_; and s; = 0;[s;—1] for 1 < i < n. The resulting
state of this application is 7[sg] = s,,. A state s is called a reachable state if there exists
an applicable operator sequence 7 such that m[si,it] = s. A set of all reachable states is
denoted by R. An operator o is called a reachable operator iff it is applicable in some
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Figure 2:  Reachable states and transitions between reachable states in the

gorilla-feeding planning task.

reachable state. A state s is called a dead-end state iff 54, € s and there does not exist
any applicable operator sequence 7 such that sy, C 7[s].

Consider the following simple example of the gorilla-feeding planning task depicted
in Figure 1. The planning task describes a zookeeper whose job is to feed a gorilla. The
zookeeper can move between adjacent squares, he can take some food from the stock, carry
it to the gorilla and feed it if the gorilla is hungry. The gorilla can escape the zoo if it is
hungry.

The planning task is described using six facts: (at a), (at b), and (at c) specify a
position of the zookeeper, (hungry) and (fed) denote whether the gorilla is hungry or it
was fed, and (carry-food) specifies whether the zookeeper carries the food for the gorilla.

The operators in Figure 1 are described using simplified notation where preconditions
are placed on the left hand side of the arrow symbol and the effects on the right hand side.
The delete effects are listed with the — symbol in front of them and the add effects are listed
without it. So for example, the operator feed-gorilla has three preconditions pre(o) =
{(at ¢), (hungry), (carry-food)}, one add effect add(o) = {(fed)}, and two delete
effects del(o) = { (hungry), (carry-food) }. The planning task contains three operators for
moving between adjacent squares (move from-square to-square), one operator for taking
food from the square that contains the food stock (take-food), one operator for feeding the
gorilla (feed-gorilla) that can be applied only on a square where the gorilla is and only
when the zookeeper carries the food with him, and one operator corresponding to the gorilla
escaping from the zoo (escape), which results in the zookeeper being punished by moving
into the gorilla’s cage. The initial state is set to sipix = {(at b), (hungry) } meaning that
the zookeeper starts at square B and the gorilla is hungry. The goal s40q = {(fed) } is to
feed the gorilla.

All eight reachable states of the planning task are depicted in Figure 2 along with all
possible transitions between the states. The initial state is marked with the dashed box, the
goal state is depicted in a double border box, and the dead-end states are indicated by gray
background. Figure 2 shows that the zookeeper can move between adjacent squares which is
reflected in the current state as the exchange between (at ...) facts. Once the zookeeper
takes food from the stock, the current state is extended by the fact (carry-food). And
once the gorilla is fed, the gorilla is not hungry anymore and the zookeeper does not carry
the food. The effects of operators move-b-c, take-food, feed-gorilla, and escape cannot
be reversed, i.e., once they are used, it is not possible to come back to the previous state
by any sequence of operators.
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Note that move-b-c can result in a dead-end state if the zookeeper does not carry
food and escape always results in a dead-end state. These two drawbacks could be fixed,
but the gorilla-feeding planning task will be used as a running example on which we
will demonstrate different types of mutex groups and this enables us to keep the example
planning task very brief but with the ability to demonstrate the differences.

4. Mutex Groups

Definition 2. A mutex M C F is a set of facts such that for every reachable state s € R
it holds that M ¢ s.

Definition 3. A mutex group M C F is a set of facts such that for every reachable state
s € R it holds that [M Ns| < 1. A mutex group that is not a subset of any other mutex
group is called a maximal mutex group.

A mutex and a mutex group are both defined as invariants with respect to all states
reachable from the initial state by a sequence of operators. A mutex invariant states that
certain facts cannot be part of the same reachable state at the same time. So for example,
a mutex {f1, fo, f3} states that there is no reachable state containing all three facts, but a
reachable state containing {f1, fo}, or {f1, f3}, or {fa, f3} can still exist.

A mutex group is defined as a set of facts out of which, maximally, one can be true
in any reachable state, i.e., the facts from a mutex group are pairwise mutex. This is a
very broad definition that makes it hard to design a computationally feasible algorithm that
would be able to produce all instances of mutex groups. Therefore, we introduce a definition
of a more restricted form of mutex groups, namely the fact-alternating mutex group. The
definition is based on the applicability of the operators which makes it less complex than
the general mutex group as will be demonstrated in Section 6.

Definition 4. A fact-alternating mutex group (fam-group) M C F is a set of facts such
that |M N sipie| < 1 and |[M Nadd(o)] < |M Npre(o) Ndel(o)| for every operator o € O.
A fam-group that is not a subset of any other fam-group is called a maximal fact-
alternating mutex group (maximal fam-group).

Proposition 5. Fvery fact-alternating mutex group is a mutex group.

Proof. (By induction) The first part |M N siit| < 1 ensures a mutex group property of
M with respect to the initial state. Let s denote a state such that |[M Ns| < 1, i.e., the
mutex group property holds with respect to s. Now, we need to make sure that the mutex
group property also holds for every state that is a resulting state from the application
of an applicable operator o on s, i.e., for all o € O such that pre(o) C s the inequality
|M No[s]| <1 holds. Since |M N s| <1 and pre(o) C s it follows that |M N pre(o)| < 1 and,
furthermore, |M N pre(o) Ndel(o)| < 1. This means that three cases must be investigated.
First, if |M N pre(o) Ndel(o)| = 0, then |M Nadd(o)] = 0 which means that no additional
fact from M can be added to the resulting state and, thus, [M No[s]| < |[MNs| < 1.
Second, if |M Npre(o) Ndel(o)] = 1 and |M Nadd(o)| = 0, then the same holds. Third, if
|M Npre(o) Ndel(o)] = 1 and |M Nadd(o)| = 1, then |M Npre(o)| = 1, thus, M Ns| =1
(because pre(o) C s), so it follows that M Npre(o)Ndel(o) = MNs C MnNdel(o). This means
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that |M N (s\ del(o))| = 0, so it follows that |M Nols]| = |M N ((s\ del(o)) Uadd(o))| =1,
i.e., the mutex group property is preserved in the third case as well. Finally, since the
mutex group is defined for reachable states R, every fact-alternating mutex group must be
a mutex group. O

The name fact-alternating mutex group was chosen to stress its interesting property,
which lies in the mechanism by which facts from a fact-alternating mutex group appear and
disappear in particular states after the application of the operators. Consider some fam-
group M and some state s that does not contain any fact from M (M Ns = )). Now we
can ask whether any following state 7[s| can contain any fact from M. The answer is that
it cannot because any operator o applicable in s that could add a new fact from M to the
following state o[s] would need to have a fact from M in its precondition (M N pre(o) # ()
which is in contradiction with the assumption that s contains no fact from M. So it follows
that facts from each particular fact-alternating mutex group alternate between each other as
new states are created and once the facts disappear from the state they cannot ever reappear
again in any following state. This is formally proven in the following Proposition 6.

Proposition 6. Let M denote a fact-alternating mutex group and let s denote a state. If
|M N s| =0, then for every operator sequence 7 applicable in s it holds that |[M N w[s]| = 0.

Proof. (By induction) The assumption provides a base case. Now let assume that |M Nt| =
0 for some state ¢ = 7[s| reachable from s and we will show that |[M Nolt]| = 0 for any
operator o applicable in ¢. Since o is applicable in ¢ then pre(o) C ¢, and since |[M Nt| =0
then |M Npre(o)| = 0, therefore, also |M Npre(o) Ndel(o)| = 0. So it follows that also
|M Npre(o) Ndel(o)| > |M Nadd(o)| = 0 because M is a fam-group. Finally, this means
that |M N ol[t]| = 0 because o could not add any fact from M into o[t]. O

It follows from Proposition 6 that given a fam-group that has an empty intersection
with an initial state, none of that the facts the fam-group consists of can ever appear in
any reachable state. This observation is not particularly helpful by itself, because these
unreachable facts can be detected by a simple reachability analysis. However, if we are
interested only in fam-groups that contain reachable facts, Proposition 6 shows that we can
safely use a more restricted constraint on the initial state |M N s = 1.

More interestingly, we can use Proposition 6 for the detection of dead-end states. A dead-
end state is a state from which it is impossible to reach any goal state by a sequence of
applied operators. Consider a fam-group M having a non-empty intersection with the
goal (|M Nsgo| > 1) and a reachable state s that does not contain any fact from M
(|JMNs| = 0). Such a state must be clearly a dead-end state, because it follows from
Proposition 6 that all states reachable from s, including the goal states, cannot contain any
fact from M, which is formally proven in the following simple corollary of Proposition 6.

Corollary 7. Let M C F denote a set of facts and let s denote a state. If M is a fam-group
and |M N Sgoqr| > 1 and |[M Ns| =0, then s is a dead-end state.

Proof. From Proposition 6 and |M N s| = 0 it follows that for every operator sequence m
applicable in s it holds that |[M N x[s]| = 0. Therefore since |M N s40q| > 1, it follows that
Sgoal € T[s] which concludes the proof. d
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The operators that have more than one fact from some mutex group (and, therefore,
also from some fam-group) in its preconditions cannot be applicable in any reachable state.
Similarly, the operators with add effects containing more than one fact from some mutex
group (fam-group) are also unreachable, because the resulting state would be in contradic-
tion with the mutex group (fam-group).! Such operators can be safely removed from the
planning task. These two simple rules are not limited to the fact-alternating mutex groups,
but they can be used with any type of mutex group.

However, fact-alternating mutex groups provide one additional method for pruning su-
perfluous operators. Consider a fam-group M having a non-empty intersection with the
goal and an operator o that does not have any fact from M in its add effects, but it has
a non-empty intersection with its preconditions, delete effects, and the fam-group M. The
resulting state of the application of the operator o would not contain any fact from the
fam-group M. Therefore, such a state would be a dead-end state for the reasons already
explained. This means that the operator o can be safely removed from the planning task
because it can only produce dead-end states. In other words, the states resulting from the
application of the operator are not useful in finding a plan and, therefore, the operator itself
is not useful too. This is formally proven in the following corollary.

Corollary 8. Let M C F denote a set of facts, let s denote a state and let o € O denote an
operator applicable in s. If M is a fam-group and |M N s40q| > 1 and |M N pre(o) N del(o)| >
1 and |M N add(o)| = 0, then o[s] is a dead-end state.

Proof. |M N's| <1 because s is a reachable state, and pre(o) C s because o is applicable
in s. Moreover, since |M Npre(o) Ndel(o)] > 1, it holds that |[M Ns| = 1 and, thus,
Mns= Mnpre(o) = M Ndel(o) # (). Therefore, |M N o[s]| = 0 because |M Nadd(o)| =0
and o[s] = (s \ del(o)) Uadd(o). And finally from |[M N sgeq| > 1 and Corollary 7 it follows
that o[s] is a dead-end state. O

A list of selected mutex groups and fam-groups in the example planning task is shown
in Table 1. The maximal mutex groups and maximal fam-groups are marked with a plus
sign. The simple corollary of the definition of the mutex group is that every subset of any
mutex group is also a mutex group. But the interesting property of fam-groups is that
not every subset of this type of mutex group is also a fam-group, the reason is its strict
definition. This also means that even though it is always safe to consider a single fact to be
a mutex group this does not hold for fam-groups. For example, (at a) is not a fam-group
because the operator move-b-a has (at a) as its add effect, but it is not balanced by a
delete effect and it cannot be because operators are not allowed to have the same facts in
its add and delete effects. On the other hand, (hungry) is a fam-group because it is not
listed as an add effect of any operator. This observation can be generalized and we can say
that any single fact is a fam-group if and only if it does not appear in any add effect, which
we formally prove in the following proposition.

Proposition 9. Let fi € F denote a single fact. {f1} is a fam-group iff f1 € add(o) for
every operator o € O.

1. This is a special case of disambiguation proposed by Alcdzar, Borrajo, Ferndndez, and Fuentetaja (2013).
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mutex group fam-group

{(at a)} 4 X
{(hungry) } v v
{(carry-food), (fed)} vt X
{(at a), (at b)} v /T
{(at b), (at ¢)} v X
{(at a), (at b), (fed)} /T X
{(at a), (at b), (at )} v/t X
{(hungry), (fed)} vt vt
{(hungry), (carry-food)} X X

Table 1: A list of selected mutex groups and fam-groups in the gorilla-feeding planning
task. Maximal mutex groups and maximal fam-groups are marked with a plus sign.

Proof. First, we prove the direction from left to right by contradiction. Assuming there
exists an operator o such that f; € add(o), also fi € pre(o) must hold, because the in-
equality |{f1} Nadd(o)| < |{f1} Npre(o) Ndel(o)| must hold. This is in contradiction with
the assumption add(o) N pre(o) = () (Definition 1). Similarly, to prove the other direction
by contradiction, we assume that {f1} is not a fam-group. Since |{f1} N sinit| < 1 al-
ways holds, the inequality |{fi} Nadd(o)| > |{fi} N pre(o) Ndel(o)| must hold. Therefore,
I{f1} Nadd(o)| > 1, therefore, {f1} € add(o0), which is contradiction. O

The facts (carry-food) and (fed) do not form a fam-group because of the operator
take-food which adds the (carry-food) fact, but does not delete the (fed) fact. This is
exactly the type of mutex group that is not covered by the fact-alternating mutex group
because the facts from this mutex group appear in the state seemingly from nothing, i.e.,
the facts do not alternate between each other, but their appearance is conditional on some
other fact that is not part of the mutex group.

The maximal mutex groups and maximal fam-groups are those that cannot be extended
by any fact and still remain mutex groups and fam-groups, respectively. Therefore all other
mutex groups or fam-groups are already contained within the maximal ones, but we need
to be careful while considering classification of the subsets of the maximal mutex groups
or fam-groups. It is obviously true that every subset of a maximal mutex group is also a
mutex group. Nevertheless, not every subset of a maximal fam-group is also a fam-group.

For example, {(at a), (at b), (at c)} is a maximal mutex group and, therefore,
{(at a), (at b)} and {(at b), (at c)} are mutex groups. However, {(at a), (at b)}
is a maximal fam-group, but {(at a)} is not a fam-group as discussed above. Moreover,
{(at a), (at b), (at c)} is not a fam-group, because of the operator escape, which adds
(at c¢) without balancing it by (at a) or (at b). But even if we remove the operator
escape and, therefore, { (at a), (at b), (at c)} becomes a maximal fam-group, its subset
{(at b), (at c)} still would not be a fam-group. The set {(hungry), (fed)} is both a
maximal mutex group and a maximal fam-group, although { (fed) } is not a fam-group, but
{(hungry) } is a fam-group.

The example planning task also demonstrates how fam-groups can be useful in dealing
with dead-end states. The operator escape always produces a dead-end state. According to
Corollary 8, the fam-group { (hungry), (fed) } can be used to remove this operator, because
(fed) is a part of the goal specification and the operator removes (hungry) but does not
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add (fed). In other words, { (hungry), (fed)} is a fam-group and (fed) must be a part
of every goal state, therefore, the facts (hungry) and (fed) must alternate between each
other in all states between the initial state and the goal state. Therefore, since the resulting
state of application of escape does not contain any of those two facts, the operator escape
cannot be part of any operator sequence leading from the initial state to a goal state. Note
also that Corollary 8 is not limited to maximal fam-groups.

5. Mutex Groups in Regression

Until now, we considered mutex groups as state invariants that hold in all states reachable
in progression, i.e., they hold in the initial state s;,;; and all states that can be reached
by consecutive application of operators in a forward direction. However, we can also con-
sider state invariants in regression, i.e., starting from the goal specification s,,, proceed-
ing backwards towards the initial state s;,;. More precisely, planning in regression starts
in the goal specification sg,q;, an operator o is applicable in regression in a state s™® iff
del(o) N ™8 = (), and the resulting state of the application in regression is a new regres-
sion state (s'°® \ add(o)) U pre(o). A state in regression corresponds to a set of states in
progression and, therefore, a goal state in regression is any state s'°® such that s'® C s;,;.
Every plan in regression corresponds to a reversed plan in progression, thus, we can think
of regression search as solving a reversed planning task. Nevertheless, we should stress that
search in progression and regression are not both always equally suitable for all domains
(Massey, 1999).

Similarly to state invariants in progression, we can define state invariants in regression
as logical formulas that hold in all reachable regression states, and analogously for mutex
groups. Unfortunately, defining fam-groups in regression would require more changes due
to the different way the operators are used in regression. However, we can also use a for-
mulation of a dual (reversed) planning task of the original planning task, initially proposed
by Massey (1999) and later revisited by Pettersson (2005) and Suda (2013).

Definition 10. Given a planning task IT = (F, O, Sinst, Sgoal), its corresponding dual plan-
ning task II? is the planning task 1P = (F, (’)D,%, Sinit), where F is a set of facts from
I, 54001 = F \ S40al; and Siniz = F \ Sinit. Operators OP = {0P | 0 € O} are constructed from
O such that pre(o?) = del(0), add(oP) = add (o), and del(o?) = pre(o) for every o € O.

A dual planning task is an ordinary planning task where the initial state and the goal
specification correspond to complements of the goal specification and the initial state of
the original problem, respectively, and operators have exchanged preconditions and delete
effects. The search in a dual planning task corresponds to the search in regression in the
original planning task. Therefore, every plan in II is a reversed plan in IIP, and also a
dead-end state in II is an unreachable state in IIP. It should be obvious that as IIP is a
dual planning task to II, II is a dual planning task to II”, meaning that a plan in II? is
a reversed plan in II, and a dead-end state in IIP is an unreachable state in II. It also
follows that (fact-alternating) mutex groups in the dual planning task can be inferred the
same way as in progression, because we can always construct a dual planning task and infer
(fact-alternating) mutex groups there.
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Facts (F): (at a), (at b), (at c), (hungry), (fed) (carry-food)

Operators (OP):

move-a-b’: (at a) — (at b), —~(at a)

move-b-a’: (at b) — (at a), ~(at b)

move-b-c?: (at b) — (at c), ~(at b)

take-food”: () — (carry-food), —(at a), —(hungry)

feed-gorilla”: (hungry), (carry-food) — (fed), —(at c), —(hungry), —(carry-food)
escape’: (at a), (at b), (hungry), (carry-food) — (at c), —(hungry)

Initial state (Spom): (at a), (at b), (at c¢), (hungry), (carry-food)

Goal (Siniz): (at a), (at c), (carry-food) (fed)

Figure 3: The gorilla-feeding dual planning task.

The example in Figure 3 shows the gorilla-feeding (from Figure 1) dual planning
task. The dual operators for moving between adjacent squares are the same as in the
original planning task, because the preconditions and delete effects are exactly the same in
those operators. The three remaining operators differ from their counterparts in the original
problem. The dual initial state 54,4 contains all the facts except (fed), which means that
any dual mutex group can contain, at most, two facts and all non-trivial dual mutex groups
must contain the fact (fed). As it turns out, the only non-trivial mutex group (and the
only fam-group as well) in the dual gorilla-feeding problem is { (hungry), (fed)} (which
is also a mutex group and a fam-group in II).

Note also that the operator escape cannot be detected as a dead-end operator by a
simple reachability analysis, because all its preconditions are reachable in the dual planning
task. However, fam-group { (hungry), (fed) } can be used for the removal using Corollary 8,
similarly as it can be used in progression.

6. Complexity Analysis

The complexity analysis of the mutex group structure we propose is based on an anal-
ysis of complexity classes of decision problems corresponding to the problems of finding
the largest possible mutex groups. We will show that such a decision problem for mutex
groups is asymptotically harder than for fam-groups even though, in general, there can be
exponentially many mutex groups of both types.

Definition 11. Let M denote a set of all mutex groups (fam-groups). M is a maximum
mutex group (maximum fam-group) iff M € M and |M| > |N| for every N € M.

Definition 12. MAXIMUM-MUTEX-GROUP (MAXIMUM-FAM-GROUP) decision prob-
lem: Given a planning task IT and an integer k, does IT contain a mutex group (fam-group)
of size at least k7

A maximum mutex group is a mutex group that has the maximum possible number of
facts in the corresponding planning task, i.e., the maximum mutex groups are the largest
mutex groups in the number of facts they consist of. It should be clear that every maximum
mutex group is also a maximal mutex group by Definition 3 (but not the other way around)
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and the same holds for fam-groups. MAXIMUM-MUTEX-GROUP is a decision problem corre-
sponding to the task of finding a maximum mutex group. Similarly, MAXIMUM-FAM-GROUP
is a decision problem corresponding to finding a maximum fam-group. In Section 6.1 we
prove that the MAXIMUM-FAM-GRrouUP is NP-Complete and in Section 6.2 we will show that
MAaxiMUM-MUTEX-GROUP is PSPACE-Complete.

6.1 MaAaxiMmuM-FAM-GRouP is NP-Complete

Definition 13. An undirected simple graph G is a tuple G = (N, E), where N denotes
a set of nodes and E denotes a set of edges such that each edge {n;,n;} € E connects
two different nodes (n; # n;) and there are no two edges connecting the same nodes. A
non-empty set C' of nodes of G forms a clique if each node of C is connected by an edge to
every other node of C. A clique that is not a subset of any other clique is called a maximal
clique. A maximum clique is a clique such that there is no other clique consisting of
more nodes.

Definition 14. MAXIMUM-CLIQUE decision problem: Given a graph G and an integer
k, does G contain a clique of size at least k7

Definition 15. Given a graph G = (N, E), 1% = (F¢ 0% s%. () denotes a planning
task where F¢ = NU{T}, T ¢ N, s§.. = {T}, and OF = {op, n, | {n1,n2} C N,ny #
2, {nlvnQ} ¢ E} with pre(0n1,n2) = {T}7 del(0n1,n2) = {T}7 and add(0n1,n2) = {n17n2}'2

The MAXIMUM-CLIQUE problem is a well known NP-Complete decision problem (Karp,
1972), which we use to show that the MAaXmMuM-FAM-Group is NP-Hard. The reduction
from MaxiMuM-CLIQUE is made by translating a graph G into a planning task II¢ (Defini-
tion 15) in a polynomial time. After the translation, it is shown that MAXIMUM-CLIQUE for
G can be solved by solving MaxiMUM-FAM-GRroup for II¢. In other words, we show that
the fam-group decision problem is at least as hard as some NP-Complete problem, in this
case MAXIMUM-CLIQUE.

Proving that the MAXiMUM-FAM-GROUP belongs to NP is much easier, because the def-
inition of fam-groups provides a verification algorithm running in polynomial time, which
concludes the proof that the Maximum-FAM-Group is NP-Complete (Theorem 18). More-
over, it follows from the polynomial reduction, as we propose it, that the maximum possible
number of maximal fam-groups is exponential in the number of facts of the corresponding
planning task (Proposition 19).

The main idea behind the way II¢ is constructed from G, is the following: Consider
a complete graph. In such a graph, all nodes form one maximal clique together and by
gradual removal of the edges from the graph, the original clique is divided into more cliques
consisting of a smaller number of nodes. Similarly, consider a planning task having only one
fact in the initial state and without any operator. In such a planning task, all facts form one
maximal fam-group together. This fam-group can be divided into smaller ones by adding
new operators having facts that should not be part of the same fam-group, into their add
effects, without balancing them by delete effects and preconditions. So following this idea,
the algorithm constructs the resulting planning task in such a way that the operators’ add

2. We slightly abuse the notation here and in the rest of this section to simplify the notation.
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effects correspond to the pair of nodes in the original graph that are not connected by any
edge. Therefore, they cannot be in the same clique and the operators make sure that they
cannot also be in the same fam-group. The additional auxiliary fact T is added to make
sure that all operators are applicable in the initial state, thus, effects of the operators are
reachable.

The proof that the MAXxiMUM-FAM-GRrouP is NP-Complete starts with some auxiliary
lemmas. Lemma 16 shows that we can translate a graph G into the corresponding planning
task II¢ and all cliques (including the maximum ones) are preserved during the translation
in the form of fam-groups. More precisely, it is shown that if C is a clique in G, then
the corresponding fam-group in II¢ can be constructed as C' U {T} and also that every
fam-group in II¢ containing T corresponds to a clique in the original graph G.

The remaining piece of the proof of correctness of the polynomial reduction from the
MAXxiMUM-CLIQUE problem is to show that there are no maximum fam-groups that do not
contain T, i.e., we must show that if we find a maximum fam-group, then we can reconstruct
a maximum clique in the original graph G from it and, therefore, the MAxiMUM-CLIQUE
problem can be solved by solving the the MAXIMUM-FAM-GRoOUP. In Lemma 17, we prove
an even stronger statement saying that not only all maximum fam-groups, but all maximal
fam-groups contain T. Therefore, Lemma 16 can be safely used to prove that the polynomial
reduction from the MAXIMUM-CLIQUE problem is correct, thus, the MAXIMUM-FAM-GROUP
is NP-Hard.

The main contribution of this section is formulated in Theorem 18 stating that the
MaxiMuM-FAM-Group is NP-Complete. Once we have proven that the decision problem
is NP-Hard then it easily follows that it must be NP-Complete because any fam-group can
be verified in a polynomial number of steps by checking the initial state and all operators.

Lemma 16. C is a clique in G iff M = C U{T} is a fam-group in I1C.

Proof. To prove the direction from left to right by contradiction, let us assume that C' is
a clique and M is not a fam-group. Since s, = {T} C M and |M N pre(o) Ndel(o)| = 1
for every operator o € O (because pre(o) = del(o) = {T}) there must exist an operator
o* € 0% such that |M Nadd(o*)| > 1. Since T is not part of any add effect and all add
effects contain exactly two facts, it must hold that add(o*) C C. This is in contradiction
with the assumption that C is a clique because all add effects are created only from the
pairs of nodes that are not joined by an edge and there is no such pair of nodes in C by
definition. Therefore, if C' is a clique, then M is a fam-group.

To prove the other direction, also by contradiction, let us assume that M = C U {T}
is a fam-group and C is not a clique. If C is not a clique then there exist ny,no € C
such that n; and ny are not connected by an edge in GG. So it follows that there exists
an operator o € OY such that add(o) = {ny,n2} and pre(o) = del(o) = {T}, therefore,
|M Nadd(o)| =2 > |M Npre(o) Ndel(o)| = 1. This is in contradiction with the assumption
that M is a fam-group, therefore, if M is a fam-group then C' is a clique. O

Lemma 17. For every mazimal fam-group M in 1€ it holds that T € M.

Proof. Let N denote a fam-group such that T ¢ N. Now we prove that M = {T}UN is also
a fam-group. Since s%it = {T}, then surely }M N ng} < 1. For every operator o € OF it

holds that pre(o) = del(o) = {T} and T & add(o) and |N Nnadd(o)| < |N N pre(o) N del(o)].
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So, it follows that |N Nadd(o)| = |N Npre(o) Ndel(o)| = 0, therefore, |M Nadd(o)] =0 <
|M Npre(o) Ndel(o)| = 1, therefore, M is a fam-group. Finally, since every fam-group can
be extended by T, then surely every maximal fam-group must contain T. ]

Theorem 18. MAximum-FAM-GrouP is NP-Complete.

Proof. To show that the MAxiMUM-FAM-GRrouP is NP-Hard, we will reduce MAXIMUM-
CLIQUE to the MAXIMUM-FAM-GRoUP. Clearly, any graph G can be translated into a plan-
ning task II¢ in polynomial time, namely O(n?), where n is the number of nodes in G.
From Lemma 17, it follows that a maximum fam-group must contain T and then it follows
from Lemma 16 that C' is a maximum clique in G iff M = CU{T} is a maximum fam-group
in II9. Therefore, the MaxiMuM-FAM-Group is NP-Hard.

What remains is to show that the MAXIMUM-FAM-GRoOUP is in NP. It is easy to see
that given a set of facts it can be verified as a fam-group by checking the initial state and
all operators according to Definition 4. The verification procedure runs in a polynomial
number of steps in a number of facts and operators. Therefore, the MAXIMUM-FAM-GROUP
is NP-Complete. O

Proposition 19. The mazimum possible number of mazimal fam-groups in a planning task
II is exponential in a number of facts.

Proof. 1t follows from Lemma 16 and Lemma 17 that for every possible graph, it is pos-
sible to construct a planning task in which every maximal fam-group corresponds to some
maximal clique and vice versa. The maximum possible number of maximal cliques in a
graph is exponential in a number of nodes (namely ¢ - 3"/% where n is number of nodes
and ¢ € {1,4/3,2} depending on n mod 3) (Moon & Moser, 1965). This makes the lower
bound exponential. The upper bound is the maximum number of subsets of F, which is
also exponential (2|f |). This makes the maximum possible number of maximal fam-groups
exponential in a number of facts. O

6.2 MAXIMUM-MUTEX-GROUP is PSPACE-Complete

Definition 20. PLAN-EXIST decision problem: Given a planning task II, determine the
existence of a solution.

In this section, we will show that the MAXIMUM-MUTEX-GROUP is PSPACE-Complete
(Theorem 26). First, it will be proven that it is PSPACE-Hard (Proposition 23) using a
polynomial reduction from PLAN-Ex1ST which is known to be PSPACE-Complete (Bylander,
1994). Then, we will present a PSPACE algorithm (Algorithm 1) solving the MAXIMUM-
MuTEX-GROUP problem which leads to the conclusion that the MAXIMUM-MUTEX-GROUP
is PSPACE-Complete. Moreover, we will show that the maximum possible number of
maximal mutex groups is exactly the same as the maximal fam-groups and we will express
this number exactly.

Definition 21. Given a planning task II = (F, O, Sinit, Sgoal); M = (FM OM 55, S goal)
denotes a planning task such that FM¥ = FU{L}, L ¢ F, and O™ = O U {0**'}, where
pre(osat) = Sgoals del(Osat) = {}, and add(osat) = FM,
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Lemma 22. Let M denote a mazimum mutex group in IIM. A solution of 11 exists iff
|M| < 1.

Proof. A solution of II exists iff there exists a reachable state s such that s;,q C s. If such
s exists then 0% is a reachable operator and, thus, its resulting state s = FM ig also
reachable. So it follows that every mutex group of IIM consists of, at most, one fact because
any mutex group N having more than one fact would violate the mutex group property on
s% (][N N s%9%| > 2). Therefore, if a solution of II exists, then [M| < 1.

To prove the other direction by contradiction, let us assume that we have a maximum
mutex group M in IIM such that |[M| < 1 and II has no solution. If IT has no solution,
then there does not exist a reachable state s such that sy, C s, which means that 0% is
not applicable in any reachable state, therefore, the state s = FM is not reachable. But
the fact L appears in II™ only in s%*, therefore, any mutex group in I can be extended
by L and it still remains a mutex group. Finally, since a mutex group of size of at least
one (a single fact is always a mutex group) exists in any planning task and since such a
mutex group can be in IIM extended by L, then it follows that a maximum mutex group
M must have at least two facts (|M| > 2) which is in contradiction with the assumption
that |M| < 1. Therefore, if |M| < 1, then II has a solution. O

Proposition 23. MaxiMmum-MuTEX-GROUP is PSPACE-Hard.

Proof. We will reduce PLAN-EXIST to MAXIMUM-MUTEX-GROUP. Clearly, any planning task
II can be translated to a different planning task IT™ in polynomial time. It follows from
Lemma 22 that we can determine whether II has a solution by solving the MAXIMUM-
MuTEX-GROUP problem on II™ in the following way: If the maximum mutex group in I
has, at most, one fact, then the planning task II has a solution. If the maximum mutex
group in ITM has more than one fact, then the planning task IT does not have a solution.
Therefore, the MAXIMUM-MUTEX-GROUP is PSPACE-Hard. ]

Algorithm 1: MAXIMUM-MUTEX-GROUP
Input: A constant k, planning task II = (F, O, sinit, Sg0al)
Output: “Yes” or “No”

1 Construct a complete graph G = (N =F,E={p|p C F,|p| =2}

2 for each f1, fo € F such that f1 # f2 do

3 if there exists a plan for I = (F, O, Sinit, { f1, fo}) then /* Pran-Exist */
s | | B B\{fif):

5 end

6 end

7 if G contains a clique of size at least k then return “Yes”; /* Maximum—CLIQUE */
8 else return “No”;

Once we have proven that the MAXIMUM-MUTEX-GROUP is PSPACE-Hard, proving that
it is also PSPACE-Complete requires to show that it is possible to decide the MAXIMUM-
MUTEX-GROUP using a polynomial amount of space. Algorithm 1 shows a pseudocode for
such a procedure. The main idea of the algorithm is that every set of facts M of size of at
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least two is a mutex group if and only if every pair of facts from M is also a mutex group
(Proposition 24). In other words, if we are able to infer all mutex groups containing exactly
two facts, we can always use these mutex pairs for the construction of all other mutex
groups of size of at least two. The main cycle of Algorithm 1 uses PLAN-EXIST to prove
whether each pair of facts is a mutex group or if it is not, i.e., whether the facts are part of
some reachable state or not. The inferred mutex pairs are used for construction of a graph
where each edge corresponds to one mutex pair. And finally, MAXIMUM-CLIQUE is used to
infer a maximum mutex group. Such an algorithm clearly uses only a polynomial amount of
space which is formally proven in Lemma 25. Theorem 26 just joins Proposition 23 (MAXI-
MUM-MUTEX-GROUP is PSPACE-Hard) and Lemma 25 (MAXIMUM-MUTEX-GROUP belongs
to PSPACE) to formulate the main contribution of this section, i.e., the proof that the
MAXIMUM-MUTEX-GROUP is PSPACE-Complete.

Proposition 24. Let M C F denote a set of facts such that |M| > 2 and let DM denote a
set of all pairs of all facts from M, i.e., DM = {p | p C M, |p| = 2}. M is a mutex group
iff every P € DM is a mutex group.

Proof. Tt is easy to see that if M is a mutex group (i.e., [sN M| < 1 for every reachable
state s) then every subset of M also must be a mutex group (i.e., for every N C M it also
holds that also |s N N| <1 for every reachable state s).

To prove the other direction by contradiction, let us assume that every P € DM is a
mutex group, but M is not a mutex group. If M is not a mutex group then there exists a
reachable state s such that |s N M| > 2. This means that there must exist a pair of facts
{f1, f2} such that fi, fo € M and f1, fo € s which is in contradiction with the assumption
that every P € DM is a mutex group because {f1, fo} must belong to DM by definition.

O

Lemma 25. Algorithm 1 decides MAXIMUM-MUTEX-GROUP using a polynomial amount of
space in the size of the input.

Proof. Algorithm 1 starts with a complete graph constructed from the facts as its nodes.
Then, in O(|F|?) steps, each pair of facts is checked whether they appear together in any
reachable state (line 3). This is checked by deciding the PLAN-EXIST on the modified input
planning task, where the original goal is replaced by a new goal consisting of the tested
pair of facts. PrLAN-ExisT is PSPACE-Complete, therefore this step requires at most a
polynomial amount of space. If there exists a reachable state containing both facts, an edge
connecting those two facts is removed from the graph. The edges remaining in the graph
only connect those facts that never appear together in the same reachable state. Therefore
every pair of facts connected by an edge is a mutex group.

It follows from Proposition 24 that having all mutex groups of size two is enough to
construct any other mutex group which also covers the maximum mutex groups. Therefore,
by deciding MAXIMUM-CLIQUE on the constructed graph with the same constant k& (line
7), the MAXIMUM-MUTEX-GROUP is decided too. This also requires at most a polynomial
amount of space, because MAXIMUM-CLIQUE is NP-Complete. (If the graph has no edges,
any single fact is a maximum mutex group and any single node is a maximum clique as

well.) 0
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Theorem 26. MAximMuM-MuTEX-GRoOUP is PSPACE-Complete.

Proof. The MAXIMUM-MUTEX-GROUP is PSPACE-Hard (Proposition 23) and it also belongs
to PSPACE (Lemma 25), therefore, the MAXIMUM-MUTEX-GROUP is PSPACE-Complete.
O

Proposition 19 states that the maximum number of maximal fam-groups is exponential
in a number of facts. The proof of Proposition 19 is based on the proposed procedure that
can translate any graph into a planning task in such a way that every maximal fam-group
corresponds to a maximal clique in the original graph. This enables us to enumerate the
lower bound on the maximum possible number of maximal fam-groups as the maximum
possible number of maximal cliques.

It follows from Proposition 24 that given a complete list of all mutex pairs, all maximal
mutex groups can be constructed using an algorithm for listing all maximal cliques. This
means that the maximum possible number of maximal mutex groups is exactly the same as
the maximum possible number of maximal cliques. Furthermore, since the same number is
the lower bound on the maximum possible number of maximal fam-groups and since every
fam-group is also a mutex group, the maximum possible number of maximal mutex groups
and maximal fam-groups are exactly the same, which we formally prove in Proposition 27.

Proposition 27. Let II = (F, O, Sinit, Sgoa1) denote a planning task and let n = |F| denote
a number of facts in IL. The mazimum possible number p(n) and pg(n) of maximal mutex
groups and mazximal fam-groups, respectively, for n > 2, is the following:

3"/3. if n mod 3 = 0;
pu(n) = pp(n) = % -3”/3, if n mod 3 = 1;
2.3"3 ifnmod3=2.

Proof. 1t follows from Proposition 24 that all maximal mutex groups can be constructed
from a complete set of mutex pairs using an algorithm for the enumeration of all maximal
cliques. Moreover, it is easy to see that given a set of facts, it is always possible to construct
a planning task that would contain any combination of mutex pairs. It follows from the
proof of Proposition 19 that the same holds for maximal fam-groups. This means that the
maximum possible number of maximal mutex groups and maximal fam-groups in a planning
task is exactly the same as the maximum possible number of maximal cliques in a graph
(Moon & Moser, 1965). O

7. Relationship Between h? and Fact-Alternating Mutex Groups

The h™ heuristic (Haslum & Geffner, 2000) discussed in Section 2 is able to produce a set of
mutex invariants. More specifically, the h? heuristic provides a method for inferring pairs of
facts that cannot hold together in any reachable state. Such pairs of facts can be interpreted
as both mutex invariants and mutex groups because if two facts cannot both be part of the
same reachable state, then, at most, one of them can be a part of any reachable state, which
is exactly the definition of a mutex group, i.e., every mutex pair is also a mutex group. This
reasoning does not apply generally to the h™ heuristic because for m > 3 stating that a set
of three or more facts is unreachable, does not necessarily mean that, at most, one of these
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facts can be part of the same reachable state. For example, if the h® heuristic provides a
set of three facts {f1, fo, f3} that is not part of any reachable state (i.e., it is a mutex) then
it could be the case that there are reachable states that contain both f; and fo but not f3
(i.e., the set {f1, f2, f3} would not be a mutex group). Therefore, from the whole family of
h™ heuristics only h? can be used for the inference of mutex groups by Definition 3. From
now on, the mutex groups consisting of two facts (mutex pairs) generated by h? will be
called h?-mutexes.

Proposition 24, from the previous section, shows that any mutex group consisting of, at
least, two facts can be decomposed into a set of mutex pairs and that the original mutex
group can be always reconstructed back from this set of mutex pairs. Moreover, it follows
from the proof of Lemma 25 that if we somehow obtain a complete set of mutex pairs, we
can determine the maximum mutex group simply by invoking MAXIMUM-CLIQUE which is
NP-Complete. However, finding the maximum mutex group is as hard as planning itself,
therefore, it follows that inference of a complete set of mutex pairs is also as hard as finding
a plan. So since h? runs in polynomial time we can conclude that this method is far from
being complete with respect to mutex pairs.

Nevertheless, an interesting question is, what is the relationship between fam-groups and
h2-mutexes? In this section we will resolve this question by showing that h? always produces
a (possibly non-strict) superset of decomposition of all fam-groups. More precisely, we will
prove that any mutex pair that is a subset of a fam-group must be an h?-mutex, but not
the other way around. This also means that if we infer h?-mutexes and use an algorithm
for listing maximal cliques to join the h?-mutexes into larger mutex groups (similarly as
it is used in Algorithm 1), then the resulting mutex groups will be non-strict supersets of
fam-groups. However, the mutex groups created from h%-mutexes do not have the same
properties as fam-groups described in Proposition 6, Corollary 7 and Corollary 8. The
importance of fam-groups, in particular its ability to detect operators that can produce
only dead-end states, will be demonstrated by the experimental results in Section 10.

The formal definition of an h?>-mutex below is based on an alternative characterization
of the h™ heuristic using a modified planning task introduced by Haslum (2009). In our
opinion, this formulation leads to a more straightforward line of proof than the original
definition by a recursive equation and regression operators.

Definition 28. Let II = (F, O, sinit, Sgoar) denote a planning task. The planning task
2 = (®,Q, Yinit, {}) consists of a set of facts ® = {¢. | ¢ C F,|c| < 2}, a set of operators
Q, an initial state ¥ = {¢c | ¢ C Sinit, || < 2}, and an empty goal specification. For each
operator o € O, the planning task II? contains an operator We g € Q2 with

pre(“o,@) ={¢c | ¢ C pre(o), |c| < 2},

add(w,9) = {¢c | ¢ € add(o),[c] < 2},

del(w, 9) = 0,
and additionally, for each operator o € O and each fact f € F such that f ¢ add(o)Udel(0),
the planning task II? contains an operator Wo,r € §1 with

pre(wo,r) = pre(wop) U{osy} ULy ry | g € pre(o), g # f1,

add(wo,f) = add(wo,@) U {d){g,f} | g € add(0)},

del(wo, r) = 0.

Let ¥ denote a set of all reachable states in I12. A pair of facts {fi, fo} C F such that
f1 # f2 is an h?>-mutex iff for every reachable state ¢» € ¥, it holds that Ly for E V-
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The II? planning task is an ordinary STRIPS planning task (Definition 1), but we have
decided to use Greek letters to describe its parts to prevent confusion between the parts of
the original planning task II and the parts of II? which is constructed from II. Note also
that contrary to the original formulation by Haslum, II? has an empty goal specification.
The reason is that we do not need a goal specification because we are not interested in
the h? heuristic, but only in the h?-mutexes resulting from the reachability of facts of the
planning task.

Also note the difference between our construction of operators in II? and how Haslum
defined the operators. Haslum uses a single formula for preconditions and effects (Haslum,
2009, Definition 4). So in our notation, the definition would be the following. For each
operator o € O and for each subset of facts g C F such that |g| < 1 and g is disjoint with
add(o) and del(o), create a new operator w, 4 with: pre(w, ) = {¢ | ¢ C (pre(o) Ug), |c| <
2}, add(woy) = {¢c | ¢ C (add(o) U g),c Nadd(o) # 0,|c] < 2}, del(woq) = 0. We,
however, decided to split the definition of operators between those that are direct images
of the original operators (w, ) and those that are extended by an additional fact in its
preconditions and add effects (w, ¢). The reason is that it, in our opinion, considerably
simplifies the proofs, because it is more obvious how w, ¢ differs from its extensions w,, ;.

The main result of this section, stating that every mutex pair that is part of a fam-group
is an h?-mutex, is stated in Theorem 31 which is preceded by two auxiliary lemmas.

Lemma 29. Let ¥x = {¢. | ¢ C X, |c| =2}, where X CF, and let A, BC F. ¥4N¥p =
YAnB-

Proof. (By contradiction) If ¥4 N Xp # Y anp then two cases must be investigated: ()
There exists ¢y, r,) such that ¢cr r,y € XaNXp and ¢y, 1) € Xanp. So it follows that
fi,fo € A and f1, fo € B and f1, fo € AN B, which is contradiction. (i) There exists
(ﬁ{fth} such that ¢{f1,f2} ZXAaNXpand ¢{f17f2} € Y anp- So it follows that fi, fo € ANB,
therefore f1, fo € A and f1, fo € B, therefore ¢y, 1,0 € X4 and ¢yy, 1,y € Yp, which is
contradiction. ]

Lemma 30. Let ¥x = {¢. | ¢ C X, |c| =2}, where X C F, and let M C F denote a set
of facts in Il such that |M| > 2. If M is a fam-group then |y N | = 0 and for every
operator w € Q) it holds that |Zpr N add(w)| < |Xar N pre(w)|.

Proof. Since n; is created from s and |M N S| < 1 then it is easy to see that
|2M N Q;Z)im't| = 0 must hold.

Now we prove |Xys Nadd(w)| < [Xar N pre(w)| separately for operators w, y and for the
rest of the operators. But first, we start with some preliminaries. It is easy to see that
given a set of facts A C F: |X 4| = Ca(|A]), where Ck(n) = Wlk)' is a binomial coefficient
forn >k >0 and Cx(n) = 0 for 0 < n < k. Let pre?(w) = {¢¢ | ¢e € pre(w),|c| = 2},
and add?(w) = {¢. | ¢. € add(w), |c| = 2}. Since Xj; contains only facts ¢. where |c| = 2,
the inequality [Zy Nadd(w)| < |Sas N pre(w)| holds iff |Xy N addQ(w)‘ < |E=mn preQ(w)}
holds.

From Definition 28 it follows that for every operator o € O: preQ(w(,’@) = Ypre(o) and
addz(wO,@) = Yadd(o), therefore we need to prove that }ZM N Zadd(o)’ < }ZM N Zpre(o)‘,
which can be rewritten as |2Mmdd(o)‘ < ‘EMﬂpre(o)‘ (Lemma 29), and further Cy(|M N
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add(o)|) < Cao(|M Npre(o)|). Since M is a fam-group, |M Nadd(o)| < |M Npre(o) Ndel(o)],
which implies |M N add(o)| < |M N pre(o)|, therefore inequality Co(|MNadd(o)|) < Cao(|MN
pre(o)|) holds, because C3(n) is an increasing function.

Let 1—‘pre (o),f — {¢{g f} | g€ pI‘e( ) g # f} and 11add )., = {¢{g f} | g€ a’dd( )} For
the remaining operators w, y € Q\{w, g | 0 € O} it holds that pre?(w, f) = Ypre(o) Yl pre(o), f
and add2(wo, £) = Yadd(o) U Tadd(o),f- Now two cases need to be investigated.

(1) If f ¢ M then obviously X N Tadae),r = X N Cpre(o),f = 0, therefore ¥y N
add?(w, ) = S Nadd?(w,g) and S N pre(wo r) = Tar Npre?(wyg). So it follows that
|Sa N add?(w, f) | < |Za Npre?(wo, )|, because [Sar N add2(w07@)‘ < |Sar N pre?(wyg)|-

(2) If f € M then |EM N Tadd(o ’ |M Nadd(o)|, because f ¢ add(o) by definition.
And ’ZM ﬂ add(o) U Fadd(o),f ‘ = EM N Eadd(o)‘ + ‘ZM N Fadd(o),f‘a because Zadd(o) and
Tadd(o),r are disjunct. Now two more cases need to be investigated.

(2.1) If f & pre(o) then ‘ZM N T pre(o) f| |M N pre(o)|, therefore ‘EM ﬂFadd(O)7f| <

YuynTl , because |M Nadd(o)] < |M Npre(o)|. Furthermore, since f ¢ pre(o),

pre(
VAR ( pre(o ) U Fpre(o ‘ = ‘EM M Epre } + ‘EM N Fpre ’ because Epre(o) and Fpre(o),f
are disjunct. So it follows from ‘ZM N Zadd ‘ ‘EM N Epre (0) | and |2M N Tadd(o )f‘ <
|2M N 11pre( ‘EM N Eadd } + ‘EM n Fadd f} < ‘EM N Epre o)| + }ZM N Fpre(o)

therefore |EM ﬂ add?(wo,r)| < ‘EM N pre (woyf)|

(2.2) 1f f € pre(o) then preQ(wo §) = pre (wo 0) = Zpre(o) = Epre(())j{f} U Tpre(o),f> and
[Zar pre?(wo )| = [Sar 0 ( pre(O)\{f} Ulpre(0),1)| = [Za1 O Zpreon (73] + |2r N Do) |
(= pre(o)\{f} and Fpre(o) f are disjunct), and ‘EM ﬂl“pre(o ’ |M N (pre(o) \ {f})|. Also
|M Nnadd(o)| < |M N (pre(o)\ {f})|, because \Mﬂadd( )| < |M Npre(o) Ndel(o)| and
f ¢ add(o) and f ¢ del(o) (Definition 28). Therefore similarly to (2.1), }ZM N Zadd(o){ +
VAR Fadd(g)vf‘ < |EM N Zpre(o)\{f}| + !EM N Fpre(o),f‘, therefore ‘EM N addQ(wa)‘ <
Sn N pre? (wo,r)|- O

Theorem 31. Let M C F denote a set of facts such that |M| > 2 and let H = {p | p C
M, |p| =2}. If M is a fam-group, then every h € H is an h*-mutez.

Proof. (By induction) Let ¥ denote a set of all reachable states in 12 and let Xy = {¢y, | h €
H}. Tt follows from Lemma 30 that |3 N 9| = 0. Now, we need to prove that for any
reachable state 1) € ¥ and every operator w € € applicable in 1) it holds that if |3, Nv)| = 0,
then |X3; Nw(ty]| = 0. For every operator w applicable in 1) it holds that pre(w) C ¢ and,
therefore, |Xpr N pre(w)| = 0. So it follows from Lemma 30 that also |Xj, Nadd(w)| = 0
because X Nadd(w)| < [Xp N pre(w)|. Finally, since w[yp] = (¢ \ del(w)) Uadd(w) it must
follow that |¥Xpr Nw(¢]| = 0, therefore, there is no reachable state ¢ € ¥ containing any
fact from 3j; which means that every h € H is an h?-mutex. O

To show that the implication in the other direction than stated in Theorem 31 does not
hold, i.e., that there can be an h?-mutex that is not a subset of any fam-group, we can
get back to our example planning task. The pair of facts {(carry-food), (fed)} is an
h?-mutex, but this pair of facts cannot be part of any fam-group, because (carry-food)
cannot be balanced in the operator take-food by any other fact since take-food has empty
delete effects.

In Section 5, we described how mutex groups can be inferred in regression and in the
same way can be inferred h’-mutexes. For any planning task, the corresponding dual plan-

495



FISER & KOMENDA

ning task (Definition 10) can be constructed and h*-mutexes inferred there are, therefore,
invariants with respect to reachable states in the dual planning tasks. As Theorem 31 de-
scribes the relationship between fam-groups and h?-mutexes in progression, the theorem
also holds for fam-groups and h?-mutexes in the corresponding dual planning task.

8. Inference of Fact-Alternating Mutex Groups

In this section, we describe an algorithm for the inference of fam-groups. The main part
of the algorithm consists of an integer linear program (ILP) based on the definition of
fact-alternating mutex groups (Definition 4) rewritten into a set of constraints. The ILP is
constructed in the following way.

Each variable x; of the ILP corresponds to a fact f; € F from the planning task.
Variables can acquire binary values 0 or 1 only, 0 meaning that the corresponding fact is
not present in the fam-group and 1 meaning the corresponding fact is part of the fam-
group. For example having three facts f1, fo, f3, the corresponding ILP would consist of
three binary variables x1, x2, 3 and an assignment of the variables x1 = 1,290 = 0,23 = 1
would mean that the fam-group M consists of facts f1 and f3 (M = {f1, f3}).

The definition of a fact-alternating mutex group can be rewritten into ILP constraints
as follows:

Yo om<, (1)

fi€Sinit
Yoe O: Z x; < Z x;. (2)
fi€add(o) fi€del(o)Npre(o)

Equation (1) is a constraint saying that the initial state must have at most one common
fact with the fam-group and corresponds to the first condition in Definition 4 (|M N sini| <
1). Equation (2) corresponds to the second part of the definition and it ensures that the
mutex property is preserved by all operators (|M Nadd(o)| < |M N pre(o) Ndel(o)]).

The objective function of the ILP is to maximize ) f,eF %i- The maximization enforces
the inference of a fam-group containing the maximum possible number of facts.

Unfortunately, the solution to this ILP is only one fam-group, so some mechanism
enabling inference of all fact-alternating mutex groups is required. This drawback can
be resolved by solving the ILP repeatedly, each time with added constraints that exclude
already inferred fam-groups. Let M denote a known fam-group. Such a fam-group and all
its subsets can be excluded from the ILP solution by adding the constraint

figM

The constraint forces the ILP solver to add a fact to the solution that is not present
in the known fam-group M and, thus, excluding M and all its subsets. In other words,
since we are not interested in the fam-group M and its subsets, we know that any other
fam-group must contain a fact that is not a part of M.

The whole fam-group inferring algorithm is encapsulated in Algorithm 2. First, the
ILP constraints are constructed according to Equations 1 and 2, which ensures that the
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Algorithm 2: Inference of fact-alternating mutex groups using ILP.

Input: Planning task II = (F, O, Sinit, Sgoal)
Output: A set of fam-groups M
Initialize ILP with constraints according to Equations 1 and 2;
Set objective function of ILP to maximize }_ o r %;;
Solve ILP and save the resulting fam-group into M;
while |M| > 1 do
Add M to the output set M;
Add constraint according to Equation (3) using M;
M + 0;
Solve ILP and if a solution was found, save the resulting fam-group into M;

© 00 N O bk W N =

end

solutions of the ILP will be fact-alternating mutex groups. Then, in turn, a maximal fam-
group is inferred through the ILP solution and consequently removed from future solutions
using the added constraint corresponding to Equation (3). The cycle continues until the
inferred fam-groups consist of, at least, one fact. Since a maximal fam-group is produced at
each step, arriving at smaller and smaller fam-groups means that the algorithm eventually
terminates. The combination of the maximization and removal of the found fam-groups and
all theirs subsets from the solutions in the following steps also ensures that every produced
fam-group is unique and it is never a subset of any already found fam-group.

Theorem 32. Algorithm 2 is complete with respect to the mazimal fact-alternating mutex
groups.

Proof. To prove Theorem 32 by contradiction, let us assume that Algorithm 2 was termi-
nated and it produced a set of fam-groups, and let us assume that there exists a fam-group
M that is not a subset of any fam-group produced by Algorithm 2. Such a fam-group must
satisfy the constraints expressed by Equations 1 and 2 and it must contain, at least, one
fact that is not part of any fam-group produced by Algorithm 2. This is not violated by
the ILP constraints in the last cycle of Algorithm 2 because they consist of Equations 1
and 2 and a set of Equation (3) constraints that force the next fam-group to include a fact
that is not part of any fam-group found so far. This means that Algorithm 2 could not
terminate, thus, such an M does not exist and Algorithm 2 is complete with respect to
maximal fact-alternating mutex groups. O

Note that Equation (3) can be used for the exclusion of any set of facts. This means
that Algorithm 2 can be initialized with any set of mutex groups obtained by any other
method. Therefore, if there is a faster but incomplete alternative available for the inference
of fam-groups, the fam-groups inferred by that method can be used for the initialization
of Algorithm 2. This could speed up the running time of the inference algorithm while
preserving its completeness.

Furthermore, the algorithm can be easily altered to an any-time algorithm just by setting
a limit on the number of cycles or by the premature stopping of the computation, because
the algorithm produces one correct fam-group per cycle.
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Algorithm 3: Pruning of a planning task using inferred fam-groups.

Input: Planning task II = (F, O, Sinit, Sgoal)
Output: A planning task IT" = (F*, O, Stit> Sgoal), @ set of fam-groups M

1 F*
2 do
3

© W0 N O oo

10

*
— F, O <+ O, st .. < Sinit;

nit
Remove facts returned by IrrelevantFacts(F, O, Sgoar) from F*, sy and all
operators in O™;
Use Algorithm 2 with IT* and store the inferred fam-groups into M;
for each 0 € O and M € M do
‘ if [pre(o) N M| > 2 or |add(o) N M| > 2 then Remove o from O;
end
for each 0o € O" and M € M such that IM N sgoqr| > 1 do
‘ if |M N pre(o) N del(o)| > 1 and |M N add(o)| = 0 then Remove o from O;
end

. . * *
11 while change in F~ or O occurred;

12 function IrrelevantFacts(F, O, 540q1)

13 U < sgoai;

14 R« 0;

15 while |U| > 0 do

16 f < choose any fact from U;

17 U< U\{f}

18 if f ¢ R then

19 R+ RU{f};

20 for each o € O such that f € (add(o) U del(0)) do
21 | U« UU{g|gepre(o), g & R};
22 end

23 end

24 end

25 return F \ R;

26 end

9. Pruning of Planning Tasks

In Section 4, we have described how mutex groups and fam-groups can be used for the
pruning of operators and facts in planning tasks as a preprocessing step. Any mutex group
can be used for the removal of unreachable operators by checking its preconditions and add
Moreover, fam-groups can be used for the removal of superfluous operators that can
produce dead-end states only (i.e., the removal of dead-end operators). The algorithm for

effects.

the pruning of planning tasks we propose is encapsulated in Algorithm 3.

The algorithm repeatedly removes facts and operators until a fixpoint is reached when
no more facts or operators can be removed. In each cycle, the irrelevant facts are detected
and removed, then fam-groups are inferred and they are, in turn, used for the removal of

unreachable operators and dead-end operators.
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The detection and removal of irrelevant facts (line 3) follows the idea used by Helmert
(2006) for removal of variables in finite domain representation of a planning task. First,
a causal graph of facts is constructed, i.e., a directed graph with facts represented by
nodes and an edge f; — fo connecting every pair of facts fi; and fy if fi € pre(o) and
f2 € add(o)Udel(0) for some operator o. Then, a fact in the causal graph, from which there
is no path leading to a goal fact, is not useful for finding a plan because it takes no part
in the applicability of the operators in reachable states. Such a fact can be safely removed
from the planning task. The function IrrelevantFacts listed in Algorithm 3 shows how
irrelevant facts can be found without actually constructing a causal graph.

The inferred fam-groups (line 4) are used for the removal of unreachable operators (lines
5-7) which are those that cannot be applied in any reachable state as already discussed in
Section 4. Finally, fam-groups containing a fact from the goal specification are used for
removal of dead-end operators (lines 8-10) according to Corollary 8.

Algorithm 3 can be also used with any other type of mutex group, i.e., line 4 can be
replaced by any other algorithm that provides a set of mutex groups, but the removal of
dead-end operators (lines 8-10) cannot be used, because Corollary 8 does not generally hold
for any type of mutex group.

10. Experimental Results

All algorithms experimentally evaluated in this section were implemented in the Fast Down-
ward’s preprocessor® (Helmert, 2006) written in Python programming language. Algo-
rithm 2 and the h? heuristic were implemented as C extensions for Python. The experi-
ments were run on a computer with an Intel Xeon E5-4617 2.9GHz processor and a memory
limit set to 8 GB RAM. The algorithms were evaluated on all domains from the optimal
deterministic track of the International Planning Competition (IPC) 2011 and 2014 that do
not contain any conditional effects after grounding (i.e., all except the Citycar domain from
IPC 2014). The domains that contain negative preconditions were also included because all
algorithms presented here work with them without change.

The algorithms proposed in this work are compared with two different methods for
inferring mutex groups that were already discussed in Section 2. One is the inference
algorithm implemented in the Fast Downward’s preprocessor (Helmert, 2009) that will be
abbreviated by fd from now on. Helmert’s algorithm was used by most planners that
participated in the last IPC 2014 in the deterministic track. Therefore, the comparison
with fd is certainly relevant to the planning community. The time and memory limits of
fd set in Fast Downward were disabled. The other state-of-the-art algorithm that we use
for comparison is the h? heuristic (Haslum & Geffner, 2000). The relationship between
h?-mutexes and fam-groups was already discussed in Section 7.

The algorithm for inference of fam-groups (Algorithm 2) was implemented using a
CPLEX ILP solver (v12.6.1.0) running with default configuration in one thread. We will
refer to this algorithm as fa.

The presented algorithms are experimentally evaluated in several different ways. The
algorithms are compared in terms of mutex pairs (Section 10.1), because the decompo-
sition of the inferred mutex groups into a set of mutex pairs allows us to compare the

3. https://github.com/danfis/fast-downward, branch jair-fa-mutex
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algorithms without considering the differences in the shapes and sizes of the mutex groups.
In Section 10.2, the algorithms are compared with respect to the mutex groups as they
were inferred. In Section 10.3, the running times of the inference algorithms are compared
and a faster version of fa is introduced. Utilization of mutex groups in a translation to
finite domain representation is evaluated in Section 10.4. In Section 10.5, the algorithms
are compared in the context of pruning of planning tasks (Algorithm 3) and the impact of
pruning on the coverage over all tested domains is evaluated. And lasty, comparison with a
state-of-the-art pruning method that uses inference of h?-mutexes in both progression and
regression is provided in Section 10.6.

10.1 Comparison in Terms of Mutex Pairs

Any mutex group can be decomposed into a set of mutex pairs by enumerating all pairs
of facts the original mutex group consists of. Such a decomposition provides a common
base for comparing the algorithms in terms of inferred mutex groups. For example, h? is
able to produce mutex pairs only, but fa is designed to produce maximal fam-groups. The
pair decomposition provides a transparent method for comparing these two and all other
algorithms for the inference of mutex groups.

On the other hand, this method of comparison clouds the fact that £d and fa both
provide a richer structure than just a set of mutex pairs. Although it is always possible to
reconstruct back any mutex group from its pair decomposition by using some algorithm for
enumerating maximal cliques, it must be taken into account that the reconstruction alone
is NP-Hard and it can generate an exponential number of mutex groups (i.e., possibly many
more besides the original ones that were used for the decomposition). The significance of
having richer mutex group sets than just pairs of facts is discussed in more depth in the
following sections.

All mutex groups inferred by £d, and fa were decomposed into mutex pairs (h? generates
mutex pairs, so decomposition was not necessary). Table 2 shows the sums and ratios of
a number of inferred mutex pairs per domain and overall by all tested algorithms, the
maximum numbers are highlighted (the column #ps shows the number of tasks with the
corresponding domain).

fd had the poorest performance with 1340085 inferred mutex pairs overall. The highest
number of mutex pairs was inferred by h? (12919402) and decomposition of mutex groups
inferred by fa results in 5612542 mutex pairs overall. This seems as a huge lead for h?
before all other algorithms, but careful investigation of Table 2 shows us that most of
the margin is disproportionately made in a single domain tetris14. The reason for this
is that the domain tetris14 models a grid of positions and several objects of different
shapes that can occupy the grid. After grounding, the tasks from the domain tetrisi4
contain a high number of facts that have strong restrictions on their co-occurrence in the
grid, therefore they contain a high number of mutex pairs. In this particular case, h? is
much more effective in inferring these mutex pairs than any other algorithm, but fa is still
much more effective than the widely used algorithm f£d. Without the domain tetrisi14 the
numbers are 1317533, 1644252, and 1922128 for £d, fa, and h?, respectively. This shows
that h? has still the best performance, but with a much smaller margin than fa.
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. #mutex pairs ratio
domain #PS| g h2 fa fd | h? | fa 100
childsnack14 20 3194 3194 3194([1.00|1.00] 1.00 10°
elevators11 20| 11598 11598| 11598]|1.00|1.00|1.00
floortilel1 20| 28366 28366| 28366 |/1.00|1.00|1.00 104
floortile14 20| 17572 17572| 17572]|1.00|1.00|1.00 5
hiking14 20 2505 2505 2505 (11.00/1.001.00 10
transport11 20| 20344 20344| 20344 /1.00|1.00|1.00 102 ¢
transport14 20| 114168 114168| 114168 /1.00]1.00|1.00 .
visitall1l 20| 39468 39468 | 39468||1.00(1.00{1.00 10t 18
visitalll4 20| 227268 227268 | 227268/ 1.00|1.00|1.00 §
"barmanll | 201 1816] 12640| 11012(/0.14|1.00|0.87 (1) °
barman14 20 1792 13345| 11645//0.13]1.00|0.87 af
cavedivingl4 20 6304 67847| 61614(/0.09]/1.00|0.91 01 10! 102102 10* 10° 106
ged14 20| 48452 69564 | 68326/0.70|1.000.98 fd
maintenancel4 20 0 1039 10391{/0.00|1.00|1.00
nomysteryl1 20| 232677| 280875| 232677(0.83|1.00(0.83
openstacks11 20 5890 7940 5890(0.74|1.00|0.74 106
openstacks14 20| 16085 21340 16085(/0.75/1.00|0.75 5
parcprinter1l 20| 15255 50162 29235/0.30|1.00|0.58 10
parkingl11 20| 213540| 312550| 213540 /0.68]1.00]0.68 104
parking14 20| 178720| 260880| 178720/0.69|1.00]0.69 5
pegsoll1l 20| 11880 13571| 12202|/0.88]1.00/0.90 =10
scanalyzerll 20| 31952 33488 | 33440//0.95/1.00(1.00 102
sokoban11 20| 85222 89519 | 85241(/0.95(1.00(0.95
tetris14 20| 22552|10997274 3968290 ||0.00|1.00|0.36 10!
tidybot11 20 240 82248 | 82248/|0.00(1.00(1.00 1L
tidybot14 20 240| 133744 1337441/0.00|1.00]1.00 0
woodworking11 20 2985 6 893 31111/0.43|1.00|0.45 140213 114 105 1 6
by 540 | 1340085 | 12919402 | 5612542 |[0.10| 1.00 | 0.43 01 10°1010°10710°10
¥\ tetris14 520(1317533| 1922128]|1644252|/0.69|1.00|0.86 h?

Table 2: Sum and ratio of the number of inferred mutex  Figure 4: Comparison of the
pairs. number of inferred mutex pairs
in each planning task.

The ratios of a number of mutex pairs show that fa has very similar results as h? in most
domains except the aforementioned tetris14 and also in woodworkingll, parcprinterli,
parkingl1l, and parkingl4 (although the difference is smaller). The small difference be-
tween h? and fa can also be seen in the bottom scatter plot in Figure 4 showing that h?
and fa produce similar results in most planning tasks.

The top scatter plot in Figure 4 shows that fa produces at least as many mutex pairs as
fd in every single planning task. The relative difference between fa and f£d is much higher
than between fa and h? which is a promising result considering that £d unlike h? is able
to produce mutex groups consisting of more than two facts. An interesting result is that
fa produced at least one mutex group in every tested planning task whereas fd did not
generate any mutex group in 21 planning tasks (the whole maintenance14 domain and one
planning task from tetrisi4).

10.2 Comparison of Inferred Mutexes

In the previous section, we provided an analysis of the algorithms for inference of mutex
groups in terms of mutex pairs that were obtained by decomposition of the actual inferred
mutex groups. As mentioned before, this type of analysis disregards the fact that the mutex
groups consisting of more than two facts can provide more useful information than those
formed by just a pair of facts. A translation from PDDL to FDR is one of the applications
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domain #ps| fd h2* fa |[|fa>fd|h2*>fd|h2*>fa
childsnack14 20 618 618 618 0 0 0 LA I B B
elevatorsll 20 245 245 245 0 0 0 102
floortilel1 20 624 624 624 0 0 0
floortile14 20 575 575 575 0 0 0
hiking14 20 229 229 229 0 0 0
transport11 20| 217 217| 217 0 0 0 & 10!
transport14 20 206 206 206 0 0 0
visitallll 20 20 20 20 0 0 0
visitall14 20 20 20 20 0 0 0
barmanll | 200 208 1596 504 200 200 20 [1) e
barmanl4 20 206 1663 498 20 20 20 V\,M el
cavediving14 20 184 3004 800 20 20 20 01 10t 102
ged14 20 555 6261 555 20 20 20 fd
maintenancel4 20 0 460| 460 20 20 0
nomysteryll 20 190 3874 190 0 20 20 10°
openstacks11 20 800 2 850 800 0 20 20 frm T A
openstacksl14 20 730 5985 730 0 20 20 104 © ]
parcprinter1l 20 105 3426 | 1118 20 20 20 r 1
parkingl1 20 870| 16 590 870 0 20 20 103 L ]
parkingl14 20 820| 13860 820 0 20 20 r ]
pegsolll 20 680| 67617 699 3 20 20 F102 [ 4
scanalyzerll 20 392 680 432 5 5 1 [ o]
sokoban11 20 983 1403 985 1 20 20 10t - 4
tetris14 20 52 7947 676 20 20 20 [, ]
tidybot11 20 60 200 200 20 20 0 1L e =
tidybot14 20 60 200| 200 20 20 0 0 B i i i
woodworking11 20 632 1796 721 13 20 20 01 10' 102 103 10%* 105
P 540(10281|{142166| 14012 202 345 281 h2*

Table 3: Number of inferred mutex groups. Figure 5: Comparison of

the number of inferred mutex
groups in each planning task.

for which larger mutex groups are desirable. Other possible applications were discussed in
Section 4 and there are possibly more to be discovered given the tight relationship between
the satisfiability of planning tasks and the inference of maximum mutex groups as described
in Section 6.2.

In this section, we compare the inferred mutex groups as they are produced by the
algorithms fd and fa. Since h? can produce mutex pairs only, which we have compared in
the previous section, we decided to use an algorithm for enumerating all maximal cliques
(Bron & Kerbosch, 1973), implemented in the NetworkX Python library (Hagberg, Schult,
& Swart, 2008), for construction of maximal mutex groups from the mutex pairs generated
by h%. This modified algorithm will be denoted by h?*.

The sums of a number of inferred mutex groups by all three algorithms are listed in
Table 3, the maximal values are highlighted. The table also contains columns labeled as
a>b showing the number of planning tasks in which algorithm a generated a richer set of
mutex groups than b, i.e., the number of planning tasks in which a inferred more mutex
groups than b or the number of inferred mutex groups was the same but some mutex group
inferred by a was a proper superset of some mutex group inferred by b. The latter happened
only in a domain ged14 where fa and f£d generated the same number of mutex groups in
every planning task, but the mutex groups inferred by fa contained more facts.

Every mutex group that was generated by £d was also generated by fa or it was a subset
of some mutex group generated by fa (only in the case of ged14). In 202 out of 540 planning
tasks, fa generated a richer set of mutex groups. These results are also well documented
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on the top scatter plot in Figure 5. All of the 3731 mutex groups that were generated by
fa on top of those generated by fd were not supersets of any mutex group generated by
fd. In other words, the whole difference between the number of inferred mutex groups by
fa and fd corresponds to the new mutex groups that are not just extensions of the mutex
groups generated by fd.

Since a set of h?-mutexes is always a superset of decompositions of all fam-groups (The-
orem 31), h?* must always generate a richer set of mutex groups than fa (and, thus, also
than fd) which is also reflected in Table 3. Many of the mutex groups inferred by h?*
are supersets of fa mutex groups that differ in a couple of facts only. The main source of
the big difference between the number of mutex groups inferred by h?* (142166) and fa
(14012) is caused by the fact that the maximum possible number of mutex groups grows
exponentially which follows from the tight relationship between mutex groups and graph
cliques (Proposition 27). This aspect of the comparison is clearly visible if we compare the
bottom scatter plot in Figure 5, showing the number of mutex groups, with the bottom
scatter plot in Figure 4, depicting the number of mutex pairs. The comparison shows how
the relatively small difference between the number of mutex pairs translates into a more
substantial difference in the number of maximal mutex groups. Moreover, similarly to h?*,
we can decompose fam-groups inferred by fa into mutex pairs and then use an algorithm for
enumerating maximal cliques for the construction of new mutex groups. This approach just
generates the original fam-groups in most cases, but, for example, in the domain tetrisi4,
the resulting number of mutex groups is 141852 (which would, in sum, exceed the results
for h?*) for similar reasons why the number of mutex groups inferred by h?* is so high in
comparison to fa.

For these reasons, we do not consider this type of analysis to be sufficient for a com-
parison of h** with fa (or £d). Therefore, we have decided to borrow a well established
concept from graph theory called the clique cover number. The clique cover number is the
minimum number of cliques that cover all the nodes of a graph. Similarly to this, we use
the mutex group cover number (or just cover number for short) as the minimum number of
mutex groups that cover all facts of a planning task. None of the tested algorithms gener-
ates single facts as mutex groups, but since every single fact is a mutex group by definition,
we add them artificially as if they were generated by the corresponding algorithm solely
for the purpose of the computation of the mutex group cover number if we need them for
covering the facts that are not covered by any other generated mutex group. To demon-
strate a mutex group cover number on an example, consider a planning task with five facts
{f1, f2, f3, fa, f5} and suppose that £d generates a single mutex group { f1, f2}, fa generates
two mutex groups {f1, fo} and {f2, f3, f1}, and h®* generates {f1, fo, f3, f1, f5}. In this case
the cover number for fd would be 4, for fa it would be 3 and for h?* it would be only 1.

When comparing cover numbers, the smaller is better because the mutual exclusion
between the facts can be described more concisely by a smaller number of mutex groups.
The cover number can be also interpreted in the context of finite domain representation as
the minimum number of variables that can be used for the full description of all reachable
states given the inferred mutex groups by the corresponding algorithm.

The sum of the mutex group cover numbers for each domain and overall is listed in
Table 4 and, as in the previous case, the table also includes the number of planning tasks
in which one algorithm achieved a smaller cover number than the other one. The table
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domain #ps| fd h2* fa ||fa>fd|h2*>fd|h2*>fa

childsnack14 20| 1248 1248 1248 0 0 0

elevatorsl1 20 245 245 245 0 0 0

floortilell 20 576 576 576 0 0 0

floortile14 20 535 535 535 0 0 0

hiking14 20 229 229 229 0 0 0

nomysteryll 20 190 190 190 0 0 0

openstacks11 20 800 800 800 0 0 0

openstacks14 20| 1440| 1440| 1440 0 0 0

parkingl1 20 870 870 870 0 0 0

parking14 20 820 820 820 0 0 0

pegsoll1l 20 680 680 680 0 0 0

scanalyzerll 20 432 432 432 0 0 0

sokobanl1l 20| 1284 1284 | 1284 0 0 0

transportll 20 217 217 217 0 0 0

transport14 20 206 206 206 0 0 0

visitallll 20| 1030 1030| 1030 0 0 0

visitalll4 20| 2454 2454| 2454 0 0 0

barmanll | 20| 2164] 555| 584 | 200 200 20

barmanl4 20| 2210 555 581 20 20 20 102

cavedivingl14 20| 3726 913| 913 20 20 0

ged14 20| 330 328 330 0 2 2 &

maintenancel4 20| 1285 894 894 20 20 0

parcprinterll 20| 2487 985| 985 20 20 0 10t

tetris14 2016672 560| 560 20 20 0

tidybot11 20| 5708| 2732|2732 20 20 0

tidybot14 20| 7472| 3514|3514 20 20 0

woodworkingll| 20| 1815| 1290| 1804 6 20 20 10! 102

P 540 [ 57125 |25 582 |26 153 166 182 62 h%
Table 4: Sum of mutex group cover numbers. Figure 6: Comparison of mu-

tex group cover numbers in each
planning task.

shows that the cover number of fa was smaller than of £d in 166 planning tasks. If we
compare these results with the results from Table 3, we can see that, in 36 planning tasks, fa
generated more mutex groups than f£d, but without decreasing the cover number (domains
pegsolll, scanalyzerll, sokobanll, ged14, and 7 planning tasks from woodworkingl1).

The top scatter plot in Figure 6 clearly shows that the cover number of fa is smaller
than (or the same as) fd in all planning tasks, which was expected given the comparison
laid out above. Rather surprising is the fact that the overall cover number of f£d is more
than twice as much as that of fa even though fa inferred only 50% more mutex groups.
This result suggests that if fa is used as a replacement for £d in a translation from PDDL
to FDR, the overall memory footprint of the planner will be significantly reduced.

The difference between the overall mutex group cover number of h?* and fa is almost
negligible. This also corresponds to the bottom scatter plot in Figure 6. h?* has a lower
cover number than fa in 62 out of 540 planning tasks. This means that in a majority of the
planning tasks in which h?* produced more mutex groups (namely 219), the cover number
remained the same for both h?* and fa.

10.3 Comparison of Running Times

Table 5 shows the sums of running times in seconds of implemented algorithms in each
domain and overall and Table 6 shows the minimal and maximal running times. The
results show that fd is almost 20 times faster than h? and more than 120 times faster than
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domain #ps| fd h2 h2* fa fagq

barmanil 20| 0.54| 1.10 137 17.39| 15.47

barman14 20| 0.74| 1.28 1.27| 17.87| 15.55 )

cavediving14 20| 0.47| 6.30 9.53| 263.07| 213.89 10

childsnack14 20| 0.29| 2.51 245  62.11 6.64

elevators11 20| 0.18| 0.59 0.79 6.09 3.31 10!

floortilel1 20| 0.42| 0.62 1.29| 17.30 4.06 =

floortile14 20| 0.41| 0.41 0.66| 12.62 3.08 =

gedl14 20| 5.91| 1.44 3.61| 109.67| 123.71

hiking14 20| 0.70| 4.21 4.10| 1047 7.89 101

maintenancel4 20| 0.07 0.08 0.10 20.78 22.35

nomysteryll 20| 1.23 8.99 38.87 19.92 9.30

openstacks11 20| 0.55| 0.94 1.02| 22.26 4.23 1072
openstacks14 20| 1.07| 3.66 4.38| 49.83 7.57 102 100t 1 10 102
parcprinter11 20| 0.33 0.62 2.44| 100.57| 168.33 fa

parking11 20| 0.48| 22.79 63.36| 410.20| 25.72

parking14 20| 0.66| 17.34 46.95| 312.28| 22.41 105 O
pegsoll1 20| 0.21| 0.35 2.15| 18.28 3.41

scanalyzerll 20| 2.28| 64.34 64.39| 885.05| 437.14 104

sokoban11 20| 0.93| 1.39 6.15| 67.90 5.48 10

tetris14 20| 2.18|154.50|483950.68| 620.99| 629.74

tidybot11 20| 2.35| 49.70 52.36| 60.92| 55.79 102

tidybot14 20| 2.93| 93.38 96.10| 101.64| 88.49 & 101

transport1l 20| 0.23 2.07 2.40 10.97 5.03

transport14 20| 0.35| 6.13 14.90| 21.00 8.75 1

visitallll 20| 0.08| 0.35 1.45 0.88 2.72 101

visitallld 20| 0.27| 2.07 35.33 1.46 2.75

woodworkingll| 20| 0.87| 1.20 1.22| 27.15| 10.62 1072 Knle vl ol bl il
b 540 | 26.73 | 448.37 | 484 409.30 | 3268.67 | 1 903.43 102101 1 10! 102 103 10% 10°
¥\ tetris14 520 | 24.55 | 293.87 458.63|2647.68 | 1273.69 h2*

Table 5: Sum of running times in seconds of inference Figure 7: Comparison of running
algorithms. times in each planning task.

fa. The running time of £d never exceeds 2 seconds and the sum of running times over all
planning tasks in the data set is only 26.73 seconds. The running time of h? does not exceed
10 seconds except for the domains scanalyzer1l and tetrisi4 and the overall running
time does not exceed eight minutes. fa is more than seven times slower than h? which is
an expected result considering that h? is a polynomial algorithm. The slowest inference
of fa was measured in the scanalyzer1l domain (885.05 seconds) but most of this time
was spent on a single planning task. The overall time that fa spent in all planning tasks
combined amounts to almost 55 minutes which corresponds to an average of 6 seconds per
planning task, but there is a big variance over the tested domains as Table 6 suggests. The
difference between h? and fa was expected since fa requires to solve the ILP repeatedly,
but h? runs in polynomial time. A little surprising is the fact that £d turned out to be the
fastest of the tested algorithms by a huge margin, because £d has not guaranteed polynomial
running time since it can generate an exponential number of mutex group candidates.

The overall running time of h** (Table 5) over all tested planning tasks amounts to
more than 100 hours, but almost all of this time is spent in a single domain tetrisi4.
The reason is that tetrisi4 contains a huge number of h?>-mutexes, which results in the
construction of large densely connected graphs in which h?* must find maximal cliques.
Without considering tetris14, the sum of running times is only under eight minutes which
is only about 1.5 times more than the inference of h2-mutexes by h? (458.63 seconds for h?*
and 293.87 seconds for h?). This is a surprising result, because it means that the inference
of h?-mutexes in all domains except tetris14 needed twice as much time as the inference of
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. fd h2 h2* fa fafd

domain #ps . . . . .

min max | min max | min max min max |min max
barmanll 201 0.02 0.03]0.03 0.12]0.03 0.14] 0.35 1.58 0.35 1.37
barmanl4 20| 0.03 0.12|0.03 0.20| 0.03 0.12 0.39 1.66| 0.38 1.39
cavediving14 20| 0.01 0.04|0.02 1.24|0.03 1.9310.49 5891|049 45.58
childsnack14 20| 0.01 0.02|0.02 0.43|0.02 0.46 | 0.63 8.65|0.14 0.63
elevatorsll 20| 0.01 0.01]0.02 0.05|0.02 0.11] 0.16 0.54| 0.13 0.28
floortilel1 20| 0.01 0.03|0.01 0.11|0.01 0.210.29 2.09|0.12 0.80
floortile14 20| 0.02 0.03|0.01 0.03|0.02 0.05| 0.33 1.53]0.13 0.19
gedl4 201 0.21 0.74|0.01 0.12] 0.02 0.39] 1.41 10.47| 1.65 12.36
hiking14 20| 0.01 0.17|0.01 0.89|0.01 0.79| 0.11 1.09] 0.12 1.15
maintenancel4 20| 0.00 0.01]0.00 0.01]0.00 0.01] 0.03 6.56| 0.11 7.09
nomysteryl1l 20| 0.01 0.15|0.01 1.51|0.02 7.340.13 2.67|0.12 0.96
openstacks11 20| 0.01 0.04|0.01 0.10| 0.01 0.11] 0.36 2.20] 0.13 0.30
openstacks14 20]0.02 0.17]0.04 0.41|0.04 0.51| 0.55 5.440.19 0.62
parcprinterl1 20| 0.01 0.02|0.01 0.10|0.01 0.56| 0.41 31.04| 0.50 57.93
parkingl1 201 0.02 0.04]0.21 2.84|0.38 7.54| 4.44 54.30| 0.48 2.65
parking14 20]0.02 0.15]0.21 1.92|0.40 5.53|4.39 34.00| 0.42 2.67
pegsolll 20| 0.01 0.01|0.01 0.02|0.02 1.64 | 0.69 3.26 | 0.13 0.62
scanalyzerll 20| 0.02 1.32| 0.01 44.87| 0.02 33.11| 0.23 654.01| 0.19 379.87
sokobanll 20| 0.03 0.28| 0.01 0.48] 0.02 3.04| 0.41 35.72|0.14 1.48
tetris14 20| 0.02 0.40| 0.33 33.21| 2.61 175640.84 | 1.71 110.22| 1.88 119.36
tidybot11 20| 0.06 0.27]0.24 4.84|0.31 4.96 | 0.56 7.04]0.79 4.41
tidybot14 20(0.10 0.20|2.69 8.64| 2.63 8.77| 2.88 10.02]| 2.75 7.06
transport11 20| 0.01 0.02|0.02 0.28]0.02 0.32] 0.16 1.240.13 0.39
transport14 20| 0.01 0.03|0.02 0.99|0.02 3.040.19 3.23|0.13 1.01
visitallll 20| 0.00 0.01|0.00 0.06|0.00 0.32 0.03 0.07] 0.09 0.61
visitall14 20| 0.00 0.09|0.01 0.47]|0.01 15.771 0.04 0.19|0.10 0.23
woodworking11 20| 0.03 0.11]0.02 0.11|0.02 0.12|1 0.43 4.00| 0.18 1.75
overall 5401 0.00 1.32|0.00 44.87| 0.00 175640.84| 0.03 654.01| 0.09 379.87
overall \ tetris14| 520|0.00 1.32| 0.00 44.87| 0.00 33.11| 0.03 654.01| 0.09 379.87

Table 6: Minimal and maximal running times in seconds of inference algorithms.

the maximal mutex groups from these h>-mutexes even though the inference of h?-mutexes is
polynomial in time, but the inference of the maximal mutex groups is NP-Hard. Therefore,
it seems that, in most cases, h®>-mutexes form relatively small or simple structures.

In comparison to h?*, fa requires almost six times more time on all domains except
tetrisi4. Considering that both h?* and fa are NP-Hard (both are implemented using
exponential algorithms) and that h?* always produces supersets of fa, we suppose that fa
can be implemented more efficiently either by using some appropriate heuristic for ILP, or
by using some other type of formulation than ILP.

As suggested in Section 8, fa can be combined with a faster algorithm to increase its
speed while preserving its completeness. Since the fd generated only subsets of mutex
groups inferred by fa (in all cases), we have implemented a combination of fa and fd that
we denote by fagg. The algorithm fagq first infers mutex groups by fd and then runs
fa initialized by these mutex groups (see Section 8 and specifically Equation (3)), i.e., fa
spends its computational time only on the mutex groups that were not already inferred
by £d. The resulting running time of fagq over all domains is below 32 minutes which is
only about 58% of the running time of fa. Without considering the domain tetris14, fa
is more than two times slower than fagq Therefore, the difference between h?* and fagq
is smaller than between h?* and fa. Thus, fagq proved to be a significant improvement
over fa.
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domain #ps| fd h2* fa fa>fd | fd>fa | h2*~fa | fa>~h2* | h2*~fd | fd>~h2?*
childsnack14 20| 1248 1248| 1248 0 0 0 0 0 0
elevatorsll 20 245 245 245 0 0 0 0 0 0
floortilell 20 624 624 624 0 0 0 0 0 0
floortile14 20 575 575 575 0 0 0 0 0 0
ged14 20 330 330 330 0 0 0 0 0 0
hiking14 20 229 229 229 0 0 0 0 0 0
nomysteryll 20 190 190 190 0 0 0 0 0 0
openstacks11 20 800 800 800 0 0 0 0 0 0
openstacks14 20| 1440 1440| 1440 0 0 0 0 0 0
scanalyzerll 20 432 432 432 0 0 0 0 0 0
transport11 20 217 217 217 0 0 0 0 0 0
transport14 20 206 206 206 0 0 0 0 0 0
visitallll 20| 1010| 1010| 1010 0 0 0 0 0 0
visitall14 20| 2434| 2434| 2434 0 0 0 0 0 0
barmanll | 20| 2164 555| 5841 20| o 200 o 200 0
barmanl4 20| 2210 555 581 20 0 20 0 20 0
cavediving14 20| 3726 913 913 20 0 0 0 20 0
maintenancel4 20| 1285 536 536 20 0 0 0 20 0
parcprinterll 20| 2467| 1026|1016 20 0 0 10 20 0
parkingl11 201 1210| 1340|1210 0 0 0 20 0 20
parking14 20 1140| 1260|1140 0 0 0 20 0 20
pegsolll 20| 680 683 683 0 3 0 0 0 3
sokobanl1 20| 1066 1065| 1065 1 0 0 0 1 0
tetris14 2016672 676| 676 20 0 0 0 20 0
tidybot11 20| 5708 2732|2732 20 0 0 0 20 0
tidybot14 20| 7472| 3514|3514 20 0 0 0 20 0
woodworkingl1 20| 1595| 1134| 1584 6 0 20 0 20 0
P 540 | 57375|25969 | 26214 167 3 60 50 181 43

Table 7: Number of variables in FDR.

10.4 Translation to Finite Domain Representation

Now we shift our attention from the comparison of the tested algorithms in terms of inferred
mutex groups towards the applicability of the algorithms in the actual planning process.
One straightforward application of mutex groups is in the translation from PDDL to finite
domain representation (FDR). The variables of FDR can be created from mutex groups
such that each mutex group is used for the creation of one variable. Since, at most, one
fact from a mutex group can be true in any state, each value of the corresponding variable
represents one fact from the mutex group. If it is possible that a state does not contain any
fact from the mutex group, the corresponding variable must contain one additional value
“none of those”.

The optimal allocation of variables in terms of the minimal number of variables is NP-
Hard, as already mentioned above when we discussed mutex group cover numbers. (The
minimal mutex group cover number is also the minimal possible number of variables in
FDR.) The Fast Downward’s preprocessor that we used for comparison creates variables
from the inferred mutex groups in a greedy way. In each step, the mutex group contain-
ing the most facts that are not yet covered by any variable (breaking ties arbitrarily) is
taken and a new variable is created from it. Moreover, the preprocessor also performs some
basic pruning based on an inconsistent encoding of operators’ preconditions and the result-
ing unreachability of facts within domain transition graphs of the corresponding variables.
Therefore, the number of created variables can be actually lower than the computed mutex
group cover number.
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1024 1024
256 256
= 64 = 64
16 16
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1 4 16 64 2561024 1 4 16 64 2561024 1 4 16 64 256
fa h%* fa

Figure 8: Comparison of the minimal number of bits required for storing a single state given
the variable encoding in FDR.

Table 7 shows the number of created variables per domain and overall for the algorithms
fd, h?*, and fa. The numbers are very similar to the mutex group cover numbers listed
in Table 4, which means that the greedy algorithm used in Fast Downward can actually
generate a number of variables very close to the possible minimum.

Table 7 also shows a number of problems in which one algorithm generated less variables
than the other one (a>b means a generated less variables than b). £d is clearly dominated by
both h?* and fa, which was expected considering the experimental results from the previous
sections. The results for h?* and fa are very similar. h?* creates less variables than fa in
60 problems, but fa creates less variables than h?* in 50 problems even though the mutex
group cover number for h** must always be lower than for fa. This is clearly an effect of
tie breaking in the greedy algorithm. Rather surprising is the fact that fd dominates h?*
in 43 problems. The reason is, again, tie breaking, but it also shows that in some cases,
h?* generates unnecessarily large number of mutex groups that are pairwise complementary
which confuses the preprocessor. However, it does not mean that the mutex groups cannot
be useful in other parts of the planner. It just means that the particular greedy algorithm
used in Fast Downward is not well equipped for rich sets of mutex groups having many
common facts.

We have also tried a different selection algorithm used in the SymbA* planner (Torralba,
Alcézar, Borrajo, Kissmann, & Edelkamp, 2014), where the mutex groups containing a fact
that is not part of any other mutex group take precedence. Although the resulting number
of variables was lower due to stronger pruning (54 626, 24 009, and 24 551 for fd, h?*,
and fa, respectively), the relative comparison between the methods was almost identical.
The most noticeable difference was that in the parkingll and parkingi4 domains, the
resulting variables were identical for all three methods, and that in parcprinteri1, the
variables were identical for h?* and fa. So, toghether with some small changes in pegsol11
and sokobani1, the dominance changed to 0, 4, and 3 for fd~fa, fa>~h?*, and fd>h?*,
respectively, the rest remained the same.

As mentioned in Section 10.2, the lower number of variables can lead to the lower
memory consumption of the planner, because states in FDR are represented more compactly.
Figure 8 shows scatter plots of the minimal number of bits required for storing a single state
for each planning problem and inference algorithm. The number is computed as the sum

508



FACT-ALTERNATING MUTEX GROUPS FOR CLASSICAL PLANNING

of the number of bits required for storing each variable, e.g., if the planning task has
three variables with 2, 6, and 12 values, then the minimal number of bits is computed as
1+ 3 +4 = 8 bits. Clearly, fa and h?* both generate more compact representations than
fd in most cases. The number of bits required for a single state ranged from 1 to 332 bits
for fa and h?*, and from 3 to 1992 bits for fd.

We have also compared the algorithms in terms of coverage over all planning domains.
We use the MAPlan? planner implementation of A* with the following admissible heuristics:

e lmc: LM-Cut heuristic (Helmert & Domshlak, 2009),
e flow: flow-based heuristic (Bonet, 2013; Bonet & van den Briel, 2014),

e flow-1lmc: flow-based heuristic with added constraints corresponding to the land-
marks obtained using LM-Cut (Bonet & van den Briel, 2014), and

e pot: potential heuristic (Pommerening, Helmert, Roger, & Seipp, 2015) with the
maximization over all syntactic states (Seipp, Pommerening, & Helmert, 2015).

The maximal allowed time for the whole planning process (including preprocessor and
search) was set to four hours and the maximal memory limit was set to 8 GB. For this
experiment, we used fagq instead of fa, because it is the faster variant as was demon-
strated in the previous section.

Although we would like to filter out the influence of the pruning of operators and facts
from the planning tasks, this is not entirely possible. Some operators simply cannot be
translated into FDR because they have their preconditions or effects in conflict with some
variable in FDR. For example, consider the mutex group {fi, fo} that is used for the con-
struction of a new variable, and an operator f1, fo — f3. Such an operator has preconditions
that cannot be represented in the constructed FDR. It should be stressed that this behaviour
is correct, because this operator cannot be used in any reachable state, which follows from
the mutex group {f1, fo}. However, this side effect of using mutex groups for translation
into FDR also needs to be taken into consideration, when the experimental results are
evaluated.

The results are listed in Table 8. A more detailed investigation of the differences between
the tested algorithms shows the following. The lower coverage of f£d in the tetris14 domain
in comparison to both fagq and h?* is due to the considerable pruning of operators during the
translation, which corresponds to the much lower number of variables (Table 7) produced
by fagq and h?*. h?* has lower coverage than fagq in tetrisi4 because the inference of
mutex groups consumed the entire assigned time in some problems (compare with Table 5).

In the domains nomysteryl1, scanalyzerll, parkingl1, and woodworking11, the num-
ber of mutex groups differ. The differences in coverage for these domains are caused by
more successful pruning by the methods that produced richer sets of mutex groups.

The results from the remaining domains that were caused by the different behavior of the
heuristics depending on the FDR variable encoding are more interesting. The indeterminism
of 1mc in the construction of a justification graph presented itself only in one additional
problem solved by £d in tidybot14. The different numbers for f1low and flow-1lmc heuristics

4. https://github.com/danfis/maplan, branch jair-fa-mutex
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domain #ps Imc flow flow-lmc pot

PS| fd h2* fagq | fd h2* fagg | fd h2* fagq| fd h2* fag
barmanll 20 8 8 8 4 4 4 4 4 4 4 4 4
barmanl4 20 9 9 9 6 6 6 6 6 6 6 6 6
cavedivingl14 20 7 7 7 7 7 7 7 7 7 7 7 7
childsnack14 20 0 0 0 0 0 0 0 0 0 0 0 0
elevatorsl1 20| 18 18 18| 12 12 12| 18 18 18| 13 13 13
floortilell 20 9 9 9 4 4 4 4 4 4 4 4 4
floortile14 20 8 8 8 2 2 2 2 2 2 2 2 2
ged14 200 19 19 19| 15 15 15| 15 15 15| 15 15 15
hiking14 200 11 11 11 11 11 11| 10 10 10| 13 13 13
maintenancel4 20 5 5 5 5 5 5 5 5 5 5 5 5
openstacks11 201 18 18 18 15 15 15 15 15 15| 18 18 18
openstacks14 20 3 3 3 3 3 3 3 3 3 3 3 3
pegsolll 200 19 19 19| 19 19 19 19 19 19| 19 19 19
sokobanl1 200 20 20 200 20 20 20| 18 18 18| 20 20 20
transport1l 20 9 9 9 6 6 6 7 7 7 6 6 6
transport14 20 7 7 7 6 6 6 6 6 6 7 7 7
visitallll 200 11 11 11| 17 17 171 19 19 19| 16 16 16
visitalll4 20 6 6 6| 14 14 14| 15 15 15| 12 12 12
nomysteryll | 201 17 17 17| 12712 0 12] 13 14 13| 14 14 14
parcprinterll 200 17 17 171 20 16 19| 20 16 16 6 8 8
parkingl1 20 5 5 5 3 3 3 1 2 1 5 5 5
parking14 20 5 5 5 3 3 3 0 3 0 5 5 5
scanalyzerll 200 14 14 14 13 14 14| 13 14 14| 10 10 10
tetris14 20 8§ 10 11| 13 14 17| 13 14 17| 12 12 13
tidybot11 20 15 15 15 9 11 10| 13 13 13| 14 14 14
tidybot14 200 12 11 11 1 2 2 7 6 6 9 10 10
woodworking11 20| 17 17 17 8 8 8 6 8 6 6 7 6
Py 540 297 298 299 248 249 254 259 263 259| 251 255 255
as % 100|55.0 55.2 55.4|45.9 46.1 47.0|48.0 48.7 48.0[46.5 47.2 47.2

Table 8: Coverage with different inference algorithms used for FDR.

in parcprinterll, tidybotll, parkingi4, and tidybotl14 domains are caused by the
dependency of the linear program (LP) used for computing flow heuristics on the variable
encoding in FDR. We are not aware of any literature regarding the influence of variable
encoding on the computation of LP-based flow heuristics, so we cannot fully explain this
behaviour. The LP-based flow heuristics use LP-relaxation of the integer variables used in
the flow heuristics based on integer linear program (ILP) (Pommerening, Réger, Helmert,
& Bonet, 2014) and we have experimentally verified that the actual values returned by the
LP-based heuristic depends on the encoding of the problem. We have also experimentally
verified that the values returned by the ILP-based flow heuristics is independent to the
encoding (given the identical set of operators and the identical set of facts, i.e., either
no pruning or an identical pruning is involved). The results show that a less compact
representation (e.g., parcprinteril) can positively influence the flow heuristics, but how
should the FDR variables be constructed so that flow heuristics can benefit from it, remains
an open question.

Even though the memory size needed for storing states during the search is significantly
reduced by fagq and h?*, the results do not suggest that it has a direct positive effect on
the number of solved tasks. It seems that the inferred mutex groups used for translation to
FDR have a more profound effect due to pruning (as a side effect of the translation) and
the changed behavior of heuristic functions as discussed above.
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. #operators #removed operators dead-end
domain fd h2* farg fagg fd h2* farg fagg fagg
childsnack14 53 698 53 698 53 698 53 698 0 0 0 0 0
elevatorsll 11450 11450 11450 11450 0 0 0 0 0
ged14 14114 14114 14114 14114 375 375 375 375 0
hiking14 55878 55878 55878 55878 0 0 0 0 0
openstacks11 17320 17320 17320 17320 0 0 0 0 0
openstacks14 55820 55820 55820 55820 0 0 0 0 0
tidybot11 384018 384018 384018 384018 0 0 0 0 0
tidybot14 599 642 599642 599642 599642 0 0 0 0 0
transport11 35216 35216 35216 35216 0 0 0 0 0
transport14 81058 81058 81058 81058 0 0 0 0 0
visitallll 3520 3520 3520 3520 0 0 0 0 0
visitalll4 8912 8912 8912 8912 0 0 0 0 0
barmanll | 13264 11552 13264 8980 | 2544 4256 2544 6828|4284
barmanl14 13610 11930 13610 9014 | 2592 4272 2592 7188 4596
cavediving14 92078 91 832 92078 92078 0 246 0 0 0
floortilell 9188 9188 9188 7078 0 0 0 2110 2110
floortile14 6 544 6544 6544 5050 0 0 0 1494 1494
maintenancel4 984 417 417 166 111 678 678 929 390
nomystery1l1l 72522 55663 72522 72522 0 16859 0 0 0
parcprinterl1 5080 4816 4816 1932 16 280 280 3164 2492
parkingl1 241740 236120 241740 232800| 8940 14560 8940 17880 8940
parking14 201600 196640 201600 193680 | 7920 12880 7920 15840 7920
pegsolll 3700 3499 3651 3490 0 201 49 210 131
scanalyzerll 631288 425680 425720 425720| 4552 210160 210120 210120 0
sokoban11 7166 7140 7166 7164 0 26 0 2 2
tetris1l4 252952 12468 12468 12468 0 240484 240484 240484 0
woodworking11 18175 10148 18141 16 709 0 8027 34 1466 1306
> 2890537 2404283 2443571 240949727050 513304 474016 508090 33665

Table 9: The number of operators after pruning, the number of removed operators and the
number of removed dead-end operators.

10.5 Pruning of Planing Tasks

In Section 9, we proposed an algorithm for pruning planning tasks which uses inferred
mutex groups for the removal of operators and facts. Although the algorithm is formulated
specifically for fa, we also described how the algorithm can be altered to include different
inference algorithms.

The proposed pruning algorithm (Algorithm 3) is experimentally evaluated as a part
of the Fast Downward’s preprocessor. The pruning algorithm is utilized right after the
grounding of the PDDL planning task and the inferred mutex groups are further used for
creation of the variables in FDR. For the solving of FDR planning tasks, we use the same
MAPIan planner with the same admissible heuristics as in the previous section (1lmc, flow,
flow-1lmc, and pot). The time and memory limits were also set to four hours and 8 GB,
respectively. The results in Table 9 and Table 10 were measured without a time limit.

Algorithm 3 with f£d used for inference runs in one cycle only, because fd infers mutex
groups on the lifted PDDL task, therefore, the consecutive cycles cannot remove any addi-
tional operators or facts. The removal of the operators producing dead-end states (dead-end
operators) is not utilized in this configuration because the properties required (Corollary 8)
for this operation are not proven for the mutex groups inferred by f£d. The algorithm h?*
produces mutex groups useful for the creation of FDR variables, therefore, we also compare
this algorithm. In contrast to fd, Algorithm 3 utilizing h?* runs until a fixpoint is reached
because h?-mutexes are inferred from the grounded operators. Operators producing dead-
end states are not removed in this configuration either because the mutex groups generated
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domain ##facts ##variables
fd h 2x fafd fa £d fd h 2x fa £d fa, £d

childsnack14 3674 3674 3674 3674 1248 1248 1248 1248
elevatorsll 2097 2097 2097 2097 245 245 245 245
floortilell 2966 2966 2966 2966 624 624 624 624
floortilel4 2474 2474 2474 2474 575 575 575 575
ged14 3329 3329 3329 3329 330 330 330 330
hiking14 1104 1104 1104 1104 229 229 229 229
openstacksll 2360 2360 2360 2360 800 800 800 800
openstacks14 4280 4280 4280 4280| 1440 1440 1440 1440
scanalyzerll 3088 3088 3088 3088 432 432 432 432
transportll 2886 2886 2886 2886 217 217 217 217
transport14 5544 5544 5544 5544 206 206 206 206
visitallll 2516 2516 2516 2516 773 773 773 773
visitall14 6910 6910 6910 6910| 2258 2258 2258 2258
barmanll | 4604 2847 2876 < 2407| 2164 555 584 584
barmanl14 4692 2891 2917 2411| 2210 555 581 581
cavedivingl14 8368 5515 5515 5515| 3654 821 821 821
maintenancel4 2496 1065 1065 306 | 1248 525 525 153
nomysteryl1l 4404 4180 4404 4404 190 190 190 190
parcprinterll 3977 3716 3684 2494 | 1197 959 945 624
parkingl1 11020 11150 11020 10680|1210 1340 1210 1210
parkingl4 9880 10000 9880 9560|1140 1260 1140 1140
pegsolll 2000 2032 2032 1998 680 683 683 676
sokobanl1 4698 4690 4697 4696| 1066 1060 1065 1065
tetris14 34728 5612 5612 561216672 676 676 676
tidybot11 11476 8380 8380 8380| 5708 2732 2732 2732
tidybot14 15004 10926 10926 10926| 7472 3514 3514 3514
woodworking11 3707 3291 3690 3625| 1489 1025 1476 1454
P 164282 119523 119926 116 242 (55477 25272 25519 24797

Table 10: The number of variables and facts after pruning.

by h?* do not have the required properties (see Section 7). In the case of fam-groups, we use
the fagq variant of the algorithm because it is less time demanding than fa. To stress the
impact of the removal of dead-end operators, we have also evaluated Algorithm 3 without
the removal of this type of operator and this variant is denoted by fagq.

Table 9 shows the number of operators that remained in the planning tasks after pruning,
the number of operators that were removed from the grounded PDDL, and the number of
removed dead-end operators (in the case of fagq). Note that the number of removed dead-
end operators does not necessarily equal the difference between the number of removed
operators by fazq and fagg. The reason is that the pruning algorithm runs in cycles and
the removal of some dead-end operator can cause the removal of more operators in the
next cycle because a different set of mutex groups is inferred. Considering the relationship
between h?-mutexes and fam-groups, h?* must always remove a superset of operators of
those removed by fagq, but the same does not hold for fagg because of its ability to detect
dead-end operators. Similarly, considering the results presented in Section 10.2, where it
was shown that £d produced a subset of fa mutex groups, the operators removed by fd
must be a subset of the operators removed by fagq, fagg and, thus, also by h?*.

The poorest performance, in terms of the removed operators, was shown by fd, which
was expected given the results presented in the previous sections. h** managed to remove
almost twenty times more operators than £d (513 304 vs. 27 050), but only around 8% more
than fagq, and around 1% more than fagq.

If we look at the number of facts that remained in the planning tasks after pruning (Ta-
ble 10), we observe similar results. Everything that was said about the removed operators
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domain #ps lmc flow flow-lmc pot.

p fd h 2x fafd fa. £d fd h 2x fa £fd fafd fd h 2x fafd fa £fd fd h 2x fa £d fa f£d
cavediving14 20 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
childsnack14 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
elevatorsll 200 18 18 18 18| 12 12 12 12| 18 18 18 18| 13 13 13 13
ged14 200 19 19 19 19| 15 15 15 15| 15 15 15 15| 15 15 15 15
hiking14 200 11 11 11 11 11 11 11 11| 10 10 10 100 13 13 13 13
maintenancel4 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
openstacks1l 200 18 18 18 18| 15 15 15 15| 15 15 15 15| 18 18 18 18
openstacks14 20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
pegsolll 200 19 19 19 191 19 19 19 191 19 19 19 19| 19 19 19 19
sokoban11 200 20 20 20 200 20 20 20 200 19 19 19 19 20 20 20 20
transportll 20 9 9 9 9 6 6 6 6 7 7 7 7 6 6 6 6
transport14 20 7 7 7 7 6 6 6 6 6 6 6 6 7 7 7 7
visitallll 200 11 11 11 11 17 17 17 171 19 19 19 19| 16 16 16 16
visitalll4 20 6 6 6 6| 14 14 14 14| 15 15 15 15| 12 12 12 12
barmanll | 20 8 8 g 8| 4 4 4 8| 4 4 4 8| 474 4 '8
barmanl4 20 9 9 9 9 6 6 6 9 6 6 6 9 6 6 6 9
floortilell 20 9 9 9 9 4 4 4 6 4 4 4 6 4 4 4 6
floortile14 20 8 8 8 9 2 2 2 5 2 2 2 5 2 2 2 5
nomystery1l1l 200 17 17 17 171 12 12 12 12| 13 14 13 13| 14 14 14 14
parcprinterll 20 1vr 17 17 18| 20 18 19 20| 20 17 16 20 6 13 13 16
parkingl1 20 5 5 5 5 3 3 3 5 0 3 0 5 5 4 5 7
parking14 20 5 5 5 5 3 3 3 5 0 3 0 5 5 5 5 7
scanalyzerll 200 14 14 14 14| 13 14 14 14| 13 14 14 14| 10 10 10 10
tetris14 20 8 9 11 11| 13 12 17 17| 13 12 17 17| 12 10 13 13
tidybot11 200 16 15 16 16 9 12 11 12| 13 13 13 13| 14 14 14 14
tidybot14 200 12 12 12 12 0 2 3 2 7 6 6 6 9 10 10 10
woodworking11 200 17 17 17 19 7 8 7 9 6 8 6 20 6 8 6 8
% 540] 298 298 301 305| 246 250 255 274|259 264 259 299| 251 258 260 281
as % 100(55.2 55.2 55.7 56.5|45.6 46.3 47.2 50.7|48.0 48.9 48.0 55.4|46.5 47.8 48.1 52.0
30 min. time limit:
% 540| 255 261 259 264| 200 201 205 219| 208 210 208 238| 249 254 258 279
as % 100 |47.2 48.3 48.0 48.9|37.0 37.2 38.0 40.6|38.5 38.9 38.5 44.1|46.1 47.0 47.8 51.7

Table 11: Coverage with different inference algorithms used for pruning.

holds also for the removed facts, i.e., £d removed a subset of those removed by fagq, fasq,
and h?*; and fagq removed a subset of h?*. On the other hand, fasgq removed a different
set of facts than h?* because it also removed a different set of operators.

The results regarding the number of the variables that were created from the inferred
mutex groups after pruning are also listed in Table 10. The lowest number was achieved by
fagq, but the results for fagq, fasq, and h?* are very similar. The difference between these
methods was caused mainly due to the greedy algorithm used for the creation of variables
in the Fast Downward’s preprocessor described in the previous section. The main sources
of the difference between fagq and h?* were the domains parcprinteril, parkingi1, and
maintenancel4 where fasq pruned more facts than h?*, whereas fd created more than
twice as many variables than any other method. Note that these results correspond to
the analysis based on the computation of the mutex group cover number presented in
Section 10.2 (Table 4). The main question now is how these results translate into the
number of solved tasks.

The coverage over all tested domains is reported in Table 11. The lowest coverage overall
was recorded for the planner with £d for all tested heuristics. This indicates that the shorter
time spent in inference and pruning by fd does not compensate for less informative mutex
groups and more sparse pruning. The less concise representation of states results in higher
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Figure 9: The number of solved tasks over time. The added vertical line marks 30 minutes.

memory requirements and more operators in the planning tasks result in wider branching
during a state space exploration.

The coverage for h?* and fagq is almost the same for all heuristics. Judging by the quality
of the translation process only, h?* should be strictly better than fa¢q because h?* always
generates a superset of fagg mutex groups, thus, the number of operators should be smaller
and states should be encoded by a smaller number of variables. If we look carefully at the
results we can observe that h?* consistently shows a small coverage in domain tetrisi4
(in comparison to faggq or fagq) which corresponds to the high running times measured for
the h?* variant (Table 5). The time needed for h** to complete in the case of tetrisi4
domain clearly took its toll and it is reflected in the results. In the case of flow, the whole
difference between h** and fagq can be accounted for the tetrisi4 domain, the difference
in the case of 1mc and pot is even higher than the overall difference, and in the case of
flow-1mc, both h** and fa¢q have the same overall coverage even though fagq solved six
more tasks in tetris14. So we can conclude that h?* performed worse than fagq over all
domains mainly because of the very slow inference in the tetrisi4 domain.

The removal of dead-end operators and the concise finite domain representation in the
case of fagq led to the highest overall coverage for all tested heuristics. The planner with
fagq solved from 2.4% (1mc) to 7.2% (flow-1mc) more tasks than the planner with fd and
from 1.7% to 7% more than the planner with h?*. The increase in the number of solved
tasks is substantial even if we consider shorter time limits. For the 30 minute time limit, the
relative differences between inference algorithms is very similar as with four hour time limit
(see the bottom rows in Table 11). The graphs in Figure 9 show the course of the number
of solved tasks in time. For very short time limits, under ten seconds, fasq achieves a
smaller coverage than any other method because it is the slowest one (if we do not consider
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the tetris14 domain), i.e., the inference of mutex groups, the pruning of the planning
tasks and, therefore, the whole translation process, before the exploration of a state space
starts, takes longer time than for other methods. But, at the very latest on the 100 second
mark, fagq takes the lead and the resulting coverage is consistently higher than with the
other methods, indicating that fam-groups produced by fasq are able to provide a concise
representation of states and to substantially prune planning tasks.

10.6 Pruning in Regression

In the previous section, we have experimentally evaluated the pruning of planning tasks
using mutex groups inferred in progression. As we have described in Section 5, state invari-
ants can be inferred in regression as well. We have implemented the inference of fam-groups
in dual planning tasks and used it for pruning in combination with pruning in progression.
Unfortunately, it turned out that the fam-groups inferred in dual planning tasks are very
weak in the tested domains. The only domains in which it was possible to infer some dual
fam-groups, were woodworkingll, parcprinteril, and pegsolll. But even in those do-
mains, no operators were pruned besides those that were already pruned in progression.
Therefore, fam-groups in regression could not help increase the coverage over the tested
domains.

However, Alcazar and Torralba (2015) proposed an algorithm for pruning planning tasks
that also uses state invariants inferred in regression. The algorithm alternates between
pruning in progression and regression. In both directions, h>-mutexes are inferred and used
for disambiguation (Alcazar et al., 2013) of operators that helps to identify unreachable
operators. Besides the detection of operators having preconditions in contradiction with
some mutex group, disambiguation can also extend preconditions and effects with facts that
must hold because all other options are in contradiction with the known mutex groups. The
algorithm works with problems in FDR. So, for example, consider two variables vy and va,
and an operator with a precondition where v is set to some value f; and vo is not set. If
all values of vg, except some value fy, are mutex with the value f;, then the disambiguation
of this operator sets the variable v9 to the value fo, because it is the only viable option.

Since the algorithm proposed by Alcazar and Torralba works with problems encoded in
FDR, we experimentally evaluated two variants of this algorithm. The variant that uses
mutex groups inferred by fd for construction of FDR will be denoted as atsq, and the
variant that uses fagq will be denoted as at¢y. These two variants are compared with £d as
a baseline and with our algorithm fagy. The same configuration was used as in the previous
two sections.

Table 12 shows that overall number of removed operators is much higher for atgq and
ats, than for £d and fagq. But most of the difference originates in domains tidybot11 and
tidybot14 where more than 660 000 operators were removed by atsq and ate,, whereas fd
and fagg removed no operators. In nomysteryll and cavedivingl4, £fd and fasq also did
not remove any operator, but atsy and ats, managed to remove some.

In barmanll, barmani4, and pegsolll, fagq pruned more operators than atsq, because
of fagq’s ability to prune dead-end operators (Corollary 8), that cannot be replaced by
simple disambiguation using h?-mutexes in progression and regression. Once fam-groups are
used for translation into FDR, disambiguation using the created variables helps to identify
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. #operators #removed operators
domain fd fafd at fd at fa fd fafd at fd at fa
childsnack14 53698 53698 53698 53698 0 0 0 0
elevatorsll 11450 11450 11450 11450 0 0 0 0
ged14 14114 14114 14114 14114 375 375 375 375
hiking14 55878 55878 55878 55878 0 0 0 0
openstacks11 17320 17320 17 320 17320 0 0 0 0
openstacks14 55820 55820 55820 55820 0 0 0 0
transportll 35216 35216 35216 35216 0 0 0 0
transport14 81058 81058 81058 81058 0 0 0 0
visitallll 3520 3520 3520 3520 0 0 0 0
visitalll4 8912 8912 8912 8912 0 0 0 0
barmanll | 13264 8980 11552 7276 | 2544 6828 4256 8532
barman14 13610 9014 11930 7244 | 2592 7188 4272 8958
cavediving14 92078 92078 91832 91 832 0 0 246 246
floortilell 9188 7078 5708 5708 0 2110 3480 3480
floortile14 6544 5050 4060 4060 0 1494 2484 2484
maintenancel4 984 166 166 166 111 929 929 929
nomysteryll 72522 72522 55654 55654 0 0 16868 16 868
parcprinterll 5080 1932 1542 1542 16 3164 3554 3554
parkingl1 241740 232800 232800 232800| 8940 17880 17880 17 880
parking14 201600 193680 193680 193680| 7920 15840 15840 15 840
pegsolll 3700 3490 3499 3315 0 210 201 385
scanalyzerll 631288 425720 425680 425680| 4552 210120 210160 210160
sokoban1l 7166 7164 5255 5255 0 2 1911 1911
tetris14 252952 12468 12468 12468 0 240484 240484 240484
tidybot11 384018 384018 114963 114963 0 0 269055 269055
tidybot14 599642 599642 202432 202432 0 0 397210 397210
woodworkingl1 18175 16 709 8927 8927 0 1466 9248 9248
P 2890537 2409497 1719134 1709988 (27050 508090 1198453 1207 599

Table 12: The number of operators after pruning and the number of removed operators.

dead-end operators in barmanil and barmanl4, where all dead-end operators removed by
fagq are also removed by ats,. However, in pegsolll, fagq still removes dead-end operators
that are not detected by at¢, (although there is a small number of them).

Table 13 shows that at¢, had the highest overall coverage, followed by at¢q and then by
fagq. atea solved from 1.5% (pot) to 3.8% (1mc) more tasks than fagq. ateq had almost the
identical overall coverage as fagq for £low and pot heuristics, but when 1mc was involved,
the overall coverage increased more significantly.

The differences in the number of solved tasks basically correspond to the number of
pruned operators. The additional pruning of atgq and ats, was most significant in the
domains floortilell and floortilel4, and also in tidybotll and tidybot14. The
majority of the tasks solved by atsq and ats, on top of those solved by fagq are due to
these domains. In the case of flow, flow-1mc, and pot heuristics, fagq and ate, solved
more tasks than atsq in the domains barman11 and barmani14. This also corresponds to the
number of removed operators due to the ability of farq to detect dead-end operators. And
in the case of ats,, due to the disambiguation effect enabled by the variables created using
fam-groups.

Figure 10 shows the course of the number of solved tasks in time per pruning algorithm
and per heuristics. Similarly to the corresponding graphs in the previous section (Figure 9),
the graphs show that when fagq is involved (i.e., fagg and atg,), the number of solved tasks
is lower than for £d (and at¢q) in the first tens of seconds only. The graphs also show a
more significant gap between the fagg and at methods whenever computation of the LM-
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domain #ps Imc flow flow-lmc pot

fd fafd at fd at fa fd fafd at fd at fa fd fa f£d at fd at fa fd fafd at fd at fa
cavediving14 20 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
childsnack14 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
elevatorsll 200 18 18 18 181 12 12 12 121 18 18 18 18| 13 13 13 13
ged14 200 19 19 19 191 15 15 15 151 15 15 15 151 15 15 15 15
hiking14 20| 11 11 11 11| 11 11 11 11 10 10 10 10 13 13 13 13
maintenancel4 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
openstacksl1 20| 18 18 18 181 15 15 15 151 15 15 15 15| 18 18 18 18
openstacks14 20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
pegsolll 200 19 19 19 191 19 19 19 19 19 19 19 191 19 19 19 19
transportll 20 9 9 9 9 6 6 6 6 7 7 7 7 6 6 6 6
transport14 20 7 7 7 7 6 6 6 6 6 6 6 6 7 7 7 7
visitallll 200 11 11 11 11y 17 17 17 17 19 19 19 19| 16 16 16 16
barmanll | 20| 8 8§ 8 8| 4 '8 4 8| 4 8 4 8 4 8 4 '8
barmanl4 20 9 9 9 9 6 9 6 9 6 9 6 9 6 9 6 9
floortilell 20 9 9 14 14 4 6 8 8 4 6 8 8 4 6 8 8
floortile14 20 8 9 20 20 2 5 8 8 2 5 8 8 2 5 8 8
nomystery1l 20| 17 17 17 170 12 12 12 12| 13 13 14 14| 14 14 14 14
parcprinter1l 20 17 18 18 18| 20 20 20 200 20 20 20 20 6 16 18 18
parkingl1 20 5 5 5 5 3 5 5 5 0 5 5 5 5 7 7 7
parking14 20 5 5 5 5 3 5 5 5 0 5 5 5 5 7 7 7
scanalyzerll 20| 14 14 14 14 13 14 14 14| 13 14 14 14| 10 10 10 10
sokoban11 200 20 20 20 200 20 20 20 200 19 19 20 20| 20 20 20 20
tetris14 20 g8 11 11 11| 13 17 17 17| 13 17 17 17| 12 13 14 13
tidybot11 20| 16 16 18 18 9 12 12 13| 13 13 17 17| 14 14 14 14
tidybot14 200 12 12 14 14 0 2 5 6 7 6 12 12 9 10 10 10
visitalll4 20 6 6 6 6 14 14 15 15| 15 15 15 15 12 12 12 12
woodworking11 200 17 19 19 19 7 9 9 9 6 20 20 20 6 8 9 9
> 540 298 305 325 325| 246 274 276 285| 259 299 309 316 251 281 283 289
as % 100|55.2 56.5 60.2 60.2(45.6 50.7 51.1 52.8|48.0 55.4 57.2 58.5|46.5 52.0 52.4 53.5
30 min. time limit:

X 540 255 264 289 290| 200 219 228 232| 208 238 262 264 249 279 282 288
as % 100(47.2 48.9 53.5 53.7|37.0 40.6 42.2 43.0|38.5 44.1 48.5 48.9|46.1 51.7 52.2 53.3
Table 13: Coverage with different inference algorithms used for pruning.

T L — L — T L T L T
300 -~ fd4+lmc —  — 300 - fd4pot —  — _
W fagqg+Imec - - W fagg+pot - - -
Tn/ 250 | atgg+Imc LT = \[;: 250 | atgg+pot -
'Mm 200 L atey +1me i '_xdm 200 L atg, +pot i
4 4
3 150 . 3 150 7
> 100 . > 100 7
Q e}
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0 ) L §Omllnll 0 ) L ) L L ll’)Omllnll
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Figure 10: The number of solved tasks over time.
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Cut heuristics is involved. In the case of flow and pot, the course of all three methods
fagq, ateq, and atg, is very similar.

Overall, the results show that pruning both in progression and regression provides a
significant increase in coverage over the methods using pruning only in progression. Regret-
tably, fam-groups turned out to be very weak invariants in regression and basically useless
for pruning in regression (at least in the tested domains). However, fam-groups used to-
gether with the method proposed by Alcdzar and Torralba (2015) considerably increase the
number of solved tasks in some domains.

11. Conclusion

This paper is focused on the inference of a particular type of state invariants called mutex
groups in the context of STRIPS planning. The complexity analysis, that we have provided,
shows that the inference of the maximum sized mutex group is PSPACE-Complete, i.e., it
is as hard as solving the planning problem itself. For this reason, we have introduced a
new weaker type of mutex group called a fact-alternating mutex group (fam-group) and
we have shown that the inference of the maximum sized fam-group is NP-Complete. This
result allowed us to introduce a novel algorithm for inference of fam-groups based on integer
linear programming that is complete with respect to maximal fam-groups.

The main property of the fam-group is that the facts from the fam-group alternate
between each other in all states on a path leading from the initial state and once they
disappear from any state they cannot reappear again in any consecutive state. This property
provides a way to detect operators that can produce only dead-end states.

We have proven that the h? variant of h™ heuristics (Haslum & Geffner, 2000) generates
mutex pairs (h?-mutexes) that are a superset of a pair decomposition of fam-groups. How-
ever, in the experimental evaluation, our algorithm manifested comparable overall results
in terms of inferred mutex groups.

The algorithm was also compared with the algorithm for the inference of mutex groups
proposed by Helmert (2009) for the translation of planning tasks from PDDL to FDR that
is widely used among the planning community. The comparison was performed on the
planning tasks from the optimal deterministic track of the last two planning competitions
(IPC 2011 and 2014). Our algorithm generated a richer set of mutex groups in almost
half of the planning tasks, and in the rest of the tasks the generated set of mutex groups
was identical. Therefore, our algorithm can provide a smaller state encoding in FDR than
Helmert’s algorithm, which was also experimentally verified.

As an example of applicability of fam-groups, we have proposed a pruning algorithm that
removes facts and operators from a planning task if they are not useful for solving the task.
The algorithm was evaluated with four different state-of-the-art heuristic functions and the
results indicate a substantial increase in the overall coverage. In particular, the ability of
fam-groups to detect dead-end states proved to be crucial in the pruning of planning tasks.

We also compared our algorithm with the state-of-the-art algorithm proposed by Alcazar
and Torralba (2015) for pruning using h?-mutexes inferred both in progression and regres-
sion. This algorithm achieves even better results than our algorithm, because of the h?-
mutexes inferred in regression, whereas fam-groups in regression turned out to be useless for
pruning. However, we have shown that using fam-groups for the construction of variables in
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FDR further increases the number of operators removed by Alcdzar and Torralba’s method,
because it improves the disambiguation process.
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