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Abstract

Decision tree classifiers are a widely used tool in data stream mining. The use of
confidence intervals to estimate the gain associated with each split leads to very effective
methods, like the popular Hoeffding tree algorithm. From a statistical viewpoint, the
analysis of decision tree classifiers in a streaming setting requires knowing when enough
new information has been collected to justify splitting a leaf. Although some of the issues
in the statistical analysis of Hoeffding trees have been already clarified, a general and
rigorous study of confidence intervals for splitting criteria is missing. We fill this gap by
deriving accurate confidence intervals to estimate the splitting gain in decision tree learning
with respect to three criteria: entropy, Gini index, and a third index proposed by Kearns
and Mansour. We also extend our confidence analysis to a selective sampling setting, in
which the decision tree learner adaptively decides which labels to query in the stream.
We provide theoretical guarantees bounding the probability that the decision tree learned
via our selective sampling strategy classifies suboptimally the next example in the stream.
Experiments on real and synthetic data in a streaming setting show that our trees are
indeed more accurate than trees with the same number of leaves generated by state-of-
the-art techniques. In addition to that, our active learning module empirically uses fewer
labels without significantly hurting the performance.

1. Introduction

Stream mining algorithms are becoming increasingly attractive due to the large number of
applications generating large-volume data streams. These include: email, chats, click data,
search queries, shopping history, user browsing patterns, financial transactions, electricity
consumption, traffic records, telephony logs, and so on. In these domains, data are generated
sequentially, and scalable predictive analysis methods must be able to process new data
in a fully incremental fashion. Decision trees classifiers are one of the most widespread
nonparametric classification methods. They are fast to evaluate and can naturally deal
with mixed-type attributes; moreover, classifiers represented by small trees are fairly easy
to interpret. Decision trees have been often applied to stream mining tasks —see, e.g., the
survey by Ikonomovska, Gama, and Džeroski (2011). In such settings, the tree growth is
motivated by the need of fitting the information brought by the newly observed examples.
Starting from the pioneering work by Utgoff (1989), the incremental learning of decision

c©2017 AI Access Foundation. All rights reserved.



De Rosa & Cesa-Bianchi

trees has received a lot of attention in the past 25 years. Several papers build on the idea of
using specific measures in order to evaluate the confidence when choosing a split (Musick,
Catlett, & Russell, 1993). These works include Sequential ID3 (Gratch, 1995), VFDT
(Domingos & Hulten, 2000), NIP-H and NIP-N (Jin & Agrawal, 2003). Sequential ID3 uses
a sequential probability ratio test in order to minimize the number of examples sufficient to
choose a good split. This approach guarantees that the incrementally learned tree is close
to the one trained via standard batch learning. A similar yet stronger guarantee is achieved
by the Hoeffding tree algorithm, which is at the core of the state-of-the-art VFDT system.
Alternative approaches, such as NIP-H e NIP-N, use Gaussian approximations instead of
Hoeffding bounds in order to compute confidence intervals. Several extensions of VFDT
have been proposed, also taking into account nonstationary data sources (see, e.g., Gama,
Rocha, & Medas, 2003; Gama, Medas, & Rocha, 2004; Bifet, Holmes, Pfahringer, Kirkby, &
Gavaldà, 2009; Yang & Fong, 2012; Pfahringer, Holmes, & Kirkby, 2007; Hulten, Spencer,
& Domingos, 2001; Kirkby, Bouckaert, Studen, Lin, Kibriya, Frank, Mayo, Mayo, Mutter,
Pfahringer, et al., 2007; Liu, Li, & Zhong, 2009; Gama, Kosina, et al., 2011; Xu, Qin,
Hu, & Zhao, 2011; Kosina & Gama, 2012; Salperwyck & Lemaire, 2013; Duda, Jaworski,
Pietruczuk, & Rutkowski, 2014). All these methods are based on the classical Hoeffding
bound (Hoeffding, 1963): after m independent observations of a random variable taking
values in a real interval of size R, with probability at least 1 − δ the true mean does not
differ from the sample mean by more than

εhof(m, δ) = R

√
1

2m
ln

1

δ
. (1)

Confidence intervals help choosing the split function maximizing the expected gain G with
respect to some given gain functional that upper bounds the classification risk. If we had
access to the true data distribution, then we could grow the tree optimally. Namely, we
could perfectly maximize the expected gain of each split. Since expected gain translates
to risk reduction, we would achieve the best possible risk reduction per leaf added to the
tree. However, because we ignore the data distribution, we must choose the splits by
computing gain estimates based on the data observed so far. The main result of this paper
(Theorem 4), bounds the probability that a data instance in the stream gets classified
through a suboptimal split. Note that, similarly to previous analyses, our result can not be
used to directly bound the risk of classification. It can be used to certify that an instance
was classified through a path that is as good as the one we could have obtained having
given access to the true data distribution.

The problem of computing the confidence interval for the split gain estimate can be
phrased as follows: we are given a set of unknown numbers G (i.e., the true gains for the
available splits) and want to find the largest of them. We do that by designing a sample-
based estimator Ĝ of each G, and then use an appropriate version of the Hoeffding bound
to control the probability that

∣∣Ĝ −G∣∣ > ε for any given ε > 0. It is easy to see that this

allows to pick the best split at any given node: assume that ĜF is the highest empirical
gain (achieved by the split function F ) and ĜF2 is the second-best (achieved by the split
function F2). If ĜF − ĜF2 > 2ε then with probability at least 1 − δ the split function F
is optimal1 —see Figure 1. Although all methods in the abovementioned literature use the

1. In the original work VFDT (Domingos & Hulten, 2000) ĜF − ĜF2 > ε is erroneously used.
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ĜF − ε ĜF + εĜF

ĜF2 − ε ĜF2 + εĜF2

Confident Split

Figure 1: The condition ĜF − ĜF2 > 2ε guarantees that the confidence intervals for the
true gains GF and GF2 are non-overlapping.

Hoeffding bound (1) for computing the confidence interval associated with each split, we
show here that the standard entropy-like criteria require a different approach.

The rest of the paper is organized as follows. Section 2 discusses related work. In
Section 3 we state the basic decision tree learning concepts and introduce the notation used
in the rest of the paper. In Section 4 we derive the new bounds for three splitting criteria.
In Section 5 we apply the confidence bounds to the incremental learning of a decision
tree and derive a formal guarantee (Theorem 4) on the probability that examples in the
stream are classified using suboptimal splits based on any of the three splitting criteria.
These theoretical guidelines are empirically tested in Section 7, where we show that our
more refined bounds deliver better splits than the splits performed by the other techniques.
In Section 6 we develop a selective sampling version of our algorithm based on the new
confidence bounds. In selective sampling, the learner adaptively queries the labels of data
points from the stream. In other words, everytime a new instance arrives from the stream,
the learner may decide to save the cost of obtaining the corresponding label and thus skip a
model update. The approach we propose is based on using the purity of a leaf to decide (at
some confidence level) whether its classification is already optimal, thus making superfluous
the acquisition of new labels. In Section 8 we compare our labeling strategy with a recent
baseline. Section 9 concludes the paper.

A preliminary version of this work appeared in the Proceedings of the 2015 International
Joint Conference on Neural Networks (IJCNN).

2. Related Work

The problem of computing the confidence interval for the splitting gain estimate Ĝ can be
attacked using large deviation bounds, which provide control on the deviations

∣∣Ĝ − EĜ
∣∣.

However, since splitting criteria (like entropy or Gini index) are typically nonlinear functions
of the distribution at each node, further work is needed to control the bias

∣∣EĜ − G
∣∣.

The problem of properly controlling deviations for entropy and Gini criteria was solved by
Rutkowski, Pietruczuk, Duda, and Jaworski (2013), where they used the McDiarmid bound
(McDiarmid, 1989) for deriving estimates of confidence intervals ε(m, d), as a function of
sample size m and confidence level δ, such that

∣∣Ĝ−EĜ
∣∣ ≤ ε(m, d) with probability at least

1− δ. An example of their results is the following confidence bound for K classes and the
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entropy criterion,

εmd(m, δ) = C(K,m)

√
1

2m
ln

1

δ
(2)

where C(K,m) = 6
(
K log2 e+log2 2m

)
+2 log2K. While ignoring the bias of the estimate Ĝ,

Rutkowski et al. (2013) correctly replace the Hoeffding bound (1), used in the VFDT algo-
rithm and its successors, by the McDiarmid bound (2). In a more recent paper, Duda et al.
(2014) focus on binary trees and binary classification, and apply the Hoeffding bound to the
entropy splitting criterion. More specifically, they decompose the entropy gain calculation
in three components, and apply the Hoeffding bound to each one of them, thus obtaining
a confidence interval estimate for the deviations of the splitting gains. However, this still
ignores the bias of the estimate. Matuszyk, Krempl, and Spiliopoulou (2013) directly use
the classification error as a splitting criterion, rather than a concave approximation of it
(like the entropy or the Gini index). Though this splitting criterion can be easily analyzed
via the Hoeffding bound, its empirical performance is generally not very good —see Sec-
tion 4 for more discussion on this. An improved bound for classification error is derived by
Rutkowski, Jaworski, Pietruczuk, and Duda (2015), where combined splitting criteria were
also considered.

In this work, we significantly simplify the approach of Rutkowski et al. (2013) and extend
it to a third splitting criterion. Moreover, we also solve the bias problem, controlling the
deviations of Ĝ from the real quantity of interest (i.e., G rather than EĜ). In addition to
that, unlike Matuszyk et al. (2013) and Duda et al. (2014), our bounds apply to the most
popular splitting criteria. Our analysis shows that the confidence intervals associated with
the choice of a suboptimal split not only depend on the number of leaf examples m —as in
bounds (1) and (2)— but also on other problem dependent parameters, as the dimension
of the feature space, the depth of the leaves, and the overall number of examples seen so
far by the algorithm. As revealed by the experiments in Section 7.1, this allows a more
cautious and accurate splitting in complex classification problems. Furthermore, because
the extensions of VFDT (see Section 1) share the same confidence analysis as the Hoeffding
tree algorithm, our technique can be easily applied to all these extensions yielding similar
improvements.

Standard decision tree learning approaches assume that all training instances are labeled
and available beforehand. In a true incremental learning setting, in which the classifier
is asked to predict the label of each incoming instance, active learning techniques (see,
e.g., Settles, 2012) allow us to model the interaction between the learning system and the
labeler agent (typically, a human annotator). More specifically, such techniques help the
learner adaptively select a small number of instances on which the annotator is invoked
in order to obtain the true label. The overall goal is to maximize predictive accuracy
at any given percentage of queried labels. In recent work, Zliobaite, Bifet, Pfahringer, and
Holmes (2014) introduce a general active learning framework and apply it to Hoeffding trees.
Various strategies to annotate the samples considering the output leaf class probabilities are
presented. These techniques rely on the class probability estimates at the leaf level, without
using confidence information; that is, whether the estimates are supported by a small or
large number of sampled labels. In Section 6 we develop a selective sampling version of our
algorithm based on the new confidence bounds. The approach we propose is based on using
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the purity of a leaf to decide (at some confidence level) whether its classification is optimal.
Labels of such leaves are then queried at a small rate, dictated by the confidence level that
increases as a function of time plus other relevant leaf statistics. The experimental results
(Section 8) show that, when applied to Hoeffding trees, our confidence-based strategy is
more robust than the strategy proposed by Zliobaite et al. (2014).

3. Batch Decision Tree Learning

For simplicity we only consider binary classification problems. The goal is to find a classifier
f : Rd → {0, 1} assigning the correct category Y = {0, 1} to new instances X. We consider
binary decision trees based on a class F of binary split functions F : Rd → {0, 1} partitioning
the feature space2. Training examples (X1, Y1), (X2, Y2), . . . ∈ Rd × {0, 1} are drawn i.i.d.
from a fixed but unknown probability distribution. Decision tree classifiers are typically
constructed in an incremental way, starting from a tree consisting of a single node. The
tree grows through a sequence of splitting operations applied to its leaves. If a split is
decided for a leaf i, then the leaf is assigned some split function F ∈ F and two nodes i0
and i1 are added to the tree as children of the split node. Examples are recursively routed
through the tree starting from the root as follows: when an example (Xt, Yt) reaches an
internal node i with split function F , then it is routed to child i0 if F (Xt) = 0 and to
child i1 otherwise. A decision tree T induces a classifier fT : Rd → {0, 1}. The prediction
fT (X) of this classifier on an instance X is computed by routing the instance X through
the tree until a leaf is reached. We use X → i to indicate that X is routed to the leaf i.
Then fT (X) is set to the most frequent label among the labels of all observed examples
that reach that leaf. The goal of the learning process is to control the binary classification
risk P

(
fT (X) 6= Y

)
of fT . For any leaf i, let Y|i be the random variable denoting the label

of an instance X routed to leaf i. Let L(T ) be the leaves of T . The risk of fT can then be
upper bounded, with the standard bias-variance decomposition, as follows

P
(
fT (X) 6= Y

)
≤

bias error︷ ︸︸ ︷∑
i∈L(T )

P
(
Y 6= y∗i |X → i

)
P(X → i) +

variance error︷ ︸︸ ︷∑
i∈L(T )

P
(
fT (X) 6= y∗i |X → i

)
P(X → i)

where y∗i = I
{
P(Y = 1 |X → i) ≥ 1

2

}
is the optimal label3 for leaf i and I{·} is the indicator

function of the event at argument. The notation P
(
· |X → i

)
is used to denote probabilities

conditioned on the event that the instance X is routed to leaf i.
The variance terms are the easiest to control: fT (X) is determined by the most frequent

label of the leaf i such that X → i. Hence, conditioned on X → i, the event fT (X) = y∗i
holds with high probability whenever the confidence interval for the estimate of y∗i does
not cross the 1

2 boundary4. The bias terms compute the Bayes error at each leaf. The
error vanishes quickly when good splits for expanding the leaves are available. However,

2. Although we only considered binary classification and binary splits, our techniques can be potentially
extended to multi-class classification and general splits.

3. The label assigned by the Bayes optimal classifier in the leaf partition.
4. This confidence interval shrinks relatively fast, as dictated by Hoeffding bound applied to the variable

y∗i ∈ {0, 1}.
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due to the large number of available split functions F , the confidence intervals for choosing
such good splits shrink slower than the confidence interval associated with the bias error.
Our Theorem 4 accurately quantifies the dependence of the split confidence on the various
problem parameters. Let Ψ(Y ) be a shorthand for min

{
P(Y = 0),P(Y = 1)

}
; similarly, let

Ψ(Y | A) be a shorthand for min
{
P(Y = 0 | A),P(Y = 1 | A)

}
, where A is any event such

that P(A) > 0. Every time a leaf i is split using F , the term Ψ(Y|i) gets replaced by

P
(
F = 0 |X → i

)
Ψ
(
Y|i | F = 0

)
+ P

(
F = 1 |X → i

)
Ψ
(
Y|i | F = 1

)
corresponding to the newly added leaves (here and in what follows, F also stands for the
random variable F (X)). The concavity of min ensures that no split of a leaf can ever make
that sum bigger. Of course, we seek the split maximizing the risk decrease (or “gain”),

Ψ(Y|i)− P
(
F = 0 |X → i

)
Ψ
(
Y|i | F = 0

)
− P

(
F = 1 |X → i

)
Ψ
(
Y|i | F = 1

)
.

In practice, splits are chosen so to approximately maximize a gain functional defined in
terms of a concave and symmetric function Φ, which bounds from the above the min function
Ψ (used by Matuszyk et al., 2013 as splitting criterion). The curvature of Φ helps when
comparing different splits, as opposed to Ψ which is piecewise linear. Indeed Ψ gives nonzero
gain only to splits generating leaves with disagreeing majority labels (see, e.g., Dietterich,
Kearns, & Mansour, 1996 for a more detailed explanation). Let Z be a Bernoulli random
variable with parameter p. Three gain functions used in practice are: the scaled binary
entropy H1/2(Z) = −p

2 ln p − 1−p
2 ln(1 − p) used in C4.5; the Gini index J(Z) = 2p(1 − p)

used in CART, and the function Q(Z) =
√
p(1− p) introduced by Kearns and Mansour

(1996) and empirically tested by Dietterich et al. (1996). Clearly, the binary classification
risk can be upper bounded in terms of any upper bound Φ on the min function Ψ,

P
(
fT (X) 6= Y

)
≤
∑

i∈L(T )

Φ(Y|i)P(X → i) +
∑

i∈L(T )

P
(
fT (X) 6= y∗i |X → i

)
P(X → i) .

The gain for a split F at node i, written in terms of a generic entropy-like function Φ, takes
the form

Gi,F = Φ(Y|i)− Φ
(
Y|i | F

)
= Φ(Y|i)− P

(
F = 0 |X → i

)
Φ(Y|i | F = 0)− P(F = 1 |X → i)Φ(Y|i | F = 1) . (3)

Now, in order to choose splits with a high gain (implying a significant reduction of risk),
we must show that Gi,F (for the different choices of Φ) can be reliably estimated from the
training examples. In this work we focus on estimates for choosing the best split F at any
given leaf i. Since the term Φ(Y|i) in Gi,F is invariant with respect to this choice, we may
just ignore it when estimating the gain.5

4. Confidence Bound For Split Functions

In this section we compute estimates Φ̂i|F of Φ(Y|i | F ) for different choices of Φ, and
compute confidence intervals for these estimates. As mentioned in Section 1, we actually

5. Note that, for all functions Φ considered in this paper, the problem of estimating Φ(Y|i) can be solved
by applying essentially the same techniques as the ones we used to estimate Φ

(
Y|i | F

)
.
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bound the deviations of Φ̂i|F from Φ(Y|i | F ), which is the real quantity of interest here. Due
to the nonlinearity of Φ, this problem is generally harder than controlling the deviations of
Φ̂i|F from its expectation E Φ̂i|F (see, e.g., Rutkowski et al., 2013 for weaker results along
these lines). In the rest of this section, for each node i and split F we write pk = P(Y =
1, F = k) and qk = 1 − pk for k ∈ {0, 1}; moreover, we use p̂k, q̂k to denote the empirical
estimates of pk, qk.

4.1 Bound for the Entropy

Let Φ(Z) be the (scaled) binary entropy H1/2(Z) = −p
2 ln p− 1−p

2 ln(1− p) for Z Bernoulli
of parameter p. In the next result, we decompose the conditional entropy as a difference
between entropies of the joint and the marginal distribution. Then, we apply standard
results for plug-in estimates of entropy.

Theorem 1 Pick a node i and route m i.i.d. examples (Xt, Yt) to i. For any F ∈ F , let

Φ̂i|F = Ĥ1/2(Y|i, F )− Ĥ1/2(F )

where Ĥ1/2 denotes the empirical scaled entropy (i.e., the scaled entropy of the empirical
measure defined by the i.i.d. sample). Then, for all δ > 0,

∣∣∣Φ̂i|F −H1/2(Y|i | F )
∣∣∣ ≤ εent(m, δ) where εent(m, δ) = (lnm)

√
2

m
ln

4

δ
+

2

m

with probability at least 1− δ over the random draw of the m examples.

Proof 1 In appendix A.

4.2 Bound for the Gini Index

In the Bernoulli case, the Gini index takes the simple form J(Z) = 2p(1−p) for Z Bernoulli
of parameter p. First we observe that J(Y|i | F ) is the sum of harmonic averages, then
we use the McDiarmid inequality to control the variance of the plug-in estimate for these
averages.

Theorem 2 Pick a node i and route m i.i.d. examples (Xt, Yt) to i. For any F ∈ F , let

Φ̂i|F = hm(p̂1, q̂1) + hm(p̂0, q̂0)

where hm denotes the harmonic mean hm(p, q) = 2pq
p+q . Then, for all δ > 0

∣∣∣Φ̂i|F − J(Y|i | F )
∣∣∣ ≤ εGini(m, δ) where εGini(m, δ) =

√
8

m
ln

2

δ
+ 4

√
1

m

with probability at least 1− δ over the random draw of the m examples.

Proof 2 In appendix B.
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4.3 Bound for the Kearns-Mansour Index

The third entropy-like function we analyze is Q(Z) =
√
p(1− p) for Z Bernoulli of param-

eter p. The use of this function was motivated by a theoretical analysis of decision tree
learning as a boosting procedure (Kearns & Mansour, 1996). See also the work of Takimoto
and Maruoka (2003) for a simplified analysis and some extensions.

In this case McDiarmid inequality is not applicable because of the lack of good upper
bounds on the constant c in (8). Hence we control Q(Y|i | F ) using a direct argument based
on classical large deviation results.

Theorem 3 Pick a node i and route m i.i.d. examples (Xt, Yt) to i. For any F ∈ F , let

Φ̂i|F =
√
p̂1q̂1 +

√
p̂0q̂0 .

Then, for all δ > 0,∣∣∣Φ̂i|F −Q(Y|i | F )
∣∣∣ ≤ εKM(m, δ) where εKM(m, δ) = 4

√
1

m
ln

8

δ

with probability at least 1− δ over the random draw of the m examples.

Proof 3 In appendix C.

5. Confidence Decision Tree Algorithm

A setting in which confidence intervals for splits are extremely useful is online or stream-
based learning. In this setting, examples are received incrementally, and a confidence inter-
val can be used to decide how much data should be collected at a certain leaf before a good
split F can be safely identified. A well-known example of this approach are the so-called
Hoeffding trees (Domingos & Hulten, 2000). In this section, we show how our confidence
interval analysis can be used to extend and refine the current approaches to stream-based
decision tree learning. For t = 1, 2, . . . we assume the training example (Xt, Yt) is received
at time t. C-Tree (Algorithm 1) describes the online decision tree learning approach.

Algorithm 1 C-Tree

Input: Threshold τ > 0
1: Build a 1-node tree T
2: for t = 1, 2, . . . do
3: Route example (Xt, Yt) through T until a leaf `t is reached
4: if `t is not pure then
5: Let F̂ = argmax

F∈F
Φ̂`t,F and F̂2 = argmax

F∈F :F 6=F̂
Φ̂`t,F

6: if Φ̂
`t,F̂
≤ Φ̂

`t,F̂2
− 2εt or εt ≤ τ then

7: Let F`t = F̂ and expand `t using split F`t
8: end if
9: end if

10: end for
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A stream of examples is fed to the algorithm, which initially uses a 1-node decision tree.
At time t, example (Xt, Yt) is routed to a leaf `t. If the leaf is not pure (both positive and
negative examples have been routed to `t), then the empirically best F̂ and the second-best
F̂2 split for `t are computed. If the difference in gain between these two splits exceeds a
value εt, computed via the confidence interval analysis, then the leaf is split using F̂ . The
leaf is also split when εt goes below a “tie-break” parameter τ , indicating that the difference
between the gains of F̂ and F̂2 is so tiny that waiting for more examples in order to find
out the really best split is not worthwhile. Let ε(m, δ) be the size of the confidence interval
computed via Theorem 1, 2 or 3. Fix any node i and let mi,t be the number of examples
routed to that node in the first t − 1 time steps. Clearly, for any F, F ′ ∈ F with F 6= F ′,
if Φ̂i|F ≤ Φ̂i|F ′ − 2ε(mi,t, δ) then Gi,F ≥ Gi,F ′ with probability at least 1 − δ. Now, since
the number of possible binary splits is at most dmi,t, if we replace δ by δ/(dmi,t) the union
bound guarantees that a node i is split using the function maximizing the gain.

Lemma 1 Assume a leaf i is expanded at time t only if there exists a split F̂ such that

Φ̂
i|F̂ ≤ Φ̂i|F − 2ε

(
mi,t, δ/(dmi,t)

)
for all F ∈ F such that F 6= F̂ . Then, F̂ = argmax

F∈F
Gi,F with probability at least 1− δ.

A reasonable goal in stream-based decision tree learning is ensuring that all splits are chosen
optimally. That is, whenever a leaf gets replaced by an internal node, the split uses the
best available function with respect to some underlying gain criterion defined in terms of
the true data distribution. Because gains translate to drops in classification risk, leaves
below nodes that were split optimally tend to be more accurate than leaves below nodes
created with suboptimal splits. The next result provides a bound on the probability that,
while running C-Tree, the t-th instance Xt is routed using a suboptimal split in the current
tree (a similar result was proven by Domingos & Hulten, 2000 for Hoeffding trees). Here
the probability is computed over the random draw of the first t examples. In other words,
the theorem bounds the probability that two bad things simultaneously happen: first, the
tree built using the first t− 1 examples contains one or more splits which are not optimal;
second, the t-th example is routed through one or more of these bad splits. Bad splits are
formally defined using the following notion of suboptimality: a split F is suboptimal for
node i when Gi,F < maxF ′∈F Gi,F ′ .

Theorem 4 Assume C-Tree (Algorithm 1) is run with

εt = ε

(
m`t,t,

δt
(ht + 1)(ht + 2)(t+ 1)3dm`t,t

)
(4)

where ε(m, δ) is the size of the confidence interval computed via Theorem 1, 2 or 3 and ht
is depth of `t. Then the probability that Xt is routed via one or more suboptimal splits is
at most δt.

Proof 4 Let T be the tree built by C-Tree in the first t− 1 time steps and let Dh be the set
of internal nodes at depth h. Clearly,∑

i∈Dh

P(X → i) ≤ 1 . (5)
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For any internal node i of T , let ti < t be the time step when the node was split and let Fi
be the function chosen by C-Tree at node i. Also, let F ∗i be any optimal split for node i.
That is, Gi,F ∗i = maxF∈F Gi,F . Further let δ′ = δ

(h+1)(h+2)d . We have

P
(
X routed via a suboptimal split

)
= P

(
∃i : X → i, Gi,Fi < Gi,F ∗i

)
≤

H∑
h=0

∑
i∈Dh

P
(
i ∈ Dh, Gi,Fi < Gi,F ∗i |X → i

)
P(X → i)

≤
H∑
h=0

∑
i∈Dh

P

(
i ∈ Dh, Gi,Fi < Gi,F ∗i , Φ̂i|Fi

≤ Φ̂i|F ∗i − 2ε

(
mi,ti ,

δ′

(ti + 1)3mi,ti

) ∣∣∣∣∣X → i

)
× P(X → i)

≤
H∑
h=0

∑
i∈Dh

t−1∑
r=1

r∑
s=1

P

(
i ∈ Dh, Gi,Fi < Gi,F ∗i , Φ̂i|Fi

≤ Φ̂i|F ∗i − 2ε

(
s,

δ′

(r + 1)3s

) ∣∣∣∣∣X → i

)
× P(X → i)

≤
H∑
h=0

∑
i∈Dh

P(X → i)

(
t−1∑
r=1

r∑
s=1

δ

(r + 1)3(h+ 1)(h+ 2)s

)
by Lemma 1

≤
H∑
h=0

δ

(h+ 2)2

t−1∑
r=1

r∑
s=1

1

(r + 1)3
by (5)

≤ δ .

The second inequality holds because

Φ̂i|Fi
≤ Φ̂i|F ∗i − 2ε

(
mi,ti ,

δ′

(ti + 1)3mi,ti

)
must be true when Fi is chosen at time ti as the split at node i. The last inequality uses

H∑
h=0

1

(h+ 1)(h+ 2)

t−1∑
r=1

r

(r + 1)3
≤ 1

which, in turn, relies on the facts
∑

h≥1

(
h(h+ 1)

)−1
= 1 and

∑
k≥2 k

−2 ≤ 1.

Remark 1 Choosing δt = 1
t in Theorem 4 implies that only a logarithmic number of ex-

amples in the stream are routed via suboptimal splits. More formally, if NT is the number
of instances in that are routed via suboptimal splits in a stream of length T ,

E
[
NT

]
=

T∑
t=1

P
(
Xt routed via a suboptimal split

)
≤

T∑
t=1

1

t
= O

(
lnT

)
.

6. Selective Sampling for Decision Tree Learning

In a truly online learning setting, such as a surveillance system or a medical monitoring
application, the classification system is asked to predict the label of each incoming data item.

1040



Confidence Decision Trees via Online and Active Learning for Streaming Data

0 1
1
2

pi − ε`c pi + ε`cpi

INCONSISTENT LEAF

Figure 2: Example of a leaf which is not δ-consistent. The class probability confidence
interval overlaps 0.5. In this case we are not sure, at the desired confidence level,
if the prediction made by the leaf is the same as that of the Bayesian optimal
classifier in the correspondent sub-region.

However, training labels can be only obtained through the help of a costly human annotator,
who should be invoked only when the confidence in the classification of the current instance
falls below a certain level. Selective sampling allows to model this interaction between the
learning system and the labeler agent. In our online decision tree setting, we apply the
selective sampling mechanism at the leaf level: whenever enough examples are routed to
leaf i such that the event fT (X) = y∗i holds with the desired confidence level, the algorithm
seldom asks the labels of additional examples that are routed to the same leaf.

Recall that `t is the leaf to which example (Xt, Yt) is routed, and that m`t,t is the

number of queried data points routed to leaf `t in the first t− 1 time steps. Let Ŷ`t,t be the

fraction of positive examples among those points, so that fT (Xt) = I
{
Ŷ`t,t ≥ 1

2

}
. We say

that `t is δ-consistent if∣∣Ŷ`t,t − 1
2

∣∣ > ε`c(m`t,t, t, δ) where ε`c(m, t, δ) =

√
1

2m
ln

2t

δ
. (6)

Let pi = P(Y = 1 | X → i). If `t is δ-consistent but fT (Xt) 6= y∗`t , then it must be that∣∣Ŷ`t,t − p`t∣∣ ≥√ 1
2m`t,t

ln 2t
δ . Hence, when a leaf becomes δ-consistent we are confident that

its classification is optimal at a certain confidence level —see Figure 2. We how show that
the probability that the classification of a δ-consistent leaf is non-optimal is at most δ.

Theorem 5 P
(
fT (Xt) 6= y∗`t , `t is δ-consistent

)
≤ δ .

Proof 5 We have

P
(
fT (Xt) 6= y∗`t , `t is δ-consistent

)
≤

t−1∑
s=0

P

(∣∣Ŷ`t,t − p`t∣∣ ≥√ 1

2s
ln

2t

δ

)

≤
t−1∑
s=0

∑
i∈L(T )

P

(∣∣Ŷi,t − pi∣∣ ≥√ 1

2s
ln

2t

δ

∣∣∣∣∣Xt → i

)
P(Xt → i)

≤
t−1∑
s=0

∑
i∈L(T )

δ

t
P(Xt → i) = δ
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where we used the standard Chernoff bound in the last step.

Similarly to Theorem 4, choosing δ = 1
t and applying the union bound allows to conclude

that at most a logarithmic number of examples in the stream are misclassified by δ-consistent
leaves. We use this setting in all the experiments.

As labels are generally obtained via queries to human annotators, any practical active
learning system for streaming settings should impose a bound on the query rate. The active
framework we propose is taken from the work by Zliobaite et al. (2014) —see Algorithm 3
(ACTIVE setting). Whenever a new instance is presented to the model, the system makes
a prediction and then invokes the active learning module in order to determine whether
the label should be requested. If this is the case, then a query is issued to the annotator
unless the query rate budget is violated. When the label is not requested, the model is not
updated. Our labeling strategy, described in Algorithm 1, is the following: if the incoming
sample is routed to a leaf which is not δ-consistent (see Figure 2), then the annotation is
requested. However, in order to guarantee enough exploration, annotations are requested
with some probability even on δ-consistent leaves. In this case the sampling probability is
proportional to the budget rate B and to the class probability confidence interval ε`c for
the leaf. Moreover, the sampling probability is also inversely proportional to the “margin”
of the class probability estimate,

∣∣Ŷ`t,t − 1
2

∣∣.
Algorithm 2 Query Strategy

1: Route instance xt through T until a leaf `t is reached
2: if `t is not δ-consistent then
3: return true

4: else

5: return true with probability
B + ε`c

B + ε`c +
∣∣Ŷ`t,t − 1

2

∣∣
6: end if
7: return false

7. Full Sampling Experiments

We ran experiments on synthetic datasets and popular benchmarks, comparing our C-Tree
(Algorithm 1) against two baselines: H-Tree (VDFT algorithm in Domingos & Hulten,
2000) and CorrH-Tree (the method from Duda et al., 2014 using the classification error as
splitting criterion).

The three methods (ours and the two baselines) share the same core, i.e., the Hoeffd-
ingTree (H-Tree) algorithm implemented in MOA6. In order to implement C-tree and the
baseline CorrH-Tree, we directly modified the H-Tree code in MOA. The grace period pa-
rameter7 was set to 100. In contrast to the typical experimental settings in the literature,
we did not consider the tie-break parameter because in the experiments we observed that
it caused the majority of the splits. Based on Theorem 4 and Remark 1 (which leads to the

6. moa.cms.waikato.ac.nz/

7. This is the parameter dictating how many new examples since the last evaluation should be routed to a
leaf before revisiting the decision (see Domingos & Hulten, 2000).
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choice δt = 1
t ), we used the following version of our confidence bounds εKM and εGini (the

bound for εent contains an extra lnm factor),

ε̃KM = ε̃Gini = c

√
1

m
ln
(
m2h2td

)
(7)

where the parameter c is used to control the number of splits.

Remark 2 The scaling factor c is introduced because the constants in large deviations
bounds are typically suboptimal. Therefore, as the bound is known to be correct only up
to scaling constants, choosing c empirically makes sense. Note that although our choice of c
is dataset-specific, we use the same value of c in each streaming experiment, which implies
that (7) is used with the same c and different values of t, m, and h.

The logarithmic dependence on t in (7) is the result of setting δt = 1
t . In the experiments,

we used ln t rather than 4 ln t dictated by (4) because we conjecture that the constant 4 is
just an artifact of the proof of Theorem 4.

In a preliminary round of experiments, we found that the Gini index delivered a performance
comparable to that of entropy and Kearns-Mansour, but —on average— produced trees that
were more compact for all three algorithms (ours and the two baselines). Hence, we ran all
remaining experiments using the Gini index.

In all experiments we measured the online performance. This is the average performance
(either accuracy or F-measure) when each new example in the stream is predicted using
the tree trained only over the past examples in the stream (“Interleaved Test-Then-Train”
validation in MOA) —see Algorithm 3 (FULL setting).

Algorithm 3 Online Stream Validation Protocol

Input: labeling budget B
1: Initialize online accuracy M0 = 0
2: for i = 1, 2, . . . do
3: Receive instance xi
4: Predict ŷi
5: Update Mi =

(
1− 1

i

)
Mi−1 + 1

i I{ŷi = yi}
6: if FULL setting then
7: Receive true label yi
8: Update model using new example (xi, yi)
9: else (ACTIVE setting)

10: if budget B not exceeded and Query Strategy = true then
11: Request true label yi
12: Update query rate and model using (xi, yi)
13: end if
14: end if
15: end for
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Figure 3: Online accuracy of C-Tree (cross with red line), H-Tree (circle with blue line),
and CorrH-Tree (star with green line) against number of leaves. The parameters
δ in H-Tree and CorrH-Tree, and c in C-Tree (in C-Tree we set δt = 1

t according
to Remark 1). were individually tuned on each dataset using a grid of 200 values,
hence plots show the online performance of each algorithm when it is close to
be optimally tuned. The ranges for the parameters are c ∈ (0, 2) and δ ∈ (0, 1).
The optimal values of c and δ generated in the tuning phase are, respectively,
typically around 5 ∗ 10−3 and 10−2.

7.1 Controlled Experiments

These experiments show how the detailed form of our confidence bound, which —among
other things— takes into account the number d of attributes and the structure of the tree
(through the depth of the leaves to split), allows C-Tree to select splits that are generally
better because they reduce risk more effectively than the splits selected by the baselines.
In particular, we generated data streams from a random decision trees with 50 leaves and
observed that C-Tree dominates across the entire range of parameters. Note that C-Tree
achieves the best accuracy as a function of the number of generated leaves —see Figure 3.

The random binary trees were generated with fixed class distributions in each leaf ac-
cording to Algorithm 7 (see Appendix D for a full description).

In Figure 3 we show online performances averaged over 1000 streams, each generated
using a different random binary tree. The plots are obtained as follows: for each dataset and
algorithm we logged the running average of the online performance —Mi in Algorithm 3—
and the total number of leaves in the tree as the stream was being fed to the algorithm.

7.2 Experiments on Real-World Data

We constructed ten different streams from each dataset listed below here by taking a random
permutation of the examples in it. A9A, COD-RNA and COVERTYPE are from the
LIBSVM binary classification repository8. AIRLINES and ELECTRICITY are from the
MOA collection9. In order to measure performance, we used F -measure of the smallest class

8. www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

9. moa.cms.waikato.ac.nz/datasets/
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Dataset Dimension Examples |+ | | − |
A9A* 123 48842 11687 37155

AIRLINES 7 539383 240264 299119

COD-RNA* 8 488565 162855 325710

COVERTYPE 54 581012 283301 297711

ELECTRICITY 8 45312 26075 19237

Table 1: Datasets used for benchmarking.

for the unbalanced datasets (marked with a star in Table 1) and accuracy for the remaining
datasets. Even if the datasets are not particularly large, the plots show that trees generated
by our algorithm compare favourably with respect to the baselines, especially in the first
learning phases.

8. Selective Sampling Experiments

The validation protocol for the experiments with active strategies is described in Algo-
rithm 3, where we used a different query strategy (invoked on line 10 of Algorithm 3)
for each considered approach. The labeled instances are stored and used to update the
model. The query rate is upper bounded by an input budget parameter B ∈ [0, 1]. In these
experiments, we calculated the query rate as the fraction of instances for which a label
was requested among the ones observed so far (Zliobaite et al., 2014). We compared our
Confidence Tree Strategy (Algorithm 1), which we call ConfTree, against a five baseline
techniques proposed by Zliobaite et al. (2014):

Rnd. The Random Strategy (Algorithm 4) is a naive method that queries the labels of
incoming instances with probability equal to the query rate budget B without considering
the actual incoming instance xt.

Algorithm 4 Random Strategy

Input: labeling budget B
1: return true with probability B
2: else return false

VarUn. The Variable Uncertainty Strategy (Algorithm 5) uses a dynamically adjusted
confidence threshold parameter Θ to determine requests for new labels. If the confidence
of the leaf classification, measured by max

{
p`t , 1 − p`t

}
, is above the current threshold Θ,

then the threshold is increased by a fraction s in order to query only the most uncertain
instances. In the opposite case, the threshold is reduced with the goal of acquiring more
labels in regions where the estimator is less confident. As explained by Zliobaite et al.
(2014), the parameter s can be safely set to a default value 0.01. We performed all the
experiments with this setting.

RndVar. This method is essentially the same as VarUn described above. VarUn always labels
the instances that are close to the decision boundary. However, if the concept drifts (see,
e.g., Widmer & Kubat, 1996) in areas away from the current decision boundary, the change
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Figure 4: Online accuracy (F-measure for the unbalanced dataset) against number of leaves
achieved by C-Tree (cross with red line), H-Tree (circle with blue line) and CorrH-
Tree (star with green line).

is missed unless the classifier issues extra queries on instances occurring in those areas. This
technique addresses the issue by randomizing the query threshold through a rescaling with
a normally distributed random variable. By doing that, the instances that are close to the
decision boundary are labeled more often, but occasionally also some distant instances get
queried —see the work by Zliobaite et al. (2014) for more details.
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Figure 5: Online accuracy (F-measure for the unbalanced datasets) against label budget.

Sel-Samp. The Selective Sampling method is based on the work by Cesa-Bianchi, Gentile,
and Zaniboni (2006), and uses a variable query threshold B

B+
∣∣Ŷ`t,t−1

2

∣∣ similar to our random

sampling mechanism for δ-consistent leaves.

Split. Many adaptive learning methods cope with concept drift using change-detection
mechanisms. Change detectors (see, e.g., DDM in Gama, Medas, Castillo, & Rodrigues,
2004) are built with the implicit assumption that prediction errors are distributed uniformly
in the stream unless the concept has drifted. However, the uniform distribution assumption
may not hold over the substream of labels queried by an active learning method. Hence,
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Algorithm 5 Variable Uncertainty Strategy

Input: threshold adjustment step s ∈ (0, 1],
confidence threshold Θ = 1

1: Route instance xt through T until a leaf `t is reached
2: if max

{
p`t , 1− p`t

}
< Θ then

3: decrease the confidence threshold Θ = (1− s)Θ
4: return true

5: else
6: increase the confidence threshold Θ = (1 + s)Θ
7: return false

8: end if

change detectors may have problems to distinguish a change in distribution due to active
labeling from a change in distribution due to concept drift. To overcome this problem, the
Split Strategy (Algorithm 6) randomly splits the stream. The first substream is labeled
according to the Variable Uncertainty Strategy, while the second substream is labeled ac-
cording to the Random Strategy. Both substreams are used to train the classifier, but only
the random stream is used for detecting a change. In the experiments we set the parameter
ν = 0.2.

Algorithm 6 Split Strategy

Input: threshold adjustment step s ∈ (0, 1]
1: Route instance xt through T until a leaf is reached
2: Generate a uniform random variable rand ∈ [0, 1];
3: if rand ≤ ν then
4: ChangeDetectionMethod

5: return Rnd

6: else
7: return VarUn

8: end if

We also combined the Split Strategy (Algorithm 6) with our approach substituting the
VarUn procedure with ConfTree method, we denote this approach by SplitConfTree.

All of our experiments were performed using the MOA data stream software suite. We
added change detection to the base classifier in order to improve its performance (we chose
DDM as suggested by Zliobaite et al., 2014). All the tested ACTIVE strategies used C-Tree
(Algorithm 1) as the base learner with the same parameters setting as in Section 7. The
algorithms had to predict the label of each new incoming instance. After each prediction, if
the active learning system requested the true label, the instance —together with its label—
was used as a new training example, see Algorithm 3. We ran all the competing algorithms
using range B ∈ {.1, .2, .3, .4, .5, .6}10 of budget values, and plotted in Figure 5 the resulting

10. Note that the budget is only an upper limit to the actual query rate: algorithms generally ask for a
smaller number of annotations.
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online accuracy as a function of the query budget. As for the FULL sampling experiments,
we deactivated the tie-break mechanism and we tuned the tree learning parameters.

Although performances are oscillating, all the plots show that accuracies of all methods
tend to increase as the budget grows. The plots also show how the performance of our
approaches (ConfTree and SplitConfTree) is consistently good across the various dataset
scenarios and with respect to the baseline methods. This suggests that including more
accurate statistical information in order to decide whether to issue a query, as our methods
do, may indeed improve performance. By comparing the plots of Figure 4 and Figure 5, we
can also observe that a small fraction of the available labels is typically sufficient to achieve
a performance close to that of the full sampling algorithms.

9. Conclusions and Future Works

The goal of this work was to provide a more rigorous statistical analysis of confidence
intervals for splitting leaves in decision trees. Our confidence bounds take into account all
the relevant variables of the problem. This improved analysis is reflected in the predictive
ability of the learned decision trees, as we show in the experiments. It is important to note
that the proposed bounds can be easily applied to the many existing variants of VFDT.
Furthermore, we showed how these confidence bounds can lead to effective selective sampling
techniques for saving labels in online decision tree learning. Note that both full and selective
sampling settings are supported by our theoretical and empirical results.

Our confidence analysis applies to i.i.d. streams. Extending our results to more general
processes remains an open problem. The selective sampling results raise interesting issues
concerning the interplay between nonparametric learning models (such as decision trees)
and subsampling techniques. For example, there are no theoretical bounds showing the
extent to which labels can be saved without significantly hurting performance.

Acknowledgments

The authors would like to thank the editor and the anonymous reviewers for their careful
reading and thoughtful comments.

Appendix A. Proof of Theorem 1

Let H be the standard (unscaled) entropy. Using the standard identity H
(
Y|i | F

)
=

H
(
Y|i, F

)
− H(F ), we have Φ̂i|F = Ĥ1/2

(
Y|i, F

)
− Ĥ1/2(F ). We now use part (iii) of the

remark following (Antos & Kontoyiannis, 2001, Corollary 1), we have that

∣∣∣Ĥ1/2(F )− E Ĥ1/2(F )
∣∣∣ ≤ lnm

2

√
2

m
ln

4

δ∣∣∣Ĥ1/2(Y|i, F )− E Ĥ1/2(Y|i, F )
∣∣∣ ≤ lnm

2

√
2

m
ln

4

δ

simultaneously hold with probability at least 1− δ. These bounds hold irrespective to the
size of the sets in which Y|i and F take their values.
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Next, we apply (Paninski, 2003, Proposition 1), which states that

− ln

(
1 +

N − 1

m

)
≤ E Ĥ(Z)−H(Z) ≤ 0

for any random variable Z which takes N distinct values. In our case, N = 2 for Z = F
and N = 4 for Z =

(
Y|i, F

)
. Hence, using −a ≤ − ln(1 + a) for all a, we get∣∣∣H1/2(F )− E Ĥ1/2(F )
∣∣∣ ≤ 1

2m
and

∣∣∣H1/2(Y|i, F )− E Ĥ1/2(Y|i, F )
∣∣∣ ≤ 3

2m
.

Putting everything together gives the desired result.

Appendix B. Proof of Theorem 2

Lemma 2 (McDiarmid’s inequality) Let G be a real function of m independent random
variables X1, . . . , Xm such that∣∣∣G(x1, . . . , xi, . . . , xm)−G(x1, . . . , x

′
i, . . . , xm)

∣∣∣ ≤ c (8)

for some constant c ∈ R and for all realizations x1, . . . , xi, x
′
i, . . . , xm. Then

P
(∣∣G− EG

∣∣ ≥ ε) ≤ 2 exp

(
−2ε2

mc2

)
.

If we set the right-hand side equal to δ, then

∣∣G− EG
∣∣ ≤ c√m

2
ln

2

δ

is true with probability at least 1− δ.

Note the following fact

J(Y|i | F ) = P(F = 1) 2
P(Y|i = 1, F = 1)

P(F = 1)

P(Y|i = 0, F = 1)

P(F = 1)

+ P(F = 0) 2
P(Y|i = 1, F = 0)

P(F = 0)

P(Y|i = 0, F = 0)

P(F = 0)

= 2
P(Y|i = 1, F = 1)P(Y|i = 0, F = 1)

P(F = 1)

+ 2
P(Y|i = 1, F = 0)P(Y|i = 0, F = 0)

P(F = 0)

= hm(p1, q1) + hm(p0, q0) . (9)

In view of applying McDiarmid inequality, let p̂k = r
m and q̂k = s

m . We can write the
left-hand side of condition (8) in Lemma 2 for each term of (9) as

2

m

∣∣∣∣ rs

r + s
− r′s′

r′ + s′

∣∣∣∣
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where r, s = 1, . . . ,m and r′, s′ may take the following forms: (r + 1, s− 1) —when a label
of an example in the current leaf is flipped, (r+ 1, s) —when an example is moved from the
sibling leaf to the current leaf, and (r− 1, s) —when an example is moved from the current
leaf to the sibling leaf. Since the harmonic mean is symmetric in r and s, we can ignore the
cases (r − 1, s+ 1), (r, s+ 1), and (r, s− 1). A tedious but simple calculation shows that∣∣∣∣ rs

r + s
− r′s′

r′ + s′

∣∣∣∣ ≤ 1 .

Therefore, we may apply Lemma 2 with c = 4
m and obtain that

∣∣∣Φ̂i,F − E Φ̂i,F

∣∣∣ ≤√ 8

m
ln

2

δ
(10)

holds with probability at least 1− δ.
Next, we control the bias of hm

(
p̂k, q̂k

)
as follows,

0 ≤ hm(pk, qk)− E
[
hm
(
p̂k, q̂k

)]
= 2

pkqK
pk + qk

− 2E
[
p̂kq̂k
p̂k + q̂k

]
(11)

= 2E

[
pkp̂k(qk − q̂k) + qkq̂k(pk − p̂k)

(pk + qk)
(
p̂k + q̂k

) ]
≤ 2E |qk − q̂k|+ 2E

∣∣pk − p̂k∣∣
≤ 2

√
E
[(
qk − q̂k

)2]
+ 2

√
E
[(
pk − p̂k

)2]
≤ 2√

m
(12)

where the first inequality is due to the concavity of hm. Combining (10) and (12) concludes
the proof.

Appendix C. Proof of Theorem 3

Lemma 3 Let B binomially distributed with parameters (m, p). Then∣∣∣∣∣
√
B

m
−√p

∣∣∣∣∣ ≤
√

1

m
ln

2

δ

is true with probability at least 1− δ.

Proof 6 The result is an immediate consequence of the Okamoto bounds (Okamoto, 1959)
—see also (Boucheron, Lugosi, & Massart, 2013, Exercise 2.13). In particular,

P
(∣∣∣∣Bm − p

∣∣∣∣ ≥ ε) ≤ e−mD(p+ε‖p) + e−mD(p−ε‖p)
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where D(q‖p) = q ln q
p + (1− q) ln 1−q

1−p is the KL divergence, and

D(p+ ε‖p) ≥
(√
p+ ε−√p

)2
and D(p− ε‖p) ≥ 2

(√
p− ε−√p

)2
.

Simple algrebraic manipulation concludes the proof.

Similarly to the proof of Theorem 2, note that

Q(Y|i | F )

= P(F = 1)

√
P(Y|i = 1, F = 1)

P(F = 1)

P(Y|i = 0, F = 1)

P(F = 1)

+ P(F = 0)

√
P(Y|i = 1, F = 0)

P(F = 0)

P(Y|i = 0, F = 0)

P(F = 0)

=
√
P(Y|i = 1, F = 1)P(Y|i = 0, F = 1) +

√
P(Y|i = 1, F = 0)P(Y|i = 0, F = 0)

=
√
p1q1 +

√
p0q0

Then ∣∣∣√p̂1q̂1 +
√
p̂0q̂0 −

√
p1q1 −

√
p0q0

∣∣∣ ≤ ∣∣∣√p̂1q̂1 −
√
p1q1

∣∣∣+
∣∣∣√p̂0q̂0 −

√
p0q0

∣∣∣ ≤ 4ε

whenever
∣∣√p̂k − √pk∣∣ ≤ ε and

∣∣√q̂k − √qk∣∣ ≤ ε for k ∈ {0, 1}. Using the union bound
and Lemma 3 we immediately get

∣∣∣√p̂1q̂1 +
√
p̂0q̂0 −

√
p1q1 −

√
p0q0

∣∣∣ ≤ 4

√
1

m
ln

8

δ

thus concluding the proof.

Appendix D. Recursive Algorithm for Generating Random Binary Trees

The random binary trees are constructed through recursive random splits according to
Algorithm 7. More precisely, we start at the root with a budget of n leaves. Then we
assign to the left and right sub-trees bnXc and n − 1 − bnXc leaves respectively, where
X is uniformly distributed in the unit interval. This splitting continues with i.i.d. draws
of X until the left and right sub-trees are left with one leaf each. Whenever a split is
generated, we assign it a uniformly random attribute and a random threshold value. In
the experiment, we generated 1000 random binary trees with n = 50 leaves. The random
splits are performed choosing among d = 5 attributes. For simplicity, we only considered
numerical attributes and thresholds in the [0, 1] interval. A random binary tree is then used
to generate a stream as follows: for each leaf of the tree, 10,000 examples are uniformly
drawn from the subregion of [0, 1]5 defined by the leaf, obtaining 500,000 examples. Each
of these examples is given label 1 with probability 0.7 for a left leaf and with probability
0.3 for a right leaf.
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Algorithm 7 RandCBT

Input: tree T , total number of leaves num-leaves, number of attributes d, leaf class con-
ditional probability q

Output: complete binary tree T
current-node i = CreateNode()

2: if num-leaves == 1 then
mark i as leaf

4: if i is a left child then
P(Y = 1 |X → i) = q

6: else
P(Y = 1 |X → i) = 1− q

8: end if
else

10: Generate a uniform random variable rand ∈ [0, 1];
left-leaves = max

{
1, bnum-leaves*randc

}
12: right-leaves = num-leaves− left-leaves

i = RandomAttribute(1, . . . , d)
14: v = RandomValueInSubRegion(i)

add split test (i, v) to i
16: l-child = RandCBT(i, left-leaves, d, q)

r-child = RandCBT(i, right-leaves, d, q)
18: add l-child and r-child as a descendent of i

end if
20: return current-node i
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Ikonomovska, E., Gama, J., & Džeroski, S. (2011). Learning model trees from evolving data
streams. Data mining and knowledge discovery, 23 (1), 128–168.

Jin, R., & Agrawal, G. (2003). Efficient decision tree construction on streaming data. In
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 571–576. ACM Press.

Kearns, M., & Mansour, Y. (1996). On the boosting ability of top-down decision tree
learning algorithms. In Proceedings of the 28th Annual ACM Symposium on Theory
of Computing, pp. 459–468. ACM Press.

Kirkby, R., Bouckaert, R. R., Studen, M., Lin, C.-S. A., Kibriya, A. M., Frank, E., Mayo,
M., Mayo, M., Mutter, S., Pfahringer, B., et al. (2007). Improving Hoeffding trees.
Int. J. Approx. Reasoning, 45, 39–48.

Kosina, P., & Gama, J. (2012). Very fast decision rules for multi-class problems. In Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 795–800.
ACM Press.

Liu, J., Li, X., & Zhong, W. (2009). Ambiguous decision trees for mining concept-drifting
data streams. Pattern Recognition Letters, 30 (15).

Matuszyk, P., Krempl, G., & Spiliopoulou, M. (2013). Correcting the usage of the Hoeffding
inequality in stream mining. In Advances in Intelligent Data Analysis XII, pp. 298–
309. Springer.

1054



Confidence Decision Trees via Online and Active Learning for Streaming Data

McDiarmid, C. (1989). On the method of bounded differences. Surveys in combinatorics,
141 (1), 148–188.

Musick, R., Catlett, J., & Russell, S. J. (1993). Decision theoretic subsampling for induction
on large databases.. In International Conference on Machine Learning, pp. 212–219.
Morgan Kaufmann.

Okamoto, M. (1959). Some inequalities relating to the partial sum of binomial probabilities.
Annals of the Institute of Statistical Mathematics, 10 (1), 29–35.

Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation,
15 (6), 1191–1253.

Pfahringer, B., Holmes, G., & Kirkby, R. (2007). New options for Hoeffding trees. In Pro-
ceedings of the 20th Australian joint conference on Advances in Artificial Intelligence,
pp. 90–99. Springer.

Rutkowski, L., Jaworski, M., Pietruczuk, L., & Duda, P. (2015). A new method for data
stream mining based on the misclassification error. IEEE Transactions on Neural
Networks and Learning Systems, 26 (5), 1048–1059.

Rutkowski, L., Pietruczuk, L., Duda, P., & Jaworski, M. (2013). Decision trees for mining
data streams based on the McDiarmid’s bound. IEEE Transactions on Knowledge
and Data Engineering, 25 (6), 1272–1279.

Salperwyck, C., & Lemaire, V. (2013). Incremental decision tree based on order statistics.
In International Joint Conference on Neural Networks, pp. 1–8. IEEE Press.

Settles, B. (2012). Active learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6 (1), 1–114.

Takimoto, E., & Maruoka, A. (2003). Top-down decision tree learning as information based
boosting. Theoretical Computer Science, 292 (2), 447–464.

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine learning, 4 (2),
161–186.

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden
contexts. Machine learning, 23 (1), 69–101.

Xu, W., Qin, Z., Hu, H., & Zhao, N. (2011). Mining uncertain data streams using cluster-
ing feature decision trees. In Advanced Data Mining and Applications, pp. 195–208.
Springer.

Yang, H., & Fong, S. (2012). Incrementally optimized decision tree for noisy big data. In
Proceedings of the 1st International Workshop on Big Data, Streams and Heteroge-
neous Source Mining: Algorithms, Systems, Programming Models and Applications,
pp. 36–44, New York, NY, USA. ACM Press.

Zliobaite, I., Bifet, A., Pfahringer, B., & Holmes, G. (2014). Active learning with drifting
streaming data. IEEE Transactions on Neural Networks and Learning Systems, 25 (1),
27–39.

1055


