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Abstract

In this work, we design and evaluate a computational learning model that enables a
human-robot team to co-develop joint strategies for performing novel tasks that require
coordination. The joint strategies are learned through “perturbation training,” a human
team-training strategy that requires team members to practice variations of a given task to
help their team generalize to new variants of that task. We formally define the problem of
human-robot perturbation training and develop and evaluate the first end-to-end framework
for such training, which incorporates a multi-agent transfer learning algorithm, human-
robot co-learning framework and communication protocol. Our transfer learning algorithm,
Adaptive Perturbation Training (AdaPT), is a hybrid of transfer and reinforcement learning
techniques that learns quickly and robustly for new task variants. We empirically validate
the benefits of AdaPT through comparison to other hybrid reinforcement and transfer
learning techniques aimed at transferring knowledge from multiple source tasks to a single
target task.

We also demonstrate that AdaPT’s rapid learning supports live interaction between
a person and a robot, during which the human-robot team trains to achieve a high level
of performance for new task variants. We augment AdaPT with a co-learning framework
and a computational bi-directional communication protocol so that the robot can co-train
with a person during live interaction. Results from large-scale human subject experiments
(n=48) indicate that AdaPT enables an agent to learn in a manner compatible with a
human’s own learning process, and that a robot undergoing perturbation training with a
human results in a high level of team performance. Finally, we demonstrate that human-
robot training using AdaPT in a simulation environment produces effective performance
for a team incorporating an embodied robot partner.

1. Introduction

People often require training in order to perform tasks well, particularly in areas such
as disaster response, military and manufacturing. As tasks become increasingly complex
and require cooperation within a team of individuals, training helps team members learn
to coordinate their roles effectively and perform well under novel task variants (Gorman,
Cooke, & Amazeen, 2010). Today, some team-based tasks are performed only by humans,
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with others performed by teams consisting solely of robots. In this work, we envision
that new types of human-robot training procedures would enable robots and humans to
accomplish tasks more efficiently together than they do separately.

Designing an effective human-robot training procedure poses a number of challenges:
First, the method for training must support humans while learning complex team tasks,
ideally leveraging existing training strategies used for human teams. The method must
also be formalized for robot partners, such that computational models and algorithms for
robot participation in the training process can be designed and compared with one another
through empirical evaluation. The training technique must be designed for heterogeneous
teams in which humans and robots have differing capabilities. Finally, both the training
methodology and the robot’s models and algorithms for learning must promote high levels
of team performance when contending with novel tasks and environments.

Three training approaches have been widely studied in human teams: procedural, cross
and perturbation training (Gorman et al., 2010). The most widely employed approach is
procedural training, in which a team practices a procedure repeatedly in order to become
proficient at performing a particular task. This approach results in high-level performance
of the trained task, but does not generalize to tasks involving unexpected variations or
disturbances, which almost always occur in real-life scenarios.

The cross training approach is designed to improve team adaptivity through practice by
requiring team members to switch roles with one another. Through this process, teammates
are able to build a shared mental model of the task and collaboration strategy, and can thus
better anticipate one another’s actions. This training method has been shown to benefit
human-robot teams, but does not scale as teams increase in size and diversity (Nikolaidis
& Shah, 2013). If the roles required to accomplish a task differ widely from one another,
or if the given team is of a particularly large size, learning the roles of other team members
becomes difficult and impractical (Gorman et al., 2010). Individual performance can also
decline in such cases, as members must train for a greater number of roles.

The third approach, perturbation training, addresses the limitations of both procedu-
ral and cross training (Gorman et al., 2010), and is the human team training strategy
that we build upon in this work. In this method, a team experiences slight disturbances
(perturbations) during the training process that are intended to help team members learn
to coordinate effectively under new variants of the given task. This training method is
well-suited to heterogeneous teams, as each member practices his or her own role on the
team during the training process, and it also does not require switching roles among team
members, as cross-training does. Results from recent studies (Gorman et al., 2010) indicate
that perturbation training yields high levels of human-team performance on novel tasks;
however, this training strategy has not yet been formalized as a computational problem.
As a result, there is not yet a clear pathway for incorporating an intelligent robot with
algorithms for learning and communication to participate in this process alongside a human
team member.

Our contributions in this work are five-fold. First, we formally define the problem of
perturbation training as a variant of a multi-agent transfer learning problem involving six
components: (1) multiple source tasks to use for team training, (2) one target task to use
in order to test team performance, (3) a co-learning framework for incorporating human
interactions into the robot’s learning process, (4) a communication protocol in which human
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and robot partners explicitly exchange information during the action selection process, (5)
an algorithm for robot learning in the source tasks, and (6) an algorithm for the robot to
transfer its prior learning to the target task.

Our second contribution is Adaptive Perturbation Training (AdaPT), a novel transfer
learning algorithm that enables a human-robot team to efficiently and robustly co-learn
a joint strategy through training on perturbations. There are two key challenges to de-
veloping such an algorithm: First, it must rapidly learn in the source tasks to support
real-time interaction with a human. Second, the transfer process must allow the robot to
draw from a library of previous experiences in a manner compatible with the process of a
human partner learning through perturbations. This second challenge is fundamental to
the success of perturbation training, as evidenced by prior studies of human teamwork in
which human teams with members possessing accurate but dissimilar mental models per-
formed a given task more poorly than teams with members possessing less-accurate but
similar mental models (Marks, Sabella, Burke, & Zaccaro, 2002). The AdaPT algorithm is
a hybrid of transfer and reinforcement learning techniques, and modifies the Policy Reuse
in Q-Learning algorithm (PRQL) (Fernández, Garćıa, & Veloso, 2010) to hasten learning
for new task variants. In this work, we demonstrate through empirical evaluation within
simulated domains that AdaPT achieves high-level performance and is faster and less sen-
sitive to specification of priors and other parameters than other techniques for multi-agent
transfer from multiple source tasks (Fernández et al., 2010; Ammar, Eaton, Taylor, Mocanu,
Driessens, Weiss, & Tuyls, 2014).

In this paper, we also provide the first end-to-end computational framework for per-
turbation training that enables a robot to co-train with a person during live interactions.
The framework includes AdaPT, as well as a co-learning method through which the hu-
man interacts with the robot during designated intermittent sessions. These sessions allow
the human to gain experience by jointly performing the task with the robot, and facilitate
interaction using a bidirectional communication protocol. Prior literature indicates that
perturbation training scales well for training of large teams. In this work, we focus on first
demonstrating the training approach for a team consisting of one human and one robot.
Demonstration of the benefits of perturbation training for larger human-robot teams is left
to future work.

Our fourth contribution through this work is to conduct and report on human sub-
ject experiments wherein 36 teams of two (one person and one robot) co-trained under
perturbations in a simulated environment. Our results demonstrate that the framework
achieved higher levels of team performance on novel tasks than those achieved through
a comparable computational model for human-robot procedural training. Specifically, we
found that perturbation-trained teams achieved statistically significantly higher reward than
procedural-trained teams when tested on the novel task variants most different from the
most recently trained task (p < 0.05). This result provides the first support for the idea
that the relative benefits from human team perturbation training can also be realized for
human-robot teams. Further, our formalization of the problem statement and computa-
tional framework provide a pathway for future study into alternate learning, transfer and
interaction algorithms that improve the ability of human-robot teams to effectively learn
complex joint-action tasks through experience of perturbations.
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Finally, we demonstrate in robot experiments with a PR2 (n=12 human-robot teams)
that human-robot perturbation training within a simulated environment results in effec-
tive performance by a team including an autonomous, embodied robot partner that com-
municates and receives commands through speech. This is an encouraging result, as it
indicates that simulation can provide an effective and scalable approach to human-robot
team training, just as simulation training typically yields high performance among human
teams (Sandahl, Gustafsson, Wallin, Meurling, Øvretveit, Brommels, & Hansson, 2013;
Griswold, Ponnuru, Nishisaki, Szyld, Davenport, Deutsch, & Nadkarni, 2012; Nikolaidis &
Shah, 2013).

2. Related Work

We first present an overview of previous literature addressing technical approaches related
to our computational model for perturbation training. Our model includes a human-robot
co-learning framework, an algorithm for robot learning in the source and target tasks, and
a communication protocol.

2.1 Learning with Humans

A substantial number of prior works have focused on training robots to perform complex
tasks given sets of human demonstrations. In a work by Akgun, Cakmak, Yoo, and Thomaz
(2012), humans physically guided a robot through a sparse set of consecutive keyframes,
which were connected to perform a skill. However, this required several demonstrations
of the task, which can be time-consuming for a human to provide. Alexandrova et al.
aimed to reduce the number of necessary demonstrations by allowing humans to perform
a task once and then provide additional information through an interactive visualization
tool (Alexandrova, Cakmak, Hsiao, & Takayama, 2012). In order to take better advantage
of each human teaching instance, Chernova and Veloso (2010) developed a framework to
simultaneously teach multiple robots. Further leveraging demonstration data from humans,
Niekum et al. proposed a technique that automatically detected repeated structures within
the data by segmenting motions and constructing a finite state automaton that represents
the task (Niekum, Osentoski, Konidaris, Chitta, Marthi, & Barto, 2014). This method
resulted in high-level task knowledge and a set of reusable, flexible skills (such as assembling
one leg of a table). These approaches support natural human interaction and help robots
to learn effectively based on a small number of human demonstrations, and further enable
robots to accommodate variations in the motion- or action-level execution of complex tasks.

While Learning from Demonstration (LfD) supports robot learning, it is limited in
that it requires demonstrations of the given task. Other works have incorporated learning
through human input by using feedback or reinforcement to improve robot decision-making.
For example, the TAMER framework, developed by Knox and Stone (2009), modeled a
human’s reinforcement function, which a robot then used to select the actions likely to
result in the most positive human reinforcement. In a work by Griffith et al. (2013), rather
than using human feedback to shape rewards or Q-value functions, human inputs served
directly as policy labels to infer what the human considered to be the optimal policy. In
another work, Chao and Thomaz (2012) developed a system for turn-taking interactions
between a human and a robot in order to collaboratively solve the Towers of Hanoi problem.
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Rybski et al. (2007) presented an interactive robot task training framework in which the
robot observed a human performing a task, interrupted when more clarification was needed
and incorporated feedback to improve task execution.

Comparably fewer works have addressed interdependent learning between a human and
a robot. Hawkins et al. (2014) developed a representation of structured tasks that the
robot used to infer current human actions, as well as the execution and timing of future
actions. The authors showed that a robot was able to robustly infer human actions and
work effectively on a collaborative assembly task. In a work similar to our own, Oudah et
al. (2015) incorporated “cheap talk” – non-binding, costless communication – to teach a
robot to better learn to play competitive games through practice with a human partner.
(Examples of “cheap talk” include: “I’ve changed my mind” or “That was not fair!”) This
work, however, does not address co-learning for interdependent collaborative tasks.

More closely related to our work in human-robot collaborative team training, Nikolaidis
and Shah (2013) computationally modeled cross training from human team studies using a
Markov decision process (MDP) model. In this approach, a human and robot switched roles
during training to learn a shared model of the given task, helping the team to co-develop
a convergent plan for collaborative task execution. However, this work considered a simple
task with 27 states, and the approach is limited in its ability to scale to tasks involving
larger state spaces or requiring complex coordination strategies.

2.2 Reinforcement and Transfer Learning

Many techniques use MDPs to represent stochastic tasks in which the agent learns how to
act robustly through reinforcement learning (RL) (Busoniu, Babuska, & De Schutter, 2008;
Puterman, 2009; Sutton & Barto, 1998). An MDP is defined as a tuple < S,A, T,R >,
where S is the discrete set of world states, A is the discrete set of all possible actions,
T (s, a, s′) is the state transition function that specifies the probability of progressing to
next state s′ given the current state s and action a, and R(s, a, s′) is the reward function
that specifies the reward gained from taking action a in state s and transitioning to next
state s′. The policy π(s) learned from training specifies the action the agent should take at
each state s.

In the RL framework, an agent interacts with an environment, observing state s at each
time step and deciding whether or not to take action a. The environment returns a reward
r and a next state s′, and the agent continues taking actions until it reaches a specified
goal state. The agent repeatedly executes these episodes, each of which progresses from an
initial state to a goal state, in order to learn how to perform the given task well.

Q-learning (Watkins & Dayan, 1992) is an RL algorithm that learns a Q-value function
Q(s, a), which specifies the expected utility of taking action a from state s. The agent’s
goal is to learn a deterministic Markov policy π(s), which maps each state s to an action
the agent should take. The policy can be computed using Q(s, a) by taking the action a
with the highest value at each state s. A policy is identified as optimal if it obtains the
maximum expected discounted future reward from any initial state (Sutton & Barto, 1998).
While RL is one approach to learning a policy in an MDP, it can be slow if used to learn
each new task separately and from scratch. Even with human input and guidance, it can
be inefficient when computing policies for new task variants.
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In order to hasten the learning process, transfer learning is applied in MDPs (Pan &
Yang, 2010; Taylor & Stone, 2009; Torrey & Shavlik, 2009) to learn a new task given similar,
previously learned tasks. Prior works have primarily considered the transfer of knowledge
from one source task to one target task. Taylor et al. aimed to transfer value functions across
tasks with different state and action spaces by specifying a behavior transfer function ρ(π)
(Taylor, Stone, & Liu, 2005). They created this function for the RoboCup soccer keepaway
domain and showed across three different function approximators that the training time
on the target task was reduced compared with learning from scratch. Mann and Choe
proposed an approach to transferring knowledge from one source task to one target task
that transfers action-values and acts during the new task with directed exploration (Mann
& Choe, 2012). They found that it is possible to achieve positive transfer and decrease the
sample complexity of exploration in the new task, even with partially incorrect mappings.

In another work, Konidaris and Barto (2007) generalized low-level, primitive actions
to create temporally extended, high-level skills, called “options”. For example, the option
openDoor may consist of a series of policies that instruct the robot how to first reach, then
grasp, and finally turn a door handle. To port the options over to several problems, the
authors used two different representations: one in problem-space, which is Markovian and
specific to a particular task, and another in agent-space, which can be non-Markovian and
shared among many problems. Options are learned in agent-space rather than problem-
space, rendering them reusable for other tasks with the same agent-space. In one example,
the “lightworld domain,” an agent uses light sensors to find a key and unlock a door. The
light sensor readings are in agent-space because they are transferable across lightworld
instances; however, the problem-space contains more specific information, including the
room numbers, x and y coordinates of the agent and whether or not the agent currently
possesses the key. Transfer learning has also been applied to model-based approaches to
improve performance and sample efficiency (Taylor, Jong, & Stone, 2008). These works,
however, only transferred knowledge from one source task to one target task, and cannot
be directly used in situations involving multiple source tasks.

A related line of work focuses on multi-task learning (MTL), which is very similar
to transfer learning. However, methods incorporating MTL assume that all MDPs are
drawn from the same distribution, while transfer learning approaches do not include this
assumption. Brunskill and Li (2013) developed an MTL technique that involves two phases
of learning: the first performs single-task learning on multiple tasks and clusters them, and
the second uses this knowledge to identify the model for the new task and to hasten learning.
This approach achieved much better sample complexity compared with prior methods. In
another work, Wilson et al. (2007) presented a hierarchical approach for multi-task learning.
They represented the distribution of MDPs with a hierarchical Bayesian infinite mixture
model; the distribution was continuously updated and served as a prior for rapid learning
in new environments. However, as Wilson et al. mentioned in their study, their algorithm
can be time-consuming and is not computationally efficient.

For perturbation training, we focus on the transfer learning problem without making
any assumption about the distribution over MDPs. The goal is to draw from multiple
source tasks, each a slight variation of one another, to assist in learning a new but related
task. This requires determining which previous tasks are most relevant to the current one,
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and then using both that knowledge and prior experience to hasten the learning process
necessary for completing the new task.

The Policy Reuse in Q-learning (PRQL) algorithm (Fernández et al., 2010; Taylor,
Suay, & Chernova, 2011) is one transfer learning approach that closely aligns with the goals
of perturbation training. This algorithm uses previously learned policies to intelligently
explore actions in a new task. The approach is parsimonious, in that it considers the
similarity of a new policy to existing policies and adds it to the library of policies only if it
is sufficiently different from those already present. This algorithm, however, only addresses
single-agent tasks.

In addition to policy reuse, many other mechanisms exist for selecting the most relevant
source task(s) for learning a target task. In one work, Taylor, Kuhlmann, and Stone (2007)
created a hierarchy of tasks ordered according to solution difficulty. This relative ordering
was used to select source tasks that could be learned more quickly than the given target
task, thereby reducing total training time. In another approach, Talvitie and Singh (2007)
developed an expert algorithm to choose which policy to use for a new task. According
to this method, the agent has a set of candidate policies, or “experts,” from a previously
learned MDP, and the goal is to incorporate these experts intelligently in order to perform
the new task in a manner comparable to the performance provided by the best expert. In a
recent work, Parisotto et al. (2016) developed another approach based on expert guidance
using deep reinforcement learning. This method involved training one neural network that
learns how to act in a set of source tasks through the use of experts, and using this single
network to quickly generalize to new tasks. Eaton and desJardins (2006) incorporated many
classifiers, each focusing on a different resolution of the data, into their work. Low-resolution
classifiers can be transferred between tasks, while high-resolution classifiers are more specific
to the particular task: for example, at low resolution, the task of recognizing the letter “C”
can be transferred to recognize “G,” but when displayed at a higher resolution, these letters
have unique characteristics that differentiate them.

Many prior works have aimed to identify mappings between source and target tasks. In
one work, Fachantidis et al. (2015) developed an autonomous method to probabilistically
select inter-task mappings and transfer < s, a, r, s′ > experience tuples to the target task. To
perform this transfer, the authors used two probabilistic measures from multi-task transfer
learning: compliance, which helps to determine the most similar source tasks; and relevance,
which helps to choose which instances to transfer from the source tasks. Another approach
by Ammar et al. (2015) involved the learning of inter-task mappings for transfer using
unsupervised manifold alignment in order to align the source and target task state spaces.
The alignment is then used to initialize the target task policy in order to hasten learning.

Some works have incorporated explicit task similarity measures to guide the blending
of multiple relevant source tasks for use in a target task. In one such work, Carroll and
Seppi (2005) explored multiple measures of similarity between MDPs, including transfer
time dT , policy overlap dP , Q-values dQ and reward structure dR. Within a given a set of
tasks, one functioned as the target task while the others served as source tasks to speed
up the computer’s learning process for the target task. The measure dT between two tasks
represents the time taken to “converge” when knowledge is transferred from one task to
the other. In this work, dT is computed between the chosen target task and every other
task, which requires running multiple transfer experiments. Carroll and Seppi compared
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the other three similarity measures to dT in order to determine how well each measure
approximates the true gain in transfer time, and reported that there was no one “best”
similarity metric across the tested domains.

Eaton et al. (2008) incorporated another graph-based method in their work, in which
each task was mapped onto a graph and a function learned on this graph was used to transfer
parameters between tasks. Not unlike dT in Carroll and Seppi’s work, which is a similarity
metric of the time taken to transfer to a new task (Carroll & Seppi, 2005), transferability
in this graph is defined as the direct change in performance between learning with and
without transfer. However, this method considers classification tasks solved using biased
logistic regression, rather than reinforcement learning tasks. Similarly, Ruvolo and Eaton
(2013) developed a transfer learning approach for supervised learning problems wherein a
shared basis set of functions was learned and transferred across tasks. Recently, Ammar
et al. (2014) computed an automated measure of similarity between MDPs by sampling <
s, a, s′ >, thereby comparing the similarities in transition functions. However, this method is
limited in its ability to transfer the meaningful characteristics of similar execution strategies
between MDPs with different transition and reward functions.

While these learning approaches are useful for transferring knowledge, not all provide
a framework for multiple agents. Works involving many agents (e.g. those studied in
Boutsioukis, Partalas, & Vlahavas, 2012) primarily focus on transfer from one source to
a single target task. In one study, Mahmud and Ramamoorthy (2013) built upon the
policy reuse concept for multiple agents to learn a policy for a new task based on policies
from n previous types, and improved transfer learning efficiency through consideration of a
restricted form of non-stationarity in the transition function.

For our problem, we assume that each collaborative task is performed by one human
and one robot, and that there are multiple source tasks for which the relevance to the target
task must be distinguished automatically. Since humans do not satisfy the form of non-
stationarity discussed in Mahmud and Ramamoorthy’s work (2013), we chose to augment
the original PRQL algorithm (Fernández et al., 2010); however, PRQL does not address
multi-agent tasks. The presence of multiple agents also introduces many challenges, one
of which is communication, a key element of collaborative teams (Leonard, Graham, &
Bonacum, 2004).

2.3 Multi-agent Communication

When problems involve multiple agents, these agents must communicate information about
their local state and/or intentions to one another in order to ensure effective cooperation.
Some works (Yen, Yin, Ioerger, Miller, Xu, & Volz, 2001; Fan & Yen, 2005) have modeled
problems using Petri-Nets: in collaborative multi-agent tasks, the beliefs and states of agents
can be represented using a Petri-Net, and agents can decide when to proactively “tell” and
“ask” about information (Yen et al., 2001). A Petri-Net can also model multi-party con-
versations, which are then used through conversation pattern recognition to anticipate the
information needs of other teammates (Fan & Yen, 2005). However, while these works ex-
plore multi-agent communication, they are not directly transferable to problems represented
as MDPs.
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Several works (Roth, Simmons, & Veloso, 2006; Xuan, Lesser, & Zilberstein, 2001;
Guestrin, Lagoudakis, & Parr, 2002) have proposed communication protocols within an
MDP model. In these studies, researchers selected communication actions based on what
would maximize the expected joint reward. Similarly, Bowling and Veloso (2000) used op-
ponent modeling for better action prediction within a competitive domain. Other works,
such as that by Mohseni-Kabir et al. (2015), have used agent suggestions in the communi-
cation protocol and included the ability of agents to accept and reject others’ suggestions.
All of these works assumed a fully observable model in which information about tasks and
costs associated with communication was available to other agents.

Many previous works have also investigated approaches to limited communication, wherein
each agent only has local (rather than global) information about the environment. Some
of these works (Goldman & Zilberstein, 2003; Williamson, Gerding, & Jennings, 2009; Wu,
Zilberstein, & Chen, 2009) used decentralized, partially observable MDPs (DEC-POMDPs),
where each agent takes an action and receives a local observation and a joint immediate
reward. In such cases, each agent must decide when to communicate, as there is a cost asso-
ciated with every communication. One of these approaches (Williamson et al., 2009) used
an agent’s perception of belief divergence in the team to determine whether to communicate:
with a low degree of divergence, the team is coordinated and communication may not be
necessary, whereas high divergence implies a need for coordination. Works using variations
of POMDPs or multi-agent MDPs (MMDPs) (Shen, Lesser, & Carver, 2003; Xuan, Lesser,
& Zilberstein, 2000; Roth, Simmons, & Veloso, 2005; Zhang & Lesser, 2012, 2011) also
addressed limited communication with different sets of assumptions or approaches.

In other works, researchers have studied not just when agents should communicate, but
also what they should communicate. In a study by Xuan et al. (2001), an agent could
“tell” its local state to another agent, “query” for that other agent’s local state or “sync”
to exchange both local states. Roth et al. (2006) more specifically addressed what agents
should communicate by determining which observations resulted in the highest expected
reward when combined with the current joint belief.

Determining whom to communicate with is also important, as shown by Zhang and
Lesser (2013). In their work, a coordination set was computed to determine which subset
of agents to send information to, as it may be infeasible to communicate to a large number
of agents. In another recent work by Amir et al. (2014), the standard MDP was augmented
with an explicit representation of teammates’ plans, which was updated as members shared
new information with one another. Reasoning over and predicting the intentions and plans
of other agents can also improve communication and coordination in multi-agent teams.

In our problem formulation, two agents (a human and a robot) must communicate with
one another using knowledge encoded in the Q-value function. We drew inspiration for
our approach from several works that selected communication actions based on what would
maximize the expected joint reward (Roth et al., 2006; Xuan et al., 2001; Guestrin et al.,
2002). Also, similar to the work by Bowling and Veloso (2000), in which opponent modeling
was used to improve action prediction, we considered human actions in our model when
making decisions. We store a joint Q-value function that can be used to determine the
optimal joint action from every state. In the communication process, we use the Q-values
and human input to decide whether, at each time step, to suggest an action or to accept
or reject a human’s suggestion – a method similar in spirit to the communication protocol
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Figure 1: This figure depicts our formulation of human-robot perturbation training. In our
scenario, the team experiences a training phase involving multiple source tasks
and a test phase with a new target task. For each task, the robot incorporates
co-learning to run multiple simulations between each human interaction. When
working with a human, the robot uses a communication protocol. During the
training tasks, the robot employs a simple algorithm such as Q-learning; in the
test tasks, the robot uses a transfer algorithm, which in our case is AdaPT.

described by Mohseni-Kabir et al. (2015). In this paper, we assume a fully observable
model and that agents communicate with one another prior to each joint action. We leave
to future work an extension in which the robot must decide when, what and with whom to
communicate; act under local observations; and reason over the intentions of other agents.

3. Problem Statement

We formally define human-robot perturbation training, depicted in Figure 1, as a variant
of multi-agent transfer learning, consisting of the following six components: multiple source
tasks, one target task, a co-learning framework, a communication protocol, a learning algo-
rithm for the source tasks and a transfer learning algorithm.

The human and robot train on N source tasks {T1, T2, ..., TN}. We require that training
tasks {T2, ..., TN} are variants of the original task T1 to represent perturbations during
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the training process. Variants can incorporate changes to the MDP formulation, such as
modifications of the transition function or reward function. After the training phase, the
team receives a new task, Ω, that they have not seen before. These first two components are
the same as those specified for a multi-agent transfer learning problem involving multiple
source tasks and one target task.

Each task {T1, T2, ..., TN}, along with Ω, is represented as a multi-agent Markov decision
process (MDP) according to the tuple {S,AH , AR, T,R}, where:

• S is the finite set of states in the world. We assume a fully observable environment,
so the state is known to all agents.

• AH is the finite set of actions that the human can execute.

• AR is the finite set of actions that the robot can execute.

• T : S×AH×AR → Π(S) is the state-transition function that specifies the probability
of transitioning to state s′ given the current state s, human action ah and robot action
ar. We write the probability of the transition as T (s, ah, ar, s

′).

• R : S×AH ×AR×S′ → R is the reward function that specifies the immediate reward
for a given state s, human action ah, robot action ar and next state s′. We write the
reward as R(s, ah, ar, s

′).

Note that this two-agent formulation can be generalized to incorporate any N number
of agents.

The robot learns a team policy for executing each task through a reinforcement learning
process (Busoniu et al., 2008; Puterman, 2009; Sutton & Barto, 1998). The human and
robot first observe the current state of the world; they then each take an action from their
respective action sets (AH or AR). Next, they are given a new state based on what has
changed in the world, as well as a feedback signal or reward. They then continue to take
actions until they reach a goal state. The execution of a task, from initiation to goal state,
represents one episode. The team repeats the task multiple times; through this process,
the robot learns a Q-value function Q(s, ah, ar) that specifies the value of every joint action
< ah, ar > at each state s.

The aim is to maximize the accumulated reward obtained during the task, defined as

H∑
h=0

γhrh

, where γ specifies the importance of future rewards and rh specifies the immediate reward
received in step h of the episode. The challenge, however, is that standard reinforcement
learning techniques take many episodes to converge, and a human cannot practically be
involved in every episode. In contrast to many multi-agent transfer learning systems (Kono,
Murata, Kamimura, Tomita, & Suzuki, 2016; Taylor, Duparic, Galván-López, Clarke, &
Cahill, 2013), we require that a human be involved in the learning process, as perturbation
training for human teams requires all team members to be included. Thus, we require a
framework that allows the human and robot to each gain the amount of experience necessary
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for high-level team performance. In this work, we define a co-learning component, where
each training and testing session involves a limited number of human interactions interleaved
with many robot simulation runs. This framework, depicted in green in Figure 1, allows the
robot to quickly learn the task while supporting its human teammate’s learning through
a relatively small number of interactions. The frequency of human interactions and the
number of robot simulation runs between each interaction can be modified based on the
design of the co-learning framework.

Our model for perturbation training also requires a communication protocol that team
members use to share information about their action selections during human interaction.
For example, a protocol may specify that the human and robot are simply able to directly
observe one another’s actions; alternatively, another protocol may permit agents to suggest
or direct actions to other teammates based on their current knowledge about the state of
the world. In this work, we utilize a communication protocol similar to the latter.

The final two components of our perturbation training model pertain to the robot’s
learning process: The robot requires a method for learning a value function for each of
the source tasks. In our work, we use the standard Q-learning algorithm (Watkins, 1989),
with the MDP representation of the current task Ti as input, and a value function Qi :
S × AH × AR → R, as output. Any alternate to Q-learning can be used as long as the
output is a learned value function Qi(s, ah, ar) for each source task. The robot also requires
a technique for transferring the knowledge learned from practicing the source tasks in order
to learn quickly during the target task Ω. Inputs to the transfer problem include the new
task Ω and a library of previously learned Q-value functions L = {Q1, ..., QN} from the
source tasks. The goal is to quickly learn a value function QΩ : S × AH × AR → R for the
target task.

These six components – multiple source tasks, one target task, a co-learning framework,
a communication protocol, a learning algorithm for the source tasks and a transfer learning
algorithm – make up the essential elements of the human-robot perturbation training model.
Our contributions in this work include the development and evaluation of a co-learning
framework, communication protocol and new transfer algorithm (AdaPT). We demonstrate
through results from simulation and human subject experiments that AdaPT enables a
human-robot team to learn efficiently and robustly through experience of perturbations.
We also show that the full model, including the co-learning framework and communication
protocol, supports a human in effectively learning complex joint strategies and preserves
the relevant benefits for perturbation training as compared with an alternate, commonly
used human team-training technique.

4. Adaptive Perturbation Training (AdaPT) Algorithm

The goal of AdaPT is to draw from many source tasks – each a slight variation of the other –
to assist in learning a new but related task. This requires determining which previous tasks
are most relevant to the current one, and using both that knowledge and prior experience
to hasten the learning process for the new task. AdaPT is a generalization of the Policy
Reuse in Q-learning (PRQL) algorithm (Fernández et al., 2010; Taylor et al., 2011), which
incorporates a library of previously learned policies to intelligently guide the search for a
new policy. In PRQL, the agent explores actions that resulted in a high level of reward
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during previous tasks. Each policy has an associated weight that is updated during learning
to reflect how well that policy performs for the new task; the higher the weight, the more
likely a given policy will be chosen for the current episode. Also, as the agent learns, its
confidence in these weights increases, as represented by a temperature parameter associated
with an annealing process. Initially, past policies heavily guide exploration; however, after
multiple iterations, the agent relies solely on the newly learned policy for execution of its
new task.

The AdaPT algorithm augments PRQL to learn more quickly for new task variants.
While PRQL can more intelligently guide exploration, it does not take full advantage of
prior knowledge to learn well for new tasks. PRQL begins with a value function initialized
naively with zeroes and uses previously learned policies to guide the learning of this new
function. In our algorithm, we instead directly adapt previously learned knowledge to learn
more quickly for a new task. To do this, AdaPT incorporates Q-value functions rather
than policies from previously learned tasks in order to adapt knowledge more easily. With
every simulated execution of the new task, the algorithm updates the values in all value
functions to reflect what the agent has learned, allowing it to simultaneously adapt all value
functions to be more helpful for the new task. Finally, AdaPT returns the value function
with the highest weight as the new policy. This is distinguished from PRQL, which always
returns the newly learned policy. In both AdaPT and PRQL, if this new Q-value function is
sufficiently different from those that already exist in the library, it can be inserted as a new
function, allowing the agent to continuously build knowledge. In this work, we do not test
the continuous learning process of building a knowledge base, but focus instead on applying
and evaluating the efficacy of our algorithm as part of a perturbation training framework.
We leave analysis of AdaPT in a lifelong learning system to future work.

Figure 2 depicts the difference between AdaPT and PRQL. Here, the Q-value functions
are represented as points in space; two value functions that are close to one another indicate
that they achieve similar reward on a particular task than two value functions that are
further apart. Q1, Q2 and Q3 are three value functions learned from three training tasks.
Q∗new represents the unknown optimal value function the agent must learn for the new task.
PRQL starts with an initial value function Qinit

n and uses the three other value functions to
guide this new function closer to Q∗new. The three functions Q1, Q2 and Q3, however, are
unchanged. AdaPT instead adapts all value functions from training to move them closer to
Q∗new. Finally, the algorithm chooses the one closest to Q∗new. To approximate which value
function is closest, AdaPT chooses the one with the maximum weight, as this represents
the value function that has resulted in the highest reward during the new task over time.
This new value function can then be added to the library and used for future tasks. Our
method of directly adapting prior knowledge to learn in new situations was inspired by the
way in which humans adapt: by matching new tasks to previous similar cases (Klein, 1989).

Inputs to the AdaPT algorithm (Figure 3) include the new task to perform, Ω; a
copy of the Q-value functions that the robot learned from practicing on n training tasks,
{Q1, ..., QN}; the initial temperature τ used for policy selection; the temperature decay,
∆τ ; the maximum number of episodes, K; the maximum number of steps in each episode,
H; and standard γ, α, and ε parameters used for ε-greedy Q-learning. Given these inputs,
the robot simulates in order to learn a joint Q-value function for the new task Ω.
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Figure 2: This chart depicts the difference between AdaPT and PRQL. While PRQL learns
a new value function guided by prior knowledge, AdaPT directly adapts previ-
ously learned value functions in order to learn well during new tasks.

The algorithm begins by initializing the weights of all Q-value functions from the library
to 0 in line 1. Line 2 initializes the counter for each value function, which tracks the number
of episodes in which a value function is selected for execution. In Line 3, AdaPT simulates
for K episodes, each time choosing a Q-value function Qc to execute based on the current
temperature τ and the weights W1, ...,WN (line 4). The chosen Qc is used for action
selection with an ε-greedy approach (with probability ε, a random action is chosen; with
probability 1-ε, the action with maximum value is taken). Then, all value functions are
updated based on the reward received (line 5) for improved performance on the new task.
Figure 5 depicts the elaborated pseudocode for this function, Update-QValues. While all
value functions in the library are updated, note that only the value function chosen for
the current episode, Qc, has its weight updated in line 6. In lines 7-8, the counter for
value function Qc is incremented and the temperature parameter is updated. Lines 4-8 are
repeated for K episodes; finally, in line 10, the Q-value function with maximum weight is
returned for use in the new task.

The AdaPT algorithm presented in Figure 3 is similar to the main PRQL algorithm,
but PRQL differs in the way it updates its Q-values: in place of Update-QValues, PRQL
executes the π-reuse algorithm. Here, we present π-reuse and then our modified version,
Update-QValues, and highlight important differences between them.

The π-reuse algorithm (Figure 4) takes as input the Q-value function being learned for
the new task, QΩ; the past policy, Πpast, chosen to guide exploration during the current
episode; the ψ parameter, which determines the probability that the past policy is chosen
over an ε-greedy approach; the v parameter, which indicates how much to decay the value
of ψ in each step; the maximum number of steps per episode, H; and standard γ, α, and
ε parameters used in ε-greedy Q-learning. The algorithm returns the reward R obtained
in that episode, along with an updated Q-value function QΩ. The episode is initialized
with a randomly selected state s (line 1) and the initial ψ value (line 2). With probability
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Algorithm: AdaPT (Ω, {Q1, ..., QN}, τ , ∆τ , K, H, γ, α, ε)

1. Set the weights of all Q-value functions: Wi = 0, ∀i = 1, ..., N

2. Set the number of episodes Q-values Qi has been chosen Ui = 0, ∀i = 1, ..., N .

3. for k = 1 to K.

4. Choose a Q-value function for the current episode, where the probability
of selecting a value function as Qc is determined by the following equation:

P (Qc) = eτWc∑N
p=1 eτWp

∀c = 1, ..., N

5. < R,Q1, ..., QN > = Update-QValues(Q1, ..., QN , c, H, γ, α, ε)

6. Set Wc = WcUc+R
Uc+1

7. Set Uc = Uc + 1

8. Set τ = τ + ∆τ

9. end for

10. Return Q-value function with maximum weight

Figure 3: The Adaptive Perturbation Training (AdaPT) algorithm takes as input a new
task and a library of value functions learned from previous tasks, among other
parameters. It adapts all value functions simultaneously and returns the value
function with the highest weight to execute in the new task.

ψ, the algorithm executes one step that follows the past policy action Πpast(s) and, with
probability 1 - ψ, executes the action determined by the new policy using an ε-greedy
approach (lines 4-5). Reward is received (line 6), and the Q-values are updated in line 7
using the Q-learning value update. Line 8 decays the ψ parameter so that the past policy
is used less frequently in later episodes. In line 9, the state is updated. Line 11 calculates
the accumulated reward over this episode, discounted using γ. Finally, the reward and the
updated Q-value function are returned in line 12.

Here, we present the Update-QValues algorithm (Figure 5), which takes as input the Q-
value functions Q1, ..., QN ; the index of the Q-value function, c, chosen for action selection
in the current episode; the maximum number of steps per episode, H; and standard γ, α and
ε parameters used in ε-greedy Q-learning. The algorithm returns the reward R obtained
during that episode, along with updated Q-value functions Q1, ..., QN . The episode is
initialized at a randomly selected state s (line 1). The algorithm then executes a random
joint action with probability ε in line 4. With probability 1 - ε, the joint action with
maximum value in the current Q-value function Qc is chosen (line 6). The reward is received
in line 7, and all Q-value functions are updated in line 8 using the Q-learning value update.
In line 9, the state is updated; in line 11, the accumulated reward is calculated over this
episode, discounted using γ. Finally, the reward and the updated Q-value functions are
returned in line 12.
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Algorithm: π-reuse (QΩ, Πpast, ψ, v, H, γ, α, ε)

1. Set the initial state s randomly

2. Set ψ1 ← ψ

3. for h = 1 to H

4. With probability ψ, < ah, ar >= Πpast(s)

5. With probability 1-ψ, < ah, ar >= ε-greedy(ΠΩ(s))

6. Receive next state s′ and reward rh

7. Update: QΩ(s, ah, ar) = (1− α)QΩ(s, ah, ar) + α[rh + γmaxa′
h,a

′
r
QΩ(s′, a′h, a

′
r)]

8. Set ψh+1 ← ψhv

9. Set s← s′

10. end for

11. R =
∑H

h=0 γ
hrh

12. Return < R,QΩ >

Figure 4: π-reuse is a subfunction of PRQL that executes one episode of the task (from
initialization to goal state) by using the chosen past policy to guide the learning
of a new value function. In AdaPT, we replace π-reuse with Update-QValues.

The main difference between PRQL, which uses π-reuse, and AdaPT, which uses Update-
QValues, is that PRQL incorporates past policies to guide the learning of a new value func-
tion QΩ, while AdaPT, instead of learning a new value function, updates all previously
learned value functions and ultimately chooses the one with the greatest weight. For action
selection, PRQL chooses to use either a past policy, the new value function being learned
QΩ or a random action based on ε. In contrast, AdaPT only considers a value function from
the library or a random action based on ε, and does not learn a separate value function
QΩ. This means that AdaPT does not require the ψ and v parameters that PRQL uses
to balance between Πpast and QΩ. Thus, AdaPT uses fewer parameters and takes greater
advantage of previously learned value functions by directly adapting them rather than using
them to guide the learning of a new value function.

Note that AdaPT and Update-QValues explicitly represent both the human and the
robot in the state and action spaces; learning Q(s, ah, ar) enables the robot to learn and
make decisions over this joint space. Although this increases the complexity of the problem,
it also allows the robot to consider human actions in its decision making and select optimal
joint actions for the team.

Q(s, ah, ar) is sufficient for offline learning in simulation, where the robot chooses actions
for both itself and a simulated human. However, working with a real human poses an
additional challenge, in that the robot does not make decisions on behalf of the human.
Therefore, it is also useful to store and update a local value function Q(s, ar) during the
learning process, as this enables the robot to consider the best action over all possible
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Algorithm: Update-QValues (Q1, ..., QN , c, H, γ, α, ε)

1. Set the initial state s randomly

2. for h = 1 to H

3. With probability ε,

4. < ah, ar > = Random joint action

5. With probability 1 - ε,

6. < ah, ar >= maxa′
h,a

′
r
Qc(s, a

′
h, a
′
r)

7. Receive next state s′ and reward rh

8. Update all Q-value functions Qi, ∀i = 1, ..., N :
Qi(s, ah, ar) =(1− α)Qi(s, ah, ar) + α[rh + γmaxa′

h,a
′
r
Qi(s

′, a′h, a
′
r)]

9. Set s← s′

10. end for

11. R =
∑H

h=0 γ
hrh

12. Return < R,Q1, ..., QN >

Figure 5: Update-QValues is a subfunction of AdaPT that executes one episode of the task
(from initialization to goal state) and updates all Q-value functions to adapt to
the new task.

human actions when the next step of the human is uncertain. (Note that it is also possible
to store P (ah|s, ar) and use this to estimate Q(s, ar).)

It is also important that the robot’s learning algorithm run quickly during human in-
teraction. We analyzed the time complexity of AdaPT thusly: it runs for K episodes, with
each episode executed for up to H steps. At each step, all N previous Q-value functions
are adjusted using the Q-learning value update. Each update requires an estimation of the
optimal future value, which iterates over all |ah|×|ar| possible joint actions. Thus, the time
complexity of AdaPT is O(KHN |ah||ar|). Parameters such as K and H are set according
to the size of the state and action space of the task.

5. Computational Results

In this section, we empirically validate that AdaPT learns quickly and robustly for new task
variants through comparison with other state-of-the-art hybrid reinforcement and trans-
fer learning techniques. Specifically, we compared the performance of AdaPT to PRQL
(Fernández et al., 2010; Taylor et al., 2011); PRQL-RBDist, a variation of PRQL that
uses a recent deep-learning algorithm to choose an informative prior (Ammar et al., 2014);
and standard Q-learning across two domains with state space sizes of 3,125 and 10,000,
respectively.
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As noted previously, the standard PRQL algorithm begins with an uninformative prior,
which can result in slow learning. Therefore, we manually seeded PRQL with different
priors for a fair basis of comparison. Since the performance of PRQL varies substantially
with the prior, we also compared AdaPT to a variant of PRQL in which the prior is selected
through the use of RBDist, an automated MDP similarity metric (Ammar et al., 2014). The
technique computes similarity between MDPs by sampling < s, a, s′ > and training RBMs.

All four algorithms were trained on the same training tasks and tested on a variety of
test tasks. For each training task, the robot learned a joint Q-value function and a joint
policy through Q-learning that included both human and robot actions. For AdaPT, all
value functions learned through training were given as input to the algorithm, which was
run for a limited number of iterations on the new test task prior to evaluation. For PRQL,
we gave as input all policies learned from training and then initialized the value function
by either using an uninformative prior or by selecting one of the various value functions
learned from training. We evaluated the performance of PRQL using each of these priors.

For RBDist with PRQL, we implemented the similarity measure described by Ammar
et al. (2014) using Tanaka and Okutomi’s implementation of the RBM (Tanaka & Okutomi,
2014). We ran RBDist for each training task and the test task given data points in the form
of < s, a, s′ > for each task MDP. The output of the algorithm was the mean reconstruction
error, which is a measure of similarity between the two input MDPs. The training task that
achieved the lowest mean error was identified as the training task most similar to the new
task. To incorporate RBDist into the learning process, we ran RBDist using N samples
from each training task and then the first N samples of the new test task, with N specified
according to the domain. We then initialized the value function of the new task with the
values of the most-similar training task, and continued execution in the test task using
PRQL.

Here, we present how the algorithms performed during the test tasks given limited
simulation time, and compare the average accumulated reward of each technique averaged
over 50 simulation runs. For AdaPT and Q-learning, we ran the test tasks with only one set
of parameters; thus, we simply present the average reward for each test task and do not show
variance across parameters or priors. For PRQL, we present the range in performance as we
changed the prior, and report that performance is highly sensitive to the prior selected. For
PRQL-RBDist, we varied the number of hidden units in the RBM between 1, 5, 100 and
500, and found that the algorithm’s performance varied greatly as a result. Furthermore,
RBDist takes significantly longer than AdaPT to compute a measure of similarity, which
can be especially detrimental when a robot is working with a person in real time. Overall,
our algorithm is able to adapt more quickly to new task variants, without the sensitivities
associated with selection of a prior or the number of hidden units.

5.1 Fire Extinguishing Task

The first task was a disaster response scenario that involved a team of one human and one
robot extinguishing five fires associated with five neighboring houses on a street block. The
goal of the task was to put out the fires as quickly as possible while minimizing damage
to the houses. In variants of this task, each of the fires was initialized at differing levels
of intensity, from level 0 (no fire) to level 3 (large fire). During task execution, fires could
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potentially increase by one intensity level up to a maximum of 4, which indicated that the
house had burned to an unrecoverable state. A fire’s intensity would decrease more quickly
if both the human and robot extinguished it together rather than working separately on
different fires.

The probability that a fire’s intensity would increase to level 4 was greater if the en-
vironment had high dryness conditions, and the probability that a fire would spread to
neighboring houses was greater if the environment had high wind conditions. The team had
to determine the best way to work together depending on the environmental conditions.
The first, “base” task the team trained on incorporated no wind or dryness (w = 0 and
d = 0). The second training task, which was the first perturbation the team experienced,
included some wind but no dryness (w = 5 and d = 0). The third and final training task
involved no wind and some dryness (w = 0 and d = 5). The teams were then tested using
combinations of wind and dryness.

Information about the state of the world, available actions, consequences and goal
criteria were encoded for the robot in an MDP. This MDP was formulated as a tuple
{S,AH , AR, T,R}, where:

• S is the finite set of states in the world. Specifically, S =< IA, IB, IC , ID, IE >,
Ii ∈ [0, 4], where each value Ii in the vector denotes the intensity of fire i and is an
integer ranging from [0,4]. Intensity 0 indicates no fire, 1-3 indicate low- to high-
intensity fires and 4 indicates burnout. The size of the state space is 3,125.

• AH ∈ {A,B,C,D,E,WAIT}. Actions A,B,C,D,E each represent the human at-
tempting to extinguish fires A,B,C,D,E, respectively. WAIT is a no-op in which
the human takes no action.

• AR ∈ {A,B,C,D,E,WAIT} represents the robot’s attempts to extinguish the fires.

• T : S ×AH ×AR → Π(S) specifies the transition function. For perturbed variants of
the task, wind and dryness levels affected the transition function, as the probability of
a fire spreading was based on both the wind level and the intensity of the fire. If the
wind level w was greater than 0, the probability of a fire spreading at intensity 3 was
(w ∗ 10 + 10)%, while the probability at intensity 2 was 10% less and a further 10%
less at intensity 1. If the wind spread the fire to a neighboring house, the intensity of
the neighboring fire increased by one level. At most, five fires increased in intensity
from the fire spreading at each time step. If the dryness level d was greater than 0 and
a fire was at level 3, the probability of a house burning down during the subsequent
step was (d ∗ 10 + 10)%.

T also modeled the effect of human and robot actions on the fires during all tasks.
Both team members working on the same fire had a 90% probability of decreasing
its intensity by three levels, and a 10% probability of decreasing it by two levels.
Separately extinguishing fires resulted in a decrease of one level with 90% probability
and of two levels with 10% probability.

• R : S × AH × AR × S′ → R specifies the reward function. For the experiment task,
-10 reward was assigned for each time step, and an additional negative reward was
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Figure 6: This chart compares the performance of AdaPT, PRQL, PRQL-RBDist and Q-
learning on the fire task, given limited simulation time. The x-axis displays
the wind and dryness values of the test tasks (e.g., [7,3] represents a task with
wind=7 and dryness=3). The y-axis depicts the average accumulated reward
received during an execution of the task after learning on the test task for 2,000
iterations. Less negative reward denotes better task performance.

added in direct proportion to the intensities of the fires at each time step. At task
completion, -100 reward was assigned for each house that had burned down.

In our experiments, we used γ = 1 to represent a finite horizon problem. Other param-
eters were initialized as follows: ε = 0.1, α = 0.05, τ = 0, ∆τ = 0.01, K = 400,000 for
training and 2,000 for testing, and H = 30. For PRQL, the additional ψ parameter was
initially set to 1 and the v parameter to 0.95. For PRQL-RBDist, we used 5,000 data points
of the form < s, a, s′ > for each task.

We first compared the four algorithms: AdaPT, PRQL, PRQL using RBDist and Q-
learning, given limited simulation time. We ran PRQL four times, each time initialized with
either an uninformative value function or the value function learned from each of the three
training tasks. We ran each of these 50 times and determined the average performance for
each prior. We plotted the average accumulated reward across all priors and then depicted
the range with error bars by plotting the minimum and maximum performance achieved
across each of the priors. As indicated in Figure 6, PRQL’s performance changed drastically
depending on the prior.

For PRQL-RBDist, we ran the PRQL algorithm, using the RBDist measure as a prior
selection mechanism, for a range of hidden units: 1, 5, 100, and 500, averaged over 50 runs.
We plotted the average accumulated reward over all of the hidden units and presented
the range in performance across them. While RBDist helped to automate the process of
selecting a prior, it was also very sensitive to changes in parameters and was thus unable
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to achieve robust performance on the test tasks. Q-learning performed the worst on most
test tasks because it does not use prior knowledge to learn new tasks more quickly. Overall,
AdaPT was able to achieve better performance than the other algorithms on most tasks,
without sensitivity to selection of prior or the number of hidden units. AdaPT also took far
less time to execute 2,000 iterations than PRQL-RBDist: While AdaPT took 0.575 seconds
on average, PRQL-RBDist took between 1.573 seconds (when using 1 hidden unit) and
77.790 seconds (when using 500 units).

5.2 GridWorld Task

The second domain was a collaborative version of a GridWorld task, similar to the evaluation
domain used by Fernández et al. (2010). The objective was for a team consisting of two
agents to reach the goal location while maximizing the number of tokens obtained, as in
the work of Agogino and Tumer (2005), and minimizing the number of pits crossed over.
If the two agents collectively obtained a token, the team received a higher reward than
if they collected tokens separately. The MDP for this task was formulated as a tuple
{S,AH , AR, T,R}, where:

• S is the finite set of states in the world. Specifically, S =< (Hrow, Hcol), (Rrow, Rcol) >.
The human’s position on the grid is indicated by (Hrow, Hcol), and the robot’s position
is indicated by (Rrow, Rcol). Each value denotes the row or column of the agent’s
location on the 10x10 grid. The size of the state space is 10,000.

• AH ∈ {UP,DOWN,LEFT,RIGHT,WAIT}. These actions correspond to move-
ment in each of the four cardinal directions on the grid. WAIT is a no-op in which
the human takes no action.

• AR ∈ {UP,DOWN,LEFT,RIGHT,WAIT} represents the robot’s intended actions
for moving around the grid.

• T : S × AH × AR → Π(S) specifies the transition function. The stochasticity of the
task is modeled similarly to GridWorld tasks, in which the robot has an 80% chance
of taking the action it chose, a 10% chance of moving to the left of that action and a
10% chance of moving to the right.

• R : S×AH ×AR×S′ → R specifies the reward function. For this task, -1 reward was
assigned to each time step. The human or robot earned +1 reward if they individually
collected a token, but received +5 if they collected the token together, in order to
encourage collaboration. If either the human or robot landed on a pit, -5 reward was
given. The team received +20 reward when both the human and robot reached the
goal location.

The 10x10 grid had fixed token and pit locations, as shown in Figure 7. The team
trained on four training tasks, each of which involved a different goal location. In our
experiments, the four corners of the grid served as the goal locations, as specified by the
green cells in the figure. After training, the team received a randomly selected goal location
for each test task. Parameters for the GridWorld task were initialized as follows: γ = 1, ε =
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Figure 7: This figure is a representation of the 10x10 GridWorld task domain. Yellow tokens
and black pits are placed in fixed locations on the grid. The four green locations
represent the training task goal locations. The team was tested on 50 random
test goal locations.
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Figure 8: This chart compares the performance of AdaPT, PRQL, PRQL-RBDist and Q-
learning on the GridWorld task given limited simulation time. The y-axis depicts
the average accumulated reward received on an execution of the task after learn-
ing on the test task for 5,000 iterations. Less negative reward denotes better
performance on the task.
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0.1, and α = 0.05, τ = 0, ∆τ = 0.01, K = 1,000,000 for training and 5,000 for testing, and
H = 30. For PRQL, the additional ψ parameter was initialized to 1 and the v parameter to
0.95. For PRQL-RBDist, we used 10,000 data points of the form < s, a, s′ > for each task.

As in the fire task, we compared AdaPT, PRQL, PRQL using RBDist and Q-learning
given limited simulation time. We ran PRQL five times, each run initialized with either
an uninformative value function (as in the original PRQL algorithm) or the value function
learned from each of the four training tasks, averaged over 50 runs. We plotted the average
accumulated reward across all priors and then identified the range by plotting the minimum
and maximum performance of the priors as error bars. As shown in Figure 8, PRQL’s
performance changed drastically depending on the prior. However, this was mainly due to
PRQL’s negative performance when using an uninformative value function; when PRQL
was initialized with any of the learned value functions, it performed much better, with a
small variance across the learned priors.

A similar effect occurred in the PRQL-RBDist case. To test PRQL-RBDist, we ran the
PRQL algorithm, using the RBDist measure as a prior selection mechanism, for a range of
hidden units: 1, 5, 100, and 500, averaged over 50 runs. We plotted the average accumulated
reward over all of the hidden units and determined the range in performance across them.
While RBDist was highly sensitive to changes to the number of hidden units on the fire
task, RBDist had a smaller range during the GridWorld task. We hypothesized that this
is because the strategies employed were vastly different for the fire task, and choosing an
inappropriate prior can significantly hinder performance. In the GridWorld task, using
any prior can drastically improve learning, and choosing one value function over another
does not reduce performance as heavily as it would during the fire task. Starting with an
uninformative value function, however, significantly lowers performance in the GridWorld
task because the state space is much larger, and starting with no learned values results in
much slower learning. Finally, Q-learning performed worse than all other tested conditions
because it was initialized with no prior knowledge at each test task.

Even though PRQL-RBDist was comparable to AdaPT in terms of performance during
the GridWorld task, it took much longer to execute: While AdaPT took 2.259 seconds on
average to execute 5,000 episodes, PRQL-RBDist took between 4.214 seconds (when using 1
hidden unit) and 17.112 seconds (when using 500 units). This indicates that AdaPT is able
to execute episodes much more quickly than PRQL-RBDist, enabling the agent to learn
and adapt to new tasks more quickly.

5.3 Summary of Results

These computational results indicate that AdaPT is able to achieve task performance within
the two domains tested in this work in a manner comparable to or better than other eval-
uated methods; also, that the algorithm is fast and not sensitive to specification of priors
or other parameters associated with deep learning techniques. While PRQL can perform
well given the appropriate prior, it is evident from previous work that determining which
training task is most similar to a new task is not trivial (Taylor, Kuhlmann, & Stone, 2008;
Ammar et al., 2014). The RBDist measure provides a mechanism for prior selection, but
the result is sensitive to parameter selection. It also takes a long time to train the RBM,
which may be impractical for human-robot teamwork, during which decisions must be made
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quickly and in real time. In the next section, we show that AdaPT can provide the basis of
a framework for quick adaptation that supports effective human-robot co-learning.

6. Human-Robot Perturbation Training Model

While our AdaPT algorithm provides a framework for adapting to new task variants, it
does not support actual interaction with humans. Therefore, we developed a co-learning
framework and a bidirectional communication protocol to better support teamwork. These
two components, combined with our AdaPT algorithm, form our computational human-
robot perturbation training model.

6.1 Co-learning Framework

Often, robots solve complex problems in simulation by practicing over many iterations using
reinforcement learning. However, this is impractical when working with a human, as it can
take hours or even days to compute optimal policies for complex problems. Furthermore,
robots learning a task offline is not representative of the way humans learn collaboratively.

To better support interaction with humans, we added a co-learning framework through
human-robot practice sessions. The robot simulates between each interaction with a human,
allowing it to refine its policy, or “catch up” its learning, before working with that person
again. During the trials between human interactions, the robot simulates experience using
the approximate model and updates its value function using standard Q-learning value
updates. The robot determines the optimal action for both itself and the human during
these simulations, operating under the assumption that the human action is rational. This
is acceptable since the primary purpose of the simulated trials is to gain more knowledge
and obtain a more accurate value function. When the robot works with that individual
again, this updated value function is used to select actions and communicate. After the
interaction is completed, the robot again simulates over many trials and further updates its
value function to incorporate this new knowledge.

6.2 Human-Robot Communication Protocol

Communication between team members is vital for effective team collaboration (Leonard
et al., 2004). The Human-Robot-Communicate algorithm, depicted in Figure 9, describes
how a robot communicates with a human in order to coordinate task execution. Our
protocol requires that the team communicate at each step of the task (although this could
be relaxed in future work in order to reduce communication overhead). At each step,
the teammate who initiates communication can either suggest actions for both teammates
or simply update the other teammate as to what their own action will be, allowing the
teammate to make a decision accordingly. If the initiator makes a suggestion, the other
teammate has the option to accept or reject it.

The algorithm utilizes two threshold values, εsugg and εacc, to determine whether or not
the robot should suggest an action or accept a suggestion, respectively, at each communi-
cation step. A low threshold for suggestion εsugg results in the robot frequently offering
suggestions that it is confident are best for the team. A high threshold means that the
robot trusts the human to make correct decisions, and will only offer suggestions itself if
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the optimal joint action reward is much higher than the average reward across all possible
human actions. A low threshold for accepting human suggestions εacc means that the robot
will frequently reject human suggestions; too low of a threshold can be detrimental to team
performance if two equally viable actions have slightly different Q-values and decisions are
sensitive to these small changes. A high threshold for accepting suggestions means that
the robot will accept human suggestions even if they do not yield high reward. This can
be useful if the robot is attempting to act according to human preference rather than the
optimal Q-value function. These thresholds may be set statically or tuned dynamically to
reflect human or robot expertise in the task. We include an analysis later in this section of
how human action selection and threshold values affect performance.

The way in which we incorporate communication into the learning process of AdaPT is as
follows: At each time step, instead of simply calculating the optimal joint action < a∗h, a

∗
r >,

as in line 6 in Update-QValues, the optimal joint action or human input < a∗h, a
∗
r > is

passed into our communication algorithm, Human-Robot-Communicate. The algorithm is
then executed with human input received as necessary through text or speech, and then
a final joint action is returned. Update-QValues then resumes execution by incorporating
this joint action and receiving the next state. In our experiments, the human and robot
alternated with respect to who initiated communication at each time step. This can be
modified, like the threshold values, in future work such that a teammate initiates based on
who possesses more knowledge about the task or who has important information to convey.

The Human-Robot-Communicate algorithm takes as input a tuple that specifies the
human action a∗h and the robot action a∗r before the communication step. If the human
initiates communication, these actions originate from human input; if the robot initiates,
the actions originate from calculation of the optimal joint action. We input two threshold
parameters: εsugg, to determine whether to make a suggestion or an update; and εacc, to
determine whether to accept or reject suggestions made by the human. The joint Q-value
function Q(s, ah, ar) and the robot Q-value function Q(s, ar) are also taken as input. Using
these parameters and human input, the Human-Robot-Communicate function returns the
final joint action agreed upon during communication.

When the robot is initiating communication (line 1, Case 1), it has no knowledge about
what the human will do, and thus has to make a decision that takes all possible human
actions into consideration. It first calculates the optimal action a′r over all possible subse-
quent human actions (line 2). If the joint action has a much higher value (as determined by
the threshold εsugg) than the expected value over all human actions of Q(s, ah, a

′
r) (line 3),

the robot suggests the optimal joint action in line 4. If the value of the joint action is not
much better than the average value over all human actions, the robot simply updates the
human as to its plan of action, allowing the person to choose his or her own action (line 6).

If the human initiates communication (line 7, Case 2), the inputted joint action, <
a∗h, a

∗
r >, is either a suggested joint action provided by the human or an update from the

human with a∗r being null. The robot first calculates the optimal robot action a′r given the
human action a∗h (line 8). If the human only communicated an update and a∗r is null (line
9), the robot would simply return < a∗h, a

′
r > in line 10. If the human made a suggestion,

the robot would calculate, given a∗h, the difference between taking the calculated optimal
robot action a′r and taking the action suggested by the human a∗r . If the difference is greater
than εacc (line 12), the robot rejects the suggestion and returns < a∗h, a

′
r > in line 13. If the

520



Perturbation Training for Human-Robot Teams

Algorithm: Human-Robot-Communicate (< a∗h, a
∗
r >, εsugg, εacc, Q(s, ah, ar), Q(s, ar))

1. Case 1: Robot is the initiator

2. Calculate the optimal a′r using Q(s, ar)
a′r = arg maxarQ(s, ar)

3. if (Q(s, a∗h, a
∗
r) - Eah [Q(s, ah, a

′
r)]) > εsugg

4. Return < a∗h, a
∗
r >

5. else

6. Return < ah, a
′
r > where ah=received human input

7. Case 2: Human is the initiator

8. Calculate optimal a′r given human action a∗h
a′r = arg maxarQ(s, a∗h, ar)

9. if a∗r == null (human provided an update)

10. Return < a∗h, a
′
r >

11. else (human provided a suggestion)

12. if (Q(s, a∗h, a
′
r) - Q(s, a∗h, a

∗
r)) > εacc

13. Return < a∗h, a
′
r >

14. else

15. Return < a∗h, a
∗
r >

Figure 9: The Human-Robot-Communicate algorithm provides a computational framework
for the robot to make decisions when communicating with a person.

calculated optimal joint action is not much better than the suggestion, the robot accepts
and returns < a∗h, a

∗
r > in line 15. We use this two-way communication protocol because

providing suggestions and updates is a natural way for a team to coordinate on joint tasks.

6.2.1 Robustness of Team Performance to Communication Threshold
Parameters and Human Action Selection Strategy

Our communication protocol includes two threshold parameters: εsugg and εacc. We investi-
gated the robustness of team performance as a function of the settings of these parameters,
as well as with respect to human action selection strategy. We conducted this study in
simulation, since conducting experiments with human subjects across such a wide range of
settings would be time-prohibitive.

We considered three different types of simulated humans: a rational human, who always
chooses optimal actions based on the value function; a semi-rational human, who chooses
with uniform probability from the top three actions; and a human exhibiting random be-
havior, who chooses one of the feasible actions with uniform probability. For each human
type, we tested threshold values of {0, 2, 5, 10} for both thresholds (suggestion and ac-
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cept), resulting in 16 conditions. We ran each of the 16 conditions for 50 simulation runs
and determined the average accumulated reward.

Our hypothesis was that, for a given human type, team performance would be robust
to different settings of the communication thresholds. This is desirable because it would
indicate that the robot’s learning process is relatively robust with respect to the imple-
mentation of the communication protocol. However, we also hypothesized that we would
observe an improvement in team performance when the communication threshold was cal-
ibrated to the human type – e.g., the robot makes fewer suggestions to a rational human
and more suggestions to an irrational human. This outcome is desirable because it would
indicate that dynamic tuning of the communication strategy based on the behavior of a
human partner may benefit team performance.

We found that for each of the three human types, the variance in performance as a
function of communication parameters was relatively small compared with the magnitude
of the reward. The coefficient of variation, or the ratio of the standard deviation to the
mean, was 7.4%, averaged across all test tasks. We include here the graph for the randomly
behaving human (Figure 10), since this condition yielded the most variance on average. The
10 different test tasks are positioned along the x-axis, where the numbers indicate the wind
and dryness within the environment (e.g., [1,9] indicates level 1 wind and level 9 dryness).
The y-axis represents the average accumulated reward. For each test task, we plotted the
average over all 16 threshold conditions, and the error bars indicate the standard deviation
across these conditions. As depicted in the graph, the standard deviation is low relative
to the overall reward obtained during each task. This is encouraging, as it supports our
first hypothesis: that the settings of the thresholds would not substantially change team
performance.

Next we conducted a more focused analysis of the data to determine whether calibration
of thresholds according to human type confers a systematic benefit to team performance.
Specifically, we conducted pairwise comparisons of team performance when thresholds were
set to their extreme values: εsugg set to 0 and 10, indicating the robot will tend to give many
or few suggestions, respectively; and εacc set to 0 and 10, indicating the robot will accept
many or few suggestions, respectively. We also evaluated the extreme methods of human
action selection: random and rational. The following tables depict the accumulated reward
received on 10 test tasks in the fire domain – the same tasks used to evaluate AdaPT in
Section 5. In each table, we highlight the condition that achieved the highest reward on
that task. To simplify the comparisons, we indicate the threshold values by specifying who
is controlling action selection: the robot has higher action control when εsugg = 0 and εacc
= 0, and the human has higher control when εsugg = 10 and εacc = 10.

Table 1 depicts performance as a function of thresholds for the random human type.
We expected that when the human acted randomly, it would yield better results if the
robot exerted more control over action selection. Our findings indicate that when the robot
dominated action selection in this manner, equal or better performance was achieved com-
pared with human-dominated scenarios for 80% of the tasks. This supports our intuition,
as allowing a randomly behaving human to dominate action selection could significantly
hurt performance.

Table 2 depicts performance as a function of thresholds for the rational human. The
number of times each condition resulted in the highest team performance was balanced,
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Figure 10: This chart depicts variance in team performance across multiple settings of the
communication threshold parameters. The wind and dryness values of the test
tasks are represented along the x-axis (e.g. [7,3] indicates a task with wind=7
and dryness=3). The y-axis represents the average accumulated reward received
on an execution of the task. The error bars show the standard deviation across
the 16 different settings of the thresholds.

Human
Type

Action
Control

1 2 3 4 5 6 7 8 9 10

Random Robot -32 -55 -85 -116 -158 -185 -206 -211 -258 -378
Random Human -34 -55 -98 -158 -162 -196 -173 -209 -289 -384

Table 1: Human Behaving Randomly

with four for the robot-dominated scenario and six for the human-dominated scenario. As
expected, the threshold values did not impact performance, since both the human and
robot chose the optimal actions. Under these circumstances, no matter who controls action
selection, the team will perform well.

Human
Type

Action
Control

1 2 3 4 5 6 7 8 9 10

Rational Robot -33 -54 -97 -130 -179 -180 -171 -191 -298 -359
Rational Human -34 -46 -75 -128 -160 -176 -194 -200 -263 -396

Table 2: Rational Human

Next, as presented in Tables 3 and 4, we kept the threshold values constant and changed
the human type. When the robot exerted a greater degree of control over action selection,
the number of times the highest team performance was achieved under each condition was
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equal between the two control scenarios, at five each. This result is attributable to the fact
that human type matters less when the rational robot is the dominant teammate.

Human
Type

Action
Control

1 2 3 4 5 6 7 8 9 10

Random Robot -32 -55 -85 -116 -158 -185 -206 -211 -258 -378
Rational Robot -33 -54 -97 -130 -179 -180 -171 -191 -298 -359

Table 3: Dominant Robot

In contrast, when the human controlled action selection, teams led by a rational human
achieved equal or better performance on the majority of tasks (80%) compared with teams
led by a randomly behaving human.

Human
Type

Action
Control

1 2 3 4 5 6 7 8 9 10

Random Human -34 -55 -98 -158 -162 -196 -173 -209 -289 -384
Rational Human -34 -46 -75 -128 -160 -176 -194 -200 -263 -396

Table 4: Dominant Human

Our analysis of human action selection and communication threshold parameters pro-
vides insight into how the communication framework can be used to change the dynamics of
a team and impact performance. In aggregate, the performance of AdaPT did not change
drastically with respect to these parameters. However, careful calibration of thresholds ac-
cording to human type can yield meaningful improvements in team performance. In future
work, the setting of the thresholds could be adapted to incorporate prior information about
the relative strength of human or robot expert knowledge. Further, the parameters could be
adapted during the task based on experience to prioritize the teammate who communicates
more high-reward actions.

7. Human Subject Experiment Setup

We conducted human-subject experiments with both simulated and embodied robots to
confirm that our human-robot perturbation training model enables a robot to draw from
its library of previous experiences in a way compatible with the process of a human partner
learning through perturbations.

This is a challenging task, as evidenced by previous human teamwork studies that
demonstrated that human teams with members possessing accurate but dissimilar mental
models performed worse than teams with members with less-accurate but similar mental
models (Marks et al., 2002).

Specifically, we aimed to answer the following questions through our experiments:

1. Does our human-robot perturbation training model support a person in the process
of learning through perturbations and achieving high-level team performance under
new task variants?
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2. Can a team achieve high-level performance by simply experiencing perturbations re-
gardless of the learning algorithm used by the robot, or does the algorithm affect team
performance significantly?

3. Does training on perturbations using AdaPT sacrifice performance on the base task
compared with procedurally trained teams who train repeatedly only on the base
task?

4. Can training in a simulated environment using AdaPT transfer to effective team
performance with an embodied robot?

7.1 Hypotheses

To answer the first two questions, we compared two models of perturbation training: one
using our AdaPT algorithm and the other incorporating the standard Q-learning algorithm
with no library. Both conditions included the co-learning framework and the communication
protocol. We performed this comparison in order to analyze the effect of the human’s expe-
rience of perturbations compared with the effect of the robot’s learning algorithm. If both
algorithms achieved a high level of team performance, this would indicate that the human
can adequately compensate for deficiencies in the robot’s learned model by training through
perturbations. However, if AdaPT performed much better than perturbation Q-learning,
the algorithm that the robot used was key to achieving high-level team performance.

H1 AdaPT teams that train on perturbations will achieve significantly better outcomes on
objective and subjective measures of team performance compared with perturbation Q-
learning teams on the majority of test tasks, including both novel task variants and
variants similar to the training tasks.

We hypothesized that the robot’s use of a library of prior experiences would be com-
patible with human strategies for decision making, as numerous findings from prior studies
have demonstrated that exemplar-based reasoning involving various forms of matching and
prototyping of previous experiences is fundamental to our most effective decision-making
strategies (Newell, Simon, et al., 1972; Cohen, Freeman, & Wolf, 1996; Klein, 1989). For
example, results from naturalistic studies have indicated that skilled decision makers in
the fire service incorporate recognition-primed decision making, in which new situations
are matched to typical cases where certain actions are appropriate and usually successful
(Klein, 1989).

To answer the third question listed above, we hypothesized that AdaPT would not
sacrifice performance on the base task by training under perturbations. While human team
literature indicates that procedurally trained teams that train on only one task will perform
better on that task than perturbation-trained teams, we hypothesized that our model would
maintain performance on the base task while also adapting to new task variants.

H2 Teams that train on perturbations using AdaPT will achieve significantly better out-
comes according to objective and subjective measures of team performance as com-
pared with teams that train procedurally on the base task using Q-learning for novel
task variants. The teams will achieve comparable measures of performance on the base
task.
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Finally, to answer the fourth question, we aimed to demonstrate that human-robot
training in a simulation environment using AdaPT yields effective team performance with
an embodied robot partner.

H3 Teams that train on perturbations using AdaPT in a simulation environment and then
execute novel task variants with an embodied robot partner will achieve measures of
performance comparable to those achieved by teams that execute the novel task variants
in the simulation environment.

This hypothesis is motivated by results from human-robot cross-training experiments
that indicated people were able to work effectively with a physical robot after training
in a virtual environment (Nikolaidis & Shah, 2013). The study incorporated a virtual
environment that displayed a workspace and a robot, mirroring a physical task and robot.
The virtual robot moved within the scene using the same controller as the physical robot.
In our study, the simulation environment did not display a virtual robot; therefore, the
question to be addressed is whether this result persists when the simulation environment
supports the learning of strategies as sequences of discrete actions but does not support
familiarization with robot motions. The question of whether non-technical skills, such as
teamwork and communication, learned in a virtual environment will effectively translate to
improve embodied interactions is an active area of research for human team training as well
(Kim & Byun, 2011; Marshall & Flanagan, 2010).

For all hypotheses, we measured objective team performance using the reward accu-
mulated during task execution. We also identified the number of times that participants
accepted and rejected actions suggested by the robot, assuming that a larger proportion
of accepted suggestions indicated that the participants agreed more frequently with the
robot’s decisions with regard to completing the task effectively and quickly. Finally, we
measured the participants’ subjective perception of team performance using a Likert-style
questionnaire administered at the end of the experiment.

7.2 Experiment Methodology

Forty-eight teams of two (one human and one robot) were tasked with extinguishing a set of
fires. All human participants were recruited from a university campus. The task and com-
putational model were identical to those described in Section 5.1. Thirty-six of the teams
performed both their training and testing in a simulation environment; the remaining 12
teams underwent training in simulation and testing with a physical robot. The experi-
ment was conducted between-subjects. Each participant in the simulation-only experiment
was randomly assigned to undergo either perturbation training using AdaPT, perturba-
tion training using Q-learning or procedural training using Q-learning. All participants in
the mixed simulation-hardware experiments were assigned to perturbation training using
AdaPT.

Perturbation teams trained together on three different task variants, two times each. For
the perturbation AdaPT condition, the robot learned a value function for each variant using
Q-learning, and these Q-value functions became the library given as input to AdaPT. For
the perturbation Q-learning condition, one set of Q-values was updated using Q-learning
during perturbation training. This training scheme was deliberately chosen to involve a
relatively small number of interactions for learning complex joint coordination strategies
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across multiple task variants. Each procedural team trained together on one variant of the
task a total of six times. For these tasks, we used Q-learning throughout and transferred
Q-values between tasks to learn one Q-value function over the six rounds. Figure 11 depicts
the structure of each of these conditions.

The teams were then tested on three new variants of the task and evaluated on their
performance. All teams received the same three test variants, which differed from the tasks
used during training. To simulate time pressure, team members received a limit of 10
seconds in which to communicate with one another and decide their next action.

For all sessions, the participant and the robot communicated using Human-Robot-
Communicate, alternating with regard to who initiated communication. The first com-
munication during the test sessions was always initiated by the robot in order to maintain
consistency. The teammate initiating communication had the option to either suggest the
next actions for both teammates or to simply update the other teammate as to their own
next action (i.e., which fire they planned to extinguish next).

7.2.1 Training Procedure

The experimenter introduced participants to the task using a PowerPoint presentation,
which included a description of the fire scenario, the goal for the task, the human-robot
communication protocol and a tutorial for the simulation interface. To give the robot
equivalent initial knowledge before beginning the task, we ran Q-learning offline for 500,000
iterations over the entire state space on a deterministic version of the task without wind or
dryness. Each participant then completed two practice sessions in order to become familiar
with the interface. For the first practice session, participants received 15 seconds per time
step to communicate with the robot to decide on an action. From the second practice
session on, participants received 10 seconds per step.

The experiment GUI displayed five fires in a row, representing the five house fires.
Each fire was annotated with its intensity level, with 1 indicating low intensity, 2 medium
intensity, 3 high intensity, and 4 a burned-out/unrecoverable state. During task execution,
the GUI prompted the participant to communicate with the robot and displayed feedback
regarding its chosen actions.

After the familiarization phase, the participants underwent three training sessions. Each
session consisted of two execution rounds to provide the human and robot two attempts at
the same task variant, allowing the participant to learn from the first round and improve
his or her coordination strategy for the second. Each round consisted of a complete episode,
from the initial fire state to the goal state. Prior to the first round, the robot was provided
200,000 iterations to learn an effective joint policy for the task. Between the first and second
rounds, the robot again received 200,000 iterations to refine its policy. This framework
allows the robot to simulate between each human interaction and co-learn with the human.
The 200,000 iterations took between 10 and 50 seconds to compute, depending on the
difficulty of the task. During this interval, participants completed a short questionnaire
prompting them to respond to Likert-style statements regarding their subjective perceptions
of the team’s and the robot’s performance (similar to the questionnaire used in prior work,
see Nikolaidis & Shah, 2013).
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Figure 11: This figure depicts the structure of the robot’s learning for the conditions used
during the human-subject experiments. Each box represents one round of the
experiment, in which the robot executes an episode (from an initial state to a
goal state) with the participant. The numbers above the arrows indicate the
number of simulated episodes the robot experiences before the next round with
the human. The colors indicate the variant of the task the team is executing
(base task or a type of perturbation), as depicted in the legend. The pertur-
bation AdaPT condition stores a library and uses the AdaPT algorithm. The
perturbation Q-learning condition updates one value function for all perturbed
tasks. In the procedural Q-learning condition, one value function is updated
based on repeated experience with the base task.
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In the procedurally trained teams, the human and robot trained on the same environ-
mental conditions, w = 0 and d = 0, for all sessions. For perturbation-trained teams, the
first training session was identical to the first session experienced by the procedural training
group. The second and third sessions, however, included slight environmental changes that
affected the progression of the fires: The second session involved some wind (w = 6) and
no dryness (d = 0), allowing the fires to spread, while the third session involved no wind
(w = 0) and some dryness (d = 6), resulting in more burnout from high-intensity fires.
Information about wind and dryness conditions was provided to the participants and the
robot, with some noise. The robot thus trained on an approximate model of the environ-
ment; this was intended to mirror real-world circumstances in which a robot will not always
have an accurate model of the given task.

7.2.2 Testing Procedure

Following the training sessions, participants performed three test tasks. The first test-
session task was similar to the procedural training tasks in that it involved no wind or
dryness; however, the fires were initialized at different intensities than in the training tasks.
The remaining two test-session tasks involved different wind and dryness levels. These
task variants were more drastic than the training sessions experienced by the perturbation-
trained teams and involved non-zero levels of both wind and dryness: Test task 2 had w = 2
and d = 9, and test task 3 had w = 9 and d = 2. During the test phase, the robot was
constrained with regard to the time allotted for learning, and had to make a decision within
a reaction time similar to that of a human (250 ms), which corresponded to 1,500 iterations.

For the simulated robot experiments, all three testing sessions were executed using the
same GUI screen, with no deviation from the training protocol. For the embodied robot
experiments, the participants trained in simulation and then worked with a PR2 robot
during three testing sessions, which were identical to those in the simulation experiments.
To represent each fire, three lights were placed underneath cups on a table and controlled
using an arduino. The lights were activated to indicate the intensity of each fire: one light
for low intensity, two for medium, three for high and zero lights for no fire or burnout.
Additionally, the same GUI screen from the training sessions was used to display the state
of the fires, the team’s action choices and the time remaining for each time step. The
participant and the robot communicated using a defined language structure. Google web
speech recognition was used to identify human speech commands, and errors from the
recognition system were manually corrected by the experimenter. A button was placed
next to each of the five representations of fire for both the human and the robot. To
extinguish a fire, the appropriate button was pressed by each teammate and the lights
changed appropriately to reflect the subsequent state of the fire. Before the testing sessions
began, participants received a brief overview of the setup and the language protocol and
cooperated with the robot to put out low-intensity fires in order to practice working with
the PR2. The experiment setup for the human-robot experiments is depicted in Figure 12.

8. Human Subject Experiment Results

In this section, we summarize the statistically significant results and insights obtained from
the experiments. (We defined statistical significance at the α = .05 level.) For objective
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Figure 12: This picture indicates the setup for the embodied robot experiments. Here, a
participant works with a PR2 robot to make strategic decisions about how best
to extinguish a set of fires.

measures of performance, we measured the reward accumulated during each test session
and used the two-sided Mann-Whitney U-test. Differences in the proportion of accepted
and rejected suggestions during each test session were evaluated using a two-tailed Fisher’s
exact test. For subjective measures of performance, we used the two-sided Mann-Whitney
U test to compare Likert-scale answers from the post-experiment questionnaire.

8.1 Simulated Robot Experiments

Thirty-six participants were randomly assigned to one of three training conditions: pertur-
bation training using AdaPT, perturbation training using Q-learning or procedural training
using Q-learning. We tested for statistically significant differences between perturbation
AdaPT and perturbation Q-learning treatments, as well as between perturbation AdaPT
and procedural Q-learning treatments. Results are presented in Figure 13.

8.1.1 Perturbation AdaPT vs. Perturbation Q-learning

First, we compared the two algorithms for perturbation training, AdaPT and classical Q-
learning, to evaluate the effect of the human’s experience of perturbations vs. the effect of
the robot’s algorithm. We found that perturbation AdaPT-trained teams received statisti-
cally significantly higher reward for test task 1, the base task with w = 0 and d = 0 (p =
0.0037), and for test task 3 with w = 9 and d = 2 (p = 0.0491) compared with perturbation
Q-learning teams. This was not the case for test task 2, however, most likely because it
was similar to the final training session (with a high dryness value) and thus the Q-values
reflected the last strategy well. To confirm that perturbation Q-learning only works well for
tasks that are similar to the last training session, we ran additional simulation experiments
over a range of values and different orders of training sessions. We found that perturbation

530



Perturbation Training for Human-Robot Teams

Figure 13: This chart compares the performances of the three different conditions during
human subject experiments with simulated robots: perturbation AdaPT, per-
turbation Q-learning and procedural Q-learning. The y-axis depicts the average
accumulated reward received on an execution of the task after the robot sim-
ulated on the test task for 1,500 iterations. The x-axis depicts the wind and
dryness values of the test tasks (e.g. [2,9] represents a task with w = 2 and
d = 9). Less negative reward denotes better task performance.

Q-learning teams performed well on tasks most similar to the last training session, but never
performed statistically significantly better than AdaPT.

We observed a trend toward perturbation AdaPT participants accepting the robot’s
suggestions more frequently than perturbation Q-learning participants during test task 1
(p = 0.08), supporting H1. Subjective measures from the post-experiment questionnaire
indicated that participants agreed more strongly that they felt satisfied with the team’s
performance during test task 1 (p < 0.01), lending further support to H1. This result
indicates that the algorithm the robot uses, rather than just the human’s experience of
perturbations, is key to achieving a high level of team performance.

8.1.2 Perturbation AdaPT vs. Procedural Q-learning

We also compared perturbation and procedural training, as has been done previously in
human team studies (Gorman et al., 2010), to evaluate the benefit of perturbations during
training. For the first test task, which had identical environmental conditions to the proce-
dural training sessions (w = 0 and d = 0), there were no statistically significant differences
in reward between the two training methods.

For the second test task, a substantial variant of the base task and the perturbed
training tasks (w = 2 and d = 9), perturbation AdaPT-trained teams received statistically
significantly higher reward than procedural teams (p = 0.0045), supporting H2. In the third
test task (w = 9 and d = 2), perturbation AdaPT teams received higher reward on average,
but this difference was not statistically significant.
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Figure 14: This chart compares the performance of teams that tested with a simulated
robot vs. an embodied robot. The average accumulated reward received on an
execution of the task with the person after the robot simulated on the test task
for 1,500 iterations is depicted along the y-axis. The x-axis displays the wind
and dryness values of the test tasks (e.g., [2,9] represents a task with w = 2 and
d = 9). Less negative reward denotes better task performance.

Subjective measures from the post-experiment questionnaire further support H2. Par-
ticipants in the AdaPT treatment agreed more strongly that the team adapted well to
different scenarios compared with participants in the procedural-training treatment (p =
0.002). AdaPT participants also agreed more strongly that their teammate offered use-
ful suggestions during testing compared with procedurally trained participants (p = 0.02).
These results indicate that our perturbation training model can support a human and a
robot in generalizing prior experience to new task variants without sacrificing performance
on the base task that the procedural teams train on.

8.2 Embodied Robot Experiments

We recruited 12 participants from a university campus and assigned them all to the per-
turbation AdaPT condition. We compared objective measures of performance between the
results from these embodied robot experiments and those from the perturbation AdaPT
simulation experiments in order to determine whether people were able to effectively train
in simulation and then work with an embodied robot. The results are depicted in Figure
14.

Interestingly, teams that worked with an embodied robot performed better on all three
test tasks, on average, than teams that worked with the robot in simulation, thereby sup-
porting H3. While the improvement to performance observed when working with an embod-
ied robot was not statistically significant, it is nonetheless encouraging that no degradation
in performance was observed and that simulation training promoted effective human-robot
teamwork.
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9. Discussion

In this work, we provided the first end-to-end computational framework for perturbation
training that enables a robot to co-train with a person during live interactions. Our frame-
work includes the AdaPT algorithm for robot transfer learning, as well as a co-learning
method by which the human interacts with the robot in designated intermittent sessions.
These sessions allow the human to gain experience by jointly performing tasks with the
robot, and enable interaction using a bi-directional communication protocol.

In Section 5, we showed through results from computational experiments that AdaPT
learns rapidly during the source tasks, and is thereby able to support real-time interaction
with a human. We compared the performance of our algorithm to other state-of-the-art
reinforcement and transfer learning techniques: the Policy Reuse in Q-learning (PRQL)
algorithm; RBDist, a deep-learning MDP similarity metric; and standard Q-learning; and
found that in the two domains tested, the performance of PRQL was highly sensitive to the
prior applied. RBDist provided a mechanism for automatically selecting the prior, but the
performance was sensitive to specification of additional parameters, such as the number of
hidden units.

Results from experiments in the fire extinguishing domain also indicated that RBDist
did not uniformly select the best prior. This task involved learning multiple, highly distinct
strategies, with significantly lower performance resulting from choosing an inappropriate
prior. The performance gap between PRQL with RBDist and AdaPT indicated the potential
cost associated with RBDist choosing a suboptimal prior. In contrast, results from the
GridWorld task indicated a smaller range in performance for RBDist because strategies
were more similar and application of any prior learned through training helped to speed up
the learning process. Thus, the expected performance benefit when applying RBDist was
domain-dependent, while AdaPT appeared to perform consistently well in both experiment
tasks.

AdaPT also yielded benefits in computation time compared with RBDist – an especially
desirable feature when applied to co-learning through live interactions with a human. Dur-
ing the fire task, RBDist was slower by a factor of 2.74 with 1 hidden unit, and by a factor
of 135.31 with 500 hidden units. For the GridWorld task, RBDist was slower by a factor
of 1.87 with 1 hidden unit, and by a factor of 75.76 with 500 hidden units. Rapid learning
for new task variants was the primary motivation for developing AdaPT, and enabled us to
conduct human subject experiments with the perturbation training model.

We also developed the first end-to-end computational framework for human-robot per-
turbation training. This framework included an algorithm for source task learning and the
transfer of learning to new tasks. We additionally included a co-learning method in which
the human interacts with the robot at designated intervals. These interactive sessions al-
low the human and robot to perform the task together and jointly make decisions using a
bi-directional communication protocol.

In our human subject experiments, we first compared two models for perturbation train-
ing to isolate the effect of the human’s learning from the effect of the robot’s learning algo-
rithm. The robot used the AdaPT algorithm under one condition, and standard Q-learning
– which we know from computational results consistently performs worse than AdaPT (Sec-
tion 5) – under the other, with perturbations experienced under both conditions. We found
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that teams that worked with an agent using AdaPT performed significantly better than a
team that worked with an agent using Q-learning (p = 0.0037 for test task 1 and p = 0.0491
for test task 3). This result indicates that a human is unable to compensate for a robot’s
poor-performing algorithm; therefore, an appropriate learning algorithm is important for
achieving high-level human-robot team performance. AdaPT is able to support this level
of performance after training on perturbations with a person.

Next, we compared the performance of teams that trained under perturbations using
AdaPT to those that underwent procedural training using Q-learning (i.e., did not expe-
rience perturbations during training and instead repeatedly practiced the base task). Our
results indicated that the perturbation training framework yielded higher-level team per-
formance on novel tasks than that achieved through a comparable computational model for
human-robot procedural training. Specifically, perturbation-trained teams achieved statis-
tically significantly higher reward than procedurally trained teams when tested on the novel
task variants most different from the most recently trained task (p < 0.05). Interestingly,
AdaPT teams performed just as well on the base task during testing as procedurally trained
teams; this is in contrast to findings from human team literature, which have indicated that
procedural teams typically perform better than perturbation teams on the base task. This
is a promising result, as it suggests that AdaPT may provide a framework for adapting to
new tasks while also maintaining a high level of performance on previously learned tasks.

Our findings provide the first support for the idea that the relative benefits observed for
human team perturbation training can also be realized for human-robot teams. Further, our
formalization of the problem statement and computational framework suggest a pathway
for future study into alternate learning, transfer and interaction algorithms that improve
the ability of human-robot teams to effectively learn complex joint-action tasks through
experience of perturbations.

Finally, we demonstrated through results from robot experiments involving a PR2 that
human-robot perturbation training in a simulated environment resulted in effective team
performance with an autonomous, embodied robot partner that communicated and received
commands through speech. This is also an encouraging result, as it indicates that simulation
offers an effective and scalable approach to human-robot team training, just as simulation
has been widely and successfully used to train human teams (Sandahl et al., 2013; Griswold
et al., 2012; Nikolaidis & Shah, 2013).

There are a number of possible extensions to this work. First, our experiments incorpo-
rated teams of two, and demonstrated successful human-robot co-learning for problems that
were two to three orders of magnitude larger than those used in prior work in human-robot
collaborative team training (Nikolaidis & Shah, 2013). However, many real-world domains
require the coordination of larger teams. The AdaPT algorithm and perturbation training
model can be applied to larger teams; however, like other reinforcement learning methods,
the performance of AdaPT will suffer as problem size increases. A number of techniques
could be applied to potentially scale to larger teams, including function approximation
(Xu, Zuo, & Huang, 2014) and hierarchical reinforcement learning methods (Botvinick,
2012; Barto & Mahadevan, 2003).

A greater number of agents would also require more complex coordination mechanisms.
Each agent could no longer be assumed to track the actions of every teammate, and would
often only have partial observability of its environment. In order to enable intelligent
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decision making in the absence of global information, it would potentially be necessary for
the robot to perform inference and make predictions about the decisions and actions of other
agents, as has been done in prior work (Amir et al., 2014; Van Dyke Parunak, Brueckner,
Matthews, Sauter, & Brophy, 2007).

Further, we assumed that the human and robot both communicate at each time step;
however, for teams with more agents, it would be infeasible to support communication
between all agents prior to every action. Our framework will need to be extended so that
robots communicate only pertinent information when necessary, and only to a small subset
of agents (Williamson et al., 2009; Roth et al., 2006; Zhang & Lesser, 2013). The MDP
model also requires that we explicitly represent the task, agent capabilities and environment.
All our experiments included a model for noise in the state evolution; however, there is much
uncertainty in the real world, where the structure of the noise may be unknown – and thus
cannot be modeled. It is important, therefore, to consider robustness when noise that has
not been represented in the model is introduced.

We aim in our follow-on work to conduct human-robot experiments involving more
complex, real-world tasks. This initial work was intended to provide proof-of-concept that
a human and robot could co-learn joint strategies for application to larger, more complex
tasks. Future efforts will demonstrate human-robot perturbation training for tasks such as
complex manipulation or collaborative search and rescue.

10. Conclusion

We designed and evaluated a computational learning model for perturbation training of
human-robot teams, motivated by human team-training studies. We first presented a prob-
lem definition for perturbation training, which involved a transfer learning component, a
co-learning framework and a communication protocol. Next, we developed a learning algo-
rithm, AdaPT, that augments the PRQL algorithm (Fernández et al., 2010) to learn faster
for new task variants. We found that AdaPT is able to more quickly and robustly learn
during new tasks compared to prior work. We further included a human-robot co-learning
framework and a bidirectional communication protocol to form a computational model for
perturbation training. In human subject experiments with a simulated robot, we observed
that perturbation-trained teams using AdaPT outperformed perturbation-trained teams us-
ing Q-learning with regard to both objective (p = 0.0037 for test task 1 and p = 0.0491 for
test task 3) and subjective measures of performance for multiple task variants. This indi-
cates that the robot’s algorithm, rather than perturbations alone, is key to achieving a high
level of team performance. Perturbation AdaPT teams also did not sacrifice performance of
the base task when compared with procedurally trained teams. Finally, we demonstrated
in robot experiments with a PR2 that human-robot training in a simulation environment
using AdaPT resulted in effective team performance with an autonomous, embodied robot
partner.
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Fernández, F., Garćıa, J., & Veloso, M. (2010). Probabilistic policy reuse for inter-task
transfer learning. Robotics and Autonomous Systems, 58 (7), 866–871.

Goldman, C. V., & Zilberstein, S. (2003). Optimizing information exchange in cooperative
multi-agent systems. In Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, pp. 137–144. ACM.

Gorman, J. C., Cooke, N. J., & Amazeen, P. G. (2010). Training adaptive teams. Human
Factors: The Journal of the Human Factors and Ergonomics Society.

Griffith, S., Subramanian, K., Scholz, J., Isbell, C., & Thomaz, A. L. (2013). Policy shap-
ing: Integrating human feedback with reinforcement learning. In Advances in Neural
Information Processing Systems, pp. 2625–2633.

Griswold, S., Ponnuru, S., Nishisaki, A., Szyld, D., Davenport, M., Deutsch, E. S., & Nad-
karni, V. (2012). The emerging role of simulation education to achieve patient safety:
translating deliberate practice and debriefing to save lives. Pediatric Clinics of North
America, 59 (6), 1329–1340.

Guestrin, C., Lagoudakis, M., & Parr, R. (2002). Coordinated reinforcement learning. In
ICML, Vol. 2, pp. 227–234.

Hawkins, K. P., Bansal, S., Vo, N. N., & Bobick, A. F. (2014). Anticipating human actions
for collaboration in the presence of task and sensor uncertainty. In Robotics and
Automation (ICRA), 2014 IEEE International Conference on, pp. 2215–2222. IEEE.

Kim, S. K., & Byun, S. N. (2011). Effects of crew resource management training on the
team performance of operators in an advanced nuclear power plant. Journal of nuclear
science and technology, 48 (9), 1256–1264.

537



Ramakrishnan, Zhang, & Shah

Klein, G. A. (1989). Do decision biases explain too much?. Human Factors Society Bulletin,
32 (5), 1–3.

Knox, W. B., & Stone, P. (2009). Interactively shaping agents via human reinforcement: The
TAMER framework. In Proceedings of the fifth international conference on Knowledge
capture, pp. 9–16. ACM.

Konidaris, G., & Barto, A. G. (2007). Building portable options: Skill transfer in reinforce-
ment learning. In IJCAI, Vol. 7, pp. 895–900.

Kono, H., Murata, Y., Kamimura, A., Tomita, K., & Suzuki, T. (2016). Knowledge co-
creation framework: Novel transfer learning method in heterogeneous multi-agent sys-
tems. In Distributed Autonomous Robotic Systems, pp. 389–403. Springer.

Leonard, M., Graham, S., & Bonacum, D. (2004). The human factor: the critical importance
of effective teamwork and communication in providing safe care. Quality and Safety
in Health Care, 13 (suppl 1), i85–i90.

Mahmud, M., & Ramamoorthy, S. (2013). Learning in non-stationary MDPs as transfer
learning. In Proceedings of the 2013 international conference on Autonomous agents
and multi-agent systems, pp. 1259–1260. International Foundation for Autonomous
Agents and Multiagent Systems.

Mann, T. A., & Choe, Y. (2012). Directed exploration in reinforcement learning with
transferred knowledge.. In EWRL, pp. 59–76.

Marks, M. A., Sabella, M. J., Burke, C. S., & Zaccaro, S. J. (2002). The impact of cross-
training on team effectiveness. Journal of Applied Psychology, 87 (1), 3.

Marshall, S. D., & Flanagan, B. (2010). Simulation-based education for building clinical
teams. Journal of Emergencies, Trauma and Shock, 3 (4), 360.

Mohseni-Kabir, A., Rich, C., Chernova, S., Sidner, C. L., & Miller, D. (2015). Interactive
hierarchical task learning from a single demonstration. In Human-Robot Interaction
(HRI) 2015. IEEE.

Newell, A., Simon, H. A., et al. (1972). Human problem solving, Vol. 104. Prentice-Hall
Englewood Cliffs, NJ.

Niekum, S., Osentoski, S., Konidaris, G., Chitta, S., Marthi, B., & Barto, A. G. (2014).
Learning grounded finite-state representations from unstructured demonstrations. The
International Journal of Robotics Research, 0278364914554471.

Nikolaidis, S., & Shah, J. (2013). Human-robot cross-training: computational formulation,
modeling and evaluation of a human team training strategy. In Proceedings of the 8th
ACM/IEEE international conference on Human-robot interaction, pp. 33–40. IEEE
Press.

Oudah, M., Babushkin, V., Chenlinangjia, T., & Crandall, J. W. (2015). Learning to interact
with a human partner. In Human-Robot Interaction (HRI) 2015. IEEE.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. Knowledge and Data Engi-
neering, IEEE Transactions on, 22 (10), 1345–1359.

Parisotto, E., Ba, J. L., & Salakhutdinov, R. (2016). Actor-mimic: Deep multitask and
transfer reinforcement learning..

538



Perturbation Training for Human-Robot Teams

Puterman, M. L. (2009). Markov decision processes: discrete stochastic dynamic program-
ming, Vol. 414. John Wiley & Sons.

Roth, M., Simmons, R., & Veloso, M. (2005). Decentralized communication strategies for
coordinated multi-agent policies. In Multi-Robot Systems. From Swarms to Intelligent
Automata Volume III, pp. 93–105. Springer.

Roth, M., Simmons, R., & Veloso, M. (2006). What to communicate? Execution-time
decision in multi-agent POMDPs. In Distributed Autonomous Robotic Systems 7, pp.
177–186. Springer.

Ruvolo, P., & Eaton, E. (2013). Ella: An efficient lifelong learning algorithm.. ICML (1),
28, 507–515.

Rybski, P. E., Yoon, K., Stolarz, J., & Veloso, M. M. (2007). Interactive robot task training
through dialog and demonstration. In Human-Robot Interaction (HRI), 2007 2nd
ACM/IEEE International Conference on, pp. 49–56. IEEE.

Sandahl, C., Gustafsson, H., Wallin, C.-J., Meurling, L., Øvretveit, J., Brommels, M., &
Hansson, J. (2013). Simulation team training for improved teamwork in an intensive
care unit. International journal of health care quality assurance, 26 (2), 174–188.

Shen, J., Lesser, V., & Carver, N. (2003). Minimizing communication cost in a distributed
Bayesian network using a decentralized MDP. In Proceedings of the second interna-
tional joint conference on Autonomous agents and multiagent systems, pp. 678–685.
ACM.

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning. MIT Press.

Talvitie, E., & Singh, S. P. (2007). An experts algorithm for transfer learning. In IJCAI,
pp. 1065–1070.

Tanaka, M., & Okutomi, M. (2014). A novel inference of a restricted Boltzmann machine. In
Pattern Recognition (ICPR), 2014 22nd International Conference on, pp. 1526–1531.
IEEE.
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