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Abstract

Markov Decision Processes (MDPs) are an effective model to represent decision pro-
cesses in the presence of transitional uncertainty and reward tradeoffs. However, due to the
difficulty in exactly specifying the transition and reward functions in MDPs, researchers
have proposed uncertain MDP models and robustness objectives in solving those mod-
els. Most approaches for computing robust policies have focused on the computation of
maximin policies which maximize the value in the worst case amongst all realisations of
uncertainty. Given the overly conservative nature of maximin policies, recent work has
proposed minimax regret as an ideal alternative to the maximin objective for robust op-
timization. However, existing algorithms for handling minimax regret are restricted to
models with uncertainty over rewards only and they are also limited in their scalability.
Therefore, we provide a general model of uncertain MDPs that considers uncertainty over
both transition and reward functions. Furthermore, we also consider dependence of the
uncertainty across different states and decision epochs. We also provide a mixed integer
linear program formulation for minimizing regret given a set of samples of the transition
and reward functions in the uncertain MDP. In addition, we provide two myopic variants of
regret, namely Cumulative Expected Myopic Regret (CEMR) and One Step Regret (OSR)
that can be optimized in a scalable manner. Specifically, we provide dynamic programming
and policy iteration based algorithms to optimize CEMR and OSR respectively. Finally,
to demonstrate the effectiveness of our approaches, we provide comparisons on two bench-
mark problems from literature. We observe that optimizing the myopic variants of regret,
OSR and CEMR are better than directly optimizing the regret.

1. Introduction

For a multitude of reasons, ranging from dynamic environments to conflicting elicitations
from experts, from insufficient data to aggregation of states in exponentially large problems,
it is difficult to exactly specify reward and transition functions in Markov Decision Processes
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(MDPs). Motivated by this difficulty in exact specification, researchers have proposed
uncertain MDP models and robustness objectives in solving these models.

A robust solution typically provides guarantees on the worst case performance. Most
of the research in computing robust solutions has assumed a maximin objective, where
one computes a policy that maximizes the value corresponding to the worst case realiza-
tion (Nilim & Ghaoui, 2005; Iyengar, 2005; Givan, Leach, & Dean, 2000; Bagnell, Ng, &
Schneider, 2001; Mastin & Jaillet, 2012). This line of work has developed scalable algorithms
by exploiting independence of uncertainties across states and convexity of uncertainty sets.
Recently, techniques have been proposed to deal with dependence of uncertainties (Wiese-
mann, Kuhn, & Rustem, 2013; Mannor, Mebel, & Xu, 2012). This notion of robustness
can be viewed as a game against the environment, where given a policy, the environment is
choosing an instantiation of transition and reward functions that will minimize the expected
value.

Delage and Mannor (2010) and others have highlighted the conservative nature of max-
imin policies. To address this issue, Regan and Boutilier (2009) and Xu and Mannor (2009)
have proposed minimax regret criterion (Savage, 1954) as an alternative to maximin ob-
jective for uncertain MDPs. Regret associated with a policy, π and an instantiation, ξq is
defined as the difference between optimal expected value for an instantiation and expected
value of π for that same instantiation. Thus, in minimax criterion, the goal is to find a
policy that has the least value of maximum regret over all instantiations of uncertainty.
This notion of robustness can be treated as a game against the environment, where the
environment is choosing an instantiation of uncertainty so as to maximize the regret. In
this paper, we also focus on this minimax notion of robustness.

While minimax regret policies are not conservative, computing optimal minimax re-
gret policies is NP-Hard (Xu & Mannor, 2009) and hence is not scalable. Existing algo-
rithms (Regan & Boutilier, 2010; Xu & Mannor, 2009; Regan & Boutilier, 2009) have only
focused on computing optimal minimax regret solutions to uncertain MDPs, where only
the reward function is uncertain. Furthermore, the uncertainties in reward for states and
decision epochs are assumed to be independent of each other. In this paper, we provide a
general model that not only considers uncertainty over both reward and transition functions,
but also considers the dependency in uncertainty across states, decision epochs.

Recent research in planning under uncertainty has demonstrated that sampling-based
techniques (Kearns, Mansour, & Ng, 2002; Pineau, Gordon, & Thrun, 2003) are not only ef-
ficient but also provide apriori (Chernoff-Hoeffiding bounds) and posteriori (Shapiro, 2003a)
quality bounds. Hence, we focus on sampling based approaches for direct and indirect min-
imisation of maximum regret:

• Approximate the computation of minimax regret policy for a given set of samples.

• Optimize alternative but scalable variants of regret, namely Cumulative Expected My-
opic Regret (CEMR) and One Step Regret (OSR) for a given set of samples.

Along these two directions, we make the following key methodological contributions:

• An approximate Mixed Integer Linear Programming (MILP) formulation for comput-
ing minimax regret policies. We also provide guarantees on the quality of the policies
obtained using this approximate MILP.
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• By exploiting the optimal substructure property of CEMR, we provide a dynamic pro-
gramming approach to minimize CEMR.

• Relying on a novel combination of value and flow variables, we provide a scalable policy
iteration based algorithm that computes locally optimal OSR policies.

We evaluate the performance of our approaches on two benchmark problems from litera-
ture, namely stochastic inventory control and disaster rescue. The results show that our
policy iteration based algorithm that optimizes OSR outperforms the other approaches con-
sistently with respect to minimax regret. In stochastic inventory control, where we have a
scalable approach to optimize CEMR (DP-CEMR), that approach performs better than all
other approaches except the algorithm optimizing OSR. Overall, on the two benchmarks
considered, optimizing myopic variants of regret is better than direct approximation of re-
gret. We also perform a Sample Average Approximation (SAA) analysis (details provided
in section 8.3) to compute posteriori bounds on the solutions obtained using a fixed set of
training samples.

In Section 2, we provide background on the MDP model and the Linear Programming
(LP) approach for solving MDPs. We then provide preliminary definitions and notations in
Section 3 in order to describe the generic uncertain MDP model in Section 4. We describe
our approaches to solve the uncertain MDP model with respect to regret, CEMR and OSR
in Sections 5, 6 and 7, respectively. Experimental setup is described in Section 8 and the
experimental results are shown in Section 9. Sections 10 and 11 describe the related work
and conclusions, respectively.

2. Background: Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) (Puterman, 1994) are used to represent decision prob-
lems in the face of transitional uncertainty. An MDP is defined using the following tuple:

〈S,A, T,R,H, α〉

S represents the set of states, A represents the set of actions or decisions that can be
taken in the states, T : S × A × H → ∆(S) represents the transition function and is a
probability distribution over the destination states. T t(s, a, s′) is the probability that the
state transitions from s to s′ on taking action a at decision epoch t and

∑
s′ T

t(s, a, s′) =
1,∀s, a, t. R : S×A×H → R represents the reward matrix. Rt(s, a) is the reward obtained
by taking action a in state s. α is the starting distribution over states and H is the time
horizon.

The goal is to obtain a policy, ~π0 : S ×H → ∆(A) such that the expected value, v0(α)
is maximized for the time horizon H, given a starting distribution α over states. ∆(A)
denotes a probability distribution over the set of actions A. More concretely, πt(s, a) gives
the probability of taking action a in state s at time t and

∑
a π

t(s, a) = 1. v0 is characterized
using the following expression:

v0(α) = max
π

∑
s∈S

v0(s, π0) · α(s), where

vt(s, πt) =

{ ∑
a π

t(s, a) ·Rt(s, a) t = H − 1∑
a π

t(s, a) ·
(
Rt(s, a) +

∑
s′ T

t(s, a, s′) · vt+1(s′, π)
)

otherwise
(1)
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The optimal policy in the case of an MDP is a deterministic one (Puterman, 1994).
That is to say, for all time steps t and for all states s there exists one action a, such that
πt(s, a) = 1.

2.1 Solving MDPs

A number of exact and approximate techniques have been published in the literature to solve
MDPs (Bellman, 1957; Howard, 1960; Barto, Bradtke, & Singh, 1995). Since our approaches
in this paper are based on linear optimization, we only describe the LP approaches for
solving MDPs.

2.1.1 Linear Programming (LP) Approaches

The standard primal formulation to compute the optimal policy involves solving the follow-
ing linear program.

min
v0

∑
s

α(s) · v0(s) (2)

s.t. vt(s, a) = Rt(s, a) ∀s, a, t = H − 1 (3)

vt(s, a) = Rt(s, a) + γ
∑
s′

T t(s, a, s′) · vt+1(s′) ∀s, a, t < H − 1 (4)

vt(s) ≥ vt(s, a) ∀s, a, t (5)

Constraint (4) computes the payoff for each action given future expected payoff. Constraint
(5) ensures that the value function at each time step and each state is assigned to the
maximum value across all actions in that state. Minimizing the function guarantees the
value is bounded from above. Once the value function is computed the policy is obtained
as follows:

πt(s, a) =

{
1 if a = argmax′a

{
vt(s, a′)

}
0 otherwise

(6)

The policy can also be computed using the well-known dual LP optimization (Puterman,
1994). It should be noted that in the dual formulation, the decision variables are state
action frequencies which are used in the computation of expected value instead of using
value function variables as shown in Equation (1)).

max
x

∑
t,s,a

Rt(s, a) · xt(s, a)

s.t.
∑
a

x0(s′, a) = α(s′), ∀s′∑
a

xt+1(s′, a)−
∑
s,a

xt(s, a) · T t(s, a, s′) = 0, ∀ 0 < t ≤ H − 1,∀s′

xt(s, a) ≥ 0, ∀s, a, t;
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where xt(s, a) represents the number of times action a has been chosen in time t in state
s. The agent policy for each state and time step can then be obtained by normalizing
{xt(s, a)}:

π =

{
πt(s, a) : πt(s, a) =

xt(s, a)∑
a′ x

t(s, a′)
,∀t, s

}
.

Since x represents the number of times actions are executed in the states, the total
value is obtained by a dot product of x and R vectors. The first and second constraints
are for flow preservation. That is to say, flow into the state is equal to the flow out of
the state. While the optimization problem allows for probabilistic or mixed policies, the
solution obtained by maximizing expected value is always deterministic. That is to say,

∀ s, t; ∃ a s.t. πt(s, a) = 1

A key advantage of the dual approach is that the state action frequencies, which are of
relevance to the techniques in this paper are computed directly. We later discuss how both
formulations can be used simultaneously in minimizing OSR.

3. Preliminaries

We now formally define the three regret criteria that will be employed in this paper. In
the definitions below, we assume an underlying MDP, M = 〈S,A, T,R,H, α〉, a policy is
represented as: ~πt = {πt, πt+1, . . . , πH−1}, the optimal policy is represented as ~π∗, and the
optimal expected value is represented as v0(~π∗). The maximum reward in any state s at
time step t is denoted as R∗,t(s) = maxaR

t(s, a) and minimum reward in any state s at
time step t is denoted as R

′,t(s). Throughout the paper, we use α(s) to denote the starting
state distribution in state s and γ to represent the discount factor.

Definition 1 Regret for any policy ~π0 is the difference between the value of policy ~π0 and
the value of optimal policy. The regret value is denoted by reg(~π0) and is defined as:

reg(~π0) = v0(~π∗)− v0(~π0),where

v0(~π0) =
∑
s

α(s) · v0(s, ~π0),

vt(s, ~πt) =
∑
a

πt(s, a) ·
[
Rt(s, a) + γ

∑
s′

T t(s, a, s′) · vt+1(s′, ~πt+1)
]

While regret is a well-established robustness concept, calculating policies that minimize
maximum regret is known to be computationally challenging when there is uncertainty as-
sociated with reward or transition functions (Xu & Mannor, 2009). One of the approaches
we employ in this paper is to optimize other variants of regret, with the underlying as-
sumption (validated by our experimental results) that optimizing these variants of regret
will yield low regret solutions. We first define the variants of regret, which are myopic and
consequently have scalable algorithms to optimize them. The first of these myopic variants
is called the Cumulative Expected Myopic Regret (CEMR) which is defined as follows:
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Definition 2 CEMR for policy ~π0 is denoted by cemr(~π0) and is defined as:

cemr(~π0) =
∑
s

α(s) · cemr0(s, ~π0), where

cemrt(s, ~πt) =
∑
a

πt(s, a) ·
[
R∗,t(s)−Rt(s, a) + γ

∑
s′

T t(s, a, s′) · cemrt+1(s′, ~πt+1)
]

(7)

Regret (as described in Definition 1) for a given policy denotes the total improvement
possible by switching to an optimal policy (w.r.t maximizing expected value) from that
policy. On the other hand, CEMR for a policy is the cumulation of expected “maximum”
possible improvements in each state for that policy. Since we aggregate improvements at
individual states (and not consider overall improvement for the entire decision process),
CEMR is a myopic variant of regret. Furthermore, it should be noted that the “maximum”
improvements considered by CEMR in every state may not be feasible in any optimal policy.
Also, the given policy may have significantly different transition dynamics to an optimal
policy and hence CEMR for a given policy is not guaranteed to be an upper or lower bound
of actual regret.

The following proposition highlights the mathematical dependencies between regret and
CEMR. Intuitively, the key connection is through the maximum and minimum rewards in
different states.

Proposition 1 For any policy ~π0:

reg(~π0)− cemr(~π0) ≤ max
t

[
max
s
R∗,t(s)−min

s
R∗,t(s)

]
· (1− γH)

1− γ
and

cemr(~π0)− reg(~π0) ≤ max
t6=H−1

[
max
s
R∗,t(s)−min

s
R
′,t(s)

]
· (1− γH−1)

1− γ

Proof. Detailed proof is included in appendix.
The second myopic variant of regret is called the One Step Regret (OSR).

Definition 3 OSR for policy ~π0 is denoted by osr(~π0) and is defined as:

osr(~π0) = min
~̂π0

[v0(~π∗)− v0(~̂π0)] where

∃t̂ s.t. ∀s, a, t ~̂πt(s, a) = ~πt(s, a), if t 6= t̂

Intuitively, OSR for a given policy, ~π0 is the minimum regret over all the policies that are
obtained by making changes to the policy in at most one time step (denoted by t̂). ~π0 is
the given policy. ~̂π0 represents a policy that is different in at most one time step (t̂) from
the given policy and ~π∗ is the optimal policy. While in CEMR the myopic nature is due
to feasible value improvement at individual states, in OSR, the myopic nature is due to
considering policy changes at most one time step.

We refer to the above variant as One Step Regret, since the policy obtained by optimizing
this criterion cannot be changed in any single time step without increasing the regret. Every
regret optimal policy is also an OSR optimal policy, while the converse need not be true.
In section 7 we further discuss, with a concrete example, how OSR and CEMR solutions
differ.
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4. Uncertain MDP

A finite horizon uncertain MDP is defined as the tuple of 〈S,A, T ,R, H, α〉. S denotes
the set of states and A denotes the set of actions. T = {T1, T2, · · · } denotes a set of finite
transition function samples, where T tk (s, a, s′) denotes the probability of transitioning from
state s ∈ S to state s′ ∈ S on taking action a ∈ A at time step t according to the kth

element in T . Similarly, R = {R1,R2, · · · } is the set of finite reward function samples,
where Rtk(s, a) is the reward obtained on taking action a in state s at time t according to
kth element in R. Finally, H is the time horizon and α is the starting state distribution.

Every element of T and R sets represent transition and reward functions respectively
over the entire horizon and hence this representation captures dependence in uncertainty
distributions across states. We now provide a formal definition for the independence of
uncertainty distributions that is equivalent to the rectangularity property introduced in
Iyengar (2005).

Definition 4 An uncertainty distribution ∆τ over the set of transition functions, T is
independent over state-action pairs at various decision epochs if

∆τ (T ) = ×s∈S,a∈A,t≤H∆τ,t
s,a(T ts,a)

where T = ×s,a,tT ts,a, T ts,a is the set of transition functions for s, a, t; ∆τ,t
s,a is the distribution

over the set T ts,a and Pr∆τ (T k) is the probability of the transition function T k given the
distribution ∆τ .

We can provide a similar definition for the independence of uncertainty distributions over
the reward functions. In the following definitions, we include transition, T and reward,
R functions as subscripts to indicate value (v), regret (reg) and CEMR (cemr) functions
corresponding to a specific MDP. Existing work on computation of maximin policies has
the following objective:

πmaximin = arg max
~π0

min
T∈T ,R∈R

∑
s

α(s) · v0
T,R(s, ~π0)

Our goal is to compute policies that minimize the maximum regret over possible functions
of transitional and reward uncertainty, i.e.,

πreg = arg min
~π0

max
T∈T ,R∈R

regT,R(~π0)

This is a challenging problem and we first explore an approximation method for minimiz-
ing maximum regret in Section 5. We then consider optimizing myopic variants of regret
with an expectation that the obtained policies would yield competitive results, given their
similarities to regret. Specifically, we consider the following problem in Section 6:

πcemr = arg min
~π0

max
T∈T ,R∈R

cemrT,R(~π0)

Finally, we consider the following problem in Section 7:

πosr = arg min
~π0

max
T∈T ,R∈R

osrT,R(~π0)
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5. Regret Minimizing Solution

Our approach to obtaining regret minimizing solution relies on computing a solution for a
sample set of model uncertainty. Specifically, we formulate the regret minimization problem
for the sample set as an optimization problem with quadratic constraints and then approx-
imate it as a Mixed Integer Linear Program (MILP). MILPs are NP-hard but software
packages such as CPLEX can be used to solve them efficiently.

A sample q of model uncertainty is defined as:

ξq = {
〈
T 0
q ,R0

q

〉
,
〈
T 1
q ,R1

q

〉
, · · ·

〈
T H−1
q ,RH−1

q

〉
}

where T tq and Rtq refer to the transition and reward function respectively at time step t
in sample q . Let the set of samples be defined as ξ, which corresponds to |ξ| number of
discrete MDPs. Our goal is to compute one policy that minimizes the maximum regret over
all the |ξ| MDPs, i.e.,

πreg = arg min
~π0

max
ξq∈ξ

[v∗ξq(s)−
∑
s

α(s) · v0
ξq(s, ~π

0) ]

where v∗ξq =
∑

s α(s) · v0
ξq

(s, ~π∗) and v0
ξq

(s, ~π0) denotes the optimal expected value and the

expected value for policy ~π0 respectively with respect to sample ξq.
Expected value for a policy ~πt, i.e., vtξq(s, ~π

t) is defined as follows:

vtξq(s, ~π
t) =

∑
a

πt(s, a) · vtξq(s, a, ~π
t),where

vtξq(s, a, ~π
t) = Rtq(s, a) + γ

∑
s′

vt+1
ξq

(s′, ~πt+1) · T tq (s, a, s′)

The optimization problem for computing the regret minimizing policy corresponding to
sample set ξ is then defined as follows:

min
~π0

reg(~π0)

s.t. reg(~π0) ≥ v∗ξq −
∑
s

α(s) · v0
ξq(s, ~π

0) ∀ξq (8)

vtξq(s, ~π
t) =

∑
a

πt(s, a) · vtξq(s, a, ~π
t) ∀s, ξq, t (9)

vtξq(s, a, ~π
t) = Rtq(s, a) + γ

∑
s′

vt+1
ξq

(s′, ~πt+1) · T tq (s, a, s′) ∀s, a, ξq, t (10)

The value function in Equation (9) is a product of two variables, πt(s, a) and vtξq(s, a, ~π
t),

which hampers scalability significantly. We employ linearization and separable program-
ming to improve scalability. The details are provided in the subsequent sections.

5.1 Mixed Integer Linear Program

The optimal policy for minimizing maximum regret in the general case is randomized.
However, to account for domains which only allow for deterministic policies, we provide
linearization separately for the two cases of deterministic and randomized policies.
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Deterministic Policy: In case of deterministic policies, πt(s, a) will be a binary vari-
able. Equation (9) contains products of binary and continuous variables. We linearize each
product by defining variable v̂tξq(s, a, ~π

t) = vtξq(s, a, ~π
t) · πt(s, a) and replacing Equation (9)

by the following linear constraints.

vtξq(s, ~π
t) =

∑
a

v̂tξq(s, a, ~π
t)

v̂tξq(s, a, ~π
t) ≤ vtξq(s, a, ~π

t)

v̂tξq(s, a, ~π
t) ≤ πt(s, a) ·M

v̂tξq(s, a, ~π
t) ≥ vtξq(s, a, ~π

t)− (1− πt(s, a)) ·M ∀s, a, ξq, t (11)

M is a large positive constant that is an upper bound on vtξq(s, a, ~π
t). Equivalence to the

product terms in Equation (9) can be verified by considering πt(s, a) = {0, 1}.
Randomized Policy: When ~π0 is a randomized policy, we have a product of two

continuous variables. We provide a mixed integer linear approximation to address the
product terms above. Let,

Atξq(s, a, ~π
t) =

vtξq(s, a, ~π
t) + πt(s, a)

2

Bt
ξq(s, a, ~π

t) =
vtξq(s, a, ~π

t)− πt(s, a)

2
Equation (9) can then be rewritten as:

vtξq(s, ~π
t) =

∑
a

[Atξq(s, a, ~π
t)2 −Bt

ξq(s, a, ~π
t)2] ∀s, ξq, t (12)

As discussed in the next subsection on “Pruning dominated actions”, we can compute
upper and lower bounds for vtξq(s, a, ~π

t) and hence for Atξq(s, a, ~π
t) and Bt

ξq
(s, a, ~πt). We

approximate the squared terms by using piecewise linear components that provide an upper
bound on the squared terms. We employ a standard method from literature of dividing the
variable range into multiple break points. More specifically, we divide the overall range of
Atξq(s, a, ~π

t) (or Bt
ξq

(s, a, ~πt)), say [br0, brr] into r intervals by using r + 1 points, namely,

〈br0, br1, . . . , brr〉. We introduce a linear variable, λtξq(s, a, w) for each break point w and

then approximate Atξq(s, a, ~π
t)

2
(and Bt

ξq
(s, a, ~πt)

2
) as follows:

Atξq(s, a, ~π
t) =

∑
w

λtξq(s, a, w) · brw, ∀s, a, ξq, t (13)

Atξq(s, a, ~π
t)2 =

∑
w

λtξq(s, a, w) · (brw)2, ∀s, a, ξq, t (14)∑
w

λtξq(s, a, w) = 1, ∀s, a, ξq, t (15)

SOS2s,a,tξq
({λtξq(s, a, w)}w≤r), ∀s, a, ξq, t (16)

where SOS2 is a constraint which is associated with a set of variables of which at most
two variables can be non-zero and if two variables are non-zero they must be adjacent1.

1. Details are included in appendix.
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Since any number in the range lies between at most two adjacent points, we have the above
constructs for the λtξq(s, a, w) variables. We implement the above adjacency constraints on

λtξq(s, a, w) using the CPLEX Special Ordered Sets (SOS) type 22.

5.1.1 Approximation Error

As we are approximating the product of πt(s, a) and vtξq(s, a, ~π
t) which in turn approximates

the value of regret, it is important to provide bounds on the introduced error . We do this
in three steps:

1. We first show in Proposition 2 that when approximating x2 function using piece-
wise linear components, the approximation error is maximum at the midpoint of the
intervals.

2. We then use the midpoint result of Proposition 2 to specifically characterise the max-
imum error in the approximation of Atξq(s, a, ~π

t)2(and Bt
ξq

(s, a, ~πt)
2
) due to Equations

(13)-(15) in Proposition 3. We denote the maximum error introduced in the approxi-
mation of Atξq(s, a, ~π

t)2 by δ.

3. Finally, we use the result of Proposition 3 to find the error introduced in the com-
putation of vtξq(s, ~π

t) (Proposition 4) and consequently we find the bounds on regret
value in Corollary 1.

(a)

Figure 1: Error associated with the interval [brw−1, brw]

Proposition 2 In the approximation of z2 function using piecewise linear components,
λ(w), the maximum approximation in any interval [brw−1, brw] occurs at the mid-point.

Proof. Without loss of generality, consider any point y in the interval [brw−1, brw] (figure
1). Following Equation (13), we associate weights λw−1, λw with brw−1, brw respectively.
We have

y = λw−1brw−1 + λwbrw

2. Our preliminary computational experiment show that using CPLEX built in SOS2 considerably improves
runtime (CPLEX, 2008) compared to the formulation with binary variables.
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Since we have the sum constraint in Equation (15), the above equation can be modified as:

y = (1− λw)brw−1 + λwbrw

=⇒ λw =
y − brw−1

brw − brw−1

The error is given by the difference between Left Hand Side (LHS) and Right Hand Side
(RHS) in Equation (14):

Λ = y2 −
[
λw−1(brw−1)2 + λw(brw)2]

Substituting the value of λw:

Λ = y2 −
[
(brw)2 · y − brw−1

brw − brw−1
− (brw−1)2 · y − brw

brw − brw−1

]
When Λ is maximum, we have dΛ

dy = 0. Therefore:

2y − ((brw)2 − (brw−1)2)

(brw − brw−1)
= 0

y =
brw + brw−1

2

Hence proved. �

Proposition 3 Let [c,d] denote the range of values for Atξq(s, a, ~π
t) such that c, d > 0 and

assume we have r+1 points that divide Atξq(s, a, ~π
t)2 into r equal intervals of size ε = d2−c2

r

then error δ in approximating Atξq(s, a, ~π
t)2 satisfies: δ < ε

4 .

Proof: Let the r + 1 points be br0, . . . , brr. As these r + 1 points divide Atξq(s, a, ~π
t)2 into

equal intervals of size ε, we have

ε = (brw)2 − (brw−1)2 ∀w ∈ [1, r]

Because of the convexity of x2 function, the maximum approximation error in any interval
[brw−1, brw] occurs at its mid-point3. Hence, approximation error δ is given by:

δ ≤ max
w

(brw)2 + (brw−1)2

2
−
[
brw + brw−1

2

]2

where (brw)2+(brw−1)2

2 is the approximate value4 of Atξq(s, a, ~π
t)2 at brw+brw−1

2 .

Substituting (brw)2 = (brw−1)2 + ε

δ ≤ ε

4
+ max

w

2 · brw−1 · (brw−1 − brw)

4

3. Proposition and proof provided in Proposition 2

4. The value obtained by putting
brw+brw−1

2
in the equation of line joining (brw, (brw)2) and

(brw−1, (brw−1)2)
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As (brw−1 − brw) < 0, therefore

δ <
ε

4

Hence proved. �

Let v̂tξq(s, ~π
t) denote the approximation of vtξq(s, ~π

t) obtained by using approximate val-

ues of Atξq(s, a, ~π
t)2 and Bt

ξq
(s, a, ~πt)2 in Equation (12). Using the approximation error of

Atξq(s, a, ~π
t)2 obtained by Proposition 3, we can derive bounds on the approximation of

v0
ξq

(s, ~πt).

Proposition 4

v0
ξq(s, ~π

0)− |A| · ε · (1− γ
H−1)

4 · (1− γ)
≤ v̂0

ξq(s, ~π
0) ≤ v0

ξq(s, ~π
0) +

|A| · ε · (1− γH−1)

4 · (1− γ)

Proof: From Equation (12), at time step t + 1, the maximum approximation error in
vt+1
ξq

(s, ~πt+1) is obtained when one of Atξq(s, a, ~π
t)2, Bt

ξq
(s, a, ~πt)2 has the maximum approx-

imation error and the other has zero approximation error. So the maximum approximation
error of vt+1

ξq
(s, ~πt+1) is given by |A|·δ, where δ is the approximation error in Atξq(s, a, ~π

t)2(or

Bt
ξq

(s, a, ~πt)2) and |A| is the maximum number of actions across all states, all time steps.

The maximum approximation error at time step t in vtξq(s, a, ~π
t) is γ · |A| · δ (due to

error in value function at time step t+ 1). We can combine Equation (9) and (10) as:

vtξq(s, ~π
t) =

∑
a

πt(s, a) ·
[
vtξq(s, a, ~π

t)± γ · |A| · δ
]

=
∑
a

πt(s, a) · vtξq(s, a, ~π
t)± γ · |A| · δ

Now at time step t, the error will be |A| · δ plus future error from time step t+ 1 given by
γ · |A| · δ. Extending it to t = 0, we will have sum of two geometric progressions, i.e.,

±
[
|A| · δ + γ · |A| · δ + γ2 · |A| · δ...

]
Substituting δ = ε

4 (from Proposition 3), we will have

v0
ξq(s, ~π

t)− |A| · ε · (1− γ
H−1)

4 · (1− γ)
≤ v̂0

ξq(s, ~π
t) ≤ v0

ξq(s, ~π
t) +

|A| · ε · (1− γH−1)

4 · (1− γ)
. �

Corollary 1 Let ˆreg(~π0) denote the approximation of reg(~π0), then

reg(~π0)− |A| · ε · (1− γ
H−1)

4 · (1− γ)
≤ ˆreg(~π0) ≤ reg(~π0) +

|A| · ε · (1− γH−1)

4 · (1− γ)
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Proof. From Equation (8) and Proposition 4, we have the proof. �
Since the break points are fixed beforehand, we can find tighter bounds (refer to Proof

of Proposition 3). Also, we can further improve the performance on both run-time and
solution quality of the MILP by pruning out dominated actions and adopting sampling
strategies as discussed in the next subsections.

5.1.2 Pruning Dominated Actions

We now introduce a pruning approach to remove actions that will never be assigned a
positive probability in a regret minimization strategy. For every state-action pair at each
time step, we define a minimum and maximum value function as follows:

vt,minξq
(s, a) = Rtq(s, a) + γ

∑
s′

T tq (s, a, s′) · vt+1,min
ξq

(s′)

vt,minξq
(s) = mina

{
vt,minξq

(s, a)
}

vt,maxξq
(s, a) = Rtq(s, a) + γ

∑
s′

T tq (s, a, s′) · vt+1,max
ξq

(s′)

vt,maxξq
(s) = maxa

{
vt,maxξq

(s, a)
}

An action a′ is pruned if there exists the same action a over all samples ξq, such that

vt,minξq
(s, a) ≥ vt,maxξq

(s, a′) ∃a, ∀ξq

The above pruning step follows from the observation that an action whose best case payoff
is less than the worst case payoff of another action a cannot be part of the regret optimal
strategy, since we could switch from a′ to a without increasing the regret value. It should
be noted that an action that is not optimal for any of the samples cannot be pruned.

Algorithm 1 provides the pseudo-code for pruning step discussed earlier. At each time
step, for each state we maintain an upper and lower bound for the value function. Apart
from pruning, this gives us tight bounds on value function that decrease the number of
break points required for linearization.

5.1.3 Greedy Sampling

The scalability of the MILP formulation is constrained by the number of samples Q. So,
instead of generating only the fixed set of Q samples from the uncertainty distribution over
models, we generate more than Q samples and then pick a set of size Q so that samples are
“as far apart” as possible. The key intuition in selecting the samples is to consider distance
among samples as being equivalent to entropy in the optimal policies for the MDPs in the
samples. For each decision epoch t, each state s and action a, we define Prs,a,tξ (π∗tξ (s, a) = 1)
to be the probability that a is the optimal action in state s at time t. Therefore,

Prs,a,tξ (π∗tξ (s, a) = 1) =

∑
ξq
π∗tξq(s, a)

Q

Prs,a,tξ (π∗tξ (s, a) = 0) =

∑
ξq

(
1− π∗tξq(s, a)

)
Q
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Algorithm 1: PruneDominatedActions()

t← H − 1
for all ξq ∈ ξ, s ∈ S do

vH,minξq
(s)← 0

vH,maxξq
(s)← 0

while t ≥ 0 do
for all s ∈ S do

for all ξq ∈ ξ, a ∈ A do

vt,minξq
(s, a)← Rtq(s, a) + γ

∑
s′ T tq (s, a, s′) · vt+1,min

ξq
(s′)

vt,maxξq
(s, a)← Rtq(s, a) + γ

∑
s′ T tq (s, a, s′) · vt+1,max

ξq
(s′)

if ∃a′ s.t. vt,minξq
(s, a′) ≥ vt,maxξq

(s, a) ∀ξq then
Prune a

vt+1,min
ξq

(s) = minav
t,min
ξq

(s, a)

vt+1,max
ξq

(s) = maxav
t,max
ξq

(s, a)
t← t− 1

Let the total entropy of sample set ξ (|ξ| = Q) be represented as ∆S(ξ), then

∆S(ξ) = −
∑
t,s,a

∑
z∈{0,1}

Prs,a,tξ (π∗tξ (s, a) = z) · ln
(
Prs,a,tξ (π∗tξ (s, a) = z)

)

We use a greedy strategy to select the Q samples, i.e., we iteratively add samples that
maximize entropy of the sample set in that iteration.

It is possible to provide bounds on the number of samples required for a given error using
the methods suggested by Shapiro (2003a). However these bounds are conservative and
hence suggest a large number of samples. As we show in the experimental results section,
typically when the greedy sampling is used, we only require a small number of samples and
hence such bounds are not very useful in practice.

We also emphasize that, apart from greedy, it is possible to employ other procedures to
generate samples. Our approaches will be applicable regardless of the sampling technique
employed.

6. CEMR Minimizing Solution

The MILP based approach mentioned in the previous section can easily be adapted to
minimize the maximum cumulative regret over all samples when uncertainties across states
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are dependent:

min
~π0

cemr(~π0)

s.t. cemr(~π0) ≥
∑
s

α(s) · cemr0
ξq(s, ~π

t), ∀ξq

cemrtξq(s, ~π
t) =

∑
a

πt(s, a) · cemrtξq(s, a, ~π
t), ∀s, t, ξq

(17)

cemrtξq(s, a, ~π
t) = R∗,tq (s)−Rtq(s, a) + γ

∑
s′

T tq (s, a, s′) · cemrt+1
ξq

(s′, ~πt+1), ∀s, a, t, ξq

(18)

where the product term πt(s, a) · cemrtξq(s, a, ~π
t) is approximated as described earlier.

While we were unable to exploit the independence of uncertainty distributions across
states with minimax regret, we are able to exploit the independence with minimax CEMR.
In fact, a key advantage of the CEMR robustness concept in the context of independent
uncertainties is that it has the optimal substructure over time steps and hence a Dynamic
Programming (DP) algorithm can be used to solve it. In the next few paragraphs and
Proposition 5 we provide the proof for optimal substructure property of minimax CEMR.

We first precisely define the notion of samples in the case of independent uncertainties.
Here, samples at each time step can be drawn independently and we introduce formal
notation to account for samples drawn at each time step. Let ξt denote the set of samples
at time step t, then ξ = ×t≤H−1ξ

t. Further, we use ~ξt to indicate cross product of samples

from t to H−1, i.e., ~ξt = ×t≤e≤H−1ξ
e. Thus, ~ξ0 = ξ. To indicate the entire horizon samples

corresponding to a sample p from time step t, we have ~ξtp = ξtp × ~ξt+1.

For notational compactness, we use ∆Rt−1
p (s, a) = R∗,t−1

p (s) − Rt−1
p (s, a). Because of

independence in uncertainties across time steps, for a sample set ~ξt−1
p = ξt−1

p × ~ξt, we have
the following:

max
~ξt−1
p

cemrt−1~ξt−1
p

(s, ~πt−1) = max
ξt−1
p ×ξtp

∑
a

πt−1(s, a)
[
∆Rt−1p (s, a) + γ

∑
s′

T tp (s, a, s′) · cemrt~ξt(s
′, ~πt)

]
= max

ξt−1
p

∑
a

πt−1(s, a)
[
∆Rt−1p (s, a) + γ

∑
s′

T tp (s, a, s′) · max
~ξtq∈~ξt

cemrt~ξtq
(s′, ~πt)

]
(19)

In the following proposition, we state the optimal substructure property of minimax
CEMR. Informally, it states that an optimal CEMR policy for a longer horizon includes an
optimal CEMR policy for a shorter horizon problem. The optimal substructure property
implies the existence of a dynamic programming algorithm and hence efficient computation
of CEMR optimal policy. This is formally stated in Propostion 5 as follows:

Proposition 5 At time step t−1, the CEMR corresponding to any policy πt−1 will have the
least regret if it includes the CEMR minimizing policy from t. Formally, if ~π∗,t represents
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the CEMR minimizing policy from t and ~πt represents any arbitrary policy, then:

∀s : max
~ξt−1
p ∈~ξt−1

cemrt−1
~ξt−1
p

(
s,
〈
πt−1, ~π∗,t

〉 )
≤ max

~ξt−1
p ∈~ξt−1

cemrt−1
~ξt−1
p

(
s,
〈
πt−1, ~πt

〉 )
(20)

if, ∀s : max
~ξtq∈~ξt

cemrt~ξtq
(s, ~π∗,t) ≤ max

~ξtq∈~ξt
cemrt~ξtq

(s, ~πt) (21)

Proof. From Equation (19), we have:

cemrt−1~ξt−1
p

(
s,
〈
πt−1, ~π∗,t

〉 )
=
∑
a∈A

πt−1(s, a)
[
∆Rt−1p (s, a) +

∑
s′

T t−1p (s, a, s′) · max
~ξtq∈~ξt

cemrt~ξtq
(s′, ~π∗,t)

]

From Equation (21), we have:

cemrt−1~ξt−1
p

(
s,
〈
πt−1, ~π∗,t

〉 )
≤
∑
a∈A

πt−1(s, a)
[
∆Rt−1p (s, a) +

∑
s′

T t−1p (s, a, s′) · max
~ξtq∈~ξt

cemrt~ξtq
(s′, ~πt)

]
≤ cemrt−1~ξt−1

p

(
s,
〈
πt−1, ~πt

〉 )
(22)

Thus, max
ξq∈ξ

cemrt−1ξq

(
s,
〈
πt−1, ~π∗,t

〉 )
≤ max

ξq∈ξ
cemrt−1ξq

(
s,
〈
πt−1, ~πt

〉 )
. � (23)

Extending the reasoning of Equation (22), for any policy ~π0 we have

∀s, cemr0
~ξ0p

(s, ~π∗,0) ≤ cemr0
~ξ0p

(s, ~π0)

=⇒ max
~ξp∈~ξ0

∑
s

α(s)cemr0
~ξ0p

(s, ~π∗,0) ≤ max
~ξp∈~ξ0

∑
s

α(s)cemr0
~ξ0p

(s, ~π0)

=⇒ cemr(~π∗,0) ≤ cemr(~π0) (24)

It is easy to show that minimizing CEMR also has an optimal substructure:

min
~π0

max
~ξ0p

∑
s

α(s) · cemr0
~ξ0p

(s, ~π0) =⇒ min
~π0

∑
s

α(s) ·
[

max
~ξ0p

cemr0
~ξ0p

(s, ~π0)
]

(25)

In Proposition 5 (extending the reasoning to t = 1), we have already shown that
max~ξ0p

cemr0
~ξ0p

(s, ~π0) has an optimal substructure. Thus, Equation (25) can also exploit the

optimal substructure.

MinimizeCEMR function provides the pseudo code for the DP algorithm that exploits
this structure. At each stage t, we calculate the cemr for each state-action pair correspond-
ing to each sample at that stage ξt (lines 6-9). Once all the cemr values are computed,
we obtain the maximum cemr and the policy corresponding to it (line 10) by using the
GetCEMR() function. In the next iteration, cemr computed at t is then used in the
computation of cemr at t− 1 using the same update step (lines 6-9).
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MinimizeCEMR()

1: for all t ≤ H − 1 do
2: ξt ← GenSamples(T,R)
3: for all s ∈ S do
4: cemrH(s)← 0
5: while t >= 0 do
6: for all s ∈ S do
7: for all ξtq ∈ ξt, a ∈ A do
8: cemrtξtq

(s, a)← ∆Rtq(s, a)+

9: γ
∑

s′ T tq (s, a, s′) · cemrt+1(s′)
10:

〈
πt, cemrt(s)

〉
← GetCEMR (s, {cemrtξtq(s, a)})

11: t← t− 1
return ( ~cemr0, ~π0)

GetCEMR (s, {cemrtξtq(s, a)})
1: minπ cemrt(s)
2: s.t. cemrt(s) ≥

∑
a π

t(s, a) · cemrtξtq(s, a),∀ξq
3:
∑

a π
t(s, a) = 1

4: 0 ≤ πt(s, a) ≤ 1,∀a
return (πt, cemrt(s))

It can be noted that MinimizeCEMR() makes only H · |S| calls to the LP in GetCEMR()
function, each of which has only |A| continuous variables and at most [1+maxt |ξt|] number
of constraints. Thus, the overall complexity of MinimizeCEMR() is polynomial in the
number of samples given fixed values of other attributes.

Let cemr∗,H−1(s, a) denote the optimal cumulative regret at time step H − 1 for taking
action a in state s and cemr∗,H−1

ξ (s, a) denote the optimal cumulative regret over the sam-
ple set ξ. Let indicator random variable X be defined as follows:

X =

{
1 if cemr∗,H−1(s, a)− cemr∗,H−1

ξ (s, a) ≤ λ
0 otherwise

By using Chernoff and Hoeffding bounds on X, it is possible to provide bounds on
deviation from mean and on the number of samples at H − 1. This can then be propagated
to H − 2 and so on. However, these bounds can be very loose and they do not exploit the
properties of cemr functions. Bounds developed on spacings of order statistics can help
exploit the properties of cemr functions. We will leave this for future work.

7. OSR Minimizing Solution

CEMR has two major drawbacks.

1. In case of dependent uncertainties, it provides no computational advantage over stan-
dard regret formulation as it becomes an MILP.

2. In certain problems where the reward is concentrated in a few cells, an optimal CEMR
policy has a high regret value. We highlight this using the following example:
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Figure 2: CEMR Example

Example 1 Consider a 1 × 3 grid world as shown in Figure 2. The cells are indexed
{s0, s1, s2}. Consider two samples, such that the rewards in sample 1 are (0, 0, 1) in cells
s0, s1, s2, respectively. We similarly define sample 2, with rewards (0, 0, 2). Let s0 be the
start state and H = 3. Notice that the CEMR policy would be to stay in cell s0 at all time
steps which would give a cumulative expected myopic regret of 0, whereas the optimal regret
policy is to move to cell s2.

CEMR policy inherently relies on “regret propagation” across states and in the case
where the propagated regret value is 0, CEMR performs quite poorly. To address this con-
cern, we introduce the One Step Regret (OSR) optimal policy that overcomes this drawback
while maintaining scalability.

We first provide the main insight of the approach, which is to define the expected
payoff of a policy using both frequency (dual formulation variables x) and value function
(primal formulation variables v) variables (see Section 2.1), respectively. vξq(~π

0) denotes
the expected payoff for sample ξq with policy ~π0 and ~x0

ξq
denotes the state action frequency

corresponding to policy ~π0 for sample q. We have

vξq(α) =
∑
s

x0
ξq(s) · v

0
ξq(s) (26)

=
∑
s

x0
ξq(s) ·

∑
a

π0(s, a) · v0
ξq(s, a) (27)

=
∑
t,s,a

xtξq(s, a) ·Rtξq(s, a) (28)

Note that Equation (27) follows from Equation (26) since vtξq(s) =
∑

a π
t(s, a) · vtξq(s, a).

From Equation (28), we can split the expected value computation at any time step τ as
follows:

vξq(α) =
∑

0≤t≤τ−1,s,a

xtξq(s, a) ·Rtξq(s, a)

︸ ︷︷ ︸
term 1

+
∑
s

xτξq(s) ·
∑
a

πτ (s, a) · vτξq(s, a)︸ ︷︷ ︸
term 2

(29)

The first part in Equation (29), (labelled term 1), uses the dual variables xtξq(s, a) and

computes the expected payoff until time step τ − 1. The second part (labelled term 2)
uses the primal variables vtξq(s, a) to compute the expected payoff from time step τ . It
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should be noted that the expected payoff computed using Equation (29) is equal to the
value computed using Equation (26).

One Step Regret (OSR) optimizing solution is a policy where the regret value cannot
be reduced by changing policy for one of the time steps. In essence, it is a local optimal
solution for optimizing regret.

Before presenting the policy iteration approach, we make important observations on the
approach. If we update the policy at time step τ :

• The state-action frequency variable xtξq(s, a) remains unchanged for all t ∈ [0, τ − 1],

since the equation (shown below) for computation of xtξq(s, a) does not depend on
policy at τ

xtξq(s, a) = xtξq(s) · π
t(s, a),

Moreover, the state occupancy variable xtξq(s) remains unchanged for all t ∈ [0, τ ]
since

xtξq(s) =
∑
s′,a

xt−1
ξq

(s′, a) · T t−1
ξq

(s′, a, s),

• The value function variable vtξq(s, a) remains unchanged for all t ∈ [τ,H] since the
expected payoff of taking an action a in state s depends on the policy in future time
steps (see Equation (4)).

Consider the expected value expression as defined in Equation (29). If we start from
a random policy, the observations above allow us to conclude that, on changing policy at
time step τ , term 1 in Equation (29) remains unchanged. Also, the state occupancy variable
xτξq(s) and value function variable vτξq(s, a) in term 2 remains unchanged. Thus we can avoid
the following issues:

• The non-linearity that arises in expected payoff computation in the standard regret; and

• Recomputing the value function for all time steps t ∈ [0, τ − 1] after each update in the
policy.

Algorithm 2 provides the pseudo code for the policy iteration algorithm, which aims
to compute local optimal OSR policies. We initialize π to a random policy. We then
recompute the one step regret optimal policy by starting from time step τ = H − 1 and
moving backwards until τ = 0. After each recomputation of policy we update the value
function variable for that time step (line 10). Once we recompute the policy for all time
steps, we update the occupancy frequency variables for all time steps (line 16). Thus, we
perform backward sweep to update the policy followed by a forward sweep to update the
state occupancy variable.

The LP model in Table 1 computes the one step regret minimizing policy when a policy
can only be changed at a specific time step τ where xt,prevξq

(s, a), xk,prevξq
(s), vk,prevξq

(s, a)
are state-action frequency variable, the state occupancy variable, and the value function
variable, respectively, from the previous policy. We now use the OSR linear program to
iteratively update the policy until it converges.

While algorithm 2 terminates when across subsequent iterations the policy remains the
same, in practice, we can terminate Algorithm 2, when the difference in the regret values
between any two subsequent iterations is less than some ε (line 14-15 in the algorithm).
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Algorithm 2: Policy Iteration()

1: bool ← true
2: osrnew ←M (A large constant)
3: osrold ←M (A large constant)
4: π ← RandomPolicy()
5: while bool do
6: bool ← false
7: τ ← H − 1
8: while τ ≥ 0 do
9: πτ,new, osrnew ← OnestepRegret(τ)

10: Update vτξq(s, a), vτξq(s) using πτ,new

11: if πτ,new 6= πτ then
12: bool ← true
13: τ ← τ − 1
14: if osrold − osrnew < ε then
15: bool ← false
16: Update xtξq(s), x

t
ξq

(s, a) ∀t ∈ [0, H − 1] using πt,new

17: πt ← πt,new ∀t ∈ [0, H − 1]
18: osrold ← osrnew

min
π
osr (30)

osr ≥ v∗ξq − vξq ∀ξq (31)

vξq =
∑

0≤t≤τ−1,s

xt,prevξq
(s, a) ·Rtξq(s, a) +

∑
s

xτ,prevξq
(s)
∑
a

πτ (s, a) · vτ,prevξq
(s, a) ∀ξq (32)

∑
a

πτ (s, a) = 1 ∀s (33)

Table 1: OnestepRegret(τ)

The value of ε is problem specific. In our experiments, we observed that the reduction
in regret after the first few iterations is quite small. Therefore, early termination did not
significantly affect the quality of solution.

Proposition 6 When we have finite size sample sets taken from T and R, Algorithm 2
always converges.

Proof. Policy is changed at each iteration of Algorithm 2 only if there is a lower regret
policy. Since the regret is lower bounded by zero and the algorithm improves the solution
by at least ε in each iteration, we can guarantee that after a finite number of iterations,
there will no reduction in regret and hence Algorithm 2 will converge. �

Theoretically, we can only provide loose bounds on the number of iterations. Since
the maximum regret is equal to the maximum expected value minus the minimum possible

248



Sampling Based Approaches for Minimizing Regret in Uncertain MDPs

reward for any policy (i.e., H ∗Rmin) over all the samples and the regret decreases at each
iteration by ε, the maximum number of iterations is:

maxξq{v∗ξq} −H ∗R
min

ε

where Rmin is minimum reward over all state, action pairs, time steps and samples.

Please note that in each iteration, Algorithm 2 makes |H| calls to OneStepRegret()
linear program which comprises of |S||A| + |ξ| variables and 2 ∗ |ξ| + |S| constraints. As
described in Proposition 6, the number of iterations is finite. The complexity of the linear
program is polynomial with respect to the number of variables and constraints. Therefore,
for a fixed number of states, actions and time horizon, the overall complexity of OSR is
polynomial with respect to number of samples.

We note that the OSR solution can be extended to similarly define two step or m-step
regret optimal policy. However, the expected payoff computation will no longer be linear
and we will have to use linearization techniques discussed earlier for the standard regret
solution.

8. Experimental Setup

In this section, we describe the two benchmark problems and the procedure employed to
perform the SAA analysis.

8.1 Benchmark Problem 1: Stochastic Inventory Control under Demand
Uncertainty

In the single product finite horizon stochastic inventory control problem (Puterman, 1994),
at the beginning of each time period and before observing the demand, the manager deter-
mines the current inventory size and decides whether or not to order an additional stock
from a supplier. Traditionally, the problem is modelled as an MDP with the assumption
that the underlying demand distribution is known.

Here, we assume the demand distibution is unknown, but we have access to discrete set
of demand values that have been observed in the past for each time step. We also assume
that these demand value sets are independent. This allows us to model the problem as an
uncertain MDP with independent uncertainties. We now define each of the uncertain MDP
tuple variables as follows:

• The inventory size st gives us the state space.

• The order value at gives us the action in each state. If the inventory size is bounded
by smax, then the action set in state st is given by

{
0, ..., smax − st

}
.

• Denote uncertain demand values at time step t by ξt =
{
dt0, d

t
1, ..., d

t
k

}
. If the unit

order cost is c, the unit cost of maintaining the inventory is m and the unit revenue
of selling the product is r, the reward function is given by:

Rtdq(s, a) = r ·min
{
st + at, dtq

}
− c · at −m ·max{st + at − dtq, 0}
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• For a fixed sample dtq ∈ ξt, the transition function is deterministic. The inventory at
time step t+ 1, st+1 is given by:

st+1(st, at) = max
{
st + at − dtq, 0

}
A standard approach for the above uncertain demand inventory management problem is

to maximize the minimum expected values or maximin solution. In this paper, we evalutate
the regret based solutions and the maximin solutions across different distributions and
different cost-to-revenue ratios defined as c+m

r .

8.2 Benchmark Problem 2: Disaster Rescue

The second benchmark problem is a grid world disaster rescue problem (Bagnell et al.,
2001) that is also similar to the one introduced by Nilim and Ghaoui (2005). Here again,
our goal is to compute a regret based policy when there is uncertainty in both transition
and reward functions. To introduce the desired uncertainty, we consider multiple maps
with the same number of grids in each map but different obstacle and reward cells, i.e., we
varied the cells that are labelled as obstacle or reward cells. While the stochastic obstacles
lead to an uncertain transition function, stochastic reward cells lead to an uncertain reward
function. For each problem, we varied the reward cells, the obstacle cells, the number of
maps (characterised by the number of samples) and sizes of the grid world (characterised
by the number of states). Figure 3 gives an illustration of a 4× 4 grid.

(a)

Figure 3: 3 maps with different reward and obstacle cells

8.3 Sample Average Approximation (SAA) Analysis

In this section, we describe the standard method of performing the SAA analysis. As is
usually the case, we employ the SAA analysis to provide posteriori bounds on the solutions
obtained by our approaches and consequently also to determine the number of samples
required by our algorithms to generate good quality solutions.

Each sample (scenario) is described by i = {i1, i2, i3, ..., i|T |} and belong to the set I (in
the case where we consider independent transition probabilities/rewards in each stage, I is
the set of samples which are cross products of independent samples in each stage). Followed
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from the sample average approximation (SAA) method described by Shapiro (2003b), the
steps to calculate the approximate optimality gap are as follows:

1. Generate the set of sample sets, M =
{
I1, I2, ..., I|M |

}
, where each sample set is of

size |I|. Also generate a larger sample set of size |I ′| � |I|.

• For m = 1, ..., |M |, solve the problem with sample set Im to obtain the solution
value ¯reg∗m and policy π̄m

2. Compute the average of the objective values obtained which is a statistical lower
bound of the problem and their corresponding variance as follows:

ˆreg∗ =
1

|M |
∑
m∈M

¯reg∗m and σ2
ˆreg∗ =

1

|M |(|M | − 1)

∑
m∈M

( ¯reg∗m − ˆreg∗)2 .

3. Let π̄ be the selected solution from the set of solutions obtained in Step 1. Denote
by reg∗I′(π̄) the regret value of the policy π̄ on the large sample set I ′. This value is
the sample average estimate of the true objective function of the policy π̄. Also, its
variance can be computed as follows:

σ2
I′(π̄) =

1

|I ′|(|I ′| − 1)

∑
i∈I′

( ¯reg∗i (π̄)− reg∗I′(π̄))2

where ¯reg∗i (π̄) is the regret of the policy π̄ corresponding to each sample i ∈ I ′.

4. The absolute optimality gap of the solution π̄ and its variance can be estimated as
follows:

gap(π̄) = |reg∗I′(π̄)− ˆreg∗| and σ2
gap(π̄) = σ2

I′(π̄) + σ2
ˆreg∗ .

We can similarly perform the SAA analysis for MILP-CEMR.

9. Experimental Results

We now provide performance comparisonof various algorithms introduced in previous sec-
tions on the two domains, Disaster Rescue and Stochastic Inventory Control. In order to
ensure the readability of the graphs, we provide names of the algorithms (along with a short
description of the algorithm) in Table 2. The key performance metrics are the runtime (time
taken to compute the policy) and the maximum regret value of the computed policy (i.e.,
the maximum regret over the set of test samples). In the graphs we refer to the maximum
regret value simply as “regret”.

9.1 Performance Analysis of Sampling Strategies

In this section, we compare the performance of using different sampling strategies and also
perform SAA analysis with different number of samples.
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Algorithm Name Explanation

MILP-Regret MILP approximation algorithm with randomized policies
introduced in Section 5.1

MILP-DET-Regret MILP approximation algorithm with deterministic policies
introduced in Section 5.1

MILP-CEMR MILP approximation algorithm for minimizing CEMR in
uncertain MDPs with dependent uncertainties introduced in

Section 6

OSR Local optimal approach that minimizes one step regret
introduced in Section 7

DP-CEMR Dynamic Programming algorithm for minimizing CEMR in
uncertain MDPs with independent uncertainties introduced in

Section 6

Maximin Robust algorithm that maximizes the value in the worst case

Table 2: List of algorithm names

9.1.1 Greedy vs Random Sampling:

The first set of results help us determine the sampling strategy and the number of samples
that are most effective for the sampling algorithms introduced in this paper. We compare
the effect of using greedy sampling strategy as opposed to random sampling strategy on the
MILP-Regret policy in Figure 4a. While we show the results on the disaster rescue problem
(Section 8.2), the SAA analysis of the inventory management problem also yields similar
results. For each grid world size, we measured the performance by varying the number of
obstacles, reward cells, horizon and the number of break points employed (3-6). On X-axis,
we represent the number of samples used for computation of policy (learning set). The test
set from which the samples were selected consisted of 250 samples. We then obtained the
policies using MILP-Regret on the learning sets generated by the two sampling strategies.
On Y-axis, we show the percentage difference between maximum regret values on test and
learning sample sets. We observe that for a fixed difference, the number of samples required
by the greedy sampling strategy is lower in comparison to the random sampling strategy.
Furthermore, the variance in difference is also lower for the greedy sampling strategy. A key
result from this graph is that, even with just 15 samples, the difference with actual regret
is less than 10%.
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Figure 4: (a) Comparison of Greedy and Random Sampling approaches (b) SAA analysis. In (a)
and (b) we have 4× 4 grid.
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Figure 5: Disaster Rescue: (a) Runtime Comparison (b) Regret value comparison of different
algorithms. In (a) and (b), number of samples = 15

9.1.2 SAA Analysis And Number of Samples:

Figure 4b shows that even the gap obtained using SAA analysis is near zero (< 0.1) with
15 samples, the gap and the variance on the gap over three different settings of uncertainty
labeled 1,2 and 3 are shown in the Figure 4b. Setting 3 has the highest uncertainty over
the models and Setting 1 has the least uncertainty. The variance over the gap was higher
for higher uncertainty settings.

Similar tests are performed for other algorithms to determine the appropriate number
of samples and the appropriate sampling strategy.

Overall, as in Figures 4a and 4b, 15 samples generated using greedy sampling strategy
provide stable performance and hence we use the same settings to compare the maximum
regret values of the policies generated by the different sampling algorithms. Specifically, we
compare the policy obtained by the four approaches with respect to the simulated regret
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Number MILP MILP-DET MILP
Of States OSR -Regret -Regret -CEMR

9 1.7508 1.8470 2.2710 2.3464

12 1.6635 1.7186 1.7313 1.8941

16 1.8829 1.9607 2.0203 2.1516

24 1.8145 1.8652 1.9226 1.9567

36 1.6251 1.6631 1.8710 1.7502

48 1.5544 1.5950 1.6640 1.6015

64 1.5958 1.6236 1.6270 1.6401

80 1.4947 1.5265 1.7165 1.5358

100 1.4134 1.4275 1.5267 1.4359

Table 3: Regret value comparison of different algorithms for disaster rescue problem

Number MILP MILP-DET MILP
Of States OSR -Regret -Regret -CEMR

9 1.5586 45.9711 0.1202 2.0505

12 1.9231 66.0104 27.4042 4.5839

16 5.2026 1617.7615 2888.2218 812.2525

24 15.6045 3601.5521 3613.2375 896.6568

36 26.4317 3624.6838 3600.5440 2907.6537

48 49.0042 3600.3272 3600.5170 3600.1973

64 102.9541 3610.4338 3600.3104 3613.4454

80 183.2110 3605.2016 3601.5438 3600.4652

100 327.9983 3605.1479 3600.5690 3609.6117

Table 4: Runtime comparison of different algorithms for disaster rescue problem

(on 250 samples)5 and runtime.

9.2 Performance Comparison of Regret Minimizing Algorithms

In this section, we provide a detailed comparison of the performance of different regret
minimizing algorithms on the two domains described in section 8.

9.2.1 Disaster Rescue

We now provide a performance comparison of the approaches for disaster rescue domain.
In Figure 5 we present the run-time and regret results obtained on disaster rescue problem
for all approaches. Tables 3 and 4 provide the values shown in the Figure 5. We gradually
increased the number of reward cells and obstacle cells. In the reported results, one reward
cell and one obstacle cell are used for 3 × 3 grid and for 10 × 10 grid, we used 12 reward

5. As the OSR policy depends on the random policy chosen in the beginning, we ran the OSR policy
computation with 10 different starting policies and the OSR policy with minimum regret is evaluated on
the test set of 250 samples
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cells and 3 obstacle cells. The reward values for each cell are randomly chosen between 0
and 1.

Run-time Comparison of All Approaches: In Figure 5a, we compare the time taken
by the MILP-Regret, the MILP-DET-Regret, the MILP-CEMR and the OSR algorithms.
On X-axis we provide the number of states (grid size) and on Y-axis we represent the time
taken in seconds. As the grid size increases, the time taken by OSR is significantly lower
than the time taken by MILP-Regret. For larger problem instances (the number of states
> 24) MILP-Regret could not compute a solution with optimality gap < 5% within an hour
but the OSR algorithm terminated within 15 minutes. For obtaining OSR policy using
algorithm 2, we used the value of ε as 0.001. We later show that, using a small value of ε,
does not have any impact on the quality of OSR solution.

Regret Comparison of All Approaches: Figure 5b represents the comparison of sim-
ulated regret values obtained using the four approaches. On X-axis we have the scale of
the problem represented using the number of states and on Y-axis we have the simulated
regret value computed over 250 samples. We observe that regret value obtained by OSR is
less than or equal to the values obtained by MILP-Regret, MILP-DET-Regret and MILP-
CEMR6. While MILP-CEMR obtained a simulated regret value within the bound provided
in Proposition 1, we were unable to find any correlation in the simulated regret values of
MILP-Regret and MILP-CEMR policies. We note that there is no immediate relationship
between the number of states and regret values. The regret values are largely affected by
the distribution of reward and obstacles cells because they induce reward and transition
uncertainty. We include the results for different numbers of states for the sake of complete-
ness and to further highlight the advantage of OSR over other approaches as increasing the
number of states increases the computational complexity.

Performance Dependence of OSR on Starting Policy: Given the local improvements
made by OSR, it is important to consider the effect of starting policy on the quality of solu-
tions obtained. We computed the mean and standard deviation of simulated regret values
on 250 samples obtained by OSR with 500 different starting policies. Figure 6a shows
the mean and deviation of regret values for different grid sizes. It can be noted that the
deviation values are very low (in the range of 10−2) indicating that the quality of OSR
solution is comparable to other approaches irrespective of the starting policy used in the
OSR algorithm.

Convergence of OSR: To illustrate convergence with OSR, we show the regret values
(on the training set containing 15 samples) obtained at each iteration of OSR. Figure 6b
shows the regret value obtained for different states at each iteration. The regret values in
this case are different from the values in Figure 6a as this figure shows the simulated regret
values on the 250 samples test set whereas Figure 6b shows the regret values calculated on
15 samples used in one of the instance for the OSR policy computation. For these results,
we executed the Algorithm 2 until the policy converges, i.e., we did not use the difference

6. For the larger problem instances where approaches were unable to compute a solution in 1 hour, we used
the best solution in 1 hour
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Figure 6: Disaster Rescue: (a) Mean and variance of OSR with different starting policies.
(b) Convergence of OSR. In (a) and (b), number of samples = 15

in regret values as the stopping criteria (line 14-15 in Algorithm 2).
It can be noted that, after 5-6 iterations, the change in regret value is minimal. Therefore,
we can obtain a policy with local optimal regret value even if we terminate the policy
computation early.

Inventory DP MILP MILP-DET
Size OSR -CEMR -Regret -Regret

2 0.0745 0.0742 0.0766 0.0800

4 0.1785 0.2145 0.2200 0.2170

8 0.4230 0.4993 0.5081 0.5182

10 0.5185 0.6026 0.6257 0.6248

15 0.8767 0.9238 0.9511 1.0275

20 1.0874 1.2776 1.2356 1.4174

30 1.7555 1.8678 2.0102 2.0077

Table 5: Regret value comparison of different algorithms for inventory management problem

Inventory DP MILP MILP-DET
Size OSR -CEMR -Regret -Regret

2 0.8579 0.0057 18.0950 2.3990

4 2.4898 0.0370 10.2303 9.6254

8 5.1546 0.4020 240.1578 3600.3138

10 18.4616 0.7391 802.4111 3600.4819

15 22.4234 0.9837 787.2640 3600.0820

20 50.7135 6.1107 3281.4904 3600.5303

30 124.3970 23.8553 3600.6507 3600.4732

Table 6: Runtime comparison of different algorithms for inventory management problem
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Figure 7: In (a),(b) and (c), number of samples used for policy computation is 15 and
simulated regret is calculated using 250 sample test set. Cost to revenue ratio = 0.5. In (d)
the maximum inventory size (X) = 50, H = 20, |ξt| = 50. Average value is computed over

10000 runs. The normal distribution mean µ = {0.3, 0.4, 0.5} ·X and σ ≤ min{µ,X−µ}
3

.

9.2.2 Stochastic Inventory Control under Demand Uncertainty

We also conducted similar comparisons of the approaches on the well known single prod-
uct finite horizon stochastic inventory control problem described in Section 8.1. As the
uncertainties are independent in the inventory control problem, we can use the DP-CEMR
approach to compute the cumulative regret optimizing policy.

Runtime And Regret Comparison of All Approaches: We compared the runtimes
and regret values for the MILP-Regret, the MILP-DET-Regret, the DP-CEMR and the
OSR approaches. Figures 7a and 7b show the comparison of these approaches for inventory
control problem7. The demand values at each decision epoch were taken from a uniform
distribution. We observed similar results as the disaster rescue domain.

7. Tables 5 and 6 contains the values used to plot these figures.
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For larger inventory sizes, the MILP-Regret and the MILP-DET-Regret approaches
were not able to compute a solution8 in an hour. While DP-CEMR was the fastest amongst
all approaches due to the computational complexity of the DP algorithm, the OSR also
provided a comparable runtime performance. With both DP-CEMR and OSR, runtime
increased linearly with the increase in the number of states. As for the regret value for
this domain, the regret of the OSR policy (over 250 samples) was less than or equal to the
values provided by MILP-Regret, MILP-DET-Regret and DP-CEMR.

Convergence and Dependence on Starting Policies for OSR: We observed similar
behaviour with respect to convergence of the OSR approach. In all instances, OSR con-
verged in around 10 iterations as shown in Figure 7c. With respect to dependence of final
outcome on starting policy for OSR, we observed similar results as those in the disaster
rescue problems. Deviation values were very low (in the range of 10−2).

Comparison against Maximin: Finally, we also demonstrate the conservative nature
of the Maximin policy in comparison with the policy provided by our approaches (OSR
and DP-CEMR). More specifically, we compare the expected value obtained using the OSR
and the DP-CEMR approaches against Maximin approach. Figure 7d provides the result
of this comparison. The demand values at each decision epoch were taken from a normal
distribution. We considered three different settings of mean and variance of the demands.
As expected, the OSR and the DP-CEMR approaches provide much higher values than
Maximin and the difference between them reduced as the cost to revenue ratio increased.
It is worth noting that, although the regret of the DP-CEMR is higher than the OSR
the average expected value obtained using both approaches are comparable. We obtained
similar results when the demands were taken from uniform and bi-modal distributions.

10. Related Work

There are two main threads of model (transition or reward function) uncertainty considered
in uncertain MDPs. The first thread assumes adversarial model uncertainty, i.e., rewards
and transitions are selected in an adversarial manner (minimizing value or maximizing regret
or increasing risk of failure) to the chosen policy. The second thread assumes oblivious model
uncertainty, i.e., rewards and transitions are selected independently of the policy.

Our work has similarity with the work on uncertain convex programs (Calafiore &
Campi, 2005) in that we also employ sampling to reduce the complexity of robust policy
computation. However, due to the focus on MDPs and general models of uncertainty, there
are clear differences with the work on uncertain convex programs.

10.1 Adversarial Model Uncertainty

There are three threads of research which are most relevant to the work presented in this
paper on solving uncertain Markov Decision Processes with adversarial model uncertainty.

8. with less than 5% optimality gap
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10.1.1 Maximin Objective

The first thread of research focuses on the well known maximin objective, where we com-
pute a policy that maximizes the value in the worst case realization of the model uncer-
tainty (Nilim & Ghaoui, 2005; Iyengar, 2005; Givan et al., 2000; Bagnell et al., 2001).
This notion of robustness can be viewed as a game against the environment, where given
a policy, the environment is choosing an instantiation of transition and reward functions
that will minimize the expected value. Givan et al. (2000) introduced the representation of
bounded parameter MDPs and provided approaches to compute pessimistic and optimistic
value functions when probability for each transition can belong to an interval (and not one
value). A key insight in computing the optimistic (or pessimistic) value is the definition of
value maximizing (or minimizing) MDP, where uncertainty associated with each transition
is instantiated to the higher (or lower) value given the constraint that sum of all outgoing
probabilities for a state, action pair is 1. Bagnell et al. (2001) provide dynamic program-
ming algorithms for maximin objective when uncertainty about transitions are captured as
convex functions. Nilim and Ghaoui (2005) and Iyengar (2005) have identified uncertainty
sets associated with transition functions involving likelihood regions or entropy bounds,
where robustness can be added at practically no extra computing cost to the traditional
dynamic programming approach for solving MDPs. Above mentioned work is different from
the work in this paper due to not accounting for dependence in uncertainties across different
states or decision epochs. Recently, techniques have been proposed to deal with dependence
of uncertainties (Wiesemann et al., 2013; Mannor et al., 2012) while considering maximin
objective.

10.1.2 Minimax Regret Objective

Due to the conservative nature of maximin policies (Delage & Mannor, 2010), the second
thread of research pursued by Regan and Boutilier (2009) and Xu and Mannor (2009) have
proposed minimax regret criterion (Savage, 1954) as an alternative to maximin objective
for uncertain MDPs. Regret associated with a policy, π and an instantiation, ξq is defined
as the difference between optimal expected value for an instantiation and expected value of
π for that same instantiation. Thus, in minimax criterion, the goal is to find a policy that
has the least value of maximum regret over all instantiations of uncertainty. This notion
of robustness can be treated as a game against the environment, where the environment
is choosing an instantiation of uncertainty so as to maximize the regret. In this paper, we
also focus on this minimax notion of robustness.

While minimax regret policies are not conservative, computing optimal minimax re-
gret policies is NP-Hard (Xu & Mannor, 2009) and hence is not scalable. Existing al-
gorithms (Regan & Boutilier, 2010; Xu & Mannor, 2009; Regan & Boutilier, 2009) have
focused on computing optimal minimax regret solutions to uncertain MDPs where only the
reward function is uncertain. Furthermore, the uncertainties in reward for states and deci-
sion epochs are independent of each other. In this paper, we provide a general model and
approaches that not only consider uncertainty over both reward and transition functions,
but also consider the dependency in uncertainty across states, decision epochs.
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10.1.3 Bounded Risk

The third thread of research (Chen & Bowling, 2012; Delage & Mannor, 2010) has focused
on percentile measures that are based on the notions of value at risk (VaR) and conditional
value at risk (CVaR). Informally, percentile measures are viewed as softer notions of robust-
ness where the goal is to maximize the value achieved for a fixed confidence probability.
Chow, Tamar, Mannor, and Pavone (2015) relate the risk sensitive MDPs to robustness
and provide a novel interpretation of CVaR MDPs. They show that optimizing the CVaR
of a discounted cost is equivalent to optimize the expected value of the same discounted
cost in presence of worst case perturbations of transition probabilities under some budget
constraints.

10.2 Oblivious Model Uncertainty

Existing work on uncertain MDPs with oblivious model uncertainty (Szörényi, Kedenburg,
& Munos, 2014; Jaksch, Ortner, & Auer, 2010; Strehl & Littman, 2008; Strens, 2010;
Poupart, Vlassis, Hoey, & Regan, 2006; Wang, Won, Hsu, & Lee, 2012) has focused either
on:

• Identifying an unknown (and unchanging) model through Bayesian Reinforcement
learning (Strens, 2010; Poupart et al., 2006; Wang et al., 2012); OR

• Identifying performance of a given learning algorithm (Szörényi et al., 2014; Jaksch
et al., 2010; Strehl & Littman, 2008) while learning. There are multiple performance
measures and the one of relevance to this paper is regret.

Due to the focus on oblivious model uncertainty, there is a fundamental difference to
work provided in this paper.

11. Conclusions

We have introduced scalable sampling-based mechanisms for optimizing regret through the
use of new regret based objectives, called CEMR and OSR, in uncertain MDPs with de-
pendent and independent uncertainties across states. We have provided theoretical results
that indicate the connection between various regret criterion, quality bounds on regret in
case of MILP-Regret, optimal substructure in optimizing CEMR for independent uncer-
tainty case and runtime performance for MinimizeCEMR. Finally, we demonstrate that the
novel yet simpler OSR approach is able to consistently outperform other approaches to op-
timize regret on the well known inventory management problem and also on disaster rescue
settings.
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Appendix A. Proof of Proposition 1

We can rewrite Equation (7) as follows:

cemr(~π0) = v0,#(~π0)− v0(~π0), where

v0,#(~π0) =
∑
s

α(s)v0,#(s, ~π0) and

vt,#(s, ~πt) =
∑
a

πt(s, a) ·
[
R∗,t(s) + γ

∑
s′

T t(s, a, s′) · vt+1,#(s′, ~πt+1)
]

Therefore, we have:

reg(~π0)− cemr(~π0) = v0(~π∗)− v0,#(~π0)

The difference in the value of the optimal policy (a deterministic one) and any other policy
is because of the states visited by using the policy. In the worst case for CEMR, the optimal
policy visits the state with highest R∗,t and chooses the action corresponding to R∗,t reward.
On the other hand ~π0 visits the states with the lowest R∗,t at every time step. Therefore,
we will have

reg(~π0)− cemr(~π0) ≤
∑
t

(
γt ·

[
max
s
R∗,t(s)−min

s
R∗,t(s)

])
reg(~π0)− cemr(~π0) ≤

∑
t

(
γt ·max

t′

[
max
s
R∗,t

′
(s)−min

s
R∗,t

′
(s)
])

Sum of a geometric progression over the time steps yields

reg(~π0)− cemr(~π0) ≤ max
t

[
max
s
R∗,t(s)−min

s
R∗,t(s)

]
· (1− γH)

1− γ
Similarly,

cemr(~π0)− reg(~π0) = v0,#(~π0)− v0(~π∗)

As v0(~π∗) is the value of the optimal policy, atleast for the last timestep it will have max-
imum value. In the worst case, for the H − 1 steps, ~π∗ will visit the state and take the
action with minimum reward and ~π0 will visit the state with maximum reward. For the
last timestep, both ~π∗ and ~π0, visit the state with maximum reward.

cemr(~π0)− reg(~π0) ≤
t<H−1∑
t=0

(
γt ·

[
max
s
R∗,t(s)−min

s
R
′,t(s)

])
cemr(~π0)− reg(~π0) ≤

t<H−1∑
t=0

(
γt · max

t′ 6=H−1

[
max
s
R∗,t

′
(s)−min

s
R
′,t′(s)

])
Sum of a geometric progression over the time steps yields

cemr(~π0)− reg(~π0) ≤ max
t6=H−1

[
max
s
R∗,t(s)−min

s
R
′,t(s)

]
· (1− γH−1)

1− γ
�
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Appendix B. Special Ordered Sets of Type 2 (SOS2)

A special ordered set of type 2 (SOS2) specifies an ordered set of variables. At most two
variables can take non zero value and the two variables having non zero value should be
adjacent to each other with respect to the order of variables. The order of variables in the
set is determined by weighted value assigned to each variable in the set.

The weight associated with linear variables λtξq(s, a, w) used in Equation (16) is brw, i.e.,
the value at each break point. As only two adjacent variables in the ordered list of variables
can be non-zero, this ensures that only variables corresponding to two adjacent breakpoints
are non-zero. The equivalent binary integer formulation for SOS2 constraint in Equation
(16), SOS2s,a,tξq

({λtξq(s, a, w)}w≤r), is as follows. Let zw be the binary variable associated

with the interval [brw−1, brw]. We have∑
w

λtξq(s, a, w) = 1

λtξq(s, a, 0) ≤ z1

λtξq(s, a, w) ≤ zw + zw+1, ∀w ∈ [1, r − 1]

λtξq(s, a, r) ≤ zr
r∑

w=1

zw = 1

which ensures that if zw = 1, then λtξq(s, a, j) = 0, ∀j 6= w − 1, w.
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