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Abstract

Environmental monitoring allows authorities to understand the impact of potentially harm-
ful phenomena, such as air pollution, excessive noise and radiation. Recently, there has
been considerable interest in participatory sensing as a paradigm for such large-scale data
collection because it is cost-effective and able to capture more fine-grained data than tradi-
tional approaches that use stationary sensors scattered in cities. In this approach, ordinary
citizens (non-expert contributors) collect environmental data using low-cost mobile devices.
However, these participants are generally self-interested actors that have their own goals
and make local decisions about when and where to take measurements. This can lead
to highly inefficient outcomes, where observations are either taken redundantly or do not
provide sufficient information about key areas of interest. To address these challenges, it
is necessary to guide and to coordinate participants, so they take measurements when it
is most informative. To this end, we develop a computationally-efficient coordination algo-
rithm (adaptive Best-Match) that suggests to users when and where to take measurements.
Our algorithm exploits probabilistic knowledge of human mobility patterns, but explicitly
considers the uncertainty of these patterns and the potential unwillingness of people to take
measurements when requested to do so. In particular, our algorithm uses a local search
technique, clustering and random simulations to map participants to measurements that
need to be taken in space and time. We empirically evaluate our algorithm on a real-world
human mobility and air quality dataset and show that it outperforms the current state of
the art by up to 24% in terms of utility gained.

1. Introduction

Applications involving the placement of sensors for monitoring environmental phenomena,
especially noise and air pollution, are receiving considerable attention (Jutzeler, Li, & Falt-
ings, 2014; Seinfeld & Pandis, 2012; Stevens & D’Hondt, 2010), as it is a subject that con-
cerns many, from environmental organisations to policymakers to the general public. Noise
pollution can cause heart conditions, loss of sleep and changes in brain chemistry (Chep-
esiuk, 2005). Poor air quality can have short-term effects on health, such as headaches,
asthma, eye irritations and lack of concentration (Mabahwi, Leh, & Omar, 2014; Seaton,
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(a) Dylos (b) Aeroqual (c) AirBeam

Figure 1: Examples of portable devices that measure air quality in terms of atmospheric
particulate matter (PM).

Godden, MacNee, & Donaldson, 1995). More importantly, however, air pollution is re-
sponsible for a range of heart-related diseases and leads to approximately 7 million deaths
per year (WHO, 2014). This costs the global economy hundreds of billions of pounds in
terms of lost labour income and trillions in welfare losses (World-Bank, 2016). Given this,
understanding the situation and predicting how it is going to change, in the long term as
well as on a daily or even hourly basis, is crucial in allowing decision makers to take action.
For example, in terms of urban planning, city councils can make decisions about where to
build parks and plant trees to minimise the effect of highly polluted areas in cities (Paoletti,
Bardelli, Giovannini, & Pecchioli, 2011). They can also make planning decisions about new
roads so as to handle traffic efficiently based on air pollution measurements (Ministry of
Housing Communities, 2014). Furthermore, it can help doctors link environmental fac-
tors with symptoms and thus affect potential patients’ treatment (Burke, Estrin, Hansen,
Parker, Ramanathan, Reddy, & Srivastava, 2006).

At present, the problem of monitoring air pollution is mainly tackled with networks of
static stations. These are often funded and operated by government authorities collecting
measurements on a continuous basis, and they are controlled by a number of experts.
These stations are very costly to acquire and maintain, resulting in the collection of limited
information (Jutzeler et al., 2014). However, an alternative way to monitor environmental
phenomena is to exploit participatory sensing, which is a promising paradigm for data
collection (Burke et al., 2006). Instead of making use of expensive equipment and employing
a number of experts to work for hours to collect data, the burden is divided between a
higher number of individuals (not necessarily experts), carrying affordable sensor devices
such as mobile phones and ‘Dylos’1, ‘Aeroqual’2 or ‘AirBeam’3 as shown in Figure 1. In
a typical participatory sensing application, users take a measurement or a reading using
the air quality device and transfer it to the smartphone via Bluetooth or USB. Then the
measurements are uploaded to the server via the internet. This paradigm enables the
public to gather and share local knowledge. The benefits of this approach are firstly that
it is cheaper than the traditional approach of using static stations (Jutzeler et al., 2014) by

1. http://www.dylosproducts.com/

2. http://www.aeroqual.com/product/series-500-portable-air-pollution-monitor

3. http://www.takingspace.org/aircasting/airbeam/
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more than a factor of ten in some cases (WAQI, 2015). Secondly, static sensors are often
located away from streets and emission sources in order to reflect the average pollution over
an area (Jutzeler et al., 2014). Consequently, that approach might underestimate the true
exposure of people to air pollution. Participatory sensing alleviates this by enabling people
to directly take measurements at places they frequent during their daily routine and which
may be near sources of air pollution.

Participatory sensing has already been employed for noise pollution monitoring. In
particular, Noisetube (2008-2014) was a proof-of-concept trial that allowed people to use
their smartphone devices to take measurements in order to produce a noise heatmap over
specific cities around the world (Stevens & D’Hondt, 2010). The latest participation count
stated that the project had approximately 1300 registered users from 650 cities in 75 coun-
tries (Stevens, 2012; D’Hondt, Stevens, & Jacobs, 2013). In a different application, following
the Fukushima Daichi Nuclear Power Plant disaster in 2011, people volunteered to assist
authorities in measuring the radiation levels in the environment. Specifically, an open plat-
form, Safecast, was utilised to allow people to submit measurements taken using specialised
equipment (Geiger tubes). A total of approximately 1000 devices were used globally, and
environmental radiation data collection via Safecast has seen an exponential growth since
2011, leading to a current total of over 50 million measurements in 2017. Averaging over
that period, this corresponds to about 7.1 million measurements per year, 20 thousand
per day, or approximately 815 measurements per hour. This was a significant milestone in
participatory sensing, as this was the first time it was successfully employed in the wild on
such scale (Brown, Franken, Bonner, Dolezal, & Moross, 2016).

While delivering impressive results (D’Hondt et al., 2013; Whitney & Richter Lipford,
2011; Brown et al., 2016), existing participatory sensing campaigns lack an important ele-
ment. They do not provide a coordination system that can efficiently guide or suggest to
participants when and where to take measurements in order to fill coverage gaps over time
in the area of interest. Thus, there is no system that outputs a mapping of users to specific
locations at specific times. This is a major problem, because some areas may remain unex-
plored, which leads to a false or partial picture of the situation over the entire environment
that the campaign initiator is interested in (Stevens & D’Hondt, 2010). Also, people may
provide redundant information by taking measurements at the same time and place, which
can waste participants’ effort as well as communication and processing resources. By way
of illustration, Figure 2 shows in a city simulation of air pollution monitoring the contrast
in reduction of variance (which is a measure of uncertainty) in air quality over an entire
city (Beijing) between a system in which users take measurements in an uncoordinated
way compared to one where there is effective coordination. In this case, Figure 2(a) shows
people taking measurements in an uncoordinated way. For example, since there are a lot of
people in the city centre and near popular sightseeing destinations in Beijing, most people
take measurements at those locations. Figure 2(b) shows the same number of people taking
measurements in a coordinated way. People are still mainly in the city centre, but they
are instructed to take measurements on their way to other places where there is not much
coverage. Therefore, we observe that the variance over a larger area is reduced. This in
turn shows that coordinating measurements results in the exploration of a larger area and
thus more information about the environment is gained.
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(a) (b)

Figure 2: Uncoordinated measurements (a), coordinated measurements (b)

A key challenge in participatory sensing is that people participate for a variety of rea-
sons (Gao, Liu, Wang, Zhao, Song, Su, Crowcroft, & Leung, 2015). Specifically, some
people participate for monetary incentives (extrinsic incentives) (Jaimes, Vergara-Laurens,
& Labrador, 2012). This can take the form of micro-payments or coupons (Albers, Kron-
tiris, Sonehara, & Echizen, 2013). For example, a micro-payment scheme was used as an
incentive to promote realtime participation in a university campus garbage monitoring cam-
paign (Reddy, Estrin, Hansen, & Srivastava, 2010). Likewise, SenseUtil is a model where
the consumer who needs data pays the producers who carry out sensing tasks and report
the data. The price is determined based on the concept of demand and supply (Thep-
vilojanapong, Tsujimori, Wang, Ohta, Zhao, & Tobe, 2013), where the price changes dy-
namically according to the sensing frequency, quantity of nearby sensing locations and user
preferences. Others volunteer for social reasons, for example, to gain public recognition
or a high position on a leader-board. In some systems, volunteers compete against friends
for points or badges (Anderson, Huttenlocher, Kleinberg, & Leskovec, 2013). Finally, some
people volunteer because of their personal interest in a social cause, altruism, or as a hobby
(intrinsic incentives) (Jennings, Moreau, Nicholson, Ramchurn, Roberts, Rodden, & Rogers,
2014). For example, in addition to Noisetube and Safecast described above, where people
are interested in the cause of the campaign, an application for finding an endangered species
of insects in the UK relies on the excitement of the visitors of a particular area on the South
coast of England that the insect is believed to inhabit (Zilli, Parson, Merrett, & Rogers,
2013).

Crucially, in either case it cannot be assumed that participants will provide an unlimited
number of measurements; they should not be seen as robotic entities that behave exactly as
instructed all the time. Instead, it is better to view them as self-interested agents that have
their own personal goals and limited information about the environment4. For instance, they
might believe that taking a measurement in the city centre is more useful than elsewhere,

4. Note we do not model agents as self-interested in the game-theoretic sense, as we cannot in general assume
detailed information about their specific goals and utility functions. Instead, we use the terminology to
refer more broadly to agents who cannot directly be controlled (as is common in the AI and multi-agent
literature).
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since more people are potentially affected, or they might not take a measurement at all
since they are too busy with their daily routine and might believe that the impact of a
single measurement is low at their location. Thus, the act of taking measurements should
be viewed as incurring inconvenience costs or even requiring financial compensation. In our
work, we capture this by assuming a budget for taking measurements. Specifically, each
user is assumed to have a different budget in order to capture the different preferences of
people (heterogeneity) in terms of their willingness to take measurements. This budget
might be an actual supply of money or a notional supply of good will.

In some cases, such as when people carry GPS-enabled phones with them or their phones
have Internet connectivity, knowledge about how they tend to move at particular times
might be available to the participatory sensing campaign initiator. However, to date, none
of the existing work in this area has looked at harnessing this knowledge. This information
could be available by learning those patterns (Baratchi, Meratnia, Havinga, Skidmore, &
Toxopeus, 2014a), as people tend to be predictable in their daily routine and thus their daily
routine can be probabilistically modelled (McInerney, Stein, Rogers, & Jennings, 2013b).
A participatory sensing system could exploit the fact that participants are likely to be at
specific locations at specific times in order to prepare a plan for suggesting measurements.
However, even if people are at their predicted locations, it is uncertain whether or not they
will actually take a requested measurement. Crucially, we cannot assume that participants
will always be willing or able to take a measurement when requested, even if they initially
agreed on contributing a number of measurements. For example, related work has shown
that only 83% of smartphone users engage with notifications on their device within five
minutes of receiving them (Sahami Shirazi, Henze, Dingler, Pielot, Weber, & Schmidt,
2014), which implies some desired measurements will be missed.

Against this background, we are interested in monitoring environmental phenomena
using the participatory sensing paradigm. In particular, we focus on intelligently collecting
data (measurements/observations) with the assistance of people in order to maximise the
information we learn about the environment over a period of time. This, in turn, will
enable us to build a fine-grained air quality map, covering an area of interest, which will
lead to better situational awareness (Endsley, 1988). In so doing, we take into consideration
the real-life constraints discussed above. These include the number of measurements each
individual is willing to take, the uncertainty associated with their willingness to take a given
measurement when asked and the uncertainty about the users’ location in the future.

Specifically, we propose a novel stochastic coordination algorithm (adaptive Best-Match)
for large-scale monitoring of dynamic environmental phenomena using the participatory
sensing paradigm. The algorithm adaptively selects observations to be taken at each
timestep5 and maps individuals to measurements both in space and time in order to max-
imise the information learned about the environment over a given time period. The algo-
rithm is able to deal with hundreds of participants at the same time6, incorporates proba-
bilistic knowledge of the mobility patterns of humans and assumes that people have a daily
limit/budget on the number of measurements they are willing to take. Also, our algorithm

5. We discretise time in our model, and each timestep could represent a different time interval. In our work,
a timestep denotes 1 hour.

6. It can deal with tens of thousands of people over the period of a day. This figure is larger than any
existing participatory sensing campaign.
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deals with the inherent uncertainty associated with participants taking a measurement when
suggested to do so (reliability). Our algorithm makes use of artificial intelligence techniques
such as clustering to group spatially close people and thus scale up in terms of the num-
ber of participants it can deal with at every timestep. Also, it uses heuristic search (local
greedy search) to search through a number of possible combinations of clusters and random
simulations to deal with uncertainty. In particular, the contributions of this paper are:

• We propose a new participatory sensing coordination framework (Section 3) that cap-
tures the architecture of our vision for a real participatory sensing application for
environmental monitoring that intelligently coordinates participatory sensing cam-
paigns.

• We are the first to define the problem of coordinating measurements for participatory
sensing applications in the presence of uncertainty (Section 4).

• We develop a novel stochastic coordination algorithm that is able to handle hundreds
of participants at every timestep. The algorithm consists of an offline component,
which is responsible for simulating participatory sensing campaigns and choosing the
best measurements to be taken, as well as an online component that adapts the mea-
surements based on real-time information. The algorithm considers each individual’s
budget, incorporates probabilistic knowledge about human mobility patterns and deals
with the uncertainty related to the willingness of people to take a measurement when
notified by the system (Section 6).

• We empirically evaluate our algorithms on real human mobility and air quality sensor
data (Section 7) from the Urban air and Geolife datasets in Beijing and show that
our algorithm significantly outperforms the state of the art by up to 23.91% in terms
of utility gained.

The remainder of this work is organised as follows: In Section 2, we discuss related work
and give a background on relevant techniques used in the literature. In particular, we divide
related work into three parts (agent coordination, task allocation and sensor placement),
which represent the key research areas that our research draws on. Also, we provide the
background on the techniques on how an environmental phenomenon can be modelled. In
Section 3, we present our vision of how a real participatory sensing system could be used in
practice such that it utilises an intelligent coordination system. In Section 4, we formally
introduce the coordination problem for participatory sensing settings using an agent-based
formalism. In Section 5, we describe how we model the environment using a non-linear
non-parametric technique and quantify informativeness of the measurements taken. In
Section 6, we present our adaptive Best-Match algorithm for coordinating measurements
in uncertain participatory sensing settings. The algorithm uses heuristic search to find a
mapping between participants and measurements should be taken that are most informative.
It is adaptive, as it chooses which measurements to be taken given the uncertainty in the
users’ behaviour. In Section 7, we explain how we evaluated our algorithms, describe the
benchmarks we have used and present our findings. In particular, we compare our algorithm
to the benchmarks in terms of total utility gained and runtime. In Section 8, we conclude
and determine the potential future steps to be taken to extend our work.
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2. Background and Related Work

In this section we present related work and give a background on the techniques used.
Specifically, our work draws on the intersection of three main research areas: agent coor-
dination, task allocation in the context of crowdsourcing and sensor placement in environ-
mental monitoring. In the sections below we show the relationship with each one of those
and present related work in that area. Finally, we provide the technical background on
how environmental phenomena are modelled in order to provide a method for quantifying
information gained by taking measurements and building a heatmap of the spatio-temporal
phenomenon.

2.1 Agent Coordination

First of all, our work is related to the agent coordination domain, as the overall purpose of
our system is to coordinate the measurements taken by users acting as self-interested agents.
Users typically have limited information about the environment and follow their own per-
sonal agendas. In the agent coordination literature, mobile agents, such as autonomous
ground vehicles (AGVs), autonomous unmanned aerial vehicles (UAVs) or unmanned un-
derwater vehicles (UUVs) are often used to explore an environment or perform specific tasks
in an area. Typically, coordination of teams of such agents is computationally intensive and
the focus is on finding informative paths for a single autonomous agent (Marchant & Ramos,
2012; Binney, Krause, & Sukhatme, 2010). In order to scale up, domain specific heuristics
and clustering approaches are utilised to group spatially close sensing locations and thus
reduce the search space (Singh, Krause, Guestrin, & Kaiser, 2009; Stranders, Fave, Rogers,
& Jennings, 2010). However, coordination is shown only for a small team of agents (i.e., up
to a dozen of autonomous robots (Singh et al., 2009; Ouyang, Low, Chen, & Jaillet, 2014;
Low, Dolan, & Khosla, 2011a; Stranders et al., 2010; Schwager, Dames, Rus, & Kumar,
2017; Tiwari, Honoré, Jeong, Chong, & Deisenroth, 2016). Thus, existing work does not
scale to the settings we are interested in. Also, these techniques cannot easily be extended
to consider probabilistic knowledge about the mobility patterns of participants or the will-
ingness of the users to take a measurement, since the agents are robotic entities that do not
have their own agendas but rather follow computed paths.

In other related work, Stranders, Farinelli, Rogers, and Jennings (2009) deal with path
finding for mobile sensors considering both the spatial correlations of a phenomenon, as
well as the temporal ones. They implement an adaptive receding horizon algorithm in
a decentralised manner, which means that there is no central system that controls these
sensors but instead they autonomously decide what to do based on the information available
to them by exchanging messages with other mobile sensors. The focus of that work is on
decentralised approximations and dealing with reliability in the communication network
between agents and permanent failure of agents’ hardware, which is not a concern in this
work. Rather, in our work an agent has a probability of being unavailable at a specific time,
in which case users might ignore a notification to take a specific measurement at a given
time, as well as a probabilistic model of their mobility patterns. Also, Stranders et al. (2009)
assumes that each agent has a specific radius within which it collects information and no
underlying model exists, while in environmental phenomena the effect of a measurement
can be captured by a probabilistic model that depends on the nature of the phenomenon. In
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other words, a probabilistic model can capture the development of the phenomenon in space
and time and thus is able to create heatmaps by interpolating between measurements as well
as predicting into the future (see Section 2.4 for more details). Consequently, this enables
us to be more accurate about the information gained when taking each measurement, as
well as deciding when and where to take measurements, given the information collected by
earlier measurements. Also, in many cases, the measurements taken are noisy, which can be
captured by using a probabilistic model, creating accurate heatmaps about the phenomenon
monitored. This can lead to better coordination of measurements in order to maximise the
information about the environment. Furthermore, even though the algorithm uses a number
of approximations and heuristics, it is evaluated only on ten agents, which highlights the
complexity of the solution.

Building on this, in other work Stranders, Munoz De Cote, Rogers, and Jennings (2013)
approach the problem of continuous multi-agent coordination by modelling the problem
of space exploration by a team of mobile agents as a Markov Decision Process (MDP).
They show that an approximation algorithm for solving MDPs can be used to continuously
coordinate only a small team of mobile agents (up to ten agents) for an infinite time horizon.
However, it is not shown to work for larger teams of agents.

In other research, Partially Observable Markov Decision Process (POMDP) algorithms
have been used in the context of agent coordination (Pineau, Gordon, & Thrun, 2006;
Hollinger & Singh, 2008). Firstly, POMDPs handle uncertainty in both action effect and
state observability. Plans are expressed over information states instead of world states, since
the world state is not observable. POMDPs form plans by optimising a value function, thus
allowing the agent to numerically trade off between alternative ways to satisfy a goal,
compare actions with different costs/rewards, as well as plan for multiple interacting goals.
Also, instead of producing a sequence of actions, POMDPs produce a full policy for action
selection. However, the state space grows exponentially with the number of variables that
are considered in the selection problem. Also, the complexity of planning for POMDPs grows
exponentially with the cardinality of the state space (Pineau et al., 2006). Thus, multiple
agents, and multiple potential spatio-temporal locations where they can take measurements
from exponentially increase the state space of the problem, which makes the use of POMDPs
infeasible for the settings we consider.

Drawing these together, even though the aforementioned algorithms solve problems
that are related to coordinating measurements in participatory sensing settings, they are
not applicable in our work mainly because they are not scalable to hundreds of participants.
Also, in environmental monitoring of dynamic phenomena, the Markov property might not
hold. In particular, taking a measurement at a timestep might provide enough information
such that no other measurement is required in the near future, given that the phenomenon
is changing slowly over time. Therefore, it might be better for some people to wait many
timesteps, given that they have a limited budget of measurements they can take in the
future before taking a measurement that would be of greater value in terms of providing more
information about the phenomenon. Put differently, for a number of different measurements
in space and time, we obtain different amounts of information about the phenomenon. This
is not compatible with the Markov property, which requires that the future of the process
depends only on the current state, i.e., measurements taken at a given timestep and not on
the ones in the past. Consequently, the decision about when to take a measurement needs
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to be taken given the history of measurements taken so far in space and time and not just
the last one.

Overall, in our work we transfer the agent-based problem formulation applied in the
multi-agent coordination problem used by Stranders et al. (2013) to the coordination of
measurements for environmental phenomena in the participatory sensing setting. This
enable us to apply artificial intelligence techniques and exploit domain-specific knowledge
to develop an efficient algorithm.

2.2 Task Allocation

Our work is also related to ongoing research in task allocation in the context of spatial
crowdsourcing. In particular, it is relevant to task allocation, as the purpose of our system
is to allocate tasks to users, i.e., which measurements to take. However, there are substantial
differences that are unique to environmental monitoring. Concretely, recent work (Chen,
Cheng, Gunawan, Misra, Dasgupta, & Chander, 2014; Chen, Cheng, Lau, & Misra, 2015)
uses mobility patterns to effectively coordinate agents in crowdsourcing. The focus of these
papers is assigning agents to tasks based on their mobility patterns, so as to maximise
the payoff of the tasks within a given time limit. However, no budget is associated with
each user to correspond to the inconvenience or the incentive needed to execute the task.
This is unrealistic in participatory sensing, because people cannot provide an unlimited
number of measurements. Moreover, the tasks are assumed to be independent of each
other and once they are executed, they are no longer available. This is not the case when
monitoring environmental phenomena, where it is often important to revisit locations in
order to keep up with the temporal variations of the phenomenon. Also, the reward gained
when taking measurements of an environmental phenomenon is not easy to quantify. It
cannot be captured by a fixed reward value as in task allocation. It should be calculated
based on the model about the environment (which is examined in Section 5), since each
measurement may be different in terms of the information it conveys. In other words, the
utility in environmental monitoring is associated with what measurements are taken globally
in space and time by the crowd. On the other hand, the reward for a particular task in
crowdsourcing is usually independent of what tasks other people are executing, since each
task has different characteristics, such as difficulty and type of task, which are not affected
by other available tasks. Furthermore, even though simplified assumptions are made, such
as the fact that users will always accept and perform the requested tasks or users have up to
two alternative routes, in these papers, the complexity of allocating people to tasks is still
NP-hard (Chen et al., 2014). Thus, a range of offline greedy approaches including a greedy
construction heuristic and iterated local search are utilised. Specifically, they first construct
an initial solution as fast as possible by using a greedy heuristic and the quality of the initial
solution is improved iteratively by employing an iterated local search (ILS), which is part of
the stochastic local search (SLS) algorithms (Hoos & Stützle, 2004). These are a family of
high-performance local search algorithms that make use of randomised choices in generating
or selecting candidate solutions for a given combinatorial problem instance. In particular,
their algorithm performs four main actions: it swaps two agents with two task nodes if
that improves the total remaining detour time for both agents. Next, it moves a task from
an agent to another with the highest remaining detour time. Then, an unassigned task is

441



Zenonos, Stein & Jennings

chosen with the highest reward and the agent with the highest remaining detour time is
selected to do it. Finally, an assigned task is replaced by an unassigned one with higher
reward. All possible insertions are examined until the process exceeds a predefined number
of iterations. That algorithm, however, is not applicable in our situation as the problem
we are addressing is different in the ways described above. However, similar to the work
by Chen et al. (2014), we also build on heuristic approaches, and in particular, we propose
a novel Stochastic Local Greedy Search (SLGS) algorithm.

Generally, in the area of crowdsourcing, it is a common practice to use algorithms that
are first and foremost fast to use, while at the same time achieving their objective (i.e.,
complete available tasks) (Musthag & Ganesan, 2013). In particular, practical deployments
of mobile crowdsourcing often utilise the Pull-based (Proximity-driven) algorithm (Musthag
& Ganesan, 2013). This algorithm selects those tasks that are closest to a user’s current
spatial location, and then lets them choose the task that they think is best suited for them.
This approach is fast to utilise and does not require any intelligent system for coordination.
However, as we argued above, people have a limited budget. Thus, doing a task at a future
timestep might be more rewarding than doing one at the present. Therefore, this approach
can lead to a suboptimal total reward. However, since this algorithm is used in practice, it
will be adjusted for environmental monitoring settings and used as a benchmark in this work.
Specifically, since there are no specific tasks to be executed in environmental monitoring,
users will be asked to take measurements when the utility gain is above a threshold. This
algorithm is discussed in more detail in Section 7.1.

2.3 Sensor Placement

Finally, our work is related to the sensor placement problem in the context of environmen-
tal monitoring. Specifically, it can be viewed as the task of placing a number of sensors,
that equals the number of users, in a dynamic environment where specific constraints are
associated with the sensors. For instance, the number of sensors to be placed in the envi-
ronment is changing every timestep (depending on whether a user has some budget left or
not), and the location of the sensors is constantly changing as humans follow their daily
routine. Importantly, each sensor is associated with uncertainty about their future location
and whether they will actually be able to take a measurement when instructed to do so.
Since the nature of this problem is combinatorial, finding the optimal solution is computa-
tionally infeasible. In a seminal paper, Krause, Singh, and Guestrin (2008) show that the
sensor placement problem is NP-hard. They also prove that the sensor placement problem
has a desirable property, submodularity, that allows a greedy algorithm to provide specific
guarantees about the approximation ratio of the solution provided. In particular, building
on the work of Nemhauser, Wolsey, and Fisher (1978), they show that using a greedy al-

gorithm, the solution is always at least 1 −
[

(K−1)
K

]K
times the optimal value and has a

limiting value (i.e., as K → ∞) of (1 − 1
e ), where K is the number of sensors placed. In

the context of monitoring spatial phenomena, the same property is exploited to produce a
polynomial-time approximation algorithm, which is within (1− 1

e ) of the optimum (Guestrin,
Krause, & Singh, 2005; Golovin & Krause, 2011). Specifically, Guestrin et al. (2005) greed-
ily deploy a fixed number of sensors in an environment such that a submodular function,
and in particular, mutual information between the chosen locations and the locations which
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are not selected is maximised. The algorithm, at each iteration, adds the sensor which
results in the maximum increase in mutual information until the desired number of sensors
is reached. This is representative of a large class of algorithms that greedily select the next
measurement that maximises an entropy-based criterion until a given budget is exhausted.
Given the ubiquity of this approach, we will use the greedy algorithm described by Guestrin
et al. as benchmark to our approach.

2.4 Modelling Environmental Phenomenon

A key challenge in monitoring environmental phenomena is to identify any spatio-temporal
patterns in the observations that have been made. These patterns are used to make predic-
tions (such as noise and air quality) about the locations where no observations have been
made and about the future state of the world.

Regression is commonly used to accomplish this (Stranders et al., 2013; Tiwari et al.,
2016; Schwager et al., 2017). This is a statistical process for estimating the relationship
among variables and in particular understanding how the value of a variable will change
by varying another variable. Two types used for environmental monitoring are Piecewise
Linear Regression (Section 2.4.1) and Gaussian Processes (Section 2.4.2).

In our work, we use Gaussian Processes, as it is a non-linear non-parametric regression
technique that can identify potential complex spatio-temporal patterns in noisy observa-
tions. Also, Gaussian Processes have been used successfully in modelling spatio-temporal
phenomena as shown in related work (Guestrin et al., 2005; Krause, Guestrin, Gupta, &
Kleinberg, 2006; Low, Dolan, & Khosla, 2011b; Garg, Singh, & Ramos, 2012; Ouyang et al.,
2014). Specifically, they provide uncertainty estimations alongside the predictions, which
can be used as a basis for utility functions.

In this section, we introduce Piecewise Linear Regression and Gaussian Processes in the
context of modelling an environmental phenomenon. We keep the description brief here, but
we provide further details about GPs in Appendix A, as it is the model of our choice. The
model described there is key for representing the environment as well as valuing information
from measurements taken, which are part of the framework proposed in Section 3.

2.4.1 Piecewise Linear Regression Background

Linear regression is commonly used in many practical applications because of its simplicity
and computational performance. Environmental phenomena however, exhibit non-linear
behaviour over space and time (Stranders et al., 2013). Thus, linear regression is not suitable
for modelling the environment. However, Padhy, Dash, Martinez, and Jennings (2010)
proposed the use of a variation of linear regression, called Piecewise Linear Regression, as
an alternative that could be used in environmental monitoring. In particular, in order to
model temperature and pressure, which have a non-linear relationship over time, they used
Bayesian inference to decide whether each data point can be sufficiently explained by the
current regression model or whether a new linear model is required.

Consequently, that environment is separated into a number of regions such that each
region can be modelled by a linear regression. However, the parameters used in this approach
increase with the number of linear regressions used, thus making it difficult to estimate them,
which causes the model to be computationally expensive. Also, it is not certain where to
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start and stop in each linear regression, as these parameters need to be estimated again,
which might result in an inaccurate model. Moreover, standard piecewise linear regression
does not provide the confidence intervals over its estimates, which is useful in order to
measure the information gained at each spatio-temporal location.

2.4.2 Gaussian Process Background

Gaussian Processes (GPs) (Rasmussen & Williams, 2006) are a class of nonparametric
probabilistic models that are used in modelling spatio-temporal phenomena. For these kinds
of phenomena, the interest is not only on the value of the phenomenon (e.g., noise level or air
pollution level) at the sensed location but also at locations where no observations were taken.
In such problems, regression techniques are used to perform these predictions. Although
Piecewise Linear Regression can sometimes capture these relationships, as we have seen
above, it is not flexible and does not model the uncertainty about its predictions (Guestrin
et al., 2005; Krause et al., 2006; Low et al., 2011b; Garg et al., 2012; Ouyang et al., 2014).
In contrast, Gaussian Processes can capture more complex non-linear relationships and
also provide a way to measure the uncertainty of those predictions through the notion of
variance. Also, they are flexible in the sense that they can model different phenomena
by using different covariance functions. These make Gaussian Processes an ideal tool for
our work. Appendix A provides a brief introduction to Gaussian Processes and explain
their properties in more detail, which are used in the rest of this paper and specifically to
quantify informativeness of the measurements taken (Equation 2). In the next section, we
show where this model fits in our participatory sensing framework.

3. The Participatory Sensing Framework

Our framework shows how our coordination algorithm fits into the broader context of par-
ticipatory sensing campaigns for environmental monitoring. In particular, it describes how
to efficiently monitor an environment by coordinating measurements, taking into consider-
ation available knowledge about the participants. Figure 3 shows the overall architecture of
the framework and illustrates how the components interact with each other. In particular
our framework consists of five core components:

• The main component is the coordination algorithm, which is the main contribution
of this work. This component decides when and where each participant should take
a measurement to maximise information about the environment. In other words, it
produces a mapping from users to spatio-temporal locations.

• The human mobility patterns prediction component is a system for making predictions
about the mobility patterns of the participants. This component provides probabilistic
information about the future locations of the users, which is used to make decisions
about when and where to take a measurement.

• The budget component captures the number of measurements an individual is willing
to take, since users have a limited number of measurements they can take.

• The reliability model component captures the uncertainty related to individuals about
whether they will actually take a measurement when asked to do so, as seen in the work
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Figure 3: A conceptual architecture of an intelligent participatory sensing platform

of Ramchurn, Mezzetti, Giovannucci, Rodriguez-Aguilar, Dash, and Jennings (2009).
This model is built based on information collected from users based on their past
behaviour in participatory sensing campaigns.

• The components related to the environmental phenomenon supply the system with
information about the environment being monitored. In particular, historic measure-
ments from multiple users are fused together using a model that creates a represen-
tation of the environment (environment representation component). This, in turn, is
used to value future measurements taken, in terms of their information value (value
information component) as in the work of Guestrin et al. (2005).

A participatory sensing campaign is initiated by a person, group or organisation interested
in understanding an environmental phenomenon for a particular area (campaign initiator).
The campaign initiator is not a core part of the framework, as the campaign is not affected
by them. However, the initiator is responsible for the recruitment of the participants and
setting up the time interval of the campaign, i.e., the starting and ending date and time.

Anyone willing to take part in the campaign would own or be provided with a smart-
phone with Internet connectivity and specialised equipment, depending on the phenomenon
and environment to be monitored. The participatory sensing platform is responsible for con-
tacting the participants over the Internet in real time or in advance in order to suggest which
measurements they need to take and at what time. This would take the form of notifications
on their smartphone.

The participants are in a feedback loop, where they provide the platform with the
measurements taken, as well as their mobility patterns and their budget. In our work,
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we assume that participants have to explicitly take a measurement using their mobile de-
vice. This is reasonable, because although there are devices that are able to continuously
take measurements, this is usually associated with a high energy cost. Moreover, contin-
uous measurements decrease the need for coordination and so we focus on settings where
measurements are taken explicitly and may be constraint by a budget. Concerning their
mobility patterns, intelligent agents on participants’ devices can monitor their behaviour
and provide the platform with the mobility patterns as per the work of Sánchez-González,
Pérez-Romero, Agust́ı, and Sallent (2016). The human mobility pattern prediction system
infers their future mobility patterns for a specific time horizon. That system is able to
produce a number of possible routines and allocate probabilities for each alternative (McIn-
erney et al., 2013b; Baratchi, Meratnia, Havinga, Skidmore, & Toxopeus, 2014b). This
could potentially raise privacy concerns, which is an active research topic in participatory
sensing. Specifically, Gao et al. (2015) present a number of privacy-aware approaches
in participatory sensing. However, this is not the main focus in our work. Instead, we
focus on the coordination algorithm which suggests to participants when and where to take
measurements, in order to efficiently monitor the environment for a time period.

Also, each participant is associated with a budget (Chon, Lane, Kim, Zhao, & Cha,
2013), which, in our framework, can be given directly by participants or learned from their
participation in previous campaigns with the assistance of the intelligent agents. In particu-
lar, the aforementioned work started with no monetary incentives for users’ contribution for
the duration of a month and then rewarded contribution for the next one (which was shown
to significantly increase the number of measurements taken). However, this depended on a
number of factors, such as the cause of the campaign and specific requirements. Neverthe-
less, it was shown that people typically use their phone in a participatory sensing setting
to take between 2-11 measurements per day. Thus, in our work, we assign a low average
budget to users.

The framework also considers that people are not guaranteed to take the measurement
requested. In particular, 83% of users check their smartphone notifications within 5 minutes
of receiving them7 (Sahami Shirazi et al., 2014). Thus, the intelligent agents on partici-
pants’ phones can monitor the behaviour of the participants, as is commonly done in the
crowdsourcing domain (DiPalantino, Karagiannis, & Vojnovic, 2010), to provide a model
for their reliability (shown in Figure 3) with respect to the system. Specifically, this model
can be used to estimate the probability that a user will take a measurement when notified
to do so.

In this paper, we do not focus on a complete implementation of the aforementioned
framework, since each of the components is an active research area on its own. We rather fo-
cus on the the algorithmic challenge of developing the main component, which is an efficient
coordination algorithm the maps users to spatio-temporal locations in the environment. Our
algorithm, however, is able to exploit probabilistic knowledge about participants’ mobility
patterns and consider budget and reliability constraints of each participant, as provided by
the other components.

7. Even though this an average, there is great variance in response time and this is affected by a number
of factors, including the frequency of notifications, their cause and purpose.
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4. Coordination of Measurements Problem Definition

This section formally introduces the problem of coordinating measurements in participatory
sensing for environmental monitoring. In particular, we focus on the problem that the
coordination algorithm has to solve (shown in Figure 3), subject to budget constraints and
the reliability of users.

First of all, an environmental campaign is initiated to collect as much information about
a particular phenomenon in an environment as possible. An environment E is a continuous
set of spatio-temporal locations (L, T ) that the campaign initiator is interested in. This is
defined by the spatial and temporal boundaries of the area and time interval of interest up
to time E. A set of participants A= {A1, . . . ,AM} can take a set of discrete measurements
(also called observations) within the spatial boundaries of this environment within the time
period of the campaign (O = L × T ). The set of observations made before or at time t is
denoted as Ot ⊆ O, while the set of observations made at time t is denoted as Ot ⊆ Ot.

A utility function u : 2O → R+ assigns a utility value to a set of observations. The value
assigned by this function is based on the entropy, which is a way to measure information
(the value information component in the framework in Section 3). This is based on the
formulation by Guestrin et al.(2005), and it is further discussed in Section 5. Here, it is
sufficient to say that the goal is to maximise the sum of utilities over the time period of
the environmental campaign. Intuitively, this captures the total information gained when a
set of measurements are taken. Moreover, citeauthorlargecrowdsourcingstudy, (2013) show
that people tend to contribute a limited amount of information in participatory sensing
campaigns. Hence, we cannot assume that people can take an unlimited number of mea-
surements but they rather have a budget. Formally, each individual Ai has a specific budget,
i.e., Bi ∈ N+, which is the maximum number of measurements that it can take within a day.
We represent the budgets of all users with B = {B1, B2, . . . , BM}. Finally, in this work, we
assume that people only take measurements without deviating from their daily routine.

A function r : A → {v ∈ R| 0 ≤ v ≤ 1} assigns a real number between zero and one to
users, representing their reliability (the reliability models component in Figure 3). This is
the probability that they actually take a suggested measurement when requested to do so
by the system. Each user has a personal reliability that is independent of other users. We
represent the reliability for all users with R = {r(A1), r(A2), . . . , r(AM )}. In our system,
even if a user fails to take the measurement suggested, their budget is reduced, so as to
avoid suggesting measurements to be taken by the same user if they are not willing to
contribute. Intuitively this implies that the users will not be continuously notified to take
measurements if they keep ignoring them.

We denote by U the total utility earned by all the measurements taken by the agents.
Thus,

U(OE) =
E∑
t=1

u(Ot) (1)

where u(Ot) is the utility gained from a set of observations made by participants at the
timestep t, given the effect of all the measurements taken before that. The coordination
algorithm needs to decide on a policy, i.e., when and where the citizens should make these
observations to maximise this function given a probability distribution over people’s possible
locations at each timestep and constraints of budget as well as user reliability.
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Given this notation, the optimisation problem solved by this algorithm can be for-
mulated as follows: map a set of participants to a set of measurements to maximise the
expected utility over the period of the campaign, subject to individual budget constraints
of participants. Formally, a policy S∗ = arg maxs E(U(OE)), where s : A→ 2O.

5. The Environment Model

Given the introduction on Gaussian Processes in Section 2.4.2 and Appendix A, and the
definitions in Section 4 we now focus on probabilistically modelling the environmental phe-
nomenon. This enables us to quantify the informativeness of measurements used in our
utility function (Equation 1). In order to model the environmental phenomenon, we first
discretise the environment in a way such that a two-dimensional grid is created over space
and the time is divided into hourly measurements (timesteps). Consequently, we say that
locations L ⊂ L are the intersections of the grid and T ⊂ T are the timestep. In our work,
we convert longitude and latitude into UTM format, i.e., meters, so as to be able to make
calculations in the Euclidean space.

Each location l ∈ L and time t ∈ T is associated with a random variable Xl,t, that
describes an environmental phenomenon, such as noise or air pollution. We use Xl,t = xl,t
to refer to the realisation of a random variable at a particular spatio-temporal coordinate,
which becomes known after an observation is made. In order to describe the phenomenon
at time t over the set of locations (L), given that some observations have been made in
the past (Ot−1), we use XL,t|Ot−1

. Similarly, we denote by the random variable XL,t|Ot
,

the environmental phenomenon over the set of locations L at time t given that a set of
observations (their spatio-temporal locations) are made at time t (Ot). For simplicity in the
notation, and unless stated otherwise, we use Xy = XL,t|Ot−1

and XA = XL,t|Ot
. Similarly,

the realisation of the measurements over the set of locations L given a set of observations is
denoted by XA = xA. Given the nomenclature above, we can now model the phenomenon.

As explained in Section 2.4.2 and Appendix A, the measurements of an environmental
phenomenon can have a multivariate Gaussian joint distribution over all of their locations L
and timesteps T . The main advantages of GPs in environmental monitoring are that they
can capture structural correlations of a spatio-temporal phenomenon as well as providing
a value of certainty on the predictions, i.e., predictive uncertainty. Crucially, it is sufficient
to know the locations of the observations but not the actual value of the measurement, to
get the variance over the environment.

Gaussian Processes provide the mathematics of the utility function we need to maximise,
as shown in Section 2.4.2 and Appendix A. Similar to the work by Guestrin et al. (2005),
we want to maximise the sum of information obtained over time which is captured by the
entropy over the entire environment at a specific timestep minus the entropy that can be
obtained by taking specific measurements in the next time step over the entire environment.

In other words, our utility function measures the reduction of entropy at all locations of
the environment (global metric) by making a set of observations and it is proportional to
the uncertainty without making any observations minus the uncertainty when observations
are made. This is given by:

I(Xy;XA) = H(Xy)−H(Xy|XA) (2)
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In terms of Gaussian Processes, the conditional entropy of a random variable Xy given a
set of variables XA is expressed as follows:

H(Xy|XA) =
1

2
log(2πeσ2

Xy |XA
)

H(Xy|XA) =
1

2
log(σ2

Xy |XA
) +

1

2
(log(2π) + 1)

(3)

Using a GP to model the environment, we develop an algorithm to exploit predictive un-
certainty and the information metric designed.

6. The Coordination Algorithm

Our algorithm is designed to work with hundreds of participants at any given time, with
probabilistic information about their mobility patterns and heterogeneity in their budget
and reliability.

As discussed in Section 2, finding the optimal solution is computationally infeasible for
realistic settings. In this work, we focus on designing an efficient algorithm that outperforms
the state of the art. The challenges are the probabilistic nature of human mobility patterns
and human reliability as described above, the budget constraints, and the large number of
participants. Thus, our algorithm must be able to adapt under uncertainty and be scalable.
In this section, we first intuitively explain how our algorithm works and then we provide
the formal details.

Our approach, the adaptive Best-Match algorithm or ‘aBM’ (Algorithm 1), consists of
two main components, the offline component, i.e., the Simulations for Scalable Searching
(SiScaS) algorithm (Algorithms 2, 3 and 4), and the online component, i.e., the Matching
algorithm (Algorithm 5). The offline algorithm is responsible for searching through the space
of potential candidate solutions in order to produce a number of mappings of participants to
spatio-temporal locations. Specifically, the algorithm makes small changes to the candidate
solution (local search), in terms of when and where each user should take a measurement,
and evaluates its performance by simulating the environmental campaign. The algorithm
is explained in detail in Section 6.1. This algorithm, however, treats spatial clusters of
people as a single entity, which speeds up the searching process. The Adapt algorithm,
which is part of the offline component and is presented in Section 6.1.2, deals with finding
people within a particular cluster who should take a measurement, in order to maximise
the expected utility while at the same time saving budget for future iterations.

The next part of the algorithm (presented in Section 6.2) is responsible for acting in
real time, matching the simulated output with the current situation. In particular, given
the uncertainty in human mobility patterns, users are not guaranteed to be at the locations
used in the simulations. Also, offline simulations can typically take a significant amount of
time to complete, depending on the number of participants and timesteps. Consequently,
there might not be enough time to suggest to people when and where to take measurements.
Thus, an algorithm that handles the real time situation is necessary. Our algorithm finds
the best match between the simulation output from the offline algorithm to the real-time
situation.

Our decision to exploit both offline and online components is due to the fact that the
offline algorithm can find good solutions by making assumptions about the uncertainty
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related to mobility patterns. However, in real-time, the actual location of the users can be
observed. Thus, an online algorithm is required to adapt the measurements to be taken,
which are produced by the offline component, in order to match the real-time situation and
increase the total utility gained. For instance, if the offline component determined that
a user who will be in a specific location should take a measurement, but in real-time the
user is not there, a nearby available user could potentially take the required measurement
instead.

In this section, we present a high-level overview of our algorithm and then focus on
each component and subcomponent of it. In particular, the high level structure of our

Algorithm 1 Adaptive Best-Match (aBM) Algorithm

1: input: E (timesteps), B (budget), R (reliability)
2: S1,...,N , C1,...,N ←SiScaS(E,B,R) {Simulations running offline}
3: for i = 1 to E do
4: S∗i ← Matching(E, i, B, S1,...,N , C1,...,N ){Online mapping of users to measurements}
5: Notification(S∗i ){Notify selected users to take measurement}
6: E ← Update(S∗i ){The environment is updated with the new information obtained by

the measurements taken by users at this timestep.}
7: end for

coordination algorithm (aBM) is shown in Algorithm 1. This algorithm shows that given
the number of timesteps, the budget of the people and their reliability (line 1), a number of
offline simulations (N) are made (line 2). For each simulation (N), a different mapping of
users to spatio-temporal locations is produced (S), which we represent with S1,...,N . Also,
a number of spatio-temporal clusters are produced, depending on the spatial locations of
people, each of which is associated with the users that belong to it, their coordinates as
well as the coordinates of the centroid of the cluster. Formally, C= {C1,1, . . . , CE,m}, where
m ≤ M and every Ci,j is associated with a number of users A ⊆ A. In other words, it is
a set of spatio-temporal clusters that include information about each participant’s location
that belongs in that cluster, their reliability and budget as well as the centroid in terms of
coordinates of each cluster. Then, in real time (represented in lines 3-7), i.e., every timestep
i, the Matching algorithm is called to find the best match between simulations and the real-
time situation (line 4). Next, the selected users are notified to take the measurements
required by the system (line 5). Finally, the environment is updated (line 6) with the
information provided by the users.

6.1 Simulations for Scalable Searching (SiScaS)

The Simulations for Scalable Searching (SiScaS) algorithm is a critical component in our
work, as it is responsible for a number of functions including calling the Stochastic Local
Greedy Search (SLGS) algorithm, which is described in Algorithm 3. The SiScaS algorithm
is shown in Algorithm 2. In particular, this algorithm is responsible for sampling from the
human mobility patterns distributions provided by the human mobility prediction compo-
nent in Figure 3 (line 4), in order to get the possible locations for each of the participants.
It also clusters people in spatially correlated groups for all the timesteps using a well-known
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Algorithm 2 Simulations for Scalable Searching (SiScaS) Algorithm

1: input: E (timesteps), B (budget), R (Reliability)
2: Simulations = N{Number of simulations to run}
3: for s = 1 to Simulations do
4: A, l← SAMPLEHMPs {Sample from human mobility patterns distribution where

A ⊂ A, and l ⊂ L their corresponding locations}
5: Cs ← DBSCAN(A, l, E)
6: Ss ← SLGS(E,Cs, B,R)
7: end for
8: return: S1,...,N , C1,...,N

clustering technique called DBSCAN (Ester, Kriegel, Sander, & Xu, 1996)8 (line 5). DB-
SCAN enables the grouping of people based on the Euclidean distances between each other
at each timestep and is independent of the shape of the cluster. Also, DBSCAN, in contrast
to other clustering techniques, does not require an explicit input of the number of clusters
that should be formed. Rather, it requires the minimum number of points needed to form
a cluster, as well as a distance threshold that prohibits points far apart from each other
to belong to the same cluster. Consequently, people close to each other are said to belong
to the same cluster and thus can be treated as a single entity, which is crucial in scaling
up the number of participants in the campaigns. This is feasible since, in our case, mea-
surements taken at the same spatio-temporal location contribute the same information to
the campaign. Since, at each timestep people can be in different locations, the algorithm
produces a different set of clusters for each timestep. For example, Figure 4 (a) shows an
example of how a hundred people are scattered in an area, which is part of the real human
mobility dataset we use for our experiments later on. Figure 4 (b) shows the same 100
people clustered in 47 spatial groups. On average there are 2 people per cluster in this
occasion. However, isolated people are in their own cluster and people in more populated
areas are grouped together.

Finally, SLGS is called (line 6) and the human mobility patterns as well as the spatio-
temporal clusters are passed to it. For each iteration of the algorithm, SLGS will produce
a different mapping of participants to measurements, since it will keep sampling from the
mobility patterns and forming clusters for a number of times Simulations = N .

6.1.1 Stochastic Local Greedy Search (SLGS) Algorithm

The Stochastic Local Greedy Search Algorithm (SLGS) algorithm is the core component
of SiScaS (called on line 6 of Algorithm 2). The idea of SLGS is to stochastically evaluate
a number of policies (set of spatio-temporal locations of a set of agents), according to the
utility function defined in Equation 2, and greedily proceed to a neighbouring policy by
applying local changes in order to maximise that function. Thus, given a set of spatio-
temporal clusters, the budget of people and a number of timesteps, SLGS finds a mapping
between clusters and possible measurements, such that the information about the environ-

8. Other clustering algorithms such as K-means (MacQueen, 1967), Gaussian Mixture Model (McLachlan
& Peel, 2000) or Hierarchical Clustering (Johnson, 1967) could be used here.
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Figure 4: Spatial locations of 100 participants in Beijing, showing the locations of individual users
(a) and the locations of the means of the clusters created (b)

ment is maximised. SLGS is able to simulate how the information about the environment is
changing over time by exploiting the property of Gaussian Processes that requires only the
location of the measurement and not the actual value of it in order to provide the magnitude
of uncertainty over the environment.

A key feature of SLGS is that each cluster is treated as a single entity and can only
take a single measurement at a time, which is assumed to be taken from its centroid. The
reason for this is to avoid using individuals’ locations to make our algorithm more efficient.
However, the algorithm needs to decide who should actually take the measurement and
reduce the budget of the participants accordingly.

To do so we use a greedy algorithm within each cluster (Section 6.1.2), choosing the users
that provide the best expected utility, while taking into account their reliability. Intuitively,
our approach requires the most reliable people to take the most important measurements.
However, calculating the exact utility is intractable for a large number of users. This is
because we would have to consider all the combinations of users in a cluster to get the
expected utility. To overcome this problem, we calculate the probability that at least one of
the selected users in the cluster will take the measurement. This is easy to calculate as it is
one minus the product of probabilities of all users not taking a measurement when notified:

R∗ = 1−
W∏
j=1

(1− r(Aj)) (4)

where W is the number of people instructed to take a measurement within a cluster and
Aj ∈ A the user to take the measurement.

Since the number of spatio-temporal clusters can be large (up to a maximum of the num-
ber of participants times the number of timesteps, i.e., M · E), we sample again through
space and time. That is, we select a random number of clusters c ⊆ C for every timestep.
Consequently, we are left with a smaller number of spatio-temporal clusters. We greedily
select measurements that maximize the total information. However, in order to save com-
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Algorithm 3 Stochastic Local Greedy Search (SLGS)

1: input: E (timesteps), C (clusters), B (budget), R (Reliability)
2: maxU ′ = 0, S∗ ← null matrix(|C|)
3: for k = 1 to |C| do
4: { For each k, an extra spatio-temporal cluster is taking a measurement.}
5: if maxi(Bi) == 0 then
6: return: S∗

7: end if
8: c ← RANDOMSAMPLE{Take a random sample per timestep from the set of

clusters available where people have some budget left such that c ⊆ C}
9: sz ← |c|

10: for l = 1 to sz do
11: { For each l, a different spatio-temporal cluster is taking a measurement.}
12: O′ ← O ∪ ol{Where ol is the extra observation to be taken}
13: U(OE)←

∑E
t=1 u(O′t){Calculate the utility for every timestep t, where O′ includes

the spatio-temporal measurements selected so far, including a new measurement
l.}

14: sl ← getMappings(U(OE), c){A function that associates the users in the spatio-
temporal cluster with the utility of the measurement taken, i.e., sl : c→ U(OE)}

15: end for
16: Keep maximum U(OE) of sl in maxU variable
17: Set Sl to be the best configuration of all sl
18: S∗ ← Adapt(Sl, R,E){Get the subset of users that will be notified to get a measure-

ment}
19: Reduce budget from users selected in S∗

20: δ = (maxU −maxU ′)/maxU
21: if δ < threshold then
22: return: S∗

23: end if
24: maxU ′ ← maxU
25: end for
26: return: S∗

putation time, we stop the process when the increase in information by taking a specific
measurement is below a predefined threshold.

A simple example of how the SLGS algorithm works is presented on Figure 5. Here, for
simplicity, we assume that there is a two timestep campaign (t1 and t2) with two clusters (C1

and C2). The algorithm starts by evaluating the null matrix (no measurements at all) and
then adds the single best measurement that produces the highest total utility. However, at
this stage the algorithm is unaware who in particular will take the required measurements.
A zero value means that no measurement is taken and a one means that a measurement
is taken by users in the cluster at that timestep. The algorithm evaluates a number of
candidate solutions at each iteration (k), selects (denoted with the bold arrow line) the one
that produces the highest utility (U), calculated by Equation 1, and proceeds to the next
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Figure 5: Schematic representation of an SLGS Algorithm example

iteration (k), where an additional measurement is added. For instance, when k = 2 the
maximum utility is gained (U = 17) by cluster 1 (C1) taking a measurement on timestep
2 (t2). Similarly, when k = 3 the maximum utility is gained (U = 32) when an additional
measurement is taken by cluster 2 (C2) on timestep 2 (t2).

Now, the SLGS algorithm, shown in Algorithm 3, is described in more detail. The
algorithm accepts the locations of people spatially clustered per timestep (C), as well as
the budget of each individual (B), their reliability (R) and the total number of timesteps
(E) as shown in line 1. Given that there is sufficient budget left for at least one person in the
cluster, it randomly selects a cluster per timestep (line 8). It then checks what the utility
would be when adding a measurement from the centroid of each cluster (lines 10-15). This
is achieved by forwarding the campaign in time to check what the final utility would be (line
13). This enables the simulations to run fast since not every single position in the cluster is
considered by the Gaussian Process. Next, the utility produced by the specific combination
of measurements is stored as a mapping from users to spatio-temporal locations in sl (line
14). Then, the algorithm finds the cluster that produced the highest marginal increase (δ)
in utility, given the set of candidate solutions sl, and selects it (line 16). Since the algorithm
is greedy, this measurement can no longer be removed and thus it is not considered in the
following iterations. At this point Adapt is called (line 18) in order to select who, within
the selected cluster, will actually take the measurement (see Section 6.1.2 for more details).
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At the same time, the budgets of people in the cluster selected are adjusted accordingly,
i.e., the budget of the people selected within the cluster is reduced by one (line 19). The
algorithm iterates until the marginal increase is below a percentage threshold or everyone’s
budget is depleted (line 21 and line 5 respectively).

In order to speed up our algorithms, we reuse some of the results already calculated
by partially evaluating policies in the SLGS algorithm. In particular, at each iteration of
policy evaluation in time (line 13), i.e., when forwarding the campaign in time, we store the
utility earned from that part of the policy. When this part of the policy appears again, we
reuse the utility without the need to re-evaluate it.

6.1.2 Adapt Algorithm

Algorithm 4 is responsible for selecting the people within the cluster that should take the
measurement, as explained above. It is called on line 18 of the SLGS algorithm (Algo-
rithm 3).

Algorithm 4 Adapt

1: input: Sl (users in space and time), r1,...,M (reliability), E (timesteps)
2: maxU ′ = 0, S∗ ← null
3: for f = 1 to |Sl| do
4: sz = |Sl| − |S∗|{People not yet selected}
5: for l = 1 to sz do

6: Rl = 1−
|S∗|+1∏
j=1

(1− r(Aj)){Calculate the probability that at least one user takes a

measurement according to Equation 4, where Aj are the people selected within the
cluster including the new measurement ol.}

7: U(OE)← Rl ·u(Ot) {Calculate the overall utility of a set of observations (with and
without the observations from the given cluster)}

8: sl ← getMappings(U(OE), A){A function that associates the users with the utility
of the measurement taken, i.e., sl : c→ U(OE).}

9: end for
10: Keep maximum U(OE) of sl in maxU variable
11: Set S∗ to be the best configuration of all sl
12: δ = (maxU −maxU ′)/maxU
13: if δ < threshold then
14: return: S∗

15: end if
16: maxU ′ ← maxU{Update the highest utility}
17: end for
18: return: S∗

This is a greedy algorithm that estimates the utility if at least one of the users that are re-
quested to take the measurement in a particular cluster will actually take the measurement.
In other words, it selects a subset of people within the cluster to take a measurement, saving
measurements for future iterations. Figure 6 shows an example of how this algorithm works.
Specifically, in this example, the utility gained from the cluster taking measurement is

455



Zenonos, Stein & Jennings

U = 17 and reliabilities of the agents are r(A1) = 0.6, r(A2) = 0.9, r(A3) = 0.8, r(A4) = 0.7.
Initially, the measurement to be taken is by cluster 1 (C1) on timestep 2 (t2), which is the
result of iteration K = 2 in Figure 5. The algorithm selects iteratively who in that cluster
should take the measurement. For instance, in the first iteration, user 2 (A2) is selected
(bold arrow line) since the total utility, calculated by Equation 4, is greater than any other
choice, since it has the highest reliability. Similarly, in the next iteration, the probability
of at least one user taking a measurement is calculated. The algorithm adds measurements
greedily until utility gained is less than a threshold.
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A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

1 1 0 0t1

A1 A2 A3 A4

0 1 1 0t1

A1 A2 A3 A4

0 1 0 1t1

A1 A2 A3 A4

0 1 1 1t1

A1 A2 A3 A4

1 1 1 0t1

A1 A2 A3 A4

1 1 1 1t1

A1 A2 A3 A4

U=17 x .6 U=17 x .9 U=17 x .8 U=17 x .7

U=17 x .96 U=17 x .98 U=17 x .97

U=17 x .992 U=17 x .994

U=17 x .9976

Figure 6: Adapt Algorithm Example

Now, Algorithm 4 is explained in more detail. This algorithm iterates through the
number of users (line 3-17), who belong in the cluster selected in Algorithm 3. Then, it
iteratively adds a user to the list of selected users (line 5-9), calculating the probability (re-
liability) that at least one of the selected users will actually take the measurement required
(line 6). Next, the total utility is calculated (line 7) and this is stored as a mapping from
users to spatio-temporal locations in sl (line 8). Then, the algorithm finds the user that
produced the highest marginal increase (δ) in utility, given the set of candidate solutions
sl, and selects it (line 10). Since the algorithm is greedy, this measurement can no longer
be removed and thus it is not considered in the following iterations. The algorithm iterates
until the marginal increase is below a percentage threshold (line 13).
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6.2 The Matching Algorithm

SiScaS (presented in Section 6.1) will produce a number of mappings (N) of participants to
measurements depending on the samples taken from human mobility patterns, as well as the
clusters that are formed. However, in real time, participants can actually be in a different

Algorithm 5 Matching algorithm

1: input: E (timesteps), current (current timestep), B (budget), S1,...,N , C1,...,N

2: A× l← GetHumanLocations {Get GPS coordinates of users where A ⊂ A and l ⊂ L}
3: Ĉcurrent ← DBSCAN(A, l, current){Ĉcurrent are the clusters formed at the current

timestep in real-time}
4: for s = 1 toN do
5: Find nearest neighbour from Ĉcurrent to Ccurrent

s {Find the best match between the
cluster in real-time (Ĉcurrent) and a number of simulations (Ccurrent

s ) at a specific
timestep (current)}

6: Ds ←Calculate Euclidean distance of Ĉcurrent nearest neighbour
7: end for
8: ind← arg min

s
Ds {Get the index of the minimum distance.}

9: P ← Ccurrent
ind {Get people from the best simulation}

10: P̂ ← Ĉcurrent{Get people in real time}
11: Find S

′
= S∗ind ∩ P̂{S∗ind is the best match between clusters formed in simulations in

advance and real-time clusters. S
′

is a subset of those mappings that includes only
those people that are actually available in real time.}

12: Get the people not taking measurements within selected cluster S
′′

= P̂\S′

13: Select X = |S∗ind| − |S
′ | measurements

14: Append X random measurements to S
′

from S
′′

15: M ← Get people with budget left in ind simulation
16: totalBudget← Sum the budget left in ind simulation
17: O = totalBudget/(E − current)
18: Choose O random measurements from M
19: Append new measurements to S

′

location or they may not be available at all. Also, people might not take the measurement
even if they are actually at the desired position. The idea of the Matching algorithm is to
decide who to notify in real time, given the output of SiScaS (S1,...,N ) and the state of the
world at each timestep.

Concretely, the Matching algorithm (Algorithm 5) gets human locations (line 2) in real
time and clusters them using the DBSCAN algorithm (line 3). Then, the algorithm finds the
best match between the measurements that are most informative, as calculated in advance,
and the actual positions of participants in real time. Specifically, we find the nearest
neighbours from the real-time clusters to the clusters produced in SiScaS (line 5) and then
the Euclidean distance between them is calculated (line 6). The smaller the distance, the
more similar the clusters are. Then, the simulation that best matches the current situation
is found by selecting the smallest distance (D) from all the simulations (line 8). Given
what measurements were selected in the simulations in advance, the corresponding people
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in the cluster are selected (line 9). Then, the people within the real-time cluster are selected
(line 10). Since not everyone in the cluster should take a measurement, the algorithm finds
whether there are actually users selected in simulations in that cluster (line 11). Given
that not everyone in the cluster would have been in the simulation, we randomly select
people from the cluster to match the number of users instructed to take the measurement
(line 12-14). Next, the people whose budget have not been depleted in the best simulation
are retrieved (line 15) and the total budget left is calculated (line 16). In order to evenly
distribute the remaining budget, we divide the total budget by the timesteps left (line 17).
Then, the algorithm randomly selects measurements to be taken by people whose budget
was not depleted in the simulations (line 18). Finally, the randomly added measurements
are appended to the previous ones (line 19).

7. Empirical Evaluation

In this section, we evaluate the algorithm developed using real human mobility patterns
and air quality sensor data. In the first part, we introduce our benchmarks and give a
description of the experiments performed. Finally, we discuss our findings.

7.1 Benchmarks

The algorithm developed was benchmarked against the state-of-the-art algorithms which
are introduced below:

• Greedy: This algorithm is based on the work by Krause et al.(2008) discussed in
Section 2.3. It iterates through possible measurements available at each timestep,
finding the one that produces the highest utility. It keeps adding measurements until
a budget k is met. In our setting, k is derived from the total budget of people available
at each timestep. In particular, we divide the total budget that is available by the
number of timesteps left.

• Best-Match: This is an algorithm presented in an earlier version of this paper
(Zenonos, Stein, & Jennings, 2015a). The Best-Match algorithm works similarly to
adaptive Best-Match. However, it is conservative in terms of the measurements taken.
Specifically, when a cluster is selected in the simulations, all of the people belonging to
that cluster are instructed to take a measurement. In real time, the people belonging
to the cluster that matches the offline simulations are again instructed to take the
measurement. In doing so, this algorithm does not take in consideration the reliability
of users and may exhaust its budget more quickly than our approach.

• Proximity-driven (Pull-Based): This algorithm is often used in practice to let
people execute tasks based on their spatial location, as described in Section 2.2. In
environmental monitoring this can be interpreted as taking measurements when people
are in an area of high uncertainty or when the measurement they take has a high utility.
This approach is used by the state-of-the-art mobile crowdsourcing applications, such
as FieldAgent9 and GigWalk10, and it is outlined by Chen et al. (2014).

9. http://www.fieldagent.co.uk

10. http://www.gigwalk.com/

458



Coordinating Measurements in Uncertain Participatory Sensing Settings

• Random: This algorithm randomly selects measurements to be taken by people
until no budget is left. Specifically, at each timestep, each participant is requested to
take a measurement with probability p.

• Patrol: The Patrol algorithm takes measurements at all timesteps until everyone’s
budget is depleted. This algorithm draws on the agent coordination literature (Sec-
tion 2.1) and in particular on the work by Stranders et al. (2013), where agents
continuously take measurements for environmental monitoring.

Also, since the optimal algorithm is computationally infeasible, we developed an upper
bound to the algorithm that can be easily calculated. The upper bound is described below:

• Upperbound: We relax the assumption that people have a limited budget, we as-
sume full knowledge of human mobility patterns and assume that people are reliable.
Thus, all participants are assumed to take measurements at every timestep and the
total utility can be trivially calculated.

7.2 Experimental Setup

In order to empirically evaluate our algorithm, we compare its performance against the
six algorithms described above. In particular, we focus on air quality in terms of fine
particulate matter (PM2.5) in Beijing, where the levels of air pollution are known to be
high and thus it is of considerable interest to both the authorities and the people living
there. Table 1 shows the air quality index for air quality in Beijing. We use an air quality
dataset (Zheng, Liu, & Hsieh, 2013), which contains one year’s (2013-2014) fine grained air
quality data from static air quality monitoring stations in Beijing. We use this data to train
our GP model, and in particular learn the hyperparameters. These include the dynamism
of the phenomenon (l3) and smoothness over latitude and longitude (l1, l2). The sensors are
scattered in Beijing and take measurements every hour. Figure 7 shows the stations and
the state of the environment represented by a GP for a particular timestep. Air quality
exhibits spatial variations (PM2.5 is different depending on where you are in Beijing) as
well as temporal variations (it is different depending on the time of the day).

Ideally, at the same time the human mobility patterns are learned using a human mo-
bility prediction system. In this work, however, we use data from the Geolife trajectories
dataset (Zheng, Zhang, Xie, & Ma, 2009; Zheng, Li, Chen, Xie, & Ma, 2008; Zheng, Xie,
& Ma, 2010), which contains sequences of time-stamped locations of 182 people in Beijing
over a period of 5 years (2007-2012), as reported by portable GPS devices. We preprocess
the dataset, and take the location of each user every ten minutes. We also take patterns of
different weeks or months from the same pool of participants’ trajectories. This is used as
the ground truth to compute the upper bound in our experiments. In order to make the
system more realistic, we provide a probability distribution of the users’ potential future
locations. This is to simulate the behaviour of a real human mobility prediction system
that is able to provide us with these probabilities over possible locations. In particular, in
this work, we assume that the correct locations have a high probability of being assigned
a higher probability than the rest of the locations. Specifically, we create the probability
distribution of the locations such that 80% of the time the true location of the people will
be allocated a higher probability than the alternative locations. At the same time, 20% of
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the time the correct location is assigned less probability than a random location from the
user’s mobility patterns11. This is in line with evidence from the human mobility prediction
literature (Song, Qu, Blumm, & Barabási, 2010; McInerney, Rogers, & Jennings, 2013a;
McInerney et al., 2013b; Baratchi et al., 2014a). In particular, Song et al. (2010) claim that
the predictability of human mobility patterns varies very little. Their results show that
predictability peaks at 93%, and no users were observed whose predictability was under
80%. However, people have a limited budget of measurements they are willing to take per
day. In our work, we assume that people have an average budget of two measurements per
day, which is consistent with findings in real participatory sensing systems (Chon et al.,
2013)12. Also, people may not take the measurement they are requested according the their
reliability, as described in Section 4.

The next section presents the results of our experiments. Our experiments involve
comparing the execution time of the algorithms and the performance in terms of utility
gained (Equation 1 in Section 4) in campaigns with different numbers of participants (up
to 1000 per timestep), different time-scales, which affect the dynamism of the phenomenon
and different user reliabilities. We compare algorithms in terms of execution time, as the
problem we address is NP-hard (Section 2) and thus no optimal solution is tractable. On
the other hand, the utility measures the information collected about the phenomenon over
time, which is important to understand how the phenomenon changes over time. We also
experimented with another evaluation metric, namely Root Mean Square Error (RMSE).
Due to the similarity in the results, we do not include those results here. Moreover, different
phenomena might have different dynamics. Thus, we examine how algorithms perform under
different degrees of dynamism (or time-scale (l3) in terms of GPs shown in Equation 8).
Also, the more people, the more complex the problem becomes in terms of finding the
best solution. However, the more people, the less the contribution of each one in terms of
information to the overall campaign. Also, as mentioned in Section 3, people are associated
with uncertainty about whether they will actually take a measurement when they are asked
to do so. In order to examine the robustness of our algorithm, we vary the average reliability
of the people between zero and one.

Moreover, in order to obtain statistical significant in our results, we performed two-sided
t-test significance testing at the 95% confidence interval. Our experimental platform is the
IRIDIS High Performance Computing Facility with 2.6 GHz Intel Sandybridge processors
and 64GB RAM per node13.

7.3 Results

Figure 8 shows results of the performance of the algorithms coordinating a varying number of
participants when varying the time-scale, which controls the dynamism of the phenomenon.
The smaller the time-scale, the more dynamic the phenomenon. Consequently, as the time-
scale approaches zero, the phenomenon rapidly changes over time. In these environments,
the adaptive Best-Match algorithm is better, in terms of total utility gained than the rest of
the algorithms. The adaptive Best-Match algorithm saves measurements in the simulations

11. We also experimented with different distributions and we got broadly the same results.
12. We also experimented with different budgets and we got broadly the same results.
13. http://cmg.soton.ac.uk/iridis
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AQI Category PM2.5 Level Associated Health Impacts

0-50 Excellent Little or no risk.

51-100 Moderate Few hypersensitive individuals should reduce outdoor exercise.

101-150 Unhealthy for Sensitive Groups Slight irritations may occur.

151-200 Unhealthy Everyone may begin to experience health effects.

201-300 Very unhealthy Healthy people will be noticeably affected.

300+ Hazardous Healthy people will experience reduced endurance in activities.

Table 1: Air Quality Index (AQI) for air pollution (http://airnow.gov/index.cfm?
action=aqibasics.aqi)

Figure 7: Air quality measurement stations in Beijing overlayed by air quality measurements
predicted by GP.

by choosing who specifically should take measurements within the cluster while at the same
time maximising the total utility. This allows the algorithm to take extra measurements in
real time, which increases the total utility and thereby leads to a higher performance than
the Best-Match algorithm. Next is the greedy algorithm. This algorithm is able to choose
individuals to take measurements that increase the total utility and that could potentially
be in different clusters. However, as will be discussed in detail later, this comes at a great
computational expense, as the algorithm needs to consider all the participants one by one
until the k best observations are found at each timestep. Also, since it cannot look ahead
in time, the algorithm struggles in highly dynamic environments. Specifically, it is possible
that some future measurement is more informative if no measurement was taken at that
location in the past. The adaptive Best-Match algorithm is designed to produce reasonable
outcomes in dynamic environments and it is shown to outperform all the benchmarks in
these environments. The proximity algorithm chooses measurements that are informative,
since they are above a threshold, but it does not perform well. As we mentioned before,
a future measurement might be more informative than the current one. Thus, taking a
measurement, which is above the threshold at a timestep, might not be as informative as
taking some other measurement in the future. If the threshold is very high, taking only
that future measurement might not be as informative as taking a lot of measurements over
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Figure 8: Total utility gained for 24 timesteps when (a) run with 250, (b) 500, (c) 750 and (d) 1000
participants. The error bars indicate the 95% confidence intervals.
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time. Moreover, it is difficult to define which measurements are informative as the threshold
needs to be determined empirically. Patrol is an algorithm that instructs all the users to
take all the measurements whenever possible. This means, measurements are taken as early
as possible until budgets are depleted. This is not a good strategy as no budget is left
later in the campaign. Even a random algorithm is better than patrol since only a random
subset of people are taking measurements at each timestep. However, there is no intelligent
component that determines how those measurements are taken, and thus uninformative
measurements are taken.

In particular, adaptive Best-Match is 12.69% better than the Best-Match algorithm for
250 agents and 2.39 times better than Greedy, 20.29% for 500 agents and 2.11 times better
than greedy, 21.45% for 750 agents and 2 times better than greedy. Finally, it is 23.93% for
1000 agents and 94.27% better than greedy. It is consistent for different participants and
the results are significant to a 95% confidence level in a two-tailed t-test significance test.
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Figure 9: Total utility for 24 timesteps and a varying number of participants at a constant time-scale
of 1. The error bars indicate the 95% confidence interval.

Figure 9 shows the results of the performance of the algorithms in terms of utility gained
when we vary the number of participants (M) in the campaign. The dynamism in this ex-
periment is fixed at 1, to show the performance of the algorithms in a highly dynamic
phenomenon. We can observe that adaptive Best-Match is 12.74% better than the Best-
Match algorithm and 3.3 times better than the Greedy algorithm for 250 participants. It
is 20.31% better than Best-Match and 2.8 times than Greedy with 500 participants. It is
21.43% better than Best-Match and 2.6 times than Greedy for 750 participants. Finally, it
is 23.91% better than Best-Match and 2.5 times than Greedy for 1000 participants. Also,
we observe that the adaptive Best-Match algorithm is up to 60 better than no coordination,
even for small-scale scenarios (50 participants). The results are significant to a 95% confi-
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dence level in a two-tailed t-tests significance test. Overall, we can observe that adaptive
Best-Match algorithm is significantly better in most scenarios and at least as good as the
Best-Match up to 150 users. Crucially, the upperbound is on average only 13.14% better
than adaptive Best-Match, which highlights the good performance of our algorithm.

Figure 10 shows the performance of the algorithms in terms of the total runtime when
varying the number of participants per timestep. The results show that the adaptive Best-
Match algorithm is faster than the Greedy and Proximity-driven algorithms and it is com-
parable to Best-match. Specifically, it is not significantly different up to 250 agents, but is
40.5% slower for 1000 agents and 30.02% on average. It is evident that adaptive Best-Match
and Best-Match algorithms grow linearly with the number of agents. The Proximity-driven
and Greedy algorithms require much more time, because as the number of users increases,
the number of possible measurements that could be taken is greatly increased. So, the
algorithms need to consider one measurement at a time for an increasing set of possible
measurements. In fact, the Greedy algorithm is about 50 times slower than the aBM al-
gorithm for 1000 agents. Depending on the number of measurements to be taken at each
timestep (k), the Greedy algorithm attempts to find the best measurements by iteratively
adding the next single best measurement to the list of measurements to be taken. Similarly,
the proximity-driven algorithms evaluates all the possible measurements to decide whether
or not that measurement would lead to a higher gain than the pre-defined threshold.
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Figure 10: Average runtime for 24 timesteps and a varying number of participants. The error bars
indicate the 95% confidence interval.

Figure 11 shows the performance of the algorithms in terms of utility when we vary
the average reliability of the users. The dynamism is fixed at 1, i.e., a highly dynamic
phenomenon and the agent number to 500, which is a representative number such that all
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Figure 11: Total utility for 24 timesteps for 500 agents with a varying reliability at a constant
time-scale of 1. The error bars indicate the 95% confidence interval.

algorithms work efficiently, given the runtime of the algorithms in Figure 10. We observe
that adaptive Best-Match is 19.55% better than the Best-Match when reliability is 0.2 and
6.3% when reliability is 1 and 10.27% on average. This is because the offline component of
the adaptive Best-Match is able to select more people when reliability is low by choosing the
most important measurements in the simulations to be taken by people with the highest
reliability. Also, in real time, the online component of the algorithm selects a number
of available participants who still have some budget left to take measurements randomly,
evenly distributed across the time domain. On the other hand, Best-Match selects all the
participants in the best cluster. This makes sure that the most important measurements
are taken, but at the cost of using the budget of some people that could potentially have
taken other measurements at a different location and time.

8. Conclusions

In this article, we introduced the problem of coordinating measurements in participatory
sensing settings under high uncertainty. This uncertainty includes both uncertainty of
human mobility patterns and unreliability with respect to taking measurements when re-
quested to do so. We developed a novel algorithm that maximises the total utility gained
over a period of time constrained on the number of measurements each user is willing to
take. In particular, we demonstrated how efficient the adaptive Best-Match algorithm is
compared to the state-of-the-art Best-Match and Greedy algorithms. An empirical eval-
uation on real data showed that (a) adaptive Best-Match is significantly better than the
Best-Match and Greedy algorithms in terms of total utility gained, (b) adaptive Best-Match
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is significantly faster than the Greedy approach and comparable to the Best-Match one, (c)
dynamic environments affect the performance of the adaptive Best-Match algorithm and
the total utility gained, but it still outperforms the benchmarks in all scenarios, (d) adaptive
Best-Match is significantly better than Best-Match and Greedy algorithm in all scenarios
with different degrees of user reliability.

This work constitutes a significant advancement in the area of artificial intelligence,
as our algorithm can be used in other applications beyond environmental monitoring. In
particular, this work focuses on an entropy-based criterion as a utility function, which is the
difference in the information between two timesteps. However, a new utility function for
other applications can be devised. For example, in a crowdsourcing classification system,
users could be asked to verify objects or events (e.g., traffic jams, vandalism or littering),
which are classified from a machine vision algorithm, by physically visiting those locations.
The utility in this scenario could capture how valuable human input is. For instance,
verifying a rare event of vandalism at a specific location could be more important than
verifying a traffic jam in a usually busy area. Our algorithm could be used to decide which
users to ask to increase the overall system’s efficiency.

In the future, we plan to extend our algorithm to deal with corrupted or false user
readings. The current system values information only based on when and where measure-
ments are taken, without considering the trustworthiness of each user. However, in realistic
settings, there might be a tendency for malicious users to falsify their contribution for their
own selfish reasons. For instance, coordinated malicious participants might falsify air quality
readings near a factory to hide a potential air pollution issue or provide higher readings in
another area, where a competitor’s factory is located. Moreover, more sophisticated attacks
could attempt to falsify their readings in some areas to steer urban planning decisions like
the construction of new roads and parks. We have started addressing this setting in related
work (Zenonos, Stein, & Jennings, 2017), but there are still open research challenges that
need to be addressed. Specifically, that work does not consider sophisticated, systematic
attacks, which will be the focus of our future work in this space.

Also, it would be interesting to explore other variations of our algorithm. Specifically, if
the cluster distances are small, then instead of choosing users based on the highest expected
utility, it could be better to choose based on those who have the largest budget. Also,
we can further explore the insights we can get from human mobility patterns, as they
can potentially be clustered in space and time, which could be exploited to speed up the
algorithm. Moreover, we will consider running a real-world user trial as it could provide
additional insights to guide the algorithm.
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Appendix A. Gaussian Processes Regression

The purpose of this Appendix is to provide the details of Gaussian Processes (GPs) in
relation to the environmental monitoring. First, we provide the nomenclature, and then a
technical description of GPs.

Let x∗ be the input vector (test data) and y∗ its corresponding output value (prediction).
In an environmental context, x∗ represents a single location on the map described by the
spatial (x1, x2) and temporal coordinates (x3). The output value (y∗) is the prediction
for the actual value (e.g., the air or noise pollution level) at that specific spatio-temporal
location represented by x∗. Also, let y = f(x) be a process that denotes the relationship of
a n×D-dimensional input vector x ∈ RD and an output variable y ∈ R. When representing
spatio-temporal phenomena, we have D = 3 to capture longitude, latitude and time. In
addition, let {(xi, yi) | i = 1 . . . n} denote a set of input-output pairs which represents past
observations of the process f (training data). In terms of environmental phenomena, the
training data is the set of known spatio-temporal locations where measurements were taken
in the past with the corresponding value of the measurement at that time. Finally, we
denote the collection of n-dimensional output vectors yi as y. In other words, y is the
output for n locations. Also, we denote the D-dimensional input matrix as X which is a
collection of n xi (i.e., n rows).

Gaussian Processes are defined as a collection of random variables, any finite number of
which have a joint Gaussian distribution. In practice, a GP is completely specified by its
mean function and covariance function (or kernel). A mean function m(x) and a covariance
function k(x,x′) of a real process f(x) are defined as follows:

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
(5)

where E[X] is the expectation of a random variable X. Thus, we can write a Gaussian
Process as follows:

f(x) ∼ GP(m(x), k(x,x′)) (6)

The kernel k plays a critical role in Gaussian processes. It determines the covariance be-
tween f(x) and f(x′). In other words, it specifies the relationship between two outputs
with respect to their associated input. This enables GPs to identify the covariance be-
tween the outputs of training data, test data and the combination of both, which gives
the predictive power of GPs as shown below. When m(x) and k(x,x′) are known, they
function as a prior over function f . However, when new observations are made, a GP can
be updated to fit these data, increasing the prediction accuracy at the unobserved locations.

In GPs a key assumption is that data can be represented as a sample from a multivari-
ate Gaussian distribution. This is expressed as:[

y
y∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(7)

where K(·, ·) are obtained by evaluating the covariance function k for all pairs of columns.
X represents the input vector of training data and X∗ the input vector of test data. For
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simplicity in notation, we set K(X,X) = K, K(X,X∗) = KT
∗ , K(X∗, X) = K∗ and

K(X∗, X∗) = K∗∗.
Essentially, K is the covariance of the training points and K∗ for all the pairs of training

and test points. For the purposes of environmental monitoring, we are interested in the
conditional probability p(y∗|y). In other words, given a set of observations y, how likely is
a certain prediction for y∗. Using the properties of the Gaussian distribution, we obtain:

y∗|y ∼ N
(
K∗K

−1y,K∗∗K
−1KT

∗
)

(8)

Thus, the best estimate for y∗ is the mean of the distribution and the uncertainty about
the estimation is the variance as shown below:

µ = K∗K
−1y

Σ = K∗∗ −K∗K−1KT
∗

(9)

An important property that we exploit in this work is that the covariance of the prediction
outputs y∗ does not depend on the actual value of the observations y made, but rather only
on the input vectors X, which are the spatio-temporal locations of those observations. This
enables us to run simulations forward in time as it is not necessary to know the actual value
of the measurements to estimate the variance at a future timestep. We will come back to
this property when dealing with the algorithm developed that exploits it (see Section 6.1),
since it is crucial to the evaluation of our utility function in our simulations.

As we have already mentioned, the covariance function is of critical importance. How-
ever, we have not yet examined how it is mathematically expressed. A popular choice of
such a function is the Matérn, which is commonly used for spatial statistics and geostatis-
tics (Jutzeler et al., 2014; Ouyang et al., 2014; Minasny & McBratney, 2005). Importantly,
this kernel has free parameters which control the smoothness of the function, or in our
context the dynamism of the phenomenon, as well as its sensitivity to measurements and
noise. Matérn is defined as follows:

k(x, x′) = σ2
f (1 +

√
3r) exp(−

√
3r) + σ2

nδx,x′ (10)

where r =
√

(x− x′)TP−1(x− x′), P =

l1 0 0
0 l2 0
0 0 l3


and θ = {l1, l2, l3, σ2

f , σ
2
n} are the hyperparameters that need to be learned. Specifically, l1

is the length-scale that controls the smoothness of the regression function over the x-axis
(longitude), l2 over the y-axis (latitude) and l3 over time. Intuitively, (l1, l2, l3) captures
the dynamism of the phenomenon in both the spatial and the temporal dimension. Also,
σ2
f is the signal variance that controls the uncertainty about predictions made further away

from the observed points and σ2
n is the noise variance that controls the percentage of the

data variation that can be attributed to noise.
However, there is no standard kernel that should be used in all applications. Rather,

domain-specific knowledge should be taken into consideration when a specific kernel is
chosen. For example, an ideal kernel for air pollution would be a non-stationary14 one

14. Non-stationary covariance functions allow the model to adapt to functions whose smoothness varies with
the inputs. A stationary kernel is one where covariance only depends on distances between points (Pa-
ciorek & Schervish, 2004).
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that considers air dispersion and mathematically captures the dynamics of air pollution
particles. However, often this is difficult to capture and, worse, such kernels require many
parameters and are computationally expensive to compute (Ouyang et al., 2014). Designing
a kernel for a particular application is outside the scope of this work. Therefore, our choice
of kernel is the Matérn described above, which is able to capture the potential non-linear
relationship of the phenomenon and allows for smooth interpolation between points. Also,
it is empirically shown to work well in related work (Jutzeler et al., 2014).

Estimating θ is equivalent to finding a value for θ that results in a high p(θ|x,y). In
practice, it is achieved by maximising the log marginal likelihood log p(θ|x,y). This is given
by:

log p(θ|x,y) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π (11)
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