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Christer Bäckström christer.backstrom@liu.se

Peter Jonsson peter.jonsson@liu.se

Department of Computer and Information Science
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Abstract

There is an extensive literature on the complexity of planning, but explicit bounds
on time and space complexity are very rare. On the other hand, problems like the con-
straint satisfaction problem (CSP) have been thoroughly analysed in this respect. We
provide a number of upper- and lower-bound results (the latter based on various complexity-
theoretic assumptions such as the Exponential Time Hypothesis) for both satisficing and
optimal planning. We show that many classes of planning instances exhibit a dichotomy:
either they can be solved in polynomial time or they cannot be solved in subexponential
time and thus require O(2cn) time for some c > 0. In many cases, we can even prove
closely matching upper and lower bounds; for every ε > 0, the problem can be solved in
time O(2(1+ε)n) but not in time O(2(1−ε)n). Our results also indicate, analogously to CSPs,
the existence of sharp phase transitions. We finally study and discuss the trade-off between
time and space. In particular, we show that depth-first search may sometimes be a viable
option for planning under severe space constraints.

1. Introduction

This section starts with a discussion on complexity analysis in planning, in order to situate
this article in the literature. This is followed by a brief presentation of our main results and
the section ends with an outline of the article.

1.1 Background

There is nowadays a quite extensive literature on the computational complexity of proposi-
tional planning. The two most well studied planning languages are the SAS+ language,
which uses multi-valued state variables, and propositional Strips with negative goals
(PSN), which can be viewed as the special case of SAS+ with binary variables. The most
commonly studied planning problems are plan satisfiability (Psat), which asks if there is
a plan at all, length-optimal planning (LOP), which asks for a plan of minimum length,
and cost-optimal planning (COP), which assigns costs to actions and asks for a plan of
minimum cost. All three problems are PSPACE-complete, both for PSN and for SAS+.
Bylander (1994) considered subclasses of PSN by restricting the number and polarity of
defined variables in the preconditions and effects of actions, and analysed the complexity of
both Psat and LOP for a large number of such subclasses. Bäckström and Nebel (1995)
made an analogous classification of Psat and LOP for (almost) all subclasses of SAS+

defined by the so called PUBS restrictions (Bäckström & Klein, 1991). Another common
way to define subclasses is to restrict the structure of the causal graph of planning prob-
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lems (cf. Domshlak & Dinitz, 2001; Brafman & Domshlak, 2003; Giménez & Jonsson, 2009;
Bäckström & Jonsson, 2013). In the case of COP, almost all analyses are based on such
subclasses (cf. Katz & Domshlak, 2008, 2010a; Katz & Keyder, 2012; Aghighi, Jonsson, &
St̊ahlberg, 2015). This line of research has mainly resulted in very coarse classifications of
problems as PSPACE-complete, NP-complete or tractable. There has, thus, been a recent
interest in applying parameterised complexity theory, which allows for more fine-grained
results, where the complexity depends both on the problem itself and the choice of pa-
rameters. Bäckström, Jonsson, Ordyniak, and Szeider (2015) analysed LOP using plan
length as parameter for all subclasses of SAS+ using the PUBS restrictions, finding that
the problem is W[2]-complete in the general case, but drops to W[1]-complete or even
fixed-parameter tractable for some interesting subclasses. Kronegger, Pfandler, and Pichler
(2013) perfomed a multi-parameter analysis of LOP for PSN using various combinations of
parameters, including plan length. Aghighi and Bäckström (2015) analysed COP with plan
cost as parameter for different types of action costs and considering all subclasses of SAS+

using the PUBS restrictions. They found that, in the general case, COP is W[2]-complete,
i.e. no harder than LOP, if using positive integer action costs, but it is para-NP-hard
if allowing zero costs or arbitrary positive rational costs. This was followed up by a multi-
parameter analysis using plan cost in combination with several other parameters (Aghighi
& Bäckström, 2016).

All these studies have in common that they classify problems into complexity classes,
either standard complexity classes or parameterised ones, rather than providing explicit
upper or lower time bounds. An upper bound for a problem can usually be derived by
analysing the runnning time of the fastest existing algorithm, but it is difficult to know
if this bound is optimal since there may be faster algorithms that are not yet discovered.
Proving good lower bounds has turned out to be much harder, and there is a huge difference
between the best known upper and lower bounds for hard problems, like the SAT problem.
It is, thus, common to instead prove hardness for NP or some other complexity class, and
the whole theory of NP-completeness was invented for this very reason, and is based on
the assumption that P 6=NP. An important step forward in proving lower time bounds
was achieved by conditioning also such proofs with an assumption. The most common
one is the Exponential Time Hypothesis (ETH) by Impagliazzo and Paturi (2001), which
conjectures that the 3-SAT problem cannot be solved in subexponential time 2o(n), where
n is the number of variables. This has proven a very useful hypothesis since there is a large
number of NP-complete problems that are related in the sense that either all of them can be
solved in subexponential time or none of them can. Hence, proving that a problem cannot
be solved in subexponential time under the assumption that the ETH holds is a very strong
indication of hardness. While all NP-complete problems are equivalent under the theory
of NP-completeness, it is known that they differ widely in hardness in practice. The ETH
has enabled to separate the NP-complete problems with respect to concrete time bounds,
which is more fine grained and better related to practice than the usual classifications into
complexity classes. The ETH is nowadays a standard assumption in complexity theory
(Lokshtanov, Marx, & Saurabh, 2011).

De Haan, Kanj, and Szeider (2015) recently used the ETH to analyse lower time bounds
for the constraint satisfaction problem (CSP). They showed that the CSP problem cannot
be solved in subexponential time 2o(n), where n is the number of variables, even for a large
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number of common restrictions, unless the ETH is false. They also demonstrated that
there is a phase-transition phenomenon in the sense that CSP can be solved in time 2o(n)

if the number of constraint tuples is subexponential in n, but unless the ETH is false it
cannot be solved in time 2o(n) if there is at least a linear number of tuples. CSP is a very
important NP-complete problem. Apart from its widespread use in AI and elsewhere, it
is also an archetypical NP-complete problem in the sense that a large number of other
NP-complete problems can easily be modelled as CSP problems.

Planning is a harder problem than CSP since Psat, LOP and COP are all PSPACE-
complete in the general case for SAS+ and PSN, but is likewise a good and natural modelling
language for problems in PSPACE, and in NP. Contrary to the CSP problem, lower bounds
for planning have not yet been extensively analysed in a corresponding way, although a few
results in this direction have recently appeared in the literature. Aghighi, Bäckström,
Jonsson, and St̊ahlberg (2016b, Thm. 14) proved that Psat(PSN) can be solved in time
4||P||

c

for all c ≥ 1 but not for any c < 1, unless the ETH is false, where ||P|| is the instance
size. In this case, the value c is essentially the concept of power indices (Stearns & Hunt,
1990; Stearns, 1994), and these upper and lower bounds are obviously tight for complexity
functions of this form. An even tighter lower bound was given as a function of the number
of variables, v, instead of the instance size, stating that Psat(PSN) cannot be solved
in time 2v

c
for any c < 1, unless the ETH is false (Aghighi et al., 2016b, Lemma 13).

Also approximation of LOP(PSN) has been studied using the ETH, stating results of
the type that approximation within a certain factor has a lower time bound of the form 2||P||

c

(Aghighi, Bäckström, Jonsson, & St̊ahlberg, 2016a). Furthermore, Aghighi et al. (2016b,
Section 5.2) showed that the usual classification of hard problems into NP-complete and
PSPACE-complete may not be very useful with regard to actual time complexity; it is
possible to construct two subclassses of PSN such that one of these is NP-complete and
the other one is PSPACE-complete, but both have the property that they can be solved
in time 4||P||

c

for all c ≥ 1 but not for any c < 1, unless the ETH is false. That is, they
belong to distinct complexity classes, but do not differ vastly in actual time complexity.
This supports a prediction in the Turing Award lecture by Stearns (1994):

Although PSPACE-completeness is stronger evidence of hardness than NP-
completeness, there is no reason to believe that PSPACE-complete problems
are harder in the sense that they require more time.

An obvious conclusion is that it is desirable to study actual time bounds, whenever possible,
instead of merely classifying problems into complexity classes.

In this article, we will focus on bounds that are functions of the number of variables
(or the number of actions). This gives tighter bounds than using the instance size, which
is always larger. For instance, if ||P|| = v2, then an upper bound of 2v is much tighter
than 2||P|| = 2v

2
. We will also focus on tighter bounds in the sense that we will consider

exponential functions of the form 2cn, rather than 2n
c
. That is, we study functions of

the same form as in the definition of the ETH. This allows for much finer distinctions since
it is possible that a problem can be solved in time O(2cn) for all c > 0, yet not in time
O(2n

c
) for any c < 1.
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1.2 Main Results

The following are the main results in this article, where v is the number of variables of
an instance, d is the variable domain size, a is the number of actions and ||P|| is the size of
the instance.

(1) Bylander (1994) considered subclasses of PSN defined by restricting the number and
polarity of variables in the action preconditions and effects, and categorized both
Psat and LOP for all these subclasses as either tractable or NP-hard.1 Bäckström
and Nebel (1995) made an analogous classification of Psat and LOP for subclasses
of SAS+ based on the PUBS restrictions. In Section 4, we strengthen all these
NP-hardness results by proving that none of these NP-hard problems can be solved
in time 2o(v) unless the ETH is false (or in one case, unless a conjecture about
the Set Cover problem is false). These proofs are greatly simplified by first proving
a general result (Lemma 5) which implies that if there is a reduction from 3-SAT to
a planning problem X such that v is bounded by a linear combination in the number
of variables and clauses of the 3-SAT instance, then X cannot be solved in time 2o(v)

unless the ETH is false.

(2) The lower-bound results in (1) above hold even when a is linear in v. In Section 5
we demonstrate three PSN classes where COP can be solved in time 2o(v) if a is
subexponential in v. This can be understood as a kind of phase transition between
a linear and a sub-linear number of actions, analogous to the phase transition for
CSPs demonstrated by De Haan et al. (2015).

(3) Straightforward upper bounds give that Psat, LOP and COP can all be solved in
time d2v · poly(||P||) for SAS+, and time 4v · poly(||P||) for PSN. We show the much
tighter upper bound that COP for SAS+ can be solved in time d(1+ε)v · poly(||P||)
for all ε > 0, if at most a polynomial number of states in the state-transition graph
have an outdegree that is not polynomially bounded in d and v (Theorem 7). Most
naturally arising classes of planning problems can be assumed to satisfy this criterion,
and it immediately applies to well-known classes like SAS+-U, SAS+-P and even
the whole class of instances where a is polynomially bounded in v. We similarily
improve the previous lower bounds in (1) by proving that Psat for PSN restricted to
unary actions (i.e. at most one defined variable in the effect of an action) cannot be
solved in time 2(1−ε)v · poly(||P||) for any ε > 0 unless the strong variant of the ETH
(the Seth) is false (Theorem 37). This immediately applies also to problems LOP and
COP, and to many other severly restricted classes like SAS+-UB. Together, these two
results give very tight upper and lower bounds for a very large number of subclasses of
PSN (i.e. binary SAS+), stating that Psat, LOP and COP for these can be solved
in time 2(1+ε)v · poly(||P||) for all ε > 0, but not in time 2(1−ε)v · poly(||P||) for any
ε > 0 unless the Seth is false. An implication of the new tighter upper bound is that
in most cases planning has approximately the same hardness as the SAT problem,
with respect to time complexity.

1. Most of the NP-hard problems were further classified as either NP-complete or PSPACE-complete,
which is of minor relevance in this article.
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(4) We demonstate an alternative way to achieve lower bounds for planning that is not
based on the ETH, but on lower bounds for other problems than SAT. Theorem 40
states that LOP for PSN where actions have at most one positive precondition can-
not be solved in time 2

cv
2 · poly(v) unless the Graph Colourability problem can

be solved in time 2cn · poly(n). This implies that if we can plan faster than time
2
v
2 · poly(v), then we also have a better algorithm for Graph Colourability than

is currently known. The bound 2
v
2 · poly(v) is tighter than the ETH-based bound

2o(v) in (1), but not as tight as the Seth-based bound 2(1−ε)v ·poly(||P||) for all ε > 0
in (3). In contrast to the previous types of lower bounds, this result gives a functional
connection between the lower bounds of two problems.

(5) All currently known upper time bounds for any NP-hard problem are exponential,
and the best bounds usually also require exponential space. There is, however, a trade-
off between time and space; we can always improve the space bound at the cost of
using more time. This is an important issue since planners often run out of memory
in practice. We prove that COP for PSN with only positive action effects can be
solved in time F (v) · poly(||P||) and polynomial space (Theorem 45), where F (v) is
the vth Fubini number (i.e. the number of ordered partitions of the variables) which
is approximately 2Θ(v log v). We additionally prove a better bound for LOP when
also the preconditions are positive, showing that this problem can be solved in time
v! · poly(||P||) and polynomial space (Theorem 50). These results are not proven by
devising new algorithms, but by using ordinary depth-first search (DFS) and derive
improved upper bounds for these two restricted cases of planning. While DFS is
usually considered inefficient and avoided, it is at advantage here since it is one of
the few search algorithms that can solve these problems in polynomial space.

1.3 Overview of the Article

The remainder of the article is structured as follows. In Section 2, we first define the plan-
ning languages and planning problems we consider, and then define the exponential-time
hypothesis. In Section 3 we first prove some straightforward upper time bounds for plan-
ning in SAS+ and PSN. Then we prove the tighter upper bound mentioned in (3) above.
In Section 4, we prove the results mentioned in (1), that none of the previously reported
NP-hard planning problems can be solved in subexponential time, unless the ETH is false.
As a spin-off result, we also settle an open question and prove NP-hardness for those PUBS
restrictions for SAS+ that have remained unclassified in the literature. In Section 5, we show
the phase-transition results mentioned in (2), demonstrating three cases where planning in
subexponential time is possible if the number of actions is subexponential. In Section 6,
we first prove the tighter lower bound for Psat based on the Seth, mentioned in (4).
Then we prove the lower-bound result for LOP that is conditional on the lower bound for
Graph Colourability, as mentioned in (4). In Section 7 we discuss the trade-off between
time and space. We first show that even COP for SAS+ can be solved in polynomial space,
but at the cost of using considerably more time than standard methods do, and then prove
the two special cases in (5). The paper ends with a discussion in Section 8.

This article is based on a previous conference paper (Bäckström & Jonsson, 2016), but
is considerably revised and extended.
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2. Preliminaries

In this section, we first define the SAS+ and PSN planning languages, together with
the commonly used restrictions that we will consider for definining subclasses. We also
define the different planning problems we will consider. After that, we define the boolean
satisfiability problem and the exponential-time hypothesis. However, we start with a few
remarks on notation. For a string, set or sequence X of objects, we write |X| to denote
the cardinality (i.e. the number of objects) of X and we write ||X|| to denote the size
(i.e. the number of bits) of the representation of X. We use log to denote logarithms of
base 2, logb to denote logarithms of base b and ln to denote natural logarithms, i.e. base e.

2.1 Planning

We will first define the general case, the SAS+ language. Then we define the PSN language
for the special case of binary variables and the further specialisation to monotone planning.
Finally, we define the various planning problems we will study in this article.

2.1.1 SAS+

In the general case, we will use the SAS+ planning language (Bäckström & Klein, 1991;
Bäckström & Nebel, 1995), which uses state variables with arbitrary finite domain.

Let V = {v1, . . . , vn} be a finite set of variables, over some finite domain D. Without
losing generality, we will assume that D is of the form D = {0, . . . , k} for some positive
integer k ≥ 1.2 The variables and the domain together induce a state space S = Dn, where
each member s ∈ S is called a (total) state and can be viewed as a total function that
specifies a value in D for each v ∈ V . A partial state may leave the value undefined for
some (or all) variables, and is thus a partial function. Note that a total state is also a partial
state. The set of variables with a defined value in a partial state s is denoted vars(s), and
s[v] denotes the value of v in s for each v ∈ vars(s). Let s and t be partial states. Then s
is satisfied by t, denoted s v t, if s[v] = t[v] for all v ∈ vars(s). The update operator n is
defined such that if s is a total state and t is a partial state, then snt = r, where r is a total
state satisfying that r[v] = t[v] for all v ∈ vars(t) and r[v] = s[v] for all v ∈ V \ vars(t).

A planning instance P = 〈V,D,A, sI , sG〉 has a set V of variables with domain D, a set
A of actions, a total initial state sI and a partial goal state sG. Each action a ∈ A has
a precondition pre(a) and an effect eff(a), which are both partial states. Let a ∈ A and
s ∈ S. Then a is valid in s if pre(a) v s and the result of a in s is the state s n eff(a).
For all states s, t ∈ S and actions a ∈ A, we say that a is from s to t if pre(a) v s and
t = s n eff(a). Let s0, s` ∈ S and let ω = a1, . . . , a` be a sequence of actions. Then ω is a
plan from s0 to s` if either (1) ω = 〈〉 and ` = 0 or (2) there are states s1, . . . , s`−1 ∈ S such
that for all i (1 ≤ i ≤ `), ai is valid in si−1 and si is the result of ai in si−1. The sequence
s0, . . . , s` is referred to as the state sequence of ω. Furthermore, ω is a plan (i.e. a solution)
for P if it is a plan from sI to some state s such that sG v s. The length of an action
sequence ω = a1, . . . , a` is |ω| = `.

2. It is common, and often practical, to assume a separate domain for each variable. However, for the
purpose of complexity analysis it is both simpler and sufficient to use one single domain, since it is
usually the size of the largest domain that matters.
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We will sometimes consider action costs by defining a cost function c : A → D, where
D is some numeric domain. This function is implicitly extended to action sets such that
c(A′) =

∑
a∈A′ c(a) for all A′ ⊆ A and to action sequences such that if ω = a1, . . . , a` is a

sequence of actions over A, then c(ω) =
∑`

i=1 c(ai).
Let P be a SAS+ instance. A plan ω for P is a length-optimal plan (or a shortest plan)

for P if there is no other plan ω′ for P such that |ω′| < |ω|. Let c be a cost function for P.
A plan ω for P is a cost-optimal plan (or a cheapest plan) for P and c if there is no other
plan ω′ for P such that c(ω′) < c(ω). Furthermore, ω is a shortest cost-optimal plan for
P and c if there is no other cost-optimal plan ω′ for P and c such that |ω′| < |ω| holds.
Note that it is important to distinguish between a shortest cost-optimal plan and any cost-
optimal plan, since there can be two plans with the same cost that differ vastly in length.
If there are zero-cost loops in the state-transition graph, then the cost-optimal plans may
be arbitrarily long.

The state-transition graph for a SAS+ instance P = 〈V,D,A, sI , sG〉 is the directed
graph G = 〈S,E〉, where S is the state space and E contains an edge 〈s, t〉 for all states
s, t ∈ S such that there is some action a ∈ A from s to t. The edges may be labelled with
additional information, like the cost of a cheapest action from s to t.

We will often use the notation a : P⇒E to define an action a with precondition P and
effect E, where P and E are written as sets of elements of the form v = d. For instance,
a : {v1 = 0, v2 = 1}⇒{v1 = 1} defines an action a that has as precondition that v1 = 0 and
v2 = 1 and has the effect of setting v1 to 1.

It is common to consider subclasses defined by combinations of the following four re-
strictions on instances (Bäckström & Klein, 1991; Bäckström & Nebel, 1995).

P (post-unique): For all v ∈ V and all x ∈ D, there is at most one a ∈ A
such that eff(a)[v] = x.

U (unary): For each a ∈ A, |vars(eff(a))| = 1.

B (binary): |D| = 2.

S (single-valued): For all a, b ∈ A and v ∈ V , if v ∈ vars(pre(a))∩vars(pre(b))
and v 6∈ vars(eff(a)) ∪ vars(eff(b)), then pre(a)[v] = pre(b)[v].

Combinations of these restrictions are written by juxtaposing the corresponding letters,
eg. SAS+-PUB is the class of all SAS+ instances that are post-unique, unary and binary.

2.1.2 PSN and Monotone PSN

Most of our results, in particular the lower-bound results, only make use of binary variables.
In these cases, it is often clearer and more convenient to use Propositional Strips with
Negative goals (PSN) (Bylander, 1994), which can be viewed as a different way to define
SAS+ restricted to binary variables. Let V be a set of binary variables, i.e. propositional
atoms. For any set V ′ ⊆ V , the set of literals over V ′ is L(V ) = {v, v | v ∈ V }. A total
state s over V is a subset s ⊆ V , where a variable v is true in s if and only if v ∈ s.
The space of total states over V is S = 2V . A partial state t over V is a consistent subset
t ⊆ L(V ), i.e. it does not contain both v and v for any v ∈ V . A variable v is true in t if
v ∈ t, false if v ∈ t and undefined if t∩{v, v} = ∅. We also define t+ = {v ∈ V | v ∈ t} and
t− = {v ∈ V | v ∈ t}. Let t be a partial state and s a total state. Then t is satisfied in s,
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Bäckström & Jonsson

denoted t v s if both t+ ⊆ s and t−∩s = ∅. The n operator is defined as snt = (s\t−)∪t+.
Finally, vars(t) = {v | v ∈ t or v ∈ t}.

A PSN instance is a tuple P = 〈V,A, sI , sG〉 where V is a set of variables, A is a set of
actions, the initial state sI is a total state over V and the goal sG is a partial state over V .
Note that we omit the variable domain, since it is always binary for PSN. Each action a in
A has a precondition pre(a) and an effect eff(a), which are both partial states. For all total
states s, t over V and all a ∈ A, a is from s to t if both (1) pre(a) v s and (2) t = sn eff(a).
A sequence ω = a1, . . . , a` of actions in A is a plan from a state s0 to a state s` if either
(1) ω = 〈〉 and s0 = s` or (2) there are total states s1, . . . , s`−1 such that ai is from si−1 to
si for all i (1 ≤ i ≤ `). The sequence s0, . . . , s` is the state sequence of ω. A solution for P
is a plan from sI to some total state s such that sG v s. A solution for P is called a plan
for P. Analogously to the SAS+ case, we will often use the notation a : P⇒E, to define
an action, where P and E are partial PSN states. For instance, a : {v1, v2}⇒{v1} defines
an action a with precondition that v1 is false and v2 true and with the effect of setting v1

to true.
Following Bylander (1994), we will consider PSN subclasses based on the number and

polarity of the literals in the preconditions and effects of actions. For instance, PSN2+
1

denotes the class of PSN instances where the actions have at most two positive literals in
the precondition and one literal in the effect. We use ∗ to denote an unrestricted number of
literals, i.e. PSN∗1 allows any number of literals in the preconditions but only one literal in
the effects. Note that PSN∗∗ = PSN. This type of restrictions is not entirely independent
from the ones for SAS+. We have already noted that PSN is actually the class SAS+-B, so
PSN∗+∗ is a subclass of SAS+-BS and PSN∗1 is the class SAS+-UB.

Let σ = s0, . . . , s` be a sequence of states. Then σ is monotone if si−1 ⊆ si for all i
(1 ≤ i ≤ `) and σ is strictly monotone if si−1 ⊂ si for all i (1 ≤ i ≤ `). We will refer to a
PSN instance as monotone if no action has any negative effects, i.e. PSN∗∗+ is the class of
all monotone instances. It obviously holds for all monotone instances that sn t = s ∪ t, so
the following properties are immediate.

Proposition 1. Let P = 〈V,A, sI , sG〉 be a monotone PSN instance and let ω be an action
sequence over A. Then:

1. If ω is a plan for P, then ω has a monotone state sequence.

2. If ω is a length-optimal or shortest cost-optimal plan for P, then ω has a strictly
monotone state sequence.

3. If ω is a length-optimal or shortest cost-optimal plan for P, then no action in A occurs
more than once in ω.

Monotone PSN is interesting in many ways, despite being quite restrictive. Firstly, it is
NP-complete to find length-optimal plans for monotone instances, even if the actions have
only only one positive precondition and one positive effect (Bylander, 1994, Corollary 4.3).
Secondly, it is the basis for many successful heuristics, like the delete-relaxation heuristic h+.

2.1.3 Planning Problems

For every class C of SAS+ instances, we define the following three decision problems, where
Q0 denotes the non-negative rational numbers.
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Plan Satisfiability
(
Psat(C)

)
Instance: An instance P = 〈V,D,A, sI , sG〉 in C.
Question: Does P have a plan?

Length-optimal Planning
(
LOP(C)

)
Instance: An instance P = 〈V,D,A, sI , sG〉 in C and a non-negative integer k.
Question: Does P have a plan ω of length |ω| ≤ k?

Cost-optimal Planning
(
COP(C)

)
Instance: An instance P = 〈V,D,A, sI , sG〉 in C, a cost function c : A → Q0

and a value k ∈ Q0.
Question: Does P have a plan ω of cost c(ω) ≤ k?

Note that these problems are related such that a lower bound for Psat(C) is also a lower
bound for LOP(C) and a lower bound for LOP(C) is also a lower bound for COP(C).
Analogously, an upper bound for COP(C) is also an upper bound for LOP(C) and an upper
bound for LOP(C) is also an upper bound for Psat(C). Hence, it is often not necessary
to provide separate results for all three problems. Also note that LOP can be viewed as
the special case of COP where all actions have cost 1.

One may also consider the corrsponding generation problems. For instance, length-
optimal plan generation either returns a plan of length k at most, or rejects if there is
no such plan. It may alternatively be defined without a length parameter and always return
a shortest possible plan, whenever there is a plan. We will state all complexity results using
decision problems. This strengthens the lower-bound results, since it is possible that it is
easier to decide if there is a plan than to actually generate a plan. Furthermore, all our
upper-bound results are constructive, i.e. the proofs are based on describing some algorithm
for actually generating a plan with specified properties.

We will finally briefly discuss the issue of numeric representations for costs. Since
a shortest plan can be of length d|V |−1 in the worst case, we cannot assume that a fixed-size
representation of numbers is sufficient even for solving LOP. Using floating-point numbers
does not resolve this issue, since we may lose precision due to rounding. While such a loss
of precision may, perhaps, be acceptable in some practical cases, it does not work for
complexity analysis; we no longer solve the COP problem, but some kind of ill-defined
approximation of it. We will only consider the domain Q0 of non-negative rational costs
in this paper. Firstly, negative action costs are rare in the literature, since such costs
can cause anomalies of the kind that we can find a plan with arbitrary negative cost, if
there are cycles with negative cost in the state-transition graph. Secondly, the restriction
to the rationals, rather than the reals, is motived by the fact that the rational numbers
have finite representations, while the reals do not, i.e. the reals cannot be properly used in
practice. Furthermore, the rationals are closed under addition and multiplication so they
are safe to use for cost-optimal planning. They are also safe in the sense that they cannot
blow up the time and space requirement more than a polynomial factor in the instance
size. Let d1, . . . , dn be all different denominators occuring in the numbers in P. Then
||d1||+ . . .+ ||dn|| < ||P||. Each number may have to be multiplied with the factor d1 · . . . ·dn,
or less, in summations and comparisons. Since ||d1 · . . . · dn|| ≤ ||d1|| + . . . + ||dn|| ≤ ||P||
and ||k|| ≤ ||P||, it follows that we can add the action costs in a plan and compare with k in
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polynomial time in ||P||. Even though we will often measure the complexity as a function
of the number of variables, or actions, we will almost always also have a factor poly(||P||)
in the cases we consider COP, which makes it safe to use rational costs. Note, however,
that the choice of numeric domain can be crucial when using other types of complexity
analysis, such as parameterised complexity. For instance, Aghighi and Bäckström (2015,
2016) demonstrate differences in complexity for domains such as the positive integers, the
non-negative integers, the postive rationals, the rationals greater than or equal to one and
the non-negative rationals, by considering different parameterisations.

2.2 Satisfiability and the Exponential Time Hypothesis

A boolean formula F over a set X = {x1, . . . , xn} of variables is on conjunctive normal form
(CNF) if it is a conjunction of disjunctions of literals, i.e. F is of the form F = c1∧c2∧· · ·∧cm
where cj = lj1 ∨ l

j
2 ∨ · · · ∨ l

j
mj and lj1, l

j
2, . . . , l

j
mj are literals over X. The disjunctions are

often referred to as clauses. An assignment of truth values to the variables in X satisfies
F if F evaluates to true for this assignment. The formula F is further of k-CNF form if
no clause has more than k literals. We will use several different variants of the Boolean
Satisfiability problem (SAT) during the course of this article. In its basic form it is
defined as follows.

Boolean Satisfiability (SAT)
Instance: A boolean formula F on conjunctive normal form.
Question: Does F have a satisfying assignment?

We require, without loss of generality, that repeated clauses are not allowed and that no
empty clauses appear. Note that the definition of SAT instances then implies that there
are no unused variables, i.e. every variable appears in at least one clause. The problem
k-SAT, where k ≥ 1, is the SAT problem restricted to k-CNF formulae. The SAT problem
is NP-complete and so is the k-SAT problem when k ≥ 3 (Garey & Johnson, 1979, problem
LO1). The UNSAT problem is the complementary problem to SAT, i.e. it takes a CNF
formula F and asks if F does not have a satisfying assignment, and k-UNSAT is analogously
the complement of k-SAT. The UNSAT problem is coNP-complete and so is the k-UNSAT

problem for all k ≥ 3. We will use n for the number of variables and m for the number of
clauses in CNF formulae.

A straightforward upper time bound for SAT is that it can be solved in time
O
(
2n · poly(||F||)

)
, since we can enumerate all 2n assignments and test them. We can

also give a more precise characterisation of the lower bound of k-SAT, than merely saying
that it is an NP-complete problem, by using the Exponential Time Hypothesis (ETH) by
Impagliazzo and Paturi (2001). The ETH and its strong variant, the Seth, are defined
as follows.

Definition 2. For all constant integers k ≥ 3, let sk be the infimum of all real numbers δ
such that k-SAT can be solved in time O(2δn). The ETH says that sk > 0 for all k ≥ 3.
The Seth additionally says that limk→∞ sk = 1.

We will briefly discuss Seth at the end of this section. It is also common to use the following,
slightly weaker, definition of the ETH.
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Definition 3. The ETH says that 3-SAT cannot be solved in time 2o(n).

The differences between these two definitions of the ETH are very small and subtle3

(cf. Flum & Grohe, 2006, Section 16). We will mainly use the second variant, since it
often makes both theorems and proofs simpler, but the first variant is still needed for the
definition of the Seth. The ETH is a quite strong assumption that allows for defining a
theory similar to the one of NP-completeness. There is a large number of NP-complete
problems that form a completeness class in the sense that either all of them can be solved
in subexponential time, or none of them can (Impagliazzo, Paturi, & Zane, 2001). Since the
ETH refers to actual deterministic time bounds it is possible to swap the answers, i.e. if we
could solve k-SAT in time O

(
f(n)

)
for some function f , then we could also solve k-UNSAT

in time O
(
f(n)

)
, and vice versa. Hence, both ETH and Seth can equivalently be defined

in terms of the k-UNSAT problem.
A general CNF formula with n variables can have up to 3n unique non-tautological

clauses, while a k-CNF formula can have at most Θ(nk) clauses. However, the hardness
of the SAT and k-SAT problems does not depend on having a large number of clauses,
as the following lemma demonstrates.

Lemma 4. (De Haan et al., 2015, Lemma 1) k-SAT (k ≥ 3) is solvable in time 2o(n) if and
only if k-SAT with a linear number of clauses and in which the number of occurences of
each variable is at most 3 is solvable in time 2o(n).

This lemma is an adaptation of the sparsification lemma by Impagliazzo et al. (2001) and
it is essential for many of our results. However, in order to simplify the proofs, we will use
it indirectly by applying the following lemma. In our applications of it, problem X will be
either Psat(C) or LOP(C) for some class C of planning instances and the measure x will
be either the number of variables, v, or the number of actions, a.

Lemma 5 (Linear combination lemma). Let X be some decision problem and let x be some
measure of instances of X. Let λ, µ > 0 be constants. Let ρ be a polynomial reduction from
3-SAT to X with the property that if F is a 3-CNF formula with n variables and m clauses,
then ρ(F) has measure x ≤ λn + µm for large n and m. Then it holds that X cannot be
solved in time 2o(x) unless the ETH is false.

Proof. Assume constants λ and µ and a reduction ρ as stated in the lemma. Let Sd denote
the set of 3-CNF formulae wherem ≤ dn and d is chosen such that satisfiability for Sd cannot
be solved in time 2o(n) if the ETH is true. Such a d must exist according to Lemma 4.
Let F be an arbitrary 3-CNF formula in Sd with n variables. Then F has m ≤ dn clauses,
so instance ρ(F) has measure x ≤ λn + µm ≤ λn + µdn = (λ + µd)n. Let κ = λ + µd,
i.e. x ≤ κn. Since ||F|| is polynomial in n for all formulae F in Sd, we can compute the
reduction ρ in polynomial time in n.

Suppose problem X can be solved in time 2o(x). Then X can be solved in time 2cx for all
c > 0 and large x. It follows that we can solve satisfiability for Sd in time poly(n) + 2cκn ≤

3. If there were an algorithm solving 3-SAT in time 2o(n), then we would have s3 = 0, so both definitions
agree on this case. However, Definition 3 does not rule out the possibility that there is a sequence of
algorithms A1,A2,A3, . . . with running times O(2δin) for a corresponding sequence of values δ1, δ2, δ3, . . .
that tends to 0, although it would be practically impossible to choose the correct algorithm to run from
the sequence.
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2(cκ+ε)n, for all c, ε > 0 and large n. It thus holds for all c′ > 0 that satisfiability for Sd
can be solved in time 2c

′n for large n by chosing c > 0 and ε > 0 such that cκ + ε ≤ c′.
However, it then follows from the definition of Sd that the ETH must be false.

This lemma also holds if x ≤ λn+µm+ ν, for some constant ν, since we can always choose
slightly larger values λ′ and µ′ such that λn + µm + ν ≤ λ′n + µ′m for large n and m.
The lemma obviously also holds if ρ is a reduction from 3-UNSAT to X. Note that this
lemma does not depend on the restricted number of variable occurences in Lemma 4.

Even if the ETH is true, there is some constant c such that SAT can be solved in time
O(2δn) for all δ ≥ c, but the ETH does not say anything about the value of c. Tighter
bounds can be achieved by using the Seth instead of the ETH. If the Seth holds, we know
that SAT cannot be solved in time O(2δn) for any δ < 1, so we get tight upper and lower
bounds since we also know that SAT can be solved in time 2n · poly(||F||). By assuming
the Seth we get a better precision in the results, but at the expense of using a stronger
assumption than the ETH.

3. Upper Bounds

We first briefly discuss how the size of an instance is influenced by its various parameters,
i.e. number of variables, domain size and number of actions. Then we derive straight-
forward upper time bounds for planning in SAS+, PSN and monotone PSN. After that we
show that much better upper bounds can be achieved under restrictions that most natural
classes of planning instances can be assumed to satisfy. We end the section by discussing
different algorithms for deriving upper-bound results.

3.1 Instance Size

We will henceforth use the notation that v is the number of variables in a planning instance,
d is the domain size of the variables and a is the number of actions. Before discussing
upper bounds for planning, we first need to briefly discuss instance sizes and action sets.
If we have v variables, with domain size d, then there are (d + 1)v different partial states.
Hence, there are (d+ 1)v different possible preconditions and (d+ 1)v − 1 different possible
effects (assuming every action must have a defined effect on at least one variable). That is,
the maximum number of distinct actions is approximately (d + 1)2v. Although it is often
reasonable to assume that the number of actions, a, is polynomially bounded in the number
of variables, we cannot generally make this assumption. Most of the complexity results
in this article are based on some superpolynomial function like d cv or 2o(v). There will
usually also be some polynomial factor of the form poly(||P||). Although the instance size
||P|| is polynomially bounded in v and a, the factor poly(||P||) cannot generally be assumed
dominated by an exponential function in v, since a can be exponential in v. In most cases
it is, thus, necessary to state this polynomial factor explicitly. For instance, it is often
necessary to write O

(
2v · poly(||P||)

)
instead of O(2v). On the other hand, we may drop

the O notation and write only 2v · poly(||P||), since we can always choose an appropriate
polynomial. Note, that this does not generally hold when we use explicit polynomials, as in
expressions of the form O

(
2v · p(||P||)

)
for some specific polynomial p.
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3.2 General Upper Bounds

We will first derive straightforward upper bounds for planning. Let P = 〈V,D,A, sI , sG〉
be a SAS+ instance and let G = 〈S,E〉 be the state-transition graph of P. Then the state
space S has |S| = d v states. In the worst case, each state can have an edge to every state,
including itself, so we get an upper bound on the number of edges of |E| ≤ d v · d v = d 2v.
A straightforward way to solve COP is to first construct G and then apply Dijkstra’s
algorithm. Aghighi et al. (2016b, Section 2.2) showed that G can be constructed in time
O
(
|S| ·poly(||P||)

)
. Note that this figure holds also without their assumption that d = 2 and

also if we additionally choose a cheapest action for each edge. Fredman and Tarjan’s (1987)
implementation of Dijkstra’s algorithm solves the single source shortest path problem for
G in time O(|E|+ |S| log |S|) and space O(|E|+ |S| log |S|). Their implementation assumes
a fixed-size representation of the costs, which is not sufficient for our purposes (recall that we
must use exact arithmetics). However, they use no special tricks for representing the costs,
so we can use an arbitrary-size representation instead, and use the factor poly(||P||) to
cover for the overhead. In total, this takes time O

(
(|E| + |S| log |S|) · poly(||P||)

)
for both

constructing G and finding a length- or cost-optimal plan. Using the worst-case upper
bound |E| = d 2v, it follows that we can solve COP(SAS+), and even generate a cost-
optimal plan, in time (d 2v + d v log d v) · poly(||P||) = d 2v · poly(||P||). Note that this time
bound automatically applies also to LOP(SAS+) and Psat(SAS+), since these problems
are special cases of COP(SAS+). Heuristic search algorithms may be preferrable in many
practical cases, but they give no advantage in the worst case, when they also have to process
on the order of |E| edges and store up to |S| states explicitly. We prefer to use Dijkstra’s
algorithm here since it is more well studied and better time bounds are known for it. This
choice will be further discussed at the end of this section. In the special case of PSN we
have d = 2, so the state space is of size 2v and can have up to 22v = 4v edges, i.e. we can
solve COP(PSN) in time 4v · poly(||P||). We consider all of these results straightforward,
and we have previously stated the results for the PSN case (Aghighi et al., 2016b).

We then proceed to monotone PSN, i.e. the class PSN∗∗+. Then there can only be
an edge from a state t to a state s if t ⊆ s, since sn eff(a) = s∪ eff(a) in this case. For each
i (0 ≤ i ≤ v), there are

(
v
i

)
states of size i. For each state s, there are 2i subsets, including

s itself, so there can be at most 2i incoming edges, including a loop at s. Hence, a safe
upper bound on the number of edges is

|E| ≤
v∑
i=0

(
v

i

)
2i.

Using the binomial formula

(a+ b)v =
v∑
i=0

(
v

i

)
av−ibi

and setting a = 1 and b = 2 we get

|E| ≤
v∑
i=0

(
v

i

)
2i =

v∑
i=0

(
v

i

)
1v−i2i = (1 + 2)v = 3v
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i.e. |E| ≤ 3v = 2v log 3. Also note that this state space is isomorphic to the lattice of the
subset relation over V . We thus get that

|E|+ |S| log |S| ≤ 3v + 2v log 2v ∈ O(3v).

Using Dijkstra’s algorithm, we can thus achieve the following upper bounds.

Proposition 6. The following upper bounds hold:

1. COP(SAS+) can be solved in time d 2v · poly(||P||) and space d 2v · poly(||P||).

2. COP(PSN) can be solved in time 4v · poly(||P||) and space 4v · poly(||P||).

3. COP(PSN∗∗+) can be solved in time 3v · poly(||P||) and space 3v · poly(||P||).

3.3 Tighter Upper Bounds for Restricted Cases

The previous bounds are based on the worst case where the state-transition graph is the com-
plete graph. If we instead consider graphs with some maximum outdegree δ, then we get
|E| ≤ d v · δ. We obviously have δ ≤ a, i.e. the number of actions is an upper bound on
the outdegree. The opposite does not hold, though; the maximum outdegree only gives
the trivial bound that a ≤ d v · δ. It is a reasonable assumption in many practical cases
that the maximum number of actions that can be applied in a state is restricted by some
polynomial in v and d. Indeed, this is always the case when the instance size is polynomially
restricted in v and d. This assumption greatly improves the upper time bound for planning.
However, we can make the assumption even more general by allowing a polynomial number
of exceptions to this restriction, as the following theorem demonstrates. Note that this
theorem does not assume that the domain size, d, is constant.

Theorem 7. Let p and q be polynomials. Let C be a class of SAS+ instances such that at
most q(dv) states in the state-transition graph have more than p(dv) outgoing edges. Then
COP(C) can be solved in time d(1+ε)v · poly(||P||) for all ε > 0.

Proof. The state space has d v states, so the maximum outdegree is d v. At most q(dv) states
can have outdegree larger than p(dv), so these states can contribute at most q(dv)d v edges.
The remaining d v − q(dv) states can have outdegree p(dv), at most, so they contribute
at most

(
d v − q(dv)

)
p(dv) ≤ d vp(dv) edges. In total, we get |E| ≤ q(dv)d v + d vp(dv) =(

p(dv) + q(dv)
)
d v. Let c ≥ 1 and k ≥ 1 be constants such that p(dv) + q(dv) ≤ c(dv)k,

i.e. |E| ≤ c(dv)kd v. As previously noted, Fredman and Tarjan’s (1987) variant of Dijkstra’s
algorithm can be implemented to run in time (|E| + |S| log |S|) · poly(||P||) for arbitrary
costs. We first note that

|S| log |S| = d v log d v = d v log 2v log d = d vv log d ≤ (dv)d v,

so we get that

|E|+ |S| log |S| ≤ c(dv)kd v + (dv)d v ≤ 2c(dv)kd v = 2cdk+vvk

= 2cdk+vdk logd v = 2cdv+k logd v+k ≤ 2cd(1+ε)v

for all ε > 0 and large v. Since we can build the state-transition graph in time
|S| · poly(||P||) = d v · poly(||P||), it follows that we can solve COP(C) in time
d(1+ε)v · poly(||P||) for all ε > 0.
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This theorem is a considerable improvement over the previous general upper bounds, im-
proving the exponential factor by d(1−ε)v. The following corollary is immediate.

Corollary 8. Let p be a polynomial and let C be the class of all SAS+ instances such that
a ≤ p(dv). Then COP(C) can be solved in time d(1+ε)v · poly(||P||) for all ε > 0.

Planning classes not satisfying this restriction are rare in the literature, so it seems
reasonable to assume that most, or all, ’natural’ planning problems can be solved in time
d(1+ε)v ·poly(||P||) for all ε > 0. For instance, any natural generalization of a typical logistics
scenario to arbitrary size would have the number of actions bounded by some polynomial
in the numbers of packages, trucks and locations.

A number of other results also follow from Theorem 7.

Corollary 9. Let k > 0 be a constant. Let Ck be the class of all SAS+ instances P
where no action has more than k defined effects. Then COP(Ck) can be solved in time
d(1+ε)v · poly(||P||) for all ε > 0.

Proof. For each state s, we can simultaneously change at most k variables. There are
(
v
k

)
choices of k variables. For each variable, there are at most d − 1 choices of new value so
there are less than dk choices of value combinations for the k variables. Since we may also
change fewer than k variables, the maximum number of outgoing edges from s is less than

k∑
i=1

(
v

i

)
di <

k∑
i=1

vidi =
k∑
i=1

(dv)i < k(dv)k,

which is polynomial in dv. Hence, Theorem 7 applies to Ck.

Corollary 10. COP(SAS+-U) can be solved in time d(1+ε)v · poly(||P||) for all ε > 0.

Proof. Immediate since SAS+-U is the class C1 in Corollary 9.

Corollary 11. COP(PSN∗k) can be solved in time 2(1+ε)v · poly(||P||) for all ε > 0.

Proof. Immediate since PSN∗k is the class Ck in Corollary 9 restricted to d = 2.

Corollary 12. Let p be a polynomial. Let Cp be the class of all SAS+ instances P where
for all v ∈ V and all d ∈ D, there are at most p(dv) actions a such that eff(a)[v] = d. Then
COP(Cp) can be solved in time d(1+ε)v · poly(||P||) for all ε > 0.

Proof. There are dv combinations of variables and variables values, so there can be at most
dv · p(dv) actions. Hence, Corollary 8 applies.

Corollary 13. COP(SAS+-P) can be solved in time d(1+ε)v · poly(||P||) for all ε > 0.

Proof. Immediate from Corollary 12.

It is known that LOP is PSPACE-complete for SAS+-U, SAS+-S and SAS+-B, while it
is only known to be NP-hard for SAS+-P (Bäckström & Nebel, 1995). It is also known that
the parameterised complexity of LOP, using the plan length as parameter, is W[2]-complete
for SAS+-S and SAS+-B, W[1]-complete for SAS+-U and in FPT for SAS+-P (Bäckström
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et al., 2015). These two different types of analyses thus give different separations, giving
a more fine-grained picture when combined. The results above add to this, showing that
LOP for SAS+-U and SAS+-P can be solved in time d(1+ε)v · poly(||P||) for all ε > 0, while
no such results are known for SAS+-S and SAS+-B. This separation is not as sharp, of
course, since it is only based on the absence of such results for the latter classes.

3.4 Choice of Algorithms for Upper Bounds

There are implementations of Dijkstra’s algorithm that are even faster than the one by
Fredman and Tarjan (1987) under various restrictions on the costs or on the edge set. For
instance, Thorup (2000) presents an implementation that runs in time O(|E| log log |E|),
which is faster than time O(|E| + |S| log |S|) for very sparse graphs. It does not work
for rational edge costs, but it holds for integer costs and certain other numeric domains,
for instance, IEEE 754 floating-point numbers4. Furthermore, using any of these faster
implementations does not give much improvement in the result of Theorem 7. In particular,
the factor poly(||P||) may dominate factors like log |S| and log log |E|, so a more detailed
analysis of this polynomial and an appropriate choice of datastructures would be necessary.
If we only want to solve Psat, then we could use standard breadth-first search. This
algorithm runs in time O(|E| + |S|) since it does not need any priority queue, or similar
structure, to keep track of the length or cost of paths. However, this would only help for
very sparse graphs and it will still take time |S|·poly(||P||) to build the graph. Furthermore,
we will later see that Theorems 7 and 37 together result in tight upper and lower bounds
for Psat, LOP and COP for a large number of important subclasses of SAS+ and PSN.
A different choice of algorithm could not improve this result, even for Psat.

All these upper bounds assume that we have explicit access to the state-transition graph
of the instance. We can also view the instance P as a compact representation of its own
state-transition graph in the sense of Galperin and Wigderson (1983), where we can check
in time poly(||P||) if an edge exists between any two states. This is, of course, also how
most AI search algorithms work. Dijkstra’s algorithm can also be implemented to use
an implicit graph representation by assuming a default distance value of +∞ for all states
that we have not yet encountered. Whenever we follow an edge to a state s, we check if this
state is already encountered or not. This requires a separate data structure to keep track of
the encountered states. If |E| ≤ poly(dv) ·d v, as in the proof of Theorem 7, then we can find
the next adjacent state and check if it is already encountered in amortized time poly(dv), so
the upper bound in the theorem will still hold. The time complexity of standard AI search
algorithms is usually given as O(bh), where b is the branching factor and h is the height
(or depth) of the tree of visited search nodes.5 This is a very coarse bound, especially
since it is often difficullt to find good bounds on the parameters b and h. In the worst
case, all actions are applicable in a state, giving a branching factor of b = a. Furthermore,
the shortest plan can be of length 2v − 1 in the worst case. This gives an upper bound
of time O(bh) = O(a2v−1), which is clearly not very useful. In the case of heuristic search
algorithms, like A∗, one sometimes uses an ’average’ or ’effective’ branching factor (Russell
& Norvig, 1995), but the value of this cannot be determined a priori since it depends on

4. If we use floating-point numbers we may no longer solve COP exactly due to rounding errors.
5. To be precise, we also need a factor poly(||P||), which is usually omitted in the literature.
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the actual search tree for an instance rather than the instance itself. This can still be useful
for comparing algorithms, but it is not very useful for analysing the complexity of problems.

4. ETH-based Subexponential Lower Bounds

In this section, we will prove that a number of restricted planning problems that are known
to be NP-hard also cannot be solved in subexponential time, unless the ETH is false. We
first consider the Psat and LOP problems for the subclasses of PSN previously considered
by Bylander (1994), i.e. classes defined by restricting the number and polarity of literals
in action preconditions and effects. Then we consider Psat and LOP for the subclasses
of SAS+ defined by the PUBS restrictions previously considered by Bäckström and Nebel
(1995). We finally demonstrate how this type of lower bounds can also be proven for classes
of planning problems defined by restrictions on the causal graph.

A few remarks are in place, before carrying on to the results. There are exponential
lower bounds for plan generation in the literature. For instance, Bäckström and Klein
(1991) proved that plan generation for SAS+-PUB requires time Ω(2v) in the worst case.
This was proven by showing that the shortest plans are of length Ω(2v) in the worst case, so
it takes time Ω(2v) just to output the solution. Such problems are referred to as inherently
intractable. The lower bounds we will present in this section apply to the decision problems
Psat and LOP, that is we will show that we cannot even decide if a plan (of certain
length) exists in subexponential time, which is a considerable strengthening compared to
exponential time for generating a plan. Furthermore, none of the proofs in this section relies
on instances with exponential-length solutions; all proofs use instances where the shortest
plans are of linear length in the number of variables.

4.1 Lower Bounds for PSAT Based on Restricting Preconditions and Effects

The problems Psat(PSN1
1+) and Psat(PSN1+

2 ) are both known to be NP-hard (Bylander,
1994, Corollary 3.6, Footnote 4). We will strengthen these results below by also proving
that neither can be solved in subexponential time (in either the number of variables or the
number of actions), unless the ETH is false.

Construction 14. Let F be a 3-CNF formula with variables x1, . . . , xn and with clauses
c1, . . . , cm, where each clause cj is of the form {l1j , l2j , l3j}. Construct a corresponding PSN1

1+

instance P = 〈V,A, sI , sG〉 as follows:

• V = {fi, ti | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ j ≤ m};

• A contains the actions

– setfi : {ti}⇒{fi}, for all i (1 ≤ i ≤ n),

– setti : {fi}⇒{ti}, for all i (1 ≤ i ≤ n) and

– vfy kj : {l̂kj }⇒{yj}, for all j, k (1 ≤ j ≤ m, 1 ≤ k ≤ 3),

where l̂kj = fi if lkj = xi and l̂kj = ti if lkj = xi;

• sI = ∅ and sG = {y1, . . . , ym}.
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Note that we assume all clauses have exactly three literals in this construction and in many
that follow, but this is only for simplicity, and not a necessary restriction.

Theorem 15. Psat(PSN1
1+) cannot be solved in time 2o(v) or time 2o(a) unless the ETH

is false.

Proof. Let F be an arbitrary 3-CNF formula with n variables and m clauses and let P be
the corresponding PSN instance according to Construction 14. Then P is a PSN1

1+ instance
with v = 2n + m variables and a = 2n + 3m actions. Each variable xi in F is encoded as
two variables fi and ti in P, where fi true represents that xi is false and ti true represents
that xi is true. A plan for P can freely set either fi or ti to true, but not both. Hence,
a plan chooses a (partial) truth assignment for variables x1, . . . , xn. For each clause cj of F,
there is a corresponding variable yj and three actions, one for verifying each of the literals
in cj . A plan must contain at least one such action for each clause of F in order to set all yj
variables. Hence, Construction 14 is a polynomial reduction from 3-SAT to Psat(PSN1

1+).
The theorem follows by applying Lemma 5 separately to both measures v and a.

Construction 16. Let F be a 3-CNF formula with variables x1, . . . , xn and with clauses
c1, . . . , cm, where each clause cj is of the form {l1j , l2j , l3j}. Construct a corresponding PSN1+

2

instance P = 〈V,A, sI , sG〉 as follows:

• V = {ei, fi, ti | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ j ≤ m};

• A contains the actions

– setfi : {ei}⇒{ei, fi}, for all i (1 ≤ i ≤ n),

– setti : {ei}⇒{ei, ti}, for all i (1 ≤ i ≤ n) and

– vfy kj : {l̂kj }⇒{yj}, for all j, k (1 ≤ j ≤ m, 1 ≤ k ≤ 3),

where l̂kj = fi if lkj = xi and l̂kj = ti if lkj = xi;

• sI = {e1, . . . , en} and sG = {y1, . . . , ym}.

Theorem 17. Psat(PSN1+
2 ) cannot be solved in time 2o(v) or time 2o(a) unless the ETH

is false.

Proof. Construction 16 is analogous to Construction 14, except that it uses the extra ei
variables to prevent a plan from setting both fi and ti to true. Hence, Construction 16 is
a polynomial reduction from 3-SAT to Psat(PSN1+

2 ) such that v = 3n+m and a = 2n+3m,
so the theorem follows from Lemma 5.

It is further known that the problems Psat(PSN∗+∗+), Psat(PSN0
∗) and Psat(PSN∗+1 )

can be solved in polynomial time (Bylander, 1994, Thm. 3.7, 3.9, Footnote 4). Hence,
we have a complete classification of Psat for all PSN classes defined by the number and
polarity of preconditions and effects of actions, each being classified as either tractable or
not solvable in subexponential time (unless the ETH is false).
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4.2 Lower Bounds for LOP Based on Restricting Preconditions and Effects

It is sufficient to consider LOP for monotone PSN, since LOP is hard already for very
restricted such classes. Even LOP(PSN1+

1+) is NP-complete (Bylander, 1994, Corollary 4.3)
and cannot be approximated within a constant (Betz & Helmert, 2009, Thm. 2). We will
complement these result by an ETH-based lower bound.

Construction 18. Let F be a 3-CNF formula with variables x1, . . . , xn and with clauses
c1, . . . , cm, where each clause cj is on the form {l1j , l2j , l3j}. Construct a corresponding

PSN1+
1+ instance P = 〈V,A, sI , sG〉 as follows:

• V = {fi, ti, si | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ j ≤ m};

• for all i (1 ≤ i ≤ n), A contains the actions

– set fi :∅⇒{fi},
– set ti : ∅⇒{ti},

– sets fi : {fi}⇒{si} and

– sets ti : {ti}⇒{si}.

for all j, k (1 ≤ j ≤ m, 1 ≤ k ≤ 3), A contains the action

– vfy kj : {l̂kj }⇒{yj}, where l̂kj = fi if lkj = xi and l̂kj = ti if lkj = xi;

• sI = ∅ and sG = {s1, . . . , sn} ∪ {y1, . . . , ym}.

Theorem 19. LOP(PSN1+
1+) cannot be solved in time 2o(v) or time 2o(a) unless the ETH

is false.

Proof. Let F be a 3-CNF formula and let P be the corresponding PSN instance according
to Construction 18. We claim that F is satisfiable if and only if P has a plan of length
2n+m.
⇒: Suppose α is a satisfying assignment for F. Construct a plan ω as follows. For each

variable xi, let ω contain set fi followed by sets fi if α(xi) = 0 and otherwise let ω contain
set ti followed sets ti . Then, for each clause cj = {l1j , l2j , l3j}, there is at least one k such that

α makes lkj true. Choose such a k and add action vfykj at the end of ω. Clearly, ω is a plan
for P of length 2n+m.
⇐: Suppose ω is a plan for P of length 2n + m. It must contain n actions setting the

si variables and m actions setting the yj variables. In order to set the si variables, it must
also set either of fi and ti for each i, but it cannot set both since there can only be n such
actions in total. Hence, ω corresponds to a satisfying assignment.

It follows that Construction 18 is a polynomial reduction from 3-SAT to LOP(PSN1+
1+)

(asking for a plan of length 2n+m, or less) such that v = 3n+m and a = 4n+ 3m, so the
theorem follows from Lemma 5.

Theorem 19 covers all cases of monotone planning, except when actions have no precon-
ditions at all. In the case of no preconditions, we will not use the ETH, but a conjecture
about the k-Set Cover problem, which is defined as follows:
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k-Set Cover
Instance: A set S, a set C of subsets of S such that |c| ≤ k for all c ∈ C and an
integer t ≥ 1.
Question: Does S have a cover of size t, i.e. is there a subset C ′ ⊆ C such that⋃
c∈C′ c = S and |C ′| ≤ t?

Note that k-Set Cover is a restriction of Set Cover where all sets have size k at most,
just as k-SAT is a restriction of SAT where all clauses have size k at most. Cygan, Dell,
Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, and Wahlström (2016) conjectured
that k-Set Cover cannot be solved in time 2o(n) unless the Seth is false, where n = |S|.

Theorem 20. LOP(PSN0
k+) cannot be solved in time 2o(v) unless k-Set Cover can be

solved in time 2o(n).

Proof. Proof by polynomial reduction from k-Set Cover. Given an instance I = 〈S,C〉
of k-Set Cover, construct a LOP(PSN0

k+) instance P = 〈V,A, sI , sG〉, where V = S,
A contains the action ac : ∅⇒{x | x ∈ c} for every c ∈ C, sI = ∅ and sG = S. Clearly, P
has a plan of length t if and only if I has a cover of size t.

It is known that LOP(PSN0
3+) is NP-complete and that LOP(PSN0

2+) is in P (Bylan-
der, 1994).6 The latter result can be generalized to hold also for COP.

Theorem 21. COP(PSN0
2+) is in P.

Proof sketch. Equivalent to the Minimum Edge Cover problem, which can be solved in
polynomial time for real costs (White, 1971).7

Theorems 19–21 provide a complete classification of LOP and COP for all PSN classes
defined by the number and polarity of preconditions and effects of actions, each being
classified as either tractable or not solvable in subexponential time (unless the ETH, or in
some cases the Seth, is false).

4.3 Lower Bounds for PSAT and LOP Based on the PUBS Restrictions

We will now prove ETH-based subexponential lower-bound results for SAS+ planning for all
NP-hard combinations of the PUBS restrictions. We will need the following construction,
which can be used to encode disjunctions in SAS+-PUB instances.

Construction 22. (Bäckström et al., 2015, in the proof of Lemma 2) An OR gate g
with two inputs x1, x2 and output o can be encoded as a SAS+-PUB instance POR =
〈V,D,A, sI , sG〉 as follows:

• V = {x1, x2, o, o1, o2, i1, i2};

• A contains the actions

– ao : {o1 = 1, o2 = 1}⇒{o = 1},

6. The NP-completeness result for LOP(PSN0
3+) is originally from Erol, Nau, and Subrahmanian (1991).

7. White (1971) only mentions the result, which appeared in his doctoral thesis. See Plesńık (2001) for a
survey of algorithms and results for the Minimum Edge Cover problem.
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– ao1 : {i1 = 1, i2 = 0}⇒{o1 = 1},
– ao2 : {i1 = 0, i2 = 1}⇒{o2 = 1},
– ai1 : ∅⇒{i1 = 1},
– ai2 : ∅⇒{i2 = 1},
– av1 : {x1 = 1}⇒{i1 = 0} and

– av2 : {x2 = 1}⇒{i2 = 0};

• sI [x1] and sI [x2] are arbitrary and sI [v] = 0 for all other v ∈ V ;

• sG[o] = 1 and sG is otherwise undefined.

We refer to Bäckström et al. (2015, proof of Lemma 2) for a correctness proof, but intuitively
the construction works as follows. The instance POR implements the logical or function
o = x1 ∨ x2, where o1, o2, i1 and i2 are internal variables. There is no plan for POR if both
x1 and x2 are initially false. If x1 is true in sI , then ai1 , ao1 , av1 , ai2 , ao2 , ao is a plan for POR,
and if x2 is true in sI , then ai2 , ao2 , av2 , ai1 , ao1 , ao is a plan for POR. If both x1 and x2 are
true in sI , then both these sequences are plans for POR. We can now prove the following
lower-bound results.

Theorem 23. Psat(SAS+-PUB) cannot be solved in time 2o(v) or time 2o(a) unless the
ETH is false.

Proof. Instance P in Construction 14 is a SAS+-UB instance, but it is not post-unique
since there are three actions with the same effect for each clause variable yj . These three
actions together simulate the disjunction in the clause. The disjunction l1j ∨ l2j ∨ l3j can be

computed in two steps, as ((l1j ∨ l2j )∨ l3j ). This is equivalent to simulating a 3-input OR gate
with two 2-input OR gates, i.e. we need two copies of the OR gate in Construction 22. By
replacing the three actions for each clause by two copies of the OR gate construction, we get
a modified construction which is a polynomial reduction from 3-SAT to Psat(SAS+-PUB).
Each OR gate introduces 4 new internal variables, and the output of the first OR-gate in
each pair is an input to the second one, thus also being a new variable, so we get 9 extra
variables per clause. Furthermore, each OR gate introduces 7 new actions, so we get 14
new action per clause, replacing the 3 previous ones. Since Construction 14 has 2n + m
variables and 2n + 3m actions, the modified construction has v = 2n + 10m variables and
a = 2n+ 14m actions. The result now follows from Lemma 5.

Corollary 24. Psat(SAS+-PBS) cannot be solved in time 2o(v) or time 2o(a) unless the
ETH is false.

Proof. There is a polynomial reduction from LOP(SAS+-PUB) to LOP(SAS+-PBS) that
increases the number of variables by a factor 2 and retains the number of actions (Bäckström
& Nebel, 1995, Proof of Theorem 9). The reduction works also for Psat so the result follows
from Theorem 23 since 2o(2v) = 2o(v).

It has remained an open question in the literature whether Psat(SAS+-PUB) and
Psat(SAS+-PBS) are NP-hard, while the corresponding LOP problems are known to
be NP-hard (Bäckström & Nebel, 1995). Since the two preceeding proofs use polynomial
reduction from 3-SAT we can settle this question affirmatively as a spin-off result.
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Bäckström & Jonsson

Corollary 25. Psat(SAS+-PUB) and Psat(SAS+-PBS) are NP-hard.

It still remains an open question whether these problems are also in NP.
While both Psat and LOP are NP-hard for these cases, the problems differ for com-

binations US and UBS; Psat(SAS+-US) is in P (Bäckström & Nebel, 1995, Thm. 10, 11)
but LOP(SAS+-UBS) is NP-complete (Bäckström & Nebel, 1995, Lemma 2). We can
immediately strenghten the latter result to a lower-bound result.

Corollary 26. (To Theorem 19) LOP(SAS+-UBS) cannot be solved in time 2o(v) or time
2o(a) unless the ETH is false.

These results imply a complete classification of Psat and LOP for all combinations of
the PUBS restrictions, classifying each as either tractable or not solvable in subexponential
time (unless the ETH is false).

4.4 Lower Bounds Based on Restricting Causal Graphs

The causal graph of a planning instance describes certain types of variable dependencies
of a planning instance, and has frequently been exploited for identifying easy subclasses or
for classifying the complexity of planning classes (cf. Giménez & Jonsson, 2009; Helmert,
2006; Jonsson & Bäckström, 1998; Katz & Domshlak, 2010b; Williams & Nayak, 1997).

Definition 27. The causal graph for a SAS+ instance P = 〈V,D,A, sI , sG〉 is the directed
graph CG(P) = 〈V,E〉 where for all u, v ∈ V , 〈u, v〉 ∈ E if and only if both u 6= v and there
is some a ∈ A such that u ∈ vars

(
pre(a)

)
∪ vars

(
eff(a)

)
and v ∈ vars

(
eff(a)

)
.

We will only briefly consider causal graphs and give an example of lower-bound results
for instances with quite restricted causal graphs.

Theorem 28. If LOP(PSN1+
1+) can be solved in time 2o(v) or time 2o(a) for instances where

the causal graph is acyclic, bipartite and has degree 3 and depth 2, then the ETH is false.

Proof. We will show that the proof of Theorem 19 applies also in this case, by showing that
all SAS+ instances that need to be considered in that proof have a causal graph satisfying
the preconditions of this theorem. Let F be a 3-CNF formula and let P be the corresponding
PSN1+

1+ instance according to Construction 18. The causal graph CG(P) for P contains the
following edges:

• 〈fi, si〉 and 〈ti, si〉 for all i (1 ≤ i ≤ n);

• 〈fi, yj〉 for all i, j (1 ≤ i ≤ n, 1 ≤ j ≤ m) such that xi ∈ cj and 〈ti, yj〉 for all i, j
(1 ≤ i ≤ n, 1 ≤ j ≤ m) such that xi ∈ cj .

It is immediate that CG(P) is acyclic, bipartite and has depth 2. All si vertices have
two incoming edges and no outgoing edges. All yj vertices have at most three incoming
edges and no outgoing edges. The proof of Theorem 19 relies on Lemma 5, which exploits
Lemma 4, so we can assume that no variable occurs in more than 3 clauses of F. If all 3
occurences of a variable have the same polarity, then it is redundant, so we may assume
that no variable occurs more than twice with the same polarity. It follows that each fi and
ti vertex have no incoming edges, one edge to vertex si and at most two edges to yj vertices.
It follows that CG(P) has degree 3, at most.
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It should be noted that all SAS+ instances with an acyclic causal graph must satisfy
restriction U, so the class of all such instances can be solved in time d(1+ε)v · poly(||P||)
for all ε > 0, according to Corollary 10. As two further examples, it is known that Psat
is NP-hard when the causal graph is either an out-star (aka. fork) or an in-star (aka.
inverted fork) (Domshlak & Dinitz, 2001). For both these cases, there are reductions from
3-SAT where v and a are linear combinations of n and m (Bäckström & Jonsson, 2013,
Lemma 4, 5). Hence, we can apply Lemma 5 (in this article) and it follows that neither
problem can be solved in time 2o(v) or 2o(a) unless the ETH is false.

5. Subexponential Solvability for Sublinear Number of Actions

In their studies of subexponential solvability of CSP problems, De Haan et al. (2015) found
a phase-transition phenomenon as follows.

Proposition 29. (De Haan et al., 2015, Proposition 6) The restriction of CSP to instances
in which the number of tuples is o(n) is solvable in subexponential time, and unless the ETH
fails, the restriction of CSP to instances in which the number of tuples is Ω(n) is not solvable
in subexponential time.

This result demonstrates a sharp transition in complexity between having a sublinear num-
ber of tuples and having a linear number. In this section, we will demonstrate some analo-
gous results for planning. We start with the following result, for the case where the number
of actions is linear in v.

Corollary 30. (To Theorem 19) LOP(PSN1+
1+) cannot be solved in time 2o(v), unless

the ETH is false, even if a ∈ Θ(v) and the optimal plan length is in Θ(v).

Proof. The proof of Theorem 19 is based on a reduction where a ∈ Θ(v) and the optimal
plan length is in Θ(v).

Note that we write Θ(v) instead of Ω(v) to emphasize that a linear number of actions is
sufficient for the hardness results.

We will then consider the three classes PSN∗+∗+, PSN∗k+ and PSN∗∗+, and show that
for all three, COP can be solved in subexponential time in v if the number of actions is
sublinear in v. Together with Corollary 30 this establishes corresponding phase-transition
results since PSN1+

1+ is a subclass of all three classes. We will tacitly use the observation
that ||P|| is polynomial in v if a ∈ o(v).

For the first class, we start with an observation about problem Psat(PSN∗+∗+), which is
in P (Bylander, 1994, Footnote 4). The greedy algorithm in Figure 1 solves this problem
in polynomial time and also returns a plan, when there is one. It is easy to see that this
algorithm is correct. We know from Proposition 1.3 that we need not consider plans with
more than one occurence of any action. Furthermore, if an action a is valid in a state s,
then a must be valid in all states t such that s ⊆ t, i.e. a is valid in sn eff(a′) for all actions
a′. Hence, the order of the actions in a plan does not matter as long as every action in the
plan is valid, so the greedy strategy will find a plan if there is one.
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1 function GreedyPlan(〈V,A, sI , sG〉)
2 s := sI ; ω := 〈〉
3 while there is some a ∈ A such that pre(a) v s do
4 s := sn eff(a)
5 Add a to the end of ω
6 Remove a from A
7 if sG v s then return ω
8 else reject

Figure 1: Greedy algorithm for solving Psat(PSN∗+∗+).

This algorithm for Psat can be used as a subroutine for solving COP, as follows.

Lemma 31. COP(PSN∗+∗+) can be solved in time 2a · poly(||P||).

Proof. We can solve COP(PSN∗+∗+) with the following algorithm. Let P = 〈V,A, sI , sG〉 be
a PSN∗+∗+ instance. Enumerate all subsets A′ of A. For each subset A′, use GreedyPlan to
check if there is a plan for 〈V,A′, sI , sG〉, and also generate a plan when there is one. Keep
track of the cheapest plan found so far (or one of them, if there are more than one) and
return it, or reject if there is no plan for any subset.

We will now prove that this algorithm is correct. First suppose P is unsolvable. Then
the instance 〈V,A′, sI , sG〉 must be unsolvable for all A′ ⊆ A, so the algorithm will reject.
Instead suppose P is solvable and let ω∗ = a∗1, . . . , a

∗
` be a shortest cost-optimal plan for

P. Then ω∗ cannot contain any action more than once according to Proposition 1.3. Let
A∗ = {a∗1, . . . , a∗`}. Since we enumerate all subsets of A, we will eventually apply GreedyPlan
to the instance P∗ = 〈V,A∗, sI , sG〉. Obviously, ω∗ is a plan for P∗, so GreedyPlan will find
some plan ω′ for P∗ and ω′ must then also be a plan for P. Suppose |ω′| < |ω∗|. Then ω′

must contain a proper subset of A∗ since ω∗ contains exactly the actions in A∗. It follows
that c(ω′) ≤ c(ω∗) = c(A∗), but this contradicts that ω∗ is a shortest cost-optimal plan for
P, so it must be the case that ω′ contains all actions in A∗. Hence, either ω′ = ω∗ or ω′ is
a permutation of ω∗. In either case, we have that c(ω′) = c(ω∗), so GreedyPlan will find
a plan with cost c(ω∗) for P∗. Since ω∗ is cost-optimal, there cannot be any A′ ⊆ A such
that 〈V,A′, sI , sG〉 has a cheaper plan than c(ω∗), so the algorithm will return a cost-optimal
plan. Since there are 2|A| subsets of A and the greedy algorithm runs in polynomial time,
we can solve COP(PSN∗+∗+) in time 2|A| · poly(||P||).

Theorem 32. COP(PSN∗+∗+) can be solved in time 2o(v) if a ∈ o(v).

Proof. COP(PSN∗+∗+) can be solved in time 2a · poly(||P||) according to Lemma 31, so if

a ∈ o(v), then COP(PSN∗+∗+) can be solved in time 2o(v) · poly(v) = 2o(v).

There is a similar phase transition for actions with arbitrary preconditions, if we limit
their effects to a constant number of variables.

Theorem 33. COP(PSN∗k+) can be solved in time 2o(v) if a ∈ o(v).
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Proof. With a actions, we can set at most ka different variables, so v − ka variables are
trivially redundant and can be removed from the instance before solving it. We get at most
ka remaining variables, but ka ∈ o(v) since a ∈ o(v). Hence, we can solve the problem in
time 3o(v) · poly(v) = 3o(v) = 2o(v), using Proposition 6.

If allowing also arbitrary preconditions, we get a somewhat less sharp phase transition.

Lemma 34. Let P = 〈V,A, sI , sG〉 be a PSN instance. Generating all plans of length `, or
less, can be done in time `2|A|` · poly(|V |).

Proof. For |A| ≥ 2 and ` ≥ 2, there are at most

|A|0 + |A|1 + · · ·+ |A|` ≤ `|A|`

action sequences of length `, or less. Each plan of length `, or less, can be verified in time
`·poly(|V |). Hence, we can generate all plans of length `, or less, in time `|A|` ·`·poly(|V |) =
`2|A|` · poly(|V |).

Theorem 35. If a ∈ o( v
log v ), then COP(PSN∗∗+) can be solved in time 2o(v).

Proof. According to Proposition 1.3, no action occurs more than once in a shortest cost-
optimal plan, so the maximum plan length we need to consider is a. It follows from
Lemma 34 that we can generate all plans of length a, or less, in time a2aa · poly(v), which
equals aa ·poly(v) since a ∈ o(v). We can solve COP(PSN∗∗+) by keeping track of the cheap-
est plan found. We must prove that aa · poly(v) ∈ 2o(v), but poly(v) ∈ 2o(v) so it remains
to prove that aa ∈ 2o(v). Since a ∈ o( v

log v ), it holds for all c > 0 that a < c v
log v , for large v.

We get

aa = 2a log a < 2
( cv
log v

) log cv
log v = 2

cv
log cv

log v
log v

for all c > 0 and large v. Choose an arbitrary c′ > 0. We want to prove that there is a
c > 0 such that

2
cv

log cv
log v

log v ≤ 2c
′v,

that is,

cv
log cv

log v

log v
≤ c′v.

We rewrite to

cv
log c+ log v − log log v

log v
≤ c′v,

but
log c+ log v − log log v

log v
< 1

for v > 2c so it is sufficient to choose c = c′, which is allowed since we only require that
c > 0. It follows that aa ∈ 2o(v), since c′ was chosen arbitrarily. We have now shown
that aa · poly(v) ∈ 2o(v) and, thus, that COP(PSN∗∗+) can be solved in time 2o(v) when
a ∈ o( v

log v ).
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6. Tighter Lower Bounds

The previous lower-bound results in Section 4 are of the form that a certain planning
problem cannot be solved in time 2o(v) unless the ETH is false. While being a very strong
indication of hardness, such results still say very little about how fast we can solve a problem.
For instance, there is a huge difference between the functions 20.001v and 20.999v, even though
both are exponential. In this section, we will demonstrate two different ways to achieve
more precise characterizations of the value of c in time bounds of the form 2cv · poly(||P||).
We will first show that Psat(PSN∗1) cannot be solved in time 2(1−ε)v · poly(||P||) for any
ε > 0, unless the Seth is false, i.e. the value of c is 1. We will then provide a result
stating that LOP(PSN1+

∗ ) cannot be solved faster than time 2
v
2 · poly(||P||) unless the

Graph Colourability problem can be solved faster than time 2n · poly(n), which is the
best currently known lower bound for this problem. That is, we do not determine a fixed
value for c, but a value that depends on the best known value of the constant for Graph
Colourability.

6.1 A Lower Bound for PSAT Using the Strong Exponential Time Hypothesis

We will now prove a tighter lower bound for PSN∗1 by using the Seth instead of the ETH.
We first recall how to encode counters in PSN (see Bäckström & Jonsson, 2012, for details).
Assume we have n variables x1, . . . , xn and let the states represent the integers 0, . . . , 2n−1
by treating a state as a bit vector with x1 as the least significant bit. An n-bit binary
counter can be implemented by the following n counting actions:

ai : {x1, . . . , xi−1, xi} ⇒ {x1, . . . , xi−1, xi}, for all i (1 ≤ i ≤ n).

For instance, the plan a1, a2, a1, a3, a1, a2, a1 enumerates the states 0, . . . , 7 in numeric order.
We can also implement a counter that counts in Gray code, i.e. it enumerates the states in
an order such that successive states have Hamming distance 1. This requires 2n actions,
defined as:

si : {xi, xi−1, xi−2, . . . , x1} ⇒ {xi}, for all i (1 ≤ i ≤ n),

ri : {xi, xi−1, xi−2, . . . , x1} ⇒ {xi}, for all i (1 ≤ i ≤ n).

For instance, the plan s1, s2, r1, s3, s1, r2, r1 enumerates the states 0, . . . , 7 in order 0, 1, 3, 2,
6, 7, 5, 4. The Gray-code counter has the property that it is always a PSN∗1 instance. Oth-
erwise, it is sufficient for our purposes to note that both counters can enumerate all integers
0, . . . , 2n − 1 with a plan of length 2n − 1.

The following construction is a polynomial reduction from 3-UNSAT to Psat(PSN)
(Aghighi et al., 2016b, Lemma 10). Of importance to us is that it encodes a 3-CNF formula
with n variables as a PSN instance with v = n+ 1 variables.

Construction 36. (Aghighi et al., 2016b, Construction 9) Let F be a 3-CNF formula with
n variables x1, . . . , xn and m clauses c1, . . . , cm. Assume without loss of generality that F
contains no clause cj that is a tautology, i.e. both xi and xi appear in cj for some 1 ≤ i ≤ n.
We construct a corresponding PSN instance P = 〈V,A, sI , sG〉 as follows:

• Let V = {x1, . . . , xn+1}.
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• Let a1, . . . , an+1 denote the actions in an n + 1-bit binary counter over the variables
x1, . . . , xn+1. For each clause cj = (l1 ∨ l2 ∨ l3) of F, where 1 ≤ j ≤ m, define
Tj = {l1, l2, l3}. Let A = { ai,j | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ m }, where the actions are
defined as ai,j : pre(ai) ∪ Tj ⇒ eff(ai). One may view ai,j as action ai extended with
preconditions expressing that “clause j is not satisfied by x1, . . . , xn”.

• Let sI = ∅ and sG = {x1, . . . , xn, xn+1}.

Intuitively, the reduction works as follows. Interpreting the states as integers, we ask for
a plan from state 0 to state 2n. This plan must enumerate all combinations of values for
x1, . . . , xn, i.e. it enumerates all assignments for F. For each state, exactly one of the original
counter actions is applicable, so one of the m new variants of this action must be applicable,
which means that at least one clause must be false in this state. This is only possible if F is
unsatisfiable, since there is otherwise some state where all clauses are true and the counter
will get stuck there. This construction is illustrated in Figure 2.

0 1 2 3 2n−1 2n
a1 a2 a1 an

0 1 2 3 2n−1 2n

a1,1

a1,2

...

a1,m

a2,1

a2,2

...

a2,m

a1,1

a1,2

...

a1,m

an,1
an,2

...

an,m

Figure 2: Illustration of an n-bit binary counter counting from 0 to 2n (top) and of Con-
struction 36 (bottom).

We make the following two observations about this construction.

1. It is straightforward to extend it to CNF formulae with unrestricted clause size.
(The original construction was restricted to 3-CNF in order to achieve a property
that is of no interest to us here.)

2. All counter actions are treated in the same way, i.e. each one is replaced with m
new actions with preconditions added in a systematic way that does not depend on
the original action. Hence, the construction works also with a Gray-code counter,
if we adjust the goal appropriately, which makes P a PSN∗1 instance.

We can now prove the following result.

Theorem 37. If Psat(PSN∗1) can be solved in time 2(1−ε)v · poly(||P||) for some ε > 0,
then the Seth is false.
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Proof. We consider the modified variant of Construction 36 that allows unrestricted clause
size and uses a Gray-code counter. This is obviously a polynomial reduction from UNSAT to
Psat(PSN∗1). Assume the Seth holds. Let p be a polynomial such that the reduction takes
time p(||F||), or less, for each formula F. Suppose there is an ε > 0 such that Psat(PSN∗1)
can be solved in time O

(
2(1−ε)v · q(||P||)

)
, for some polynomial q. Obviously, ||P|| ≤ p(||F||)

so we can solve UNSAT in time O
(
p(||F||) + 2(1−ε)(n+1) · q(p(||F||))

)
, since v = n+ 1. That

is, we can solve UNSAT in time O
(
2(1−ε)(n+1) · q(p(||F||))

)
= O

(
2(1−ε)n · q(p(||F||))

)
. Since

the Seth holds, by assumption, there are constants s3, s4, s5, . . . as specified in Definition 2
such that limk→∞ sk = 1. We can, thus, choose an integer k such that 1 − ε < sk. Since
we can solve UNSAT in time O

(
2(1−ε)n · q(p(||F||))

)
, we can also solve k-UNSAT in time

O
(
2(1−ε)n ·q(p(||F||))

)
. However, m ∈ Θ(nk) for all k-CNF formulae F, so it follows that ||F||

is polynomial in n. Hence, we can solve k-UNSAT in time O(2(1−ε)n), which contradicts the
Seth since 1−ε < sk. It follows that our assumption must be wrong and that Psat(PSN∗1)
cannot be solved in time O

(
2(1−ε)v · poly(||P||)

)
for any ε > 0, unless the Seth is false.

Combining this result with Theorem 7 yields very tight upper and lower bounds for
a very large number of subclasses. In particular we note the following corollaries.

Corollary 38. For all k ≥ 1, COP(PSN∗k) can be solved in time 2(1+ε)v · poly(||P||) for all
ε > 0, but Psat(PSN∗k) cannot be solved in time 2(1−ε)v · poly(||P||) for any ε > 0, unless
the Seth is false.

Proof. Combine Corollary 11 and Theorem 37.

Corollary 39. COP(SAS+-UB) can be solved in time 2(1+ε)v · poly(||P||) for all ε > 0, but
Psat(SAS+-UB) cannot be solved in time 2(1−ε)v ·poly(||P||) for any ε > 0, unless the Seth
is false.

Proof. Combine Corollary 10 and Theorem 37.

6.2 A Functional Lower Bound for LOP Using Graph Colourability

All previous lower-bound results are based on assuming that the ETH, or even the Seth,
holds. We will now demonstrate a different way to achieve lower-bound results, where
the constant c in the exponent depends on how fast we can solve some other problem, in
this case Graph Colourability, which is defined as follows.

Graph Colourability
Instance: A graph G = 〈V,E〉 and a positive integer k ≤ |V |.
Question: Is G k-colourable, i.e. is there a function f : V → {1, . . . , k} such
that f(u) 6= f(v) whenever {u, v} ∈ E?

The best known upper bound for the Graph Colourability problem is time 2n ·poly(n),
where n = |V |, (Björklund, Husfeldt, & Koivisto, 2009, Proposition 1), and it is considered
an important open question whether a faster algorithm can exist (Impagliazzo & Paturi,
2013). We will now exploit this as an alternative condition for proving lower-bound results
for planning.
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Theorem 40. If LOP(PSN1+
∗ ) can be solved in time 2

cv
2 · poly(v) for some c > 0, then

Graph Colourability can be solved in time 2cn · poly(n).

Proof. Proof by reduction from Graph Colourability to LOP(PSN1+
∗ ). Let I = 〈G, k〉

be an instance of Graph Colourability, where G = 〈V,E〉 is a graph and k > 0 is
an integer. Assume V = {v1, . . . , vn}. Construct a corresponding LOP(PSN1+

∗ ) instance
I′ = 〈P′, k′〉 as follows. Let P′ = 〈V ′, A′, sI ′, sG′〉, where

• V ′ = {v1, . . . , vn, e1, . . . , en};

• A′ contains the actions

– as : ∅⇒{e1, . . . , en}, and

– ai : {ei}⇒{vi} ∪ {ej | {vi, vj} ∈ E} for all vi ∈ V ;

• sI = ∅ and sG
′ = {v1, . . . , vn}.

Let k′ = n+ k.

A plan colours the vertices in phases, one colour in each phase. The phases are separated
by occurences of action as, which switches to the next colour. Variable vi is true if vertex
vi has been coloured and variable ei is an enabling variable, signalling that vi may be
coloured for the moment. The actual colour of a vertex is only implicit in the plan, and not
explicitly represented. At the start of each phase, any node can be coloured and colouring
a node immediately blocks its neighbours from being coloured in the same phase. Note that
an already coloured node can be recoloured in a later phase, although this may result in
a plan that is not length optimal. We now claim that I is k-colourable if and only if I′ has
a plan of length k′.

⇒: Suppose G has a k-colouring. Then there is a partition C1, . . . , Ck of V , such that
Ci contains all vertices with colour i, for all i (1 ≤ i ≤ k). Then each Ci is an independent
set, i.e. there are no two vj , vh ∈ Ci such that {vj , vh} ∈ E. Define the action sequence
ω = as, ω1, as, ω2, as, . . . , as, ωk, where ωi contains action aj for each vj ∈ Ci in arbitrary
order. The as actions guarantee that variables e1, . . . , en are true at the start of sequence
ωi for each i (1 ≤ i ≤ k). Since there are no two vj , vh ∈ Ci such that {vj , vh} ∈ E, there is
no action in ωi that sets ej to false for any vj ∈ Ci. It follows that all actions in ωi are valid.
Furthermore, the as actions are always valid. Since each vj ∈ V occurs in exactly one set
Ci, it follows that action aj occurs exactly once in ω for each vj ∈ V . Hence, the resulting
state satisfies sG and it follows that ω is a plan for P′ of length n+ k = k′.

⇐: Suppose ω is a plan for P′ of length k′ or less. Without losing generality, assume ω
is a shortest such plan. Then ω does not contain any successive occurences of action as, so
it is of the form ω = as, ω1, as, ω2, as, . . . , as, ωm, for some m, where the subplans ωi do not
contain any occurences of action as. Since ω must contain at least one occurence of action aj
for each vj ∈ V , it follows that |ω| ≥ n+m, i.e. m ≤ k since |ω| ≤ k′ = n+k. Suppose there
is some i (1 ≤ i ≤ m) and two actions aj , ah in ωi such that {vj , vh} ∈ E. Without losing
generality, assume vj occurs before vh. Then aj sets eh to false, which blocks the execution
of ah. Hence, the assumption must be false and {vj , vh} 6∈ E for all aj , ah ∈ ωi. It follows
that G must have an m-colouring, and, thus, also a k-colouring.
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It follows that the construction is a polynomial reduction from Graph Colourability
to LOP(PSN1+

∗ ). Suppose there is some c > 0 such that LOP(PSN1+
∗ ) can be solved

in time 2
cv
2 · poly(v). Since |V ′| = 2|V |, we can solve Graph Colourability in time

2cn · poly(n).

This is a tighter bound than the ETH-based ones in Section 4 in the following sense.
If LOP(PSN1+

∗ ) can be solved faster than time 2
v
2 ·poly(v), then there is a faster algorithm

for Graph Colourability than previously known, i.e. this result is based on an assump-
tion about a specific fixed value for the constant in the exponent. Note that Theorem 19
still applies, i.e. LOP(PSN1+

∗ ) cannot be solved in time 2o(v) unless the ETH is false.

7. Time vs. Space in Upper Bounds

The best upper time bounds for hard problems usually assume algorithms that do not
run in polynomial space. For instance, the result of Björklund et al. (2009) that Graph
Colourability can be solved in time 2n · poly(n) also requires using space 2n · poly(n).
They also show an upper bound of time 2.2461n ·poly(n) under the additional restriction of
polynomial space (Björklund et al., 2009, Proposition 7). Since the proof of Theorem 40 is
based on a polynomial reduction from this problem, we immediately get the following result.

Corollary 41. (To Theorem 40) If LOP(PSN1+
∗ ) can be solved in time 2

cv
2 · poly(v) and

polynomial space for some c > 0, then Graph Colourability can be solved in time
2cn · poly(n) and polynomial space.

We have 2.2461n = 2.2461v/2 = 1.4987v, so if we could solve LOP(PSN1+
∗ ) faster than time

1.4987v ·poly(v) using only polynomial space, then there would be a faster polynomial-space
algorithm for Graph Colourability than previously known.

There is, thus, often a trade-off between time and space, such that we can choose to use
less space at the expense of using more time for finding the solution. This is not only of
theoretical interest. For instance, it is quite common in practice that planning and search
algorithms run out memory before they find a solution or hit the time limit (if such a limit
is set in advance). It would clearly be beneficial in these cases if we could balance time
and space in a better way. Another solution to overcome this problem is disk-based search
(cf. Korf, 2008), i.e. both the internal memory of the computer and hard disks are used
as working memory. Since disks are much slower than internal memory, it is an interesting
question if there are algorithms that can trade time for space such that they run in internal
memory only while still not being slower than a disk-based algorithm? In practice, it may
not be optimal to require that an algorithm runs in polynomial space, but rather very low-
order exponential space, but in order to explore the limits of this trade-off, we will focus on
planning using only polynomial space.

We know from Section 3.2 that COP(PSN) can be solved in time 4v · poly(||P||), using
Dijkstra’s algorithm, but this result also requires space 4v · poly(||P||). Using an implicit
representation of the state-transition graph does not help much since we have to store
Ω(|S|) = Ω(2v) nodes in the worst case. Most search algorithms, like breadth-first search
and A∗, require time bh ·poly(||P||) and space bh ·poly(||P||), where b is the branching factor
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and h is the height (or depth) of the explored search tree (cf. Russell & Norvig, 1995)8. That
is, all these algorithms require exponential space. An exception is depth-first search (DFS),
which runs in time bh · poly(||P||) and space bh · poly(||P||) (cf. Russell & Norvig, 1995).
However, this is still bad in the general case. Since h is the length of a shortest (or cheapest)
plan, we get h = 2v − 1 in the worst case, so bh is not polynomial in the instance size.

In this section, we will first show that it is possible to solve even the most general case,
i.e. COP(SAS+), in polynomial space, but at the cost of a very generous upper time bound.
We will then consider two more restricted cases, COP(PSN∗∗+) and LOP(PSN∗+∗+). Both
of these can be solved in time bv · poly(||P||) and polynomial space, using DFS. We will
show that the upper time bounds for both these problems can be improved considerably,
for moderately large b, by adding some simple pruning heuristics to DFS; COP(PSN∗∗+)
can be solved in time F (v) · poly(||P||) and polynomial space, while LOP(PSN∗+∗+) can be
solved in time v! · poly(||P||) and polynomial space. F (n) denotes the nth number in the
sequence of Fubini numbers, which grows approximately as 2Θ(n logn).

7.1 General SAS+ Planning in Polynomial Space

We do know that there must exist an algorithm for COP(SAS+) that runs in polynomial
space, since the problem is in PSPACE, but this does not tell us much about the actual
time bounds. Even if using an implicit representation of the state-transition graph, most
search algorithms still need an exponential amount of memory. This applies even to depth-
first search since there are planning instances with exponentially long shortest solutions.
By using Savitch’s theorem (Savitch, 1970), the amount of memory can be lowered. Savitch
showed that there exists an algorithm AS that takes a graph G = 〈U,E〉 as input and
checks whether there exists a path from u ∈ U to v ∈ U of length k, or less, using space
O
(

log2(|U |)
)

and time |U |O(log k). The time bound did not appear in Savitch’s article, but
it is a well-known folklore result. The result assumes that we can check whether two vertices
are connected or not in polynomial time (in the size of the graph), which is no problem
since we can view P as a compact representation of its state-transition graph, as previously
described in Section 3.4.

The following results are straightforward generalisations to SAS+ of previously published
results for PSN (Aghighi et al., 2016b). Problem Psat can be solved by asking if there is
a plan of length k = |S| = dv, or less, i.e. by solving LOP for this value of k. We can thus
solve Psat in time

|S|O(log k) · poly(||P||) = (d v)O(log d v) · poly(||P||) = (2v log d)O(log 2v log d) · poly(||P||)

= (2v log d)O(v log d) · poly(||P||) = 2O(v2 log2 d) · poly(||P||)

using space

O(log2 |S|) = O(log2 dv) = O(log2 2v log d) = O(v2 log2 d)

Savitch’s theorem is clearly also useful for problem LOP, since checking whether there
exists a plan of length k or less takes time dO(v log k) = 2O(v log d log k) and uses space

8. The polynomial factor poly(||P||) is usually omitted in the literature, but it is necessary in the general
case where it is not necessarily dominated by the factor bh.
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O(v2 log2 d), which can be substantially better than solving Psat when k is moderately
large. In the case of COP, the bounds for LOP apply if all actions have cost 1 or more,
since |ω| ≤ c(ω) must hold for all plans ω, and otherwise the bounds for Psat apply.

We conclude by noting that the polynomial factor poly(||P||) that we have used to cover
the time for checking the action set of an instance P is sufficient also for verifying actions and
adding action costs. Note that Savitch’s theorem has been repeatedly applied to planning in
the literature for proving membership in PSPACE. However, to the best of our knowledge,
it has never been used to derive explicit bounds on time and space for planning before the
work of Aghighi et al. (2016b).

7.2 COP for Monotone PSN with Arbitrary Preconditions

We will now consider the more restricted class of PSN∗∗+, i.e. monotone PSN. We know from
Proposition 1.3 that no action is required more than once in a length-optimal or shortest
cost-optimal plan. Furthermore, such a plan cannot contain any redundant actions, so every
action sets at least one variable. Hence, the search depth can be restricted to v, so if we let
DFS explore the full search tree to depth v, it will be able to find a shortest (or a cheapest)
plan. It follows that DFS can solve COP for monotone PSN in time bv ·poly(||P||) and space
bv · poly(||P||). This time bound is still very bad unless b is small and the space bound is
polynomial in ||P|| only if b is polynomial in ||P||. We will show that with a simple heuristic
for pruning the search tree, DFS can solve this problem much faster for moderately large
branching factors and in polynomial space.

We note that if an instance is monotone, then every variable that is true in the initial
state will remain true throughout a plan. Hence, an action with a negative precondition
that is not satsified in the initial state can never occur in a plan, so we can assume all such
actions are removed from the instance. Furthermore, we can always assume that the initial
state is the empty set, since all variables that are true in the inital state will be true also
in the goal state, and they are thus redundant.

We will start by investigating some connections between state sequences and plans for
monotone instances. First recall that a partition of a set S is a set P ⊆ 2S of pairwise
disjoint non-empty subsets of S such that P covers S, i.e. ∪X∈PX = S. The elements in P
are called parts. An ordered partition of S is a sequence X1, . . . , Xn of subsets of S such that
{X1, . . . , Xn} is a partition of S, i.e. an ordered partition is a partition with an additional

total order on the parts. The Stirling number
{
n
k

}
of the second kind denotes the number

of ways we can partition a set of size n into k parts. Since each partition of size k can be
ordered in k! different ways, the total number of ordered partitions of all sizes of a set with

n elements is F (n) =
∑n

k=0 k!
{
n
k

}
, which is known as the nth Fubini number (or the nth

ordered Bell number).

Let σ = s0, . . . , s` be a strictly monotone state sequence. We define the difference
sequence δ = d1, . . . , d` of σ such that di = si \ si−1 for all i (1 ≤ i ≤ `). Then all sets in δ
are non-empty and pairwise disjoint and d1∪ . . .∪d` = s` \s0, so δ is an ordered partition of
s` \ s0. In particular, if s0 = ∅, then δ is an ordered partition of s`. If we know the value of
s0, then we can trivially reconstruct σ from δ, so a strictly monotone state sequence and its
corresponding difference sequence are equivalent in this respect. Furthermore, if d′1, . . . , d

′
m

is an ordered partition of V \ s`, then d1, . . . , d`, d
′
1, . . . , d

′
m is an ordered partition of V \ s0.
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That is, the difference sequence for a plan can always be extended to an ordered partition
of V \ s0, i.e. an ordered partition of V if s0 = ∅.

We can obviously solve length-optimal planning for a PSN∗∗+ instance P = 〈V,A,∅, sG〉
as follows. Enumerate all ordered partitions of V . For each such partition d1, . . . , d`,
construct the corresponding state sequence s0, . . . , s`, which must be strictly monotone.
Check if there are actions a1, . . . , an, for some n ≤ `, such that a1, . . . , an is a plan from
s0 to sn and sG v sn. By choosing the smallest such value for n and keeping track of
the shortest plan found for any partition, we can find a length-optimal plan. This runs in
polynomial time for each partition, so the whole algorithm runs in time F (v) · poly(||P||)
and polynomial space. We can even find a cost-optimal plan by always choosing a cheapest
possible action in each step. In the earlier conference version of this article (Bäckström &
Jonsson, 2016), we presented this algorithm and demonstrated that it has a tighter upper
bound than the standard bound O

(
bv · poly(||P||)

)
for DFS, unless the branching factor is

small. We will now show that there is no need for such special algorithms, since the same
bound can be proven directly using DFS.

Let P = 〈V,A, sI , sG〉 be a PSN instance. The DFS search tree for P consists of a set of
search nodes and a set of edges that form a directed out-tree. Each node contains a state
and each edge is labelled with an action. Define a successor function Succ such that for
every state s, Succ(s) contains all successors of s, i.e. all tuples 〈a, t〉 such that t is a state
and a is an action from s to t. The search tree can be defined recursively as follows: Let
the root node N0 contain the initial state sI . For each node N with associated state s, define
a new node N ′ with state t and an edge 〈N, a,N ′〉 for each tuple 〈a, t〉 ∈ Succ(s). While
all search nodes are unique, several nodes may contain the same state. Note that there is
a one-to-one correspondence between the branches in the search tree and the possible walks
in the state-transition graph, starting at sI .

Since we will only consider the special case of monotone PSN, it holds that s ⊆ t
whenever 〈a, t〉 ∈ Succ(s). In general, the search tree is infinite and the search algorithm
implements a goal test, for terminating recursion, and possibly also pruning heuristics. In
order to simplify the proofs, we will instead let the successor function implement these
directly, resulting in a finite search tree, and we will see that it is safe to make the following
assumptions for the cases we consider:

A1: If sG v s, then Succ(s) = ∅.

A2: if 〈a, t〉 ∈ Succ(s), then s ⊂ t,

A3: For all states s and t, there is at most one action a such that 〈a, t〉 ∈ Succ(s).

A1 implements the goal test, by forcing a branch to terminate whenever reaching a state
that satisfies the goal. This implies that every branch in the search tree can contain at most
one goal state, which must then be a leaf. This is safe since we can never find a shorter
or cheaper plan by adding more actions to a plan. A2 says that we only consider actions
that change some variable, i.e. we ignore loops in the state-transition graph. This is safe
since loops correspond to redundant actions, that can never make a plan shorter or cheaper.
A3 is the assumption that we never need to consider more than one action for any edge in
the state-transition graph, which is safe for our purposes. For length-optimal planning, it
does not matter which action we choose, and for cost-optimal planning, we can choose any
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cheapest action. These assumptions make the successor function systematic in the sense
that no two branches in the search tree can contain the same state sequence, as part 2 of
the following lemma states.

Lemma 42. Let P be a PSN∗∗+ instance and let T be the search tree for P generated by
a succesor function Succ satisfying assumptions A1–A3. Then

1. The sequence of states along any branch in T is strictly monotone and

2. Every branch in T has a unique state sequence.

Proof. 1. Let N0, . . . , Nm be the search nodes along some branch in T , where N0 must
be the root node of the search tree. Let s0, . . . , sm be the corresponding states associated
with the nodes and let a1, . . . , am be the labels of the edges along the branch. Then for
all i (1 ≤ i ≤ m), it holds that 〈ai, si〉 ∈ Succ(si−1) and, thus, also that si−1 ⊂ si by
assumption A2.

2. Let η = N0, . . . , Nm and η′ = N ′0, . . . , N
′
n be two distinct branches in T . Let σ =

s0, . . . , sm be the states associated with the nodes in η and let σ′ = s′0, . . . , s
′
n be the states

associated with the nodes in η′. Suppose σ = σ′. Then m = n. Let i be the maximum
index such that Ni = N ′i . There is always such a choice of i since N0 = N ′0 must be the root
node of T . It follows that N0, . . . , Ni = N ′0, . . . , N

′
i since T is an out-tree, i.e. the two

branches must share exactly the first i+ 1 nodes. It must also be the case that i < m, since
the two branches are distinct. We have si+1 = s′i+1 by assumption, so it must be the case
that Succ(si) contains two tuples 〈ai+1, si+1〉 and 〈a′i+1, si+1〉 such that ai+1 6= a′i+1 since
Ni+1 6= N ′i+1. However, this contradicts assumption A3, so it follows that ai+1 = a′i+1 and,
thus, that Ni+1 = N ′i+1, which contradicts the choice of i. It follows that σ 6= σ′. This
proof is illustrated in Figure 3.

s0 =s′0

N0 =N ′0

s1 =s′1

N1 =N ′1

si=s′i

Ni=N ′i

si+1

Ni+1

sm

Nm

s′i+1

N ′i+1

s′m

N ′m

a1 = a′1

ai+1

a′i+1

Figure 3: Illustration of the proof of Lemma 42.2.

We see from the proof of property 2 of this lemma that the two nodes Ni+1 and N ′i+1,
that are both successsors to the split point at node Ni = N ′i , cannot contain the same state.
However, nodes further down the two branches may do so. For instance, it could be the case
that ai+1 = a′i+2 and a′i+1 = ai+2. Then both ai+1, ai+2 and a′i+1, a

′
i+2 must be plans from
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si = s′i to si+2, which implies that s′i+2 = si+2. Hence, in the proof above (and in Figure 3) it
could be the case that only si+1 and s′i+1 differ and si+2, . . . , sm = s′i+2, . . . , s

′
m, i.e. the two

branches differ in only one position. Since it still holds that any two different branches must
differ in at least one position, we are guaranteed that no two branches contain the same
state sequence. Because of property 2 in this lemma, we can also ignore the actual search
nodes of a branch and identify it uniquely by its state sequence. That is, we will refer to
a branch in the search tree as a sequence s0, . . . , s` of states with an associated sequence
a1, . . . , a` of actions, meaning that 〈ai, si〉 ∈ Succ(si−1) for all i (1 ≤ i ≤ `).

For cost-optimal PSN∗∗+ planning, we will consider the following successor function
which satisfies assumptions A1–A3.

Succ1: For every state s, Succ1(s) is defined as follows: If sG v s, then Succ1(s) = ∅.
Otherwise, for every state t such that s ⊂ t, if A contains some action from s to t,
then Succ1(s) contains 〈a, t〉 for an arbitrary cheapest such action a.

Example 43. Consider the following five actions: a1 : {v1}⇒{v2}, a2 : {v1}⇒{v3},
a3 : {v2}⇒{v3}, a4 : {v1}⇒{v4}, a5 : {v2}⇒{v4}. Define the cost function c as c(a1) =
c(a2) = c(a3) = c(a4) = 1 and c(a5) = 2. Let s = {v1, v2} and consider the set Succ1(s).
All five actions are applicable in s. Action a1 results in state s, so 〈a1, s〉 is not in Succ1(s).
Both of the actions a2 and a3 result in state {v1, v2, v3}, so either of 〈a2, {v1, v2, v3}〉
and 〈a3, {v1, v2, v3}〉 must be in Succ1(s), but not both. The choice is arbitrary since
a2 and a3 have the same cost. Both the actions a4 and a5 result in state {v1, v2, v4}.
However, since a5 has a higher cost than a4, we must choose to include 〈a4, {v1, v2, v4}〉
but not 〈a5, {v1, v2, v4}〉 in Succ1(s). Hence, we can arbitrarily choose Succ1(s) as either
{〈a2, {v1, v2, v3}〉, 〈a4, {v1, v2, v4}〉} or {〈a3, {v1, v2, v3}〉, 〈a4, {v1, v2, v4}〉}.

The following lemma shows that even though the search tree generated by Succ1 may
not contain all cost-optimal plans for a solvable instance, it will contain at least one of
them, which is sufficient for solving cost-optimal planning.

Lemma 44. Let P be a PSN∗∗+ instance. If P is solvable, then the search tree generated by
successor function Succ1 contains a branch with a cost-optimal plan for P.

Proof. Suppose P is solvable. Let ω∗ = a∗1, . . . , a
∗
` be a shortest cost-optimal plan for P

and let σ = s0, . . . , s` be the state sequence of ω∗. It must then hold that sG v s`, but
sG 6v s`−1, and also that σ is strictly monotone, according to Proposition 1.2. It further
follows from the definition of Succ1 that for each i (1 ≤ i ≤ `), Succ1(si−1) contains 〈ai, si〉
for some action ai from si−1 to si such that c(ai) ≤ c(a∗i ). Hence, the search tree contains
a branch with state sequence σ and a plan ω = a1, . . . , a` from s0 to s`, i.e. ω is a plan for
P, such that c(ω) ≤ c(ω∗). However, since ω∗ is cost-optimal by assumption, it must be
the case that c(ω) = c(ω∗), i.e. ω is a cost-optimal plan for P.

Let σ = s0, . . . , s` be a state sequence over a variable set V such that s0 = ∅ and let
δ = d1, . . . , d` be the difference sequence of σ. We define the corresponding augmented
difference sequence δA as δA = d1, . . . , d` if s` = V and otherwise as δA = d1, . . . , d`, d

′,
where d′ = V \ s`. We note that δA is always an ordered partition of V and that two
different state sequences can never have the same augmented difference sequence.
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Theorem 45. DFS with successor function Succ1 solves cost-optimal planning for PSN∗∗+
in time F (v) · poly(||P||) and space poly(||P||).

Proof. Let P be a PSN∗∗+ instance. Generate the whole search tree T for P using DFS with
successor function Succ1. This is possible since T is finite. Keep track of the cheapest plan
for P found in any branch and return this plan. Reject if no plan was found. It follows from
Lemma 44 that this method is correct.

Every branch has a unique state sequence according to Lemma 42. Hence, every branch
also has a unique augmented difference sequence. Since every augmented difference sequence
is an ordered partition of V , there cannot be more branches in T than there are ordered
partitions of V , i.e. there can be at most F (v) branches. The set of successors of a node can
be computed in polynomial time and space in the instance size. Since we use DFS we only
need to keep track of the nodes along the current branch, there are at most v such nodes,
and the cheapest plan found, which is of length v at most. Hence, this algorithm runs in
time F (v) · poly(||P||) and space poly(||P||).

The standard upper bound of time O
(
bv · poly(||P||)

)
for DFS still holds, so we will

compare this bound with our new bound. Let the polynomial p be an upper bound on
the time spent in each node. Then the standard upper bound is time O

(
bv · p(||P||)

)
and

the new upper bound is time O
(
F (v) · p(||P||)

)
. We will now show that the new bound

is tighter unless the branching factor is very small. We are only interested in an estimate
of when this occurs, so for large values of v, we can ignore constant factors, that is, we
want to find the value of b such that bv · p(v) < F (v) · p(v). Note that p is the same
polynomial in both cases. The actual polynomial is implementation dependent, but for
any fixed implementation we have the same polynomial in both bounds. Hence, the actual
polynomial is irrelevant so we want to find when bv < F (v).

For large n, F (n) can be approximated as n!
2(ln 2)n+1 (Sprugnoli, 1994) and n! can be ap-

proximated as
√

2πn(ne )n (using Stirling’s formula). Combining these, we can approximate
F (v) as

√
2πv(ve )v

2(ln 2)v+1
=

√
2πv

1
2 ( v
e ln 2)v

2(ln 2)
=

√
2π

2(ln 2)
v

1
2 (

v

e ln 2
)v

=

√
2π

2(ln 2)
2

1
2

log v2v log v
e ln 2 =

√
2π

2(ln 2)
2

1
2

log v+v log v
e ln 2

Since bv = 2v log b, we get that bv < F (v) approximately when

2v log b < 2
1
2

log v+v log v
e ln 2

i.e. when

v log b <
1

2
log v + v log

v

e ln 2
.

For large v, this occurs approximately when b < v
e ln 2 ≈ 0.53v.

The worst possible branching factor is b = 2v − 1, which occurs if there is an action to
every successor node of the initial state. In this case, we get bv = (2v−1)v, i.e. bv ∈ Θ(2v

2
),

which is much larger than F (v). This case is somewhat extreme, but even if the instance
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size is polynomially restricted in v, we could have a branching factor that is polynomial
in v, i.e. much larger than 0.53v. Furthermore, even if the actual branching factor is
small, it can be difficult to determine a tight bound for it a priori. In contrast, our new
upper bound is independent of the branching factor and can be determined directly from
the instance. We finally note that the new time bound is still much worse than if using
Dijkstra’s algorithm, since F (v) is approximately in 2Θ(v log v).

7.3 LOP for Monotone PSN with Positive Preconditions

We can modify the previous method to show an even better upper bound for the case where
also the preconditions are positive.

Let s and t be states. Then t is a subset-maximal result of s if (1) s 6= t, (2) there is
some action a from s to t and (3) there is no action a′ from s to some state t′ such that
t ⊂ t′. Let ω = a1, . . . , a` be a plan from s0 to s` with state sequence s0, . . . , s`. Then ω is
a state-maximal plan if si is a subset maximal result of si−1 for all i (1 ≤ i ≤ `).

Lemma 46. Let P be a PSN∗+∗+ instance. If P has a plan of length ` from a state s to
a state t, then there is a state-maximal plan of length `, or less, from s to some state t′

such that t ⊆ t′.

Proof. Let s and t be two arbitrary states and let ω = a1, . . . , a` be a plan from s to t.
Let s0, . . . , s` be the state sequence of ω, i.e. s0 = s and s` = t. Proof by induction over
the plan length.

Base case: If ω is the empty plan, then s` = s0. This plan is already state maximal
since we cannot reach any other state without using at least one action.

Induction: Suppose the claim holds for all plans of length k, for some k > 0. Let
` = k + 1. There are two cases:

(1) Suppose that s0 = s1. Then a2, . . . , a` is a plan from s0 to s` of length `− 1 = k, so
it follows from the induction hypothesis that there is a state-maximal plan from s1 to some
state t such that s` ⊆ t. This plan must then also be a state-maximal plan from s0 to t.

(2) Instead suppose that s0 6= s1. Then it must hold that s0 ⊂ s1, so there must be
some action a′1 from s0 to some state t1 such that s1 ⊆ t1 and t1 is a subset-maximal result
of s0. Since pre(a2) ⊆ s1 and s1 ⊆ t1, it follows that a2, . . . , a` is a plan from t1 to some
state t` with state sequence t1, . . . , t` such that si ⊆ ti for all i (1 ≤ i ≤ `). It thus follows
from the induction hypothesis that there is a state-maximal plan ω′ = a′2, . . . , a

′
m from t1

to some state t′ such that t` ⊆ t′ and m ≤ `. Hence, a′1, . . . , a
′
m is a state-maximal plan

from s0 to t′, where s` ⊆ t′ and m ≤ `. This case is illustrated in Figure 4.

We will use the following successor function for length-optimal PSN∗+∗+ planning.

Succ2: For every node s in the search tree, Succ2(s) is defined as follows: If sG v s, then
Succ2(s) = ∅. Otherwise, for every state t that is a subset maximal result of s, let
Succ2(s) contain 〈a, t〉 for an arbitrary action from s to t.

Example 47. Consider the following four actions: a1 : {v1}⇒{v3}, a2 : {v1}⇒{v3, v4},
a3 : {v2}⇒{v3, v4} and a4 : {v1}⇒{v5}. Let s = {v1, v2} and conisder the set Succ2(s). All
four actions are applicable in s. Action a1 results in state {v1, v2, v3}, actions a2 and a3 both
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s0 s1 s2 s`−1 s`

t1 t2 t`−1 t`

t′

a1 a2 a3, . . . , a`−1 a`

a′1

a2 a3, . . . , a`−1 a`

ω′ = a′2, . . . , a
′
m

⊇ ⊇ ⊇ ⊇
⊇

Figure 4: Illustration of case 2 in the induction step in the proof of Lemma 46.

result in state {v1, v2, v3, v4} and action a4 results in state {v1, v2, v5}. State {v1, v2, v3} is
not a subset-maximal result of s since {v1, v2, v3} ⊆ {v1, v2, v3, v4}. Neither of the states
{v1, v2, v3, v4} and {v1, v2, v5} is a subset of the other, so they are both subset-maximal results
of s. We can arbitrarily choose Succ2(s) as either {〈a2, {v1, v2, v3, v4}〉, 〈a5, {v1, v2, v5}〉} or
{〈a3, {v1, v2, v3, v4}〉, 〈a5, {v1, v2, v5}〉}.

We note that Succ2 satisfies assumptions A1–A3, so Lemma 42 holds also for Succ2. Also
note that if Succ2(s) contains both 〈a, t〉 and 〈a′, t′〉, then neither t ⊆ t′ nor t′ ⊆ t hold since
both t and t′ are subset maximal results of s.

The following lemma shows that even though the search tree generated by Succ2 may
not contain all length-optimal plans for a solvable instance, it will contain at least one of
them, which is sufficient for solving length-optimal planning.

Lemma 48. Let P be a PSN∗+∗+ instance. If P is solvable, then the search tree for P generated
by successor function Succ2 contains a branch with a length-optimal plan for P.

Proof. Suppose P is solvable and let T be the search tree for P generated by Succ2. Let
ω∗ = a∗1, . . . , a

∗
` be a length-optimal plan for P, with state sequence σ∗ = s∗0, . . . , s

∗
` . It

follows from Lemma 46 that there is a state-maximal plan ω = a1, . . . , an from s0 = s∗0 to
some state sn such that n ≤ ` and s∗` ⊆ sn. Let σ = s0, . . . , sn be the state sequence of ω.
Since ω is state-maximal, it holds for all i (1 ≤ i ≤ n) that si is a subset maximal result
of si−1, i.e. there is some a′i such that 〈a′i, si〉 ∈ Succ2(si−1). It follows that some branch in
T contains the state sequence σ and the plan ω′ = a′1, . . . , a

′
n, which is a plan from s0 to

sn and, thus, also a plan for P since sG ⊆ s∗` ⊆ sn. Furthermore, it must be the case that
n = ` since ω∗ was assumed length optimal, so ω′ is a length-optimal plan for P.

Let V = {v1, . . . , vn} and let δ = d1, . . . , dm be an ordered partition of V . We say that
a permutation π of the index set {1, . . . , n} respects δ if the following holds: For all i, j
(1 ≤ i, j ≤ m), all vx ∈ di and all vy ∈ dj , if i < j, then π(x) < π(y). We define τ(δ) as the
set of all permutations of V that respect δ. Note that τ(δ) must be non-empty.

Example 49. Let V = {v1, . . . , v5} and let δ = d1, d2, d3 be an ordered partition of V such
that d1 = {v3, v5}, d2 = {v1, v4} and d3 = {v2}. Then the permutation v5, v3, v1, v4, v2

respects δ, but the permutation v3, v1, v5, v4, v2 does not respect δ since v5 ∈ d1 and v1 ∈ d2

but v1 is ordered before v5.
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We can now prove the following upper bound.

Theorem 50. DFS with successor function Succ2 solves length-optimal planning for PSN∗+∗+
in time v! · poly(||P||) and space poly(||P||).

Proof. Let P be a PSN∗+∗+ instance. Generate the whole search tree T for P using DFS with
successor function Succ2. This is possible since T is finite. Keep track of the shortest plan
for P found in any branch and return this plan. Reject if no plan was found. Lemma 48
guarantees that this method is correct.

Let σ = s0, . . . , sm and σ′ = s′0, . . . , s
′
n be the states along two arbitrary distinct branches

in the search tree. Then σ 6= σ′ according to Lemma 42. Obviously, s0 = s′0 since both
branches start at the root node. Let i be the maximal index such that s0, . . . , si−1 =
s′0, . . . , s

′
i−1. It is not possible that m = n = i − 1 since σ 6= σ′. Hence, Succ2(si−1) =

Succ2(s′i−1) must be non-empty, so no branch can stop at the node with state si−1 = s′i−1.
It follows that m ≥ i, n ≥ i and si 6= s′i. That is, si−1 = s′i−1 is the branching point after
which the two branches start to differ. Let δ = d1, . . . , dm be the augmented difference
sequence for σ and let δ′ = d′1, . . . , d

′
n be the augmented difference sequence for σ′, i.e. both

are ordered partitions of V . Then d1, . . . , di−1 = d′1, . . . , d
′
i−1. The successor function Succ2

guarantees that si 6⊆ s′i and s′i 6⊆ si, so it follows that di 6⊆ d′i and d′i 6⊆ di. Without losing
generality, assume |di| ≤ |d′i|. Define k = |d1|+ · · ·+ |di−1| = |d′1|+ · · ·+ |d′i−1|. Let π be any
permutation in τ(δ) and let π′ be any permutation in τ(δ′). There must be some variable
vx ∈ di such that vx 6∈ d′i, since di 6⊆ d′i. Hence, π must satisfy that k < π(x) ≤ k + |di|.
Obviously, vx ∈ d′j for some j > i, since d1, . . . , di−1 = d′0, . . . , d

′
i−1, so π′ must satisfy that

π′(x) > k+ |d′i| ≥ k+ |di| ≥ π(x). Hence, π and π′ cannot be the same permutation. Since
π and π′ were chosen arbitrarily it further follows that τ(σ) and τ(σ′) do not overlap. Since
also σ and σ′ were chosen arbitrarily, it follows that no permutation can respect more than
one branch in the tree. We thus conclude that there can be at most v! branches in the tree
since there are v! permutations of {1, . . . , v}. It follows that DFS with Succ2 runs in time
v! · poly(||P||) and space poly(||P||).

An analogous analysis to the one for DFS with Succ1 yields that the new upper bound for
DFS with Succ2 is tighter than the standard upper bound for DFS approximately when
b < 0.37v.

8. Discussion

We have presented a variety of results concerning the time and space complexity of propo-
sitional planning during the course of this article. Most of the results bring up issues that
warrant further discussion and suggest directions for future research. We discuss some of
these issues below.

For problems that are not solvable in polynomial time, one usually resorts to alternative
methods, like polynomial-time approximation algorithms or heuristic search, hoping that
this will perform satisfactorily in practice. However, with modern computers it is becoming
increasingly popular to consider also algorithms running in superpolynomial time. Pre-
ferrably, such an algorithm should still run in subexponential time. It is then interesting to
know whether such an algorithm can exist or not, thus asking for the type of lower-bound
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results we derive in this paper. Examples of planning classes that are solvable in subex-
ponential time and not likely to be polynomial-time solvable are identified in an article
by Bäckström and Jonsson (2013, Thm. 24). There are also cases in the literature where
one considers algorithms, and even approximation algorithms, that require low-order expo-
nential time (Cygan, Kowalik, & Wykurz, 2009). In such cases, the performance is very
sensitive to the constant in the exponent. It is thus important to find restricted planning
classes where we can lower the constant even more than in Theorem 7.

We believe that studying the time complexity of monotone planning is important, and
we find it highly conceivable that monotone planning is substantially easier than general
planning despite the fact that our upper bounds are not so well separated (time 3v ·poly(||P||)
for monotone PSN vs. time 4v · poly(||P||) for general PSN) . We base this suspicion on
the following fact: we have no strong lower bounds whatsoever for monotone PSN while
we have almost matching upper and lower bounds for large fragments of general PSN.

While upper-bound results sometimes take also space into account, lower-bound re-
sults generally refer to time only, making no additional restrictions on space. Having seen
in Sec. 7 how additional space restrictions can affect the upper bound, it is an obvious
question to ask if additional space bounds could also strengthen the lower-bound results
upwards. Another but related question is whether the DFS-based upper bounds for mono-
tone planning presented in Sec. 7 can be improved. As pointed out above, we do not have
any lower bound results that preclude this. One possible way of improving these algorithms
is to reduce the search space by exploiting partial order reduction techniques (Wehrle &
Helmert, 2012; Wehrle, Helmert, Alkhazraji, & Mattmüller, 2013).

We have demonstrated that Psat has approximately the same time complexity as SAT
for large classes of planning instances. One should be aware that this primarily applies to
the decision problems: if we also ask for a solution, then the two problems may behave very
differently. The reason for this is the size of the output. A solvable instance of SAT with
n variables always has a solution of size O(n). Solvable instances of Psat, on the other
hand, may have solutions as large as Θ(2v · log a) if we represent solutions in the natural
way. If we allow ’non-standard’ representations of plans, then this gap may be decreased.
Consider, for instance, the class 3S of PSN instances (Jonsson & Bäckström, 1998). This
class has the property that it is possible to decide in polynomial time if an instance is
solvable, but the shortest plans may be of exponential length in the number of variables.
While this may look as preventing the possibility of generating plans in polynomial time,
this is not the case: Jonsson (2009) proved that it is possible to generate polynomial-
size macro representations of plans for the 3S class in polynomial time. Thus, it may be
relevant to consider different compact plan representations for different purposes and the
amount of time needed for generating plans in a particular representation. It is not likely
that useful compact representations exist in the general case but they do exist in certain
restricted cases. General discussions of such representations can be found in the literature
(Bäckström & Jonsson, 2012; Bäckström, Jonsson, & Jonsson, 2012).

Our analysis of LOP in Section 5 is similar in spirit to recent analyses of lower bounds
for constraint satisfaction problems (De Haan et al., 2015). It is interesting to note that
they prove a case where CSP can be solved in time 2o(n) if m ∈ o(n), but cannot be solved
in time 2o(n) if m ∈ Ω(n) and the ETH holds, where n is the number of variables and
m the number of constraint tuples. Although there are no immediate connections, this
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is a sharp easy-hard transition of the same type as indicated by our results in Section 5.
Obviously the ratio a/v is crucial here. This has similarities to the phenomenon of phase
transitions for NP-complete problems, which was pioneered by Cheeseman, Kanefsky, and
Taylor (1991) and has remained an active research area ever since. For instance, in the case
of k-SAT, the phase transition occurs at a particular value of the ratio m/n for each k, such
that instances around this ratio are likely to be hard and the probability of hard instances
is very low for other values of the ratio. While the vast majority of work in this area has
been empirical, the exact values of the phase transitions for k-SAT have been determined
analytically (Achlioptas & Moore, 2006). There are a number of phase transition results
for planning described in the literature (Bylander, 1996; Rintanen, 2004; Cohen & Beck,
2017). However, these are all transitions of the type easy-hard-easy. Our transition is of
the type easy-hard and is, thus, more similar to the type of transitions for resolution proofs
studied by Achlioptas, Beame, and Molloy (2004).
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Bäckström, C., & Jonsson, P. (2016). Upper and lower time and space bounds for plan-
ning. In Proc. 22nd European Conference on Artificial Intelligence (ECAI 2016), The
Hague, The Netherlands, pp. 716–724.
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