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Abstract
Multi-Context Systems (MCS) are a powerful framework for interlinking possibly heteroge-

neous, autonomous knowledge bases, where information can be exchanged among knowledge
bases by designated bridge rules with negation as failure. An acknowledged issue with MCS is
inconsistency that arises due to the information exchange. To remedy this problem, inconsistency
removal has been proposed in terms of repairs, which modify bridge rules based on suitable notions
for diagnosis of inconsistency. In general, multiple diagnoses and repairs do exist; this leaves the
user, who arguably may oversee the inconsistency removal, with the task of selecting some repair
among all possible ones. To aid in this regard, we extend the MCS framework with preference in-
formation for diagnoses, such that undesired diagnoses are filtered out and diagnoses that are most
preferred according to a preference ordering are selected. We consider preference information at
a generic level and develop meta-reasoning techniques on diagnoses in MCS that can be exploited
to reduce preference-based selection of diagnoses to computing ordinary subset-minimal diagnoses
in an extended MCS. We describe two meta-reasoning encodings for preference orders: the first is
conceptually simple but may incur an exponential blowup. The second is increasing only linearly
in size and based on duplicating the original MCS. The latter requires nondeterministic guessing if
a subset-minimal among all most preferred diagnoses should be computed. However, a complexity
analysis of diagnoses shows that this is worst-case optimal, and that in general, preferred diagnoses
have the same complexity as subset-minimal ordinary diagnoses. Furthermore, (subset-minimal)
filtered diagnoses and (subset-minimal) ordinary diagnoses also have the same complexity.

1. Introduction

At the dawn of an age with growing information connectivity, the issue of interlinking and com-
bining information from various knowledge sources is of increasing importance, posing a challenge
to Artificial Intelligence and to Knowledge Representation and Reasoning in particular. Indeed,
with the rise of the internet, sharing information has become as easy as never before, and a wealth
of knowledge and information sources is available that can be accessed via communicating de-
vices. Multi-Context Systems (Giunchiglia & Serafini, 1994; Roelofsen & Serafini, 2005; Brewka
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& Eiter, 2007; Bikakis & Antoniou, 2010) are a well-known approach to address the challenge of
sharing information, where individual knowledge bases, called contexts, are interlinked with special
bridge rules which govern the information exchange, such that a global semantics of the system
emerges from the local semantics of the constituent knowledge bases. Some practical applications
of MCS are defeasible reasoning in ambient intelligence (Bikakis & Antoniou, 2010), cooperation
in distributed information systems (Caire & Bikakis, 2011), and the METIS system for maritime
situation awareness support (Velikova et al., 2014).

Rooted in the seminal work of McCarthy (1993), which proposed an explicit representation of
context where combining different views may give a holistic picture of a situation, the Trento School
around Giunchiglia and Serafini developed a notion of multi-context system that is geared to inter-
link possibly non-monotonic knowledge bases and can be utilized for query answering (Giunchiglia
& Serafini, 1994; Ghidini & Giunchiglia, 2001; Roelofsen & Serafini, 2005; Brewka, Roelofsen,
& Serafini, 2007). Brewka and Eiter (2007) generalized this to an abstract framework in which
contexts can have heterogeneous knowledge bases that are described using a very abstract notion
of logic; Context Knowledge Repositories (Serafini & Homola, 2012) evolved MCS in a different
direction for the Semantic Web, where meta and object knowledge can be intermingled. For a more
detailed overview of MCS, see the work of Brewka et al. (2011a).

As the contexts of an MCS are typically autonomous and host knowledge bases that are inherited
legacy systems, it may happen that the information exchange leads to unforeseen conclusions and
in particular to inconsistency; to anticipate and handle all such situations at design time is difficult if
not impossible, especially if sufficient details about the knowledge bases are lacking. Inconsistency
of an MCS means that it has no model (called equilibrium) where a global model is composed of a
local model for each context’s knowledge base such that all bridge rules governing the information
exchange are satisfied; thus, the whole MCS becomes useless.

To repair an inconsistent MCS, basic notions for inconsistency management have been devel-
oped by Eiter, Fink, Schüller, and Weinzierl (2010, 2014). Most notably, the notion of diagnosis for-
malizes the removal of an inconsistency by modifying the information exchange, that is, the bridge
rules for the information flow between the contexts. However, while an arbitrary diagnosis restores
consistency, the modified information exchange that it affects may have serious consequences, as
shown in the following example.

Example 1. Consider an MCS employed in a hospital, which interconnects three systems: (1) a
patient knowledge base storing information e.g. about illnesses, insurance companies, and potential
allergies of patients; (2) an expert system suggesting proper treatments to illnesses; and (3) a system
billing the insurance company of patients for the administered treatments (a formal account is given
later, cf. Example 3, Figure 1). The expert system only recommends treatments to which patients
are not allergic, while the billing system only allows administered treatments that are covered by
the insurance companies. Now suppose a patient with specific allergies can be cured only with a
drug that is not covered by his/her insurance; this makes the whole MCS inconsistent and hence
no treatment for any patient can be soundly inferred. It is easy to repair this inconsistency, e.g. by
modifying the information flow such that either the illness or allergy of the patient is ignored, which
results in either not treating the patient or causing an allergic reaction. An alternative repair is
to not inform the billing system about the uncovered administration of the drug, so the patient is
correctly treated at potential financial loss of the hospital.
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Fully-automated, unreflected inconsistency removal may ignore vital information and lead to
dangerous results. It is thus desirable – or even necessary – to keep a human operator in the loop
while selecting a suitable diagnosis for repair. However, in realistic scenarios often a large (even
exponential) number of diagnoses exists, which makes careful manual selection a very time con-
suming task if not infeasible under time and cognitive constraints. The risk of choosing an improper
diagnosis or ending up with no (approved) diagnosis clearly is an obstacle to the deployment of
MCS to a broader range of application domains. Also note that inconsistency can arise in all ap-
plications: some context may consider certain data to be unrealistic, e.g. in ambient intelligence
when the reading from a light sensor is regarded as too high after the janitor installed new light
bulbs in the rooms; or some context may not expect to receive a certain combination of data from
other contexts, e.g. in case of maritime control when a ship is reported to be both faster and bigger
than in the record of the knowledge base. In the former case, removing the actual data from the
light sensor restores consistency but it might be more preferred to replace the too-high value with
an acceptable one. In the latter case there are scenarios where it is more useful to know the speed of
a ship correctly and underestimate its size while for other scenarios it can be the other way round,
e.g. to ensure that an inspection crew is large enough for the ship’s size.

The goal of this work thus is to develop some machinery for automatic identification of preferred
diagnoses and pruning of those that are unwanted, in order to only require from the human operator
to select from a much smaller set (of most preferred diagnoses) the best diagnosis manually. What
constitutes a preferred or best diagnosis, cannot be decided in general since it will be different
for each MCS and depends on the environment into which an MCS is embedded. In the above
example, the health of patients may be considered paramount, but from an economic perspective
billing correctly may be considered of highest importance. In any case, we observe that such a
decision is up to the person or institution employing the MCS.

Automatic selection of the preferred diagnoses according to some preference requires in turn
a formalism for expressing and evaluating preferences. Many such formalisms are available; a
prominent and important one are ceteris paribus preferences (Doyle et al., 1991), CP-nets (Boutilier
et al., 2004; Domshlak et al., 2001; Goldsmith et al., 2008), or utility functions (Von Neumann &
Morgenstern, 1944) widely used in economics. As there is no one-fits-all preference formalism that
suits every use case, it is a challenge to accommodate any preference formalism that a user deems to
fit for selecting most preferred diagnoses. Our approach is based on the idea that a user-customized
preference on diagnoses, specified in a formalism chosen by the user, can be seen as a knowledge-
base or context of an MCS. This context must be enabled to “see” the diagnoses of the MCS, which
is technically challenging. Furthermore, the selection of most preferred diagnoses according to the
preference context turns out to be computationally harder than originally thought. As we show, this
complexity increase is not due to our meta-reasoning approach, but is intrinsic to the problem, and
our approach is worst-case optimal.

Our main contributions are briefly summarized as follows:

• We propose two basic methods for selection of preferred diagnoses: one allows to filter out di-
agnoses that fail some properties (similar to hard constraints); the other method compares diagnoses
with each other in a binary relation and identifies the most preferred one(s). We call the function-
alities of these methods filters and preference orders, respectively. Both are general concepts that
can capture many concrete instances to express unwanted or preferred diagnoses. In the flexible and
open spirit of the MCS framework, we do not commit to a particular formalism in which filters and

349



EITER & WEINZIERL

preference orders are specified, but remain at an abstract level and leave the choice of a particular
formalism to the user. As illustrative sample instantiations, we consider here CP-nets.

• To realize the selection of diagnoses in such an open way, we develop three transformations to
enable meta-reasoning about diagnoses in MCS, i.e., given an MCS and a filter or preference order,
a transformed MCS is constructed such that the diagnoses of the original MCS also occur in the
transformed MCS, but an additional context is able to observe these diagnoses and apply custom
(preference) reasoning. Since the observer context is not restricted to any particular formalism,
this allows one to express filters and preference orders in any formalism that can be couched into a
context of an MCS.

• For the selection of (most) preferred diagnoses, three extensions of the notion of diagno-
sis are introduced, namely protected-minimal, prioritized-minimal, and subset-minimal prioritized
minimal diagnosis. We investigate the computational complexity of these notions and show by
polynomial-time reductions that the first two are of the same complexity as checking whether a pair
of sets of bridge rules constitutes a subset-minimal diagnosis. For the third notion, we provide a
novel non-deterministic refutation algorithm that works in polynomial time with the help of an or-
acle for one of the other notions. Still the algorithm is worst-case optimal in a number of settings,
as it matches the complexity of the underlying problem. A byproduct of these results are concrete
algorithms that can exploit an existing implementation of inconsistency explanation (Bögl, Eiter,
Fink, & Schüller, 2010).

The results of this work may be applied to concrete instances of MCS, and the basic notions and
results may be carried over to generalizations and recent extensions of MCS, as we shall discuss;
furthermore, they may be of use for formalisms that can be modeled using (extensions or variants of)
MCS, such as hybrid MKNF knowledge bases (Knorr, Slota, Leite, & Homola, 2014), knowledge
base networks (Eiter & Šimkus, 2015), or Boolean networks (Kauffman, 1969, 1993, cf. Inoue,
2011), to mention a few.

1.1 Organization

The remainder of this article is structured as follows. After recalling preliminary notions and fixing
notation in Section 2, we introduce in Section 3 filters and preference orders and consider some
sample instantiations. In Section 4 we investigate how an (extended) MCS can be enabled to select
diagnoses of the original MCS. In Section 5 we show how diagnoses may be selected according
to a filter or a preference order and prove the correctness of these realizations, while in Section 6
their computational complexity is investigated. Section 7 discusses related work and in Section 8
we conclude with a summary and an outlook. Proofs of theorems and propositions as well as some
detailed examples are in the appendix. This article is strongly based on the work of Weinzierl
(2014), which in turn is a significant extension and revision of work by Eiter, Fink, and Weinzierl
(2010).

2. Preliminaries

In this section we recall the framework of Multi-Context Systems (MCS) by Brewka and Eiter
(2007) and notions for inconsistency management in MCS from Eiter et al. (2014). The MCS
framework is based on three basic concepts: abstract logics to capture knowledge-representation
formalisms, contexts which represent concrete instances of knowledge bases, and bridge rules to
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specify the information exchange; an MCS then simply is a collection of such contexts and their
respective bridge rules. Finally, the semantics of an MCS is given in terms of equilibria.

To capture all kinds of knowledge-representation formalisms, the concept of an abstract logic is
used, which reduces it to the set-theoretic level.

Definition 1 (Brewka & Eiter, 2007). An abstract “logic” L, is a triple L = (KB,BS,ACC)
where:

• KB is the set of knowledge bases of L, where each knowledge base kb ∈ KB is a set of
elements called “formulas”.

• BS is the set of possible belief sets, where each S ∈ BS is a set of elements called “beliefs”.

• ACC : KB → 2BS is a function describing the “semantics” of the logic, by assigning to
each knowledge base a set of acceptable belief sets.

Intuitively, each knowledge base kb ∈ KB is a set of well-formed formulas while each belief
set bs ∈ BS is a set of beliefs (statements) that a reasoner may jointly hold. The acceptability
function ACC(kb) singles out, given a knowledge base kb ∈ KB, those sets of beliefs that are
acceptable according to some reasoning method for kb. ACC is a multi-valued function in order
to capture also nonmonotonic formalisms, where a knowledge base may have multiple acceptable
belief sets (as e.g. for Answer-Set Programming, see Gelfond & Lifschitz, 1991; Default Logic, see
Reiter, 1980; or in Abstract Argumentation, see Dung, 1995).

Depending on the concrete situation, e.g. given an existing legacy system or a theorem prover for
a specific logic, different formalizations for some logic might be used. There is no fixed mapping
between a given logic and an abstract logic representing it, and the mapping may be adjusted to
specific application needs. The approach allows one to capture flexibly, e.g., a knowledge-base,
an expert system using a logic program, and a billing system using a description logic ontology as
they might occur in the scenario described in Example 1. Let us consider two examples for abstract
logics.

Example 2. Classical propositional logic might be modeled as follows:

• KB is the set of all (well-formed) formulas over a signature Σ built using ∧,∨,¬,→;

• BS is the set of deductively closed sets S of Σ-formulas (i.e., S = Cn(S)); and

• ACC(kb) is the singleton set {Cn(kb)}.

Disjunctive logic programs under answer set semantics over a function-free first order signature
Σ may be modeled as follows:

• KB is the set of disjunctive logic programs over Σ, i.e., each kb ∈ KB is a set of rules r

a1 ∨ . . . ∨ an ← b1, . . . , bi, not bi+1, . . . , not bm. n+m > 0, (1)

also written H(r) ← B(r), where all ai, bj , are atoms over Σ and “not” is negation as
failure; we further require that each variable in r occurs also in b1, . . . , bi (safety).

• BS is the set of Herbrand interpretations over Σ, i.e, each S ∈ BS is a set of ground
(variable-free) atoms from Σ, and
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• ACC(kb) is the set of answer sets of kb, i.e., consists of all S ∈ BS such that (i) S is a
model of kbS and (ii) no S′ ⊂ S is a model of kbS (Faber, Leone, & Pfeifer, 2004), where
kbS = {r ∈ grnd(P ) | S |= B(r)} is the set of all ground instances r of rules in P whose
body B(r) is satisfied by S; here for evaluation, “not” is treated like classical negation ¬.

We denote these modelings by LplΣ and LaspΣ , respectively.

We remark that each rule r with n = 0 is a constraint; its heads H(r) amounts to ⊥, where ⊥
is a falsity. We view the latter as a special atom that is false in every Herbrand interpretation.

In the remainder of this work we often omit the explicit definition of the signature Σ for an
abstract logic if it is clear from the context.

To specify information exchange between contexts, so-called bridge rules are used. Bridge rules
are similar in form and behavior to rules in logic programming. They differ from each other by the
fact that bridge rules are based on beliefs from (possibly) different abstract logics and corresponding
contexts. Based on the presence (or absence) of beliefs at other contexts, a bridge rule can add
information to a context.

Definition 2 (Brewka & Eiter, 2007). Given a sequence L = (L1, . . . , Ln) of abstract logics Lj =
(KBj ,BSj ,ACCj), 1 ≤ j ≤ n, an Lk-bridge rule over L, with k ∈ {1, . . . , n} is of form:

(k : s)←(c1 : p1), . . . , (ci : pi),not (ci+1 : pi+1), . . . ,not (cm : pm). (2)

where for each 1 ≤ i ≤ m we have that ci ∈ {1, . . . , n}, pi ∈
⋃

BSci is an element of some belief
set of Lci , and s ∈

⋃
KBk is a knowledge base formula of Lk.

Each bridge rule in an MCS is associated to a certain context in such a way that all Lk bridge
rules belong to the context with identifier k.

We denote by ϕ (r) the formula s in the head of r and by Ch (r) the context k where r be-
longs to. The full head of r is denoted by head(r) = (k : s), thus head(r) = (Ch (r) :ϕ (r)).
The literals in the body of r are referred to as body±(r), body+(r), body−(r), body(r), which
denote the sets {(c1 : p1), . . . , (cm : pm)}, {(c1 : p1), . . . , (cj : pj)}, {(cj+1 : pj+1), . . . , (cm : pm)},
{(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm)}, respectively.

Furthermore, Cb (r) denotes the set of contexts referenced in r’s body, i.e., Cb (r) = {ci |
(ci : pi) ∈ body±(r)}. Note that different from the work of Brewka and Eiter (2007), the head of
r contains not only the knowledge-base formula s but also the context identifier k. This choice
merely is syntactic sugar and allows easier identification of the context where r belongs to. For later
technical use, we denote by cf (r) the condition-free bridge rule resulting from r by removing all
elements in its body, i.e., cf (r) is (k : s) ← . and for any set of bridge rules R, we let cf (R) =⋃
r∈R cf (r).

We emphasize that bridge rules only deal with elements of knowledge bases and elements of
belief sets, both of which are considered to be atomic expressions from the perspective of MCS.
Incorporating variables into bridge rules is possible but requires restrictions on context logics or
additional machinery for variable substitution (for details, see Fink, Ghionna, & Weinzierl, 2011;
Barilaro, Fink, Ricca, & Terracina, 2013; Schüller & Weinzierl, 2011).

Since bridge rules are the only way to exchange information between contexts and bridge rules
only refer to beliefs, the contents of a context (i.e., its knowledge-base and semantics) is completely
hidden from other contexts. In addition to that, there is no central point of information exchange,
hence the MCS framework is somewhat decentralized.
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With bridge rules to connect contexts at hand, Multi-Context Systems are defined as follows.

Definition 3 (cf. Brewka & Eiter, 2007). A Multi-Context System is a collectionM = (C1, . . . , Cn)
of contexts Ci = (Li, kbi, br i), 1 ≤ i ≤ n, where (i) Li = (KBi,BSi,ACCi) is an abstract logic,
(ii) kbi ∈ KBi is a knowledge base, and (iii) br i is a set of Li-bridge rules over L = (L1, . . . , Ln).
Furthermore, for each H ⊆ {ϕ (r) | r ∈ br i} it holds that kbi ∪H ∈ KBi (i.e., knowledge bases
are closed under adding bridge rule heads).

In the sequel, br(M) =
⋃n
i=1 br i denotes the set of all bridge rules of M ; C (M) = {1, . . . , n}

denotes the set of all context identifiers of M ; and br i(M) denotes the set of bridge rules of context
i of M , i.e., br i(M) = {r ∈ br(M) | Ch (r) = i}.

Example 3. The MCS described in Example 1 can now be formalized. Let M = (C1, C2, C2) be
an MCS with three contexts: a patient knowledge-base C1, a logic program C2 suggesting proper
medication, and a logic program C3 handling the billing. Context C1 uses the abstract logic LplΣ ,
while bothC2 andC3 useLasp

Σ . We restrict our example to a single patient with the knowledge bases
kb1, kb2, and kb3 as given in Figure 1 on page 354 for the contexts C1, C2, and C3, respectively.
Intuitively, the knowledge base kb1 of context C1 states that the patient has severe hyperglycemia,
that she is allergic to animal insulin, and that her health insurance is with company B. Context
C2’s knowledge base kb2 suggests to apply either human or animal insulin if the patient has hyper-
glycemia and requires that the applied insulin does not cause an allergic reaction. Context C3 does
the billing and encodes that insurance B only pays animal insulin.

The MCS M contains five rather simple bridge rules shown in Figure 1 (bridge rules are pre-
sented in the format “name: head← body.”). Their task is to carry information from one context
to another. Bridge rule r1, for example, carries information about hyperglycemia of the patient
from the patient knowledge-base C1 to the medication recommender system C2. Bridge rule r2 is
the sole non-monotonic one and it turns the absence of an allergy to animal insulin (in C1) into
the allowance to administer this kind of insulin (in C2). A graphical depiction of M is shown in
Picture 1 inside Figure 1. The latter also shows the minimal diagnoses of M (cf. below for further
details).

The semantics of an MCS M = (C1, . . . , Cn) is defined in terms of special belief states, which
are sequences S = (S1, . . . , Sn) of belief sets Si ∈ BSi, 1 ≤ i ≤ n; intuitively, each Si must be a
locally accepted belief set where the bridge rules of context Si are respected.

To formalize this, we call a bridge rule r of form (2) applicable in a belief state S, denoted by
S r, if (i) for each (j : p) ∈ body+(r) it holds that p ∈ Sj , and (ii) for each (j : p) ∈ body−(r)
it holds that p /∈ Sj . For a set R of bridge rules and a belief state S, app(R,S) denotes the set of
bridge rules of R that are applicable in S, i.e., app(R,S) = {r ∈ R | S r}.

We can now define the desired belief states of an MCS as follows.

Definition 4 (cf. Brewka & Eiter, 2007). A belief state S = (S1, . . . , Sn) of M is an equilibrium if
for every belief set Si, 1 ≤ i ≤ n, it holds that Si ∈ ACCi

(
kbi ∪ {ϕ (r) | r ∈ app(br i, S)}

)
. The

set of all equilibria of an MCS M is denoted by EQ(M).

To create bridge rules that are always resp. never applicable, we also allow r = (k : s) ← >,
resp. r′ = (k : s) ← ⊥, where S r resp. S 6 r′ for every belief state S. Here > denotes the
empty body and⊥ a body containing (` : p),not (` : p) where p is any belief of any context C`. For
simplicity, we assume that the bridge rules r and r′ have no body literals.
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Figure 1: The Hospital MCS M = (C1, C2, C3) with knowledge bases kbi and bridge rules rj .

kb1 = {hyperglycemia, allergic animal insulin, insurance B}
kb2 = { give human insulin ∨ give animal insulin ← hyperglycemia.

⊥ ← give animal insulin, not allow animal insulin}
kb3 = { bill ← bill animal insulin.

bill more ← bill human insulin.

⊥ ← insurance B , bill more.}

r1: (2 : hyperglycemia)← (1 : hyperglycemia).

r2: (2 : allow animal insulin)← not (1 : allergic animal insulin).

r3: (3 : bill animal insulin)← (2 : give animal insulin).

r4: (3 : bill human insulin)← (2 : give human insulin).

r5: (3 : insurance B)← (1 : insurance B).

Patient dataC1 Medication C2

Billing C3

r1

r2 r3r4

r5

Picture 1: The MCS M visualized.

The set of minimal diagnoses of M is:

D±m(M) =
{ (
{r1} , ∅

)
,
(
{r4} , ∅

)
,
(
{r5} , ∅

)
,
(
∅,
{
r2

}) }
.

Application of these diagnoses intuitively results in:

({r1} , ∅) — illness of the patient is ignored.
({r4} , ∅) — medication is not billed.
({r5} , ∅) — insurance company receives bill it will not pay.
(∅, {r2}) — patient is given medication she is allergic to.

No diagnosis is clearly the best, it depends on one’s preferences.
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Given an MCS M = (C1, . . . , Cn) over abstract logics L = (L1, . . . , Ln), a set R of bridge
rules is compatible with M , if a partitioning R1, . . . , Rn of R =

⋃n
k=1Rk exists where every

r ∈ Rk is an Lk-bridge rule over L. For such R, we write M [R] for the MCS that results by
replacing its bridge rules with R. E.g., M [br(M)] = M and M [∅] is M with no bridge rules.

We say that M is inconsistent, denoted M |= ⊥, if M has no equilibrium, i.e., EQ(M) = ∅.
The converse, that M is consistent, is denoted by M 6|= ⊥, i.e., EQ(M) 6= ∅.

For a consistency-based explanation of inconsistency pairs (D1, D2) of sets of bridge rules are
considered, such that if we deactivate the rules inD1 and add the rules inD2 in condition-free form,
the MCS becomes consistent (i.e., admits an equilibrium).

Definition 5. Given an MCS M , a diagnosis of M is a pair (D1, D2), D1, D2 ⊆ br(M), such that
M [br(M) \D1 ∪ cf (D2)] 6|= ⊥. We denote by D±(M) the set of all diagnoses.

An alternative reading of Def. 5 is that a diagnosis indicates which bridge rules are assumed to
require modification in order to obtain a consistent MCS, i.e., a diagnosis constitutes a way to repair
an MCS if its bridge rules are modified according to the diagnosis. Adding rules condition-free is
the most severe form of modification of a rule’s body, but as shown by Eiter et al. (2014), this notion
also allows one to capture more fine-grained forms of modification.

We call any pairD = (D1, D2) ∈ 2br(M)×2br(M) a candidate diagnosis (regardless of whether
D ∈ D±(M) holds). We denote the MCS resulting from the application of a candidate diagnosis
(D1, D2) ⊆ (br(M), br(M)) by M [D1, D2], which equals the MCS M [br(M) \D1 ∪ cf (D2)].

Following Occam’s razor, one may consider those diagnoses to be the preferred ones that require
the least modifications. This motivates the notion of minimal diagnosis.

Definition 6. Given an MCS M , a diagnosis D ∈ D±(M) is (pointwise) subset minimal, if no
D′ ⊂ D is in D±(M); by D±m(M) we denote all such D, i.e., D±m(M) = {D ∈ D±(M) | ∀D′ ∈
D±(M) : D′ ⊆ D ⇒ D ⊆ D′}.

Here, given pairs A = (A1, A2) and B = (B1, B2) of sets, the pointwise subset relation A ⊆ B
holds iff A1 ⊆ B1 and A2 ⊆ B2; moreover, A ⊂ B holds iff A ⊆ B ∧A 6= B, where A = B holds
iff A1 = B1 ∧A2 = B2.

Example 4. Reconsider the MCS M of Example 3. Since the patient has hyperglycemia and is
allergic to animal insulin, the belief set containing give human insulin is the only one accept-
able at C2, i.e., the human insulin must be given. Since the insurance company does not cover
human insulin, the billing context C3 admits no acceptable belief set and the MCS M therefore
is inconsistent. As shown at the bottom of Figure 1, the minimal diagnoses of M are D±m(M) =
{D(1), D(2), D(3), D(4)} with D(1) = ({r1}, ∅), D(2) = ({r4}, ∅), D(3) = ({r5}, ∅), and D(4) =
(∅, {r2}).

Applying the diagnosis D(i) for 1 ≤ i ≤ 4, i.e., considering for D(i) = (D
(i)
1 , D

(i)
2 ) the MCS

M [br(M) \D(i)
1 ∪ cf (D

(i)
2 )], yields that the illness of the patient is ignored (D(1)), that the med-

ication is not billed (D(2)), that the insurance receives a bill it will not pay (D(3)), and that the
patient is given a medication she is allergic to (D(4)).

3. Preferences

Clearly, in general not all diagnoses of an MCS are equally appealing, as applying the selected repair
might have serious consequences, e.g., in the MCS M of Example 4 if the illness of the patient is
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ignored. It is not easy to identify the best diagnosis in D±m(M): if the health of the patient is most
important, then those diagnoses only causing a wrong billing are preferred; on the other hand, if
costs matter, one might consider any diagnosis leading to a wrong billing as unacceptable.

In the literature two basic ways occur frequently: one is to separately consider each outcome
(i.e., diagnosis) and discard it whenever it fails some preference condition; the other is to compare
outcomes with each other and decide which is the most appealing. We call the former a filter, since
it filters unwanted diagnoses, and the other a preference. Both notions of diagnosis can be defined
in general by relying on some notion of plausibility (see e.g., for abduction Bylander et al., 1991).

As for preference among diagnoses, two immediate questions are (i) how to model preference
formally and (ii) how to obtain or elicit a concrete preference description for a particular MCS.
Regarding (i), we aim in this work to be rather general and resort to a prototypical model in terms
of a preference relation, formalized as binary relation � on the set of diagnoses that is reflexive
and transitive; this abstract notion allows us to capture a large number of formalisms that have been
developed for specifying preference. Regarding (ii), there is no simple or straightforward answer,
since the construction of a particular preference order may very much depend on the particular MCS
and its application domain. It may appear far easier instead to obtain a preference order on individ-
ual bridge rules; since diagnoses amount to special sets of bridge rules, it is possible to construct a
preference order between diagnoses from such preferences, by using techniques that lift preference
on elements to sets of elements, as in the work of Brewka, Truszczyński, and Woltran (2010), or
to apply iterative improvement techniques; we refer here to the work by Brafman, Domshlak, Shi-
mony, and Silver (2006), and Brewka et al. (2010), where also respective preference representation
languages are considered. Guaranteeing that such preference is desired and preference elicitation
tailored specifically for MCS, however, requires a study of its own and is beyond the scope of this
article.

We thus assume that preferences (or filters) over diagnoses are already given and concentrate
on the computational challenges of imposing them on an MCS. To illustrate some particular for-
malism for preference specification where elicitation respectively preference generation has been
thoroughly studied, we consider here the widely known CP-nets (cf. Boutilier et al., 2004; Allen,
2016) in which preference is specified by statements like “if bridge rules r1 and r2 are removed,
then I prefer bridge rule r3 to be condition-free”.

Since preferences allow to compare diagnoses, but they do not allow the exclusion of diagnoses
from being considered, preferences alone are not sufficient. If one wants to ensure that certain
diagnoses are excluded from being considered acceptable, the need for a way to filter out certain
diagnoses arises. For specifying a filter, we again use the most general approach, which is a Boolean
function on diagnoses.

In this section we introduce the definitions of filters and preference orders in general, as well as
some specific preference formalisms. The following sections then show how they can be realized
in MCS in such a way that any formalism used to define the preference order or filter can be incor-
porated thanks to using the abstract logic of an MCS context. Furthermore, our approach preserves
core properties of MCS like information hiding and allows for a decentralized evaluation.

3.1 Filters on Diagnoses

Filters allow the MCS designer to apply sanity checks on diagnoses; they act as hard constraints:
diagnoses that fail to satisfy the conditions are filtered out and discarded for consistency restoration.
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3.1.1 PROTECTING BRIDGE RULES

In a first attempt, we may consider protecting some bridge rules from modification, i.e., we disallow
a diagnosis to contain them. The adapted notion of diagnosis is as follows.

Definition 7. LetM be an MCS with protected rules brP ⊆ br(M). A diagnosis excluding protected
rules brP is a diagnosis (D1, D2) ∈ D±(M), where D1, D2 ⊆ br(M) \ brP . We denote the set of
all such diagnoses by D±(M, brP ). The set of all minimal such diagnoses is D±m(M, brP ) = {D ∈
D±(M, brP ) | @D′ ∈ D±(M, brP ) : D′ ⊂ D}.

Example 5. Consider the hospital MCSM of Example 3 again. One might decide that bridge rules
for health-related information-flow are protected, i.e., brP = {r1, r2}.

The set of minimal protected diagnoses then is:

D±m(M, brP ) = {({r4}, ∅), ({r5}, ∅)}

In the following we also write diagnosis with protected bridge rules meaning a diagnosis ex-
cluding protected rules. The following property is easy to verify.

Proposition 1. Let M be an inconsistent MCS with protected rules brP . Then D±(M, brP ) ⊆
D±(M) and D±m(M, brP ) ⊆ D±m(M), i.e., every diagnosis is a diagnosis excluding protected
rules and every minimal diagnosis excluding protected rules is a minimal diagnosis.

Proof. Let D ∈ D±(M, brP ), then by definition D ∈ D±(M). Given D = (D1, D2) with
D ∈ D±m(M, brP ), assume towards contradiction that there exists (D′1, D

′
2) ∈ D±m(M) such that

(D′1, D
′
2) ⊂ (D1, D2). Observe thatD′1, D

′
2 ⊆ br(M)\brP , hence (D′1, D

′
2) ∈ D±(M, brP ). This

contradicts that D ∈ D±m(M, brP ), thus it follows that D ∈ D±m(M).

In Section 6 it is shown that deciding whether D ∈ D±(M, brP ) and D ∈ D±(M) have the
same complexity, i.e., protected bridge rules do not increase the complexity.

3.1.2 FILTERS IN GENERAL

We now introduce filters in general. A candidate diagnosis (D1, D2) is considered whether it fails
some conditions; if so, it is filtered out and not considered for consistency restoration; thus a filter
can be seen as hard constraints on diagnoses.

Example 6. Consider two scientists, Prof. K and Dr. J, who plan to write a paper. We formalize their
reasoning in an MCS M with two contexts C1 and C2 that employ Lasp

Σ for answer set semantics.
Dr. J will write most of the paper and Prof. K will engage if she finds time or if Dr. J thinks the paper
needs improvement (r1). Dr. J knows that involving Prof. K results in a good paper (r2 and kb1)
and he will list her as an author if she participates (r3). The knowledge bases of the contexts are:

kb1 = {contribute ← improve.; contribute ← has time.}
kb2 = { good ← coauthored .}

The bridge rules of M are:

r1 : (1 : improve)← not (2 : good).

r2 : (2 : coauthored)← (1 : contribute).

r3 : (2 : name K )← (1 : contribute).
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Prof. KC1 Dr. J C2

r1

r2

r3

Figure 2: Contexts and bridge rules of the MCS M = (C1, C2) from Example 6.

Figure 2 depicts the contexts and bridge rules of M . It appears that M is inconsistent, intuitively
because the cycle through bridge rules r1 and r2 has an odd number of negations.
The set of minimal diagnoses of M is: D±m(M) = {({r1} , ∅) , ({r2} , ∅) , (∅, {r2}) , (∅, {r1})} .
The first two diagnoses break the cycle by removing a rule, the last two “stabilize” it.

We aim for a general notion of a filter, therefore we define a filter to be a Boolean function on
candidate diagnoses.

Definition 8. Let M be an MCS with bridge rules br(M). A diagnosis filter for M is a function
f :2br(M)×2br(M) → {0, 1} and the set of filtered diagnoses is D±f (M) = {(D1, D2) ∈ D± (M) |
f(D1, D2) = 1}. By D±m,f (M) we denote the set of all subset-minimal such diagnoses.

Given a candidate diagnosis D = (D1, D2) ∈ 2br(M) × 2br(M), we also write f(D) to denote
f(D1, D2). Writing the set D±m,f (M) explicitly, we obtain:

D±m,f (M) =
{
D ∈ D±(M) | f(D) = 1 ∧ @D′ ∈ D±(M) :

(
D′ ⊂ D ∧ f(D′) = 1

)}
(3)

Example 7. Consider the MCS of Example 6 and the diagnosesD = ({r2} , ∅) andD′ = (∅, {r2}),
where the contribution of Prof. K is either enforced or forbidden. For both cases, the authorship
information conveyed by r3 is wrong. Using a filter, we can declare diagnoses undesired if they
modify r2 without modifying r3 accordingly as follows:

f(D1, D2) =


0 if r3 ∈ D1, r2 /∈ D1 or r3 /∈ D1, r2 ∈ D1;

0 if r3 ∈ D2, r2 /∈ D2 or r3 /∈ D2, r2 ∈ D2;

1 otherwise.

In particular it holds that f(D) = 0 = f(D′).

Note that filters generalize diagnoses with protected bridge rules. Indeed, let M be an MCS
with protected bridge rules brP . Then we construct a filter f brP in the following way:

f brP (D1, D2) =

{
0 if ∃r ∈ brP : r ∈ (D1 ∪D2);

1 otherwise.

It is easy to see that D ∈ D±(M, brP ) holds iff f brP (D) = 1. From the definition of f brP one
can also see that diagnoses with protected bridge rules are some kind of modular filter, where each
bridge rule of a diagnosis D can be checked independently of the other bridge rules.

It also holds that every filtered diagnosis is an ordinary diagnosis, but minimal filtered diagnoses
are not necessarily minimal diagnoses. Thus an analog to Proposition 1 does not hold, as shown by
the following example.
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Example 8. Reconsider the MCS M and the filter f of Example 7. The set of minimal filtered
diagnoses is as follows: D±m,f (M) =

{
({r1}, ∅), (∅, {r1}), ({r2, r3}, ∅), (∅, {r2, r3})

}
. While

({r2, r3}, ∅) is not in D±m(M), it is a subset-minimal diagnosis respecting the condition expressed
by the filter f . Intuitively, the latter diagnoses modify the authorship information in a consistent
way and are minimal in the sense that no unnecessary modification is applied.

One could argue whether minimal filtered diagnoses should select from the set of regular mini-
mal diagnoses only those which pass the filter, i.e., select the set {D ∈ D±m(M) | f(D) = 1}. This
looks appealing, but no minimal diagnosis may pass the filter while (non-minimal) diagnoses do.
The resulting set of filtered minimal diagnoses then is empty while there are useful diagnoses that
satisfy the filter and do not incur unnecessary modifications other than to satisfy the filter condition
and to make the MCS consistent. Therefore D±m,f consists of the latter diagnoses, and thus seems
to be more appropriate.

3.2 Preferences on Diagnoses

To compare diagnoses and select the most appealing one(s), we use preferences. In the spirit of
MCS we also want this approach to be open to any kind of formalism for specifying preference. In
general, preference is just a binary order relation on diagnoses. To avoid counter-intuitive results
like A being preferred over B and B being preferred over C, but A not being preferred over C, we
require that preferences are transitive. Since virtually every other preference formalism yields an
order relation, we first introduce the general formalization and later show how the specific formalism
of CP-nets fits into our approach.

Definition 9. A preference order over diagnoses for an MCS M is a transitive and reflexive binary
relation � on 2br(M) × 2br(M); for D,D′ ∈ 2br(M) × 2br(M) we say that D is preferred to D′ if
D � D′.

Given a preference order �, we denote by ≺ the irreflexive and anti-symmetric version of �,
i.e., D ≺ D′ holds iff D � D′ and D′ 6� D hold. Using a preference order �, we now define
what constitutes a most preferred diagnosis. The intuition is that such a diagnosis incurs a minimal
set of modifications and no other diagnosis exists that is strictly more preferred. We first introduce
�-preferred diagnoses, which are those diagnoses such that no other diagnosis is strictly more pre-
ferred. The most preferred diagnoses then are the subset-minimal ones from the set of �-preferred
diagnoses.

Definition 10. LetM be an inconsistent MCS and letD ∈ D±(M). ThenD is called�-preferred if
for all D′ ∈ 2br(M)× 2br(M) with D′ ≺ D it holds that D′ /∈ D±(M). Furthermore, D is minimal
�-preferred if D is subset-minimal among all �-preferred diagnoses. The set of all �-preferred
diagnoses is denoted by D±�(M) and the set of all minimal �-preferred by D±m,�(M).

Observe that we do not require that � is acyclic and by relying on ≺ we consider all diagnoses
in a cycle to be equally preferred.

Example 9. Consider the hospital MCS M of Example 3 again, where bridge rules r1 and r2

transport information regarding the patient’s health and bridge rules r3, r4, and r5 cover the infor-
mation flow for billing. If we consider it most important that the information flow regarding health
information is changed as little as possible, a preference order � as follows might be used:

(D1, D2) � (D′1, D
′
2) iff {r1, r2} ∩ (D1 ∪D2) ⊆ (D′1 ∪D′2) ∩ {r1, r2}
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We observe that following this definition, the following preferences (and several more) hold:

({r4, r5}, ∅) � ({r1}, ∅) ({r4}, ∅) � ({r1}, ∅) ({r5}, ∅) � ({r1}, ∅)
({r4, r5}, ∅) � (∅, {r2}) ({r4}, ∅) � (∅, {r2}) ({r5}, ∅) � (∅, {r2})

({r4}, ∅) � ({r5}, ∅) ({r5}, ∅) � ({r4}, ∅)

Note that � indeed yields cyclic preferences among those candidate diagnoses that are incompara-
ble; in particular ({r4}, ∅) and ({r5}, ∅). We have that

D±�(M) = {(D1, D2) | D1, D2 ⊆ {r3, r4, r5} and r4 ∈ D1 \D2 or r5 ∈ D1 \D2}

Note that ({r5}, ∅), ({r4}, ∅), and ({r4, r5}, ∅) are all in D±�(M). Selecting the subset-minimal
diagnoses from D±�(M) we obtain D±m,�(M) = {({r5}, ∅), ({r4}, ∅)}. This agrees with our intu-
ition that a minimal set of modifications should be applied and we favor to modify bridge rules for
billing information rather than modifying health-related bridge rules.

For use in the following sections, we also state the sets D±�(M) and D±m,�(M) explicitly.

D±�(M) = {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬(D′ � D ∧D′ 6= D ∧D 6� D′)} (4)

D±m,�(M) = {D ∈ D±�(M) | ∀D′ ∈ D±�(M) : D′ ⊆ D ⇒ D′ = D}

In Section 5 we show how preferences can be realized in general.

3.2.1 SAMPLE INSTANTIATIONS OF PREFERENCE ORDERS: CP-NETS

We now briefly demonstrate how our notion of preference can capture some practical preference
formalisms. Conditional preference networks (CP-nets) (Boutilier et al., 2004) are a widespread
preference formalism with many appealing features. CP-nets capture a natural class of preference
statements like “If my new car is from Japan, I prefer hybrid over diesel engine, assuming all else
is equal”. We briefly present the essential concepts of CP-nets in compact form to show their flavor.
A CP-net has a set of outcome variables where each variable ranges over some domain. In our
example, we have the variables “origin country” and “engine type” with origin country including
“Japan”and engine type including “diesel” and “hybrid”. A distinguishing feature of CP-nets is
the dependency of preferences, e.g., the above preference on the engine type only upholds if the
outcome of the origin country is “Japan”. This dependency is expressed in CP-nets as a directed
graph N = (V,E) on outcome variables V . Each outcome variable v ∈ V is associated with a set
dom(v) of possible outcomes. A total outcome o assigns each v ∈ V a value from dom(v), denoted
by ov; for a subset V ′ ⊆ V of the variables, oV ′ denotes the restriction of o to V ′ (note that o = oV ).
Furthermore, each variable v has an associated conditional-preference table cpt(v) which contains
a total preference order over dom(v) for every possible outcome of the parent variables Pa(v) on
which v depends, i.e., Pa(v) = {v′ | (v′, v) ∈ E}. A preference order � over total outcomes
satisfies N , if for all total outcomes o, o′ and all variables v ∈ V it holds that oPa(v) = o′Pa(v)

implies that o � o′ holds iff ov is preferred to o′v in cpt(v). Informally, � satisfies N if it agrees
with all conditional-preference tables of N ; for formal details and further background see the work
of Boutilier et al. (2004) and Allen (2016).

Note that dependencies in CP-nets are natural to humans as CP-nets have successfully been used
for preference elicitation, e.g. by Domshlak et al. (2001). CP-nets also allow one to compare total
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outcomes, so we may ask whether an outcome o is preferred to an outcome o′ under all preferences
that satisfy N . If this is the case, then o is said to dominate o′, written as N |= o - o′ (entailment).

CP-nets may be used to specify preference among diagnoses of an MCS M as follows: each
bridge rule r ∈ br(M) is assigned two outcome variables V r

1 and V r
2 , where the domain of V r

1 is
{inD1 ,not inD1} and the domain of V r

2 is {inD2 ,not inD2}. We call any CP-net N = (V,E)
with V = {V r

1 , V
r

2 | r ∈ br(M)} and domains as before fully compatible to M , or just a fully
compatible CP-net. Every total outcome of such a CP-net corresponds one-to-one to a candidate
diagnosis of M .

Definition 11. Given an MCS M and a CP-net N that is fully compatible to M , we say a diagnosis
D ∈ D±(M) is N -preferred iff there exists no D′ ∈ D±(M) such that N |= D′ - D holds and
N |= D - D′ does not hold. Let DN (M) denote the set of all N -preferred diagnoses of M . Then
the setD±ird (M,N) of irredundantN -preferred diagnoses, consists of the subset-minimal diagnoses
of DN (M). Formally, D±ird (M,N) = {D ∈ DN (M) | ∀D′ ∈ DN (M) : D′ ⊆ D ⇒ D = D′}.

Observe that given a CP-net N that is compatible to the MCS M , we can readily define a
preference order �N that is equivalent to N as follows: for all D,D′ ∈ 2br(M) × 2br(M) it holds
that D �N D′ ⇔ N |= D - D′. Since the entailment of the CP-net is transitive and reflexive, �N
is transitive and reflexive, therefore �N is a preference relation in the sense of Definition 9. Hence,
we can use �N and the notion of most preferred diagnosis to select the irredundant N -preferred
diagnoses, formally:

Proposition 2. Given a CP-net N compatible to an MCS M , let D �N D′ hold iff N |= D - D′

holds. Then DN (M) = D±�N (M) and D±
m,�N (M) = D±ird (M,N).

Deciding whether a global outcome o is preferred over o′ by a given CP-net N , i.e., deciding
N |= o′ - o, is no easy task in general. In the work of Goldsmith et al. (2008) it is shown that
this task is PSPACE-complete. Restricting the CP-net, however, decreases the computational
complexity, e.g., the same decision problem is NP-complete for binary-valued directed-path singly
connected CP-nets and even in quadratic time for binary-valued tree-structured CP-nets as shown
by Boutilier et al. (2004). Notice that fully-compatible CP-nets are binary-valued.

4. Meta-Reasoning for Diagnosis

To realize filters and preference orders inside an MCS, some MCS context must be able to reason
on diagnoses of the MCS. We achieve this by a rewriting technique, transforming an MCS M into
an extended MCS M ′, where certain new context(s) can do meta-reasoning on diagnoses of the
original MCS M . The underlying idea here is that a diagnosis D applied to M ′ has the same effects
as if D would be applied to M , but in M ′ there are additional contexts that observe the behavior
of the bridge rules in M to reason about the observed diagnosis D. A significant advantage of this
approach is that the observation contexts may use any abstract logic for reasoning about the observed
diagnoses. Thus our approach can capture a wide range of formalisms to specify preferences by
filters or preference orders, and it allows the creator of an MCS to use whichever formalism she or
he sees to fit best. Furthermore, the rewriting is not intrusive, since it only requires that each rule is
duplicated and one additional positive literal added in it.

The transformation given in this section realizes filters in general by using diagnoses with pro-
tected bridge rules. Preferences also require some additional notions of diagnoses that allow to
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prioritize some bridge rules. This prioritization in principle establishes a lexicographic order on
candidate diagnoses. We present in fact two possible ways to realize general preferences. The first
adds exponentially many bridge rules, while the second adds only linearly many bridge rules but
comes at the cost of duplicating the contexts of the original MCS.

In the following section, we present a uniform encoding for meta-reasoning on diagnoses, which
serves as the basis for realizing filters and preferences as well as for proving correctness.

4.1 Injecting Diagnoses

We can encode the modifications of a diagnosis directly in an MCS such that observations are per-
fect, which means that the original system is not just observed but actively modified. Conceptually,
given an MCS M = (C1, . . . , Cn) all its bridge rules are rewritten and protected such that a di-
agnosis is applied only to the bridge rules of an additional context Cn+1. This context Cn+1 then
is able to definitely observe the modifications and to exhibit this observation to all other contexts
via its acceptable belief set. The bridge rules of the original system are rewritten to consider the
belief set of Cn+1. So they either behave like being removed or like being made condition-free,
depending on what Cn+1 believes. Furthermore, the definition of the observation context Cn+1 is
generic and only specifies some necessary properties. This provides the user with the possibility to
instantiate it with a logic and a knowledge base of her choice, which is in line with the spirit of the
MCS framework.

To encode (observe) diagnoses, the context Cn+1 needs bridge rules to which a diagnosis can
be applied and which can be observed reliably. To this end, for every r ∈ br(M) we have the
following two bridge rules to encode/observe whether r is removed or made unconditional (i.e.,
condition-free).

d1(r) : (n+1 : not removedr)← >. (5)

d2(r) : (n+1 : uncondr)← ⊥. (6)
For a set R ⊆ br(M), let d1(R) = {d1(r) | r ∈ R} and d2(R) = {d2(r) | r ∈ R}.

Since the meta-reasoning encoding is used as uniform foundation for filters and preferences,
we introduce a property θ that describes the additional behavior of the context Cn+1. This allows
us to later specify the required behavior for both filters and preferences. The preference encoding
requires further bridge rules for mapping preferences to bridge rules; this set of additional bridge
rules is calledKp, so we obtain an MCSMmr(θ,Kp) as the meta-reasoning encoding ofM as follows.

Definition 12. Let M = (C1, . . . , Cn) be an MCS, let Kp be a set of bridge rules such that the
following holds for all r ∈ Kp: ϕ (r) /∈ {not removedr′ , uncondr′ | r′ ∈ br(M)}, body(r) =
{⊥}, and Ch (r) = n+1. Furthermore, let θ be a ternary property over 2br(M) × 2br(M) × 2Kp .
Then, the MCS Mmr(θ,Kp) = (C ′1, . . . , C

′
n, Cn+1) is a meta-reasoning encoding if the following

holds:

(i) for every Ci = (Li, kbi, br i) with 1 ≤ i ≤ n it holds that C ′i = (Li, kbi, br ′i) where br ′i
contains for every r ∈ br i of form (2) the following two bridge rules:

(i : s)←(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm),

not (n+1 : removedr). (7)

(i : s)←(n+1 : uncondr). (8)
(ii) Cn+1 = (Ln+1, kbn+1, brn+1) is an arbitrary context such that:

(a) the logic Ln+1 = (KBn+1,BSn+1,ACCn+1) is an arbitrary logic where
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• KBn+1 fulfills that A ⊆ {uncondr,not removedr | r ∈ br(M)} ∪ {ϕ(r) | r ∈
Kp}
implies that there exists a knowledge-base kb ∈ KBn+1 with A ⊆ kb.
• BSn+1 fulfills that B ⊆ {removedr, uncondr | r ∈ br(M)}

implies that there exists a belief set bs ∈ BSn+1 with B ⊆ bs .
• ACCn+1 is such that some kb ∈ KBn+1 fulfills the property (∗) in item (d) below.

(b) the set of bridge rules is brn+1 = d1(br(M)) ∪ d2(br(M)) ∪ Kp and the only rules
with head formulas not removedr and uncondr are of form (5) and (6).

(c) the knowledge base kbn+1 ∈ KBn+1 is arbitrary but fulfills the following property:

(∗) for every H ⊆ {ϕ (r) | r ∈ brn+1} it holds that

Sn+1 ∈ ACCn+1(kbn+1 ∪H) iff θ(R1, R2, R3) is true

where R1 = {r ∈ br(M) | not removedr /∈ H},
R2 = {r ∈ br(M) | uncondr ∈ H},
R3 = {r ∈ Kp | ϕ (r) ∈ H}, and

Sn+1 = {removedr | r ∈ R1} ∪ {uncondr | r ∈ R2}.

The protected bridge rules brP of Mmr(θ,Kp) are all rules of form (7) and (8).

The bridge rules of form (7) and (8) for a bridge rule r ∈ br(M) either behave like removed
or like made unconditional, depending on what Cn+1 believes. The bridge rule (7) behaves like r
being removed by a diagnosis if Cn+1 believes it is removed (i.e., it does not fire even if the original
body of r is satisfied). The bridge rule (8) behaves like r being made condition-free by a diagnosis
if Cn+1 believes it is condition-free (i.e., it fires regardless of whether the original body of r is
satisfied).

The property (∗) guarantees that (i) the beliefs of Cn+1 coincide with the diagnosis encoded by
bridge bridge rules of form (5) and (6), and (ii) that there is an acceptable belief set whenever θ
holds. This definition of Mmr(θ,Kp) is thus generic and the Propositions 3-5 below are very gen-
eral. The advantage of this approach is that we have a common foundation for encoding filters and
preferences, such that several propositions hold for both encodings. Furthermore, as shown later
in detail, the property θ to realize a filter f amounts to simply stating that θ(D1, D2, ∅) holds iff
f(D1, D2) = 1, while θ and Kp suffice to capture preferences. The context Cn+1 is similar to an
interface in programming, which defines certain properties but is open to an arbitrary implementa-
tion. A concrete realization of Cn+1 using the logic Lasp

Σ for Answer-Set Programming is illustrated
in Example 19 in Appendix B. Specifically, there the rules (22)–(34) “implement the interface”.

Example 10. Recall the MCS M = (C1, C2) of Example 6. Let Kp = ∅ and θ(D1, D2, ∅) always
hold. Then the meta-reasoning encoding Mmr(θ,Kp) = (C ′1, C

′
2, C3) is such that the contexts C1,

C2, equal modulo bridge rules the contexts C ′1, C ′2, respectively. Recall that the bridge rules of M
are:

r1 : (1 : improve)← not (2 : good).

r2 : (2 : coauthored)← (1 : contribute).

r3 : (2 : name K )← (1 : contribute).
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Prof. KC1 Dr. J C2

Observer/EncoderC3

r′1

r′′1

d1(r1)

d2(r1)

Figure 3: Contexts of the meta-reasoning encoding Mmr(θ,Kp) = (C1, C2, C3) from Example 10.
Only bridge rules r′1, r

′′
1 , d1(r1), d2(r1) of Mmr(θ,Kp) that stem from bridge rule r1 ∈

br(M) are shown.

The bridge rules of Mmr(θ,Kp) are then as follows:

r′1 : (1 : improve)← not (2 : good),not (3 : removedr1).

r′′1 : (1 : improve)← (3 : uncondr1).

r′2 (2 : coauthored)← (1 : contribute),not (3 : removedr2).

r′′2 (2 : coauthored)← (3 : uncondr2).

r′3 (2 : name K )← (1 : contribute),not (3 : removedr3).

r′′3 (2 : name K )← (3 : uncondr3).

d1(ri) : (3 : not removedri)← >. i ∈ {1, 2, 3}
d2(ri) : (3 : uncondri)← ⊥. i ∈ {1, 2, 3}

Notice that only the last six bridge rules ofMmr(θ,Kp) are not protected, i.e., the first six bridge rules
are guaranteed not to be modified in a diagnosis with protected bridge rules. Figure 3 depicts the
contexts and, for better visibility, only those bridge rules of Mmr(θ,Kp) that stem from r1 ∈ br(M)
are shown.

Note that the observation context of a meta-reasoning encoding only knows that some bridge
rules exist but it has no knowledge of the actual information exchange or the contents of any of the
other contexts. Since the meta-reasoning encoding is the basis for all later encodings, it provides
us with a mechanism to determine preferred solutions for both preference orders and filters that
maintains privacy and information hiding of the contexts. For filters that are not inherently central-
ized, the realization even allows for finding preferred solutions in a decentralized, localized manner
(cf. Section 7.1 on decomposing the central observation contexts). Thus we mostly preserve key
properties of MCS also for inconsistency assessment and selection of preferred diagnoses.

Def. 12 forbids the observation context Cn+1 to exhibit any belief not of the form removedr
or uncondr for r ∈ br(M). In practice however, auxiliary beliefs are useful when realizing a
preference or filter. Since the applicability of bridge rules does not depend on beliefs that do not
occur in any bridge rule, this restriction can be lifted to allow for auxiliary beliefs in Cn+1.
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In the remainder of this section, we show some properties of Mmr(θ,Kp), which are the basis
for proving the correctness of the subsequent realizations of filters and preferences. First, there is a
one-to-one correspondence between diagnoses of M and diagnoses of Mmr(θ,Kp).

Proposition 3. Let M be an MCS and Mmr(θ,Kp) be a meta-reasoning encoding with protected
bridge rules brP , and let D1, D2 ⊆ br(M), K ⊆ Kp. Then,

(1) let S = (S1, . . . , Sn) be a belief state of M and let S′ = (S1, . . . , Sn, Sn+1) where Sn+1 =
{removedr | r ∈ D1}∪{uncondr | r ∈ D2}. Then, S ∈ EQ(M [D1, D2]) and θ(D1, D2,K)
holds if and only if S′ ∈ EQ(Mmr(θ,Kp)[d1(D1), d2(D2) ∪ K]) holds.

(2) (d1(D1), d2(D2) ∪K) ∈ D±(Mmr(θ,Kp), brP ) holds if and only if (D1, D2) ∈ D±(M) and
θ(D1, D2,K) hold.

From this, the following correspondence between minimal θ-satisfying diagnoses of M and
minimal diagnoses of Mmr(θ,Kp) holds.

Proposition 4. LetMmr(θ,Kp) be a meta-reasoning encoding of an MCSM . Then the set of minimal
θ-satisfying diagnoses with protected bridge rules brP of Mmr(θ,Kp) is

D±m(Mmr(θ,Kp), brP ) ={
(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exist no (D′1, D
′
2) ∈ D±(M),K′ ⊆ Kp such that

(D′1, D
′
2 ∪ K′) ⊂ (D1, D2 ∪ K) and θ(D′1, D

′
2,K′) holds

}
.

This result can be strengthened given that θ obeys some property. We say that θ is func-
tional (or a function), if for every D1, D2 ⊆ br(M) there exists at most one K ⊆ Kp such
that θ(D1, D2,K) holds. We say that θ is functional increasing if K ⊆ K′ holds whenever θ is
functional, θ(D1, D2,K), θ(D′1, D

′
2,K′), and (D1, D2) ⊆ (D′1, D

′
2), where D1, D2, D

′
1, D

′
2 ⊆

br(M),K,K′ ⊆ Kp.

Proposition 5. LetMmr(θ,Kp) be a meta-reasoning encoding of an MCSM such that θ is functional
increasing. Then, the set of minimal θ-satisfying diagnoses with protected bridge rules brP of
Mmr(θ,Kp) is

D±m(Mmr(θ,Kp), brP ) ={
(d1(D1), d2(D2)∪K) | (D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2)⊂ (D1, D2) and θ(D′1, D

′
2,K′) holds for some K,K′⊆Kp

}
.

Given these relationships between diagnoses of M and Mmr(θ,Kp) with respect to property θ,
we show in the next section several ways how Mmr(θ,Kp) can be used to realize preferences.

5. Preference Realization

In the previous section we introduced a transformation that enables meta-reasoning on diagnoses.
In this section, we first present how filters can be realized and then proceed to preferences, where
we first introduce a plain encoding using exponentially many bridge rules to realize total prefer-
ence orders and then introduce an encoding that allows to realize arbitrary preference orders at the
expense of cloning the contexts of the original MCS.

365



EITER & WEINZIERL

5.1 Filter Encoding

We use the meta-reasoning encoding to realize filters, by simply requiring that the observation con-
text becomes inconsistent if the observed diagnosis does not pass the filter, i.e., we use Mmr(θ,Kp)

where K = ∅ and θ is such that θ(D1, D2,K) holds if and only if f(D1, D2) = 1. Since no further
bridge rules are needed to realize filtered diagnoses, it is sufficient to pick Kp = ∅.

Definition 13. Let M be an MCS and let f be a filter. Let Kp = ∅ and let θ(D1, D2, ∅) hold iff
f(D1, D2) = 1. Then Mmr(θ,Kp) is the filter-encoding of M wrt. f , which we also denote by Mf .

Example 11. Reconsider the MCS M = (C1, C2) of Example 7 where two scientists write a paper
and diagnoses are to be filtered by a filter f if the authorship information is modified by a diagnosis
in an incoherent way. The filter f (see Example 7) is defined as follows:

f(D1, D2) =


0 if r3 ∈ D1, r2 /∈ D1 or r3 /∈ D1, r2 ∈ D1

0 if r3 ∈ D2, r2 /∈ D2 or r3 /∈ D2, r2 ∈ D2

1 otherwise

The resulting filter encoding Mf is the MCS Mmr(θ,Kp) = (C ′1, C
′
2, C3), which has the same

contexts and bridge rules as the MCS of Example 10. It only differs in the contents of the ob-
servation/encoding context C3 which now realizes the filter f . We use ASP again for the logic of
C3 = (Lasp

Σ , kb3, br3).
Recall that the knowledge-base formulas added by bridge rules to C3 are either of the form

uncondr or not removedr and this information has to be exposed accordingly in the accepted
belief set. Also remember that the definition of the meta-reasoning encoding requires that every
accepted belief set only consists of beliefs in {removedr, uncondr | r ∈ br(M)}, but since no
other bridge rule of Mmr(θ,Kp) uses any other belief, we may allow further beliefs in the accepted
belief set, i.e., our ASP program may use additional atoms.

The knowledge base kb3 of C3 then is:

kb3 = { removedr1 ← notnot removedr1 . ⊥ ← removedr3 , not removedr2 .

removedr2 ← notnot removedr2 . ⊥ ← not removedr3 , removedr2 .

removedr3 ← notnot removedr3 . ⊥ ← uncondr3 , not uncondr2 .

⊥ ← not uncondr3 , uncondr2 . }

The first three rules of kb3 ensure that the removal information is correct while nothing is needed to
ensure that the information about condition-free bridge rules is exposed (if bridge rule ri is made
unconditional, then the fact uncondri is added to kb3 by the bridge rule d2(ri) ∈ br3(Mmr(θ,Kp))
being applicable and hence uncondri is also present in the answer set and thus in the belief set of
C3.

The four constraints of kb3 finally encode the filter condition and they ensure that the context
has no acceptable belief set if the corresponding diagnoses are applied.

Observe that the definition of θ uses the notion of f , which is an abstraction / generalization of
some desired actual behavior. Instead of f , it is possible to use the desired actual behavior directly
to realize the context Cn+1 of Mmr(θ,Kp), i.e., for a concrete use case where some logic is used to
describe which diagnoses should be filtered out, it is not really necessary to first abstract the concrete

366



PREFERENCE-BASED INCONSISTENCY MANAGEMENT IN MULTI-CONTEXT SYSTEMS

case to a filter f , build θ accordingly and then derive a concrete instantiation of Cn+1. Rather it is
sufficient to take the definition of the meta-reasoning encoding and interpret it as the definition of
the interfacing between the logic that does the filtering and the rest of the MCS framework. The
reason why we introduced filters in general lies in the fact that this allows us to prove that all such
filterings can be realized correctly. The following theorem now shows that diagnoses with protected
bridge rules of Mf indeed correspond one-to-one to filtered diagnoses of M .

Theorem 1. Let M be an MCS, let f be a filter and let Mf be the corresponding filter-encoding.
Then, D±m,f (M) = {(D1, D2) | (d1(D1), d2(D2)) ∈ D±m(Mf , brP )}.

To obtain all minimal-filtered diagnoses of an MCSM wrt. the filter f , it is therefore sufficient to
compute all subset-minimal diagnoses (with protected bridge rules) of the MCS Mf = Mmr(θ,Kp).
Note that this encoding does not come with increased computational cost, sinceM andMf have the
same number of bridge rules that possibly occur in a diagnosis with protected bridge rules. Consider
Mf and the respective bridge rules, i.e., the set br(Mf ) \ brP = d1(br(M)) ∪ d2(br(M)): since
body(r) = {>} for r ∈ d1(br(M)) and body(r) = {⊥} for r ∈ d2(br(M)), it holds for every
(R1, R2) ∈ D±m(Mf , brP ) that r ∈ R1 implies r ∈ d1(br(M)) and r ∈ R2 implies r ∈ d2(br(M))
(this follows from Lemma 8 in Appendix A.2). Hence, there are 2|d1(br(M))| × 2|d2(br(M))| possi-
bly relevant diagnoses for Mf while there are 2|br(M)| × 2|br(M)| possible diagnoses for M ; since
|d1(br(M))| = |d2(br(M))| = |br(M)|, the candidate space, i.e., the number of candidate di-
agnoses, for deciding whether a minimal-filtered diagnosis exists for M has the same size as the
candidate space for deciding whether a minimal diagnosis with protected bridge rules exists for
Mf .

5.2 Plain-Preference Encoding

We now show how to use the meta-reasoning encoding Mmr(θ,Kp) for realizing preference orders.
The setKp plays a crucial role, since it is used to map a given preference order on diagnoses to the⊆
relation on Kp. This allows us to select minimal �-preferred diagnoses by considering ⊆-minimal
diagnoses of Mmr(θ,Kp). Since the ⊆-minimality on Kp should take precedence over the remaining
modified bridge rules of Mmr(θ,Kp), we introduce a lexicographic order on bridge rules in which
the latter are after those of Kp. As we show in Section 6, the complexity of identifying a diagnosis
with respect to prioritized bridge rules Kp is not higher than identifying a minimal diagnosis.

In the following, we present a plain and simple encoding, which comes at the cost of Kp being
exponentially larger than br(M), i.e., Mmr(θ,Kp) contains exponentially many more bridge rules
than M . We also prove that the approach is correct for total preference orders. Before presenting
the plain encoding, first we introduce the notion of a prioritized-minimal diagnosis, and second we
show how a total order can be mapped to the ⊆ relation.

In the following, we write (D1, D2) ⊆brH (D′1, D
′
2) as shorthand for (D1 ∩ brH , D2 ∩ brH) ⊆

(D′1 ∩ brH , D′2 ∩ brH), i.e., we denote by ⊆brH the restriction of ⊆ to the set brH ; furthermore, we
write =brH for an analogous restriction on =.

To realize a total preference order, the following definition is sufficient where we select from
the set of minimal diagnoses with protected bridge rules those that are minimal with respect to
the prioritized bridge rules. The bridge rules that are marked as prioritized take precedence for
minimality. A prioritized-minimal diagnosis is subset-minimal with respect to prioritized bridge
rules (regardless of minimality of the remaining bridge rules).
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Definition 14. Let M be an MCS with bridge rules br(M), protected rules brP ⊆ br(M), and
prioritized rules brH ⊆ br(M). The set of prioritized-minimal diagnoses is D±(M, brP , brH) ={
D ∈ D±m(M, brP )

∣∣∀D′ ∈ D±m(M, brP ) : D′ ⊆brH D ⇒ D′ =brH D
}

.

We now show how an arbitrary order relation over a pair of sets may be mapped to the ⊆-
relation on an exponentially larger set, i.e., we map � on the diagnoses of an MCS M , to another
exponentially larger set.

Definition 15. Let� be a preference relation on 2br(M)×2br(M) and let g : 2br(M)×2br(M) → Kp
be a bijective mapping whereKp is arbitrary. Then, the subset-mapping mapg� : 2br(M)×2br(M) →
2Kp is defined as follows. For every (D1, D2) ∈ 2br(M) × 2br(M):

mapg�(D1, D2) =
{
K ∈ Kp | K=g(D′1, D

′
2) for some (D′1, D

′
2) � (D1, D2)

}
.

Observe that mapg�(D1, D2) collects g(D′1, D
′
2) of all (D′1, D

′
2) “below” (D1, D2).

The following lemma shows that the subset-mapping correctly maps a preference relation on
diagnoses to the subset-relation on an exponentially larger set. This allows to decide whether a
diagnosis is more preferred than another solely based on subset relationship.

Lemma 1. Let � be a preference on candidate diagnoses of an MCS M , and let g be a bijective
mapping g : 2br(M) × 2br(M) → Kp for any set Kp. Then, for any (D1, D2), (D′1, D

′
2) ∈ 2br(M) ×

2br(M) it holds that (D1, D2) � (D′1, D
′
2) iff mapg�(D1, D2) ⊆ mapg�(D′1, D

′
2).

We now use mapg� to map the preference of a total order � to the set Kp which occurs in the
meta-reasoning transformation Mmr(θ,Kp). To that end, we choose θ(D1, D2,K) such that it holds
iff mapg�(D1, D2) = K, for K ⊆ Kp. By that, every diagnosis of Mmr(θ,Kp) with protected bridge
rules (d1(D1), d2(D2) ∪ K) contains the preference � encoded in K. Selecting a diagnosis of
Mmr(θ,Kp) where K is minimal then selects a preferred diagnosis according to �.

Definition 16. Let M be an MCS and let � be a preference order over diagnoses of M . Further-
more, let

Kp = {(n+1 : diagD1,D2
)← ⊥. | D1, D2 ⊆ br(M)} (9)

and let g : 2br(M) × 2br(M) → Kp be a bijective function such that g(D1, D2) = (n+1 :
diagD1,D2

) ← ⊥. for all D1, D2 ⊆ br(M). Let θ(D1, D2,K) hold iff mapg�(D1, D2) = K.
Then the MCSMmr(θ,Kp) is called the plain encoding ofM wrt.�, which we also denote byMpl�;
all bridge rules of Kp are prioritized, i.e., brH = Kp.

Note that since mapg� is a function, also θ is equivalent to a function 2br(M) × 2br(M) → Kp.

Example 12. We consider the hospital MCS M of Example 3 again using a preference order on
diagnoses similar to the one of Example 9, i.e., we prefer changing bridge rules regarding health,
r1, r2, as little as possible. To make the preference total, we use cardinality-minimality, i.e.,

(D1, D2) � (D′1, D
′
2) iff

∣∣{r1, r2} ∩ (D1 ∪D2)
∣∣ ≤ ∣∣(D′1 ∪D′2) ∩ {r1, r2}

∣∣.
The resulting MCS Mmr(θ,Kp) is outlined in Figure 4, where only bridge rules stemming from

r5 of br(M) and some of the bridge rules of the observation context C4 are indicated. Note that
br4(Mmr(θ,Kp)) contains for every possible diagnosis of M a distinguished bridge rule. For C4 =
(Lasp

Σ , kb4, br4), we use ASP again to show a possible realization; kb4 consists of the rules:
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Patient dataC1 Medication C2

Billing C3

Observer/EncoderC4

r1

r2 r3r4

r′5

r′′5

d1(r5)

d2(r5)diag∅,∅
diag{r1},∅

diag{r1,r2},∅
. . .

. . .

. . .

diagbr(M),br(M)

Figure 4: Contexts and some bridge rules of the plain encoding Mpl� = (C1, C2, C3, C4) of the
hospital MCS wrt.� from Example 12. For illustration purposes, only bridge rules stem-
ming from r5 and some from Kp are shown; dashed lines indicate bridge rules r1, . . . , r4

from M whose corresponding bridge rules in Mpl� are not shown.

removedr ← notnot removedr. r ∈ br(M)
⊥ ← cur diagD1,D2

, not diagD1,D2
. D1, D2 ⊆ br(M),

cur diagD′1,D′2 ← cur diagD1,D2
. (D′1, D

′
2) � (D1, D2),

cur diagD1,D2
← removedr1 , . . . , removedrk , uncondr′1 , . . . , uncondr′m .

D1, D2 ⊆ br(M), D1 = {r1, . . . , rk}, D2 = {r′1, . . . , r′m}.

Intuitively, the rules of the first line ensure that diagnosis observation is exposed correctly in an ac-
cepted belief set of C4; the constraints following ensure the presence of condition-free bridge rules.
Rules of the third line guarantee that all bridge rules corresponding to more-preferred diagnoses
also need to be condition-free; under ASP semantics, these rules effect mapg�(D1, D2). Finally, the
rules of the last line recognize one of the exponentially many candidate diagnoses.

The next theorem shows the relation between minimal �-preferred diagnoses of M wrt. a total
preference � and prioritized-minimal diagnoses of Mpl�. Observe that mapg� is injective since
� is reflexive, thus mapg�(D1, D2) contains g(D1, D2), which by g being a bijection is different
for every candidate diagnosis (D1, D2). Therefore, mapg� is bijective on its range and it allows
to establish a one-to-one relation between minimal �-preferred diagnoses of M and prioritized-
minimal ones ofMpl�. Intuitively, this shows that for a total preference order, the set of prioritized-
minimal diagnoses of the plain encoding ofM wrt.� can be used to select the minimal�-preferred
diagnoses of M .
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Theorem 2. For every MCS M and total preference � on its diagnoses, D±(Mpl�, brP , brH) =
{(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±m,�(M),mapg�(D1, D2) = K}.

To select minimal�-preferred diagnoses based on an arbitrary preference order, another encod-
ing can be utilized, which we describe next.

5.3 Clone-Preference Encoding

The clone encoding requires that the original MCS M is cloned, but comes at the advantage of
only requiring linearly many bridge rules, specifically it holds that |Kp| = 4|br(M)| + 1. First
an MCS 2M is built that consists of two independent copies of M , and then the meta-reasoning
encoding is applied on 2M , i.e., the resulting MCS is (2M)mr(θ,Kp). We show that the minimal
�-preferred diagnoses can be selected from (2M)mr(θ,Kp) using a slightly more involved diagnosis
notion with prioritized bridge rules. The complexity of selecting such diagnoses increases, but it is
still worst-case optimal as shown later.

The basic idea of the clone encoding is that the original MCS is duplicated such that the ob-
servation context sees two diagnoses of the original MCS at the same time and is able to compare
them. Intuitively, if we combine two MCS M and M ′ into a single one M ′′, then every diagnosis
of the combined MCS M ′′ is the combination of a diagnosis of M with a diagnosis of M ′. Estab-
lishing this technically requires some care, since one needs to account for the fact that contexts are
identified by their position: Hence, M ′′ cannot simply contain the bridge rules of M and M ′. We
thus introduce context shifting and build an operator ⊗ to combine two MCS. We then show some
general properties of the operator, and finally give the clone encoding, which adds a certain obser-
vation context to the combination M ⊗M of the MCS M whose minimal �-preferred diagnoses
we are interested in.

For shifting contexts, we use a permutation I : N → N, i.e., I is a bijective mapping. Given a
bridge rule r of form (2), then I(r) is the bridge rule

(I(k) : s)← (I(c1) : p1), . . . , (I(cj) : pj),not (I(cj+1) : pj+1), . . . ,not (I(cm) : pm);

furthermore, for a set R of bridge rules we have I(R) = {I(r) | r ∈ R} and for a context Ci =
(Li, kbi, br i) we have I(Ci) = (Li, kbi, I(br i)). Given an MCSM = (C1, . . . , Cn), a permutation
I is compatible with M if I(x) ≤ n holds for all x ≤ n, i.e., I is a permutation on C (M); the
“shuffled” version of M wrt. a compatible I then is I(M) = (I(CI−1(1)), . . . , I(CI−1(n))). Given
a belief state S = (S1, . . . , Sn) we have I(S) = (SI−1(1), . . . , SI−1(n)).

To combine two existing MCS M = (C1, . . . , Cn) and M ′ = (C ′1, . . . , C
′
m) into a new one, we

use the following ⊗ operator:

M⊗M ′ = (C1, . . . , Cn, I(C ′1), . . . , I(C ′m)) where I(x) =


n+ x for 1 ≤ x ≤ m,
x−m for m+ 1 ≤ x ≤ n+m,

x otherwise.

In the following, we call I the permutation wrt. M ⊗M ′. Note that by construction the permutation
I wrt. M ⊗M ′ is compatible with M ⊗M ′. Recall that M [R1, R2] = M [br(M) \R1 ∪ cf (R2)].
Regarding modifications and candidate diagnoses, we then observe thatM [A1, A2]⊗M ′[B1, B2] =
(M ⊗M ′)[A1 ∪ I(B1), A2 ∪ I(B2)] where I is the mapping wrt. M ⊗M ′.

The following lemma shows that shifting has no influence on acceptability.
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Lemma 2. Given an MCS M = (C1, . . . , Cn) and a compatible permutation I , it holds that S ∈
EQ(M) iff I(S) ∈ EQ(I(M)).

It immediately follows that S ∈ EQ(M [D1, D2]) iff I(S) ∈ EQ(I(M [D1, D2])) for any candi-
date diagnosis (D1, D2).

The main observation on the ⊗ operator is that M ⊗M ′ admits exactly those diagnoses which
are a combination of a diagnosis of M and a diagnosis of M ′.

Proposition 6. Given two MCS M and M ′, then D±(M ⊗M ′) = {(A1 ∪ I(B1), A2 ∪ I(B2)) |
(A1, A2) ∈ D±(M), (B1, B2) ∈ D±(M ′)} where I is the permutation wrt. M ⊗M ′.

Next we define for an MCS M = (C1, . . . , Cn) the MCS 2M = (C1, . . . , C2n) as 2M =
M ⊗M , i.e., 2M consists of two clones of M . For easier reference, we write 2.r to denote the
clone of the bridge rule r, i.e., 2.r = I(r) where I is the permutation wrt. M ⊗ M . Note that
2.br(M) is the set of bridge rules of M shifted by n, i.e., 2.br(M) is the set of bridge rules of the
second clone of M .

The next lemma, which follows from Proposition 6, shows that diagnoses of 2M correspond to
diagnoses of M in such a way that every diagnosis of 2M is composed of two diagnoses of M .

Lemma 3. LetM be an MCS. Then (D1, D2) ∈ D±(2M) holds iff there exist (D′1, D
′
2) ∈ D±(M)

and (D′′1 , D
′′
2) ∈ D±(M) such that D1 = D′1 ∪ 2.D′′1 and D2 = D′2 ∪ 2.D′′2 .

The underlying idea of the encoding is that a specific prioritized bridge rule tmax indicates
whether the diagnosis applied to the second clone is preferred over the diagnosis applied to the first
clone. Additionally, the diagnosis of the first clone is exhibited via prioritized bridge rules, while
the diagnosis of the second clone is only exhibited via non-prioritized bridge rules.

If the diagnosis applied to the second clone is more preferred than the one applied to the first,
then tmax needs not become condition-free. Thus, if for a given diagnosis of the first clone, there
exists some more preferred diagnosis of the second clone, then there exists a diagnosis where tmax

is not included. A diagnosis D such that no more preferred diagnosis D′ exists is maximal wrt. the
inclusion of tmax , because there exists no more preferred diagnosis D′ of M that could occur at the
second clone. Selecting a diagnosis that modifies a minimal set of prioritized bridge rules and that
contains tmax thus selects a �-preferred diagnosis. We define tmax as follows:

tmax : (2n+1 : ismax )← ⊥.

To represent the diagnosis of the first clone, we use the following prioritized bridge rules. For a
bridge rule r ∈ br(M) let in1(r), in1(r), in2(r), and in2(r) denote the following bridge rules:

in1(r) : (2n+1 : in1(r))← ⊥. in2(r) : (2n+1 : in2(r))← ⊥.
in1(r) : (2n+1 : in1(r))← ⊥. in2(r) : (2n+1 : in2(r))← ⊥.

We identify a candidate diagnosis (D1, D2) ∈ 2br(M) × 2br(M) using these bridge rules by the set
K(D1, D2) = {in1(r) | r ∈ D1} ∪ {in1(r) | r /∈ D1} ∪ {in2(r) | r ∈ D2} ∪ {in2(r) | r /∈ D2}.
The clone encoding then formally is as follows.
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Definition 17. Let M = (C1, . . . , Cn) be an MCS and � a preference order. The clone encoding
of M wrt. � is the MCS 2Mmr(θ,Kp) where 2M = (C1, . . . , C2n) = M ⊗M ,

Kp =
⋃

r∈br(M)

{
(2n+1 : q)← ⊥., | q ∈ {in1(r), in1(r), in2(r), in2(r)}

}
∪ {tmax}

and for any R1, R2 ⊆ br(2M), and R3 ⊆ Kp, θ(R1, R2, R3) holds iff R1 = D1 ∪ 2.D′1, R2 =
D2 ∪ 2.D′2 and either

• (D1, D2) = (D′1, D
′
2) and R3 = K(D1, D2) ∪ {tmax} or

• (D′1, D
′
2) ≺ (D1, D2) and R3 = K(D1, D2).

The protected bridge rules brP are all bridge rules except those of context C2n+1; the prioritized
bridge rules are brH = Kp. We denote the clone encoding of M wrt. � by M� = 2Mmr(θ,Kp).

Note that the second case above with (D′1, D
′
2) ≺ (D1, D2) implies that (D1, D2), (D′1, D

′
2)

are two diagnoses of M , because the MCS 2M only admits a diagnosis if (D1, D2) ∈ D±(M)
and (D′1, D

′
2) ∈ D±(M) both hold (cf. Lemma 3). Also observe that M� = (2M)mr(θ,Kp) =

(M ⊗M)mr(θ,Kp) is linear in the size ofM , as for every bridge rule inM there exist 2 ·4+4 bridge
rules in M�, (the factor 2 is from M ⊗M , the factor 4 is from the meta-reasoning encoding itself
and the +4 is due to Kp). In total |br(M�)| = 12 · |br(M)|+ 1, where the +1 is due to tmax .

Example 13. Reconsider the MCS M from Example 3 shown in Figure 1. Applying the clone en-
coding on M wrt. a preference order � results in the MCS M� = (C1, C2, C3, C4, C5, C6, C7) de-
picted in Figure 5. It is based on two clones of M , where the first comprises the contexts C1, C2, C3

and the second the contexts C4, C5, C6. The context C7 finally is the observation/encoding context.
For each bridge rule r ∈ br(M) and each clone of M , there are two bridge rules simulating that
r is removed respectively made condition-free in the clone. Hence the bridge rules in M� for the
contexts C1, . . . , C6 are:

r′1 : (2 : hyperglycemia)← (1 : hyperglycemia),not (7 : removedr1).

r′′1 : (2 : hyperglycemia)← (7 : uncondr1).

r′2 : (2 : allow animal insulin)← not (1 : allergic animal insulin),not (7 : removedr2).

r′′2 : (2 : allow animal insulin)← (7 : uncondr2).

r′3 : (3 : bill animal insulin)← (2 : give animal insulin),not (7 : removedr3).

r′′3 : (3 : bill animal insulin)← (7 : uncondr3).

r′4 : (3 : bill human insulin)← (2 : give human insulin),not (7 : removedr4).

r′′4 : (3 : bill human insulin)← (7 : uncondr4).

r′5 : (3 : insurance B)← (1 : insurance B),not (7 : removedr5).

r′′5 : (3 : insurance B)← (7 : uncondr5).

I(r1)′ : (5 : hyperglycemia)← (4 : hyperglycemia),not (7 : removedr1).

I(r1)′′ : (5 : hyperglycemia)← (7 : uncondr1).

I(r2)′ : (5 : allow animal insulin)← not (4 : allergic animal insulin),not (7 : removedr2).

I(r2)′′ : (5 : allow animal insulin)← (7 : uncondr2).
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I(r3)′ : (6 : bill animal insulin)← (5 : give animal insulin),not (7 : removedr3).

I(r3)′′ : (6 : bill animal insulin)← (7 : uncondr3).

I(r4)′ : (6 : bill human insulin)← (5 : give human insulin),not (7 : removedr4).

I(r4)′′ : (6 : bill human insulin)← (7 : uncondr4).

I(r5)′ : (6 : insurance B)← (4 : insurance B),not (7 : removedr5).

I(r5)′′ : (6 : insurance B)← (7 : uncondr5).

For each bridge rule r above there are two (non-protected) bridge rules at the observation context
C7 indicating whether r is regarded as removed respectively condition-free. Overall, the set of
bridge rules of C7 is:{

(7 : ismax )← ⊥.
}
∪
{

(7 : not removedr1)← >. (7 : uncondr1)← ⊥.
(7 : not removedr2)← >. (7 : uncondr2)← ⊥.

· · ·
(7 : not removed I(r4))← >. (7 : uncond I(r4))← ⊥.
(7 : not removed I(r5))← >. (7 : uncond I(r5))← ⊥.

(7 : in1(r1))← ⊥. (7 : in1(r1))← ⊥.
(7 : in2(r1))← ⊥. (7 : in2(r1))← ⊥.

· · ·
(7 : in1(r5))← ⊥. (7 : in1(r5))← ⊥.
(7 : in2(r5))← ⊥. (7 : in2(r5))← ⊥.

}
The bridge rules of Kp are now all rules among them with head formula ini(r) or ini(r) for i ∈
{1, 2} and r ∈ br(M), plus the bridge rule tmax . These bridge rules are the prioritized ones
i.e., brH = Kp. A detailed description for a concrete preference order � is given in Appendix B
(Example 19).

For selecting minimal �-preferred diagnoses based on an arbitrary preference order, Defini-
tion 14 is strengthened in two steps: first, if two diagnoses are equal considering their prioritized
bridge rules, then subset-minimality on the remaining bridge rules is taken into account. Sec-
ond, since we only want to select diagnoses where no more preferred ones exist, we consider only
prioritized-minimal diagnoses that contain the bridge rule tmax .

For the first step, letM be an MCS with bridge rules br(M), protected rules brP , and prioritized
rules brH ⊆ br(M). The set of subset-minimal prioritized-minimal diagnoses then is:

D±m(M, brP , brH) =
{
D ∈ D±m(M, brP ) | MinbrH ,brP (M,D) ∧ ∀D′ ∈ D±m(M, brP ) :

MinbrH ,brP (M,D′)⇒
(
D′ ⊆br(M)\brH D ⇒ D =br(M)\brH D′

)}
(10)

where MinbrH ,brP (M,X) denotes that X is minimal among all protected diagnoses with respect
to brH , i.e., MinbrH ,brP (M,X) = ∀D ∈ D±m(M, brP ) : D ⊆brH X ⇒ X =brH D. The first
condition ensures that a diagnosis D is prioritized-minimal and for all other prioritized-minimal
diagnoses D′ it holds that D is minimal wrt. non-prioritized bridge rules.

For the second step, we just add to D±m(M, brP , brH) the condition that D and D′ make tmax

condition-free. Formally:
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Patient dataC1 Medication C2
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Patient dataC4 Medication C5
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I(r3) I(r4)
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r′′5

I(r5)′

I(r5)′′
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in1(r1)

in1(r1)
in2(r1)

in2(r1)

· · ·
in2(r5)

Figure 5: The MCS M� = (C1, C2, . . . , C7) of Example 13. Some bridge rules of the observation
context C7 are shown and the bridge rules stemming from r5; dashed and gray lines
indicate the other bridge rules ofM⊗M whose resulting bridge rules inM� are omitted.
The prioritized bridge rules of M� are tmax and all bridge rules ini(rj) and ini(rj).

Definition 18. Given an MCS M with protected bridge rules brP and prioritized bridge rules brH ,
the set of subset-minimal prioritized-minimal (mpm) diagnoses wrt. tmax is

D±m,tmax
(M, brP , brH) =

{
D ∈ D±m(M, brP ) | MinbrH ,brP (M,D) ∧ tmax ∈ D
∧∀D′ ∈ D±m(M, brP ) : (MinbrH ,brP (M,D′) ∧ tmax ∈ D′)

⇒
(
D′ ⊆br(M)\brH D ⇒ D =br(M)\brH D′

)}
where tmax ∈ D stands for D = (D1, D2) ∧ tmax ∈ D2 and MinbrH ,brP (M,X) is as above.

Intuitively, D is an mpm-diagnosis, if it respects protected bridge rules and contains tmax , if it
is preferred, i.e., it is minimal wrt. prioritized bridge rules brH among all other diagnoses of the
MCS M , and if for all other preferred diagnoses that contain tmax it holds that D is subset-minimal
wrt. regular bridge rules.

Example 14. Consider again the clone encoding M� of Example 13 with a preference order � on
the diagnoses of the MCSM that prefers changing bridge rules regarding health, i.e., r1, r2, as little
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as possible. Formally, let (D1, D2) � (D′1, D
′
2) hold iff {r1, r2}∩(D1∪D2) ⊆ (D′1∪D′2)∩{r1, r2}.

We illustrate the notion of mpm-diagnosis by examining three candidate diagnoses of M�.
(1) Consider a diagnosis on M� corresponding to the diagnosis (D1, D2) = ({r4}, ∅) on

M , viz. the diagnosis Dp =
(
{d1(r4), d1(I(r4))}, K({r4}, ∅) ∪ {tmax}

)
. Then Dp is an mpm-

diagnosis of M�, because (i) it contains no protected bridge rules; (ii) θ holds according to the
conditions of the clone encoding, specifically for R1 = D1 ∪ 2.D1, R2 = D2 ∪ 2.D2 and R3 =
K(D1, D2)∪{tmax}, hence Dp ∈ D±m(M�, brP ); (iii) Dp is minimal among diagnoses respecting
prioritized bridge rules; and (iv) no other such diagnosis is a subset ofDp on non-prioritized bridge
rules.

(2) The diagnosisDo =
(
{d1(r4), d1(r5), d1(I(r4)), d1(I(r5)}, K({r4, r5}, ∅)∪{tmax}

)
con-

tains no protected bridge rules and θ holds as defined by the clone encoding. Furthermore, Do is
minimal among the diagnoses that respect prioritized bridge rules, since the encoding ensures that
K({r4}, ∅) and K({r4, r5}, ∅) are incomparable, because in1(r5) ∈ K({r4}, ∅) \ K({r4, r5}, ∅)
while in1(r5) ∈ K({r4}, ∅) \ K({r4, r5}, ∅). However, Do is not an mpm-diagnosis, because Dp

is minimal with respect to prioritized rules and is smaller on the non-prioritized rules than Do, i.e.,
{d1(r4), d1(I(r4))} ⊂ {d1(r4), d1(r5), d1(I(r4)), d1(I(r5)}.

(3) Consider a diagnosis Dn stemming from the diagnosis ({r1}, ∅), which is not preferred ac-
cording to�, i.e., it holds that ({r4}, ∅) � ({r1}, ∅). LetDn =

(
{d1(r1), d1(I(r1))}, K({r1}, ∅)∪

{tmax}
)
. Then, Dn is not an mpm-diagnosis, because it is not minimal among diagnoses respect-

ing prioritized bridge rules. Consider the diagnosis where the diagnosis ({r4}, ∅) is applied to the
second clone of M , i.e., Ds =

(
{d1(r1), d1(I(r4)),K({r1}, ∅)

)
. Observe that θ holds for Ds ac-

cording to Definition 17, because ({r4}, ∅) ≺ ({r1}, ∅) and R3 = K({r1}, ∅). It also holds that
Ds ⊂brH Dn, because K({r1}, ∅) ⊂ K({r1}, ∅) ∪ {tmax} and therefore MinbrH ,brP (M�, Dn)
does not hold. Consequently, Dn is not an mpm-diagnosis.

As we show in the next section, the notion of mpm-diagnosis is computationally harder than
the notion of prioritized-minimal diagnosis. Nevertheless, the problem itself (i.e., identifying a
minimal �-preferred diagnosis) is shown to be as hard as this notion, which means the notion of
mpm-diagnosis is worst-case optimal.

Note that D,D′ ∈ D±(M, brP ) implies that D ⊆br(M)\brH D′ holds iff D ⊆br(M)\brH\brP D
′

holds, because D = (D1, D2) ∈ D±(M, brP ) implies that D1 ∩ brP = ∅ = D2 ∩ brP . The same
also holds for =br(M)\brH and =br(M)\brH\brP .

As it appears, D±(M�, brP , brH) suffices to obtain those diagnoses of M that are�-preferred.
In the following, we write t(D1, D2) as a shorthand for the corresponding candidate diagnosis in
the MCS M�, i.e., t(D1, D2) = (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2) ∪ K(D1, D2) ∪ {tmax}).

Theorem 3. Let M be an MCS and let � be a preference order on the diagnoses of M . Then
D ∈ D±(M) is �-preferred iff t(D) ∈ D±(M�, brP , brH) holds.

Note that t(D) ∈ D±(M�, brP , brH) implies that tmax ∈ t(D); but there also are diagnoses
T ∈ D±(M�, brP , brH) such that tmax /∈ T . Nevertheless, it follows directly from the definition
of M� that for any T ∈ D±(M�, brP , brH) with tmax ∈ T there exist D1, D2 ⊆ br(M) such that
T = t(D1, D2). Hence, diagnoses of D±(M�, brP , brH) that contain tmax correspond one-to-one
to �-preferred diagnoses of M .

Example 15 (ctd.). Consider the diagnosis D = ({r4, r5}, ∅). It is �-preferred, as it does not
modify any of the bridge rules in {r1, r2}. The corresponding diagnosis t(D) is the diagnosis Do
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from Example 14, i.e, t(D) =
(
{d1(r4), d1(r5), d1(I(r4)), d1(I(r5)}, K({r4, r5}, ∅)∪{tmax}

)
. It

holds that Do ∈ D±(M�, brP , brH), as stated by Theorem 3.

The next theorem shows that the clone encoding M� and the notion of mpm-diagnosis D±m,tmax

allow to select all minimal �-preferred diagnoses of M . This theorem therefore establishes that the
clone encoding is sound and complete.

Theorem 4. Let M be an MCS and let � be a preference order on diagnoses of M . Then
(D1, D2) ∈ D±m,�(M) holds iff t(D1, D2) ∈ D±m,tmax

(M�, brP , brH) holds.

Recall that given a CP-net N that is compatible with an MCS M , the minimal �-preferred di-
agnoses according to �N and the irredundant N -preferred diagnoses coincide, i.e., D±ird (M,N) =
D±

m,�N (M) (cf. Proposition 2). One thus can realize the selection of “optimal” diagnoses according

to a CP-net using the clone encoding M�
N

and the methods provided in this section. Also note that
M�

N
has size only linearly larger than M .

Since the approaches only specify some of the behavior of the observation context, the concrete
choice of a logic to realize the observation remains to the user. This is especially useful for pref-
erence formalisms like CP-nets where algorithms may be chosen according to the computational
complexity of the employed CP-net.

6. Computational Complexity

To select preferred and most preferred diagnoses, the previous section introduced several advanced
notions of diagnosis. In this section we investigate the computational complexity of these notions.
As it turns out, considering protected bridge rules as well as prioritized bridge rules does not increase
the computational complexity of identifying a diagnosis.1 Identifying subset-minimal diagnoses
among those with protected and prioritized bridge rules, however, incurs additional cost. Since
selecting most preferred diagnoses is hard for the same complexity class in the basic case, the
additional cost are expected and our approach is thus worst-case optimal. We begin by recalling the
necessary notions of complexity analysis in MCS.

6.1 Complexity Classes and Context Complexity

Recall that P, EXPTIME, and PSPACE are the classes of problems that can be decided us-
ing a deterministic Turing machine in polynomial time, exponential time, and polynomial space,
respectively. Furthermore NP (resp., coNP) is the class of problems that can be decided on a non-
deterministic Turing machine in polynomial time, where one (resp., all) computation paths accept.
The polynomial hierarchy is built as follows: ΣP

0 = ΠP
0 = P, and for all i ≥ 1, ΣP

i = NPΣP
i−1 is

NP with a ΣP
i−1 oracle and ΠP

i is co-ΣP
i .

Given a complexity classC, D(C) denotes the “difference class” ofC, i.e., D(C) = {L1×L2 |
L1 ∈ C, L2 ∈ co-C} is the complexity class of decision problems that are the “conjunction” of
a problem L1 in C and a problem L2 in co-C. We use the notation that D(NP) = DP

1 and

1. In line with and for comparability to the work of Eiter et al. (2014), we concentrate on recognizing diagnoses and
omit deciding (advanced) diagnosis existence. Briefly, the latter problem is for context complexity C in NPC

for polynomial-time filters f (in particular, for protected bridge rules), which collapses to C if C is closed under
conjunction and projection; thus for all considered notions, the existence problem is in this case C-complete.
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D(ΣP
i ) = DP

i . A prototypical problem that is complete for DP
1 is deciding, given a pair (F1, F2)

of propositional Boolean formulas, whether F1 is satisfiable and F2 is unsatisfiable.
Since MCS are composed of contexts where each context is a KR formalism, the complexity

of deciding whether an MCS is consistent clearly depends on the complexity of the KR formalisms
employed in its contexts. This intuition is captured by the notion of context complexity, which
measures deciding whether a set of beliefs is acceptable under a given knowledge-base of a context
and a given set of formulas added via bridge rules.

Let OUT i = {p | (i : p) ∈ body(r) for some r ∈ br(M)} denote the set of beliefs of con-
text Ci which occur in the body of some bridge rule of the MCS. Context complexity is defined
wrt. output-projected beliefs, i.e., belief sets projected to output beliefs (for details see Eiter et al.,
2014), formally:

Definition 19 (cf. Eiter et al., 2014). Given a context Ci = (kbi, br i, Li) and a pair (H,Ti), with
H ⊆ {ϕ (r) | r ∈ br i} and Ti ⊆ OUT i, the context complexity CC(Ci) of Ci is the computational
complexity of deciding whether there exists an Si ∈ ACCi(kbi ∪H) such that Si ∩OUT i = Ti.

We view here (as in Eiter et al., 2014) the computational complexity of a problem Π technically
as the set of all problems Π′ that are polynomial-time many-one reducible to Π, i.e., as the problems
that are not “harder” than Π; in particular SAT has the computational complexity NP.

Furthermore, the logics Li of all contexts are considered to be given implicitly and thus the
instance size of a given MCS M is |M | = |kbM | + |br(M)| where |kbM | denotes the size of the
knowledge bases in M and |br(M)| denotes the size of its set of bridge rules.

Given an MCS M , we say M has upper context complexity C, denoted CC(M) ≤ C, if
CC(Ci) ⊆ C for every context Ci of M ; we say M has lower context complexity C, denoted
CC(M) ≥ C, if C ⊆ CC(Ci) for some context Ci of M . We say that M has context complexity C,
denoted CC(M) = C, iff CC(M) ≤ C and CC(M) ≥ C. That is, if CC(M) = C all contexts in
M have complexity at most C, and some context in M has C-complete complexity with respect to
polynomial-time many-one reductions, which requires that the class C has complete problems.

Restricting disjunctive ASP to the ground case admits ΣP
2 -complete acceptability checking (see

Dantsin, Eiter, Gottlob, & Voronkov, 2001; Gottlob, 1992), hence the context complexity of a
context using Lasp

Σ is ΣP
2 -complete given that all kb-elements are ground; in the (function-free)

non-ground case, the context complexity is NEXPTIMENP (Eiter, Gottlob, & Mannila, 1997).
Acceptability checking of a context using LplΣ amounts to entailment checking for all literals present
in the belief set and non-entailment checking for all literals absent in the belief set, i.e., it amounts
to an UNSAT and an independent SAT check, hence the context complexity is DP.

Example 16. The MCSM = (C1, C2, C3) of Example 3 is such that CC(C1) = NP and CC(C2) =
CC(C3) = ΣP

2 . As NP ⊆ ΣP
2 , it holds that CC(M) ≤ ΣP

2 , and as C2 is ΣP
2 -complete, we obtain

CC(M) ≥ ΣP
2 ; hence CC(M) = ΣP

2 .

The problem of deciding whether for a given MCS M and a pair (D1, D2) of bridge rules, it
holds that (D1, D2) is a minimal diagnosis, i.e., deciding whether (D1, D2) ∈ D±m(M), is denoted
by MCSDm. As shown in [Prop. 11 by Eiter et al., 2014] if CC(M) = P, then MCSDm is DP

1 -
complete; if CC(M) = C andC is a class with complete problems and closed under conjunction and
projection, then the problem of MCSDm is D(C)-complete. Intuitively, a class C is closed under
conjunction, if all its decision problems are such that checking multiple instances of the problem
at the same time is a problem in C. For example, checking whether a propositional formula F is
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Context Deciding (D1, D2)
?
∈

complexity D±m(M) D±m(M, brP ) D±(M, brP , brH) D±m,tmax
(M, brP , brH)

CC(M) MCSDm MCSDPm MCSDPH MCSDPHm,tmax

P DP
1 -complete DP

1 -complete DP
1 -complete ΠP

2 -complete

NP DP
1 -complete DP

1 -complete DP
1 -complete ΠP

2 -complete

ΣP
i , i ≥ 1 DP

i -complete DP
i -complete DP

i -complete ΠP
i+1-complete

PSPACE PSPACE-complete

EXPTIME EXPTIME-complete

Shown by Eiter et al. (2014) Theorem 5 Theorem 6 Theorems 7 + 8

Table 1: Complexity results of deciding whether a candidate diagnosis is subset-minimal, addition-
ally protected, prioritized-minimal, or an mpm-diagnosis. Problem MCSDMPREF has the
same complexity as MCSDPHm,tmax if deciding D ≺ D′ is in CC(M).

satisfiable is in NP; given two independent formulas F andG, checking whether both are satisfiable
also is in NP since it amounts to checking whether F ∧ G is satisfiable. A class C is closed
under projection, if intuitively for every problem in C, the decision problem on projected instances
(similar as for output-projected equilibria) is contained in C. For example, given a formula F
in propositional logic over variables var(F ), finding an assignment VA over (projected) variables
A ( var(F ) such that (i) there exists an assignment VĀ to the variables Ā = var(F ) \ A and
(ii) VA ∪ VĀ |= F , is as hard as finding an (overall) assignment V over var(F ) such that V |= F .
For further details we refer to the work of Eiter et al. (2014). Specifically, for CC(M) = ΣP

i it holds
that MCSDm is in DP

i . Furthermore, since DP
i is closed under conjunction and projection, it holds

that MCSDm is DP
i -complete if at least one context in M is complete for ΣP

i .

6.2 Overview of Results

We now investigate the complexity of our enhanced notions of diagnosis. More specifically, we
study the complexity of the following decision problems, given an MCS M , a candidate diagnosis
D ∈ 2br(M) × 2br(M), and depending on the problem additionally given protected bridge rules
brP ⊆ br(M), prioritized bridge rules brH ⊆ br(M), and tmax ∈ br(M):

• MCSDPm: deciding whether D is a subset-minimal diagnosis with protected bridge rules,
i.e., deciding whether D ∈ D±m(M, brP ) holds.

• MCSDPH: deciding whether D is a prioritized-minimal diagnosis, i.e., deciding whether
D ∈ D±(M, brP , brH) holds.

• MCSDPHm,tmax : deciding whether D is an mpm-diagnosis (a subset-minimal prioritized-
minimal diagnosis wrt. tmax ), i.e., deciding whether D ∈ D±m,tmax

(M, brP , brH) holds.

• MCSDMPREF: given an arbitrary preference order � deciding whether D ∈ D±m,�(M) holds.
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We show that MCSDPm is not harder than MCSDm, i.e., deciding whether a candidate diagnosis
D is a subset-minimal diagnosis with protected bridge rules is not harder than deciding whether D
is a subset-minimal diagnosis (Thm. 5). We also demonstrate that the same is true for prioritized-
minimal diagnoses, i.e., MCSDPH is as hard as MCSDm (Thm. 6). This notion of diagnosis can
be applied to the plain encoding Mpl� for total preference orders to select minimal �-preferred
diagnoses according to a total preference order �. The drawback of this approach, however, is the
exponential number of bridge rules in Mpl�.

Since the clone encoding M� incurs no exponential blow-up of bridge rules, it is reasonable
to expect that the computational complexity of MCSDPHm,tmax is higher than the one of MCSDm.
Indeed, for context complexity CC(M) in ΣP

i we prove that MCSDPHm,tmax is in ΠP
i+1 while

MCSDm is in DP
i (Thm. 7). Specifically, for CC(M) in NP the complexity of MCSDPHm,tmax is

ΠP
2 while MCSDm is in DP

1 .
Since deciding t(D) ∈ D±m,tmax

(M�, brP , brH) only serves to decide D ∈ D±m,�(M), we
also investigate the lower bound for the latter problem, i.e., MCSDMPREF. We prove that it is
ΠP

2 -hard (Thm. 8) if CC(M) is in P; hence we obtain that the clone encoding using M� and
D±m,tmax

(M�, brP , brH) is in fact worst-case optimal. Furthermore, we also show that MCSDMPREF

is hard for ΠP
i+1 if CC(M) is hard for ΣP

i .
Table 1 summarizes the results for the introduced notions of diagnosis and for context complex-

ity being in one of several complexity classes. Note that the results for PSPACE and EXPTIME
in the last column follow from the fact that coNPPSPACE = PSPACE and coNPEXPTIME =
EXPTIME for membership while hardness can be shown using a trivial MCS where the accept-
ability function of some context is hard for PSPACE resp. EXPTIME. Our results are derived
using several reductions and a genuine algorithm, which are presented in the remainder of this
section; proofs can be found in the appendix.

6.3 Derivation of Results

For the problem of recognizing minimal diagnoses with protected bridge rules we have the following
result.

Theorem 5. MCSDPm is equivalent to MCSDm under polynomial-time reductions.

Indeed, MCSDPm is polynomially reducible to MCSDm, by simply checking first whether the
candidate diagnosis contains protected bridge rules and then solve MCSDm to check whether it
is subset-minimal. A formal reduction is provided in the proof of Theorem 5. Conversely, every
instance of MCSDm is an instance of MCSDPm with brP = ∅, and thus MCSDm trivially reduces
to MCSDPm in polynomial time.

Next we consider the problem MCSDPH. We will show that this problem has the same com-
plexity as MCSDPm. To this end we first present a polynomial-time many-one reduction DPH2DPm
from MCSDPH to MCSDPm. We remark that a direct membership proof would be simpler, but the
reduction is of interest in its own right.

6.3.1 UNDERLYING IDEA OF DPH2DPm

Given an MCS M with protected bridge rules brP and prioritized bridge rules brH , we simulate
the modifications of regular bridge rules inside the resulting MCS. The set Rreg of regular (non-
prioritized, non-protected) bridge rules is Rreg = br(M) \ brH \ brP and their modifications can
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C1

C2

C3

Cn+1 Cn+2

C1

C2

C3

r1

r2

r′1

r′2

d1(r2) d2(r2)

Mmr(θ,Kp) M

r2 ∈ brH

r1 ∈ Rreg

M ′

M ′ ⊗M

r1 : (2 : b)← (1 : a).

r2 : (3 : d)← (2 : c).

kbn+1 =
{

removedr1 ← notnot removedr1 . removedr2 ← notnot removedr2 .
}

kbn+2 =

{
not removedr1 ← not removedr1 . removedr1 ← notnot removedr1 .
uncondr1 ← notnot uncondr1 . not uncondr1 ← not uncondr1 .

}

Figure 6: The reduction from MCSDPH to MCSDPm exemplified on an MCS M = (C1, C2, C3)
with two bridge rules br(M) = {r1, r2}. Shown are the MCS M ′ ⊗M employed in
the reduction DPH2DPm (components are indicated in gray), bridge rules of M , and the
knowledge bases of Cn+1 and Cn+2.

be simulated by using a meta-reasoning transformation Mmr(θ,Kp) = (C1, . . . , Cn+1), where the
bridge rules of Cn+1 correspond to modifications of bridge rules in Rreg . They take their val-
ues from an additional context Cn+2 that generates all possible modifications, i.e., every possible
modification corresponds to an acceptable belief set of Cn+2. We protect in the resulting MCS
M ′ = (C1, . . . , Cn+2) all bridge rules except those that correspond to modifications of bridge rules
in brH , i.e., every diagnosis of M ′ corresponds to one (or more) diagnoses of M , but the diagnoses
of M ′ only contain bridge rules corresponding to subsets of brH . Consequently, any minimal diag-
nosis of M ′ is ⊆brH -minimal wrt. M . To ensure that the diagnosis indeed is ⊆-minimal, we further
add a copy ofM , i.e., the resulting MCS isM ′⊗M whereM ′ ensures minimality wrt.⊆brH andM
ensures minimality wrt. ⊆. An illustration of the resulting MCS is given in Figure 6 for a concrete
MCS that is considered later in Example 17 below in detail.
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6.3.2 FORMAL DETAILS OF DPH2DPm

Given an MCS M and a set Rreg ⊆ br(M), let Kp = ∅ and let θ be such that for all D1, D2 ⊆
br(M) the property θ(D1, D2, ∅) holds. We craft an MCS based on the meta-reasoning MCS
Mmr(θ,Kp) = (C1, . . . , Cn, Cn+1) to obtain an MCS where the modification of all bridge rules
in Rreg is hidden in the set of possible belief states. To this end, we introduce another context Cn+2

without bridge rules whose acceptable belief sets encode all respective modifications of bridge rules
of Rreg . Formally, Cn+2 = (Lasp

Σ , kbn+2, ∅) where

kbn+2 =

{
not removedr ← not removedr. removedr ← notnot removedr.
uncondr ← notnot uncondr. not uncondr ← not uncondr.

∣∣∣∣ r ∈ Rreg

}
.

Observe that for every D1, D2 ⊆ Rreg , there is a belief set Sn+2 with

Sn+2 ∩
(
{not removedr, uncondr | r ∈ Rreg}

)
= {not removedr | r ∈ Rreg \D1}

∪ {uncondr | r ∈ D2}.

In addition to that, since Cn+2 has no bridge rules, it follows that Sn+2 ∈ ACCn+2(kbn+2 ∪
app(brn+2, S

′)) holds for all belief states S′ = (S′1, . . . , S
′
n+2) where S′n+2 = Sn+2.

Recall that all bridge rules of Cn+1 are either of the form (n + 1 : not removedr) ← >. or
(n + 1 : uncondr) ← ⊥. where r ∈ br(M). Let Cn+1 = (L, kbn+1, brn+1); then C ′n+1 =
(L, kbn+1, br ′n+1) where

br ′n+1 = {(n+ 1 : not removedr)← (n+ 2 : not removedr). | r ∈ br(M), r ∈ Rreg} (11)

∪ {(n+ 1 : uncondr)← (n+ 2 : uncondr). | r ∈ br(M), r ∈ Rreg} (12)

∪ {(n+ 1 : not removedr)← >. | r ∈ br(M), r /∈ Rreg} (13)

∪ {(n+ 1 : uncondr ← ⊥. | r ∈ br(M), r /∈ Rreg}. (14)

Intuitively, C ′n+1 equals Cn+1 but the bridge rules occurring in Rreg refer to Cn+2. Similar to
the meta-reasoning encoding, we denote by d1(r) and d2(r) the corresponding bridge rule of the
form in (13) and in (14), respectively. We extend these notions to sets of bridge rules and let
di(R) = {di(r) | r ∈ R} for any R ⊆ br(M) and i = 1, 2. For example, d1(br(M) \R1) denotes
all bridge rules of line (13).

Finally, we call M ′ = (C1, . . . , Cn, C
′
n+1, Cn+2) the meta-guessing MCS for M and Rreg .

The effect of the redirection to Cn+2 is that the acceptable belief sets of Cn+2 guess all possible
modifications. The rest of M ′ behaves like an ordinary meta-reasoning encoding, where protected
bridge rules of M ′ are brP ′ = brM ′ \ (d1(br(M) \Rreg)∪ d2(br(M) \Rreg)), i.e., all bridge rules
are protected except those in Cn+1 that do not correspond to bridge rules in Rreg .

Now the reduction DPH2DPm from MCSDPH to MCSDPm is as follows:

(M, (D1, D2), brP , brH) 7→ (M ′ ⊗M, (D′1, D
′
2), brP

′′)

where M ′ is the meta-guessing MCS wrt. Rreg = br(M) \ brP \ brH and brP ′′ = brP
′ ∪ I(brP )

where I is the mapping wrt. M ′ ⊗ M and brP ′ is the set of protected bridge rules of the meta-
guessing MCS M ′; furthermore D′1 = I(D1) ∪ d1(D1 ∩ brH) and D′2 = I(D2) ∪ d2(D2 ∩
brH), i.e., (D′1, D

′
2) contains a candidate diagnosis of M and a candidate diagnosis over brH with

modifications to the remaining bridge rules of M being simulated by M ′.
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Observe that the size of (M ′ ⊗M, (D′1, D
′
2), brP

′′) is polynomial in the size of (M, (D1, D2),
brP , brH), because M ′ ⊗ M only has four times as many bridge rules as M and all other sets
are subsets of these bridge rules. Furthermore, (M ′ ⊗ M, (D′1, D

′
2), brP

′′) can be computed in
polynomial time in the size of (M, (D1, D2), brP , brH); more precisely, even in linear time.

Example 17. We illustrate the reduction DPH2DPm and the MCS resulting from on a simple MCS
M = (C1, C2, C3) with three contexts and two bridge rules br(M) = {r1, r2} as follows:

r1 : (2 : b)← (1 : a).

r2 : (3 : d)← (2 : c).

No bridge rule is protected, i.e., brP = ∅, and r2 is prioritized, i.e., brH = {r2}, thus Rreg = {r1}.
Figure 6 illustrates M (on the right) and the meta-guessing MCS M ′ for M and Rreg (on the
left); their combination M ′ ⊗M (the overall Figure 6), is the MCS constructed in the reduction
DPH2DPm. It also shows a possible realization of the contexts Cn+1 and Cn+2 using ASP. Since
Cn+1 stems from the meta-reasoning encoding where θ holds for all potential diagnoses, the two
rules in kbn+1 are sufficient to exhibit the observed modifications of r1 and r2 as beliefs. Intuitively,
the rules in kbn+2 guess all potential modifications of r1 and exhibit them to Cn+1 as beliefs.

The following lemma shows that DPH2DPm indeed is a correct reduction from MCSDPH to
MCSDPm.

Lemma 4. DPH2DPm is a polynomial-time reduction from MCSDPH to MCSDPm.

On the other hand, one can easily reduce MCSDPm to MCSDPH. We thus obtain that MCSDPH

indeed has the same complexity as deciding D ∈ D±m(M, brP ) and hence whether D ∈ D±m(M)
holds.

Theorem 6. MCSDPH is equivalent to MCSDPm under polynomial-time reductions.

6.3.3 FURTHER COMPLEXITY RESULTS

A stepping stone for analyzing MCSDPHm,tmax is the decision problem MCSDPHtmax , which we
consider next. MCSDPHtmax is defined as follows: given an MCS M , a candidate diagnosis D ∈
2br(M)× 2br(M) with D = (D1, D2), protected bridge rules brP ⊆ br(M), prioritized bridge rules
brH ⊆ br(M), and tmax ∈ br(M); decide whether (i) tmax ∈ D2 and (ii) for all T ∈ D±m(M, brP )
it holds that T ⊆brH D ⇒ T =brH D. Notice that MCSDPHtmax basically amounts to checking the
presence of tmax in a candidate diagnosis of MCSDPH. As the following lemma shows, former is
not harder than the latter.

Lemma 5. MCSDPHtmax is polynomial-time reducible to MCSDPH and thus in the complexity class
C, if MCSDPH is in C and C is closed under polynomial reductions.

Note that all classes in Section 6.1 above are closed under polynomial-time reductions.
We use an MCSDPHtmax -oracle in Alg. 1 to obtain membership results of MCSDPHm,tmax .

Theorem 7. If MCSDPH is in C, then MCSDPHm,tmax is in coNPC.
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Algorithm 1: Deciding whether (D1, D2) 6∈ D±m,tmax
(M, brP , brH) holds.

Input : MCS M , (D1, D2), brP , and brH with D1, D2 ⊆ br(M), brP , brH ⊆ br(M).
Output: YES if (D1, D2) 6∈ D±m,tmax

(M, brP , brH)

1 if oracleMCSDPHtmax

(
(D1, D2),M, brP , brH

)
= NO then output YES

2 guess T1, T2 ⊆ br(M)
3 if oracleMCSDPHtmax

(
(T1, T2),M, brP , brH

)
= YES ∧∧∧ (T1, T2) 6= (D1, D2)

∧∧∧ (T1, T2) ⊆br(M)\brH (D1, D2) ∧∧∧ (T1, T2) 6=br(M)\brH (D1, D2) then output YES

Proof. Algorithm 1 decides whether (D1, D2) 6∈ D±m,tmax
(M, brP , brH) holds using an oracle

for MCSDPHtmax . Intuitively, (D1, D2) is not an mpm-diagnosis if it either is no subset-minimal
prioritized-minimal containing tmax , which is checked in the first line using the oracle, or if there
exists a subset-minimal prioritized-minimal diagnosis (T1, T2) ⊂ (D1, D2) that also contains tmax .
In the second line such a (T1, T2) is guessed and in the third line it is verified that the guessed
candidate indeed has the above properties. Checking whether (D1, D2) ∈ D±m,tmax

(M, brP , brH)
holds is possible by Algorithm 1 and negating its output.

By assumption MCSDPH is in C, thus by Lemma 5 it holds that MCSDPHtmax is in C, i.e.,
the complexity of the oracle in Algorithm 1 is in C. Since Algorithm 1 uses a polynomial-size
guess for (T1, T2) its complexity clearly is NPC. Consequently, deciding whether (D1, D2) ∈
D±m,tmax

(M, brP , brH) holds is in coNPC.

The previous decision problems arise from our approach to realize the selection of preferred and
filtered diagnoses of an MCS. To give a full picture, we also investigate the complexity of the basic
problem, i.e., of MCSDMPREF.

As the following theorem shows, MCSDMPREF itself is ΠP
2 -hard even if both the context com-

plexity and deciding whether D � D′ holds are tractable. This result also shows that our approach
of realizing the selection of minimal �-preferred diagnoses is worst-case optimal.

Theorem 8. If CC(M) is hard for ΣP
i (ΠP

i ) then MCSDMPREF is hard for ΠP
i+1 (ΠP

i+2) with i ≥ 0.
Moreover, MCSDMPREF is ΠP

2 -hard even if both CC(M) and deciding D′ � D′′ are in P.

For establishing completeness of MCSDMPREF, we use the clone encoding of the previous section
as a polynomial-time reduction to MCSDPHm,tmax .

Corollary 1. LetM be an MCS with CC(M) = ΣP
i , i ≥ 0 (resp., CC(M) = PSPACE, CC(M) =

EXPTIME), and a preference order � such that deciding D ≺ D′ is in ΣP
i (resp., PSPACE,

EXPTIME). Then MCSDMPREF is complete for ΠP
i+1 (resp., PSPACE, EXPTIME). In

particular, MCSDMPREF is ΠP
i+1-complete if deciding D � D′ is in P and CC(M) = ΣP

i , i ≥ 0.

Examples of preference orders as hard as PSPACE are CP-nets in general while restricted
variants are in NP or even P (cf. Section 3.2.1).

We can also use the clone encoding to show the completeness of MCSDPHm,tmax .

Corollary 2. MCSDPHm,tmax is ΠP
i+1-complete if CC(M) = ΣP

i , i ≥ 1, and ΠP
2 -complete if

CC(M) = P or CC(M) = NP.
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The hardness result of ΠP
i+2 for MCSDMPREF with CC(M) = ΠP

i might seem to contradict
Corollary 2, which shows, using the clone encoding, that MCSDMPREF is in ΠP

i+1 for CC(M) = ΣP
i .

However this is no contradiction since the basic problem of recognizing minimal diagnoses, i.e.,
MCSDm, is not known to be in ΣP

i for CC(M) = ΠP
i . In the work of Eiter et al. (2014) it is shown

that MCSDm is in D(C) if C is closed under conjunction and projection, which presumably is not
the case for ΠP

i , i ≥ 0 (while it is for ΣP
i ). Hence for CC(M) = ΠP

i , MCSDm is not in D(ΠP
i ),

thus MCSDPHtmax is presumably not in ΠP
i+1. On the other hand, ΠP

i is in ΣP
i+1, consequently

MCSDm is in D(ΣP
i+1) and MCSDPHtmax in ΠP

i+2.

7. Discussion and Related Work

In this section we first discuss options for decomposing the central observation context of the meta-
reasoning transformation and then consider related work.

7.1 Decomposing the Central Observation Context

A key strength of MCS is the capability of integrating different knowledge bases in a decentralized
manner. Accordingly, scenarios for MCS where a centralized specification of preferences on diag-
noses may be unwanted, e.g., if different companies agree to share data, their preferences might
expose some information they are actually not willing to share. The approaches presented here use
a central observation context that knows all bridge rules, or more specifically, that knows the labels
of all bridge rules, and for each of them whether and how it is modified. The observer, however,
does neither know the structure, i.e., the contents of the head and body, of the bridge rules, nor the
actual status of the information exchange, and it cannot see any beliefs of any context. Hence, our
approach supports almost full information hiding and only decentralization is lost.

Criteria for decomposing a context have been investigated by Weinzierl (2014). The results there
can be applied to the meta-reasoning transformation that we described in Section 5.1 in order to
decompose the observation context of the filter encoding Mf . If the underlying filter can be broken
up, the central observation context thus may be replaced with several contexts, each covering only
a partition of the bridge rules in br(M). If there is a partition br(M) = A ∪ B (where A,B are
disjoint and nonempty) such that a given filter f satisfies that for all D1, D2 ⊆ br(M) it holds that
f(D1, D2) = 1 iff f(D1 ∩ A,D2 ∩ A) = 1 and f(D1 ∩ B,D2 ∩ B) = 1, then the observation
context of Mf is decomposable. Informally, f is such that the modifications of bridge rules in A
can be checked independently from those in B and vice versa.

Notice that for any “reasonable” logical formalism which realizes f , checking whether f(D1 ∩
A,D2∩A) = 1 resp. f(D1∩B,D2∩B) = 1 can be realized by two (independent) knowledge bases;
the latter are the decomposition of the observation context. Depending on f , this decomposition
may be repeated several times, where each time one context is decomposed into two independent
contexts until the observation of diagnoses is fully decentralized.

Example 18. Consider the MCS Mf = (C1, C2, C3) of Example 11 realizing the filter f on the
MCS M whose bridge rules are br(M) = {r1, r2, r3}. Recall that f is defined by:

f(D1, D2) =


0 if r3 ∈ D1, r2 /∈ D1 or r3 /∈ D1, r2 ∈ D1,

0 if r3 ∈ D2, r2 /∈ D2 or r3 /∈ D2, r2 ∈ D2,

1 otherwise.
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Obviously, br(M) can be partitioned into A = {r2, r3} and B = {r1}, because for all D1, D2 ⊆
br(M) holds that f(D1 ∩B,D2 ∩B) = 1 and f(D1 ∩A,D2 ∩A) = f(D1, D2).

The resulting decomposition of bridge rules in C3 is: brA3 = {d1(r2), d2(r2), d1(r3), d2(r3)}
and brB3 = {d1(r1), d2(r1)}. Since the knowledge base kb3 of Mf uses ASP, we can easily get the
knowledge bases kbA3 and kbB3 by partitioning kb3:

kbA3 =


removedr2 ← notnot removedr2 . removedr3 ← notnot removedr3 .
⊥ ← removedr3 , not removedr2 . ⊥ ← not removedr3 , removedr2 .
⊥ ← uncondr3 , not uncondr2 . ⊥ ← not uncondr3 , uncondr2 .}


kbB3 = {removedr1 ← notnot removedr1 .}

The resulting decomposed MCS is M ′ = (C ′1, C
′
2, C

A
3 , C

B
3 ), where all bridge rules from C3 either

belong toCA3 orCB3 and all beliefs ofC3 that are referred to in other bridge rules ofMf either refer
to CA3 or CB3 in M ′. The diagnoses of M ′ correspond one-to-one to those of Mf . As diagnoses
with protected bridge rules are directly based on ordinary diagnoses, these results thus extend to di-
agnoses with protected bridge rules. The MCS M ′ can be used to obtain minimal filtered diagnoses
of M , where the filter itself is realized in a decentralized way.

In principle, decomposition may also be applied to the clone encoding M�, but the bridge rule
tmax disallows a simple decomposition. Nonetheless, it seems possible to achieve decomposition
using additional protected bridge rules for information exchange between the decomposed contexts;
a formal result, however, remains to be established.

7.2 Related Work

We now briefly consider further, previous work and then discuss related work on multi-context
systems and other KR formalisms.

7.2.1 PREVIOUS WORK

In the work of Weinzierl (2014) several of the notions presented here have been investigated and ex-
emplified in more depth; among others, formal results on the decomposition method introduced
in Section 7.1 above. While in this article fully-compatible CP-nets are shown as sample for-
malism to specify preferences over diagnoses, there are other possibilities of using CP-nets to
compare diagnoses, e.g. by assigning each bridge rule r only one variable V r and a domain of
{unmodified , removed , condition-free}. This kind of CP-nets, however, cannot represent a candi-
date diagnosis (D1, D2) with r ∈ D1∩D2, i.e., where a bridge rule is both removed and condition-
free, while fully compatible CP-nets can represent all candidate diagnoses.

There is another sample instantiation of preference orders that is based on units of modified
bridge rules. The idea is that bridge rules are grouped according to the information they carry;
e.g. in Example 4 there are two units: health-related information (r1 and r2) and billing-related
information (r3, r4, and r5). A preference relation over diagnoses is established by considering how
many such units are modified (hence potentially broken); preferred are those diagnoses modifying
the least number of units.

Two transformations for meta-reasoning on diagnoses in an MCSM were developed, where the
first merely adds bridge rules and contexts to observe the information exchange between contexts of
M . The disadvantage of this transformation is that there are concrete MCS for which the observation
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cannot identify each diagnosis correctly. The second transformation, which is the one presented in
this article, is more general and allows for the correct identification of diagnoses for all MCS;
however, this comes at the price of rewriting the bridge rules.

Below we discuss two closely related approaches that rely on preference to ensure consistency
of MCS and a third approach that integrates preferences into MCS contexts directly. We also sketch
how our approach can be applied to further extensions of the MCS framework and we relate our
approach to preference-based inconsistency management in other KR formalisms. An extended
discussion is available in the work of Weinzierl (2014).

7.2.2 PREFERENTIAL MCS

In the work of Mu, Wang, and Wen (2015) an approach at preference-based inconsistency man-
agement in MCS is introduced: Preferential Multi-Context Systems (PMCS) are similar to ordinary
MCS where an additional preference order ≤s restricts the information flow. The relation ≤s is a
total preorder on a partitioning of the contexts of M , i.e., ≤s compares sets of contexts and all con-
texts in the same set are treated as equally preferred. The information flow then is restricted from
more preferred to less-or-equally preferred contexts, i.e., a PMCS is stratified. Note that this total
preorder differs from our notion of a total preference, since we consider preference over candidate
diagnoses, not over sets of contexts.

Based on the ordering, one may ask for a maximal consistent section, which is the maximal
initial segment of the ordering of preferred contexts that still admit an equilibrium. Furthermore,
the notion of a c-diagnosis is introduced, which is a diagnosis that does not modify bridge rules
of the maximal consistent section. Note that Mu et al. (2015) only consider diagnoses that remove
bridge rules, i.e., diagnoses of the form (D1, ∅).

In the same work, it is noted that a filter f on diagnoses may be used to select c-diagnoses, by
simply filtering out all diagnoses that modify bridge rules of the maximal consistent section. This
however, requires to know the maximal consistent section in advance. Intuitively, c-diagnoses can
be fully captured by preference orders as follows. We recall the notation of an i-cut for PMCS
first: given a PMCS M with total preorder ≤s on sets of contexts of M , the i-cut of M , denoted
by M(i) contains all contexts that are in the i-th and lower stratum according to ≤s. For example,
M(1) contains the most preferred contexts, M(2) contains contexts of M(1) and all that are less
preferred than the ones in M(1) but more preferred than any other contexts, and so on. Notice that
M(2) ⊇M(1) holds, i.e., M(i) contains all contexts of M(j) for j ≤ i. Now a preference order �
is defined on candidate diagnoses as follows: (D1, D2) � (D′1, D

′
2) iff D2 = ∅ and for every 1 ≤

i ≤ m such that D1 ∩ {r ∈ br ` | C` ∈M(i)} 6= ∅, it holds that D′1 ∩ {r ∈ br ` | C` ∈M(i)} 6= ∅.
The intuition is that � prefers (D1, D2) over (D′1, D

′
2) if every i-cut M(i) that is modified by the

former is also modified by the latter. This effectively guarantees that the most preferred diagnoses
according to � only modify bridge rules from less preferred contexts. In fact, no most preferred
diagnosis modifies any bridge rule of the maximal consistent section, because such a diagnosis is
always preferred. Thus, the set of most preferred diagnoses according to � should coincide with
the set of c-diagnoses. Clarifying this and a more extensive comparison to PMCS remains for future
work.

Another approach for handling inconsistency in MCS based on a preference order was presented
by Caire, Bikakis, and Traon (2013). The notion of conviviality stemming from multi-agent systems
is used to model and measure information dependencies in MCS: intuitively, conviviality measures
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how much contexts exchange information with each other. Every ordinary diagnosis D of an incon-
sistent MCS M is then associated with the conviviality of the resulting MCS where D is applied,
i.e., the conviviality ofM [D]. A diagnosis is regarded as being optimal, if its associated conviviality
is maximal. Suppose that Conv(M) is the conviviality of an MCS M , we can capture the approach
by selecting �-preferred diagnoses where � is a preference on diagnoses as follows: D � D′ iff
Conv(M [D]) ≥ Conv(M [D′]). Subsequently, D±�(M) is the set of optimal diagnoses according
to Caire et al. (2013).

7.2.3 MULTI-CONTEXT SYSTEMS WITH PREFERENCES

Le, Son, and Pontelli (2015) recently extended the abstract logics of MCS with ranking information
to ranked logics and defined an equilibrium semantics for the ensuing Multi-Context Systems with
Preferences (MCSP). Formally, a ranked logic is a tuple L = (KBL,BSL,ACCL, <L) such that
(KBL,BSL,ACCL) is an abstract logic for MCS and <L is a partial order over pairs (kb, bs)
of a knowledge base kb and an acceptable belief set for kb, i.e., bs ∈ ACCL(kb). The semantics
of an MCSP M = (C1, . . . , Cn) is given in terms of particular equilibria of the induced ordinary
MCS M ′ = (C ′1, . . . , C

′
n), in which the ranking information is dropped. An equilibrium S of M ′

is weakly preferred (resp. strongly preferred) over an equilibrium S′ of M ′, if S is preferred over
S′ in some (resp. every) ranking <i of the contexts Ci, i.e., (kbi, Si) <Li (kbi, S

′
i) holds where

Ci = (Li, kbi, br i). Furthermore, S is most preferred, if there is no other equilibrium S′ of M ′

that is weakly (resp. strongly) preferred over S; the semantics of M is given by its most preferred
equilibria.

Compared to our work, there is a noticeable difference: in MCSP preference information is
directly integrated into the semantics to select among equilibria (provided some exist), while in our
approach preference is used to select diagnoses for systems that do not admit an equilibrium, i.e.,
systems that are inconsistent. This is similar with distributed abductive diagnosis (DAD), which is
briefly sketched by Le et al. (2015) as an application for MCSP; they discuss how one can use an
MCSP in order to obtain an abductive explanation for a set of observations on an MCS from a given
set of hypotheses. While DAD strives to explain beliefs in an equilibrium, the diagnoses that we
consider address the lack on an equilibrium. Le et al. (2015) do not consider whether their approach
could be used to diagnose an inconsistent MCS. As their hypotheses are elements of knowledge
bases respectively belief sets but not observations of inconsistency of the system as such, this is not
apparent. It remains to be clarified whether (under suitable restrictions) and how this is possible.
As regards preference, in principle, one could use <Li over equilibria to select those diagnoses that
admit the best ranked equilibria. More formally, we can construct a preference order � such that
D � D′ holds if some (resp. all) S ∈ EQ(M [D]) are weakly preferred (resp. strongly preferred)
over some (resp. all) S′ ∈ EQ(M [D′]).

7.2.4 DEFEASIBLE MCS

In ordinary MCS, all bridge rules that are applicable in a belief state add their head formulas to the
respective contexts. Different from that, Defeasible MCS (dMCS) have bridge rules which only add
their head formulas if no inconsistency arises, i.e., bridge rules are defeasible. By that, defeasible
MCS are an important contribution to inconsistency management in MCS since these MCS are in-
herently consistent. They have been investigated in the works of Bikakis and Antoniou (2008, 2010),
and Bikakis, Antoniou, and Hassapis (2009, 2011), which address inconsistency in a homogeneous
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MCS setting. The semantics of dMCS is given by resorting to an argumentation-inspired approach
(Bikakis & Antoniou, 2010). Each context is a local theory composed of strict and defeasible rules,
where the conclusion of an applicable strict rule is always considered while for defeasible rules
their conclusion is only considered if there is no contrary evidence. Bridge rules, or mapping rules,
are (local) defeasible rules whose body literals refer to other contexts. The decision which rules to
ignore is based for every context on a strict total order of all contexts.

The set of (mapping) rules that are ignored thus corresponds to a unique deletion-only diagnosis
whose declarative description is more involved compared to our notion. Since local information is
important for identifying the defeasible rules that are ignored, an encoding within our framework
is possible but requires an involved MCS where contexts expose private information. One notable
advantage of defeasible MCS is that for acyclic systems, only a polynomial number of computation
steps is required for answering queries that are a single literal. The second component of diag-
noses, i.e., rules that are forced to be applicable, however, have no counterpart in the inconsistency
management approach for dMCS. Furthermore, the strict total order over contexts forces the user
to make (perhaps unwanted) decisions at design time; alternative orders would require a redesign
and separate evaluation. Bikakis and Antoniou (2011) also relaxed the strict total order condition
to allow for partial preference orders over contexts. Four variants, based on argumentation, are in-
troduced to resolve inconsistency and it is shown that partial preference orders come at the cost of
more information exchange being rejected. Our approach avoids this and allows to respect various
kinds of orderings and preferences; it is not committed to a particular formalism and in principle
any formalism that can be couched into a context of an MCS can be employed.

7.2.5 FURTHER MCS EXTENSIONS

In recent years, some significant extensions of the Multi-Context Systems framework itself have
been proposed. We give a short overview of these extensions and sketch how the notions of diagno-
sis and preference can be adapted.

Managed Multi-Context Systems (mMCS) are an extension of MCS where each context is
equipped with a management component that is called a context manager (Brewka, Eiter, Fink,
& Weinzierl, 2011b). This manager allows applicable bridge rules to not only add information,
but to apply arbitrary operations on the knowledge base. In mMCS the heads of bridge rules are
operational statements of the form o(s), where s is a knowledge-base element as in ordinary MCS
and o is the name of an operation to apply, e.g., revise(¬p) indicates that the knowledge base is to
be revised with the formula ¬p. Many kinds of operations can be captured by mMCS, e.g. updating
logic programs, belief revision, or database view updates. Most notably, if all context managers
ensure locally that some acceptable belief set exists for the context, then inconsistency in an mMCS
may only arise from cyclic information flow. Notably, mMCS can be translated faithfully to MCS,
hence the diagnosis notion of MCS and the techniques for selecting most preferred diagnoses also
extend to mMCS.

Reactive Multi-Context Systems (rMCS), which were introduced and investigated by Brewka
(2013), Ellmauthaler (2013), and Brewka, Ellmauthaler, and Pührer (2014a, 2014b), and evolving
Multi-Context Systems (eMCS), which were defined and studied by Goncalves, Knorr, and Leite
(2014b, 2014a) are similar formalisms. Both are an extension of mMCS to allow change over
time; although rMCS and eMCS have been developed independently and their formalizations differ
somehow, they are, in essence, quite similar. Both adopt a discrete time ontology where at each
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step a set of observations is taken into account. Observations then either influence sensor atoms in
bridge rules (rMCS) or the knowledge bases of designated sensor contexts with fixed acceptability
functions (eMCS). A semantics is defined that pairs at each time step the observations with an
equilibrium for that step, taking into account the equilibrium of the previous step, i.e., semantics is
an incremental sequence of equilibria. For eMCS this sequence is called an evolving equilibrium
while for rMCS it is called a run.

We note that one may “unroll” the time steps of a given rMCS or eMCS M such that for an
observation sequence of k time steps, the unrolled MCS Mu contains k copies of the ordinary
contexts and bridge rules ofM . Sensor atoms and sensor contexts are at each time step according to
the step in the observation sequence and additional bridge rules for inertia and incremental change
of beliefs and knowledge bases carry information from copy i to copy i + 1 in the unrolled system
Mu. Then, Mu is an ordinary MCS where the notions of diagnosis, filter, and preference can be
applied, hence these notions also extend to rMCS and eMCS.

Since any ordinary bridge rule r ∈ br(M) is duplicated k times in Mu, a diagnosis can inde-
pendently modify the copy of r at time i from the copy of r at time j, for i 6= j. Such independent
modifications may be unwanted and one may consider only a diagnosis to be valid that modifies all
copies uniformly, or alternatively consider only diagnoses that keeps bridge rules unmodified until
some time point ` and for all time points i ≥ ` the same modification is applied. Notice that one can
easily craft a filter f for such unrolled Mu that ensures either of the above conditions. Vice versa,
it is also possible to define notions of diagnosis with those properties directly for rMCS and eMCS,
each yielding another notion of diagnosis. More work on this is required, but outside the scope of
this article.

Tasharrofi and Ternovska (2014) introduced the notion of supported equilibrium semantics,
which requires a notion of support throughout contexts. In principle, this notion of support en-
ables a new notion of diagnosis that also considers modifications of knowledge bases to restore
global consistency. Preferences and filter may then be defined on top of such a diagnosis notion.

An event-based approach to the semantics of MCS is given by Ellmauthaler and Pührer (2014),
where so-called asynchronous Multi-Context Systems (aMCS) are introduced. However, the seman-
tics of aMCS is highly operational, which makes it rather difficult to see how the declarative notion
of diagnosis could be reasonably extended to this setting.

Jin, Wang, and Wen (2012) developed a framework for possibilistic reasoning in MCS termed
poss-MCS where each context is a possibilistic logic program and information exchange is real-
ized using possibilistic bridge rules. Intuitively, every (bridge) rule of a possibilistic context is an
ordinary (bridge) rule that has an associated degree of necessity α ∈ [0, 1]. Based on those ne-
cessity degrees, possibilistic (local) models and possibilistic equilibria can be defined. Although
this potentially hints at using possibilistic equilibria for inconsistency resolution, it is shown that
every possibilistic equilibrium is an ordinary equilibrium. Consequently, the notion of possibilistic
equilibrium cannot remedy the absence of an ordinary equilibrium.

7.2.6 OTHER KR FORMALISMS

Clearly, the use of preferences to resolve inconsistency has been suggested and elaborated for rule-
based systems and knowledge-exchange systems in numerous works before. We briefly mention
here two, but note that they are only remotely related to MCS.
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Balduccini and Gelfond (2003) extended the ASP-based language A-Prolog with consistency-
restoring (CR) rules. Such rules are normally not applicable, but if the head restores consistency of
an otherwise inconsistent ASP program, then a rule may become applicable. The semantics of CR-
Prolog is given via a translation to abductive logic programs (cf. Kakas, Kowalski, & Toni, 1992)
and takes a ranking over the CR rules into account. We note that consistency-restoring rules are
similar in behavior to making a bridge rule condition-free. Hence, the diagnoses of an MCS under
a specifically crafted preference order are capable of capturing the semantics of CR rules in certain
cases.

Peer-to-peer data integration systems, e.g. by Calvanese et al. (2004), allow for dynamically
changing the data integration scenario in which peers can enter or leave the system anytime. An au-
tomatic approach for reasoning with inconsistent knowledge in a peer-to-peer system was presented
by Binas and McIlraith (2008) where knowledge from other peers is ranked according a prefer-
ence order. A semantics is given in terms of extensions of a Dung-style abstract argumentation
framework (Dung, 1995), which designates formulas that are “distributed entailed”. In principle,
preference orders over diagnoses of an MCS can be used to simulate the ranking of formulas that
occur in the head of bridge rules, yet this approach is limited to contexts where a notion of peer
support can be defined and successfully incorporated into the preference order.

8. Conclusion

In this work, we have addressed the problem of identifying and selecting those repairs of an incon-
sistent Multi-Context System (MCS) which are most preferred. In general, there can be by far too
many possible repairs (also called diagnoses) such that they can all be manually inspected and a
“best one” selected by hand. Supporting a preference mechanism to select appealing diagnoses is
therefore vital for inconsistency management in MCS. To identify and select among all diagnoses of
an MCS the most preferred ones, we have considered filters, which allow to discard diagnoses that
do not fulfill certain criteria, and preference orders, which allow to compare diagnoses. As MCS
are a flexible framework for interlinking information from heterogeneous formalisms in different
application contexts, in this spirit the user should have a choice for the formalism to specify both
types of preferences.

To achieve this, we followed an internalization approach: if the required conditions or pref-
erences can be expressed via a context of an MCS, then they can be employed for the selection
of preferred diagnoses, where in principle any (abstract) context logic may be used. To this end,
several techniques for meta-reasoning about diagnoses in MCS have been developed which trans-
form a given MCS M and a filter (resp., preference order) into an MCS M ′ such that the diagnoses
of M ′ correspond one-to-one to the filtered (resp., most-preferred) diagnoses of M . We first pre-
sented filters and preference orders on diagnoses in their most general form, which allows to capture
well-known formalisms for preferences specification like CP-nets (Boutilier et al., 2004). We then
presented an approach at meta-reasoning where a direct encoding of bridge rule modifications al-
lows for perfect observation. The approach requires some enhanced notions of diagnosis, namely
diagnoses where some bridge rules are protected and diagnoses where some bridge rules are con-
sidered to be of higher priority than the rest. An analysis of the computational complexity of these
notions revealed that (subset-)minimal diagnoses with protected bridge rules have the same com-
plexity as (subset-)minimal diagnoses; prioritized-minimal diagnoses have the same complexity, but
are not sufficiently strong to characterize the most-preferred diagnoses in general. The respective
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MCS M and . . . Transformation Size Diagnosis notion Complexity

filter f Mf (Def. 13) linear D±m(Mf , brP ) DP
i

total pref. order � Mpl� (Def. 16) exponential D±m(Mpl�, brP , brH) DP
i

preference order � M� (Def. 17) linear D±m,tmax
(M�, brP , brH) ΠP

i+1

Table 2: Overview of the meta-reasoning transformations to select filtered and most-preferred di-
agnoses. Size is in terms of |br(M)|, and complexity wrt. context complexity of M if

CC(M) = ΣP
i , i ≥ 1, and deciding f(D)

?
= 1 resp. D ≺ D′ is in CC(M).

notion are mpm-diagnoses, which have higher complexity than subset-minimal diagnoses. On the
other hand, identifying most-preferred diagnoses is as hard as identifying mpm-diagnoses; hence
our meta-reasoning approach is worst-case optimal from a complexity point of view. Table 2 gives
an overview of the developed meta-reasoning techniques and their respective overall complexities.

8.0.1 OUTLOOK

Regarding future work, some issues are still open. First, we currently allow arbitrary preferences
on diagnoses, but these preferences cannot take the behavior of the repaired MCS into account. For
example, a diagnosis of the hospital MCS might be less preferred if vital information is “lost” due
to the diagnosis, e.g., a patient having some illness is known to the context with patient data, but
the medication context suggests no treatment for the patient. In this case, the required preference
cannot be defined on sets of bridge rules alone, but one needs to take the resulting equilibrium into
account. In principle, the meta-reasoning transformation presented here can be extended to consider
also beliefs that result from the witnessing equilibrium, e.g. by adding protected bridge rules from
all contexts of the original MCS to the observer context. Since a diagnosis possibly admits multiple
equilibria, a correct encoding is neither obvious nor is it independent of the formalization of said
preferences.

Another issue concerns an implementation of the presented transformations as well as an imple-
mentation of the advanced notions for diagnosis selection. Due to our complexity results, one may
in principle exploit the implementation of subset-minimal diagnoses in the MCS-IE tool by Bögl
et al. (2010) and Eiter et al. (2014). The latter is based on encoding the diagnoses of an MCS to an-
swer sets of a HEX-program as in the work of Eiter et al. (2010). HEX-programs extend ASP with an
API-style interface to external information; this interface can be exploited to model the acceptabil-
ity function of a range of context logics. As the encoding represents the removal resp. modification
of bridge rules by designated atoms (similar as in Lemma 4), it can be adapted to leave protected
bridge rules untouched; consequently, the diagnoses with protected bridge rules, and by the sys-
tem’s filtering the subset-minimal such diagnoses can be computed. Combined with our polynomial
reductions for all but mpm-diagnoses to subset-minimal diagnoses, we can get an implementation
of all advanced notions of diagnosis, except for mpm-diagnoses; moreover, even a distributed eval-
uation method (Salcher, 2016), based on the results by Dao-Tran, Eiter, Fink, and Krennwallner
(2015) can be imagined. Practical restrictions and particular instantiations of the context logics will
allow for additional optimizations, which however we did not consider in this foundational analysis
of the problems. Indeed, such restrictions may also lower the complexity. For example, total prefer-
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ence orders potentially warrant this, as on the one hand, for such orders the computationally easier
notion of prioritized-minimal diagnoses is sufficient to select the most-preferred diagnoses, and on
the other hand, the hardness results for general preference orders rely on a non-total preference
order. Further work is needed to refine the picture in this regard.
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Appendix A. Proofs

A.1 Proofs of Section 3

Proof of Proposition 2. We first show that DN (M) = D±�N (M). We write down DN (M) in set-
notation and obtain:

DN (M) = {D ∈ D±(M) | @D′ ∈ D±(M) : N |= D′ - D ∧ ¬(N |= D - D′)}
= {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬N |= D′ - D ∨N |= D - D′}

Regarding D±�N (M) we have that:

D±�N (M) = {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬(D′ -N D ∧D 6-N D′ ∧D′ 6= D)}

= {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬(N |=D′-D ∧ ¬N |=D-D′ ∧D′ 6=D)}
= {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬N |= D′ - D ∨N |= D - D′ ∨D′ = D}

It remains to show that given any D,D′ ∈ D±(M), the following two formulas are equivalent:

¬N |= D′ - D ∨N |= D - D′ (15)

¬N |= D′ - D ∨N |= D - D′ ∨D′ = D (16)

Clearly, (15) implies (16), it thus remains to show that (16) implies (15). The latter clearly holds if
¬N |= D′ - D holds or N |= D - D′ holds. Therefore, it only remains to show that in the case
where both do not hold, (15) is implied by (16): from N |= D′ - D and ¬N |= D - D′ follows
D′ = D, hence by N |= D′ - D it then follows that N |= D - D′, i.e., (15) is satisfied in this
case. Consequently, (16) implies (15) and thus, both conditions are equivalent. Therefore, it holds
that DN (M) = D±�N (M).

It then follows trivially from the definitions of D±ird (M,N) and D±
m,�N (M) that they are the

same, becauseD±ird (M,N) is the set of⊆-minimal diagnoses ofD±�N (M) whileD±
m,�N (M) is the

set of ⊆-minimal diagnoses of DN (M).
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A.2 Proofs of Section 4

The following lemma shows that the applicable bridge rules of M under a diagnosis (D1, D2)
add exactly those knowledge-base elements that are also added under the corresponding diagnosis
(d1(D1), d2(D2) ∪ K) of Mmr(θ,Kp), where K ⊆ Kp is arbitrary.

Lemma 6. Let M be an MCS and Mmr(θ,Kp) be a meta-reasoning encoding wrt. θ and Kp. Fur-
thermore, let D1, D2 ⊆ br(M), let K ⊆ Kp, let S = (S1, . . . , Sn) be a belief state of M , and
let S′ = (S1, . . . , Sn, Sn+1) be a belief state of Mmr(θ,Kp) where Sn+1 = {uncondr | r ∈
D2} ∪ {removedr | r ∈ D1}. Then, for all 1 ≤ i ≤ n, {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)} =
{ϕ (r) | r ∈ app(br i(M

mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′)}.

Proof. Let D1, D2 ⊆ br(M), let K ⊆ Kp, let S = (S1, . . . , Sn) be a belief state of M , and
let S′ = (S1, . . . , Sn, Sn+1) be a belief state of Mmr(θ,Kp) where Sn+1 = {uncondr | r ∈
D2} ∪ {removedr | r ∈ D1}. Furthermore, let i be arbitrary such that 1 ≤ i ≤ n holds.
We show that {ϕ (r) | r ∈ app(br i(M

mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′)} = {ϕ (r) | r ∈
app(br i(M [D1, D2]), S)} holds.

“⊇”: Let s ∈ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}. Then s = ϕ (r) for some bridge
rule r such that either r ∈ br(M) \ D1 and S r, or r = cf (r2) where r2 ∈ D2. In the for-
mer case, consider the bridge rule r1 of form (7) wrt. r. By construction, body(r1) = body(r) ∪
{not (n+1 : removedr)} and ϕ (r1) = ϕ (r). Since r /∈ D1, removedr /∈ Sn+1, and since
S and S′ agree on Si for i ∈ {1, . . . , n}, i.e., S ={1,...,n} S

′, it follows that S′ r1. Therefore
ϕ (r1) = ϕ (r) = s ∈ {ϕ (r) | r ∈ app(br i(M

mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′)}. In the lat-
ter case, where r = cf (r2) and r2 ∈ D2 hold, observe that r2 ∈ D2 implies that uncondr2 ∈
Sn+1. Consider the bridge rule r′2 of form (8) wrt. r2 and observe that ϕ (r′2) = ϕ (r2) = s
while body(r′2) = {(n+1 : uncondr2)}. Since uncondr2 ∈ Sn+1, it holds that S′ r′2, hence
s ∈ {ϕ (r) | r ∈ app(br i(M

mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′)}. Thus it follows that {ϕ (r) |
r ∈ app(br i(M [D1, D2]), S)} ⊆ {ϕ (r) | r ∈ app(br i(M

mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′)}.
“⊆”: Let s ∈ {ϕ (r) | r ∈ app(br i(M

mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′)}. Then there ex-
ists some r ∈ app(br i(M

mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′) such that s = ϕ (r). Note that r
either is of form (7) or of form (8). In the former case, it holds that S′ r and removedr1 /∈ Sn+1

where r1 ∈ br i(M) and r is the bridge rule of form (7) wrt. r1. Since S and S′ agree on all belief
sets from S1 to Sn, i.e., S ={1,...,n} S

′, and body(r) = body(r1) ∪ {not (n+1 : removedr)},
it holds that S r. Since removedr1 /∈ Sn+1 it furthermore holds that r1 /∈ D1. This implies
that r1 ∈ br i(M [D1, D2]) and consequently it holds that r1 ∈ app(br i(M [D1, D2]), S), thus
s = ϕ (r) = ϕ (r1) ∈ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}. If r is of form (8), body(r) =
{(n+1 : uncondr2)} where r2 ∈ br i(M) and r is the bridge rule of form (8) wrt. r2. Since r ∈
app(br i(M

mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′) and r /∈ d2(D2) ∪ K, it follows that S′ r, hence
uncondr2 ∈ Sn+1 and thus r2 ∈ D2. Therefore, it holds that cf (r2) ∈ app(br i(M [D1, D2]), S)
and consequently ϕ (r2) = ϕ (r) = s ∈ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}. In both
cases it holds that {ϕ (r) | r ∈ app(br i(M

mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′)} ⊆ {ϕ (r) | r ∈
app(br i(M [D1, D2]), S)}.

The next lemma shows that every protected diagnosis of a meta-reasoning MCS is exhibited in
the belief set of the observation context of every witnessing equilibrium of said diagnosis.
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Lemma 7. Let M = (C1, . . . , Cn) be an MCS and Mmr(θ,Kp) = (C1, . . . , Cn, Cn+1) be a meta-
reasoning encoding. Given that D1, D2 ⊆ br(M), K ⊆ Kp, and S = (S1, . . . , Sn, Sn+1) is a
belief state of Mmr(θ,Kp),

Sn+1 ∈ ACCn+1(kbn+1 ∪ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S)})

holds iff Sn+1 = {uncondr | r ∈ D2} ∪ {removedr | r ∈ D1} and θ(D1, D2,K) holds.

Proof. By definition of ACCn+1 (cf. Definition 12)

Sn+1 ∈ ACCn+1(kbn+1 ∪ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S)})

holds iff Sn+1 = {removedr | r ∈ R1} ∪ {uncondr | r ∈ R2} and θ(R1, R2, R3) is true, where

R1 = {r ∈ br(M) | not removedr /∈ H},
R2 = {r ∈ br(M) | uncondr ∈ H},
R3 = {r ∈ Kp | ϕ (r) ∈ H}, and

H = {ϕ (r) | r ∈ app(brn+1(Mmr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S)}.

To prove this lemma, it therefore suffices to show that R1 = D1, R2 = D2, and R3 = K.
Consider the set B of bridge rules of context Cn+1 in the MCS resulting from the application of

the diagnosis:

B = brn+1(Mmr(θ,Kp)[d1(D1), d2(D2) ∪ K])

=
(

brn+1(Mmr(θ,Kp)) \ d1(D1)
)
∪ cf

(
d2(D2) ∪ K

)
=
((
d1(br(M)) ∪ d2(br(M)) ∪ Kp

)
\ d1(D1)

)
∪ cf

(
d2(D2) ∪ K

)
.

Observe that every bridge rule r ∈ B is such that either body(r) = {⊥} or body(r) = {>}. Hence,
for any belief state S the set of applicable bridge rules, call it Bapp , is exactly the set of rules whose
body is >. Formally,

Bapp = {r ∈ B | body (r) = {>}} = app(brn+1(Mmr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S).

Recall that r ∈ d1(br(M)) ∪ d1(D1) ∪ cf
(
d2(D2) ∪ K

)
implies that body(r) = {>}, while

r ∈ d2(br(M)) ∪ Kp implies that body(r) = {⊥}. Therefore,

Bapp = d1(br(M)) \ d1(D1) ∪ cf
(
d2(D2) ∪ K

)
and consequently it holds for the set H of heads of applicable bridge rules that

H = {ϕ (r) | r ∈ app(brn+1(Mmr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S)}
= {ϕ (r) | r ∈ Bapp}
= {ϕ (r) | r ∈

(
d1(br(M)) \ d1(D1) ∪ cf (d2(D2) ∪ K)

)
}

= {not removedr | r ∈ br(M) \D1} ∪ {uncondr | r ∈ D2} ∪ {ϕ (r) | r ∈ K}.

Note that the heads of brn+1 are unique, i.e., for all r 6= r′, r, r′ ∈ brn+1 holds ϕ (r) 6= ϕ (r′).
This is because the bridge rules r of Kp all have unique head formulas ϕ (r) and the remaining
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bridge rules of brn+1 also have unique heads. Since the heads of brn+1 are unique, it holds for
any rK ∈ Kp and r ∈ br(M) that uncondr 6= ϕ (rK) 6= not removedr and it also holds for any
K′ ⊆ Kp that the heads of K′ are unique. Consequently, it holds that

R1 = {r ∈ br(M) | not removedr /∈ H} = {r ∈ br(M) | r ∈ D1} = D1

R2 = {r ∈ br(M) | uncondr ∈ H = {r ∈ br(M) | r ∈ D2} = D2

R3 = {r ∈ Kp | ϕ (r) ∈ H} = {r ∈ Kp | r ∈ K} = K.

Since it only remained to show that R1 = D1, R2 = D2, and R3 = K, the lemma is therefore
proven.

Proof of Proposition 3. (1) Since Sn+1 = {uncondr | r ∈ D2} ∪ {removedr | r ∈ D1} and
S′ = (S1, . . . , Sn, Sn+1), all pre-conditions of Lemma 7 and Lemma 6 are satisfied; hence
we conclude the following.

By Lemma 7, θ(D1, D2,K) holds iff

Sn+1 ∈ ACCn+1

(
kbn+1

∪ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′)}
)
. (17)

By Lemma 6, for all 1 ≤ i ≤ n holds

{ϕ (r) | r ∈ app(br i(M
mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′)}

= {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}.

which implies that for all 1 ≤ i ≤ n it holds that

ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′))})

= ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}).

This in turn implies that for all 1 ≤ i ≤ n, it holds that

Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′))})

iff Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}). (18)

From (18) and (17) we therefore obtain that: θ(D1, D2,K) holds and for all 1 ≤ i ≤ n it
holds that Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S) if and only if for all
1 ≤ j ≤ n+ 1 it holds that

Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
mr(θ,Kp)[d1(D1), d2(D2) ∪ K]), S′))}).

This is equivalent to: θ(D1, D2,K) and S ∈ EQ(M [D1, D2]) hold iff it holds that S′ ∈
EQ(Mmr(θ,Kp)[d1(D1), d2(D2) ∪ K]).

(2) This is a direct consequence of (1) and the fact that a diagnosis implies the existence of a
witnessing equilibrium and vice versa, i.e., (D1, D2) ∈ D±(M) iff there exists a belief state
S ∈ EQ(M [D1, D2]), for any M,D1, D2, and S. Thus
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(D1, D2) ∈ D±(M) and θ(D1, D2,K) hold
iff θ(D1, D2,K) and (S1, . . . , Sn) ∈ EQ(M [D1, D2]) hold
iff (by (1)) (S1, . . . , Sn, Sn+1) ∈ EQ(Mmr(θ,Kp)[d1(D1), d2(D2) ∪ K]) holds
iff (d1(D1), d2(D1) ∪ K) ∈ D±(Mmr(θ,Kp)) holds.

It remains to show that (d1(D1), d2(D1)∪K) ∈ D±(Mmr(θ,Kp)) iff (d1(D1), d2(D1)∪K) ∈
D±(Mmr(θ,Kp), brP ). This follows from (d1(D1)∪d2(D2)∪K)∩brP = ∅ (see Definition 12)
and Proposition 1, which shows that D±(Mmr(θ,Kp), brP ) ⊆ D±(Mmr(θ,Kp)), i.e, every
diagnosis with protected bridge rules also is a diagnosis.

The following lemma shows that the bridge rules of context Cn+1 in the MCS Mmr(θ,Kp) are
such that for a minimal diagnosis (D1, D2) ∈ D±m(Mmr(θ,Kp), brP ), a bridge rule r with body(r) =
{>} is only contained in D1 (or not modified at all), and a bridge rule r with body(r) = {⊥} is
only contained in D2 (or not modified at all).

Lemma 8. Let Mmr(θ,Kp) be a meta-reasoning encoding with protected bridge rules brP , and let
(D1, D2) ∈ D±m(Mmr(θ,Kp), brP ). Then, for every r ∈ br(Mmr(θ,Kp)) \ brP holds that:

(i) body(r) = {>} implies r /∈ D2 and

(ii) body(r) = {⊥} implies r /∈ D1.

Proof. Since (D1, D2) ∈ D±m(Mmr(θ,Kp), brP ), there exists a witnessing equilibrium
S ∈ EQ(Mmr(θ,Kp)[D1, D2]) of (D1, D2). Since (D1, D2) is a diagnosis with protected bridge
rules, it holds that (D1∪D2)∩brP = ∅, which by construction ofMmr(θ,Kp) implies that r ∈ brn+1.

For a proof by contradiction, we now show the following:

(i) if body(r) = {>} and r ∈ D2 then (D1 \ {r}, D2 \ {r}) ∈ D±(Mmr(θ,Kp), brP );

(ii) if body(r) = {⊥} and r ∈ D1 then (D1 \ {r}, D2) ∈ D±(Mmr(θ,Kp), brP ).

To show that the respective smaller diagnosis admits a witnessing equilibrium it suffices in the fol-
lowing to consider only applicable bridge rules of Cn+1, because it is the only context ofMmr(θ,Kp)

with bridge rules that are not protected.

(i) Case body(r) = {>} and r ∈ D2. Then

ϕ (r) ∈ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,Kp)[D1, D2]), S)}

since cf (r) ∈ app(brn+1(Mmr(θ,Kp)[D1, D2]), S). Now consider (D1 \ {r}, D2 \ {r}) ⊂
(D1, D2) and observe that r ∈ app(brn+1(Mmr(θ,Kp)[D1 \ {r}, D2 \ {r}]), S) since r is
a bridge rule of the modified system and body(r) = {>}. Thus, S ∈ EQ(Mmr(θ,Kp)[D1 \
{r}, D2 \ {r}]) and (D1 \ {r}, D2 \ {r}) ∈ D±(Mmr(θ,Kp), brP ). Note that this reasoning
applies regardless of whether r ∈ D1 holds.

(ii) Case body(r) = {⊥} and r ∈ D1. Then

app(brn+1(Mmr(θ,Kp)[D1 \ {r}, D2]), S) = app(brn+1(Mmr(θ,Kp)[D1, D2]), S)
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since r either is not applicable (left-hand side), or it is not a bridge rule of the modified
MCS (right-hand side). Consequently, S ∈ EQ(Mmr(θ,Kp)[D1 \ {r}, D2]) and therefore
(D1 \ {r}, D2) ∈ D±(Mmr(θ,Kp), brP ).

Each of these statements contradicts that (D1, D2) ∈ D±m(Mmr(θ,Kp), brP ), hence the statement
of the lemma follows.

The following lemma shows that there are no diagnoses in D±m(Mmr(θ,Kp), brP ) other than
those which correspond to diagnoses of M .

Lemma 9. Let M be an MCS and Mmr(θ,Kp) be some meta-reasoning encoding for M . For every
(R1, R2) ∈ D±m(Mmr(θ,Kp), brP ) there exist D1, D2 ⊆ br(M) and K ⊆ Kp such that R1 =
d1(D1) and R2 = d2(D2) ∪ K.

Proof. Recall that brP contains all bridge rules of form (7) and (8), hence the only bridge rules not
in brP are those of brn+1, because brMmr(θ,Kp) = brP ∪ brn+1. Since brn+1 = d1(br(M)) ∪
d2(br(M)) ∪ Kp, it follows directly that for every (R1, R2) ∈ D±m(Mmr(θ,Kp), brP ) there exist
D1, D

′
1, D2, D

′
2 ⊆ br(M) and K,K′ ⊆ Kp such that R1 = d1(D1) ∪ d2(D′1) ∪ K′ and R2 =

d1(D′2) ∪ d2(D2) ∪ K. Observe that for all r ∈ d2(D′1) ∪ K′ it holds that body(r) = {⊥},
hence by Lemma 8 it follows that d2(D′1) ∪ K′ = ∅. Furthermore, it holds for all r ∈ d1(D′2)
that body(r) = {>}, hence by Lemma 8 it follows that d1(D′2) = ∅. Together, this means that
D′1 = D′2 = K′ = ∅ and therefore it holds for every (R1, R2) ∈ D±m(Mmr(θ,Kp), brP ) that there
exist D1, D2 ⊆ br(M) and K ⊆ Kp such that R1 = d1(D1) and R2 = d2(D2) ∪ K.

Proof of Propostion 4. By definition of minimal diagnosis, it holds that

D±m(Mmr(θ,Kp), brP ) =

{(R1, R2) | (R1, R2) ∈ D±(Mmr(θ,Kp), brP )

and there exists no (R′1, R
′
2) ∈ D±(Mmr(θ,Kp), brP )

such that (R′1, R
′
2) ⊂ (R1, R2)}

By Lemma 9, it holds for every (R1, R2) ∈ D±m(Mmr(θ,Kp), brP ) that there exist D1, D2 ⊆ br(M)
and K ⊆ Kp such that R1 = d1(D1) and R2 = d2(D2) ∪ K, hence we obtain that

D±m(Mmr(θ,Kp), brP ) =

{(d1(D1), d2(D2) ∪ K) | (d1(D1), d2(D2) ∪ K) ∈ D±(Mmr(θ,Kp), brP )

and there exists no (d1(D′1), d2(D′2) ∪ K′) ∈ D±(Mmr(θ,Kp), brP )

such that (d1(D′1), d2(D′2) ∪ K′) ⊂ (d1(D1), d2(D2) ∪ K)

holds for some K,K′ ⊆ Kp}
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By Proposition 3 we know that (d1(D1), d2(D2)∪K) ∈ D±(Mmr(θ,Kp), brP ) holds iff (D1, D2) ∈
D±(M) and θ(D1, D2,K) hold. Therefore we obtain

D±m(Mmr(θ,Kp), brP ) =

{(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(d1(D′1), d2(D′2) ∪ K′)⊂ (d1(D1), d2(D2) ∪ K) and θ(D′1, D
′
2,K′)

holds for some K,K′ ⊆ Kp}.

Since d1 and d2 are bijective, (d1(D′1), d2(D′2)∪K′) ⊂ (d1(D1), d2(D2)∪K) holds iff (D′1, D
′
2∪

K′) ⊂ (D1, D2 ∪ K) holds.

D±m(Mmr(θ,Kp), brP ) =

{(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2 ∪ K′) ⊂ (D1, D2 ∪ K) and θ(D′1, D

′
2,K′)

holds for some K,K′ ⊆ Kp}.

Proof of Proposition 5. From Proposition 4 we know that

D±m(Mmr(θ,Kp), brP ) ={(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±(M), θ(D1, D2,K) holds,[
@(D′1, D

′
2) ∈ D±(M),K′ ⊆ Kp :

(D′1, D
′
2 ∪ K′) ⊂ (D1, D2 ∪ K) and θ(D′1, D

′
2,K′)holds

]
}.

Because θ is functional increasing, it holds that (D′1, D
′
2 ∪ K′) ⊂ (D1, D2 ∪ K) holds iff

(D′1, D
′
2) ⊂ (D1, D2). We therefore obtain that:

D±m(Mmr(θ,Kp), brP ) =

{(d1(D1), d2(D2)∪K) | (D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2)⊂ (D1, D2) and θ(D′1, D

′
2,K′) holds for some K,K′⊆Kp}.

A.3 Proofs of Section 5

A.3.1 PROOFS OF SECTION 5.1

Proof of Theorem 1. Recall that Mf = Mmr(θ,Kp) where θ is defined such that θ(D1, D2, ∅) holds
iff it holds that f(D1, D2) = 1, hence θ is functional increasing. By Lemma 5 it therefore holds
that

D±m(Mmr(θ,Kp), brP ) =

{(d1(D1), d2(D2)∪K) | (D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2)⊂ (D1, D2) and θ(D′1, D

′
2,K′) holds for some K′,K′⊆Kp}
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which in case of Mf becomes

D±m(Mf , brP ) = {(d1(D1), d2(D2)) | (D1, D2) ∈ D±(M) and θ(D1, D2, ∅) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2) ⊂ (D1, D2) and θ(D′1, D

′
2, ∅) holds}.

By definition of Mf it furthermore holds that θ(D1, D2, ∅) holds iff f(D1, D2) = 1, hence we
obtain that

D±m(Mf , brP ) = {(d1(D1), d2(D2)) | (D1, D2) ∈ D±(M) and f(D1, D2) = 1

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2) ⊂ (D1, D2) and f(D′1, D

′
2) = 1}

Applying the definition of minimal-filtered diagnoses, we thus obtain that

D±m(Mf , brP ) = {(d1(D1), d2(D2)) | (D1, D2) ∈ D±m,f (M)}.

Note that this statement is equivalent to

D±m,f (M) = {(D1, D2) | (d1(D1), d2(D2)) ∈ D±m(Mf , brP )}.

A.3.2 PROOFS OF SECTION 5.2

Proof of Lemma 1. “⇒”: Suppose that (D1, D2) � (D′1, D
′
2). We have to show that for every

K ∈ mapg�(D1, D2) it holds that K ∈ mapg�(D′1, D
′
2). Let K ∈ mapg�(D1, D2) hold. Then

it follows by definition that K = g(D′′1 , D
′′
2) for some (D′′1 , D

′′
2) ∈ 2br(M) × 2br(M). In the

case that (D′′1 , D
′′
2) = (D1, D2) it follows from the reflexivity of � that (D′′1 , D

′′
2) � (D′1, D

′
2)

and thus by definition of mapg�(D′1, D
′
2) it holds that K ∈ mapg�(D′1, D

′
2). In the case that

(D′′1 , D
′′
2) 6= (D1, D2) it follows by the definition of mapg�(D1, D2) that (D′′1 , D

′′
2) � (D1, D2).

Since (D1, D2) � (D′1, D
′
2) and � is transitive, it follows that (D′′1 , D

′′
2) � (D′1, D

′
2) and con-

sequently, it holds that K ∈ mapg�(D′1, D
′
2). Thus for any K ∈ mapg�(D1, D2) it holds that

K ∈ mapg�(D′1, D
′
2), i.e., mapg�(D1, D2) ⊆ mapg�(D′1, D

′
2).

“⇐”: Suppose that mapg�(D1, D2) ⊆ mapg�(D′1, D
′
2). We have to show that (D1, D2) �

(D′1, D
′
2). By reflexivity of � it holds that g(D1, D2) ∈ mapg�(D1, D2), thus g(D1, D2) ∈

mapg�(D1, D2) and consequently g(D1, D2) ∈ mapg�(D′1, D
′
2). By definition of mapg�(D′1, D

′
2)

it then follows that (D1, D2) � (D′1, D
′
2).

The following lemma shows that the set D±m(Mpl�, brP ) of minimal diagnoses with protected
bridge rules ofMpl� corresponds to those diagnoses ofM which are at the same time, preferred ac-
cording to� and⊆-minimal. These diagnoses not yet correspond to minimal�-preferred diagnoses
since preference among ⊆-incomparable diagnoses is not captured by D±m(Mpl�, brP ).

Lemma 10. Given an MCS M and a preference � on its diagnoses, it holds that

D±m(Mpl�, brP ) = {(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±(M)∧
K = mapg�(D1, D2) ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2)� (D1, D2)∧ (D′1, D

′
2)⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2)}.
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Proof. By Proposition 4 it holds that:

D±m(Mmr(θ,Kp), brP ) =

{(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(d1(D′1), d2(D′2) ∪ K′) ⊂ (d1(D1), d2(D2) ∪ K) and

θ(D′1, D
′
2,K′) holds for some K′ ⊆ Kp}

= {(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±(M) ∧ θ(D1, D2,K) ∧ ∀(D′1, D′2) ∈ D±(M):(
∃K′ : θ(D′1, D′2,K′)∧

(d1(D′1), d2(D′2) ∪ K′) ⊆ (d1(D1), d2(D2) ∪ K)
)

⇒ (d1(D′1), d2(D′2) ∪ K′) = (d1(D1), d2(D2) ∪ K)}

Next we substitute θ by its definition, i.e., θ(D1, D2,K) iff mapg�(D1, D2) = K.

D±m(Mmr(θ,Kp), brP ) = {(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±(M)

∧mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M):(
∃K′ : mapg�(D′1, D

′
2) = K′∧

(d1(D′1), d2(D′2) ∪ K′) ⊆ (d1(D1), d2(D2) ∪ K)
)

⇒ (d1(D′1), d2(D′2) ∪ K′) = (d1(D1), d2(D2) ∪ K)}

Since d1 and d2 both are bijective, mapg�(D1, D2) = K, and mapg�(D′1, D
′
2) = K′, it follows that

(d1(D′1), d2(D′2) ∪ K′) = (d1(D1), d2(D2) ∪ K) holds iff (D′1, D
′
2) = (D1, D2). Hence,

D±m(Mmr(θ,Kp), brP ) = {(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±(M)

∧mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M):(
∃K′ : (mapg�(D′1, D

′
2) = K′∧

(d1(D′1), d2(D′2) ∪ K′) ⊆ (d1(D1), d2(D2) ∪ K)
)

⇒ (D1, D2) = (D′1, D
′
2)}

Towards the next step, we need to show that the following holds true for (D1, D2) ∈ D±(M),
(D′1, D

′
2) ∈ D±(M), and mapg�(D1, D2) = K:(

mapg�(D′1, D
′
2) = K′ ∧ (d1(D′1), d2(D′2) ∪ K′) ⊆ (d1(D1), d2(D2) ∪ K)

)
⇒ (D1, D2) = (D′1, D

′
2) (19)

iff(
(D′1, D

′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2) (20)

Observe that (d1(D′1), d2(D′2) ∪K′) ⊆ (d1(D1), d2(D2) ∪K) holds iff (D′1, D
′
2) ⊆ (D1, D2) and

K′ ⊆ K both hold. By Lemma 1 it further holds that K′ = mapg�(D′1, D
′
2) ⊆ mapg�(D1, D2) = K

iff (D′1, D
′
2) � (D1, D2). Therefore, (19) holds iff (20) holds. After substitution, it therefore holds
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that:

D±m(Mpl�, brP ) = {(d1(D1), d2(D2)∪K) | (D1, D2) ∈ D±(M)

∧mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2)� (D1, D2)∧ (D′1, D

′
2)⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2)}

Proof of Theorem 2. In the following, let θ, Kp, and mapg� be according to Mpl� = Mmr(θ,Kp).
“⇒”: Let (R1, R2) ∈ D±(Mpl�, brP , brH), i.e., (R1, R2) ∈ D±m(Mpl�, brP ) and for all

(R′1, R
′
2) ∈ D±m(Mpl�, brP ) holds that (R′1, R

′
2) ⊆brH (R1, R2) ⇒ (R′1, R

′
2) =brH (R1, R2).

By Lemma 10 it holds that (R1, R2) = (d1(D1), d2(D2) ∪ K) where K = mapg�(D1, D2) and
(D1, D2) ∈ D±(M). To show that (D1, D2) ∈ D±m,�(M), we have to show that (D1, D2) is
�-preferred and subset minimal among all �-preferred diagnoses. Assume that (D1, D2) is not �-
preferred. Then by (4) there exists a diagnosis (D′1, D

′
2) ∈ D±(M) such that (D′1, D

′
2) � (D1, D2)

and (D1, D2) 6� (D′1, D
′
2) hold. Let mapg�(D′1, D

′
2) = K′ and mapg�(D1, D2) = K. Since it holds

that (D′1, D
′
2) � (D1, D2) it follows from Lemma 1 that K′ ⊆ K. From (D1, D2) 6� (D′1, D

′
2)

it also follows by the same lemma that K 6⊆ K′ holds and thus K′ ⊂ K holds. This means that
(R′1, R

′
2) = (d1(D′1), d2(D′2) ∪ K′) ⊂brH (d1(D1), d2(D2) ∪ K) = (R1, R2) holds.

Now suppose (R′1, R
′
2) ∈ D±m(Mpl�, brP ) holds; then (R1, R2) ∈ D±(Mpl�, brP , brH)

contradicts that (R′1, R
′
2) ⊂brH (R1, R2). On the other hand, (R′1, R

′
2) /∈ D±m(Mpl�, brP ) im-

plies that some (R′′1 , R
′′
2) ∈ D±m(Mpl�, brP ) exists with (R′′1 , R

′′
2) ⊂ (R′1, R

′
2), i.e., there exist

D′′1 , D
′′
2 ⊆ br(M) such that (D′′1 , D

′′
2) � (D′1, D

′
2) � (D1, D2) andK′′ ⊆ K′ ⊂ K both hold where

K′′ = mapg�(D′′1 , D
′′
2), R′′1 = d1(D′′1), and R′′2 = d2(D′′2) ∪ K′′. Since K′′ ⊂ K it therefore holds

that (R′′1 , R
′′
2) ⊂brH (R1, R2) and together with (R′′1 , R

′′
2) ∈ D±m(Mpl�, brP ) this contradicts that

(R1, R2) ∈ D±(Mpl�, brP , brH). Since every case yields a contradiction, it therefore follows that
there exists no such (D′1, D

′
2), i.e., (D1, D2) indeed is a �-preferred diagnosis.

It remains to show that (D1, D2) is subset-minimal among all �-preferred diagnoses. Towards
contradiction, assume there exists (D′1, D

′
2) ∈ D±�(M) such that (D′1, D

′
2) ⊂ (D1, D2). We distin-

guish on how � relates (D1, D2) and (D′1, D
′
2).

• case (D1, D2) � (D′1, D
′
2) ∧ (D′1, D

′
2) � (D1, D2): since (R1, R2) ∈ D±m(Mpl�, brP ), it

holds by Lemma 10 that (D′1, D
′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2) ⇒ (D′1, D

′
2) =

(D1, D2) which directly contradicts that (D′1, D
′
2) ⊂ (D1, D2).

• case (D1, D2) � (D′1, D
′
2)∧(D′1, D

′
2) 6� (D1, D2): in this case, (D′1, D

′
2) is not�-preferred,

because (D1, D2) ≺ (D′1, D
′
2). Hence, it contradicts that (D′1, D

′
2) ∈ D±�(M).

• case (D1, D2) 6� (D′1, D
′
2) ∧ (D′1, D

′
2) � (D1, D2): this case is analogous to the first one,

i.e., (R1, R2) ∈ D±m(Mpl�, brP ) contradicts that (D′1, D
′
2) � (D1, D2) and (D′1, D

′
2) ⊂

(D1, D2) both hold.

• case (D1, D2) 6� (D′1, D
′
2) ∧ (D′1, D

′
2) 6� (D1, D2): this case contradicts with � being total.

Consequently, there exists no (D′1, D
′
2) ∈ D±�(M) such that (D′1, D

′
2) ⊂ (D1, D2) and therefore it

holds that (D1, D2) ∈ D±m,�(M).

401



EITER & WEINZIERL

“⇐”: Let (D1, D2) ∈ D±m,�(M). We have to show that

(d1(D1), d2(D2) ∪ K) ∈ D±(Mpl�, brP , brH)

holds with mapg�(D1, D2) = K. By definition, it holds that

D±(Mpl�, brP , brH) = {D ∈ D±m(Mpl�, brP ) | ∀D′ ∈ D±m(Mpl�, brP ) :

D′ ⊆brH D ⇒ D′ =brH D}.

While by Lemma 10 it holds that:

D±m(Mpl�, brP ) = {(d1(D1), d2(D2) ∪ K) | (D1, D2) ∈ D±(M)∧
K = mapg�(D1, D2) ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2)� (D1, D2)∧ (D′1, D

′
2)⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2)}.

Observe that brH = Kp and
(
d1(br(M)) ∪ d2(br(M))

)
∩ Kp = ∅, hence (d1(D1), d2(D2) ∪

K) ⊆brH (d1(D′1), d2(D′2) ∪ K′) holds iff K ⊆ K′ holds.
Therefore, it also holds that:

D±(Mpl�, brP ) = {(d1(D1), d2(D2) ∪ K) ∈ D±m(Mpl�, brP ) | (21)

∀(D′1, D′2) ∈ D±(M) :[
∀(D′′1 , D′′2) ∈ D±(M) :

(
(D′′1 , D

′′
2) � (D′1, D

′
2)

∧ (D′′1 , D
′′
2) ⊆ (D′1, D

′
2)
)
⇒ (D′1, D

′
2) = (D′′1 , D

′′
2)
]

⇒
(
mapg�(D′1, D

′
2) ⊆ K ⇒ K = mapg�(D′1, D

′
2)
)
}.

First, we show that (d1(D1), d2(D2) ∪ K) ∈ D±m(Mpl�, brP ), which by Lemma 10 holds
iff the following holds: (D1, D2) ∈ D±(M) ∧ mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2). Since it holds that

(D1, D2) ∈ D±m,�(M), it also holds that (D1, D2) ∈ D±(M), and K = mapg�(D1, D2) by
construction.

It remains to show that ∀(D′1, D′2) ∈ D±(M) :
(
(D′1, D

′
2) � (D1, D2)∧(D′1, D

′
2) ⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2). Assume towards contradiction that there exists some (D′1, D

′
2) ∈

D±(M) such that (D′1, D
′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2) and (D1, D2) 6= (D′1, D

′
2), i.e.,

it holds for (D′1, D
′
2) that (D′1, D

′
2) ⊂ (D1, D2) ∧ (D′1, D

′
2) � (D1, D2). We distinguish whether

(D1, D2) � (D′1, D
′
2) also holds: if (D1, D2) � (D′1, D

′
2) holds, (D′1, D

′
2) is �-preferred since

(D1, D2) is. Since (D1, D2) ∈ D±m,�(M), (D1, D2) is subset-minimal among all�-preferred diag-
noses, which contradicts that (D′1, D

′
2) ⊂ (D1, D2) holds. In the case that (D1, D2) 6� (D′1, D

′
2), it

holds that (D1, D2) 6∈ D±�(M), since it holds that (D′1, D
′
2) � (D1, D2)∧ (D1, D2) 6= (D′1, D

′
2)∧

(D1, D2) 6� (D′1, D
′
2). This contradicts that (D1, D2) ∈ D±m,�(M). Hence it follows that no such

(D′1, D
′
2) exists. Consequently, it holds that (d1(D1), d2(D2) ∪ K) ∈ D±m(Mpl�, brP ).

According to (21), it remains to show that for all (D′1, D
′
2) ∈ D±(M) it holds that[

∀(D′′1 , D′′2) ∈ D±(M) :
(
(D′′1 , D

′′
2) � (D′1, D

′
2) ∧ (D′′1 , D

′′
2) ⊆ (D′1, D

′
2)
)

⇒ (D′1, D
′
2) = (D′′1 , D

′′
2)
]
⇒
(
mapg�(D′1, D

′
2) ⊆ K ⇒ K = mapg�(D′1, D

′
2)
)
.
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Towards contradiction, assume there exists (D′1, D
′
2) ∈ D±(M) such that ∀(D′′1 , D′′2) ∈ D±(M) :(

(D′′1 , D
′′
2) � (D′1, D

′
2) ∧ (D′′1 , D

′′
2) ⊆ (D′1, D

′
2)
)
⇒ (D′1, D

′
2) = (D′′1 , D

′′
2) holds and also

mapg�(D′1, D
′
2) ( K holds. Since mapg�(D′1, D

′
2) ( K, it follows by Lemma 1 that (D′1, D

′
2) �

(D1, D2) and (D1, D2) 6� (D1
′, D2

′) both hold, which implies (D1, D2) /∈ D±m,�(M), in contra-
diction to the assumption. Therefore, no such (D′1, D

′
2) can exist.

This proves that (d1(D1), d2(D2) ∪ K) ∈ D±(Mpl�, brP , brH), which completes the proof.

A.3.3 PROOFS OF SECTION 5.3

Proof of Lemma 2. Observe that I is a bijection on {1, . . . , n} which simply renames context iden-
tifiers. Therefore, one can directly conclude that S ∈ EQ(M) holds iff I(S) ∈ EQ(I(M)) holds.
In the following, we show in full detail that this renaming indeed is correct.

Let S = (S1, . . . , Sn) and I(S) = (SI−1(1), . . . , SI−1(n)) = (S′1, . . . , S
′
n). and let 1 ≤

i ≤ n. Note that S ∈ EQ(M) holds iff for all 1 ≤ i ≤ n it holds that Si ∈ ACCi(kbi ∪
app(br i(M), S)); additionally I(S) ∈ EQ(I(M)) holds iff for all 1 ≤ j ≤ n holds Sj ∈
ACCj(kbj∪app(br j(I(M), I(S)). Given that I is bijective and compatible toM , there exists j ∈
{1, . . . , n} for every i ∈ {1, . . . , n} such that j = I(i) and vice versa, i.e., for every j ∈ {1, . . . , n}
exists a i ∈ {1, . . . , n} such that i = I−1(j). We now show that for any 1 ≤ i, j ≤ n such that j =
I(i) it holds that Si ∈ ACCi(kbi∪app(br i(M), S) iff Sj ∈ ACCj(kbj∪app(br j(I(M)), I(S)).
Observe that by construction of I(M) it holds that Si = Sj , ACCi = ACCj , and kbi = kbj .
Hence it suffices to show that app(br i(M), S) = app(br j(I(M)), I(S)). Note that br j(I(M)) =
I(br i(M)), hence there exists a bijection from br j(I(M)) to br i(M), namely I; furthermore I
also maps bijectively each r ∈ br i(M) and every (c : p) ∈ body±(r) to I(r) and (I(c) : p).
Since ϕ (r) = ϕ (I(r)) it suffices to show that p ∈ Sc holds iff p ∈ S′I(c) holds. This is true since
S′I(c) = SI−1(I(c)) = Sc, thus it follows that app(br i(M), S) = app(br j(I(M)), I(S)) which in
turn implies that S ∈ EQ(M) iff I(S) ∈ EQ(I(M)).

From this we also conclude that S ∈ EQ(M [D1, D2]) holds iff I(S) ∈ EQ(I(M [D1, D2]))
holds, because M [D1, D2] is an MCS, hence the above statement also applies to M [D1, D2].

To show that the set of diagnoses of M ⊗M ′ is the product of the set of diagnoses of M and of
M ′, we use the following lemma, which states that if M ′ has no bridge rules, the set of diagnoses
of M coincides with the set of diagnoses of M ⊗M ′.

Lemma 11. Given an MCS M = (C1, . . . , Cn) and an MCS M ′ = (C ′1, . . . , C
′
m) with br(M ′) =

∅. Then for every belief state (S1, . . . , Sn) of M exist belief sets Sn+1, . . . , Sn+m such that
(S1, . . . , Sn+m) ∈ EQ(M ⊗M ′) holds iff (S1, . . . , Sn) ∈ EQ(M) holds.

Proof. Let Mo = M ⊗M ′.
“⇒”: Let S = (S1, . . . , Sn+m) ∈ EQ(M ⊗ M ′) be such that for every 1 ≤ i ≤ n + m

holds Si ∈ ACCi(kbi ∪ app(br i(M
o), S)). Note that by construction of Mo it holds for every

bridge rule r ∈ br i(M
o) with 1 ≤ i ≤ n that (c : p) ∈ body±(r) implies that c ∈ {1, . . . , n}

holds. Hence by br i(M
o) = br i(M) follows that app(br i(M

o), S) = app(br i(M), (S1, . . . , Sn)).
Therefore, for all i ∈ C (M) it holds that Si ∈ ACCi(kbi ∪ app(br i(M), (S1, . . . , Sn))), i.e.,
(S1, . . . , Sn) ∈ EQ(M).

“⇐”: Let S = (S1, . . . , Sn) ∈ EQ(M) hold. Since br(M ′) = ∅, it holds for all n + 1 ≤
j ≤ n + m that br j(M

o) = ∅. Recall that contexts are consistent without bridge rules, i.e.,
there exists S∅j ∈ ACCj(kbj ∪ ∅) for all n + 1 ≤ j ≤ n + m. Consider the belief state S′ =
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(S1, . . . , Sn, S
∅
n+1, . . . , S

∅
n+m) and observe that for all 1 ≤ i ≤ n it holds that app(br i(M

o), S′) =
app(br i(M), S) since br i(M

o) = br i(M). It therefore follows that S′ ∈ EQ(Mo) holds.

Since shifting has no influence on acceptability, we can turn around the above lemma to show
that the set of diagnoses of M ⊗M ′ equals the set of diagnoses of M ′ if br(M) = ∅.

Corollary 3. Given an MCS M = (C1, . . . , Cn) and an MCS M ′ = (C ′1, . . . , C
′
n′) with br(M) =

∅. Then, for every belief state (S′1, . . . , S
′
n′) of M ′ exist belief sets S1, . . . , Sn such that

(S1, . . . , Sn, S
′
1, . . . , S

′
n′) ∈ EQ(M ⊗M ′) holds iff (S′1, . . . , S

′
n′) ∈ EQ(M ′) holds.

Proof. Consider a permutation I ′ that exchanges the positions of contexts ofM andM ′ inM⊗M ′,
formally: let I be the permutation wrt. M ⊗M ′ and recall that I is compatible with M ⊗M ′. Let
I ′ = I−1 and M s = I ′(M ⊗M ′). Note that M s equals M ′ ⊗M , hence by Lemma 2 we obtain
that (S1, . . . , Sn, S

′
1, . . . , S

′
n′) ∈ EQ(M ⊗ M ′) iff I ′((S1, . . . , Sn, S

′
1, . . . , S

′
n′)) ∈ EQ(M s) iff

(S′1, . . . , S
′
n′ , S1, . . . , Sn) ∈ EQ(M ′ ⊗M).

Since br(M) = ∅ it holds by Lemma 11 that for every belief state (S′1, . . . , S
′
n′) of M ′ exist

belief sets Sn′+1, . . . , Sn′+n such that (S′1, . . . , S
′
n′ , Sn′+1, . . . , Sn′+n) ∈ EQ(M ′ ⊗M) holds iff

(S′1, . . . , S
′
n′) ∈ EQ(M ′) holds. In summary, (S1, . . . , Sn, S

′
n+1, . . . , S

′
n+n′) ∈ EQ(M⊗M ′) holds

iff (S′n+1, . . . , S
′
n+n′) ∈ EQ(M ′) holds.

The proof of Proposition 6 makes use of Lemma 4 and Lemma 5 occurring in the appendix of
the work by Eiter et al. (2014) about splitting sets in MCS. For convenience, we recap them here as
well as the definition of a splitting set (which is similar to the notion of a splitting set in answer-set
programming).

Definition 20 (cf. Eiter et al., 2014). A set of contexts U ⊆ C (M) is a splitting set of an MCSM , if
every rule r ∈ br(M) is such that Ch (r) ∈ U satisfies Cb (r) ⊆ U . More formally, U is a splitting
set iff U ⊇

⋃
{Cb (r) | r ∈ br(M), Ch (r) ∈ U}.

Lemma 12 (cf. Eiter et al., 2014). Let U be a splitting set of an MCS M and let R1, R2 ⊆ br(M).
Then, U is also a splitting set of M [R1 ∪ cf (R2)].

Lemma 13 (cf. Eiter et al., 2014). Let M be an MCS, let B be a set of bridge rules compatible
with M , and let U be a splitting set for M [B]. Furthermore, let S = (S1, . . . , Sn) and S′ =
(S′1, . . . , S

′
n) be belief states of M , and let bU ⊆ R ⊆ B. Then, S =U S′ and i ∈ U implies

ACCi(kbi ∪ app(br i(M [B]), S)) = ACCi(kbi ∪ app(br i(M [R]), S′)).

Proof of Proposition 6. W.l.o.g. let M = (C1, . . . , Cn), let M ′ = (C ′1, . . . , C
′
n′), and let Mo =

M ⊗M ′. Observe that by construction, there is no bridge rule whose head belongs to M (resp. M ′)
and whose body contains a belief from M ′ (resp. M ). Consequently, U = {1, . . . , n} and U ′ =
{n + 1, . . . , n + n′} = C (Mo) \ U are both splitting sets of Mo. Let S∅ = (S∅1 , . . . , S

∅
n+n′)

be an equilibrium of Mo[∅], which exists by our assumption that all contexts (of M and M ′) are
consistent without bridge rules; additionally let B = br(Mo) \D1 ∪ cf (D2).

“⇒”: Let (D1, D2) ∈ D±(Mo) hold. Then there exists a belief state S = (S1, . . . , Sn+n′) such
that for every 1 ≤ i ≤ n+ n′ it holds that Si ∈ ACCi(kbi ∪ app(br i(M

o[D1, D2]), S)).
Consider SU = (S1, . . . , Sn, S

∅
n+1, . . . , S

∅
n+n′) and observe that SU =U S; hence by Lemma 13

it follows for all i ∈ U that

ACCi(kbi ∪ app(br i(M
o[B]), S)) = ACCi(kbi ∪ app(br i(M

o[R]), SU ))
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holds for all bU ⊆ R ⊆ B, specifically for R = bU . Note that U,U ′, and bU meant here are relative
to the MCS Mo[B], where by Lemma 12 U and U ′ are also splitting sets of Mo[B]. Consequently,
for all i ∈ U it holds that Si ∈ ACCi(kbi ∪ app(br i(M

o[bU ]), SU )) and for all j ∈ C (Mo) \ U
it holds that S∅j ∈ ACCj(kbj ∪ app(br j(M

o[bU ]), SU )), because br j(M
o[bU ]) = ∅; thus it holds

that SU ∈ EQ(Mo[bU ]). Recall that bU is defined relative to Mo[B], hence bU = br(M) \ (D1 ∩
br(M)) ∪ cf (D2 ∩ br(M)), i.e., for A1 = D1 ∩ br(M) and A2 = D2 ∩ br(M) it holds that
Mo[bU ] = Mo[br(M)\A1∪cf (A2)] and it follows that SU ∈ EQ(Mo[br(M)\A1∪cf (A2)]), i.e.,
it holds that (A1, A2) ∈ D±(Mo[br(M)]). Since Mo[br(M)] = M ⊗M ′[∅], Lemma 11 applies,
i.e., it holds that (S1, . . . , Sn) ∈ EQ(M [A1, D2]) and we conclude that (A1, A2) ∈ D±(M).

The proof that (B1, B2) ∈ D±(M ′) for B1 = D1 ∩ I(br(M ′)) and B2 = D2 ∩ I(br(M ′)) is
analogous; it is based on the belief state SU ′ = (S∅1 , . . . , S

∅
n, Sn+1, . . . , Sn+n′) which is a witness

of (I(B1), I(B2)) ∈ D±(Mo[bU ′ ]); applying Corollary 3 (for (M ⊗M ′)[bU ′ ] = M ⊗M ′[B1, B2])
then yields that (B1, B2) ∈ D±(M ′).

“⇐”: Let (A1, A2) ∈ D±(M) and (B1, B2) ∈ D±(M ′) hold. Then there exists some SA =
(SA1 , . . . , S

A
n ) ∈ EQ(M [A1, A2]) and SB = (SB1 , . . . , S

B
n′) ∈ EQ(M ′[B1, B2]). Consider the

belief state S = (S1, . . . , Sn+n′) such that Si = SAi for 1 ≤ i ≤ n and Sn+j = SBj for 1 ≤ j ≤ n′.
Observe that S is a belief state of the MCS Md = Mo[A1 ∪ I(B1), A2 ∪ I(B2)]. Thus it suffices to
show S ∈ EQ(Md), because this implies that (A1 ∪ I(B1), A2 ∪ I(B2)) ∈ D±(M ⊗M ′).

We first show that for all 1 ≤ i ≤ n it holds that Si ∈ ACCi(kbi ∪ app(br i(M
d), S)).

Let B = br(Md); hence Md = Md[B], and note that U and U ′ are splitting sets of Md[B] by
Lemma 12. Next we consider Md[bU ] (with bU relative to Md) and R = bU . Since Md[R] =
Md[bU ] = (M [A1, A2]⊗M ′[∅]) and SA ∈ EQ(M [A1, A2]), it holds by Lemma 11 that there exist
S′n+1, . . . , S

′
n+n′ such that SM = (S1, . . . , Sn, S

′
n+1, . . . , S

′
n+n′) ∈ EQ(M [A1, A2]⊗M ′[∅]), i.e.,

for all 1 ≤ i ≤ n it holds that Si ∈ ACCi(kbi ∪ app(br i(M
d[R]), SM ))

It holds that SM =U S and bU ⊆ R ⊆ B; hence by Lemma 13 it holds for all 1 ≤ i ≤ n
that ACCi(kbi ∪ app(br i(M

d[B]), S)) = ACCi(kbi ∪ app(br i(M
d[R]), SM )). Consequently, it

holds that Si ∈ ACCi(kbi ∪ app(br i(M
d[B]), S)) for all 1 ≤ i ≤ n.

Second, we show that for all n+ 1 ≤ j ≤ n′ it holds that Sj ∈ ACCi(kbi ∪ app(br i(M
d), S).

Consider Md[bU ′ ] (with bU ′ relative to Md) and R′ = bU ′ . Since Md[R′] = Md[bU ′ ] = M [∅] ⊗
M ′[B1, B2] and SB ∈ EQ(M [B1, B2]) hold, it follows by Corollary 3 that there exist S′1, . . . , S

′
n

such that SM
′

= (S′1, . . . , S
′
n, Sn+1, . . . , Sn+n′) ∈ EQ(M [∅] ⊗M ′[B1, B2]), i.e., for all n + 1 ≤

j ≤ n′ it holds that Sj ∈ ACCi(kbi ∪ app(br i(M
d), SM

′
)). Since it holds that SM

′
=U ′ S and

bU ′ ⊆ R′ ⊆ B, Lemma 13 applies and it follows that for all n + 1 ≤ j ≤ n + n′ it holds that
ACCj(kbj ∪ app(br j(M

d[B]), S)) = ACCj(kbj ∪ app(br j(M
d[R′]), SM

′
)). Consequently, it

holds that Sj ∈ ACCj(kbj ∪ app(br j(M
d[B]), S)) with n+ 1 ≤ j ≤ n+ n′.

In summary, it holds for every 1 ≤ i ≤ n + n′ that Si is accepted, i.e, S ∈ EQ(Md), hence
(A1 ∪ I(A2), B1 ∪ I(B2)) ∈ D±(M ⊗M ′).

Proof of Lemma 3. Observe that 2M = M ⊗M and that 2.R = I(R) where I is the mapping wrt.
M ⊗M . The statement then follows directly from Proposition 6.

Towards proving that D±m,tmax
applied on M� allows to select ⊆-minimal, preferred diagnoses

ofM according to�, we use the following lemmas about the setK(D1, D2). Recall thatK(D1, D2)
is the set of prioritized bridge rules of M� that represent the candidate diagnosis (D1, D2) of M ,
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i.e., K(D1, D2) is as follows:

K(D1, D2) ={in1(r) | r ∈ D1} ∪ {in1(r) | r /∈ D1}∪
{in2(r) | r ∈ D2} ∪ {in2(r) | r /∈ D2}

The next lemma shows that the set K(D1, D2) is unique for every D1, D2 ⊆ br(M).

Lemma 14. Let M� be a clone encoding, D1, D2 ⊆ br(M), and R = K(D1, D2). Then, there
exists no D′1, D

′
2 ⊆ br(M) with (D1, D2) 6= (D′1, D

′
2) such that R = K(D′1, D

′
2).

Proof. Towards contradiction, let (D1, D2) 6= (D′1, D
′
2) be such that K(D1, D2) = K(D′1, D

′
2).

By (D1, D2) 6= (D′1, D
′
2) follows that either D1 6= D′1 or D2 6= D′2. Let D1 6= D′1 and observe

that K(D1, D2) ∩ {in1(r) | r ∈ br(M)} = {in1(r) | r ∈ D1} 6= {in1(r) | r ∈ D′1} =
K(D′1, D

′
2) ∩ {in1(r) | r ∈ br(M)}. Consequently K(D1, D2) 6= K(D′1, D

′
2) which contradicts

the assumption. The case D2 6= D′2 is similar. It therefore follows that for R = K(D1, D2) no
D′1, D

′
2 ⊆ br(M) with (D1, D2) 6= (D′1, D

′
2) exists such that R = K(D′1, D

′
2).

The next lemma shows that two sets K(D1, D2) and K(D′1, D
′
2) are incomparable iff (D1, D2)

is different from (D′1, D
′
2).

Lemma 15. Given Mmr(θ,Kp) and some D1, D2, D
′
1, D

′
2 ⊆ br(M), let R = K(D1, D2) and let

R′ = K(D′1, D
′
2); then R ⊆ R′ or R′ ⊆ R holds iff (D1, D2) = (D′1, D

′
2).

Proof. Let M be an MCS, D1, D2, D
′
1, D

′
2 ⊆ br(M), R = K(D1, D2), and R′ = K(D′1, D

′
2).

Observe that by definition of K it holds that |R| = |R′|. Hence, R ⊆ R′ or R′ ⊆ R only holds
iff R = R′. By Lemma 14 it holds that K is injective, i.e., R = R′ iff (D1, D2) = (D′1, D

′
2).

Consequently, R ⊆ R′ or R′ ⊆ R holds iff (D1, D2) = (D′1, D
′
2).

The following lemma shows the relationship between �-preferred diagnoses of M and the
prioritized-minimal ones of M�.

Lemma 16. Given an MCS M and a preference order �, D ∈ 2br(M) × 2br(M) is �-preferred
iff both (1) t(D) ∈ D±m(M�, brP ) and (2) for every D′ ∈ D±m(M�, brP ) : D′ ⊆brH t(D) ⇒
D′ =brH t(D) hold.

Proof. “⇒”: Let D be �-preferred, then D ∈ D±(M) holds.
We first show that t(D) ∈ D±m(M�, brP ) holds: by Proposition 4 and the definition of M� =
Mmr(θ,Kp) it holds that (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2)∪K(D1, D2)∪{tmax}) ∈ D±(M�, brP )
iff

1. (D1 ∪ 2.D1, D2 ∪ 2.D2) ∈ D±(2M) holds,

2. θ(D1 ∪ 2.D1, D2 ∪ 2.D2,K(D1, D2) ∪ {tmax}) holds, and

3. there exists no (D′1 ∪ 2.D′′1 , D
′
2 ∪ 2.D′′2) ∈ D±(2M) such that (i) (d1(D′1 ∪ 2.D′′1), d2(D′2 ∪

2.D′′2) ∪ K′) ⊂ (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2) ∪ K(D1, D2) ∪ {tmax}) and (ii) θ(D′1 ∪
2.D′′1 , D

′
2 ∪ 2.D′′2 ,K′) holds for some K′ ⊆ Kp.

We show that each of those statements holds:
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1. SinceD ∈ D±(M) holds, it follows from Lemma 3 that (D1∪2.D1, D2∪2.D2) ∈ D±(2M)
holds.

2. Recall that θ(R1, R2, R3) for M� = (2M)mr(θ,Kp) is defined such that it holds if R1 =
D1 ∪ 2.D1, R2 = D2 ∪ 2.D2, and R3 = K(D1, D2) ∪ {tmax}, hence θ(D1 ∪ 2.D1, D2 ∪
2.D2,K(D1, D2) ∪ {tmax}) holds.

3. Towards contradiction, assume that there exists (D′1∪2.D′′1 , D
′
2∪2.D′′2) ∈ D±(2M) andK′ ⊆

Kp such that it holds that (d1(D′1∪2.D′′1), d2(D′2∪2.D′′2)∪K′) ⊂ (d1(D1∪2.D1), d2(D2∪
2.D2)∪K(D1, D2)∪{tmax}) and θ(D′1∪2.D′′1 , D

′
2∪2.D′′2 ,K′) holds. Note that from this it

follows that K′ ⊆ K(D1, D2) ∪ {tmax} and from the definition of θ that K′ ⊆ K(D′1, D
′
2) ∪

{tmax}. Hence by Lemma 15, it follows that (D′1, D
′
2) = (D1, D2). If (D′′1 , D

′′
2) = (D1, D2)

then it holds by definition of θ that tmax ∈ K′, i.e., (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2) ∪
K(D1, D2) ∪ {tmax}) = (d1(D′1 ∪ 2.D′′1), d2(D′2 ∪ 2.D′′2) ∪ K′) which contradicts that the
latter is a proper subset of the former. If (D′′1 , D

′′
2) 6= (D1, D2) holds, then by definition

of θ it follows that (D′′1 , D
′′
2) ≺ (D1, D2) = (D′1, D

′
2), which contradicts that (D1, D2) is

�-preferred. It therefore follows that no such (D′1 ∪ 2.D′′1 , D
′
2 ∪ 2.D′′2) ∈ D±(2M) exists.

Since all three statements hold, it follows that t(D) ∈ D±m(M�, brP ) holds.
It remains to show that ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D) ⇒ T =brH t(D) holds. Assume

that T ∈ D±m(M�, brP ) is such that T ⊆brH t(D) holds. Then by definition of θ it holds that
T = (d1(T1 ∪ 2.T ′1), d2(T2 ∪ 2.T ′2) ∪ K(T1, T2) ∪ Tm) for some T1, T2, T

′
1, T

′
2 ⊆ br(M) and

Tm ⊆ {tmax}. Since K(T1, T2) ⊆ Kp, it holds by T ⊆brH t(D) that K(T1, T2) ⊆ K(D1, D2),
hence by Lemma 15 it follows that (T1, T2) = (D1, D2). Since (D1, D2) is �-preferred, i.e., there
exists no (D′1, D

′
2) ∈ D±(M) such that (D′1, D

′
2) ≺ (D1, D2) holds, it follows from the definition

of θ that (T ′1, T
′
2) = (D1, D2) and consequently it holds that Tm = {tmax}. Altogether this means

that T = t(D) and thus it holds that T =brH t(D). It therefore holds that ∀T ∈ D±m(M�, brP ) :
T ⊆brH t(D)⇒ T =brH t(D).

“⇐”: Suppose t(D1, D2) ∈ D±m(M�, brP ) and ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D) ⇒
T =brH t(D) with D = (D1, D2) hold. Since t(D1, D2) ∈ D±m(M�, brP ) holds, it follows from
Proposition 4 that (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2)) ∈ D±(2M), hence by Lemma 3 it holds that
(D1, D2) ∈ D±(M).

To show that D is �-preferred, consider the set F of diagnoses that are more preferred than
D, i.e., F = {D′′ ∈ D±(M) | D′′ ≺ D}. Towards contradiction, assume that F is non-empty,
hence there exists some subset-minimal D′ ∈ F , i.e., D′ ∈ F and for all D′′ ∈ F holds D′′ 6⊆
D′. Next we consider (T ′1, T

′
2) = (d1(D1 ∪ D′1), d2(D2 ∪ D′2) ∪ K(D1, D2)) and observe that

θ(D1 ∪D′1, D2 ∪D′2,K(D1, D2)) holds, because D′ ≺ D holds.
Since (D1, D2) ∈ D±(M) and (D′1, D

′
2) ∈ D±(M) it holds that (D1 ∪ 2.D′1, D2 ∪ 2.D′2) ∈

D±(2M). Observe that there exists no otherD′′ ⊂ D′ withD ≺ D′′ andD′′ ∈ D±(M). Therefore,
there exists no (D′′1 , D

′′
2) ∈ D±(M) such that (d1(D1 ∪ 2.D′′1), d2(D2 ∪ 2.D′′2) ∪ K(D1, D2)) ⊂

(T ′1, T
′
2) and θ(D1 ∪ 2.D′′1 , D2 ∪ 2.D′′2 ,K(D1, D2)) both hold. Thus Proposition 4 applies and

it follows that (T ′1, T
′
2) ∈ D±m(M�, brP ). Observe that (T ′1, T

′
2) ⊆brH t(D) since T ′2 ∩ brH =

K(D1, D2) ∪ {tmax} and for t(D) = (T1, T2) holds T2 ∩ brH = K(D1, D2). This directly con-
tradicts that ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D) ⇒ T =brH t(D) holds. Thus the set F cannot
be non-empty, i.e., there exists no D′ ∈ D±(M) such that D′ ≺ D holds. Therefore, D is �-
preferred.
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Proof of Theorem 3. Recall that D±(M, brP , brH) =
{
D ∈ D±m(M, brP )

∣∣ ∀D′ ∈ D±m(M, brP ) :
D′ ⊆brH D ⇒ D′ =brH D

}
. Hence, t(D) ∈ D±(M�, brP , brH) holds iff t(D) ∈ D±m(M�, brP )

holds and for every D′ ∈ D±m(M�, brP ) it holds that D′ ⊆brH t(D) ⇒ D′ =brH t(D)
}

. By
Lemma 16 this condition holds iff D is �-preferred. In summary, D is �-preferred iff t(D) ∈
D±(M�, brP , brH) holds.

Proof of Theorem 4. “⇒”: Let D = (D1, D2) ∈ D±m,�(M) hold. Then D ∈ D±�(M) holds,
i.e., D is �-preferred and D ∈ D±(M) holds. From Lemma 16 we then conclude that t(D) ∈
D±m(M�, brP ) and that the following holds: ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D) ⇒ T =brH

t(D). By construction of t(D) it furthermore holds that tmax ∈ t(D). Hence it remains to show
that ∀T ′ ∈ D±m(M�, brP ) :

[(
∀T ′′ ∈ D±m(M�, brP ) : T ′′ ⊆brH T ′ ⇒ T ′′ =brH T ′

)
∧ tmax ∈

T ′
]
⇒
[
T ′ ⊆br(M�)\brH t(D)⇒ t(D) =br(M�)\brH T ′

]
.

Towards contradiction, assume that T ′ ∈ D±m(M�, brP ) exists with
(
∀T ′′ ∈ D±m(M�, brP ) :

T ′′ ⊆brH T ′ ⇒ T ′′ =brH T ′
)
∧ tmax ∈ T ′ and T ′ ⊂br(M�)\brH t(D). Note that the definition of

θ and tmax ∈ T ′ together imply that there exists some D′ = (D′1, D
′
2) with D′1, D

′
2 ⊆ br(M) such

that T ′ = t(D′) holds. Further note that T ′ = t(D′) satisfies all conditions of Lemma 16, thus it
holds that D′ ∈ D±(M) and that D′ is �-preferred.

From T ′ = t(D′) ⊂br(M�)\brH t(D) it follows that (d1(D′1 ∪ 2.D′1), d2(D′2 ∪ 2.D′2)) ⊂
(d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2)) and since d1, d2, and 2. are bijective, it holds that (D′1, D

′
2) ⊂

(D1, D2). Since D′ is�-preferred, this contradicts that D is subset-minimal among all�-preferred
diagnoses, i.e., it contradicts that D ∈ D±m,�(M). Therefore no such T ′ can exist and it holds that
t(D) ∈ D±m,tmax

(M�, brP , brH).
“⇐”: Let t(D1, D2) ∈ D±m,tmax

(M�, brP , brH) hold. Since t(D1, D2) ∈ D±m(M�, brP ) and
tmax ∈ t(D1, D2) hold, it follows from Lemma 16 that D = (D1, D2) ∈ D±(M) and that D is
�-preferred. It remains to show that D is subset-minimal among diagnoses in D±�(M).

Towards contradiction, assume that there exists D′ ∈ D±�(M) with D′ ⊂ D. Since D′ is �-
preferred and D′ ∈ D±(M) holds, it follows from Lemma 16 that t(D′) ∈ D±m(M�, brP ) and
∀T ∈ D±m(M�, brP ) : T ⊆brH t(D′) ⇒ T =brH t(D′) holds. Let T ′ = t(D′). Then it holds for
T ′ that

(
∀T ′′ ∈ D±m(M, brP ) : T ′′ ⊆brH T ′ ⇒ T ′′ =brH T ′

)
∧ tmax ∈ T ′. Let T = t(D). Because

d1, d2, and 2. are bijective and D′ ⊂ D, it follows that
[
T ′ ⊆(br(M)\brH) T ⇒ T =br(M)\brH T ′

]
does not hold. This contradicts that t(D1, D2) ∈ D±m,tmax

(M�, brP , brH) holds. Therefore no such
D′ exists and it holds that D is subset-minimal among D±�(M), i.e., D ∈ D±m,�(M) holds.

A.4 Proofs of Section 6

Proof of Theorem 5. In the remainder of this proof we assume C to be the computational complex-
ity of MCSDm.

Membership: In the following we give a polynomial-time reduction ≤pm from MCSDPm to
MCSDm. Given an instance of MCSDPm, i.e., given an MCS M , a set brP ⊆ br(M), and a
candidate diagnosis D ∈ 2br(M) × 2br(M), we define ≤pm such that

(M, brP , D) 7→

{
(M,D) if D1 ∩ brP = ∅ = D2 ∩ brP where D = (D1, D2)

(M⊥, (∅, ∅)) otherwise

where M⊥ = (C⊥), C⊥ = (Lasp
Σ , kb⊥, br⊥), br⊥ = {(1 : a)← >.}, and kb⊥ = {⊥ ← a.} is such

that (∅, ∅) /∈ D±m(M⊥). Intuitively, the reduction checks whether D contains bridge rules from brP
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and if so, maps to an instance which is not in MCSDm. If D contains no bridge rules from brP ,
then ≤pm simply drops brP . Since the check whether D contains bridge rules of brP is possible in
polynomial time, ≤pm is a polynomial-time many-one reduction.

It remains to show that indeed (M, brP , D) is a yes-instance of MCSDPm iff ≤pm (M, brP , D)
is a yes-instance of MCSDm.

“⇒”: Let (M, brP , D) be a yes-instance of MCSDPm, i.e., D ∈ D±m(M, brP ) holds. Then,
D = (D1, D2) is such that D1 ∩ brP = ∅ = D2 ∩ brP , hence ≤pm (M, brP , D) = (M,D). By
Proposition 1 it holds that D±m(M, brP ) ⊆ D±m(M), hence it follows that D ∈ D±m(M) holds, i.e.,
(M,D) is a yes-instance of MCSDm.

“⇐”: Let ≤pm (M, brP , D) be a yes-instance of MCSDm. Note that it cannot be the case that
≤pm (M, brP , D) = (M⊥, (∅, ∅)), because (∅, ∅) /∈ D±m(M⊥) contradicts that ≤pm (M, brP , D) is
a yes-instance of MCSDm. Consequently, it holds that ≤pm (M, brP , D) = (M,D) and thus D =
(D1, D2) is such that D1 ∩ brP = ∅ = D2 ∩ brP . Furthermore, D ∈ D±m(M) holds, thus it follows
that D ∈ D±(M, brP ) holds. Assume that D /∈ D±m(M, brP ) holds. Then there exists D′ ⊂ D
such that D′ ∈ D±m(M, brP ) holds. By Proposition 1 then follows that D′ ∈ D±m(M), which
contradicts that D ∈ D±m(M). Therefore no such D′ exists and it follows that D ∈ D±m(M, brP )
holds.

Since ≤pm is a polynomial reduction from MCSDPm to MCSDm, it follows that the computa-
tional complexity of MCSDPm is in C, i.e., the same complexity class where MCSDm is in.

Hardness: Let D ∈ D±m(M) be hard for some complexity class C. Observe that by definition
of diagnoses with protected bridge rules, it holds that D ∈ D±m(M) is true iff D ∈ D±m(M, ∅)
is true. Since deciding whether D ∈ D±m(M) is C-hard, it thus follows that deciding whether
D ∈ D±m(M, brP ) also is C-hard.

Proof of Lemma 4. “⇒”: Let (M, (D1, D2), brP , brH) be a yes-instance of MCSDPH, i.e., it holds
that (D1, D2) ∈ D±(M, brP , brH). We have to show that (D′1, D

′
2) ∈ D±m(M ′ ⊗M, brP

′′) holds.

From (D1, D2) ∈ D±(M, brP , brH) and (10) it follows that (D1, D2) ∈ D±m(M, brP ) holds.

By Proposition 1 it then holds that (D1, D2) ∈ D±m(M), thus there exists S = (S1, . . . , Sn)
with S ∈ EQ(M [D1, D2]). We now show that (d1(D1 ∩ brH), d2(D2 ∩ brH)) ∈ D±m(M ′, brP

′)
holds; to that end consider the belief state S′ = (S1, . . . , Sn, Sn+1, Sn+2) where

Sn+1 = {removedr | r ∈ r ∈ D1} ∪ {uncondr | r ∈ D2}
Sn+2 = {not removedr | r ∈ D1 \ brH} ∪ {uncondr | r ∈ D2 \ brH}.

By construction of Cn+2, it holds that

Sn+2 ∈ ACCn+2(kbn+2 ∪ app(brn+2(M ′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′).
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Consider the set of applicable bridge rules of Cn+1 under S′ and the candidate diagnosis (D1 ∩
brH , D2 ∩ brH) (where Rreg = (br(M) \ brP \ brH):

{ϕ (r) | r ∈app(brn+1(M ′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′)}
= {not removedr | r ∈ br(M), r /∈ Rreg , r /∈ D1 \ brH}
∪ {not removedr | r ∈ br(M), r ∈ Rreg , r /∈ D1 ∩ brH}
∪ {uncondr | r ∈ br(M), r /∈ Rreg , r ∈ D2 ∩ brH}
∪ {uncondr | r ∈ br(M), r ∈ Rreg , r ∈ D2 \ brH}

= {not removedr | r ∈ br(M), r /∈ D1}
∪ {uncondr | r ∈ br(M), r ∈ D2}

=: H

Since Sn+1 = {removedr | r ∈ r ∈ D1}∪{uncondr | r ∈ D2} and θ(D1, D2, ∅) holds, it follows
from the definition of Cn+1 (cf. Definition 12 and Lemma 7) that Sn+1 ∈ ACCn+1(kbn+1 ∪ H)
holds.

Following the reasoning in Lemma 6 it is then possible to construct a proof showing that for all
1 ≤ i ≤ n it holds that

app(br i(M [D1, D2]), S) = app(br i(M
′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′).

Since the semantics ACCi and knowledge base kbi of each context Ci are the same in M and
M ′, it then follows from S ∈ EQ(M [D1, D2]) that for all 1 ≤ i ≤ n holds Si ∈ ACCi(kbi ∪
app(br i(M

′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′)).
In summary, it holds that S′ ∈ EQ(M ′[d1(D1 ∩ brH), d2(D2 ∩ brH)]).
Since (D1, D2) ∈ D±(M) holds, we then conclude from Proposition 6 that (I(D1) ∪ d1(D1 ∩

brH), I(D2) ∪ d2(D2 ∩ brH) = (D′1, D
′
2) ∈ D±(M ′ ⊗M) holds. Note that D′1 ∩ brP ′′ = ∅ =

D′2 ∩ brP ′′, hence (D′1, D
′
2) ∈ D±(M ′ ⊗M, brP

′′) also holds.
It remains to show that (D′1, D

′
2) ∈ D±m(M ′ ⊗M, brP

′′). Towards contradiction assume that
there exists (T1, T2) ∈ D±(M ′⊗M, brP

′′) with (T1, T2) ⊂ (D′1, D
′
2), i.e., by construction ofM ′⊗

M it either is the case that (T1 ∩ I(br(M)), T2 ∩ I(br(M)) ⊂ (D′1 ∩ I(br(M)), D′2 ∩ I(br(M)))
holds or (T1 ∩ brM ′ , T2 ∩ brM ′) ⊂ (D′1 ∩ brM ′ , D

′
2 ∩ brM ′) holds.

In the former case, Proposition 6 implies that (I−1(T1 ∩ I(br(M))), I−1(T2 ∩ I(br(M)))) ∈
D±(M); furthermore, since (D′1∩I(br(M)), D′2∩I(br(M))) = (D1, D2) it holds that (I−1(T1∩
I(br(M))), I−1(T2∩I(br(M)))) ⊂ (D1, D2). This contradicts that (D1, D2)∈D±(M, brP , brH).

In the latter case, i.e., (T1 ∩ brM ′ , T2 ∩ brM ′) ⊂ (D′1 ∩ brM ′ , D
′
2 ∩ brM ′), it holds that (T1 ∩

brM ′ , T2 ∩ brM ′) ⊂ (brH , brH) since all other bridge rules of brM ′ are contained in brP ′′. Let S
be a witnessing equilibrium, i.e., let S = (S1, . . . , Sn+2) ∈ EQ(M ′[(T1 ∩ brM ′ , T2 ∩ brM ′)]) hold.
Consider the modifications of bridge rules in br(M) \ brP \ brH which are represented by S, i.e.,
consider T ′1 = {r ∈ br(M) \ brP \ brH | not removedr /∈ Sn+2} and T ′2 = {r ∈ br(M) \ brP \
brH | uncondr ∈ Sn+2}. It holds that ((T1∩brM ′)∪T ′1, (T2∩brM ′)∪T ′2) is a candidate diagnosis of
M . Since S ∈ EQ(M ′[(T1∩brM ′ , T2∩brM ′)]) holds andM ′ stems fromMmr(θ,Kp), one can show
using Lemma 6 that ((T1 ∩ brM ′) ∪ T ′1, (T2 ∩ brM ′) ∪ T ′2) ∈ D±(M, brP ) holds. This contradicts
that (D1, D2) ∈ D±(M, brP , brH), because ((T1 ∩ brM ′)∪T ′1, (T2 ∩ brM ′)∪T ′2) ⊂brH (D1, D2).

Therefore, no such (T1, T2) exists and it holds that (D′1, D
′
2) ∈ D±m(M ′ ⊗M, brP

′′).
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“⇐”: We prove the converse, i.e., we assume that (M, (D1, D2), brP , brH) is not a yes-instance
of MCSDPH and show that DPH2DPm(M, (D1, D2), brP , brH) = (M ′ ⊗M, (D′1, D

′
2), brP

′′) also
is not a yes-instance of MCSDPm. By assumption it thus holds that (D1, D2) /∈ D±(M, brP , brH)
holds. From the def. of D±(M, brP , brH) we then obtain that either (i) (D1, D2) /∈ D±m(M, brP )
holds or (ii) that there exists (D′1, D

′
2) ∈ D±m(M, brP ) with (D′1, D

′
2) ⊂brH (D1, D2).

In case (i) (D1, D2) /∈ D±m(M, brP ), hence by Proposition 6 it holds that (I(D1) ∪ d1(D1 ∩
brH), I(D2) ∪ d2(D2 ∩ brH)) /∈ D±m(M ⊗M ′, brP ′′).

In case (ii) (D′1, D
′
2) ∈ D±m(M, brP ) with (D′1, D

′
2) ⊂brH (D1, D2). W.l.o.g. we assume that

(D′1, D
′
2) is minimal wrt. ⊂brH , i.e., there exists no (D′′1 , D

′′
2) ∈ D±m(M, brP ) with (D′′1 , D

′′
2) ⊂brH

(D′1, D
′
2). This means that (M, (D′1, D

′
2), brP , brH) is a yes-instance of MCSDPH. We can further

assume that (D1, D2) ∈ D±m(M, brP ) from (i).
Now consider (T1, T2) = (I(D1) ∪ d1(D′1 ∩ brH), I(D2) ∪ d2(D′2 ∩ brH)). Since

(M, (D′1, D
′
2), brP , brH) is a yes-instance of MCSDPH, the “⇒” direction above can be applied to

it; this yields that (d1(D′1 ∩ brH), d2(D2 ∩ brH)) ∈ D±m(M ′, brP
′) holds. Applying Proposition 6

and the fact that T1∩brP ′′ = ∅ = T2∩brP ′′ then implies that (T1, T2) ∈ D±m(M ′⊗M, brP
′′) holds.

Note that (T1, T2) ⊂ (D′1, D
′
2) holds which in turn implies that (D′1, D

′
2) /∈ D±m(M ′ ⊗M, brP

′′)
holds. In other words, (M ′ ⊗M, (D′1, D

′
2), brP

′′) is not a yes-instance of MCSDPm.
In all cases, we showed that DPH2DPm(M, (D1, D2), brP , brH) is not a yes-instance of

MCSDPm, which concludes the “⇐” direction of the proof.
In summary, we showed that (M, (D1, D2), brP , brH) is a yes-instance of MCSDPH iff (M ′ ⊗

M, (D′1, D
′
2), brP

′′) = DPH2DPm(M, (D1, D2), brP , brH) is a yes-instance of MCSDPm, i.e.,
DPH2DPm is a reduction from MCSDPH to MCSDPm. Since (M ′ ⊗M, (D′1, D

′
2), brP

′′) can be
computed in time linear in the size of (M, (D1, D2), brP , brH), it furthermore holds that DPH2DPm
a polynomial-time reduction.

Proof of Theorem 6. Membership: By Lemma 4 it holds that DPH2DPm is a polynomial-time re-
duction from MCSDPH to MCSDPm, hence membership immediately follows.

Hardness: Let M ′ and D′ be any MCS and candidate diagnosis, respectively, used for showing
hardness of MCSDm for C (i.e., M ′ is the result of the reduction showing C-hardness of MCSDm
and D′ is the diagnosis resulting from the reduction of M ′). Now pick brP ′ = brH

′ = ∅.
By definition, it holds for all M, brP , brH and D, that D ∈ D±(M, brP , brH) implies D ∈

D±m(M, brP ) which in turn implies D ∈ D±m(M). Therefore, D′ ∈ D±(M ′, brP
′, brH

′) im-
plies that D′ ∈ D±m(M ′) holds. Furthermore, since brP ′ = brH

′ = ∅ it also follows from the
definition of prioritized-minimal diagnosis and protected diagnosis that D′ ∈ D±m(M ′) implies
D′ ∈ D±(M ′, brP

′, brH
′). In summary, D′ ∈ D±m(M ′) holds iff D′ ∈ D±(M ′, brP

′, brH
′) holds.

Therefore MCSDPH also is C-hard.

Proof of Lemma 5. For membership, we give a reduction ≤pm from MCSDPHtmax to MCSDPH as
follows:

(M,D, brP , brH , tmax ) 7→

{
(M,D, brP , brH) if D = (D1, D2), tmax ∈ D2

(M⊥, (∅, ∅), brM⊥ , ∅) otherwise

where M⊥ is the inconsistent MCS from the proof of Theorem 5, i.e., (M⊥, (∅, ∅), brM⊥ , ∅) is
not a yes-instance of MCSDPH since the MCS is inconsistent but all its bridge rules are protected.
Clearly, ≤pm is a polynomial-time reduction.
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“⇒”: Let (M,D, brP , brH , tmax ) be a yes-instance of MCSDPHtmax , this means that D ∈
D±(M, brP , brH) and tmax ∈ D2 with D = (D1, D2) hold. Then D ∈ D±(M, brP , brH) also
holds, i.e., (M,D, brP , brH) is a yes-instance of MCSDPH.

“⇐”: Let (M,D, brP , brH , tmax ) be not a yes-instance of MCSDPHtmax , i.e., let it not be the
case that D ∈ D±(M, brP , brH) and tmax ∈ D2 with D = (D1, D2) both hold. In case tmax /∈
D2 it holds that (∅, ∅) /∈ D±(M⊥, brM⊥ , ∅) since M⊥ is inconsistent but all its bridge rules are
protected, i.e., ≤pm maps to a no-instance of MCSDPH. In case tmax ∈ D2 holds, it follows that
D ∈ D±(M, brP , brH) does not hold by the assumption. Therefore (M,D, brP , brH) is not a
yes-instance of MCSDPH. Hence in all cases, ≤pm (M, brP , brH , tmax ) is not a yes-instance of
MCSDPH.

Proof of Theorem 8. Since QBF problems correlate to complexity classes in the polynomial hier-
archy, we reduce (different) QBF problems to MCSDMPREF to prove the following hardness state-
ments: if CC(M) is hard for ΣP

i (ΠP
i ) then MCSDMPREF is hard for ΠP

i+1 (ΠP
i+2) with i ≥ 0; and

MCSDMPREF is ΠP
2 -hard even if CC(M) and deciding whether D′ � D′′ hold are both in P.

QBF: A formulaG is a quantified Boolean formula (QBF) if it is of the formQ1
~X1 . . . Qn ~Xn : F

where for each 1 ≤ i ≤ n, Qi ∈ {∀, ∃} is a quantifier, ~Xi is a set of Boolean variables, and F is a
propositional formula over the set of variables V =

⋃
i∈{1,...,n}

~Xi. We assume that the quantifiers
alternate, i.e., Qi 6= Qi+1 for all 1 ≤ i < n. QBFk denotes all QBF with k ≥ 1 quantifiers,
QBF2,∀ denotes all QBF with 2 quantifiers and Q1 = ∀, and QBFk,∀ denotes all QBF with k
quantifiers and Q1 = ∀. Given a formula G in QBFk,∀ of the form as above, we denote the sub-
formula ∀ ~X3 . . . Qk ~Xk : F by rem2,∀(G). Note that for a QBF2,∀ formula G, rem2,∀(G) = F .
For readability and simplicity, we denote the variables ~X1 by ~X and the variables ~X2 by ~Y .

A valuation is an assignment of variables to {>,⊥}, we denote a assignment to variables
X by VX : X → {>,⊥}. Let ψ[x/t] denote the substitution of the propositional variable x
by t ∈ {>,⊥} in ψ. Then the substitution by an assignment VX over X = {x1, . . . , xk} is
ψ[x1/VX(x1)] . . . [xk/VX(xk)], with shorthand notation ψ[VX ]. The semantics of QBF is induc-
tively given in terms of valuations. A QBF G of the above form with n quantifiers evaluates to true
if: G is quantifier-free (n = 0) andG is a true propositional formula; ifQ1 = ∀ (Q1 = ∃) and for all
(for some) valuations VX1 it holds that G′[VX1 ] evaluates to true where G′ = Q2

~X2 . . . Qn ~Xn : F .
Note that G being in QBFk implies that G′[VX1 ] is in QBFk−1 for any valuation VX1 .

Reduction: We define a logic Lqbf
Σ = (KB,BS,ACC) for QBFs over a set of variables Σ,

which enables QBF as a query language (cf. Egly, Eiter, Tompits, & Woltran, 2000) and is based on
the idea of combining a database, under the closed-world assumption, with a theory (cf. Bonatti &
Eiter, 1995). Formally, KB = 2Q with Q being the set of quantified Boolean formulas that can be
built over Σ, i.e., each kb ∈ KB is a set of QBF; BS = {∅}, i.e., the only belief set is the empty set
indicating evaluation to true; and ACC(kb) intuitively takes the conjunction CF of all formulas
in kb except those that are unit, i.e., of the form (χ) with some variable χ, creates an assignment
V from the unit clauses, and accepts the single belief set if and only if CF [V ] evaluates to true.
Formally, ACC(kb) = {∅} if the QBF CF [V ] evaluates to true with CF =

∧
f∈{f∈kb|f is not unit} f

and valuation VZ : Z → {>,⊥} such that V (χ) = > if (χ) ∈ kb and V (χ) = ⊥ otherwise where
Z is the set of free (un-quantified) variables of CF .

Note that if each f ∈ kb is in QBFk then CF [V ] is in QBFk since CF [V ] contains no more
quantifier alternations than any f ∈ kb. By that, the computational complexity of evaluating ACC
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is in ΣP
k and ΠP

k if each f ∈ kb is in QBFk,∃ and QBFk,∀, respectively. Also note that the
construction of CF [V ] is possible in linear time.

We now define an MCS MG whose single context utilizes the evaluation of rem2,∀(G) given
a valuation of all variables in ~X and ~Y . Given a QBFk-formula G with k ≥ 2, and ~X , ~Y , and
rem2,∀(G) as above. Let brX1 and brY1 be defined as follows:

brX1 =
⋃
x∈ ~X

{(1:(x))← >., (1:(x̄))← >.} brY1 =
⋃
y∈~Y

{(1:(y))← >., (1:(ȳ))← >.}

Then MG = (C1) with the context C1 = (Lqbf
Σ , kb1, br1), br1 = brX1 ∪ brY1 , and kb1 as follows:

kb1 =
{ ( ∧

χ∈ ~X∪~Y

(χ↔ ¬χ̄) ∧
∧

χ∈ ~X∪~Y

(χ↔ χ′) ∧ rem2,∀(G
t)
)

∨
( ∧
χ∈ ~X

(¬χ ∧ ¬χ̄)
)

∨
( ∧
χ∈ ~X

(χ↔ ¬χ̄) ∧
∧
χ∈~Y

(χ ∧ χ̄)
)}

where Gt is equal to G except that every variable χ ∈ ~X ∪ ~Y is replaced with a new variable χ′.
Intuitively, C1 evaluates the remainder of G if a consistent valuation in terms of χ and χ̄ is given
for ~X ∪ ~Y (first line) and it becomes true also for two other cases: (i) no value for any variable in ~X
is given (second line), and (ii) a consistent valuation for ~X is given and all values for ~Y are present
(third line). Note that br1 and kb1 are both polynomial (even linear) in the size of G.

Notation: For a set R of bridge rules ϕ(R) denotes the set of head-formulas of the bridge rules
of R, i.e., ϕ(R) = {ϕ (r) | r ∈ R}. For H ⊆ ϕ(br1) we say that H is consistent wrt. a set of
variables X if for all χ ∈ X it holds that (χ) ∈ H iff (χ̄) /∈ H . We call H consistent if it is
consistent wrt. ~X ∪ ~Y . If H is consistent, then the corresponding valuation VH : ~X ∪ ~Y → {>,⊥}
is VH(χ) = > if (χ) ∈ H and VH(χ) = ⊥ otherwise.

One can show that the semantics of C1 is as follows for any H ⊆ ϕ(br1):

ACC(kb1 ∪H) =


{∅} if H is consistent and rem2,∀(G)[VH ] evaluates to true, or

if H ∩ ϕ(brX1 ) = ∅, or
if H is consistent wrt. ~X and H ⊇ ϕ(brY1 ),

∅ otherwise.

Intuitively, the above holds for the following reasons: kb1 ∪H is such that all formulas f ∈ H
are unit clauses, the variables in each clause are distinct, and each variable inside a unit clause is
free wrt. kb1, because the only quantifiers occur in rem2,∀(G

t) which does quantify over χ′ but
neither quantifies χ nor χ̄, for any χ ∈ ~X ∪ ~Y .

We use a certain diagnosis of MG, namely Dvalid = (brX1 , ∅), to indicate whether G evaluates
to true. In order to obtain that Dvalid ∈ D±m,�(MG) iff G evaluates to true, we use the following
preference order �:

(D1, D2) � (D′1, D
′
2) holds iff D2 = D′2 = ∅, (D1, D2) 6= Dvalid 6= (D′1, D

′
2),

D1 ∩ brX1 = D′1 ∩ brX1 , and D1 ∩ brY1 ⊆ D′1 ∩ brY1 all hold, or

(D1, D2) = (D′1, D
′
2).

413



EITER & WEINZIERL

Note that � is transitive and reflexive, i.e., indeed it is a preference order.

Correctness of Reduction: We now show for any QBF in QBFk,∀ with k ≥ 2 that Dvalid ∈
D±m,�(MG) holds iff G evaluates to true. In some abuse of notation, in the following we write
M [D] to denote the MCS obtained from modifying M according to a candidate diagnosis D, i.e.,
M [D] with D = (D1, D2) here denotes M [D1, D2]. Furthermore, if H ⊆ br(MG) is consistent
wrt. a set Z of variables, we denote by V H

Z the corresponding valuation, i.e., V H
Z (χ) = > iff

χ ∈ ϕ(H) and V H
Z (χ) = ⊥ iff χ̄ ∈ ϕ(H) with χ ∈ Z.

“⇒”: LetDvalid ∈ D±m,�(MG) hold. Towards contradiction, assume thatG does not evaluate to
true, i.e., there exists a valuation VX for ~X such that no valuation VY for ~Y makes rem2,∀(G)[VX ∪
VY ] evaluate to true. Let R ⊆ brX1 be such that V ϕ(R)

X = VX and consider the diagnosis D =
(brX1 \ R, ∅). Let H = {ϕ (r) | r ∈ app(br1(MG[D]), S∅)} and observe that H is consistent
wrt. ~X sinceR is consistent. Since (brX1 \R)∩brY1 = ∅, it follows thatH∩ϕ(brY1 ) = ϕ(brY1 ) and
it thus holds that {∅} ∈ ACC(kb1∪H), i.e., S∅ is an equilibrium ofMG[D], henceD ∈ D±(MG).
Further note that D ⊂ Dvalid holds. Since Dvalid ∈ D±m,�(MG) and D ⊂ Dvalid , it follows that
D /∈ D±�(MG) holds; i.e. there exists a diagnosis D′ ∈ D±(MG) such that D′ ≺ D holds, which
implies that D′ 6= D.

Let D′ = (D′1, D
′
2) and D = (D1, D2); from the definition of � and the fact that D′ 6= D

we obtain that D′2 = ∅, D′ 6= Dvalid , D′1 ∩ brX1 = D1 ∩ brX1 , and D′1 ∩ brY1 ⊆ D1 ∩ brY1 all
hold. Let H ′ = {ϕ (r) | r ∈ app(br1(MG[D′]), S∅)} and observe that H ′ is consistent wrt. ~X
since D1 is consistent wrt. ~X and D′1 ∩ brX1 = D1 ∩ brX1 . Since D′ 6= D holds, it is the case that
D′1 ∩ brY1 ⊂ D1 ∩ brY1 and thus D1 ∩ brY1 6= ∅, i.e., H ∩ ϕ(brY1 ) 6= ϕ(brY1 ). This contradicts
with H ∩ ϕ(brY1 ) = ϕ(brY1 ) established earlier. Therefore no such D exists and consequently no
valuation VX exists such that all valuations VY make rem2,∀(G)[VX ∪ VY ] not evaluate to true, i.e.,
G evaluates to true.

“⇐”: Let G evaluate to true, i.e., for every valuation of ~X there exists a valuation of ~Y such
that rem2,∀(G)[VX ∪ VY ] evaluates to true. Observe that br1(MG[Dvalid ]) = brY1 , hence H =
app(br1(MG[Dvalid ]), S∅) is such that H ∩ ϕ(brX1 ) = ∅, thus ACC(kb1 ∪H) = {∅} and S∅ is a
witnessing equilibrium of Dvalid ∈ D±(MG). Furthermore, since Dvalid is, by definition of �, in
no relation to any other candidate diagnosis except itself, it thus follows that Dvalid ∈ D±�(MG).

It remains to show thatDvalid is subset-minimal among all diagnoses inD±�(MG). Consider any
D′ ⊂ Dvalid , i.e., D′ = (D′1, ∅) where D′1 ⊂ brX1 . Recall that D′ is not a diagnosis, if there exists
no witnessing equilibrium; since S∅ is the only belief state of MG, it follows that D′ is a diagnosis
if and only if S∅ is an equilibrium of MG[D′]. In the following, let H ′ = app(br1(MG[D′]), S∅).
Since D′1 ⊂ brX1 holds, it follows that H ′ ⊇ ϕ(brY1 ), because for any r ∈ brY1 it holds that
body(r) = {>}, i.e., r is applicable in any belief state. Since H ′ ⊇ ϕ(brY1 ) holds, it cannot be the
case that H ′ is consistent wrt. ~Y ; thus H ′ is not consistent. Furthermore, by D′1 ⊂ brX1 it follows
that H ′ ∩ ϕ(brX1 ) 6= ∅. By the definition of ACC it then follows that D′ only is a diagnosis if H ′

is consistent wrt. ~X .
Assume that H ′ is consistent wrt. ~X then V H′

X is a consistent valuation for variables in ~X .
Since G evaluates to true and all variables in ~X are ∀-quantified, there exists a valuation VY for
the variables of ~Y such that rem2,∀(G)[V H′

X ∪ VY ] evaluates to true . Let R ⊂ brY1 be the set
of bridge rules consistent wrt. ~Y such that V ϕ(R)

Y = VY and consider the candidate diagnosis
D′′ = (D′1 ∪ (brY1 \R), ∅). Let H ′′ = {ϕ (r) | r ∈ app(br1(MG[D′′]), S∅)} and observe that H ′′
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is consistent since D′1 and R both are consistent. Furthermore, V H′′
X = V H′

X and V H′′
Y = VY , thus

rem2,∀(G)[V H′′
X ∪V H′′

Y ] evaluates to true, hence S∅ is an equilibrium ofM [D′′] andD′′ ∈ D±(MG)
holds.

Now consider whether D′′ � D′ holds: D′ = (D′1, ∅), D′′ = (D′1 ∪ (brY1 \ R), ∅), D′′ 6=
Dvalid 6= D′, D′1 ∩ brX1 = (D′1 ∪ (brY1 \ R)) ∩ brX1 , and D′1 ∩ brY1 ⊆ (D′1 ∪ (brY1 \ R)) ∩ brY1
all hold. Therefore D′′ � D′ holds. Since R ⊂ brY1 holds, it follows that brY1 \ R 6= ∅ and by
D′1 ⊂ brX1 it then follows that (D′1 ∪ (brY1 \ R)) ∩ brY1 ⊆ D′1 ∩ brY1 does not hold. Therefore
D′ � D′′ does not hold and consequently, it holds that D′′ ≺ D′ and D′ /∈ D±�(MG). Since
D′ ⊂ Dvalid was chosen arbitrary, it follows that Dvalid is subset-minimal among all diagnoses in
D±�(MG), hence Dvalid ∈ D±m,�(MG) holds.

In summary, this proves that Dvalid ∈ D±m,�(MG) holds iff G evaluates to true.

Complexity: Observe that deciding whether D � D′ holds for the above � clearly is in P.
Further note that MG is polynomial in the size of G since kb1 and br1 are both polynomial (even
linear) in the size of G. In the following we assume wlog. that all QBFs are in prenex normal form.

Let G be an arbitrary formula in QBF2,∀, then rem2,∀(G) contains no quantifiers, hence de-
ciding whether rem2,∀(G) evaluates to true under an assignment for ~X ∪ ~Y amounts to evaluating
a propositional formula under a given assignment; this is possible in P, hence CC(MG) = P.
Since Dvalid ∈ D±m,�(MG) iff G evaluates to true, it thus follows that MCSDMPREF is ΠP

2 -hard if
CC(M) = P.

Let G be an arbitrary formula in QBFi+2,∀ for i ≥ 0, then rem2,∀(G) contains i quantifiers,
hence rem2,∀(G) is a formula of QBFi,∀ and checking whether it evaluates to true is in ΠP

i , i.e.,
CC(MG) being hard for ΠP

i is sufficient for MCSDMPREF to decide whether G evaluates to true.
Thus MCSDMPREF is ΠP

i+2-hard for CC(M) being hard for ΠP
i , i ≥ 0.

Similarly, if G is an arbitrary formula in QBFi+1,∃ for i ≥ 1, then rem2,∀(G) contains i − 1
quantifiers, i.e., rem2,∀(G) is a formula in QBFi−1,∀. Since QBFi,∃ contains all formulas of
QBFi−1,∀ it follows that ΣP

i is sufficient for checking whether rem2,∀(G) evaluates to true. Thus,
CC(MG) being hard for ΣP

i is sufficient for MCSDMPREF to decide whether G evaluates to true.
Thus MCSDMPREF is ΠP

i+1-hard for CC(M) = ΣP
i , i ≥ 1.

In summary it thus follows that if CC(M) is hard for ΣP
i (ΠP

i ) then MCSDMPREF is hard for
ΠP

i+1 (ΠP
i+2) with i ≥ 0 and that MCSDMPREF is ΠP

2 -hard even if CC(M) and deciding whether
D′ � D′′ hold are both in P.

For hardness in case that CC(M) = P it is sufficient to use a stratified logic program and the
logic Lasp

Σ as the context C1 in the MCS MG. Let G be in QBF2,∀, then rem2,∀(G) is a SAT
formula and wlog. we assume rem2,∀(G) to be in CNF. Let F = rem2,∀(G) = {c1, . . . , cm} be
given as a set of clauses each of the form c` = (l`1 ∨ l`2 ∨ . . . ∨ l`k) with k ∈ N. We associate with
each clause c` of this form a set of rules

lp(c`) =
{

clause c` ← l`1 . . . . clause c` ← l`j .

clause c` ← l`j+1
. . . . clause c` ← l`k .

}
where l`1 to l`j are the positive literals and l`j+1

to l`k are the negative literals of c`.
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Finally, C1 = (Lasp
Σ , kb1, br1) uses the abstract logic of ASP and kb1 is as follows:

kb1 = { consistentX ← not inconsistentX .

inconsistentX ← x, x̄. ∀x ∈ ~X

consistentY ← not inconsistentY .

inconsistentY ← y, ȳ. ∀y ∈ ~Y
⊥ ← not ok .

ok ← consistentX , consistentY , trueF .

ok ← notnonempty intersect .

ok ← consistentX , notnotfullY .

nonempty intersect ← x. ∀x ∈ ~X

nonempty intersect ← x̄. ∀x ∈ ~X

notfullY← not y. ∀y ∈ ~Y
notfullY← not y. ∀y ∈ ~Y

trueF ← clause c1, . . . , clause ck. for F = {c1, . . . , ck}
} ∪ {r ∈ lp(c`) | c` ∈ F}

Observe that kb1 is a stratifiable logic program while bridge rules only add facts, thus ACC(kb1 ∪
H) can be computed in polynomial time. Also note that kb1 is linear in the size of G.

Proof of Corollary 1. For the membership part, observe that the size of the clone-encoding M� is
polynomial in the size of M . As in M� all contexts apart from the observation context have the
same knowledge bases and logics as in M , their complexities are in CC(M); thus it remains to
show that also the complexity of the observation context is in CC(M). Definition 17 specifies which
belief sets are acceptable for the latter in terms of the following conditions for which the property
θ(R1, R2, R3) holds, namely: ifR1 = D1∪2.D′1,R2 = D2∪2.D′2 and either (D1, D2) = (D′1, D

′
2)

and R3 = K(D1, D2) ∪ {tmax} or (D′1, D
′
2) ≺ (D1, D2) and R3 = K(D1, D2).

The equalities are trivially checked in polynomial time; thus if deciding D ≺ D′ is in ΣP
i ,

then checking all conditions, i.e., whether θ(R1, R2, R2) holds, is in ΣP
i ; note in particular that if

deciding D � D′ is in P, then deciding D 6� D′ is in P and consequently deciding D ≺ D′ also
is in P. By construction of M�, it thus follows that CC(M) = ΣP

i . The argument for PSPACE
and EXPTIME in place of ΣP

i is analogous.
By Theorem 4, we have (D1, D2) ∈ D±m,�(M) iff t(D1, D2) ∈ D±m,tmax

(M�, brP , brH) and
from Theorem 7 it follows that deciding t(D1, D2) ∈ D±m,tmax

(M�, brP , brH) is in ΠP
i+1 (resp.,

coNPPSPACE = PSPACE, coNPEXPTIME = EXPTIME); hence deciding (D1, D2) ∈
D±m,�(M) is in ΠP

i+1 (resp. PSPACE, EXPTIME). The hardness follows directly from Theo-
rem 8 (resp. an MCS where the acceptability function of some context is hard for PSPACE resp.
EXPTIME); hence, MCSDMPREF is complete for ΠP

i+1 (resp. PSPACE, EXPTIME).

Proof of Corollary 2. The membership follows from Theorem 7. As for the hardness part, let
CC(M) be equal to P, NP, or ΣP

i with i ≥ 1 then by Theorem 8 MCSDMPREF is hard for ΠP
2 , ΠP

2 ,
or ΠP

i+2, respectively. Let � be any preference order on M such that deciding whether D � D′
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holds is in P. Consider the clone encoding M� and any candidate diagnosis (D1, D2). By The-
orem 4, we have (D1, D2) ∈ D±m,�(M) iff t(D1, D2) ∈ D±m,tmax

(M�, brP , brH). Therefore the
clone encoding induces a polynomial-time reduction of MCSDMPREF to MCSDPHm,tmax , because
t(D1, D2) and M� are both linear in the size of (D1, D2) plus M as well as CC(M�) is P, NP,
or ΣP

i (i ≥ 1) given that CC(M) is P, NP, or ΣP
i (i ≥ 1). The hardness results of Theorem 8 thus

also hold for MCSDPHm,tmax .

Appendix B. Detailed Examples

Example 19. Consider the hospital MCS (cf. Figure 1), where one can see two groups of bridge
rules: health-related (r1 and r2) and billing-related (r3, r4, and r5). Assume a preference order is
designed under the following two assumptions: first, modifying one group of bridge rules potentially
modifies all information conveyed by the group (i.e., a correct result depends on all information of a
group to be conveyed without modification); and second, information of one group might influence
another group, as in the hospital MCS health information influences billing.

Candidate diagnoses then either modify (and possibly break) no group, the billing group, or
health and billing group together. Since billing depends on health, it is impossible to modify health
without possibly breaking billing. Only the candidate diagnosis (∅, ∅) is of the first kind. The second
kind consists of all candidate diagnoses (D1, D2) with D1 ∪D2 ⊆ {r3, r4, r5} and D1 ∪D2 6= ∅.
All other candidate diagnoses are of the third kind.

Preferring those diagnoses which (possibly) break only the least set of groups, then prefers
diagnoses of the first kind over all others, and the second over the third. Formally, we obtain a
preference order �U such that (D1, D2) �U (D′1, D

′
2) holds iff one of the following is the case:

1) D1 ∪D2 = ∅, or 2) D1 ∪D2 ⊆ {r3, r4, r5} and D′1 ∪D′2 6= ∅.
The resulting MCS clone encoding wrt. �U , M�U = (C1, C2, C3, C4, C5, C6, C7) is based on

two clones of M , where the first comprises the contexts C1, C2, C3 and the second the contexts
C4, C5, C6. The context C7 finally is the observation/encoding context.

We first recall the bridge rules of 2M = M ⊗M using the permutation I corresponding to
M ⊗M . Accordingly br(2M) is:

r1 : (2 : hyperglycemia)← (1 : hyperglycemia).

r2 : (2 : allow animal insulin)← not (1 : allergic animal insulin).

r3 : (3 : bill animal insulin)← (2 : give animal insulin).

r4 : (3 : bill human insulin)← (2 : give human insulin).

r5 : (3 : insurance B)← (1 : insurance B).

I(r1) : (5 : hyperglycemia)← (4 : hyperglycemia).

I(r2) : (5 : allow animal insulin)← not (4 : allergic animal insulin).

I(r3) : (6 : bill animal insulin)← (5 : give animal insulin).

I(r4) : (6 : bill human insulin)← (5 : give human insulin).

I(r5) : (6 : insurance B)← (4 : insurance B).

417



EITER & WEINZIERL

A graphical rendering of M�U is given in Figure 5, where for readability only some of the bridge
rules of M�U are shown. The set of bridge rules of the observation context C7 is as follows:

br7(M�U ) =
{

(7 : not removedr1)← >. (7 : uncondr1)← ⊥.
(7 : not removedr2)← >. (7 : uncondr2)← ⊥.

· · ·
(7 : not removed I(r4))← >. (7 : uncond I(r4))← ⊥.
(7 : not removed I(r5))← >. (7 : uncond I(r5))← ⊥.
(7 : in1(r1))← ⊥. (7 : in1(r1))← ⊥.
(7 : in2(r1))← ⊥. (7 : in2(r1))← ⊥.

· · ·
(7 : in1(r5))← ⊥. (7 : in1(r5))← ⊥.
(7 : in2(r5))← ⊥. (7 : in2(r5))← ⊥.

}
To fully realize the property θ and the preference order �U based on real-world entities patient’s
health/treatment, and billing, we may use for the observation context C7 an ASP program that
consists of the following rules:

removedr ← notnot removedr. for all r ∈ br(M ⊗M) (22)

⊥ ← removedr, not in1(r). for all r ∈ {r1, . . . , r5} (23)

⊥ ← not removedr, in1(r). for all r ∈ {r1, . . . , r5}
⊥ ← not removedr, not in1(r). for all r ∈ {r1, . . . , r5}
⊥ ← removedr, in1(r). for all r ∈ {r1, . . . , r5}
⊥ ← uncondr, not in2(r). for all r ∈ {r1, . . . , r5}
⊥ ← uncondr, in2(r). for all r ∈ {r1, . . . , r5}
⊥ ← not uncondr, not in2(r). for all r ∈ {r1, . . . , r5}
⊥ ← uncondr, in2(r). for all r ∈ {r1, . . . , r5} (24)

mod(clone1 , billing)← removedr. for all r ∈ {r3, . . . , r5} (25)

mod(clone1 , billing)← uncondr. for all r ∈ {r3, . . . , r5}
mod(clone2 , billing)← removedr. for all r ∈ {I(r3), . . . , I(r5)}
mod(clone2 , billing)← uncondr. for all r ∈ {I(r3), . . . , I(r5)}

mod(clone1 , treatment)← removedr. for all r ∈ {r1, r2}
mod(clone1 , treatment)← uncondr. for all r ∈ {r1, r2}
mod(clone2 , treatment)← removedr. for all r ∈ {I(r1), I(r2)}
mod(clone2 , treatment)← uncondr. for all r ∈ {I(r1), I(r2)} (26)
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mod(clone1 , billing)← mod(clone1 , treatment). (27)

mod(clone2 , billing)← mod(clone2 , treatment). (28)

clones different ← removedr, not removedr′ . for all r ∈ br(M), r′ ∈ I(br(M)) (29)

clones different ← not removedr, removedr′ . for all r ∈ br(M), r′ ∈ I(br(M))

clones different ← uncondr, not uncondr′ . for all r ∈ br(M), r′ ∈ I(br(M))

clones different ← not uncondr, uncondr′ . for all r ∈ br(M), r′ ∈ I(br(M)) (30)

clone1 modifies more ← mod(clone1 , U), notmod(clone2 , U). (31)

clone2 modifies more ← mod(clone2 , U), notmod(clone1 , U).

clone1 less preferred ← clone1 modifies more, not clone2 modifies more. (32)

⊥ ← not ismax , clone1 less preferred , clones different . (33)

⊥ ← not clone1 less preferred , clones different . (34)

The intuition of the above rules is as follows: rules of form (22) expose the diagnoses of both
clones; the constraints of form (23)–(24) ensure that the diagnosis of the first clone is exhibited
via prioritized bridge rules; rules of form (25)–(26) deduce which units of bridge rules have been
modified in the first and second clone; rules (27) and (28) take care of the dependency between the
units treatment and billing; rules of form (29)–(30) infer whether the diagnosis of the first clone
is different from the diagnosis of the second clone; rules (31)–(32) infer whether the modified units
of the first clone is a superset of the modified units of the second clone, which means the diagnosis
of the second clone is more preferred than the one of the first clone. Finally, the constraint (33)
ensures that tmax is made condition-free if the diagnosis of the second clone is more preferred than
the diagnosis of the first clone, and the constraint (34) ensures that only comparable diagnoses (or
if both diagnoses are equal) yield a diagnosis of the MCS M�U .
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