
Journal of Artificial Intelligence Research 59 (2017) 463-494 Submitted 01/17; published 07/17

Finding A Small Vertex Cover in Massive Sparse Graphs:
Construct, Local Search, and Preprocess

Shaowei Cai SHAOWEICAI.CS@GMAIL.COM
State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

Jinkun Lin JKUNLIN@GMAIL.COM
School of Electronics Engineering and Computer Science,
Peking University, Beijing, China

Chuan Luo CHUANLUOSABER@GMAIL.COM

Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China

Abstract
The problem of finding a minimum vertex cover (MinVC) in a graph is a well known NP-

hard combinatorial optimization problem of great importance in theory and practice. Due to its
NP-hardness, there has been much interest in developing heuristic algorithms for finding a small
vertex cover in reasonable time. Previously, heuristic algorithms for MinVC have focused on
solving graphs of relatively small size, and they are not suitable for solving massive graphs as they
usually have high-complexity heuristics. This paper explores techniques for solving MinVC in very
large scale real-world graphs, including a construction algorithm, a local search algorithm and a
preprocessing algorithm. Both the construction and search algorithms are based on low-complexity
heuristics, and we combine them to develop a heuristic algorithm for MinVC called FastVC.
Experimental results on a broad range of real-world massive graphs show that, our algorithms
are very fast and have better performance than previous heuristic algorithms for MinVC. We also
develop a preprocessing algorithm to simplify graphs for MinVC algorithms. By applying the
preprocessing algorithm to local search algorithms, we obtain two efficient MinVC solvers called
NuMVC2+p and FastVC2+p, which show further improvement on the massive graphs.

1. Introduction

The proliferation of massive data sets has brought a series of computational challenges, as existing
algorithms usually become ineffective on massive data sets, and for most problems we need to
develop new algorithms. Many data sets can be modeled as graphs, and the study of massive real-
world graphs, also called complex networks, grew enormously in the last decade. In this work,
we consider the Minimum Vertex Cover (MinVC) problem and propose effective techniques for
addressing this problem on massive graphs.

Given an undirected graph G = (V,E), a vertex cover is a subset S ⊆ V , such that each
edge in G has at least one endpoint in S. Alternatively, a vertex cover is a set of vertices whose
removal completely disconnects a graph. The MinVC problem requires us to find the minimum
sized vertex cover in a graph. MinVC is a prominent combinatorial optimization problem with

©2017 AI Access Foundation. All rights reserved.

CAI, LIN & LUO

important applications, including network security, industrial machine assignment and applications
in sensor networks such as monitoring link failures, facility location and data aggregation (Kavalci,
Ural, & Dagdeviren, 2014). It is also closely related to the Maximum Independent Set (MaxIS)
problem, which has applications in social networks, pattern recognition, molecular biology and
economics (Jin & Hao, 2015).

There are important real-world tasks that call for solving MinVC on massive graphs, which
mainly come from social networks and molecular biology. For example, consider the case where
one has to select the minimum set of influential nodes in a social network such that some critical
information is propagated to all nodes in the network in a single hop (or few hops). One solution
of this problem is to determine an approximate MinVC of the network and use the nodes in MinVC
for propagating information (Yadav, Sadhukhan, & Rao, 2016). In the genetic analysis of gene
transcription, the concept of vertex cover is used to determine the identity, proportion and number
of transcripts connected to individual phenotypes and quantitative trait loci (QTL) regulatory models
(Chesler & Langston, 2005).

MinVC is a classical NP-hard problem and remains intractable even for cubic graphs and planar
graphs with a maximum degree at most three (Garey & Johnson, 1979). Furthermore, it is NP-hard
to approximate MinVC within any factor smaller than 1.3606 (Dinur & Safra, 2005), although one
can achieve an approximation ratio of 2− o(1) (Karakostas, 2005).

1.1 Previous Heuristics and Motivations

Due to its NP-hardness, research into MinVC solving has been concentrated on heuristic
algorithms for finding a “good” vertex cover in reasonable time. Heuristic algorithms for NP-
hard computational problems can be mainly divided into heuristic construction algorithms and local
search algorithms (Hoos & Stützle, 2004).

In the context of MinVC, construction algorithms generate a vertex cover by extending a partial
solution, i.e., a vertex set. A construction algorithm for MinVC starts from an empty vertex set, and
then iteratively adds vertices into the set, until it becomes a vertex cover. Two typical construction
algorithms for MinVC include the maximal matching based algorithm, and a greedy construction
algorithm which at each iteration adds the vertex that covers the most uncovered edges. These
two algorithms are so classical that they are included in a well-known textbook of combinatorial
optimization (Papadimitrious & Steiglitz, 1982). However, construction algorithms alone do not
provide good-quality solutions in practice, although they are of interest from a theoretical viewpoint.
Due to this reason, practical work on construction algorithms for MinVC is rare. In practice,
construction algorithms for MinVC are usually used to generate an initial solution for local search
algorithms.

Local search is perhaps the most popular practical heuristic approach to NP-hard combinatorial
optimization problems. Seen from the literature, a general scheme for local search algorithms for
MinVC is as follows. It first uses a construction algorithm to obtain a vertex cover. Whenever
it finds a vertex cover, it removes a vertex from the solution, and then iteratively performs small
modifications to the candidate vertex set, such as removing a vertex, adding a vertex, or swapping a
vertex pair, until the vertex set becomes a vertex cover. This process is repeated until a satisfactory
solution is returned or a preset time limit is reached. There has been considerable interest in local
search algorithms for MinVC in the last decade, e.g., (Richter, Helmert, & Gretton, 2007; Andrade,
Resende, & Werneck, 2008; Pullan, 2009; Cai, Su, & Sattar, 2011; Cai, Su, Luo, & Sattar, 2013). In

464

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

particular, a recent algorithm called NuMVC (Cai et al., 2013), which outperforms other heuristic
algorithms on a broad range of benchmarks, makes a significant improvement in MinVC solving.

Previous local search algorithms for MinVC are mainly evaluated on randomly generated
benchmarks and two benchmarks namely the DIMACS and BHOSLIB benchmark sets (Richter
et al., 2007; Andrade et al., 2008; Pullan, 2009; Cai et al., 2011, 2013). The DIMACS and
BHOSLIB are the two most popular benchmark sets for testing MinVC (also MaxIS and Maximum
Clique) algorithms, as they are generally difficult to solve, and some DIMACS graphs arise from
real-world applications. To improve the performance on these benchmarks, many sophisticated
heuristics have been proposed and tested. Recent heuristics include max-gain vertex pair selection
(Richter et al., 2007), edge weighting (Richter et al., 2007; Cai et al., 2011), k-improvement (also
called (k − 1, k) swap) (Andrade et al., 2008), configuration checking (Cai et al., 2011), minimum
loss removing and two-stage exchange (Cai et al., 2013). Most of the previous heuristics do not have
sufficiently low complexity. Because the benchmark graphs used for testing previous algorithms are
not large (usually with less than five thousand vertices), the complexity of heuristics did not show
an obvious impact on the performance. However, for massive graphs where the size is much larger
(e.g., with millions of vertices), the high complexity severely limits the ability of algorithms to
handle these data sets.

Massive graphs call for new heuristics and algorithms. However, there is little work being done
on heuristic algorithms for massive graphs. In particular, our work was the first research on local
search for MinVC on massive graphs, when it was first presented in the IJCAI 2015 conference
(Cai, 2015). We also study construction and preprocessing algorithms for MinVC. This work also
shows that, when designing algorithms for solving problems on massive graphs, a key issue is on
making a good balance between the time complexity and the effectiveness of heuristics.

1.2 Main Contributions

This paper focuses on solving massive sparse instances of the MinVC problem in practice. The
main technical contributions of this paper are as follows.

1. We propose a new construction algorithm for MinVC called EdgeGreedyVC. We show
theoretically that EdgeGreedyVC always returns a minimal vertex cover with a linear
complexity. Also, experimental results on real-world massive graphs demonstrate that it
achieves a good balance between solution quality and run time when we compare it with
previous construction algorithms.

2. We propose a new local search algorithm for MinVC called FastVC. A novel technique in
FastVC is a probabilistic heuristic named Best from Multiple Selections (BMS), which returns
a good-quality vertex from a large set of candidate vertices with a very high probability. The
BMS heuristic approximates the minimum loss removing heuristic (Cai et al., 2013) very
well and lowers the complexity from O(|V |) to O(1). We carry out experiments to evaluate
FastVC on massive real-world graphs, compared with a representative of the state of the art
algorithm named NuMVC as well as its variant NuMVCe which uses the same construction
heuristic as FastVC. Experimental results show that FastVC finds significantly better quality
vertex covers than NuMVC and NuMVCe on most instances.

3. We improve two previous construction algorithms by adding a shrinking phase and by using
an efficient data structure. Then we integrate all three construction algorithms into both

465

CAI, LIN & LUO

NuMVC and FastVC, leading to two improved local search algorithms for MinVC named
NuMVC2 and FastVC2.

4. We develop a two-phase preprocessing algorithm to simplify graphs for MinVC algorithms.
Experimental results show that the preprocessing algorithm is effective and efficient. By
applying the preprocessing algorithm, we further improve NuMVC2 and FastVC2 and
develop two more efficient MinVC solvers called NuMVC2+p and FastVC2+p.

This paper is an extended and improved version of a conference paper (Cai, 2015). New
contributions in this paper include parts of the first and second contributions (the study and
comparison of construction algorithms, the experiments with NuMVCe), as well as the whole third
and fourth contributions. Also, while experiments are only performed on some typical instances in
the conference paper, experiments in this paper are performed on the complete set of benchmark
instances.

1.3 Structure of the Paper

In the next section, we introduce some preliminary knowledge, including definitions and notation,
preliminaries of local search for MinVC, as well as the benchmarks and experiment methodology
in this work. In Section 3, we investigate previous construction algorithms for MinVC and propose
a new construction algorithm called EdgeGreedyVC, and compare EdgeGreedyVC with previous
construction algorithms. In Section 4, we describe the local search algorithm FastVC and present
the key function based on the BMS heuristic, and carry out experiments to evaluate FastVC. In
Section 5, we improve two previous construction algorithms and integrate all the three construction
algorithms into both NuMVC and FastVC, leading to two improved local search algorithms named
NuMVC2 and FastVC2. In section 6, we develop a preprocessing algorithm for MinVC and apply
it to further improve NuMVC2 and FastVC2, leading to NuMVC2+p and FastVC2+p. Finally, we
give some concluding remarks.

2. Preliminaries

In this section, we first introduce the basic definitions and natation that will be used in this paper,
and then we give some preliminaries about local search for MinVC. Finally, we introduce the
benchmarks and the experimental methodology that we use in our experiments.

2.1 Basic Definitions and Notation

An undirected graph G = (V,E) consists of a vertex set V and an edge set E where each edge is
a 2-element subset of V . For an edge e = {u, v}, we say that vertices u and v are the endpoints
of edge e. For convenience of discussions on complexity, we define n = |V | and m = |E|. Two
vertices are neighbors if and only if they both belong to some edge. The neighborhood of a vertex v
is denoted as N(v) = {u ∈ V |{u, v} ∈ E}, and the closed neighborhood as N [v] = {v} ∪N(v).
The degree of a vertex v is defined as deg(v) = |N(v)|.

For an undirected graph G = (V,E), a vertex cover of a graph is a subset of V that contains at
least one of the two endpoints of each edge. A vertex cover is minimal if taking any vertex out of
it would make it not a vertex cover. An independent set is a subset of V where no two vertices are
neighbors. A vertex set S is a vertex cover of G if and only if V \ S is an independent set of G. We

466

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

are concerned in this paper with the problem of finding a vertex cover as small as possible (MinVC).
Equivalently, this problem can be viewed as seeking as large an independent set as possible, which
also has important applications.

Given an undirected graph G = (V,E), a candidate solution for MinVC is a subset of vertices
X ⊂ V . An edge e ∈ E is covered by a candidate solution X if at least one endpoint of e belongs
to X , and otherwise we say it is uncovered by X . For convenience, in the rest of this paper, we
use C to denote the current candidate solution. A vertex has two states: selected for covering (i.e.,
v ∈ C), or not selected (i.e., v /∈ C). The age of a vertex is the number of steps since its state was
last changed.

Given an undirected graph G and a candidate solution X for MinVC, for a vertex v ∈ X , the
loss of v, denoted as loss(v,X), is defined as the number of covered edges that would become
uncovered by removing v from X; for a vertex v /∈ X , the gain of v, denoted as gain(v,X), is
defined as the number of uncovered edges that would become covered by adding v into X . In
this work, when talking about loss and gain of vertices, the candidate solution always refers to the
current candidate solution C and thus it is omitted. We write loss(v) and gain(v) for loss(v, C) and
gain(v, C), for the sake of convenience. Both loss and gain are scoring properties of vertices.

2.2 Preliminaries of Local Search for MinVC

One popular way to solve the MinVC problem is based on iteratively solving its decision version
— given a positive integer number k, searching for a k-sized vertex cover. The general scheme is
as follows: At the beginning, a vertex cover is constructed; whenever the algorithm finds a vertex
cover of k vertices, one vertex is removed from the vertex cover1, and the algorithm starts from the
resulting vertex set to search for a vertex set of k − 1 vertices that covers all edges (i.e., a vertex
cover of k − 1 vertices) by performing local search. When the algorithm terminates, it outputs the
smallest vertex cover it has found.

For local search MinVC algorithms that are based on iteratively solving the decision problem,
each search step consists of exchanging a pair of vertices: a vertex u ∈ C is removed from C, and
a vertex v /∈ C is put into C. Such a step is called an exchange step. In the literature, there are two
ways to perform an exchange step. The first one is adopted by algorithms before NuMVC, which
chooses a vertex pair from candidate vertex pairs, and then exchanges them and updates scoring
properties accordingly. The second method, proposed in NuMVC and named two-stage exchange,
works in a “separate” fashion: it first chooses a vertex u ∈ C and removes it, and updates scoring
properties accordingly, and then chooses a vertex v /∈ C and adds it, and updates scoring properties
accordingly.

2.3 Benchmarks and Experiment Methodology

In this work, in order to study the algorithms, we carry out extensive experiments and report
the results in tables. In this subsection, we introduce the benchmarks, the experiment setup and
reporting methodology, so that the readers can understand the experiment parts more easily.

For our experiments, we collected all undirected simple graphs (not including DIMACS and
BHOSLIB graphs) we could find from the Network Data Repository online (Rossi & Ahmed,

1. If after removing one vertex, the vertex set remains a vertex cover, then more vertices are removed until it is not a
vertex cover.

467

CAI, LIN & LUO

2015).2 All these graphs are generated from real-world applications. Many of these real-world
graphs have millions of vertices and dozens of millions of edges, while at the same time being
quite sparse. We calculate the density of each graph, i.e., m/

(
n
2

)
, and the averaged density of

these graphs is 0.00859, while the maximum one is 0.347. We also calculate the averaged degree
2m/n for each graph, and the averaged value of these figures is 26.15, while the maximum
one is 181.19. Some of these benchmarks have recently been used in testing algorithms for
Maximum Clique and Coloring problems (Rossi & Ahmed, 2014; Rossi, Gleich, Gebremedhin,
& Patwary, 2014; Wang, Cai, & Yin, 2016; Cai & Lin, 2016). There are 102 graphs in total in this
suite of benchmarks. The graphs can be grouped into 11 classes, including biological networks,
collaboration networks, interaction networks, infrastructure networks, Amazon recommendation
networks, Tweeter networks, Facebook networks, scientific computation networks, social networks,
technological networks, and web linkage networks, in the order of their appearance in the tables.
There is also a group of temporal reachability networks, where the graphs are small (usually with
several hundreds of vertices) and the algorithms find the same quality solution on all the graphs, and
thus are not included in our experiments.

All the algorithms in our experiments, either developed in this work or not, are implemented in
the C++ programming language by their authors, and have been complied by g++ (version 4.4.5)
with the ‘-O3’ option for our experiments. All experiments are carried out on a workstation under
Ubuntu Linux (version 14.04), using 2 cores of an Intel i7-4800MQ 2.5 GHz CPU and 32 GByte
RAM.

Most experiments in this work involve comparing the solution quality and run time of different
MinVC algorithms. In particular, all local search algorithms (sometimes combined with a
preprocessing algorithm) are executed 10 times with the same random seeds ({1,2,...,10}) on each
instance with a time limit of 1000 seconds for each execution. For each algorithm on each instance,
we report three metrics:

• The minimum size of vertex cover found by the algorithm among the 10 executions, denoted
by ‘min’ in the tables.

• The averaged size of vertex covers found by the algorithm over the 10 executions, denoted
by ‘avg’ in the tables. These two metrics about solution quality are presented together in one
column ‘min(avg)’ for each algorithm.

• The averaged run time to identify the final vertex cover over the 10 executions, where the
run time in an execution is the time to find the best found solution in that execution. The
average run time is denoted by ‘time’ in the tables. In our experiments, the time is CPU time
(measured in seconds), rather than wall clock time.

When comparing different algorithms, we put a higher priority on the solution quality than
the run time, as in previous literatures for MinVC (Richter et al., 2007; Pullan, 2009; Cai et al.,
2011, 2013) and the international algorithm competition for the NP-hard combinatorial optimization
problems such as maximum satisfiability (Argelich, Li, Manyà, & Planes, 2016). In detail, the rules
of algorithm comparison and the reporting method are as follows:

1. For two algorithms A and B on an instance, we say algorithm A performs better
than algorithm B w.r.t. solution quality, if and only if (‘min’ of A < ‘min’ of B &

2. http://www.graphrepository.com/networks.php, accessed on Jan. 2015.

468

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

‘avg’ of A ≤ ‘avg’ of B) or (‘min’ of A ≤ ‘min’ of B & ‘avg’ of A < ‘avg’ of B); we say
algorithm A and algorithm B have the same performance w.r.t. solution quality if and only if
(‘min’ of A = ‘min’ of B & ‘avg’ of A = ‘avg’ of B).

2. The algorithm that has the best performance w.r.t. solution quality is considered as the best
algorithm for the instance. If more than one algorithms has the same solution quality which
is better than other algorithms, then they are considered equally the best for the instance. The
best ‘min’ and the best ‘avg’ values are indicated in bold face.

3. If for an instance, there exist two algorithms A and B that cannot be compared in terms of
solution quality (according to principle 1), then we say there is not a clear dominant algorithm
for that instance. In this case, the best ‘min’ and the best ‘avg’ values are also indicated in
bold face, even though they are obtained by different algorithms.

4. Only when all algorithms obtain the same solution quality performance, we compare the run
time of the algorithms, and the algorithm with the minimum value of average run time is the
best algorithm, and its averaged time is indicated in bold face.

3. A New Construction Algorithm for Vertex Cover

This section investigates construction algorithms for MinVC. We first review previous construction
algorithms, and then propose a new construction algorithm called EdgeGreedyVC. We compare
different construction algorithms through both theoretical and experimental analysis.

3.1 Previous Construction Algorithms for Vertex Cover

Seen from the literature, there are two popular construction algorithms for vertex cover. The first
one is based on finding a maximal matching, which has an approximation ratio of 2 (Papadimitrious
& Steiglitz, 1982). The second one is a greedy algorithm that is employed in most practical MinVC
algorithms.

3.1.1 MAXIMAL MATCHING BASED CONSTRUCTION ALGORITHM

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges, that is, no
two edges share a common vertex. A maximal matching of a graph G is a matching M with the
property that if any edge not in M is added to M , it is no longer a matching, that is, M is maximal
if it is not a proper subset of any other matching in graph G.

A well-known construction algorithm for vertex cover is to find a maximal matching in the
graph, and return the vertices in the matching as a vertex cover. Let us denote the vertex set of the
found maximal matching M as V (M). It is easy to prove that V (M) is a vertex cover. Suppose that
there is an edge e not covered by V (M), then e has no common vertex with all edges in M . Thus,
we can extend matching M by adding edge e, obtaining a greater sized matching M ′ = M ∪ {e}.
This contradicts the fact that M is a maximal matching.

For convenience, we denote this algorithm as MatchVC. For a graph G = (V,E), beginning
with an empty vertex set C, the MatchVC algorithm can be described as follows:

For each edge e ∈ E: if e is not covered by C, add both endpoints of e into C. Return C.
It is obvious the complexity of the MatchVC algorithm is O(m). This algorithm is very fast and

guarantees an approximation ratio of 2. Note that the best known approximation ratio is 2 − o(1)

469

CAI, LIN & LUO

(Karakostas, 2005), which is essentially not better than 2. However, the MatchVC algorithm does
not return sufficiently good solutions in practice, which will also be shown in our experiments.

3.1.2 GREEDY CONSTRUCTION ALGORITHM

Another construction algorithm for MinVC is an intuitive greedy procedure based on the gain
values of vertices (Papadimitrious & Steiglitz, 1982). It is the most commonly used construction
algorithm for MinVC and is usually used to obtain the initial solution in local search algorithms for
MinVC (Richter et al., 2007; Cai et al., 2011, 2013).

For convenience, we denote this algorithm as GreedyVC. For a graph G = (V,E), beginning
with an empty vertex set C, the GreedyVC algorithm works as follows:

Repeat the following operations until C becomes a vertex cover: select a vertex v /∈ C with the
maximum gain to add into C, breaking ties randomly. Return C.

The number of iterations of this procedure equals the size of the vertex cover C, and is denoted
as ℓ. We analyze the worst case complexity for two implementations of the above algorithm as
follows. A straight-forward implementation is to scan the vertex set V in each iteration in order
to find the objective vertex, which has a complexity of Θ(n) for each iteration. Therefore, the
complexity is Θ(ℓ · n) = O(n2). A more “clever” implementation is to maintain the C set and also
a set of vertices not in C, which is denoted as H . In each iteration, we scan the H set to find a
vertex with the maximum gain. To be precise, we use Ci and Hi to denote the C set and H set at
the beginning of the ith iteration. We have |Ci| = i− 1 and |Hi| = n− |Ci| = n− (i− 1). Thus,∑ℓ

i=1 |Hi| =
∑ℓ

i=1(n − (i − 1)) = 1
2ℓ(2n + 1 − ℓ). Since 1 ≤ ℓ ≤ n ⇒ 1

2ℓ(n + 1) ≤ 1
2ℓ(2n +

1 − ℓ) ≤ ℓn, we have
∑ℓ

i=1 |Hi| = Θ(ℓ · n). Therefore, the complexity of this implementation is∑ℓ
i=1 |Hi| = Θ(ℓ · n) = O(n2).
We will see from the experiment results in Section 3.3 that, a quadratic complexity is too high

for massive graphs and makes the algorithms inefficient so that they may fail to provide a vertex
cover within a reasonable amount of time (like 1000 seconds). In Section 5, we re-implement this
GreedyVC algorithm by using the heap data structure, which accelerates the procedure significantly,
and we also improve GreedyVC by removing redundant vertices.

3.2 The EdgeGreedyVC Algorithm

We propose a fast vertex cover construction algorithm, which is called EdgeGreedyV C. The
pseudo-code of EdgeGreedyV C is given in Algorithm 1. The EdgeGreedyV C Algorithm
consists of an extending phase and a shrinking phase.

The extending phase: Starting with an empty set C, the algorithm extends C by checking and
covering an edge in each iteration. If the considered edge is uncovered, the endpoint with a higher
degree is added into C. If the two endpoints have the same degree, we simply choose the first one.
In this way, the algorithm is deterministic, since it does not utilize random choices. Obviously, we
obtain a vertex cover at the end of the extending phase.

The shrinking phase: First, we calculate the loss values of vertices in C; then, we scan the C
set and if a vertex v ∈ C has a loss value of 0, it is removed, and loss values of its neighbors are
updated accordingly.

Theorem 1. The EdgeGreedyV C procedure returns a minimal vertex cover in O(m) time, where
m is the number of edges.

470

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

Algorithm 1: EdgeGreedyVC
Input: graph G = (V,E)
Output: vertex cover of G
C := ∅;1

foreach e ∈ E do2

if e is uncovered then3

add the endpoint of e with higher degree into C;4

loss(v) := 0 for each v ∈ C;5

foreach e ∈ E do6

if only one endpoint of e belongs to C then7

for the endpoint v ∈ C, loss(v)++;8

foreach v ∈ C do9

if loss(v) = 0 then10

C := C\{v}, update loss of vertices in N(v);11

return C;12

Proof: We first prove that the vertex set that the EdgeGreedyV C procedure returns is a minimal
vertex cover. Let us use C to denote the current vertex set during the procedure.

At the beginning of the shrinking phase, C is a vertex cover. Also, each vertex removed in
the shrinking phase has a loss value of 0, and thus removing such vertices does not generate any
uncovered edge. Hence, C is a vertex cover after the shrinking phase. Now we prove that the vertex
cover C after the shrinking phase is minimal. Suppose after the shrinking phase, there exists a
vertex in C whose removal keeps C a vertex cover. Without loss of generality, let this vertex be
vj , the one considered at the jth iteration of the shrinking phase. From the assumption, we have
loss(vj) = 0 at the end of the shrinking phase. Notice that during the shrinking phase, the loss
value of any vertex in C does not decrease3. Thus, the value of loss(vj) at the jth iteration is at
most 0, but loss values are non-negative, so it is 0. Therefore, vj would have been removed at the
jth iteration. This completes the proof by contradiction.

In the following, we calculate the time complexity of EdgeGreedyVC. The EdgeGreedyVC
procedure can be divided into three parts: the first part (lines 2-4) performs the extending phase, the
second part (lines 5-8) initializes the loss values, while the last one (lines 9-11) removes redundant
vertices. Let C+ denotes the vertex cover obtained by the extending phase. It is clear that the
complexity of the extending phase is O(m). For the second part, the complexity is O(|C+| +m).
Since at most one vertex is added in each iteration of the extending phase, we have |C+| ≤ m,
and thus the complexity for the second part is O(m). For the last part, the complexity depends on
the total number of updating operations of loss values, which is calculated as

∑
v∈C+ deg(v) <∑

v∈V deg(v) = 2m. Therefore, the EdgeGreedyV C procedure has a complexity of O(m).
Many massive real-world graphs are sparse graphs (Barabási & Albert, 1999; Eubank, Kumar,

Marathe, Srinivasan, & Wang, 2004; Lu & Chung, 2006), and heuristics with O(m) complexity

3. This can be easily proved according to the definition of loss.

471

CAI, LIN & LUO

are fast on such graphs. Nevertheless, we note that there are also dense graphs from real-world
applications, and our method here is particularly effective for large sparse graphs.

3.3 Comparing Construction Heuristics

In this subsection, we carry out experiments to compare the three construction algorithms, namely
MatchVC, GreedyVC and EdgeGreedyVC. We adopt the implementation of GreedyVC in NuMVC
(2013), and we implement MatchVC using our codes of FastVC.

Since MatchVC and EdgeGreedyVC are deterministic algorithms, they are executed once (with
random seed 1) on each instance. GreedyVC uses a randomized strategy to break ties, so it is
executed 10 times (with random seeds from 1 to 10) on each instance and the averaged results over
the 10 runs are reported. We report the size of vertex cover and the run time for each algorithm. The
best solution size for each instance is presented in bold face. The experiment results are presented
in Tables 1 and 2. We also report the size of the graphs in these two tables. The results can be
summarized in the following observations.

1. The two greedy algorithms GreedyVC and EdgeGreedyVC always find better solutions than
the MatchVC algorithm. GreedyVC and EdgeGreedyVC are competitive and complementary
to each other. More specifically, GreedyVC finds the best solutions among all the three
algorithms for 61 instances, and EdgeGreedyVC does this for 47 instances.

2. EdgeGreedyVC and MatchVC are much faster than GreedyVC. In particular, EdgeGreedyVC
and MatchVC terminate within one second for all instances, while GreedyVC requires more
than 100 seconds for 23 instances.

3. Overall, EdgeGreedyVC takes a very good balance between solution quality and run time,
and it is a better choice when compared to GreedyVC and MatchVC.

4. A New Local Search Algorithm for MinVC

In this section, we propose a local search algorithm for MinVC called FastVC. We utilize the
EdgeGreedyVC algorithm to construct the starting vertex cover for local search. Further, we propose
a probabilistic method for choosing the vertex to remove in each step, which is an important idea in
FastVC. Experiments are carried out to compare FastVC with the latest state of the art local search
algorithm for MinVC namely NuMVC on massive graphs.

4.1 The High Level Algorithm

We first describe the FastVC algorithm from a high level. Details of important functions in FastVC
and further analysis will be presented in the next subsection.

Local search algorithms for MinVC based on iteratively solving the decision problem start with
a vertex cover, which we call the starting vertex cover. A small starting vertex cover can save
the subsequent local search from too much unnecessary search before beginning seeking a good
solution. A balance must be struck between the quality of the starting vertex cover and the time
consumed in constructing it. Otherwise, the resulting algorithm may be inefficient in practice.
FastVC uses the EdgeGreedyVC algorithm to construct the starting vertex cover.

472

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

Table 1: Comparing three construction algorithms for MinVC.

instance |V| |E| GreedyVC EdgeGreedyVC MatchVC

avg size time size time size time
bio-celegans 453 2025 258.3 <0.01 259 <0.01 398 <0.01
bio-diseasome 516 1188 285.2 <0.01 285 <0.01 400 <0.01
bio-dmela 7393 25569 2666.9 0.03 2717 <0.01 4076 <0.01
bio-yeast 1458 1948 462.3 <0.01 462 <0.01 800 <0.01
ca-AstroPh 17903 196972 11517.8 0.6 11511 <0.01 15376 <0.01
ca-citeseer 227320 814134 129356 88.2 129258 <0.01 173614 0.01
ca-coauthors-dblp 540486 15245729 472389.2 610.01 472259 0.04 510992 0.02
ca-CondMat 21363 91286 12519.1 0.81 12497 <0.01 17528 <0.01
ca-CSphd 1882 1740 555.3 <0.01 553 <0.01 1044 <0.01
ca-dblp-2010 226413 716460 122194.3 84.37 122073 <0.01 187206 0.01
ca-dblp-2012 317080 1049866 165268 168.36 165084 0.01 227224 <0.01
ca-Erdos992 6100 7515 461 <0.01 461 <0.01 594 <0.01
ca-GrQc 4158 13422 2220 0.01 2214 <0.01 3214 <0.01
ca-HepPh 11204 117619 6574.4 0.19 6565 <0.01 9088 <0.01
ca-hollywood-2009 1069126 56306653 864251.2 2182.47 864186 0.16 1040514 0.06
ca-MathSciNet 332689 820644 140695.2 125.73 140446 0.01 203770 <0.01
ca-netscience 379 914 214 <0.01 214 <0.01 300 <0.01
ia-email-EU 32430 54397 820 0.02 827 <0.01 1410 <0.01
ia-email-univ 1133 5451 609.8 <0.01 615 <0.01 814 <0.01
ia-enron-large 33696 180811 12825.3 1.04 12822 <0.01 17504 <0.01
ia-enron-only 143 623 87.3 <0.01 87 <0.01 126 <0.01
ia-fb-messages 1266 6451 594.7 <0.01 592 <0.01 932 <0.01
ia-infect-dublin 410 2765 297.4 <0.01 300 <0.01 372 <0.01
ia-infect-hyper 113 2196 93 <0.01 93 <0.01 108 <0.01
ia-reality 6809 7680 81 <0.01 81 <0.01 114 <0.01
ia-wiki-Talk 92117 360767 17411.9 2.65 17464 <0.01 26246 <0.01
inf-power 4941 6594 2277.8 0.01 2271 <0.01 3736 <0.01
inf-roadNet-CA 1957027 2760388 1070458.5 7409.41 1062463 0.04 1660956 0.02
inf-roadNet-PA 1087562 1541514 593581.3 2291.05 588269 0.03 915948 0.01
inf-road-usa 23947347 28854312 n/a n/a 12200485 0.7 19475384 0.23
rec-amazon 91813 125704 49245.9 15.83 48542 <0.01 74366 <0.01
rt-retweet 96 117 32.5 <0.01 33 <0.01 60 <0.01
rt-retweet-crawl 1112702 2278852 81572.8 115.24 82531 0.02 157810 0.01
rt-twitter-copen 761 1029 238.1 <0.01 238 <0.01 422 <0.01
socfb-A-anon 3097165 23667394 376526.9 1577.91 424586 0.29 715962 0.05
socfb-B-anon 2937612 20959854 303568.5 1129.9 342092 0.29 586904 0.04
socfb-Berkeley13 22900 852419 17520.6 1.21 17599 <0.01 21652 0.01
socfb-CMU 6621 249959 5068 0.08 5090 <0.01 6290 <0.01
socfb-Duke14 9885 506437 7807.4 0.22 7838 <0.01 9422 <0.01
socfb-Indiana 29732 1305757 23738.9 2.17 23788 <0.01 28508 <0.01
socfb-MIT 6402 251230 4734.6 0.07 4756 <0.01 6014 <0.01
socfb-OR 63392 816886 37269.7 6.09 37402 <0.01 48342 <0.01
socfb-Penn94 41536 1362220 31764.1 4.1 31851 <0.01 39246 0.01
socfb-Stanford3 11586 568309 8634.9 0.28 8696 <0.01 10796 <0.01
socfb-Texas84 36364 1590651 28677.5 3.23 28762 <0.01 34876 0.01
socfb-uci-uni 58790782 92208195 866783 48316 869726 1 1732226 0.43
socfb-UCLA 20453 747604 15500.7 0.94 15553 <0.01 19226 0.01
socfb-UConn 17206 604867 13474.9 0.67 13527 <0.01 16466 0.01
socfb-UCSB37 14917 482215 11479.9 0.48 11510 <0.01 14116 <0.01
socfb-UF 35111 1465654 27911.4 3.03 27894 <0.01 33570 0.01
socfb-UIllinois 30795 1264421 24532.3 2.31 24603 <0.01 29512 <0.01
socfb-Wisconsin87 23831 835946 18725.9 1.33 18782 <0.01 22750 <0.01

473

CAI, LIN & LUO

Table 2: Comparing three construction algorithms for MinVC (continued).

instance |V| |E| GreedyVC EdgeGreedyVC MatchVC

avg size avg time size time size time
sc-ldoor 952203 20770807 858313.1 1485.45 857967 0.06 893510 0.03
sc-msdoor 415863 9378650 382176.7 270.99 382115 0.02 398824 0.02
sc-nasasrb 54870 1311227 51714.1 5.04 51700 <0.01 54870 0.01
sc-pkustk11 87804 2565054 84155.6 11.91 84355 <0.01 87804 <0.01
sc-pkustk13 94893 3260967 89714.2 15.23 89868 <0.01 94534 <0.01
sc-pwtk 217891 5653221 208842.5 74.78 208255 0.01 217804 <0.01
sc-shipsec1 140385 1707759 119977.5 39.69 120339 <0.01 140354 <0.01
sc-shipsec5 179104 2200076 149495.2 53.09 150957 <0.01 179038 <0.01
soc-BlogCatalog 88784 2093195 20974 3.17 21257 <0.01 29990 0.01
soc-brightkite 56739 212945 21489.4 2.98 21469 <0.01 31734 <0.01
soc-buzznet 101163 2763066 31074.4 6.6 31795 0.01 48174 <0.01
soc-delicious 536108 1365961 87670.5 68.91 90812 0.01 142016 0.01
soc-digg 770799 5907132 104624.5 102.74 106831 0.03 133384 0.01
soc-dolphins 62 159 34.6 <0.01 35 <0.01 50 <0.01
soc-douban 154908 327162 8718.6 1.36 8704 <0.01 16156 <0.01
soc-epinions 26588 100120 9867.2 0.58 9860 <0.01 14758 <0.01
soc-flickr 513969 3190452 154487.2 159.06 154471 0.02 225688 0.01
soc-flixster 2523386 7918801 96498.4 216.44 96873 0.04 122862 0.01
soc-FourSquare 639014 3214986 90688 64.71 90719 0.01 116474 <0.01
soc-gowalla 196591 950327 85443.7 45.3 85538 0.01 124018 0.01
soc-karate 34 78 14.1 <0.01 14 <0.01 22 <0.01
soc-lastfm 1191805 4519330 79169.9 85.85 80205 0.03 99564 0.01
soc-livejournal 4033137 27933062 1894963.6 19572.94 1898700 0.31 2591926 0.08
soc-LiveMocha 104103 2193083 44176.5 11.61 45314 0.01 62782 <0.01
soc-orkut 2997166 106349209 2216036 18879 2228033 0.5 2706294 0.15
soc-pokec 1632803 22301964 860947.8 3717.96 902600 0.19 1203086 0.04
soc-slashdot 70068 358647 22637.3 3.56 22665 <0.01 34056 0.01
soc-twitter-follows 404719 713319 2323 0.8 2419 <0.01 4644 <0.01
soc-wiki-Vote 889 2914 414.1 <0.01 414 <0.01 650 <0.01
soc-youtube 495957 1936748 148168.5 168.35 149089 0.02 240756 <0.01
soc-youtube-snap 1134890 2987624 279088.1 678.8 279389 0.03 456406 0.01
tech-as-caida2007 26475 53381 3692.7 0.15 3704 <0.01 6648 <0.01
tech-as-skitter 1694616 11094209 529835.2 1883.76 553244 0.09 889676 0.03
tech-internet-as 40164 85123 5714.9 0.38 5766 <0.01 10872 <0.01
tech-p2p-gnutella 62561 147878 15838.6 2.01 15759 <0.01 28238 <0.01
tech-RL-caida 190914 607610 75681.1 35.72 77990 <0.01 120890 <0.01
tech-routers-rf 2113 6632 805.5 <0.01 803 <0.01 1376 <0.01
tech-WHOIS 7476 56943 2297.9 0.03 2305 <0.01 3380 <0.01
web-arabic-2005 163598 1747269 115499.4 41.66 115256 <0.01 138022 0.01
web-BerkStan 12305 19500 5496.1 0.14 5565 <0.01 8432 <0.01
web-edu 3031 6474 1591.2 <0.01 1451 <0.01 2818 <0.01
web-google 1299 2773 498.8 <0.01 499 <0.01 748 <0.01
web-indochina-2004 11358 47606 7423.8 0.17 7367 <0.01 9720 <0.01
web-it-2004 509338 7178413 415772.1 542.39 415521 0.01 447464 0.02
web-polblogs 643 2280 246 <0.01 246 <0.01 406 <0.01
web-sk-2005 121422 334419 58529.1 17.77 58375 <0.01 84604 <0.01
web-spam 4767 37375 2345.2 0.02 2352 <0.01 3566 <0.01
web-uk-2005 129632 11744049 127774 41.66 127774 0.02 128626 0.01
web-webbase-2001 16062 25593 2686.8 0.05 2674 <0.01 4248 <0.01
web-wikipedia2009 1864433 4507315 660288.4 3060.03 662296 0.07 1031900 0.02

474

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

Algorithm 2: FastVC (G, cutoff)
Input: graph G = (V,E), the cutoff time
Output: vertex cover of G
C := EdgeGreedyV C(G);1

gain(v) := 0 for each vertex v /∈ C;2

while elapsed time < cutoff do3

if C covers all edges then4

C∗ := C;5

remove a vertex with minimum loss from C;6

continue;7

u := ChooseRmV ertex(C);8

C := C\{u}, update loss and gain values of vertices in N [u];9

e := a random uncovered edge;10

v := the endpoint of e with greater gain, breaking ties in favor of the older one;11

C := C ∪ {v}, update loss and gain values of vertices in N [v];12

return C∗;13

For the exchange step in local search, FastVC adopts the two-stage exchange framework, as it
has lower complexity than the alternative paradigm based on vertex pair exchange. Indeed, thanks
to the two-stage exchange framework, NuMVC performs several times more steps per second than
other local search MinVC algorithms (Cai et al., 2013).

The FastVC algorithm is outlined in Algorithm 2, as described below. At the beginning, a
vertex cover is constructed by the EdgeGreedyV C function, which is taken as the initial candidate
solution C for the algorithm. The loss values of vertices in C are calculated in the EdgeGreedyV C
function. For vertices outside C, their gain values are set to 0, as at this point all edges are covered
by C and adding any vertex into C would not increase the number of covered edges.

Now we introduce the exchange step in FastVC. At each step, the algorithm first chooses a
vertex in u ∈ C to remove, which is accomplished by the ChooseRmV ertex function. Then, the
algorithm picks a random uncovered edge e, and chooses one of e’s endpoints with the greater gain
and adds it into C, breaking ties in favor of the older one. Note that along with removing or adding
a vertex, the loss and gain values of the vertex and its neighbors are updated accordingly.

4.2 Best from Multiple Selections (BMS)

A critical function of FastVC is ChooseRmV ertex, which returns a vertex from the candidate
vertex set C to remove in each exchange step. We propose a fast and effective heuristic for doing
this task, which strikes a good balance between the time complexity and the quality of the selected
vertex (w.r.t. the loss value).

Local search algorithms usually need to select an element from a candidate set. Perhaps the
most commonly used strategy is to choose the best element according to some criterion, which we
refer to as “best-picking” heuristic. With a suitable criterion, this heuristic guides the search towards
the most promising area, and is thus widely adopted in local search algorithms. Recent examples of
such heuristics for MinVC include the max-gain pair selection heuristic in COVER (Richter et al.,

475

CAI, LIN & LUO

2007) and the minimum loss removing heuristic in NuMVC (Cai et al., 2013). More examples can
be found in local search algorithms for other famous NP-hard problems, such as the Satisfiability
problem (Selman, Levesque, & Mitchell, 1992; Hoos & Stützle, 2004; Li & Huang, 2005). Indeed,
a lot of works on local search have been focused on the criterion for filtering the candidate set and
the function for comparing elements, and once this is done, they simply pick the best one. The
“best-picking” heuristic works well in most cases, but not for massive data sets where the candidate
set is usually very large and finding the best element is very time-consuming.

We propose a cost-effective heuristic called Best from Multiple Selections (BMS), for picking
a good element from a set. For a set S, the BMS heuristic works as follows:

Choose k elements randomly with replacement from the set S, and then return the best one
(w.r.t. some comparison function f), where k is a parameter.

Algorithm 3: Best from Multiple Selection (BMS) Heuristic
Input: A set S, a parameter k, a comparison function f
/*assume f is a function such that we say an element is better
than another one if it has smaller f value*/
Output: an element of S
best :=a random element from S;1

for iteration := 1 to k − 1 do2

r :=a random element from S;3

if f(r) < f(best) then best := r;4

return best;5

A more formal description of the BMS heuristic is given in Algorithm 3. Let us look at how
well the BMS heuristic approximates the “best-picking” heuristic. For a real number ρ ∈ (0, 1),
the probability of the event E = {the f value of the element chosen by BMS is not greater than
ρ|S| elements in the set S} is Pr(E) ≥ 1 − (ρ|S|−1

|S|)k > 1 − ρk (the “≥” is because there might
be the case that more than one elements in those ρ|S| elements have the same f value, which is the
minimum among f values of all the ρ|S| elements).

For ChooseRmV ertex, the comparison function f is simply the loss function on vertices, and
we set k = 50. Then, the probability that the BMS heuristic chooses a vertex whose loss value is not
greater than 90% vertices in C is Pr(E) > 1 − 0.950 > 0.9948. The above calculations illustrate
that the BMS heuristic returns a vertex of good quality with a very high probability.

The complexity of the BMS heuristic is O(k) = O(1), since k is a constant. This is lower than
O(|C|) for the minimum loss heuristic used by previous local search algorithms for MinVC. Note
that BMS is a generic heuristic and can be also applied to improve the time efficiency of local search
algorithms for large scale instances of other problems.

4.3 Experiments on FastVC

We carry out experiments to evaluate FastVC on the real-world massive graphs, compared against
the state of the art local search MinVC algorithm NuMVC. To illustrate the effectiveness of the
local search procedure of FastVC, we also test a modified version of NuMVC (dubbed NuMVCe)
which uses the EdgeGreedyVC construction heuristic with the same implementation as FastVC.

476

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

The results show that FastVC significantly outperforms NuMVC and NuMVCe on these massive
graphs.

FastVC is built on the publicly available codes of NuMVC (2013) and uses the same data
structure and the same implementation for the exchange step, yet it is simpler and lighter than
NuMVC. Parameter settings of FastVC: For the BMS heuristic in the ChooseRmV ertex function
of FastVC, we set the k parameter to 50, as mentioned in the previous section. This is based on
preliminary experiments testing FastVC with different k values. We test k ∈ [10, 100] with an
increment step of 10. When k < 10 or k > 100, the performance of the algorithm is obviously
worse than that under k ∈ [10, 100]. We observe that when k ∈ [30, 100], the performance is quite
close, and FastVC with k = 50 finds better solutions than the algorithm with k = 30, 40; also,
FastVC with k = 50 usually finds the same quality solutions as running the algorithm with k > 50,
but is usually faster.

For comparisons, we use the NuMVC algorithm (Cai et al., 2013) to represent the state of
the art in solving the MinVC (and also MaxIS) problem. Based on experiments on DIMACS and
BHOSLIB benchmarks, NuMVC is more reliably in finding the optimal or best known solution at
speeds at least several times faster than earlier algorithms for MinVC and Maximum Independent
Set (Cai et al., 2013). It is acknowledged as the latest breakthrough for MinVC solving in the
literature (Fang, Chu, Qiao, Feng, & Xu, 2014; Rosin, 2014; Jin & Hao, 2015). Slightly better
results have been reported for two algorithms built on the top of NuMVC (Fang et al., 2014; Cai,
Lin, & Su, 2015), but this does not materially change our conclusions below. The source code
of NuMVC is online http://lcs.ios.ac.cn/~caisw/Code/NuMVC-Code.zip and also implemented in
C++. NuMVCe is implemented in the source code of NuMVC by replacing the construction
algorithm with the GreedyEdgeVC algorithm in FastVC.

The experiment comparing FastVC against NuMVC and NuMVCe is conducted according to
the experiment protocol in Section 2.3, and the results are reported in Tables 3 and 4. The results
demonstrate that FastVC has better performance than NuMVC and NuMVCe. In detail, we have
the following observations:

1. FastVC finds better vertex covers than NuMVC for 52 graphs and finds the same quality
solutions for 40 graphs. FastVC finds worse solutions than NuMVC only for 10 graphs, and
for 5 out of these 10 graphs, the two algorithms finds nearly the same quality solutions (with
a gap of at most one vertex between the averaged sizes).

2. FastVC and NuMVC have similar performance on four classes of benchmarks, namely
biological networks, interaction networks, Tweeter networks and technological networks. For
other classes of benchmarks, FastVC significantly outperforms NuMVC.

3. Comparing their averaged run time, we found that FastVC is much faster than NuMVC on
most of the graphs. In particular, for the 40 graphs where both algorithms find the same
quality solutions, we compare the averaged time to obtain the final solution. FastVC is faster
on 19 graphs, while NuMVC is faster on only 2 instances, and for the rest of the instances
both algorithms have an averaged time of less than 0.01 seconds.

4. Although NuMVCe shows improvement over NuMVC, particularly on those very large
instances where NuMVC fails to provide a solution, the solutions returned by NuMVCe are
still worse than FastVC on most instances.

477

CAI, LIN & LUO

Table 3: Comparing FastVC with NuMVC and NuMVCe, where NuMVCe is modified from
NuMVC that uses the same construction algorithm with the same implementation as FastVC.

instance NuMVC NuMVCe FastVC

min(avg) time min(avg) time min(avg) time
bio-celegans 249(249) <0.01 249(249) <0.01 249(249) <0.01
bio-diseasome 285(285) <0.01 285(285) <0.01 285(285) <0.01
bio-dmela 2630(2630) 0.9 2630(2630) 1.85 2630(2630) <0.01
bio-yeast 456(456) <0.01 456(456) <0.01 456(456) <0.01
ca-AstroPh 11483(11483) 10.92 11483(11483) 29.33 11483(11483) 0.02
ca-citeseer 129193(129195.5) 153 129193(129193.6) 59.58 129193(129193) 1.07
ca-coauthors-dblp 472251(472258.5) 998.45 472180(472181.5) 935.05 472179(472179) 14.57
ca-CondMat 12480(12480) 46.59 12480(12480) 36.97 12480(12480) 0.02
ca-CSphd 550(550) <0.01 550(550) <0.01 550(550) <0.01
ca-dblp-2010 121971(121973.8) 143.77 121972(121972.7) 60.33 121969(121969) 1.47
ca-dblp-2012 164952(164956.4) 261.46 164951(164953.9) 90.54 164949(164949) 4.26
ca-Erdos992 461(461) <0.01 461(461) <0.01 461(461) <0.01
ca-GrQc 2208(2208) 0.16 2208(2208) <0.01 2208(2208) <0.01
ca-HepPh 6555(6555) 18.9 6555(6555) 6.59 6555(6555) <0.01
ca-hollywood-2009 n/a n/a 864115(864115.4) 990.79 864052(864052) 25.59
ca-MathSciNet 139982(139989.7) 174.14 139982(139985.2) 43.44 139951(139951) 4.36
ca-netscience 214(214) <0.01 214(214) <0.01 214(214) <0.01
ia-email-EU 820(820) 0.02 820(820) <0.01 820(820) <0.01
ia-email-univ 594(594) <0.01 594(594) <0.01 594(594) <0.01
ia-enron-large 12781(12781) 52.47 12781(12781) 121.21 12781(12781) 0.04
ia-enron-only 86(86) <0.01 86(86) <0.01 86(86) <0.01
ia-fb-messages 578(578) <0.01 578(578) <0.01 578(578) <0.01
ia-infect-dublin 293(293) <0.01 293(293) <0.01 293(293.2) 480.11
ia-infect-hyper 90(90) <0.01 90(90) <0.01 90(90) <0.01
ia-reality 81(81) <0.01 81(81) <0.01 81(81) <0.01
ia-wiki-Talk 17288(17288.2) 510.58 17288(17288.4) 704.41 17288(17288) 0.08
inf-power 2203(2203) 1.05 2203(2203) 1.54 2203(2203) <0.01
inf-roadNet-CA n/a n/a 1044047(1044195.7) 1000 1001273(1001311.2) 896.33
inf-roadNet-PA n/a n/a 560365(560410.8) 947.85 555220(555243) 652.14
inf-road-usa n/a n/a 12198972(12198983.8) 1000 12049567(12050440.1) 1000
rec-amazon 47655(47672.6) 953.23 47671(47681.9) 943.31 47606(47606) 0.89
rt-retweet 32(32) <0.01 32(32) <0.01 32(32) <0.01
rt-retweet-crawl 81043(81047.2) 119.17 81057(81059.7) 7.637 81048(81048) 1.34
rt-twitter-copen 237(237) <0.01 237(237) <0.01 237(237) <0.01
socfb-A-anon n/a n/a 375234(375236.2) 677.28 375231(375232.8) 128.55
socfb-B-anon n/a n/a 303049(303050) 466.86 303048(303048.9) 85.1
socfb-Berkeley13 17216(17218) 515.58 17215(17218.1) 517.30 17210(17212.7) 290.4
socfb-CMU 4986(4986.1) 248.73 4986(4986.1) 158.95 4986(4986.5) 3.91
socfb-Duke14 7683(7683.6) 212.95 7683(7683.6) 149.95 7683(7683) 228.3
socfb-Indiana 23320(23326.5) 556.5 23322(23327.9) 455.31 23315(23317.1) 517.27
socfb-MIT 4657(4657) 8.2 4657(4657) 10.06 4657(4657) 41.13
socfb-OR 36558(36560.6) 564.13 36557(36560.6) 678.19 36548(36549.2) 144.06
socfb-Penn94 31179(31183.3) 559.12 31178(31181.6) 632.33 31162(31164.8) 552.92
socfb-Stanford3 8518(8518) 8.77 8518(8518) 8.84 8517(8517.9) 101
socfb-Texas84 28174(28180.5) 639.12 28176(28184.2) 636.72 28167(28171.1) 495.91
socfb-uci-uni n/a n/a 866768(866768) 488.22 866768(866768) 37.05
socfb-UCLA 15225(15227.1) 399.21 15225(15227.4) 489.63 15223(15224.3) 297.92
socfb-UConn 13231(13233) 611.89 13231(13233.2) 565.24 13230(13231.5) 304.11
socfb-UCSB37 11262(11263) 381.45 11262(11262.8) 367.34 11261(11263) 210.62
socfb-UF 27319(27323.5) 607.36 27319(27323.5) 400.43 27306(27309) 459.23
socfb-UIllinois 24096(24106.4) 545.24 24100(24106.7) 534.74 24091(24092.2) 477.69
socfb-Wisconsin87 18388(18390.6) 733.22 18390(18392.2) 505.07 18383(18385.1) 295.36

5. The NuMVC2 and FastVC2 Algorithms

We observe that the construction algorithms GreedyVC and MatchVC can be improved by applying
the shrinking phase of EdgeGreedyVC after construction of the vertex cover is finished. Also,

478

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

Table 4: Comparing FastVC with NuMVC and NuMVCe (continued).

instance NuMVC NuMVCe FastVC

min(avg) time min(avg) time min(avg) time
sc-ldoor n/a n/a 856920(856930) 997.46 856755(856757.4) 218.94
sc-msdoor 381569(381574.6) 986.61 381564(381565.6) 973.41 381558(381558.9) 18.71
sc-nasasrb 51244(51246.7) 781.64 51245(51247.2) 781.34 51244(51247.3) 517.13
sc-pkustk11 83911(83911) 539.67 83911(83911) 571.60 83911(83912.5) 6.84
sc-pkustk13 89218(89222) 848.29 89219(89222) 913.69 89217(89220.6) 315.23
sc-pwtk 207749(207756.3) 249.46 207741(207746.1) 147.74 207716(207719.9) 184.89
sc-shipsec1 117477(117536.9) 998.33 117468(117523.7) 995.95 117318(117337.5) 722.4
sc-shipsec5 147288(147324.5) 990.71 147326(147339.9) 991.17 147137(147173.8) 569.7
soc-BlogCatalog 20752(20752) 394.43 20752(20752.2) 516.62 20752(20752) 0.19
soc-brightkite 21192(21193.5) 841.9 21191(21192.8) 890.157 21190(21190) 0.2
soc-buzznet 30613(30613.2) 657.14 30613(30613.9) 648.62 30625(30625) 15.95
soc-delicious 85522(85585.6) 78.09 85696(85715.2) 947.90 85686(85696.4) 2.54
soc-digg 103303(103318.7) 111.21 103371(103387) 866.31 103244(103245.3) 3.34
soc-dolphins 34(34) <0.01 34(34) <0.01 34(34) <0.01
soc-douban 8685(8685) 1.37 8685(8685) 0.01 8685(8685) <0.01
soc-epinions 9757(9757) 82.8 9757(9757) 142.78 9757(9757) 0.13
soc-flickr 153343(153352.7) 194.34 153340(153347.4) 39.028 153272(153272) 18.51
soc-flixster 96319(96320.7) 217.78 96321(96322.7) 446.88 96317(96317) 1.61
soc-FourSquare 90125(90134.1) 835.65 90127(90132) 795.37 90108(90109.2) 124.9
soc-gowalla 84313(84322.6) 940.31 84316(84324.5) 919.63 84222(84222.3) 64.58
soc-karate 14(14) <0.01 14(14) <0.01 14(14) <0.01
soc-lastfm 78692(78695) 87.43 78696(78698.2) 817.99 78688(78688) 0.9
soc-livejournal n/a n/a 1888661(1888673.1) 1000 1869046(1869051.1) 953.11
soc-LiveMocha 43430(43432.8) 763.05 43432(43434.7) 803.47 43427(43427) 17.44
soc-orkut n/a n/a 2205976(2206173.6) 1000 2171296(2171380.5) 996.66
soc-pokec n/a n/a 847939(848147.4) 1000 843422(843434.9) 772.77
soc-slashdot 22373(22377) 774.65 22374(22376.5) 848.95 22373(22373) 0.2
soc-twitter-follows 2323(2323) 0.8 2323(2323) 0.09 2323(2323) 0.01
soc-wiki-Vote 406(406) <0.01 406(406) <0.01 406(406) <0.01
soc-youtube 146456(146468.2) 213.06 146464(146475.2) 47.76 146376(146376) 5.67
soc-youtube-snap 277015(277025.2) 889.32 277005(277016.8) 203.18 276945(276945) 12.74
tech-as-caida2007 3683(3683) 2.32 3683(3683) 2.88 3683(3683) <0.01
tech-as-skitter n/a n/a 527857(527881.2) 818.69 527185(527195.9) 446.49
tech-internet-as 5700(5700) 8.97 5700(5700) 33.23 5700(5700) 0.01
tech-p2p-gnutella 15682(15682) 24.25 15682(15682) 43.68 15682(15682) 0.01
tech-RL-caida 74759(74776.5) 979.74 75001(75015.7) 991.45 74930(74938.9) 9.62
tech-routers-rf 795(795) 0.01 795(795) <0.01 795(795) <0.01
tech-WHOIS 2284(2284) 0.31 2284(2284) 0.55 2284(2284) <0.01
web-arabic-2005 114464(114471.8) 111.51 114454(114458.6) 64.80 114426(114427.2) 323.58
web-BerkStan 5384(5384) 10 5384(5384) 10.03 5384(5384) 25.8
web-edu 1451(1451) 0.35 1451(1451) <0.01 1451(1451) <0.01
web-google 498(498) <0.01 498(498) <0.01 498(498) <0.01
web-indochina-2004 7300(7300) 14.54 7300(7300) 13.876 7300(7300) 0.09
web-it-2004 414741(414758.7) 987.89 414675(414680.8) 580.91 414671(414676.3) 9.92
web-polblogs 244(244) <0.01 244(244) <0.01 244(244) <0.01
web-sk-2005 58199(58205.5) 304.68 58205(58209.5) 732.55 58173(58173) 8.67
web-spam 2297(2297) 0.28 2297(2297) 0.42 2298(2298) <0.01
web-uk-2005 127774(127774) 41.67 127774(127774) 0.03 127774(127774) 0.02
web-webbase-2001 2651(2651.9) 48.54 2652(2652) 1.36 2652(2652) 0.01
web-wikipedia2009 n/a n/a 649546(649571.6) 999.78 648317(648321.8) 692.3

the construction algorithm GreedyVC is implemented in a way with quadratic complexity in the
original implementation of NuMVC. In this section, we use a heap data structure to re-implement
GreedyVC in NuMVC, which leads to a significant speedup. The resulting, improved algorithms
based on GreedyVC and MatchVC are dubbed GreedyVC+ and MatchVC+ respectively.

479

CAI, LIN & LUO

Table 5: Comparing EdgeGreedyVC, GreedyVC+ and MatchVC+, where ‘#win.’ counts the
number of winning instances and accumulated time includes the run time on all 102 instances.

GreedyVC+ EdgeGreedyVC MatchVC+

#win. 70 25 7
Accumulated Time 146.14 6.26 6.35

We conduct experiments to compare EdgeGreedyVC, GreedyVC+ and MatchVC+. Since
EdgeGreedyVC and MatchVC+ are deterministic algorithms, they are executed once (with random
seed 1) on each instance. GreedyVC+ uses a randomized strategy to break ties, so it is executed 10
times (with random seeds from 1 to 10) on each instance and the averaged results over the 10 runs
are reported. Interestingly, our experiments show that these three construction MinVC algorithms
have superiority on different instances (Table 5), where an algorithm wins an instance if it is the
only one that gives the best solution or it has the least run time among the algorithms with the
best quality solution. Therefore, a natural idea for improving local search MinVC algorithms is to
integrate the three construction algorithms by using them to generate three solutions and take the
best one as the initial solution for local search. We use this engineering practice to improve both
NuMVC and FastVC, resulting in two local search MinVC solvers named NuMVC2 and FastVC2.
They are also tested on the whole benchmark suite and the results are reported in Tables 6 and 7,
which show that FastVC2 outperforms NuMVC2 on most instances. Since the initial solution is the
same, this indicates the effectiveness of the local search procedure in FastVC for solving massive
graphs.

Additionally, comparing the results in Tables 6 and 7 with those in Tables 3 and 4, we
observe that NuMVC2 has better performance overall than NuMVC and NuMVCe, and FastVC2
is better than FastVC. Note that these algorithms use the same random seeds (1,2,...,10) in our
experiments. With respect to solution quality, NuMVC2 performs better than NuMVC on 31
instances while worse on 19 instances, and better than NuMVCe on 28 instances while worse on
21 instances. FastVC2 performs better than FastVC on 26 instances while worse on 17 instances.
We also test different variants of NuMVC and FastVC with only one construction heuristic from
EdgeGreedyVC, GreedyVC+ and MatchVC+, and the results show that NuMVC2 and FastVC2
have overall better performance w.r.t. solution quality than their variants with a single construction
heuristic.

6. Improving MinVC Solving by Preprocessing Techniques

In this section, we develop a preprocessing algorithm to simplify graphs for MinVC algorithms.
The preprocessing algorithm works in two phases and uses four reduction rules. We conduct
experiments to study the rules and show their effectiveness. The preprocessing algorithm is used to
improve NuMVC2 and FastVC2 from the previous section, resulting in two MinVC solvers named
NuMVC2+p and FastVC2+p. Experiments show that the preprocessing algorithm can improve the
solution quality for a considerable portion of the tested graphs.

6.1 Reduction Rules and the Preprocessing Algorithm

Our preprocessing algorithm for MinVC is based on four reduction rules. The first three rules are
very simple and have been widely used (Chen, Kanj, & Jia, 2001; Abu-Khzam, Collins, Fellows,

480

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

Table 6: Experiment results of NuMVC2 and FastVC2. Both algorithms use EdgeGreedyVC,
GreedyVC+ and MatchVC+ to generate three solutions and take the best one as the initial solution
for local search.

instance NuMVC2 FastVC2

min(avg) time min(avg) time
bio-celegans 249(249) <0.01 249(249) <0.01
bio-diseasome 285(285) <0.01 285(285) <0.01
bio-dmela 2630(2630) 1.29 2632(2632) 0.01
bio-yeast 456(456) <0.01 456(456) <0.01
ca-AstroPh 11483(11483) 63.2 11483(11483) 0.06
ca-citeseer 129193(129193.6) 60.63 129193(129193) 1.36
ca-coauthors-dblp 472180(472181.8) 905.45 472179(472179) 16.91
ca-CondMat 12480(12480) 39.03 12480(12480) 0.04
ca-CSphd 550(550) <0.01 550(550) <0.01
ca-dblp-2010 121972(121972.7) 60.82 121969(121969) 1.78
ca-dblp-2012 164951(164953.9) 92.56 164949(164949) 4.76
ca-Erdos992 461(461) <0.01 461(461) <0.01
ca-GrQc 2208(2208) <0.01 2208(2208) <0.01
ca-HepPh 6555(6555) 6.48 6555(6555) 0.03
ca-hollywood-2009 864116(864117.2) 973.41 864052(864052) 33.17
ca-MathSciNet 139982(139985.2) 45.07 139951(139951) 4.54
ca-netscience 214(214) <0.01 214(214) <0.01
ia-email-EU 820(820) <0.01 820(820) <0.01
ia-email-univ 594(594) <0.01 594(594) <0.01
ia-enron-large 12781(12781) 74.25 12781(12781) 0.11
ia-enron-only 86(86) <0.01 86(86) <0.01
ia-fb-messages 578(578) <0.01 578(578) <0.01
ia-infect-dublin 293(293) <0.01 293(293) <0.01
ia-infect-hyper 90(90) <0.01 90(90) <0.01
ia-reality 81(81) <0.01 81(81) <0.01
ia-wiki-Talk 17288(17288.3) 523.41 17288(17288) 0.14
inf-power 2203(2203) 1.7 2203(2203) <0.01
inf-roadNet-CA 1038328(1038553) 1000 1001442(1001474.1) 893.82
inf-roadNet-PA 560133(560173.4) 936.31 555269(555324.6) 700.32
inf-road-usa 12082301(12082356.4) 1000 11809276(11828598) 1000
rec-amazon 47671(47682.2) 923.45 47606(47606) 1.12
rt-retweet 32(32) <0.01 32(32) <0.01
rt-retweet-crawl 81044(81045.3) 2.85 81040(81040) 1.89
rt-twitter-copen 237(237) <0.01 237(237) <0.01
socfb-A-anon 375232(375233.4) 39.19 375230(375230.9) 23.7
socfb-B-anon 303048(303049.5) 26.39 303048(303048) 7.15
socfb-Berkeley13 17213(17216.8) 579.99 17210(17211.2) 345.5
socfb-CMU 4986(4986.1) 193.77 4987(4987) 3.49
socfb-Duke14 7683(7683.5) 115.93 7683(7683) 361.41
socfb-Indiana 23323(23328.8) 503.05 23315(23317.1) 407.46
socfb-MIT 4657(4657) 7.97 4657(4657) 21.47
socfb-OR 36559(36562.6) 663.33 36548(36548.7) 288.97
socfb-Penn94 31177(31185.1) 484.42 31163(31165.2) 600.93
socfb-Stanford3 8518(8518) 10.74 8518(8518) 25.22
socfb-Texas84 28180(28184.3) 613.51 28165(28168.7) 629.11
socfb-uci-uni 866766(866766) 127.19 866766(866766) 26.07
socfb-UCLA 15225(15227.6) 656.43 15224(15225.3) 355.59
socfb-UConn 13231(13233.6) 589.34 13230(13230.9) 352.79
socfb-UCSB37 11262(11263) 546.05 11261(11262.5) 269.29
socfb-UF 27322(27325.3) 544.41 27306(27308.6) 348.77
socfb-UIllinois 24103(24108.2) 561.88 24093(24095.2) 373.81
socfb-Wisconsin87 18389(18392.1) 636.37 18383(18385) 569.64

481

CAI, LIN & LUO

Table 7: Experiment results of NuMVC2 and FastVC2 (continued).

instance NuMVC2 FastVC2

min(avg) time min(avg) time
sc-ldoor 856936(856949) 998 856755(856757.4) 221.24
sc-msdoor 381565(381567.1) 958.01 381558(381558.9) 18.38
sc-nasasrb 51244(51246.9) 768.2 51240(51243.2) 475.53
sc-pkustk11 83911(83911) 591.98 83912(83913.2) 12.03
sc-pkustk13 89220(89222.5) 938.54 89218(89220.3) 392.48
sc-pwtk 207741(207746.1) 154.63 207716(207719.9) 208.31
sc-shipsec1 117482(117518.4) 991.04 117281(117297.5) 742.95
sc-shipsec5 147292(147314.2) 985.78 147067(147077.4) 548.72
soc-BlogCatalog 20752(20752.2) 424.94 20752(20752) 0.45
soc-brightkite 21191(21192.9) 859.39 21190(21190.1) 0.24
soc-buzznet 30613(30613.7) 580.13 30624(30624) 6.27
soc-delicious 85566(85573.2) 659.65 85532(85536.1) 1.69
soc-digg 103312(103321.7) 566.02 103242(103242) 2.81
soc-dolphins 34(34) <0.01 34(34) <0.01
soc-douban 8685(8685) 0.04 8685(8685) 0.04
soc-epinions 9757(9757) 113.99 9757(9757) 0.17
soc-flickr 153343(153349.3) 38.58 153271(153271.1) 18.33
soc-flixster 96318(96319.2) 3.14 96317(96317) 2.72
soc-FourSquare 90131(90136.6) 882.48 90109(90109.7) 78.47
soc-gowalla 84312(84321.4) 961.51 84223(84223) 26.96
soc-karate 14(14) <0.01 14(14) <0.01
soc-lastfm 78692(78695.1) 591.63 78688(78688) 1.14
soc-livejournal 1882773(1882841.4) 1000 1869002(1869007.6) 934.25
soc-LiveMocha 43430(43432.6) 786.35 43427(43427) 29.86
soc-orkut 2193141(2193277.4) 1000 2171246(2171290.2) 997.16
soc-pokec 844306(844329.2) 610.7 843387(843390.4) 641.83
soc-slashdot 22373(22375.3) 850.36 22373(22373) 0.29
soc-twitter-follows 2323(2323) 0.22 2323(2323) 0.17
soc-wiki-Vote 406(406) <0.01 406(406) <0.01
soc-youtube 146454(146461.6) 47.1 146377(146377) 5.27
soc-youtube-snap 277012(277017.4) 209.33 276947(276947) 14.49
tech-as-caida2007 3683(3683) 0.02 3683(3683) <0.01
tech-as-skitter 525950(525962.1) 570.23 525538(525542.7) 599.46
tech-internet-as 5700(5700) 19.47 5700(5700) 0.04
tech-p2p-gnutella 15682(15682) 30.64 15682(15682) 0.03
tech-RL-caida 74763(74772.7) 936.24 74710(74713.1) 9.28
tech-routers-rf 795(795) <0.01 795(795) <0.01
tech-WHOIS 2284(2284) 0.09 2284(2284) <0.01
web-arabic-2005 114454(114458.6) 65.27 114426(114427.3) 254.95
web-BerkStan 5384(5384) 9.53 5384(5384) 23.13
web-edu 1451(1451) <0.01 1451(1451) <0.01
web-google 498(498) <0.01 498(498) <0.01
web-indochina-2004 7300(7300) 14.03 7300(7300) 0.12
web-it-2004 414705(414720.7) 643.76 414688(414689.9) 315
web-polblogs 244(244) <0.01 244(244) <0.01
web-sk-2005 58206(58209.8) 655.21 58173(58173) 9.71
web-spam 2297(2297) 0.53 2297(2297) 0.01
web-uk-2005 127774(127774) 1.21 127774(127774) 1.05
web-webbase-2001 2652(2652) 1.39 2652(2652) 0.02
web-wikipedia2009 649261(649310.7) 999.16 648318(648325.1) 667.81

Langston, Suters, & Symons, 2004). The fourth rule called Dominance Rule was introduced
recently (Fomin, Grandoni, & Kratsch, 2009). When using the reduction rules to simplify a graph,
some vertices are fixed as covering vertices, if there must be an optimal vertex cover containing
them. We use G to denote the graph we are dealing with.

482

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

• Degree-0 Rule: An isolated vertex u (vertex of degree 0) cannot be in a vertex cover of
optimal size. Thus, the graph G can be simplified by deleting u.

• Degree-1 Rule: If a vertex u is a pendant vertex (vertex of degree 1), there is a vertex cover
of optimal size that does not contain the pendant vertex but does contain its unique neighbor
v. Thus, vertex v is fixed as a covering vertex, and G is simplified by deleting both u and v
and their incident edges.

• Degree-2 Rule: If there is a degree-two vertex u with adjacent neighbors v and z, then there is
a vertex cover of optimal size that does not contain u but does include both of these neighbors.
Thus, vertex v and z are fixed as covering vertices, and G is simplified by deleting u, v, z and
their incident edges.

• Dominance Rule: For two vertices u and v, if N [u] ⊆ N [v], we say vertex v dominates
vertex u. If a vertex v dominates some vertex, there always exists a vertex cover of optimal
size that contains v. Therefore, vertex v is fixed as a covering vertex, and G is simplified by
deleting v and its incident edges.

Note that Degree-1 and Degree-2 rules can be implied by the Dominance rule. However,
these two rules can be executed much faster than the Dominance rule. Based on this observation,
we develop a two-phase preprocessing algorithm for MinVC, which is called D1+D2+Dom. To
implement the preprocessing algorithm, we use a queue, denoted as Q, to store the vertices to
be processed by reduction rules, and a set F to store the vertices fixed as covering vertices. The
preprocessing algorithm consists of two phases, and in each phase it works in an iterative way.
In the first phase, it simplifies the graph only using Degree-1 and Degree-2 rules (and Degree-0
rule). When the graph cannot be simplified anymore by only using Degree-1 and Degree-2 rules,
the preprocessing algorithm enters the second phase, where the Dominance rule is used to simplify
the graph iteratively until no more vertex can be deleted according to the rule.

The preprocessing algorithm returns a simplified graph and a set F which includes all fixed
covering vertices. Then, the simplified graph is taken as the input graph for a MinVC algorithm.
Suppose the MinVC algorithm returns a vertex cover C ′ for the simplified graph, then C∗ = C ′∪F
is a vertex cover for the original graph and is returned as the solution found. Additionally, if after
preprocessing, a graph becomes empty (i.e., V (G) = ∅), then the set F is indeed a minimum vertex
cover for the original graph.

6.2 Effectiveness of Reduction Rules

To examine the effects of the reduction rules, we implement and test three preprocessing algorithms,
including D1, D1+D2, and D1+D2+Dom, which use different sets of reduction rules. As their
names indicate, D1 only uses the Degree-1 rule, and D1+D2 uses both Degree-1 and Degree-2
rules, while D1+D2+Dom employs all the rules. Note that the trivial Degree-0 rule is executed in
all the preprocessing algorithms.

The experiment results are listed in Tables 8 and 9. We can observe the significant effects of
these reduction rules on the size of the graphs. Comparing the graph size after reduction, we can see
that D1+D2+Dom produces smaller graphs than D1+D2, which in turn is better than D1. Regarding
the run time, D1 and D1+D2 usually terminate within one second. For D1+D2+Dom, the run time
is much longer for some instances. There are 3 instances for which D1+D2+Dom terminates in

483

CAI, LIN & LUO

Table 8: Effectiveness study of reduction rules.

instance |V| |E| D1 D1+D2 D1+D2+Dom

|V’| |E’| time |V’| |E’| time |V’| |E’| time
bio-celegans 453 2025 441 1940 <0.01 32 64 <0.01 0 0 <0.01
bio-diseasome 516 1188 242 483 <0.01 96 201 <0.01 0 0 <0.01
bio-dmela 7393 25569 791 1393 <0.01 750 1295 <0.01 748 1285 <0.01
bio-yeast 1458 1948 59 79 <0.01 15 24 <0.01 8 8 <0.01
ca-AstroPh 17903 196972 14669 158845 0.01 7651 66272 0.01 0 0 0.01
ca-citeseer 227320 814134 124478 447088 0.05 57470 262641 0.07 16 16 0.08
ca-coauthors-dblp 540486 15245729 521385 14978514 0.07 495944 14555260 0.15 24 24 2.79
ca-CondMat 21363 91286 14338 57252 <0.01 5842 21081 0.01 0 0 <0.01
ca-CSphd 1882 1740 4 4 <0.01 4 4 <0.01 4 4 <0.01
ca-dblp-2010 226413 716460 109343 317705 0.06 44355 156299 0.06 8 8 0.06
ca-dblp-2012 317080 1049866 143132 377759 0.13 49573 147140 0.13 29 29 0.12
ca-Erdos992 6100 7515 0 0 <0.01 0 0 <0.01 0 0 <0.01
ca-GrQc 4158 13422 1783 6600 <0.01 574 3494 <0.01 0 0 <0.01
ca-HepPh 11204 117619 6740 67573 0.01 2589 30501 0.01 4 4 <0.01
ca-hollywood-2009 1069126 56306653 1042751 52438424 2.45 965676 40863964 9.19 13 13 35.73
ca-MathSciNet 332689 820644 55851 92336 0.12 11678 24654 0.11 59 61 0.13
ca-netscience 379 914 242 518 <0.01 86 195 <0.01 0 0 <0.01
ia-email-EU 32430 54397 3 3 0.01 0 0 <0.01 0 0 <0.01
ia-email-univ 1133 5451 620 2206 <0.01 382 1073 <0.01 178 374 <0.01
ia-enron-large 33696 180811 13214 36771 0.01 3355 7207 0.01 21 22 <0.01
ia-enron-only 143 623 119 529 <0.01 94 371 <0.01 50 112 <0.01
ia-fb-messages 1266 6451 227 391 <0.01 64 81 <0.01 61 74 <0.01
ia-infect-dublin 410 2765 374 2497 <0.01 349 2340 <0.01 186 927 <0.01
ia-infect-hyper 113 2196 111 2098 <0.01 111 2098 <0.01 108 1883 <0.01
ia-reality 6809 7680 0 0 <0.01 0 0 <0.01 0 0 <0.01
ia-wiki-Talk 92117 360767 101 106 0.03 12 12 0.03 12 12 0.03
inf-power 4941 6594 458 614 <0.01 175 214 <0.01 155 179 <0.01
inf-roadNet-CA 1957027 2760388 1062587 1571668 0.32 913469 1350136 0.34 907378 1335179 0.44
inf-roadNet-PA 1087562 1541514 561133 839083 0.17 470492 704445 0.2 467671 697305 0.26
inf-road-usa 23947347 28854312 5310709 7258703 6.13 4462295 6173990 6.72 4454350 6156614 8.02
rec-amazon 91813 125704 33657 49524 0.02 6886 11038 0.01 1650 1789 0.01
rt-retweet 96 117 0 0 <0.01 0 0 <0.01 0 0 <0.01
rt-retweet-crawl 1112702 2278852 517 1248 0.43 472 1178 0.43 415 693 0.43
rt-twitter-copen 761 1029 14 15 <0.01 0 0 <0.01 0 0 <0.01
socfb-A-anon 3097165 23667394 1032 1660 5.45 276 659 4.34 127 174 4.51
socfb-B-anon 2937612 20959854 479 733 4.28 130 204 3.94 81 91 3.77
socfb-Berkeley13 22900 852419 21474 778596 0.04 20771 735629 0.05 19561 645318 0.18
socfb-CMU 6621 249959 6182 229918 0.01 5941 217267 0.01 5386 173161 0.04
socfb-Duke14 9885 506437 9328 475087 0.02 9010 452633 0.02 8403 399227 0.1
socfb-Indiana 29732 1305757 28574 1252996 0.04 27928 1214330 0.06 26675 1096518 0.27
socfb-MIT 6402 251230 5808 225360 0.01 5513 207675 0.01 4860 155166 0.04
socfb-OR 63392 816886 42756 532334 0.05 34187 401175 0.07 25782 237632 0.16
socfb-Penn94 41536 1362220 39255 1267464 0.06 37992 1192146 0.08 35684 1042042 0.3
socfb-Stanford3 11586 568309 10421 506275 0.03 9846 473219 0.05 8995 399622 0.13
socfb-Texas84 36364 1590651 34932 1494828 0.06 34291 1449994 0.07 32661 1286733 0.33
socfb-uci-uni 58790782 92208195 147 273 18.67 118 224 18.98 67 77 19.32
socfb-UCLA 20453 747604 19062 689871 0.03 18404 656663 0.04 17251 567198 0.13
socfb-UConn 17206 604867 16444 571019 0.01 16080 551369 0.02 15270 491637 0.11
socfb-UCSB37 14917 482215 14127 452899 0.02 13748 436144 0.02 13020 389722 0.08
socfb-UF 35111 1465654 33847 1387729 0.05 33169 1341208 0.07 31385 1205668 0.32
socfb-UIllinois 30795 1264421 29530 1204844 0.04 28866 1163750 0.06 27428 1056152 0.26
socfb-Wisconsin87 23831 835946 22764 794760 0.03 22212 762643 0.04 20966 675559 0.19

more than 10 seconds, and the longest run time reaches 35 seconds. Nevertheless, this is acceptable

484

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

Table 9: Effectiveness study of reduction rules (continued).

instance |V| |E| D1 D1+D2 D1+D2+Dom

|V’| |E’| time |V’| |E’| time |V’| |E’| time
sc-ldoor 952203 20770807 909537 20770807 0.1 909537 20770807 0.09 20301 34702 2.02
sc-msdoor 415863 9378650 404785 9378650 0.03 404785 9378650 0.03 43041 120519 0.88
sc-nasasrb 54870 1311227 54870 1311227 <0.01 54870 1311227 <0.01 15425 82814 0.12
sc-pkustk11 87804 2565054 87804 2565054 <0.01 87804 2565054 <0.01 3814 4362 0.24
sc-pkustk13 94893 3260967 94893 3260967 <0.01 94893 3260967 <0.01 14711 47933 0.36
sc-pwtk 217891 5653221 217847 5653055 <0.01 217847 5653055 <0.01 38430 164598 0.48
sc-shipsec1 140385 1707759 140385 1707759 <0.01 140376 1707739 <0.01 111692 1060673 0.14
sc-shipsec5 179104 2200076 179092 2200067 <0.01 179089 2200064 <0.01 134066 1252861 0.18
soc-BlogCatalog 88784 2093195 483 807 0.39 153 362 0.39 47 62 0.37
soc-brightkite 56739 212945 3020 6654 0.02 511 2497 0.01 120 159 0.02
soc-buzznet 101163 2763066 11375 37250 0.44 3169 8655 0.42 1881 4465 0.42
soc-delicious 536108 1365961 18690 69612 0.16 18499 69131 0.14 18367 68559 0.19
soc-digg 770799 5907132 2763 6951 1.5 848 3754 1.46 402 532 1.43
soc-dolphins 62 159 40 82 <0.01 24 41 <0.01 18 21 <0.01
soc-douban 154908 327162 17 31 0.03 17 31 0.02 16 28 0.03
soc-epinions 26588 100120 1580 3334 0.01 221 538 <0.01 60 68 <0.01
soc-flickr 513969 3190452 31972 342883 0.67 8946 54497 0.56 3921 18367 0.57
soc-flixster 2523386 7918801 137 196 1.03 23 35 0.95 8 8 1.21
soc-FourSquare 639014 3214986 1836 2644 1.97 387 680 1.42 138 149 1.34
soc-gowalla 196591 950327 31780 78356 0.11 4563 15489 0.09 1176 4887 0.11
soc-karate 34 78 9 10 <0.01 4 4 <0.01 4 4 <0.01
soc-lastfm 1191805 4519330 167 232 0.71 32 45 0.68 17 18 0.71
soc-livejournal 4033137 27933062 1220365 5202120 5.02 213667 1460786 4.87 41637 74057 5.07
soc-LiveMocha 104103 2193083 655 732 0.34 24 24 0.36 24 24 0.35
soc-orkut 2997166 106349209 2829189 95788825 3.83 2754327 91669427 5.38 2599169 82644648 34.28
soc-pokec 1632803 22301964 1090351 12491982 2.46 963857 10265224 3.23 881359 8572011 8.06
soc-slashdot 70068 358647 903 1167 0.03 112 214 0.04 26 27 0.04
soc-twitter-follows 404719 713319 0 0 0.08 0 0 0.07 0 0 0.08
soc-wiki-Vote 889 2914 121 187 <0.01 24 29 <0.01 24 29 <0.01
soc-youtube 495957 1936748 8156 10894 0.31 1464 2553 0.28 535 610 0.28
soc-youtube-snap 1134890 2987624 12035 15014 0.59 1584 2680 0.48 584 653 0.5
tech-as-caida2007 26475 53381 40 50 <0.01 15 18 <0.01 15 18 <0.01
tech-as-skitter 1694616 11094209 475124 1600224 1.56 262723 831476 1.28 228382 619077 1.36
tech-internet-as 40164 85123 102 131 <0.01 15 18 <0.01 15 18 <0.01
tech-p2p-gnutella 62561 147878 38 54 0.01 38 54 0.01 38 54 0.01
tech-RL-caida 190914 607610 70226 211590 0.06 51553 139142 0.07 47149 119062 0.1
tech-routers-rf 2113 6632 231 685 <0.01 14 22 <0.01 4 4 <0.01
tech-WHOIS 7476 56943 665 3409 <0.01 294 1611 <0.01 63 122 <0.01
web-arabic-2005 163598 1747269 102515 1560020 0.05 98504 1542669 0.05 1994 3514 0.1
web-BerkStan 12305 19500 5121 8345 <0.01 1105 1589 <0.01 771 857 <0.01
web-edu 3031 6474 149 689 <0.01 91 582 <0.01 0 0 <0.01
web-google 1299 2773 326 1140 <0.01 218 903 <0.01 0 0 <0.01
web-indochina-2004 11358 47606 6297 32421 <0.01 5355 25973 <0.01 12 12 <0.01
web-it-2004 509338 7178413 424893 6440816 0.16 423389 6428764 0.16 4995 21441 1.17
web-polblogs 643 2280 48 92 <0.01 16 23 <0.01 4 4 <0.01
web-sk-2005 121422 334419 42237 225932 0.02 39152 218233 0.02 27775 158337 0.03
web-spam 4767 37375 1971 8540 0.01 874 2397 0.01 214 312 <0.01
web-uk-2005 129632 11744049 127716 11643622 0.04 127713 11643619 0.04 0 0 2.55
web-webbase-2001 16062 25593 2085 5203 <0.01 1913 4870 <0.01 1391 2458 <0.01
web-wikipedia2009 1864433 4507315 154344 302990 0.74 37561 98257 0.68 18941 47389 0.96

for such an NP-hard problem. Additionally, 15 graphs become empty after being simplified by
D1+D2+Dom, which means D1+D2+Dom alone solves these instances exactly.

We also study how often a reduction rule is executed in the D1+D2+Dom preprocessing
algorithm. For each instance class, we calculate the averaged percentage of each rule over all rules,

485

CAI, LIN & LUO

Table 10: The percentage of executions for each reduction rule, which equals the number of
executions of the rule divided by the number of executions of all rules.

instance class D1 D2 Dom
bio 72.25% 16.40% 11.35%
ca 41.02% 18.89% 40.09%
ia 60.00% 9.31% 30.69%
inf 94.25% 5.15% 0.60%
rec 70.39% 20.31% 9.30%
rt 97.95% 2.04% 0.01%
socfb 43.16% 10.41% 46.43%
sc <0.01% <0.01% >99.99%
soc 84.06% 10.68% 5.26%
tech 89.27% 7.99% 2.74%
web 51.65% 8.83% 39.52%

and the results are reported in Table 10. From these results, we have the following observations:
For different instance classes (which can be regarded as graphs of different structures), the figures
are considerably different. An extreme example is that the percentage of the Dominance rule is less
than 1% for inf and rt instance classes, while it is almost 100% for the sc class. The Degree-1
rule usually occupies a large percentage over all rules, except one class. For 8 out of the total 11
classes, the Degree-1 rule’s executions occupy more than a half of all executions of all rules. Overall,
Degree-2 is the least often executed rule, compared to the Degree-1 rule and the Dominance rule. To
some extent, we can consider it is less useful compared to the other two rules. For some instances
such as the sc instances (one can also refer to the results on sc instances in Table 9), the Degree-1
and Degree-2 rules are almost useless, while the Dominance is more powerful and can simplify the
graphs.

6.3 Connected Components in Simplified Graphs

In this subsection, we study the structure of the simplified graphs produced by the preprocessing
algorithm. Specifically, we investigate the connected components in the simplified graph. The
results are presented in Tables 11, where we report the number of connected components (‘#comp.’)
and the size of the largest connected component (‘|V ∗|’ and ‘|E∗|’). We do not report the results for
the small graphs with fewer than 2000 vertices, as well as the graphs reduced to become empty by
D1+D2+Dom.

Seen from the results, many graphs are decomposed into small connected components
after preprocessing. For 58% of the graphs, the largest connected component has fewer than
2000 vertices, and thus can be solved by iteratively calling exact solvers on each component.
Nevertheless, for the remaining 42% of the graphs, the largest connected component is still large
and usually beyond the reach of exact solvers.

6.4 Comparison with State of the Art Preprocessing Algorithm

In recent years, reduction techniques for vertex cover and related problems have attracted more
and more interest and have shown their power in practice (Akiba & Iwata, 2016; Lamm, Sanders,
Schulz, Strash, & Werneck, 2016; Strash, 2016; Verma, Buchanan, & Butenko, 2015; Cai & Lin,
2016). Very recently, Strash developed a preprocessing algorithm named Simple for the maximum

486

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

Table 11: Connected components in simplified graphs by D1+D2+Dom.

instance #comp. largest component instance #comp. largest component

|V ∗| |E∗| |V ∗| |E∗|

bio-dmela 15 686 1217 sc-pkustk13 1 14711 47933
ca-citeseer 4 4 4 sc-pwtk 76 36336 162504
ca-coauthors-dblp 6 4 4 sc-shipsec1 3 111515 1059903
ca-dblp-2010 2 4 4 sc-shipsec5 30 133624 1251679
ca-dblp-2012 7 5 5 soc-BlogCatalog 7 15 22
ca-HepPh 1 4 4 soc-brightkite 16 22 51
ca-hollywood-2009 3 5 5 soc-buzznet 6 1849 4386
ca-MathSciNet 14 6 7 soc-delicious 754 1914 8039
ia-enron-large 4 8 9 soc-digg 71 29 44
ia-wiki-Talk 3 4 4 soc-douban 1 16 28
inf-power 18 19 28 soc-epinions 11 17 25
inf-roadNet-CA 4047 384123 577173 soc-flickr 147 3043 17179
inf-roadNet-PA 2129 234989 359992 soc-flixster 2 4 4
inf-road-usa 89584 58524 93033 soc-FourSquare 30 8 9
rec-amazon 316 25 32 soc-gowalla 79 777 4449
rt-retweet-crawl 48 62 120 soc-lastfm 4 5 6
socfb-A-anon 26 15 45 soc-livejournal 3536 16517 28617
socfb-B-anon 18 8 13 soc-LiveMocha 6 4 4
socfb-Berkeley13 1 19561 645318 soc-orkut 5 2599153 82644632
socfb-CMU 1 5386 173161 soc-pokec 10 881319 8571967
socfb-Duke14 1 8403 399227 soc-slashdot 6 6 7
socfb-Indiana 1 26675 1096518 soc-youtube 123 22 82
socfb-MIT 1 4860 155166 soc-youtube-snap 131 17 50
socfb-OR 2 25778 237628 tech-as-caida2007 2 9 12
socfb-Penn94 1 35684 1042042 tech-as-skitter 11158 108182 367812
socfb-Stanford3 2 8991 399618 tech-internet-as 3 7 10
socfb-Texas84 1 32661 1286733 tech-p2p-gnutella 5 12 20
socfb-uci-uni 14 8 12 tech-RL-caida 1663 34528 98587
socfb-UCLA 1 17251 567198 tech-routers-rf 1 4 4
socfb-UConn 1 15270 491637 tech-WHOIS 6 26 61
socfb-UCSB37 1 13020 389722 web-arabic-2005 84 483 855
socfb-UF 1 31385 1205668 web-BerkStan 83 306 365
socfb-UIllinois 1 27428 1056152 web-indochina-2004 3 4 4
socfb-Wisconsin87 1 20966 675559 web-it-2004 128 156 635
sc-ldoor 105 4902 7109 web-sk-2005 469 877 4569
sc-msdoor 6 35057 100094 web-spam 4 199 295
sc-nasasrb 8 14832 81654 web-webbase-2001 5 1365 2422
sc-pkustk11 36 196 388 web-wikipedia2009 1130 2289 5871

independent set (MaxIS) problem, which consists only of a small suite of simple reductions, which,
however, are very effective (Strash, 2016). In this subsection, we compare our preprocessing
algorithm D1+D2+Dom for MinVC with Strash’s preprocessing algorithm dubbed Simple for
MaxIS, by comparing the size of the simplified graph. Bear in mind that the simplified graphs
produced by Simple should be solved by a MaxIS algorithm, since its reduction rules are designed
for MaxIS.

The comparison results are summarized in Table 12. The instances that are reduced to empty by
both algorithms are not listed in the table. Overall, the two preprocessing algorithms have similar
performance and are complementary to each other on these real-world instances. Specifically,
our preprocessing algorithm is more effective on Facebook networks and scientific computation
networks, while the MaxIS preprocessing algorithm Simple is more effective on infrastructure

487

CAI, LIN & LUO

Table 12: Comparing D1+D2+Dom with the MaxIS preprocessing algorithm Simple.

instance
Simple D1+D2+Dom

instance
Simple D1+D2+Dom

|V’| |E’| time |V’| |E’| time |V’| |E’| time |V’| |E’| time

bio-dmela 7 12 0.01 748 1285 <0.01 sc-pkustk11 55452 1541478 0.07 3814 4362 0.24
bio-yeast 0 0 <0.01 8 8 <0.01 sc-pkustk13 69918 2228836 0.06 14711 47933 0.36
ca-citeseer 5 8 0.12 16 16 0.08 sc-pwtk 217416 5647897 0.05 38430 164598 0.48
ca-authors-dblp 27 67 1.25 24 24 2.79 sc-shipsec1 139660 1702022 0.01 111692 1060673 0.14
ca-CSphd 0 0 <0.01 4 4 <0.01 sc-shipsec5 175205 2155554 0.02 134066 1252861 0.18
ca-dblp-2010 0 0 0.09 8 8 0.06 soc-BlogCatalog 6 12 0.71 47 62 0.37
ca-dblp-2012 13 24 0.21 29 29 0.12 soc-brightkite 24 66 0.04 120 159 0.02
ca-HepPh 7 17 0.01 4 4 <0.01 soc-buzznet 237 1920 5.39 1881 4465 0.42
ca-hollywood-09 9 28 15.37 13 13 35.73 soc-delicious 11447 51092 0.26 18367 68559 0.19
ca-MathSciNet 0 0 0.21 59 61 0.13 soc-digg 163 2272 2.68 402 532 1.43
ia-email-univ 101 296 <0.01 178 374 <0.01 soc-dolphins 0 0 <0.01 18 21 <0.01
ia-enron-large 6 10 0.02 21 22 <0.01 soc-douban 0 0 0.07 16 28 0.03
ia-enron-only 78 285 <0.01 50 112 <0.01 soc-epinions 41 131 0.01 60 68 <0.01
ia-fb-messages 0 0 <0.01 61 74 <0.01 soc-flickr 1958 11948 1.46 3921 18367 0.57
ia-infect-dublin 263 1878 <0.01 186 927 <0.01 soc-flixster 0 0 1.57 8 8 1.21
ia-infect-hyper 111 2098 <0.01 108 1883 <0.01 soc-FourSquare 29 81 8.3 138 149 1.34
ia-wiki-Talk 0 0 0.06 12 12 0.03 soc-gowalla 765 5556 0.62 1176 4887 0.11
inf-power 0 0 <0.01 155 179 <0.01 soc-karate 0 0 <0.01 4 4 <0.01
inf-roadNet-CA 305166 539735 0.58 907378 1335179 0.44 soc-lastfm 0 0 0.82 17 18 0.71
inf-roadNet-PA 169050 298800 0.32 467671 697305 0.26 soc-livejnal 28694 471112 11.97 41637 74057 5.07
inf-road-usa 907352 1610582 11.32 4454350 6156614 8.02 soc-LiveMocha 0 0 3.26 24 24 0.35
rec-amazon 489 869 0.03 1650 1789 0.01 soc-orkut 2623684 87854637 19.89 2599169 82644648 34.28
rt-retweet-crawl 60 123 0.99 415 693 0.43 soc-pokec 748755 9207514 11.72 881359 8572011 8.06
socfb-A-anon 27 109 7.35 127 174 4.51 soc-slashdot 0 0 0.1 26 27 0.04
socfb-B-anon 5 8 5.74 81 91 3.77 soc-wiki-Vote 0 0 <0.01 24 29 <0.01
socfb-Berkeley13 19706 699207 0.07 19561 645318 0.18 soc-youtube 159 366 0.89 535 610 0.28
socfb-CMU 5544 198448 0.01 5386 173161 0.04 soc-youtube-snap 76 212 1.68 584 653 0.5
socfb-Duke14 8525 429456 0.02 8403 399227 0.1 tech-as-caida07 0 0 0.02 15 18 <0.01
socfb-Indiana 26926 1169133 0.06 26675 1096518 0.27 tech-as-skitter 65334 270110 9.36 228382 619077 1.36
socfb-MIT 5103 186191 0.01 4860 155166 0.04 tech-internet-as 0 0 0.02 15 18 <0.01
socfb-OR 24572 305775 0.17 25782 237632 0.16 tech-p2p-gnutel 0 0 0.03 38 54 0.01
socfb-Penn94 36200 1136060 0.09 35684 1042042 0.3 tech-RL-caida 9248 27211 0.23 47149 119062 0.1
socfb-Stanford3 9126 445324 0.04 8995 399622 0.13 tech-routers-rf 0 0 <0.01 4 4 <0.01
socfb-Texas84 32995 1372652 0.09 32661 1286733 0.33 tech-WHOIS 91 624 0.01 63 122 <0.01
socfb-uci-uni 0 0 32.83 67 77 19.32 web-arabic-2005 328 1216 0.14 1994 3514 0.1
socfb-UCLA 17327 616456 0.04 17251 567198 0.13 web-BerkStan 0 0 <0.01 771 857 <0.01
socfb-UConn 15435 527538 0.03 15270 491637 0.11 web-indochina-04 36 171 <0.01 12 12 <0.01
socfb-UCSB37 13074 413812 0.02 13020 389722 0.08 web-it-2004 3381 20368 0.38 4995 21441 1.17
socfb-UF 31872 1285610 0.09 31385 1205668 0.32 web-polblogs 0 0 <0.01 4 4 <0.01
socfb-UIllinois 27786 1121816 0.05 27428 1056152 0.26 web-sk-2005 24927 155059 0.04 27775 158337 0.03
socfb-Wiscsin87 21138 720010 0.05 20966 675559 0.19 web-spam 95 281 0.01 214 312 <0.01
sc-ldoor 909537 20770807 0.14 20301 34702 2.02 web-webbase-01 572 1237 0.01 1391 2458 <0.01
sc-msdoor 404785 9378650 0.06 43041 120519 0.88 web-wikipedia09 9266 37579 2.53 18941 47389 0.96
sc-nasasrb 54486 1305519 0.01 15425 82814 0.12

networks, technological networks, and web linkage networks. For the remaining instances, the
two preprocessing algorithms have similar performance.

6.5 The NuMVC2+p and FastVC2+p Solvers

Preprocessing techniques can improve the performance of MinVC algorithms. We integrate the
preprocessor D1+D2+Dom into the NuMVC2 and FastVC2 algorithms, resulting in two MinVC
solvers called NuMVC2+p and FastVC2+p. These solvers call D1+D2+Dom to simplify the input

488

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

Table 13: Experiment results of NuMVC2+p and FastVC2+p.

instance
NuMVC2+p FastVC2+p

min(avg) time min(avg) time
bio-celegans 249(249) <0.01 249(249) <0.01
bio-diseasome 285(285) <0.01 285(285) <0.01
bio-dmela 2630(2630) <0.01 2630(2630) 1.34
bio-yeast 456(456) <0.01 456(456) <0.01
ca-AstroPh 11483(11483) 0.01 11483(11483) 0.01
ca-citeseer 129193(129193) 0.08 129193(129193) 0.08
ca-coauthors-dblp 472179(472179) 2.77 472179(472179) 2.79
ca-CondMat 12480(12480) <0.01 12480(12480) <0.01
ca-CSphd 550(550) <0.01 550(550) <0.01
ca-dblp-2010 121969(121969) 0.06 121969(121969) 0.06
ca-dblp-2012 164949(164949) 0.13 164949(164949) 0.12
ca-Erdos992 461(461) <0.01 461(461) <0.01
ca-GrQc 2208(2208) <0.01 2208(2208) <0.01
ca-HepPh 6555(6555) <0.01 6555(6555) <0.01
ca-hollywood-2009 864052(864052) 35.58 864052(864052) 35.73
ca-MathSciNet 139951(139951) 0.13 139951(139951) 0.13
ca-netscience 214(214) <0.01 214(214) <0.01
ia-email-EU 820(820) <0.01 820(820) <0.01
ia-email-univ 594(594) <0.01 594(594) <0.01
ia-enron-large 12781(12781) <0.01 12781(12781) <0.01
ia-enron-only 86(86) <0.01 86(86) <0.01
ia-fb-messages 578(578) <0.01 578(578) <0.01
ia-infect-dublin 293(293) <0.01 293(293) <0.01
ia-infect-hyper 90(90) <0.01 90(90) <0.01
ia-reality 81(81) <0.01 81(81) <0.01
ia-wiki-Talk 17288(17288) 0.03 17288(17288) 0.03
inf-power 2203(2203) <0.01 2203(2203) <0.01
inf-roadNet-CA 1005377(1005475.4) 615.65 1001065(1001109.7) 514.3
inf-roadNet-PA 557312(557366.9) 158.76 555046(555082.9) 250.17
inf-road-usa 11654069(11654194.8) 1000 11527630(11527731.7) 968.01
rec-amazon 47605(47605) 0.02 47605(47605) 0.01
rt-retweet 32(32) <0.01 32(32) <0.01
rt-retweet-crawl 81040(81040) 0.43 81040(81040) 0.43
rt-twitter-copen 237(237) <0.01 237(237) <0.01
socfb-A-anon 375230(375230) 4.50 375230(375230) 4.51
socfb-B-anon 303048(303048) 3.75 303048(303048) 3.77
socfb-Berkeley13 17214(17217.3) 742.83 17210(17211.9) 369.86
socfb-CMU 4986(4986) 130.82 4986(4986.6) 104.63
socfb-Duke14 7683(7683.3) 241.79 7683(7683) 201.17
socfb-Indiana 23320(23327) 645.3 23315(23317.1) 524.84
socfb-MIT 4657(4657) 3.25 4657(4657) 4.53
socfb-OR 36551(36553.1) 571.88 36548(36548.4) 74.84
socfb-Penn94 31181(31183.7) 606.92 31161(31164) 414.21
socfb-Stanford3 8518(8518) 6.35 8518(8518) 1.69
socfb-Texas84 28177(28182.9) 570.79 28166(28170.8) 481.56
socfb-uci-uni 866766(866766) 18.57 866766(866766) 19.32
socfb-UCLA 15225(15226.4) 466.85 15223(15224.1) 242.24
socfb-UConn 13233(13233.7) 442.06 13230(13231.7) 188.83
socfb-UCSB37 11261(11262.1) 327.93 11261(11262.1) 395.18
socfb-UF 27320(27323.1) 544.18 27306(27308.4) 370.66
socfb-UIllinois 24104(24105.9) 529.50 24092(24093.6) 350.65
socfb-Wisconsin87 18389(18391.1) 541.04 18383(18384.6) 408.83

489

CAI, LIN & LUO

Table 14: Experiment results of NuMVC2+p and FastVC2+p (continued).

instance NuMVC2+p FastVC2+p

min(avg) time min(avg) time
sc-ldoor 856754(856754) 81.93 856754(856754.5) 397.38
sc-msdoor 381558(381558) 560.29 381558(381559.2) 76.89
sc-nasasrb 51248(51249.9) 330.27 51239(51239.2) 275.69
sc-pkustk11 83911(83911) 0.56 83911(83911) 1.92
sc-pkustk13 89221(89221.6) 294.28 89227(89228.5) 51.87
sc-pwtk 207684(207695.9) 449.29 207673(207681.9) 796.31
sc-shipsec1 117282(117326.1) 997.78 117276(117292.4) 893.55
sc-shipsec5 147131(147152.1) 995.17 147043(147055.2) 545.29
soc-BlogCatalog 20752(20752) 0.36 20752(20752) 0.37
soc-brightkite 21190(21190) 0.02 21190(21190) 0.02
soc-buzznet 30613(30613.6) 0.46 30613(30613) 0.44
soc-delicious 85383(85391.6) 550.74 85341(85342.7) 537.59
soc-digg 103234(103234) 1.45 103234(103234) 1.43
soc-dolphins 34(34) <0.01 34(34) <0.01
soc-douban 8685(8685) 0.03 8685(8685) 0.03
soc-epinions 9757(9757) <0.01 9757(9757) <0.01
soc-flickr 153271(153271) 0.91 153271(153271) 0.59
soc-flixster 96317(96317) 1.25 96317(96317) 1.21
soc-FourSquare 90108(90108) 1.38 90108(90108) 1.34
soc-gowalla 84222(84222) 0.12 84222(84222) 1.17
soc-karate 14(14) <0.01 14(14) <0.01
soc-lastfm 78688(78688) 0.73 78688(78688) 0.71
soc-livejournal 1868903(1868903.2) 619.11 1868917(1868918.4) 5.25
soc-LiveMocha 43427(43427) 0.33 43427(43427) 0.35
soc-orkut 2190339(2190777.1) 999.8 2171200(2171236.4) 996.03
soc-pokec 844272(844306.2) 204.47 843377(843380.4) 574.95
soc-slashdot 22373(22373) 0.05 22373(22373) 0.04
soc-twitter-follows 2323(2323) 0.08 2323(2323) 0.08
soc-wiki-Vote 406(406) <0.01 406(406) <0.01
soc-youtube 146376(146376) 0.28 146376(146376) 0.28
soc-youtube-snap 276945(276945) 0.50 276945(276945) 0.51
tech-as-caida2007 3683(3683) <0.01 3683(3683) <0.01
tech-as-skitter 525163(525187.4) 963.41 525269(525277.9) 596.61
tech-internet-as 5700(5700) <0.01 5700(5700) <0.01
tech-p2p-gnutella 15682(15682) <0.01 15682(15682) 0.01
tech-RL-caida 74593(74597) 832.06 74651(74654) 862.06
tech-routers-rf 795(795) <0.01 795(795) <0.01
tech-WHOIS 2284(2284) <0.01 2284(2284) <0.01
web-arabic-2005 114420(114420) 0.12 114420(114420) 0.10
web-BerkStan 5384(5384) <0.01 5384(5384) <0.01
web-edu 1451(1451) <0.01 1451(1451) <0.01
web-google 498(498) <0.01 498(498) <0.01
web-indochina-2004 7300(7300) <0.01 7300(7300) <0.01
web-it-2004 414507(414510.2) 19.71 414528(414528) 281.47
web-polblogs 244(244) <0.01 244(244) <0.01
web-sk-2005 58173(58173.4) 86.29 58173(58173) 1.41
web-spam 2297(2297) <0.01 2297(2297) <0.01
web-uk-2005 127774(127774) 2.55 127774(127774) 2.55
web-webbase-2001 2651(2651) 240.22 2652(2652) <0.01
web-wikipedia2009 648294(648294) 112.3 648305(648314.9) 1.76

graph to a smaller graph, which is then solved by the local search algorithm. Finally, the vertices
that have been fixed in the preprocessing procedure and the vertex cover returned by the local search
algorithm for the simplified graph compose a vertex cover for the original graph.

Experiment results of FastVC2+p and NuMVC2+p are reported in Tables 13 and 14. We firstly
compare FastVC2+p and NuMVC2+p, with the aim of trying to establish the latest state of the art in
heuristic solvers for MinVC on massive sparse graphs. The experiments are conducted on the whole

490

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

Table 15: Comparison of NuMVC2+p against NuMVC2, and FastVC2+p against FastVC2.

NuMVC2+p vs NuMVC2 FastVC2+p vs FastVC2

#better-solution 52 37
#equal-solution 44 60
#worse-solution 3 5

benchmark suite, and are based on the experiment protocol in Section 2.3. Note that the run time of
NuMVC2+p and FastVC2+p include both the run time of D1+D2+Dom and that of the local search
algorithm. The comparison results show that these two MinVC solvers are competitive with each
other, and FastVC2+p has overall better performance. Specifically, with respect to solution quality,
FastVC2+p performs better than NuMVC2+p on 23 instances, while NuMVC2+p is better on 10
instances. For the remaining 69 instances, the two solvers obtain the same quality solutions. As for
run time, the averaged run time over all runs on all 102 instances for FastVC2+p is 126 seconds,
which is faster than that for NuMVC2+p (162 seconds).

We are also interested in the improvement due to the preprocessing algorithm on NuMVC2
and FastVC2. To this end, we compare the two solvers with preprocessing against their original
algorithms. That is, we compare NuMVC2+p against NuMVC2, and compare FastVC2+p against
FastVC2, with focus on solution quality. The comparison results are summarized in Table 15. As
shown in the table, NuMVC2+p finds better solutions than NuMVC2 on 52 instances while being
worse on only 3 instances; FastVC2+p finds better solutions than FastVC2 on 37 instances, while
being worse on only 5 instances. This confirms the contribution of the preprocessing algorithm.

7. Summary and Future Work

This work explored techniques for solving the MinVC problem in massive sparse graphs, including
ideas in construction procedure, local search and preprocessing. We have developed a local
search algorithm for MinVC called FastVC, based on two new heuristics. The first heuristic is
a construction procedure with a complexity of O(|E|), which strikes a good balance between
solution quality and time complexity. The second one is the Best from Multiple Selections (BMS)
heuristic, which approximates the minimum loss heuristic very well and lowers the complexity
of each removing-vertex selection step from O(|V |) to O(1). Thanks to these two heuristics, the
FastVC algorithm performs much better than the state of the art algorithm NuMVC on massive
graphs. Experiments on massive real-world graphs show that FastVC finds smaller vertex covers
than NuMVC on most graphs.

We also improved previous construction heuristics with ideas in our construction heuristic as
well as efficient data structure, and integrated three construction heuristics to improve both NuMVC
and FastVC. Furthermore, we have developed a two-phase preprocessing algorithm for MinVC,
which is effective and fast. The preprocessing algorithm was applied to improve local search
MinVC algorithms, resulting in the NuMVC2+p and FastVC2+p solvers, which further improved
the performance on large graphs according to our experiments.

In the future, we would like to design more efficient heuristic algorithms for MinVC as well as
other graph problems on massive graphs. We are also interested in applying the ideas in this work
to solve large instances of other combinatorial problems.

491

CAI, LIN & LUO

Acknowledgement

This work is supported by National Natural Science Foundation of China 61502464, and
973 Program 2014CB340301. Shaowei Cai is also supported by Youth Innovation Promotion
Association, Chinese Academy of Sciences. We would like to thank the anonymous referees for
their helpful comments.

References

Abu-Khzam, F. N., Collins, R. L., Fellows, M. R., Langston, M. A., Suters, W. H., & Symons, C. T.
(2004). Kernelization algorithms for the vertex cover problem: Theory and experiments. In
Proceedings of the Sixth Workshop on Algorithm Engineering and Experiments and the First
Workshop on Analytic Algorithmics and Combinatorics, pp. 62–69.

Akiba, T., & Iwata, Y. (2016). Branch-and-reduce exponential/FPT algorithms in practice: A case
study of vertex cover. Theor. Comput. Sci., 609, 211–225.

Andrade, D. V., Resende, M. G. C., & Werneck, R. F. F. (2008). Fast local search for the maximum
independent set problem. In Workshop on Experimental Algorithms, pp. 220–234.

Argelich, J., Li, C. M., Manyà, F., & Planes, J. (2016). The MaxSAT evaluations 2010–2016..
http://www.maxsat.udl.cat.

Barabási, A., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439),
509.

Cai, S. (2015). Balance between complexity and quality: Local search for minimum vertex cover in
massive graphs. In Proceedings of IJCAI 2015, pp. 747–753.

Cai, S., & Lin, J. (2016). Fast solving maximum weight clique problem in massive graphs. In
Proceedings of IJCAI 2016, pp. 568–574.

Cai, S., Lin, J., & Su, K. (2015). Two weighting local search for minimum vertex cover. In
Proceedings of AAAI 2015, pp. 1107–1113.

Cai, S., Su, K., Luo, C., & Sattar, A. (2013). NuMVC: An efficient local search algorithm for
minimum vertex cover. J. Artif. Intell. Res. (JAIR), 46, 687–716.

Cai, S., Su, K., & Sattar, A. (2011). Local search with edge weighting and configuration checking
heuristics for minimum vertex cover. Artif. Intell., 175(9-10), 1672–1696.

Chen, J., Kanj, I. A., & Jia, W. (2001). Vertex cover: Further observations and further improvements.
J. Algorithms, 41(2), 280–301.

Chesler, E. J., & Langston, M. A. (2005). Combinatorial genetic regulatory network analysis tools
for high throughput transcriptomic data. In Systems Biology and Regulatory Genomics, Joint
Annual RECOMB 2005 Satellite Workshops on Systems Biology and on Regulatory Genomics,
San Diego, CA, USA; December 2-4, 2005, Revised Selected Papers, pp. 150–165.

Dinur, I., & Safra, S. (2005). On the hardness of approximating minimum vertex cover. Annals of
Mathematics, 162(2), 439–486.

Eubank, S., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., & Wang, N. (2004). Structural and
algorithmic aspects of massive social networks. In Proceedings of SODA 2004, pp. 718–727.

492

FINDING A SMALL VERTEX COVER IN MASSIVE SPARSE GRAPHS

Fang, Z., Chu, Y., Qiao, K., Feng, X., & Xu, K. (2014). Combining edge weight and vertex weight
for minimum vertex cover problem. In Proceedings of FAW 2014, pp. 71–81.

Fomin, F. V., Grandoni, F., & Kratsch, D. (2009). A measure & conquer approach for the analysis
of exact algorithms. J. ACM, 56(5).

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP-
completeness. Freeman, San Francisco, CA, USA.

Hoos, H., & Stützle, T. (2004). Stochastic Local Search: Foundations and Applications. Morgan
Kaufmann, San Francisco, CA, USA.

Jin, Y., & Hao, J. (2015). General swap-based multiple neighborhood tabu search for the maximum
independent set problem. Eng. Appl. of AI, 37, 20–33.

Karakostas, G. (2005). A better approximation ratio for the vertex cover problem. In Proceedings
of ICALP 2005, pp. 1043–1050.

Kavalci, V., Ural, A., & Dagdeviren (2014). Distributed vertex cover algorithms for wireless sensor
networks. International Journal of Computer Networks & Communications (IJCNC), 6, 95–
110.

Lamm, S., Sanders, P., Schulz, C., Strash, D., & Werneck, R. F. (2016). Finding near-optimal
independent sets at scale. In Proceedings of the Eighteenth Workshop on Algorithm
Engineering and Experiments, ALENEX 2016, Arlington, Virginia, USA, January 10, 2016,
pp. 138–150.

Li, C. M., & Huang, W. Q. (2005). Diversification and determinism in local search for satisfiability.
In Proceedings of SAT 2005, pp. 158–172.

Lu, L., & Chung, F. (2006). Complex Graphs and Networks. American Math. Society, New York,
USA.

Papadimitrious, C. H., & Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall, New York, USA.

Pullan, W. (2009). Optimisation of unweighted/weighted maximum independent sets and minimum
vertex covers. Discrete Optimization, 6, 214–219.

Richter, S., Helmert, M., & Gretton, C. (2007). A stochastic local search approach to vertex cover.
In Proceedings of KI 2007, pp. 412–426.

Rosin, C. D. (2014). Unweighted stochastic local search can be effective for random CSP
benchmarks. CoRR, abs/1411.7480.

Rossi, R. A., & Ahmed, N. K. (2014). Coloring large complex networks. Social Network Analysis
and Mining, 4(1), 228.

Rossi, R. A., & Ahmed, N. K. (2015). The network data repository with interactive graph analytics
and visualization. In Proceedings of AAAI 2015.

Rossi, R. A., Gleich, D. F., Gebremedhin, A. H., & Patwary, M. M. A. (2014). Fast maximum clique
algorithms for large graphs. In WWW (Companion Volume), pp. 365–366.

Selman, B., Levesque, H. J., & Mitchell, D. G. (1992). A new method for solving hard satisfiability
problems. In Proceedings of AAAI 1992, pp. 440–446.

493

CAI, LIN & LUO

Strash, D. (2016). On the power of simple reductions for the maximum independent set problem.
In Proceedings of COCOON 2016, pp. 345–356.

Verma, A., Buchanan, A., & Butenko, S. (2015). Solving the maximum clique and vertex coloring
problems on very large sparse networks. INFORMS Journal on Computing, 27(1), 164–177.

Wang, Y., Cai, S., & Yin, M. (2016). Two efficient local search algorithms for maximum weight
clique problem. In Proceedings of AAAI 2016, pp. 805–811.

Yadav, T., Sadhukhan, K., & Rao, A. M. (2016). Approximation algorithm for n-distance minimal
vertex cover problem. CoRR, abs/1606.02889.

494

