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Abstract

We consider settings where owners of electric vehicles (EVs) participate in a market mech-
anism to charge their vehicles. Existing work on such mechanisms has typically assumed
that participants are fully rational and can report their preferences accurately via some
interface to the mechanism or to a software agent participating on their behalf. How-
ever, this may not be reasonable in settings with non-expert human end-users.Thus, our
overarching aim in this paper is to determine experimentally if a fully expressive market
interface that enables accurate preference reports is suitable for the EV charging domain,
or, alternatively, if a simpler, restricted interface that reduces the space of possible options
is preferable. In doing this, we measure the performance of an interface both in terms of
how it helps participants maximise their utility and how it affects deliberation time. Our
secondary objective is to contrast two different types of restricted interfaces that vary in
how they restrict the space of preferences that can be reported. To enable this analysis,
we develop a novel game that replicates key features of an abstract EV charging scenario.
In two experiments with over 300 users, we show that restricting the users’ preferences
significantly reduces the time they spend deliberating (by up to half in some cases). An
extensive usability survey confirms that this restriction is furthermore associated with a
lower perceived cognitive burden on the users. More surprisingly, at the same time, using
restricted interfaces leads to an increase in the users’ performance compared to the fully
expressive interface (by up to 70%). We also show that some restricted interfaces have
the desirable effect of reducing the energy consumption of their users by up to 20% while
achieving the same utility as other interfaces. Finally, we find that a reinforcement learning
agent displays similar performance trends to human users, enabling a novel methodology
for evaluating market interfaces.

1. Introduction

There is a growing awareness that our use of energy is causing unsustainable stress on the
environment (Stern, 2006). To mitigate this, governments are increasingly advocating the
widespread adoption of electric vehicles (EVs), coupled with a switch to renewable energy
sources (Royal Academy of Engineering, 2010). However, this transition poses considerable
challenges. A significant uptake in EVs will place unprecedented strains on the existing
electricity infrastructure (Ipakchi & Albuyeh, 2009). At the same time, renewable energy is
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typically intermittent, creating a potential mismatch between supply and demand (Lund,
2007).

One promising approach for dealing with these emerging challenges is the use of market
mechanisms, which enable the efficient allocation of scarce resources in multi-agent systems
(Ramchurn, Vytelingum, Rogers, & Jennings, 2012; Samadi, Mohsenian-Rad, Schober, &
Wong, 2012). Specifically, previous work has proposed auction-like mechanisms for schedul-
ing the charging of EVs (Mets, D’hulst, & Develder, 2012; Robu, Gerding, Stein, Parkes,
Rogers, & Jennings, 2013; Hayakawa, Gerding, Stein, & Shiga, 2015). These achieve a high
efficiency because they take the individual preferences of drivers (i.e., their availability and
willingness to pay) into account when allocating a limited supply of electricity. Other work
relies on real-time price signals to incentivise autonomous charging agents to shift or curtail
their consumption when supply is low (Ramchurn, Vytelingum, Rogers, & Jennings, 2011;
Flath, Ilg, Gottwalt, Schmeck, & Weinhardt, 2014).

However, such approaches assume that the human end-users have perfect knowledge of
their preferences, i.e., they can reason accurately about the value of different amounts of
electricity, considering all possible, often uncertain future opportunities of using it. This
is often not realistic (Simon, 1972; Kahneman, 2000). Moreover, providing the complete
preferences is tedious and the associated cost could outweigh the benefits of doing so (Larson
& Sandholm, 2005). Specifically, in the electric vehicle charging setting we consider here,
this would require users to reason about the potential journeys they may wish to complete
in the future, the value of these journeys, and their inherent uncertainty (which may be due
to external events such as the weather, decisions by friends, family and work colleagues, or
even emergencies).

To address this challenge, there has been some work on auctions with restricted reporting,
i.e., where bidders do not report their full preferences, but rather choose from a restricted
set of possible bids. Such auctions can lead to equilibria with certain desirable properties,
including higher revenue for the auctioneer or better computational tractability (Milgrom,
2010; Dütting, Fischer, & Parkes, 2011; Dütting, Henzinger, & Starnberger, 2013). Specifi-
cally, some work has analysed settings where the messaging space is reduced to a small set
of discrete options. For example, Bergemann, Shen, Xu, and Yeh (2012) describe how to
select these options to maximise either social welfare or revenue, and Blumrosen and Feld-
man (2013) characterise the associated loss of efficiency. Other work, e.g., by Sandholm and
Boutilier (2006) and Baarslag and Gerding (2015), considers how complex preferences can
be elicited through an incremental query process. However, these approaches all assume
rational agents and do not evaluate the auctions with non-expert human bidders.

Another strand of work explicitly considers non-expert market participants. For exam-
ple, research on hidden market design has looked at building simple interfaces that hide the
rules and pricing mechanisms of a complex underlying market (Seuken, Jain, Tan, & Czer-
winski, 2010b; Seuken, Charles, Chickering, & Puri, 2010a). However, that work cannot be
applied directly to EV charging, as it considers an exchange market for computational stor-
age without financial payments. Related to this, Seuken, Parkes, Horvitz, Jain, Czerwinski,
and Tan (2012) investigated market user interface design. That work focuses on simplify-
ing complex market interactions by asking users to select from a discrete set of options.
However, it considers a setting with posted prices (as opposed to more complex auctions)
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and is significantly simpler than the EV setting. Crucially, neither work provides a direct
comparison to fully expressive interfaces, which leaves their relative benefits unclear.

To address these limitations, we conduct the first study with human participants that
specifically considers how to design market interfaces for the EV charging setting and that
directly compares fully expressive and restricted interfaces. The key research questions we
seek to answer are whether fully expressive or restricted interfaces are preferable in this
setting (in terms of maximising the participants’ utility, and reducing their deliberation
time and perceived cognitive burden) and which types of restricted interfaces work best
(i.e., a small set of discrete options or a large but lower-dimensional reporting space). In so
doing, we make several novel contributions:

• First, we formalise the EV charging setting to capture several real-world challenges
that give rise to complex preferences and we design two restricted interfaces for report-
ing preferences in this setting: one that reduces the dimensionality of the reporting
space (but retains an infinite number of options) and one that restricts the reporting
space to a discrete set of options.

• To evaluate these interfaces with real users, we then develop a game that serves as an
abstract representation of the EV charging setting. Using this game, we experimen-
tally compare the restricted interfaces to a fully expressive interface in two large user
studies involving a total of over 300 participants hired on Amazon Mechanical Turk,
showing that:

– restricted interfaces significantly alleviate the participants’ cognitive burden. We
measure this through a range of metrics, including the time they take to interact
with the market (halving their deliberation time in some cases) and a number of
usability metrics collected through a survey (showing that restricted interfaces
lead to lower perceived mental demand, less frustration and higher ease of use).

– restricted interfaces lead to a significantly better performance than the fully
expressive interface (up to 70% in some cases). This difference in performance
is most pronounced for new users.

– some interfaces lead to the same performance for their users, but induce different
behaviours. Specifically, a restricted mechanism that offers users the option to
set a maximum charge amount leads to a 20% reduction in energy consumption
in some settings (while otherwise achieving the same performance as another
restricted mechanism without this option).

– a reinforcement learning agent displays similar general behaviour trends as the
human players in our experiments. This potentially paves the way for a new
approach for optimising market interfaces using reinforcement learning agents to
predict the responses of human users, thereby reducing the need for large-scale
user trials.

The remainder of this paper is structured as follows. In Section 2, we discuss related
work, focussing on market and mechanism design, as well as human-computer interaction.
In Section 3, we then formalise the EV charging problem, including how we model the market
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mechanism and the driver’s travel opportunities. Given this formalisation, we discuss how
to solve it in Section 4, using either an optimal model-based algorithm or a model-free
reinforcement learning approach. These solutions serve as benchmarks against which we
later compare human behaviour. In Section 5, we then formalise the restricted market
interfaces we consider in this paper and in Section 6, we describe Bid2Charge, the game
we use to evaluate our market interfaces. We discuss our experimental setup and results in
Section 7 and finally conclude in Section 8.

2. Related Work

There is already a significant body of literature that deals specifically with the problem
of charging EVs within the constraints of a limited electricity distribution infrastructure.
Some address this by using a central planner to coordinate the charging of EVs (Clement-
Nyns, Haesen, & Driesen, 2010; Petrou, Quiros-Tortos, & Ochoa, 2015), while others use
decentralised control algorithms (Ahn, Li, & Peng, 2011). However, those approaches as-
sume that EV drivers are cooperative and provide accurate information about their charging
requirements. This neglects the fact that drivers are typically self-interested agents that
may strategise about the information they reveal (if this is to their own benefit) and that
need to be motivated through appropriate incentives. To address this, recent work on EV
charging has looked at market-based approaches, which either incentivise truthful reporting
(Robu et al., 2013; Hayakawa et al., 2015) or balance supply and demand through real-time
prices (Ramchurn et al., 2011; Flath et al., 2014).

However, these market mechanisms have an inherent complexity that must be addressed
for non-experts to use them effectively. Thus, in Section 2.1, we discuss existing work that
has looked at restricting the complexity of markets. Then, we look more generally at the
related area of designing human-computer interaction mechanisms in complex environments
(Section 2.2). That work motivates the guiding hypothesis of this paper that restricted
interfaces, which intentionally limit the information that can be reported by users, are
beneficial in real-world markets with non-expert participants.

2.1 Markets and Mechanism Design

Many markets in practice use mechanisms which are not fully expressive, i.e., where bidders
are not able to fully express their entire utility function (Milgrom, 2010). A well-known
example is the auction market for selling radio frequency spectrum licences for mobile, radio
and television. Preferences in such settings are complex since there are complementarities
(i.e., a set of multiple items may be more valuable than its constituent parts individually) as
well as interdependencies (i.e., an agent’s utility depends on the private information known
by other agents), but the auctions used, mostly variants of simultaneous ascending clock
auctions, often do not package bids and consequently do not allow complex preferences to
be fully expressed (Cramton, 2010). This is because it would simply be too costly or even
infeasible for bidders to fully specify all the dependencies, and indeed this is not always
needed to obtain efficient outcomes (Ausubel, 2004; Hartline & Roughgarden, 2009). An-
other example is online advertising. In sponsored search (where ads appear alongside search
results, also called position or keyword auctions), several ads are auctioned simultaneously
by bidding on (combinations of) keywords, and top ads are more valuable. However, the
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mainstream mechanism, called the generalised second-price (GSP) auction, does not allow
bidders to express different valuations for different slots, resulting in inefficiencies (Benisch,
Sadeh, & Sandholm, 2008b). Similarly, in display or banner advertising, multiple slots on
the same webpage are auctioned off simultaneously but, typically, in separate ad auctions,
preventing the expression of combinatorial preferences (such as substitutes and comple-
ments). The main advantage is that these mechanisms are not only simpler to understand,
but they are also computationally simpler. This computational simplification is critical in
online settings where winners need to be determined within milliseconds. While many pa-
pers exist that analyse these applications, the focus is often on the performance (in terms of
revenue and/or efficiency) of the specific auction rather than explicitly comparing auctions
based on their expressiveness, which is what we do in this paper.

Several papers do explicitly consider the effect of expressiveness of the auction design.
Specifically, Blumrosen and Feldman (2006, 2013) study the level of discretisation of the
action space (i.e., the bids) in single-parameter domains and its effect on revenue. A more
general approach is taken by Benisch, Sadeh, and Sandholm (2008a). In their work, the au-
thors note that, in general, expressiveness cannot be measured by the dimensionality of the
agents’ reports since any finite-dimensional report can be mapped to a single-dimensional
one without loss of expressiveness. Instead, they propose new measures of expressiveness
based on impact and show that more expressive mechanisms are more efficient. On the other
hand, Milgrom (2010) shows that a restricted message space can lead to improved revenue
by excluding low-revenue equilibria. This work is extended by Dütting et al. (2011), who
consider restricted message spaces for both sponsored search and combinatorial auctions,
and consider settings with both complete and incomplete information about other agents’
valuations. These papers (Milgrom, 2010; Dütting et al., 2011) focus on so-called tight
simplifications, where no new equilibria are introduced. In contrast, Dütting et al. (2013)
consider a range of classes of non-fully expressive preference representations in combinato-
rial auctions, from additive to subadditive representations, but where the actual preferences
are more general. They analyse the widely-used Vickrey-Clarke-Groves (VCG) mechanism,
which is no longer truthful in such settings. They show that computing pure Nash equilibria
is NP-hard when the representation is additive but the preference domain is subadditive.
Finally, they compute bounds on the price of anarchy (i.e., the proportion between the
outcome maximising social welfare and the social welfare of the worst equilibrium out-
come) and show that welfare loss w.r.t. to the worst-case Nash equilibrium increases with
expressiveness.

All of the work discussed so far analyses the auctions theoretically. However, given that
often multiple equilibria exist and people do not often behave as predicted, especially in
complex settings (Kahneman, 2000; Rosenfeld & Kraus, 2012), it is not clear how humans
will behave when faced with different trade-offs between simplicity and expressiveness. The
closest work that analyses different market mechanisms with human trials is by Seuken et
al. (2010b, 2012). However, the markets analysed in those papers do not consist of auctions
but rather a fixed set of packages offered to the user, and the aim is to present those choices
as to maximise efficiency. Crucially, other than varying the number of choices (from 3 to 6),
the complexity of the interfaces remains the same. This is different from our work, where
we analyse three types of designs, in which the restrictions in terms of expressiveness, and
the complexity for the user, differ substantially.
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2.2 Human-Computer Interaction

While auctions may be an effective mechanism to allocate energy, to date there has been
only limited research on how people could participate in such energy auctions. However,
there has been some relevant work on how to design appropriate interfaces for more general
home energy management applications. Specifically, a number of papers have focused on the
visualisation of the amount of energy devices use, while implicitly attempting to advocate
conversations through better user awareness of their consumption (Pierce & Paulos, 2012;
Bartram, 2015). Other work has begun to consider how to design interfaces that explicitly
promote sustainability by persuading a user to change their behaviour to be more energy
efficient (Kluckner, Weiss, Schrammel, & Tscheligi, 2013; Coskun, Zimmerman, & Erbug,
2015). There is also parallel work that considers specifically how to design the in-car
interface for an EV to better inform drivers about the current state of the vehicle as it is
being driven (Strömberg, Andersson, Almgren, Ericsson, Karlsson, & N̊abo, 2011; Jung,
Sirkin, Gür, & Steinert, 2015). This work has highlighted new challenges, e.g., about
clearly presenting electrical concepts to non-expert users (Strömberg et al., 2011) or about
informing them about the inherent uncertainty of an EV’s range (Jung et al., 2015). These
are issues that are relevant to our application, but they do not deal with the complexity of
an EV charging market. Indeed, as has been pointed out by Pierce and Paulos (2012), there
has been little research on what type of interface is best suited for proper engagement with
emerging energy systems, such as the energy markets we consider for EVs in this paper.

The key difficulty in designing interfaces for complex markets is deciding what informa-
tion should be presented to the user. Generally, one might assume that presenting the user
with more information is always advantageous, as supported by Endsley’s idea of Situation
Awareness (SA) (Endsley, 1995). SA quantifies the user’s ability to identify, process, and
comprehend critical elements of information. Three levels of SA exist: perception, compre-
hension and projection. The lowest level, perception, assumes the user perceives, but does
not fully understand the important elements in the environment. Comprehension indicates
that the user not only sees the information, but also comprehends its significance. The
third level assumes that user also can use the information to effectively plan her next ac-
tivities. Based on SA, one might assume that interfaces that present the most information
are always advantageous as they present the user with enough information to properly plan
optimal activities.

These three SA levels loosely correspond to the different interface choices we evaluate in
this paper. The most restricted interface we present has only three static choices, allowing
the user’s actions to depend only on broad perceptions but without the need for deep com-
prehension or projection. At the other extreme, the fully expressive interface we consider
allows the user to fully control and plan their actions optimally, requiring both comprehen-
sion and detailed forward planning. Between these extremes is a middle ground, reflecting
the second SA level, which requires the user to comprehend the meaning of specific bids
but does not necessitate full consideration of all possible outcomes.

However, previous work has raised questions both as to the general importance of SA
(Flach, 1995), and if creating interfaces that provide more information is useful (Seuken
et al., 2010b, 2012; Elmalech, Sarne, Rosenfeld, & Erez, 2015b; Elmalech, Sarne, & Grosz,
2015a). Similar to our work, Onal, Schaffer, O’Donovan, Marusich, Yu, Gonzalez, and
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Höllerer (2014) consider how much information should be presented to a user in an abstract
trust game based on the iterated diner’s dilemma. They found that the complexity of
interfaces had a significant effect on the main performance metric, with more expressive
interfaces allowing users to perform significantly better. Conversely, there is growing work
that questions if people should be given all information as doing so may actually hurt their
performance. Elmalech et al. (2015b) demonstrate that at times people should not be
given optimal advice as their bounded rationality prevents them from properly processing
and accepting it. This is related to our approach in this work, where we contrast fully
expressive interfaces, which theoretically allow people to achieve optimal performance, with
simpler interfaces that ostensibly entail lower levels of SA and that do not allow users to
act optimally.

Another relevant strand of work within human-computer interaction is the automatic
design of user interfaces (Hodes, Katz, Servan-Schreiber, & Rowe, 1997; Nichols, Myers, Hig-
gins, Hughes, Harris, Rosenfeld, & Pignol, 2002; Gajos, Weld, & Wobbrock, 2010). These
approaches compose interface components based on high-level descriptions and constraints,
in some cases optimising the interfaces for a particular user (Gajos et al., 2010). In a similar
manner, multivariate landing page optimisation (MVLPO) is widely used by organisations
to optimise the placement of content within Web interfaces (Ash, 2011). These approaches
are complementary to our own — while we are interested in the fundamental types of mar-
ket interfaces that work well in an EV charging setting, their respective components and
layouts could be further optimised using such approaches.

3. The EV Charging Problem

In this section, we present an abstract model of the EV charging problem. Our aim is to
capture the key challenges that are inherent in the domain, while still retaining a succinct
and general model.1 More specifically, we capture the following challenges that are found
in realistic settings:

• First, electricity has no intrinsic value. Its value instead depends on how it is
utilised to complete journeys.

• Second, the problem is of an inherently uncertain nature. On the one hand, this is a
key feature of the market itself, as supply and demand may fluctuate significantly over
time. On the other hand, there may be considerable uncertainty over what journeys
the driver needs to complete in the future.

• Third, there are complementarities, i.e., the driver’s preferences are typically highly
nonlinear over the quantity of electricity they receive. For example, a driver may re-
quire a minimum overnight charge of 10 kWh to drive to work the next day. Receiving
any less has no value.

1. A succinct and general model here provides us with a basic framework that focuses on the main challenges
and that is easy to explain to participants in our user trials. It also constitutes a solid basis for future
work exploring other challenges in the EV domain, such as range anxiety or en-route charging.
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Given this, we consider a general setting where EV drivers participate in a market
mechanism to charge their vehicles. We abstract away from the particular market2 and
assume that a driver simply reports her preferences for charging to an autonomous agent at
regular intervals (e.g., once a day) through an appropriate market interface. In this section
and the next, we will assume that the market interface is fully expressive, i.e., that it allows
the driver to report from the full set of possible preferences. Later, in Section 5, we will
then describe restricted interfaces. Given the preferences, the agent then participates in
the market on its owner’s behalf and procures electricity for the vehicle while it is plugged
in (e.g., overnight). At the end of the charging period, the driver can use the vehicle to
complete journeys and derives value from doing so.

More formally, the problem consists of a sequence of n days, D = {1, 2, . . . , n}.3 An EV
starts with a given initial state of charge (SOC) s1 ∈ [0, smax] (in kWh). Then, at the start
of each day d, the driver reports her charging preferences to an autonomous agent, which
procures electricity from the market to charge the EV.

3.1 Electricity Market

We assume electricity is sold in discrete, unit-sized quantities (we use 1 kWh, w.l.o.g.). To
participate in the market for day d, the EV driver reports her preferences for each quantity
of electricity to her charging agent via a suitable market interface. This is done in the form
of a preference report vector wd = [wd,1, wd,2, . . . , wd,smax−sd ], which indicates the driver’s
maximum willingness to pay for a given charge on that day. Here we assume that the
report vector is bounded by the capacity of the battery, i.e., no valuations are reported for
units that would exceed the battery capacity. This structure allows complementarities to
be expressed — for example, a preference vector wd = [0, 4, 5] indicates that the driver is
not willing to pay anything for receiving 1 kWh (e.g., because this is too little to complete
any journeys), she will pay up to $4 for 2 kWh and up to $5 for 3 kWh.

Given this preference vector, the charging agent then participates in the market and ob-
tains xd(wd) ≤ |wd| units of electricity at a price of pd(wd). These are uncertain, depending
on the day’s market conditions (e.g., supply of renewables and fluctuations in aggregate de-
mand), but we assume that the agent maximises the driver’s utility in expectation, such that
truthful reporting is optimal, i.e., ∀wd, ŵd : E[wd,xd(wd) − pd(wd)] ≥ E[wd,xd(ŵd) − pd(ŵd)],
where wd is the driver’s true willingness to pay. In practice, this can be achieved by partic-
ipating in an incentive compatible mechanism (Robu et al., 2013; Hayakawa et al., 2015) or
by acting strategically on the owner’s behalf, e.g., when optimising charging decisions given
price predictions for real-time pricing (Ramchurn et al., 2011). Throughout the paper, we
will also assume that future market conditions are independent from a driver’s previous
reports, i.e., xd+x and pd+x are independent from wd for any x ≥ 1. This is reasonable
in markets with many participants and where supply and demand depend significantly on

2. For example market mechanisms, see the work of Ramchurn et al. (2011), Robu et al. (2013) and
Hayakawa et al. (2015).

3. We focus on a finite horizon here for practical considerations. First, it enables the efficient calculation of
the optimal solution, and, second, our experimental trials are necessarily limited by time. In practice, n
can be an arbitrarily large horizon (e.g., over a month or a year) and extensions to infinite settings with
discounted future rewards are straight-forward.
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external factors, such as the availability of renewables or the need to recharge vehicles for
daily journeys.

3.2 EV Utilisation

Given the outcome of the market interaction, the new SOC of the EV is now s′d = sd+xd(wd).
This can then be used by the EV driver to complete journeys. Specifically, every day, there is
a set of potentially available journeys, jd ⊆ J , where J = {1, 2, . . .} is the set of all journeys.
These represent possible journeys the driver may wish to make during the day (e.g., driving
to work or to the supermarket). To model realistic scenarios, at the time of reporting
preferences, there may be uncertainty about which journeys will be available (e.g., because
they depend on the weather or because some journeys will only be necessary in exceptional
circumstances). To reflect this uncertainty, a journey is defined by a probability rj ∈ [0, 1]
(we assume these are independent, although this can be easily relaxed, as discussed briefly
in Appendix A) and a value vj ∈ R. The value of a journey reflects its importance to the
driver and may represent the inconvenience cost incurred when missing the journey, or even
the cost of alternative transport (e.g., to travel to work). The sets of potential journeys
jd are known in advance for all days, but the set of actually available journeys on day d,
denoted by j′d ⊆ jd, only becomes known after charging is complete on that day.

Given the set of journeys j′d, the driver now chooses which subset ad ⊆ j′d of these
to complete. Doing so reduces the EV’s SOC, as given by an appropriate cost function
γ : 2J → R≥0 (journeys that exceed the SOC cannot be completed). Furthermore, the
driver receives the total value of these journeys. Thus, her total utility is the difference
between the overall value derived from journeys over time horizon D, and the total costs
incurred. In the following subsection, we conclude this section with an illustrative example
of the model.

3.3 Illustrative Example

To illustrate the EV charging problem, we here briefly describe a scenario that highlights
the key features of our model. Specifically, Figure 1 shows three potential destinations that
a driver may wish to travel to on a given day and that are at different distances to her
home. The first is a trip to the office, journey 1, which is completely predictable, r1 = 1,
and carries a high value, v1 = $20. The second, journey 2, is a visit to the gym, which is of
a medium value, v2 = $5, and less likely to be available, r2 = 0.5 (this uncertainty may be
because the driver is only able to go the gym if they finish work early). Finally, the third,
journey 3, is an emergency trip to an important customer. This is unlikely (r3 = 0.05),
but carries a high value (v3 = $200). The costs for individual journeys are γ({1}) = 5
kWh, γ({2}) = 4 kWh and γ({3}) = 7 kWh, which are derived from the distances of the
respective destinations to the driver’s home location (Figure 1 shows one-way journey costs
on the edges between locations). The gym is near the office, so the two journeys can be
combined and γ({1, 2}) = 6 kWh, but the customer is in the opposite direction, so adding
journey 3 will always use another 7 kWh (e.g., γ({1, 2, 3}) = 13 kWh).
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v1 = $20
r1 = 1
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v2 = $5
r2 = 0.5

3
v3 = $200
r3 = 0.05

2.5

1.5 2

3.5

Figure 1: Illustrative example with three potential journeys (1,2,3). Node 0 denotes the
user’s home location. Edges are labelled with the one-way travel costs (in kWh) and the
journey values (vi) and their probabilities of being available (ri) are shown.

kWh

$

4

2.5

5

20

7

31.375

Figure 2: Driver’s true willingness to pay, wd, for the example in Figure 1.

Assuming there is only a single day,4 and that the battery is initially empty (s1 = 0), it
is now possible to calculate the driver’s true willingness to pay for each amount of electricity
given the costs, probabilities and values of the potentially available journeys. For this par-
ticular example, this is w1 = [0, 0, 0, 2.5, 20, 22.5, 31.375, 31.375, 31.375, 31.5, 31.5, 32.375,
32.5], as shown in Figure 2. Here, w1,x = 0 for x < 4, because the driver has an insufficient
charge to complete any journeys, w1,4 = 2.5, because she has just sufficient charge to com-
plete journey 2 for a value of $5, but the journey’s probability of appearing is only r2 = 0.5.
Next, w1,5 = 20, because the driver now has enough charge to reach the office, which is
a better choice than the gym, yielding a value of $20, and it is definitely available. The
next significant increase in the driver’s willingness to pay happens for w1,7 = 31.375, when
she has sufficient charge to complete either journey 3 (if it is available) or both journeys 1
and 2.

4. This is a simplifying assumption to keep the example brief. The optimal solution discussed in the next
section takes into account future days.
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This example illustrates that even a simple setting can lead to complex and comple-
mentary valuations for electricity that the user needs to report via a market interface. In
the following section, we will discuss two approaches for computing these valuations com-
putationally. One approach is optimal and one is a learning approach that may be a better
model of human behaviour.

4. Modelling EV Driver Strategies

In this section, we consider the potential behaviour of an EV driver. Although we are pri-
marily interested in how real users behave in the EV charging problem, these will constitute
important benchmarks to which we can compare the users’ performance when interacting
with specific market interfaces. The first benchmark is an optimal strategy (Section 4.1),
which provides an upper bound for how well a fully rational participant could perform.
However, as it assumes a perfect model of all potential market allocations and prices, as
well as future journeys, we also present a second benchmark that starts with no prior model
and learns a good strategy only through repeated interactions (Section 4.2). To keep the
exposition brief, the strategies are outlined here at a high level, but the full details can be
found in Appendices A and B.

4.1 Optimal Solution

To optimise her utility, an EV driver needs to report a preference vector wd on every day d
that expresses the respective expected utility for receiving each possible quantity of charge.
This is a complex problem, as it needs to take into account the (uncertain) availability of
journeys not only on the current day, but also on future days, as well as likely future market
conditions, as the battery of the EV allows the driver to store surplus electricity.

To derive the optimal strategy for a perfectly rational driver, we will assume that the
driver has knowledge about the expected prices pd(wd) and the distribution of allocations
xd(wd) for a given preference vector. With this, we can model the problem as a Markov
Decision Process (MDP) (Howard, 1960), the full details of which are in Appendix A.
This MDP is a single-agent MDP, as we assume throughout this paper that the overall
market can be modelled probabilistically without dependence on the agent’s individual
strategy (which in practice could be achieved by using an appropriate incentive compatible
market mechanism, as argued earlier). The solution to such an MDP is a policy that selects
both appropriate preference vectors to report to the charging agent and sets of journeys
to complete, depending on the state (the current day d, the current SOC and the journeys
available on a given day).

Solving this MDP optimally is NP-hard in general (as the journey selection generalises
the Knapsack problem), but problems of realistic sizes can still be solved quickly (e.g.,
the settings considered in Section 7 are solved within a few seconds). This is because we
consider a limited time horizon here, allowing the use of backwards induction and dynamic
programming. Furthermore, the possible journeys that a driver will seriously consider on
a given day will be small, perhaps in the order of a dozen or fewer. We also discretise the
state space of the SOC to include all reachable states, given the cost function γ. Finally,
as the charging agent participates in the market optimally, the optimal preference vector is
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simply the driver’s true valuation for each level of charge, and this is obtained readily from
the MDP solution.

4.2 Reinforcement Learning Agent

Clearly, the optimal solution makes some assumptions that are unlikely to hold in practice
(such as knowledge of the distributions of pd(wd) and xd(wd), and all potential future
journeys). Hence, a second approach for solving the EV driver’s decision problem is to
design a reinforcement learning agent (Sutton & Barto, 1998) (note this agent is different
from the agent described in Section 3 that interacts with the market). This approach does
not require an explicit model of future market interactions or available journeys, but rather
learns the optimal policy from repeatedly interacting with the environment and observing
realised costs and rewards.

Specifically, we employ the widely-used Q-Learning algorithm (Watkins & Dayan, 1992)
with an ε-greedy exploration strategy (see Appendix B for details). We hypothesise that this
learning approach may be a good approximation of how real users interact with the system,
by trying some preference reports, observing how the system responds and then making
small adjustments to their strategies (rather than reasoning about the optimal strategy).
In fact, reinforcement learning has been used as a computational model to explain learning
and decision-making behaviours in animals (Montague, Hyman, & Cohen, 2004).

5. Restricted Market Interfaces

In practice, the drivers solving the above optimisation problem will be humans, and, as we
argued, they may not have the time or capacity to act optimally. Neither of the solution
approaches discussed in the previous section are feasible for completely automating people’s
decision processes — the optimal solution requires full information about all possible future
journeys, while reinforcement learning requires a long training phase until it performs well
(potentially thousands of days, as will be shown in Section 7).

Instead, we here focus on simplifying the market interface for drivers. In particular, we
use a range of interfaces that intentionally restrict the reporting space for the user (but
without changing the underlying market mechanism). Knowing which interface to present
to users can alleviate the cognitive burden, as the user has to consider fewer options.

Given this, we denote the full space of possible reports in a fully expressive interface
by W = Rsmax−sd

≥0 . In the following, we will use two approaches for restricting this space
by providing the user with an alternative set of possible reports, W ′, which maps to W
through a function ω : W ′ →W , to determine the corresponding report that is used by the
charging agent. Note that here W , ω and possibly W ′ depend on sd to ensure that only
valid preference reports are included (which do not exceed the capacity of the battery),
but we leave this implicit for clarity. Both approaches rely on significantly reducing the
dimensionality of the decision space, while still retaining the ability for users to express a
range of valuations.
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Figure 3: The user in a restricted market interface is given a restricted set of reports (in
this example W ′ = {x, y, z}), which map to elements of the (usually infinitely large) fully
expressive space W via a function ω.

5.1 Single Marginal Value with Quantity (SMV)

The first restriction, SMV, reduces the driver’s possible reports to a single marginal value
md ∈ R≥0 and a maximum quantity qd ∈ {1, 2, . . . , smax − sd} she wishes to acquire.
Here, md expresses the value she gains for receiving each additional unit of electricity
up to a total quantity of qd. Thus, the space for this restriction is W SMV = R≥0 × N
and we denote a report by wSMV

d = (md, qd). The corresponding mapping function is
ωSMV(md, qd) = [md, 2md, 3md, . . . , qdmd].

The rationale behind providing this restriction is that it reduces the dimensionality of the
problem to two dimensions, which may be significantly easier for a user to understand and
solve. Furthermore, providing a single value in the auction is closer to the decision space
in a single-item auction, which the user may be familiar with. The additional quantity
parameter deals with the multi-unit aspect of the auction and allows the user to restrict
their risk of receiving too many items at a high price (e.g., if the user urgently requires 2
kWh of charge, is willing to pay a high price for this, but does not want to win more than
that).

However, the disadvantage of this approach is that the space of possible reports is still
infinitely large. While qd is discrete and restricted by the battery size, md may take on
arbitrary values. In practice, the latter could be restricted to discrete increments, e.g.,
$0.01, and it is bounded by the values of the bidder’s tasks, but this still represents a large
decision space with at least hundreds of feasible bids (assuming low expected task values in
the order of $1). Thus, as bidders may find it easier to select from a smaller set of options,
we consider this case in the next mechanism.

5.2 Finite Set of Alternatives

In the second restriction (FINITE), which has been used in related work (Bergemann et al.,
2012; Seuken et al., 2012; Blumrosen & Feldman, 2013), we select a finite subset of f
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alternatives from the full report space, {α1, α2, . . . , αf} ⊂W . The corresponding restricted
report space is then WFINITE = {1, 2, . . . , f}, such that a report wFINITE

i = x expresses the
user’s choice of alternative αx, i.e., ωFINITE(x) = αx.

The advantage of this restriction is that the driver has to consider a very small number
of alternatives. In practice, f can be chosen to trade off the cognitive burden on the user
with the expressivity of the space (typically, we envisage f to be a handful or less). The
alternatives could be chosen to represent a cross section of the full report space, could be
manually selected by domain experts or could even be selected by an autonomous agent
that adjusts these alternatives to a particular user.

Note that both the optimal solution and the reinforcement learning approach can be
adapted for the restricted interfaces through appropriate discretisation. The details are in
Appendices A and B.

6. The Bid2Charge Testbed

To test how human participants interact with our interfaces, and to empirically determine
which one works best, we designed a web-based game called Bid2Charge.5 This replicates
the EV charging setting, allowing players to repeatedly participate in an auction to charge
their simulated EVs and then complete journeys with it. There are several motivations for
framing this as a game. First, this is a low-cost way of gathering data from large numbers of
users in a short space of time — in contrast, a real field trial would require expensive cars,
charging stations and data would have to be collected over long periods of time. Second, the
game offers a controlled setting, allowing us to modify the experimental parameters (such
as the tasks available, the levels of uncertainty and the interfaces that are used). Third, we
can record the users’ actions and compare these to the optimal decisions of a rational agent.
The last two features in particular are impossible to achieve in a field trial, where many
parameters are beyond our control and where a ground truth about the available options
to the drivers may not be available.

In the following subsection, we describe the game in more detail.

6.1 Bid2Charge Overview

In Bid2Charge, the player takes the role of an EV delivery van driver. This provides
an intuitive explanation to players of what journeys represent (in the game, journeys are
referred to as delivery tasks and result in a certain payment), what the objective of the
game is (maximise overall profit) and what the uncertainty means (delivery tasks may or
may not come up on a given day). We use an incentive compatible auction based on the
well-known VCG mechanism (Nisan, Roughgarden, Tardos, & Vazirani, 2007) as the market
mechanism in this game, and so the player’s reports in each of the market interfaces are
framed as bids for this auction.6 Since strategic behaviour is not the focus of this work,
there is no interaction between multiple players of the game. Instead, auction prices are

5. The game can be accessed at http://www.bid2charge.com/jair and the source code is available at
https://github.com/soton-agents/bid2charge.

6. VCG fulfils the conditions for optimality in Section 3.1. It is dominant strategy incentive compatible, as
long as prices on future days remain independent from the agent’s bids (as we assume throughout this
paper).
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Figure 4: Main game view.

determined according to pre-defined probability distributions (which will be discussed in
more detail in Section 7).

When starting the game, the player is first presented with the main interface, a task
planning view and an auction view.

6.2 Main Interface and Task Planning View

Figure 4 shows the main game screen. At the top, there are some general statistics, showing
the player’s accumulated profit, the current day and current SOC. Below that, on the left,
there is a task planning view. This provides the user with information about jd, i.e., the
tasks that are potentially available on the current day. Both the value, vj , and the realisation
probability, rj , are shown for each task j. Furthermore, the user can select subsets of tasks,
j′d ⊆ jd to inspect both the total value (

∑
j∈j′d

vj) and the total cost (γ(j′d)) if those tasks

are completed (γ(j′d) is calculated based on the Euclidean distance of the shortest route
past all tasks in j′d, as described in more detail in Section 7.2). Note that interacting with
this view does not affect the game — it simply provides the player with information about
the available tasks. In Figure 4 the user has selected the $10 and $15 tasks and is informed
that this will require 11 kWh in total for a reward of $25.

After interacting with the task planning view, the player can submit their bid in the
auction view.
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Figure 5: The FINITE interface (showing three options).

Figure 6: The SMV interface (showing a bid with md = 1.5, qd = 4). The EV in this
example already has a charge of 3 kWh.

Figure 7: The Fully-Expressive interface (showing bid wd = [0, 0, 2, 2, 5.5, 5.5, 5.5, 10.5]).
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Figure 8: Task view with actually available tasks.

6.3 Auction View

The auction view, which is to the right of the task planning view, allows the player to submit
their bid wd for the current day. The view supports all three interfaces discussed in this
paper, as shown in Figures 5 – 7: FINITE, SMV and a fully expressive interface. Only one
of these is shown to each user, depending on which experimental treatment they have been
assigned to. Here, the candidates for FINITE in Figure 5 can be customised by the game
administrator, but this particular view shows [1, 2, 3, . . . , smax − sd], [2, 4, 6, . . . , smax − sd]
and [4, 8, 12, . . . , smax − sd], which we also use for our experiments. The view for SMV in
Figure 6 shows a user entering the bid md = 1.5, qd = 4. Finally, the view for the fully
expressive interface in Figure 7 shows a user entering wd = [0, 0, 2, 2, 5.5, 5.5, 5.5, 10.5]. The
user always has the option to skip the auction. On pressing the “Run Auction” button,
they are informed of the outcome and then taken to a task view.

6.4 Task View

In the task view, representing the EV utilisation phase and shown in Figure 8, the user
is presented with the realisation of tasks for the current day and can select their desired
set of tasks to complete. The options for this are given as a table with corresponding
rewards and costs (ordered by decreasing rewards). Any dominated or infeasible solutions
are automatically removed, i.e., where another set offers a higher total reward for the same
or lower cost, or where the total cost exceeds the current SOC.

In the following, we will discuss how we used the Bid2Charge testbed to conduct a large
experimental evaluation of the market interfaces discussed in Section 5.
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7. Experimental Evaluation

The purpose of our experiments is to investigate how real human users interact with the
two restricted interfaces proposed in this paper, as well as the fully expressive interface,
and whether the choice of a particular interface influences the performance of users. Our
approach is to evaluate this through a randomised, controlled experiment, where we allocate
market interfaces randomly to users, in order to exclude self-selection bias. Participants
were given instructions only for the particular interface they were assigned to and were not
told that others existed. In carrying out our experiments, we were guided by two main
hypotheses:

Hypothesis 1 Players using more expressive interfaces achieve the same or a higher profit
than those using restricted interfaces.

Hypothesis 2 Players using more expressive interfaces spend more time on the game than
those using more restricted interfaces.

The first hypothesis is based on the fact that the more expressive interfaces offer more
possible reports to the players. Experimental evidence also suggests that market user in-
terfaces with more options lead to the same or better performance than those with fewer
options (Seuken et al., 2012). However, more expressivity may also incur a higher cognitive
burden, which is expressed by Hypothesis 2.

We tested these hypotheses through one initial experiment, where we asked participants
to play through a single game consisting of 30 days. To further explore how players learn
and improve over time, we carried out a second experiment, where we asked another set of
participants to play through three identical 10-day games in sequence (although journeys
and their probabilities were identical, their realisations were not necessarily the same). In
addition to validating the results from the first experiment, the main hypothesis we tested
in the second setting was:

Hypothesis 3 Players using more complex interfaces improve their profit more signifi-
cantly over repeated plays of the game than those using more restricted interfaces.

This hypothesis reflects the fact that the more complex interfaces have a larger decision
space, which may be initially overwhelming for users and may require some learning and
experimentation to achieve their full performance. Conversely, the simpler interfaces offer
fewer options, and thus we envisage that users will already perform well on the first play,
with less improvement on subsequent iterations.

Furthermore, this more sequential setting allowed us to compare the human learning
trends to those of the reinforcement learning agent we proposed in Section 4.2.

7.1 Player Recruitment

We recruited players from Amazon Mechanical Turk, a platform that allows requesters to
advertise tasks to a large audience of online workers.7 Mechanical Turk is increasingly being

7. http://www.mturk.com/
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used to recruit participants for scientific studies (Mason & Suri, 2012), and these have been
shown to yield valid results that are comparable to more traditional methods of subject
recruitment (Paolacci, Chandler, & Ipeirotis, 2010).

For our experiment, we asked workers to first read a set of instructions explaining the
rules and objectives of the game, then they had to give consent to participating in a study.
To ensure players understood the game, they also had to correctly answer a short multiple-
choice questionnaire. The instructions and questionnaire can be seen in full in Appendix C.
This was followed by the game and then a brief final survey to gain feedback about their
game experience as well as some demographic information. This final survey can be found
in Appendix D.

We told workers the task would take about 25 minutes, they would receive a base
payment of $2.50 and then a bonus based on the profit they made in the game. Specifically,
in the first experiment, we offered $0.02 for each $1.00 earned in the game, while (due to
budget constraints) in the second experiment we offered $0.01 for each $1.00 earned in each
of the three games. In both experiments, this was capped at $3.00.8 This bonus was chosen
to ensure that the incentives of the player were aligned with the objective of the game.
We assigned participants to interfaces using a block randomisation scheme, to achieve a
balanced spread of participants across the interfaces. In the first experiment, 130 workers
played the game; while in the second experiment 189 played three games each. Table 1 shows
the full demographic data we collected from the players. This indicates that most players
were young, well-educated, owned a car, but had not driven an electric vehicle (including
hybrid) before. Due to restrictions imposed by Amazon, the players were predominantly
US residents.

7.2 Experimental Parameters

To simulate the auction, we determine the marginal prices of units,9 denoted by pd,x for the
xth unit, using random distributions. These are identical for all interfaces, on all days and
for all participants (but the prices were sampled independently each time). Specifically, each
price was determined by first setting pd,0 = 0, and then iteratively determining each pd,x as
pd,x = pd,x−1 + εx, where εx was drawn from a uniform distribution U(0.2x−0.2, 0.4x+0.6).
The rising mean of this distribution ensures that marginal prices for each unit generally
increase. Given these prices, we then set the allocation to xd(wd) = argmaxxwd,x−

∑x
i pd,i.

This is consistent with a VCG mechanism, where the prices represent the externality im-
posed on other agents and the allocation maximises both the agent’s utility and the social
welfare.10 Furthermore, the distribution we chose here lead to a realistic and interesting
setting, as increasingly higher bids are needed to secure a larger number of units, as would
be expected in an efficient VCG mechanism that allocates to the highest bidders first. How-
ever, as in VCG, marginal prices can occasionally decrease due to the complementarities in
valuations (e.g., once a high-value agent that requires many units simultaneously is outbid,
marginal prices may drop).

8. This maximum was set to limit our potential spend. Only three players managed to reach this.
9. Each unit here corresponds to 1 kWh. The maximum capacity of a player’s EV is 15 kWh.

10. However, we do not simulate the full VCG mechanism, as this is computationally challenging in general.
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Experiment 1 Experiment 2

Dates: 14–15th November 2014 11–14th September 2015

Total Participants: 130 189

Treatment: FINITE (1,2,4) 42 (32.3%) 52 (27.5%)
FINITE (1,2,3) – 49 (25.9%)
SMV 45 (34.6%) 48 (25.4%)
Fully-Expressive 43 (33.1%) 40 (21.2%)

Gender: Male 62 (47.7%) 104 (55%)
Female 68 (52.3%) 85 (45%)

Age: 18–24 20 (15.4%) 26 (13.8%)
25–34 57 (43.8%) 77 (40.7%)
35–44 22 (16.9%) 52 (27.5%)
45–54 17 (13.1%) 23 (12.2%)
55–64 11 (8.5%) 10 (5.3%)
65+ 3 (2.3%) 1 (0.5%)

Education: None – 1 (0.5%)
Primary school 1 (0.8%) –
Middle school 2 (1.5%) 1 (0.5%)
High school 35 (26.9%) 73 (38.6%)
University 92 (70.8%) 114 (60.3%)

Car Owner: Yes 105 (80.8%) 154 (81.5%)
No 25 (19.2%) 35 (18.5%)

Used Hybrid/EV: Yes 14 (10.8%) 25 (13.2%)
No 116 (89.2%) 164 (86.8%)

Country: United States 106 (81.5%) 172 (91%)
India 18 (13.8%) 16 (8.5%)
United Kingdom 2 (1.5%) –
Brazil 1 (0.8%) –
Canada 1 (0.8%) –
Mexico 1 (0.8%) –
Sri Lanka 1 (0.8%) 1 (0.5%)

Table 1: Demographics of participants
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The game in the first experiment was played for 30 simulated days, and we varied the
number of tasks every 1–4 days (with between 1–6 tasks available every day). We did
not give players information about tasks on future days (only the total number of days
to play), and there was no prior information about the distribution of auction prices and
allocation probabilities. This is reasonable because in real-world settings these would also
be highly uncertain, and because we did not want to overwhelm players with a large amount
of information. In the second experiment, a 10-day game was played three times by each
player, enabling some learning.

A map of all tasks used throughout our experiments and their (x, y) locations on a
35km × 35km map are shown in Figure 9 and Table 2. This abstract representation
corresponds to the types of maps that are shown to a user each day (see, for exam-
ple, Figure 4, where tasks B, E and I are shown). Location A represents the player’s
starting location, which is depicted by a house in Figure 4 and to which players need to
return by the end of the day. Each unit on the map corresponds to 1km and the dis-
tance between two locations corresponds to the Euclidean distance between them, i.e.,
δ((x1, y1), (x2, y2)) =

√
(x1 − x2)2 + (y1 − y2)2 km. To compute the total battery cost of

completing a given set of tasks ad (i.e., to compute the cost function γ(ad)), we select
the path with the shortest total distance that originates from location A, visits all task
locations in ad and then returns to location A. Denoting the length of that shortest path
by ∆(ad), we then compute the cost as γ(ad) = db∆(ad)c · 0.2 kWh

km e.
11 Here, the average

consumption of 0.2 kWh per km travelled is a reasonable figure representing current EVs.12

As an example, applying this to the path shown in Figure 9, the distance from A to E is
about 12.374 km, from E to I it is 22.817 km and from I to A it is 17.5 km. Thus, the
total distance is 52.691 km, which is truncated to 52 km. The total required consumption
is d52 km · 0.2 kWh

km e = d10.4 kWhe = 11 kWh, as shown in the figure.
Finally, Tables 3 and 4 show the set of potentially available journeys for each day in

the first and second experiment, respectively. Here, each journey is first specified by the
corresponding location in Figure 9 and a tuple (vj , rj) denoting the journey’s value und
probability of being available. For example, day 6 in the first experiment is associated with
three journeys E, I and B, with respective values 10, 15 and 5, as well as probabilities 0.5,
0.5 and 0.8. These correspond to the tasks shown to the user in Figure 4.

7.3 Benchmarks

To establish upper and lower bounds for the possible performance of players, we compare
them to a number of benchmarks:

• Optimal: This is the optimal strategy assuming a fully expressive interface. We also
show two variants, Optimal (SMV) and Optimal (FINITE), for the restricted
interfaces. All of these are obtained by solving the MDP, as described in Appendix A.

• QL(λ): This is a reinforcement learning agent that has played the game for a number
(λ) of episodes. Here, each episode is a full run of the game (30 days in the first
experiment and 10 days in the second experiment) and, in order to measure the

11. We round the values here to ensure that only integers rather than fractions are shown to the player.
12. Such as the Nissan Leaf (Davis, Alexander, & Duvall, 2013).
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Figure 9: Map of task locations.

x y

A 17.50 17.50
B 8.75 26.25
C 17.50 24.50
D 22.75 22.75
E 8.75 8.75
F 17.50 8.75
G 26.25 8.75
H 3.50 7.00
I 31.50 7.00
J 26.25 26.25
K 3.50 31.50
L 17.50 31.50

Table 2: (x, y) locations.

Days Potentially available journeys

1, 2 C(5,1.00)
3 C(5,1.00) D(5,0.80)
4, 5 C(5,1.00) D(5,0.80) G(10,0.75)
6, 7, 8 E(10,0.50) I(15,0.50) B(5,0.80)
9, 10, 11 B(5,0.50) E(10,1.00)
12, 13 B(5,0.50) I(15,0.50)
14, 15 B(5,0.50) I(15,0.50) H(15,0.50)
16, 17 H(15,1.00) B(5,0.50)
18, 19, 20 D(5,0.40) B(10,0.25) F(5,0.25) E(10,0.25) I(15,0.20)
21, 22 B(5,0.50) F(5,0.50)
23, 24, 25, 26 I(15,0.40) H(15,0.40) B(10,0.60) F(5,0.80) G(10,0.50) C(5,0.50)
27, 28 B(5,0.50) F(5,0.50)
29, 30 B(5,0.50) E(10,1.00)

Table 3: Potentially available journeys (i.e., tasks) in the first experiment. Each journey is
represented by the letter of its corresponding location and a tuple (vj , rj), representing the
journey’s value and probability, respectively.

performance, we temporarily set the ε parameter to 0 (i.e., the agent switches to pure
exploitation). We also test the performance of the reinforcement learning agent on
the restricted interfaces, denoted by QL(SMV,λ) and QL(FINITE,λ).

• RandomGreedy: This is a benchmark that places a random bid (chosen from the
FINITE options) and then greedily chooses the highest-value tasks until it runs out
of battery.

• MaxGreedy: This places a bid that is high enough to fully charge the EV each day
and then greedily chooses the highest-value tasks until it runs out of battery.
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Days Potentially available journeys

1 B(5,1.00)
2 B(5,1.00) B(5,0.75)
3 G(5,1.00) C(10,0.25)
4, 5 E(15,0.75) I(15,0.50)
6 C(10,0.50) B(5,0.50) E(15,0.20)
7 G(5,1.00) C(10,0.25)
8, 9 C(10,0.50) D(5,1.00) E(15,0.50) I(15,0.25)
10 C(10,0.30) E(15,0.50)

Table 4: Potentially available journeys (i.e., tasks) in the second experiment.

The last two strategies represent simple baseline approaches that a worker could employ
to complete the task with as little effort as possible, which is a possibility on Mechanical Turk
(Mason & Suri, 2012) and which we here use as a lower bound on performance. We present
the average performance of all benchmarks over 1000 trials, except for the reinforcement
learning agent, for which we average over 250 trials, due to the significantly longer runtime
required for training.

7.4 Results of the First Experiment

We first consider the overall performance in terms of the overall profit achieved, as this is
the main objective of the game and to verify Hypothesis 1. Figure 10 shows this for the
three interfaces with human participants (in red, plain), for the three optimal policies (in
green, hatched), the two baseline benchmarks (in blue, finely hatched) and the reinforcement
learning agent after 100 and 25000 iterations of the game, which are representative of early
and late stages of learning (in orange, dotted). All results are shown with 95% confidence
intervals. Focusing first on the performance of the optimal (in green), it is interesting to note
here that there is little difference between the optimal performance in the restricted setting
(in particular for SMV) and the fully expressive setting. This is encouraging, showing that,
despite the severe restrictions, there is little loss in the utility players could, in theory,
achieve. Note that this is a general trend we observed across a wide range of possible
settings, not just the particular setting chosen for the experiment here. This is likely because
units of electricity can be retained for future days and so winning each one generates some
utility for the driver. In turn, this means that the SMV and FINITE interfaces (both of
which attach uniform marginal values to each unit of electricity) are reasonable here.

Next, considering the performance of human players, these are generally situated be-
tween the optimal and the baseline benchmarks. Unsurprisingly, the humans perform sig-
nificantly worse than a rational agent, given that the problem is highly complex due to
its inherent stochasticity and combinatorial nature. However, when comparing the human
players to the baseline benchmarks, there is a marked improvement. This provides some ev-
idence that the participants are putting effort into the game rather than selecting strategies
that require the least effort.

When comparing the performance of the human players using different market interfaces,
several interesting trends emerge. First, we note that the choice of mechanism seems to
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Figure 10: Average profit in the first experiment.

have a significant influence on performance.13 Counter-intuitively, the players using the fully
expressive interface achieve the overall lowest performance with an average profit of only
$66.96, while players with SMV achieve an average profit of $91.38 and players with FINITE
achieve an average $91.93.14 This constitutes an improvement of over 35% compared to the
fully expressive interface. This means our Hypothesis 1 needs to be rejected. This poor
performance of the fully expressive interface is likely due to its substantial cognitive burden,
as users are faced with a complex decision problem (we will return to the issue of cognitive
burden in Section 7.6, where we discuss the post-experiment feedback we collected).

Considering the performance of the reinforcement learning agent, several interesting
trends emerge. First, the fully-expressive interface consistently performs worse than the
other two interfaces (with the same amount of learning). This is because the extremely
large reporting space takes longer to explore than in the other two interfaces. Furthermore,
after 100 learning episodes, the performance of the reinforcement learning agent resembles
that of human players, indicating that it may be useful for predicting human behaviour.

Although there is no significant difference in profit between FINITE and SMV for human
players, interesting trends emerge when considering the actual money that was spent on
acquiring electricity and how much was gained from completing tasks. This is shown in
Figure 11a. Here, players using FINITE spent an average $208.44 acquiring electricity
and achieved an average reward of $300.37. In contrast, players using SMV spent only

13. This is confirmed by ANOVA with p = 0.001.
14. A post-hoc Bonferroni test confirms that there is a significant difference between the fully expressive

mechanism and each of the other two (with p = 0.004). There is no significant difference between the
performance of users with FINITE and SMV.
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Figure 11: Differences in player performance in the first experiment.

an average of $148.50 and earned $239.89. The differences here are highly significant.15

Thus, while the profit for both is similar, FINITE induces a very different behaviour in the
players — they spend significantly more on acquiring electricity and are then able to use
this to complete a larger number of tasks. This trend is confirmed when considering the
average amount of electricity that is won by the participants throughout the game, shown
in Figure 11b — players using the FINITE interface charged an average of 151.15 kWh,
while players using SMV charged only 121.71 kWh on average, or about 20% less.16

This difference in observed behaviours could be due to several factors. One possible ex-
planation is that SMV requires users to explicitly set a maximum number of units, thereby
focusing them on this parameter and implicitly suggesting they restrict this demand. An-
other possibility is that the good strategies in both mechanisms are just fundamentally
different. In both cases, this is an interesting result, showing that significant changes in
behaviour can be caused by the right choice of mechanism. Especially in the energy domain,
low overall consumption may be a particularly desirable goal and SMV encourages this.

Next, to investigate Hypothesis 2, Figure 12 shows the time that players spent on
the auction and task screens. Participants using the fully expressive interface spent the
longest time on the auction (689 seconds on average), while participants using FINITE
spent the least amount of time on the auction (502 seconds on average). This supports
the hypothesis.17 Note that the difference in the time spent on journey selection is not
significant here.

15. ANOVA confirms this for both metrics with p ≤ 0.002. Post-hoc Bonferroni tests confirm differences
between FINITE and SMV with p = 0.001.

16. ANOVA and post-hoc Bonferroni tests confirm significance of this difference with p ≤ 0.001.
17. ANOVA (p = 0.026) and a Bonferroni test confirm a difference between the expressive and FINITE

(p = 0.021.)
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Figure 12: Average time spent by players on auctions and journeys.
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Figure 13: Average profit over number of learning episodes obtained by reinforcement
learning agent.

7.5 Results of the Second Experiment

To further examine whether our proposed reinforcement learning agent can be applied to
optimising market user interfaces, we ran the agent in the setting of the second experiment
and identified a small change to the FINITE strategy that led to an improvement in the
agent’s performance. Specifically, we decreased the marginal valuation reported in the third
alternative from $4/kWh to $3/kWh. We used both alternatives in the second experiment,
and in the following, we will refer to interfaces FINITE(1,2,3) and FINITE(1,2,4) to distin-
guish between these two. Figure 13 shows the performance of the reinforcement learning
agent over time using the various interfaces.
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Figure 14: Average profit during each of the three games in the second experiment, along
with benchmarks.

Figure 14 shows the overall performance results from the second experiment, grouped
by the three games each player completed. First, it is clear that there is a strong learning
effect — on all treatments, the players perform better over time. On the first game, there is
also a very clear performance difference between the interfaces. Fully expressive performs
worse (average profit $15.6) while SMV performs best (average profit $26.8).18 However,
participants on the fully expressive interface then start to perform significantly better on
subsequent games, supporting Hypothesis 3. This is likely because they begin to exploit
the higher expressivity of the interface. At the same time, they are still taking significantly
longer (approximately twice as long) to deliberate during the auction phase (taking 373,
266 and 227 seconds for the three games, compared to 178, 123 and 116 of FINITE(1,2,3),
as shown in Figure 15), and they still do not outperform the restricted interfaces.

Finally, comparing the results with the predictions of the reinforcement learning agent,
several broad trends are confirmed. First, although the specific profits and the absolute
differences between the interfaces vary between the human players and the reinforcement
learning agent, the relative performance trends between the interfaces are similar. Specifi-
cally, FINITE(1,2,3) indeed outperforms FINITE(1,2,4), as predicted by the agent, indicat-
ing that our approach of optimising the interface based on the agent’s response is sensible.
This is interesting, because there is no discernible difference in the optimal performance of
the two interfaces (see Figure 14). Other trends indicated by the agent are also confirmed:
SMV consistently performs well throughout, while the fully expressive interface initially

18. ANOVA (p = 0.006) and a Bonferroni test find a significant difference (p = 0.036) between these two.
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Figure 15: Average time taken for auctions and journey selection during each of the three
games in the second experiment.

performs poorly, but then catches up with the others as more learning and exploration take
place.

In order to compare the behaviour of human players and the reinforcement learning
agent in more detail, Figure 16 shows the proportion of reports that are chosen by both
when using the FINITE(1,2,4) and FINITE(1,2,3) interfaces, and after various stages of
learning. Specifically, we recorded the proportions after 100, 1000 and 20,000 learning
episodes for the agent, and in games 1, 2 and 3 for the human players. For comparison, the
optimal agent is also shown. Again, although the absolute values differ, the reinforcement
learning agent is arguably closer in its behaviour to the human players than to the optimal
strategy. Specifically, the optimal strategy rarely chooses the highest report (in only 2-
3% of cases), but both the reinforcement learning agent and the human players frequently
pick this option (in between 11–26%, of cases, depending on the stage of learning). As
such a high report is typically avoided by the optimal agent (indicating that the marginal
value of electricity is usually below $3 per unit), this offers a plausible explanation for
why both approaches achieve a lower performance when using FINITE(1,2,4) than when
using FINITE(1,2,3): occasionally reporting a value of $4 is significantly further from the
optimal than $3. Interestingly, both the agent and the human players reduce the frequency
of choosing the high option with more learning, as might be expected.

To conclude this section, we briefly note that there is no significant difference between
the energy used by SMV and the two FINITE variants, as was observed in the first ex-
periment. This may be due to the particular setting used in the second experiment, which
included fewer tasks (2.4 tasks per day on average rather than 3.0) and so presented fewer
opportunities to spend large amounts of energy for a correspondingly larger reward.
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(a) FINITE(1,2,4). (b) FINITE(1,2,3).

Figure 16: Average proportion of reports chosen by the optimal, the reinforcement learning
agent and human players with the FINITE interface. Here, (from bottom to top for each
bar) None means the auction was skipped, Low, Medium, and High correspond to the three
possible bids in each interface, and Full means the battery was full and therefore no report
was necessary.

7.6 User Feedback

In addition to measuring the users’ performance during the game, we conducted a survey
at the end of the game during the second experiment. Related to Hypothesis 2, the purpose
of this survey was to explore in more depth how users of the restricted and fully-expressive
interfaces perceived the respective cognitive burden associated with their interfaces. Specif-
ically, the overarching hypothesis guiding this survey was that users of the more complex
interfaces perceive a significantly higher cognitive burden than those on the more restricted
interfaces.

In more detail, the survey was based on the mental demand, performance, effort, and
frustration categories from the NASA-TLX scale (Hart & Stavenland, 1988). Specifically,
we asked each participant to what extent they agreed with the following statements, corre-
sponding to the four NASA-TLX categories mentioned above:

S1 : I found the auction system unnecessarily complex.

S2 : I was successful in accomplishing what I was asked to do.

S3 : I had to work hard to achieve my level of performance.

S4 : I felt irritated, stressed or annoyed during the game.

As one of the motivations behind this study was to determine the impact of market
user interface design within potential applications, we also included three questions from
the System Usability Scale (SUS) (Brooke, 1996), as well as a general question about using
auctions for EV charging (S5):

S5 : I would be happy to use this type of auction system for charging a real EV.
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S6 : I thought the auction system was easy to use.

S7 : I needed to learn a lot of things before I could get going with this game.

S8 : I felt very confident in playing the game.

We asked participants to rate their agreement with these statements on a five-point
Likert scale with responses corresponding to “Strongly Agree”, “Slightly Agree”, “Neutral”,
“Slightly Disagree” and “Strongly Disagree”. We grouped the FINITE variants into a single
category, as the interfaces are similar and deliberation times (shown in Figure 15) were
comparable.

Figure 17: Distributions of responses to statements from the NASA-TLX scale.

Figure 17 visually presents the distributions for the mental demand, performance, effort,
and frustration categories from the NASA-TLX scale. As is evident in the results, users
found the Fully-Expressive interface was significantly more complex (S1) than the more lim-
ited FINITE interface19 and that users felt that they were more successful in accomplishing
their task (S2) when using the FINITE interface compared to the more complex SMV in-
terface.20 Similarly, the Fully-Expressive interfaces was more likely to produce feedback
that agreed with the statement that users felt irritated, stressed or annoyed (S4) during the
game.21 There were no significant differences in how hard users felt they needed to work to

19. This is confirmed by pairwise t-tests with p = 0.04. Note that, unless indicated otherwise, all tests in
this section are pairwise t-tests on the numerical values of the Likert scale (where 5 is “Strongly Agree”
and 1 is “Strongly Disagree”).

20. Borderline significance with p = 0.09.
21. Significant with p = 0.03 between FINITE and Fully-Expressive and p = 0.05 between FINITE and

SMV.
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Figure 18: Distributions of responses to statements from the System Usability Scale scale.

achieve their performance (S3). Nonetheless, these results overall support our hypothesis
that higher interface complexity leads to a higher perceived cognitive burden. This holds
particularly when contrasting FINITE and Fully-Expressive, where differences are typically
the most pronounced.

Next, Figure 18 visually presents the distributions for the four remaining statements
with the trend again being similar. The Fully-Expressive interface yields more negative
feedback than the FINITE interface for the statement S5, “I would be happy to use this
type of auction system for charging a real EV”.22 Similarly, for statement S6 (“I thought the
auction system was easy to use”), agreement was significantly higher overall for FINITE
compared to that of Fully-Expressive.23 FINITE was also less likely to receive negative
responses to statement S8 (“I felt very confident in playing the game”).24

In conclusion, the restricted interfaces, and FINITE in particular, are generally more
usable and lead to a lower perceived cognitive burden than the Fully-Expressive interface.
This is aligned with our earlier finding that more complex interfaces lead to longer deliber-
ation times, which we used as an objective indicator for cognitive burden.

22. Although a t-test does not find a significant overall difference, a chi-square test on the proportion of
negative feedback (score 1 or 2) is borderline significant with p = 0.07.

23. The difference between FINITE and Fully-Expressive is significant at p = 0.02, but the difference between
FINITE and SMV is not statistically significant with p = 0.11.

24. Again a chi-square test on the proportion of negative feedback is borderline significant with p = 0.06.
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8. Conclusions and Future Work

As appropriate market mechanisms can efficiently allocate scarce resources to competing
consumers, they hold considerable promise in addressing emerging challenges in the energy
domain. However, in many realistic settings, including the EV charging problem, there
are non-expert participants. In this paper, we studied how the cognitive burden on such
participants can be alleviated by using restricted market interfaces.

This paper’s extensive evaluation used a framework called Bid2Charge that allowed us
to compare people’s behaviour in a simulated EV charging setting while using a variety of
interfaces. As such, our work is the first comprehensive study of a wide spectrum of market
interfaces, ranging from fully expressive to parameterised (SMV) to very limited (FINITE).
In carrying out this study, we found that using restricted market interfaces has several key
advantages over standard fully expressive approaches.

First, participants spend significantly less time deliberating (half the time in some set-
tings), which indicates a lower cognitive burden. This observation was confirmed by a
detailed survey, where participants using more restricted interfaces responded more posi-
tively to questions about the system’s usability.

Second, despite taking less time, these participants tend to perform better than those
using a fully expressive, theoretically optimal interface. This performance gap is particularly
pronounced during the first interactions, and then gradually closes with experience.

Third, particular types of interfaces induce different behaviours in participants, while
achieving the same utility. This could be a promising tool for nudging people towards
particularly desirable behaviours, such as energy conservation, and we show that the pa-
rameterised SMV interface can reduce energy consumption by up to 20%.

Last, we found that a reinforcement learning agent was able to predict broad trends
in the relative performance of alternative interfaces. As such, we believe it constitutes a
valuable tool for the evaluation and optimisation of market user interfaces.

There are some limitations to the empirical study conducted in this paper. Our subjects
were recruited on Mechanical Turk and interacted with the various market interfaces in one
sustained interaction (where days were simulated in a matter of minutes). In reality, users
would interact with the interfaces only once or twice a day, but over much longer periods
of time. This will affect how they engage with the interface, both in the short and in the
long term, and this will likely raise further interesting issues, e.g., how to retain engagement
and how to assist users in learning the interface, especially when feedback is significantly
delayed. Moreover, the stakes in a real setting will be higher, as missed journeys will result
in significant inconvenience to the user, and so real users may behave in a more risk-averse
manner than in our game. Hence, in future work, we plan to evaluate these potential
differences in behaviour through more realistic trials with real vehicles.

Here, one of the key findings that needs to be validated in practice is the difference
in energy consumption between FINITE and SMV. Due to the higher stakes in missing
journeys, this result may not be as pronounced in a real setting. However, it constitutes
an interesting point of departure for investigating how users may be nudged to alter their
behaviour slightly through an appropriate interface. Given this, it may be promising to
apply multi-objective optimisation methods to trade off various goals, such as the driver’s
utility, energy usage and deliberation time.
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Moreover, we plan to build on the framework discussed in this paper and develop new
optimised interfaces that adapt to users. This adaptation may include setting appropriate
parameters for the interfaces, for example to optimise the options available in the FINITE
interface based on a particular user’s driving patterns or to switch from more restricted to
more complex interfaces as users become familiar with the market mechanics.

Building on the reinforcement learning agent used in this paper, we will also explore how
an intelligent agent can support a human market participant. This could take place on a
flexible spectrum of autonomy, ranging from simple advice on what bids to place (based on
historical data) to bidding completely automatically on the human’s behalf, and switching
between these modes depending on the agent’s confidence and the user’s private information
about their requirements.

Finally, it is important to note that while Bid2Charge was evaluated using EV market
mechanisms, it is a general framework that is easily adapted to other markets. Along these
lines, we plan to study restricted interfaces and learning agents in other settings where
market mechanisms hold promise, including on-demand mobility systems, cloud computing
or demand response in the Smart Grid.
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Appendix A. Optimal Solution

Here, we present the MDP formulation of the EV charging problem, describe an agent’s
policies and present the optimal solution.

A.1 MDP Formulation

We formalise the EV charging problem from Section 3 as a tuple (Σ,Σ′, J, jd∈D, rj∈J , vj∈J ,
γ,Xd∈D, Pd∈D), where:

• Σ = D × [0, smax] is the set of states before the market interaction, and Σ′ = D ×
[0, smax] × 2J is the set of states after the market interaction (but before selecting
from the available journeys). Both include the current day, d, and state of charge, sd
or s′d, while a state σ′ ∈ Σ′ also includes the set of available journeys j′d.

• J , jd, rj , vj and γ describe the journeys, their potential availability per day, realisation
probabilities, values and journey costs, as defined in Section 3.
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• Xd : (W×{0, 1, . . . , smax})→ [0, 1] is the probability distribution of xd, i.e., Xd(wd, x)
is the probability of obtaining x units when reporting wd during a market interaction.

• Pd : W → R is the expected price of a market interaction given a report, i.e., Pd(wd) =
E [pd(wd)].

The actions, transition probabilities and rewards of this MDP are fully described by the
tuple above. Specifically:

• The available actions depend on the current state as follows. For σ ∈ Σ, the actions
are the reports in W (restricted by the battery capacity as outlined in Section 3.1).
For σ′ = (d, s′d, j

′
d) ∈ Σ′, the set of actions is {a ∈ 2j

′
d | γ(a) ≤ s′d}, i.e., all subsets of

the available journeys that can be completed with the current state of charge.

• Transition probabilities from a state σ to a state σ′ are determined by the chosen
report wd and Xd (to determine s′d) and by jd and rj (to determine j′d). Transitions
from a state σ′ to σ are deterministically given by the chosen action ad and cost
function γ.

• Rewards are incurred when transitioning from one state to the next, and they cor-
respond to the prices paid for electricity (negative) and the values derived from com-
pleting journeys (positive). Specifically, the former is given by −Pd(wd), while the
latter is

∑
j∈ad vj .

A.2 Agent Policy

An agent’s policy determines which preference vector to report for the market interaction,
and which journeys to complete, given the current state. Thus, it is described by a tuple
(π, π′), where π : Σ→W determines the reports and π′ : Σ′ → 2J the journeys.

Given this, we can now define the expected utility of a policy (π, π′) using a value
function for each type of state. For state σ = (d, sd) ∈ Σ:

V (d, sd, π, π
′) = −Pd(π(σ)) +

smax−sd∑
i=0

[
Xd(π(σ), i)

∑
j′d⊆jd

R(j′d) V
′(d, sd + i, j′d, π, π

′)
]
, (1)

where R(j′d) =
∏
j∈j′d

rj
∏
j∈jd\jd(1 − rj) is the probability that j′d is the set of journeys

available.25

For state σ′ = (d, s′d, j
′
d) ∈ Σ′, with d < n:

V ′(d, s′d, j
′
d, π, π

′) =

[ ∑
j∈π′(σ′)

vj

]
+ V (d+ 1, s′d − γ(π′(σ′)), π, π′), (2)

while for the last day, V ′(n, s′n, j
′
n, π, π

′) =
∑

j∈π′(σ) vj .

25. Note that while this definition of R(j′d) assumes independence between journeys, it could be redefined to
account for correlated journey probabilities without changing the solution approach or its computational
complexity.
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A.3 Optimal Solution

Given the above definition, the optimal policy (π∗, π′∗) is simply:

(π∗, π′∗) = argmax
(π,π′)

V (1, sinitial, π, π
′), (3)

where sinitial is the initial state of charge. As discussed in Section 4.1, this can be found
using dynamic programming with backwards induction and by recognising that the agent’s
best strategy is to bid its true valuation for each level of electricity. This valuation is given
directly by V ′, such that:

π∗(d, sd) =
[
V ′(d, sd + 1, π∗, π′∗), V ′(d, sd + 2, π∗, π′∗), . . . , V ′(d, smax, π

∗, π′∗)
]

(4)

The full algorithm for computing the optimal policy is shown in Algorithm 1. In order
to obtain optimal policies for the restricted interfaces, we can replace line 12 with the
following:

13: w∗ = argmaxw∈W ′ −Pd(ω(w)) +
∑smax−s

i=0

[
Xd(ω(w), i)·∑

j′d⊆jd
R(j′d) V

′(d, s+ i, j′d, π, π
′)
]

14: π∗(d, s) = ω(w∗)

For SMV, this requires a discretisation of the marginal value. In our experiments, we use
md ∈ {$0, $0.01, $0.02, . . . , $5}, which is sufficiently fine-grained to lead to a near-optimal
performance. Furthermore, in our experiments we approximate Xd and Pd using Monte
Carlo simulations with 1000 trials for each possible action.

The run-time of the optimal solution is reasonable for problems of realistic sizes. For
example, computing the optimal policy for the first experiment in Section 7 using a Python
implementation of the above algorithm took 4.75 seconds on an Apple MacBook Pro with a
3.3 GHz Intel Core i7 CPU and 16GB RAM (including the Monte Carlo simulation ofXd and
Pd). For the SMV interface, we conducted the Monte Carlo simulation of the discretised
action space first, which took 77.39 seconds. Solving the corresponding MDP was then
completed in 8.59 seconds. For the FINITE interfaces (with three options), the simulation
took 0.45 seconds and solving the MDPs took 0.03 seconds. In the second experiment,
solving the MDPs took about a third of the time (reflecting the shorter time horizon).

Appendix B. Reinforcement Learning Agent

Algorithm 2 shows the reinforcement learning algorithm we use as a more realistic bench-
mark than the optimal. This algorithm does not need knowledge of the underlying MDP
and instead uses a Q-Learning approach to gradually learn the value of making particular
reports in a given state (expressed using a Q(σ,w) function). It takes three parameters: an
exploration probability ε, a learning rate parameter α, and the set of possible reports W .
In the experiments, we set ε = 0.2 and α = 0.1 (our results are not particularly sensitive to
this choice). W is determined by the relevant interface.

In more detail, for each day d of each episode e, the agent first senses the current
state σ (line 6). It then selects a report to submit using the PickReport function. This
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Algorithm 1 Optimal Solution

1: procedure FindOptimal
2: Initialise π∗, π′∗, V and V ′ to be empty
3: Initialise Γ to hold feasible charge levels given γ
4: for d ∈ {n, n− 1, n− 2, . . . , 1} do
5: for s ∈ Γ do
6: for j′d ⊆ jd do
7: if d = n then
8: π′∗(d, s, j′d) = argmaxa⊆j′d | γ(a)≤s

∑
j∈a vj

9: else
10: π′∗(d, s, j′d) = argmaxa⊆j′d | γ(a)≤s

∑
j∈a vj + V (d+ 1, s− γ(a), π∗, π′∗)

11: Calculate V ′(d, s, j′d, π
∗, π′∗) using Equation 2

12: Calculate π∗(d, s, π∗, π′∗) using Equation 4
13: Calculate V (d, s, π∗, π′∗) using Equation 1

14: return (π∗, π′∗)

function depends on the interface the agent is using. Algorithm 3 shows this for the Fully-
Expressive interface, while Algorithm 4 is used for FINITE and SMV. Both approaches use
an ε parameter that balances exploration (choosing a random, potentially untested report)
with exploitation (choosing the best-performing report). As discussed in Section 4.2, the
Fully-Expressive uses a local search technique to generate new reports during exploration.
Here, the ModifyRandomElement(w) function takes a report w, sets one randomly
chosen element wi to a random number (in the experiments, this is on the interval [0, 6i]),
and then adjusts the other elements to ensure the vector is non-decreasing, by decreasing
elements before i and increasing elements after i as necessary.

The agent then submits its chosen report, observes the incurred cost in the market and
the new state (lines 8–10). It then picks the best set of journeys to complete, given the
Q-values of states on the following day (lines 11–14). These state transitions are determin-
istic, given the costs of journeys, so we do not learn separate Q-values for journey choices.
However, note that most Q-values for the next states will be zero initially, so the agent will
start by greedily completing journeys to maximise its immediate reward.

Next, the agent updates the Q-function for its chosen report based on the overall profit
achieved during the day (lines 15–20). Finally, with a small probability ε, the agent picks a
new random set of journeys, which is again used for exploration; otherwise, it executes its
chosen set ad (lines 21–23).
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Algorithm 2 Reinforcement Learning Agent

1: procedure QLearningAgent(ε, α,W )
2: Q̂← {} . State/action pairs that have been tried
3: ∀σ ∈ Σ, w ∈W : Q(σ,w)← 0 . Initialise Q-function
4: for e ∈ {1, 2, . . .} do . Episodes
5: for d ∈ {1, 2, . . . , n} do
6: σ ← SenseAuctionState()
7: w ← PickReport(ε, σ,Q, Q̂,W )
8: Report(w)
9: pd ← ObserveCost()

10: (d, s, j′d)← SenseJourneyState()
11: if d = n then
12: ad ← argmaxa⊆j′d | γ(a)≤s

∑
j∈a vj

13: else
14: ad ← argmaxa⊆j′d | γ(a)≤s

[ (∑
j∈a vj

)
+argmaxw∈W Q((d+1, s−γ(a)), w)

]
15: v ←

∑
j∈ad vj

16: if (σ,w) /∈ Q̂ then
17: Q(σ,w)← v − pd
18: Q̂← Q̂ ∪ {(σ,w)}
19: else
20: Q(σ,w)← Q(σ,w) + α · (v − pd −Q(σ,w))

21: if Random(0,1) < ε then
22: ad ∈ {a ⊆ j′d | γ(a) ≤ s} . Pick random journey set

23: CompleteJourneys(ad)

Algorithm 3 Report Selection Function for Fully-Expressive

1: procedure PickReport(ε, σ,Q, Q̂,W )
2: q ← {w | (σ,w) ∈ Q̂}
3: if Random(0,1) < ε ∨ |q| = 0 then
4: if |q| = 0 then
5: w ← [0, 0, . . . , 0] . smax elements
6: else
7: w ∈ q . Random report

8: return ModifyRandomElement(w)
9: else

10: return argmaxwQ(σ,w)
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Algorithm 4 Report Selection Function for FINITE and SMV

1: procedure PickReport(ε, σ,Q, Q̂,W )
2: if Random(0,1) < ε then
3: return w ∈W . Random report
4: else
5: return argmaxwQ(σ,w)
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Appendix C. Mechanical Turk Instructions

This appendix shows the instructions given to all participants at the beginning of the second
experiment. The instructions shown in the first experiment are almost identical. The game
is available at http://www.bid2charge.com/jair, where both sets of instructions can be
viewed and where it is possible to play the game as experienced by the participants.

Specifically, all figures here are shown as a single scrollable webpage. Figures 19—21 are
shown to all participants, with one of Figures 22, 23 or 24 shown next, depending on the
participant’s treatment (for FINITE, SMV or Fully-Expressive, respectively). Figures 25
and 26 are then shown to all participants again.

Figure 19: Instructions shown to participants (part 1) with initial overview of the game.
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Figure 20: Instructions (part 2) with overview of planning stage.
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Figure 21: Instructions (part 3) continuing the planning stage.
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Figure 22: Instructions (part 4) shown to participants with the FINITE interface.
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Figure 23: Instructions (part 4) shown to participants with the SMV interface.
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Figure 24: Instructions (part 4) shown to participants with the Fully-Expressive interface.
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Figure 25: Instructions (part 5) covering task selection and participant consent.
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Figure 26: Instructions (part 6) showing final quiz.
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Appendix D. Mechanical Turk Questionnaire

This appendix shows the questionnaire shown to all participants at the end of the second
experiment. As for the instructions shown initially, they are represented as a single scrollable
page. The first set of questions (Figure 27) collects demographic information, while the
second set collects data about the user experience (Figure 28).

221



Stein, Gerding, Nedea, Rosenfeld & Jennings

Figure 27: Final questionnaire (part 1) to collect demographic information.
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Figure 28: Final questionnaire (part 2) to collect data about user experience.
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