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Abstract

This survey outlines a general and modular theory for proving approximation guaran-
tees for equilibria of auctions in complex settings. This theory complements traditional
economic techniques, which generally focus on exact and optimal solutions and are accord-
ingly limited to relatively stylized settings.

We highlight three user-friendly analytical tools: smoothness-type inequalities, which
immediately yield approximation guarantees for many auction formats of interest in the
special case of complete information and deterministic strategies; extension theorems,
which extend such guarantees to randomized strategies, no-regret learning outcomes, and
incomplete-information settings; and composition theorems, which extend such guarantees
from simpler to more complex auctions. Combining these tools yields tight worst-case
approximation guarantees for the equilibria of many widely-used auction formats.

1. Introduction

Many modern applications in computer science involve a number of self-interested partici-
pants, with objectives different from each other and from the application designer. Auctions
are a canonical genre of such applications, ranging from the sale of antiques on eBay, to
real-time and targeted Internet advertising, to the allocation of licenses for the wireless
spectrum that constitutes much of the modern communication infrastructure.

Auctions have been studied by economists for over a half-century. But over the last
several years, work in computer science has offered a fresh and relevant perspective. This
new theory is the subject of this survey and it concerns approximation guarantees for the
equilibrium performance of auctions, also known as “price of anarchy” bounds (Koutsoupias
& Papadimitriou, 1999). There are a number of fundamental models that appear impossible
to reason about without resorting to approximation.1

For example, consider a seller with m different items for sale. There are n bidders, and
the seller does not know what the bidders want. What should the seller do? One idea is to
simply ask the bidders what they want, meaning ask them to bid on each of the possible

1. Computer science has also brought other important ideas to the table in auction design, including an
emphasis on reasonable computational complexity and robustness to informational assumptions. These
topics are outside the scope of this survey.
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subsets of items that they might get. With a single item (m = 1), this is a practical idea,
and is basically what happens in an eBay auction. In general, however, this idea requires
soliciting 2m bids from each bidder (one per subset of the items), which is a non-starter
unless m is tiny.

So how are multiple items auctioned off in practice? One of the most common methods
is to sell each item separately. That is, each bidder submits one bid for each item (m bids
in all), and each item is awarded to the highest bidder on that item (e.g., for a price equal
to the highest or second-highest bid). How good is this simple method — do bidders bid in
a way that the items are allocated to those who want them the most?

For many decades, it has been known that simple auction formats do not generally result
in the most efficient allocation of the items for sale, but conventional wisdom in economics
states that the allocation should be “pretty good” provided bidders’ preferences over items
are “sufficiently nice” (e.g. see Milgrom, 2004). Traditional economic tools appear inade-
quate for translating this empirical rule of thumb into a rigorous performance guarantee,
for two reasons: (1) work in economics has focused on exact and optimal solutions, and
for the most part has not considered approximation guarantees; (2) economic systems are
traditionally studied by solving for equilibria and then analyzing them, while the equilibria
of multi-item auctions are far too complex to characterize.

This survey outlines a fairly general and modular theory for proving rigorous perfor-
mance guarantees for equilibria of auctions in complex settings. A representative conse-
quence of the theory is: if multiple items are sold separately using first-price auctions and
the willingness to pay of each bidder is a submodular function of the items that she receives
(i.e., preferences are “sufficiently nice”), then every equilibrium of the auction achieves so-
cial welfare at least 63% of the maximum possible (i.e., is “pretty good”). Despite the
complexity of the welfare-maximization problem and of the equilibria in such multi-item
auctions, this guarantee follows from a user-friendly three-step recipe. Roughly, the first
step is to consider only the very special case of a single item, with every bidder knowing
the willingness to pay of every other bidder, and pure (i.e., deterministic) equilibria. The
task in this special case is to use elementary arguments to translate the defining conditions
of an equilibrium into a particular type of approximate welfare guarantee (a “smoothness-
type inequality”). The second step is to apply an “extension theorem,” which extends the
approximate welfare guarantee to single-item auctions in which there is uncertainty (i.e.,
randomness) both in what the bidders are willing to pay and in what bids they submit, or to
outcomes reached by players using no-regret learning, which results in a form of correlation
in this randomness. The third step is to apply a “composition theorem,” which extends the
approximate welfare guarantee to equilibria of simultaneous auctions with any number of
items.

1.1 Organization

Section 2 explores a simple but non-trivial example: the worst-case inefficiency of equilibria
in first-price single-item auctions. In addition to introducing Bayes-Nash equilibrium anal-
ysis in a concrete and understandable setting, the efficiency analysis in this section already
introduces the essence of many of the key ideas of the general framework. Section 3 considers
a more complex example, the sale of multiple items via simultaneous single-item auctions.
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After absorbing the analyses of these two examples, the general theory for approximate
efficiency guarantees for smooth auctions via “extension theorems”, described in Section 4,
follows naturally. Section 5 explains why guarantees for smooth auctions apply even when
players fail to converge to an equilibrium, provided each achieves a “no-regret” property
over repeated plays of the auction. Section 6 shows that the extension from single-item to
simultaneous single-item auctions (Sections 2 and 3) is a general phenomenon, by proving
a “composition theorem” for smooth auctions. Section 7 considers the limitations of simple
auctions, and explains why they cannot enjoy good price-of-anarchy bounds with general
bidder preferences. Section 8 offers pointers to the literature on related topics not covered
in this survey, and Section 9 concludes with a number of open research directions.

2. A Simple Example: First-Price Single-Item Auctions

We begin our analysis of the equilibria of auctions with a simple but fundamental non-
truthful auction, the first-price single-item auction. Consider a single item being auctioned
off to one of n bidders (also called “players”). Each bidder i has some value vi for winning
the item — the maximum “willingness to pay” of the bidder — which is private information
known only to her. If she wins the item and is asked to pay a price pi, then her payoff is
vi − pi. We refer to such payoffs by saying that players have quasi-linear preferences with
respect to money.2

In a sealed-bid first-price auction, every player i simultaneously submits a bid bi to the
auctioneer. The player with the highest bid wins the item and pays her bid. Ties are broken
arbitrarily.

2.1 First-Price Auctions and Bayes-Nash Equilibria

Bidding in a first-price auction is tricky.3 Certainly no player will bid her true valuation,
as this would guarantee zero payoff. Instead, bidders will “shade” their bids, meaning that
they will bid less that their values. By how much should a bidder shade her bid? The
answer depends on the amount of competition she faces and on how other players behave.
How can a bidder reason about what others will do when their valuations are unknown to
her? The standard approach to modeling this issue is via (Bayesian) games of incomplete
information. We assume that the valuation vi of each player i is drawn independently from
some distribution Fi, and that these distributions are common knowledge to all the players.
Intuitively, these distributions correspond to the common beliefs that players have about
everyone’s valuations.

In this incomplete-information model, a strategy of a player is a function si that maps
a value vi in the support of Fi to a bid si(vi). The semantics are: “when my valuation is
vi, I will bid si(vi).” The central equilibrium concept in Bayesian games is the Bayes-Nash
equilibrium. By definition, a profile of strategies constitutes a Bayes-Nash equilibrium if
for every player i and every valuation vi that the player might have, the player chooses

2. Non-quasi-linear utility functions, such as those incorporating risk aversion or budgets, are also interest-
ing. See also Sections 8 and 9.

3. By contrast, in a second-price auction, where the winning bidder pays the value of the second-highest
bid, it is a weakly dominant strategy to bid one’s true value.
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a bid si(vi) that maximizes her conditional expected utility. The expectation is over the
valuations of other players, conditioned on bidder i’s valuation being vi.

2.2 Symmetric Valuation Distributions

What do Bayes-Nash equilibria look like in a single-item first-price auction? To get a feel
for this question, we begin with a simple example, with two bidders with valuations drawn
independently and identically from the uniform distribution on [0, 1].

Example 2.1. (Two bidders with uniform [0, 1] valuations) Let’s “guess and check” a
Bayes-Nash equilibrium for this example. First, since the setting is symmetric in the two
bidders, it is natural to guess that Bayes-Nash equilibria are also symmetric, meaning that
the two players use the same strategy s(v). Let’s also guess that the function s(·) is strictly
increasing, continuous, and differentiable. Under these assumptions, the highest bidder is
the bidder with the largest valuation. By symmetry, the probability that a bidder with
valuation v wins is F(v) = v. To check the Bayes-Nash equilibrium conditions, fix a player
and condition on her valuation being v. We need to solve for the bid that maximizes the
expected utility of the bidder. She could pretend to have value z and bid s(z) for z ∈ [0, 1].
Her expected utility for such a bid is

g(z) = (v − s(z))︸ ︷︷ ︸
utility of win

· F(z)︸ ︷︷ ︸
prob. of win

= (v − s(z)) · z.

To force the condition that the optimal bid of the form s(z) is s(v), as prescribed by the
Bayes-Nash equilibrium conditions, we differentiate g with respect to z and set s(·) to force
a zero derivative at v. This yields the condition

0 = g(z)′|z=v = v − (s(z)z)′|z=v = v − (v · s(v))′ ⇔ v · s(v) =
v2

2
+ constant

on the function s(·). Setting s(0) = 0, we obtain the solution s(v) = v
2 . This solution does

indeed satisfy our initial assumptions of differentiability and monotonicity. It is also easy
to check that it satisfies the Bayes-Nash equilibrium conditions for all bids, and not just for
bids of the form s(z) for some z.

This Bayes-Nash equilibrium turns out to be the unique equilibrium in this example.
This equilibrium is fully efficient, in that the item is always allocated to the bidder with
the higher valuation.

The argument in Example 2.1 generalizes to arbitrary settings in which players’ valua-
tions are drawn independently and identically from a distribution F . Bayes-Nash equilibria
also continue to be unique in this case (Chawla & Hartline, 2013). We refer to such set-
tings as symmetric first-price auctions. For example, with n bidders with valuations drawn
from the uniform distribution on [0, 1], every player uses the strategy s(v) = n−1

n v in the
Bayes-Nash equilibrium. Thus, as competition increases, bidders shade their bids less at
equilibrium.

Summarizing, there are two key take-aways about symmetric first-price auctions.

1. Bayes-Nash equilibria are relatively well understood.

2. Bayes-Nash equilibria are fully efficient, with the item always allocated to the bidder
with the highest valuation.
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2.3 Asymmetric Valuation Distributions

When there is information that distinguishes different bidders, for example the market
shares of different companies, the symmetry assumption of Section 2.2 is no longer ap-
propriate. Can we extend the results of that section to asymmetric first-price single-item
auctions (Maskin & Riley, 2000), where bidders valuations’ are drawn from different distri-
butions?

This question has been extensively studied (see Krishna, 2002, Section 4.3). Because
solving for a Bayes-Nash equilibrium in the asymmetric case is a daunting task and generally
admits no closed-form solution, most papers in the area have considered only the case of
two bidders and specific parametric distributions (Vickrey, 1961; Kaplan & Zamir, 2012).
Even with two bidders with valuations drawn uniformly from [0, 1] and [0, 2], things get
complicated.

Example 2.2. (Two bidders with uniform [0, 1] and uniform [0, 2] distributions (Vickrey,
1961)) One can verify that the following bidding functions constitute an equilibrium in this
example (see also Krishna, 2002):

s1(v1) =
4

3v1

(
1−

√
1− 3v2

1

4

)

s2(v2) =
4

3v2

(√
1 +

3v2
2

4
− 1

)
.

Both bidders bid in the range [0, 2
3 ], with the weaker bidder 1 bidding more aggressively

than the stronger bidder 2 (i.e., s1(v) > s2(v) for v ∈ [0, 1]). For intuition, recall from
Example 2.1 that if the bidders had uniformly and identically distributed valuations, then
at equilibrium both bid half their value. Recall also that the equilibrium bid of a player
increases with the amount of competition she faces. In this example, from the first bidder’s
perspective, the second bidder represents stiffer competition than an identically distributed
bidder, so she bids more aggressively than in the symmetric case. The opposite reasoning
applies to the second bidder, who bids less aggressively than in the symmetric case. For
this reason, the Bayes-Nash equilibrium is not fully efficient — there are valuation profiles
in which the bidder with the lower valuation is the higher bidder and hence the winner.

Summarizing, even the simplest asymmetric first-price auctions are less well-behaved
than symmetric ones, in two senses.

1. Solving for a Bayes-Nash equilibrium requires finding a solution to a system of partial
differential equations, which in most cases has no closed-form solution.

2. Bayes-Nash equilibria are generally inefficient, in that the bidder with the highest
valuation is not always the winner.

How inefficient can the Bayes-Nash equilibria of auctions be? The goal of this survey is
to explain a number of general tools that are useful for answering this question, along with
several representative applications. Specifically, for every auction format that we consider,
we aim to show that the price of anarchy — the smallest ratio between the expected welfare
of a Bayes-Nash equilibrium and the expected welfare of a welfare-maximizing allocation

63



Roughgarden, Syrgkanis, & Tardos

— is at least some constant, independent of the parameters of the auctions (the number of
bidders, the valuation distributions, etc.).

2.4 The Price of Anarchy of First-Price Auctions

The previous section demonstrated the futility of trying to characterize the Bayes-Nash
equilibria of asymmetric first-price auctions in order to bound their inefficiency. Instead,
our analysis will rely only on the fact that, in a Bayes-Nash equilibrium, every player is
best responding to her opponents’ strategies. We will then show that every strategy profile
that satisfies this best response property is approximately efficient. We will prove that, in
every (asymmetric) first-price auction, every Bayes-Nash equilibrium has expected welfare
at least ≈ 63% of the maximum possible. Thus non-trivial efficiency equilibrium guarantees
do not require a detailed understanding of the structure of equilibria.

We use the following notation. For a bid profile b = (b1, . . . , bn), xi(b) denotes whether
or not bidder i is the winner (1 or 0, respectively). We denote by p(b) = maxi∈{1,...,n} bi
the selling price, which is the highest bid. We use ui(b; vi) to denote the utility of player i
when her valuation is vi and the bid profile is b. Because we are analyzing the first-price
auction, we can write

ui(b; vi) = (vi − bi) · xi(b). (1)

Consider a strategy profile s = (s1, . . . , sn), where each strategy si is a function from
the player’s valuation to her bid. We use s(v) to denote the strategy vector resulting from
the vector of valuations v. For a vector w, we use w−i to denote the vector w with the
ith component removed. For example, s−i(v−i) is the vector of bids of the players other
than i when the valuations of these players are v−i. With this notation, a strategy profile
s = (s1, . . . , sn) is a Bayes-Nash equilibrium if and only if

Ev−i [ui(s(v); vi) | vi] ≥ Ev−i

[
ui(b

′
i, s−i(v−i); vi) | vi

]
(2)

for every player i, every possible valuation vi of the player, and every possible deviating
bid b′i. The expectations are over the valuations of the players other than i, according to
the assumed prior distribution F .

The social welfare of a bid profile b when the valuation profile is v = (v1, . . . , vn) is

SW (b; v) =

n∑
i=1

vi · xi(b). (3)

Note that the social welfare is the sum of the utilities of the players plus the revenue of the
auctioneer. The maximum-possible social welfare in a single-item auction is

Opt(v) =
n∑
i=1

vi · x∗i (v), (4)

where x∗i (v) is the indicator variable for whether or not player i is the player with the
highest valuation (with ties broken arbitrarily).

The price of anarchy of an auction, with valuation distribution F , is the smallest value
of the ratio

Ev [SW (s(v); v)]

Ev [Opt(v)]
,
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ranging over all Bayes-Nash equilibria s of the auction. Thus inefficiency is measured by the
extent to which the price of anarchy is smaller than 1. The price of anarchy of an auction
format is then the worst-case (i.e., smallest) price of anarchy of the auction in any setting,
ranging over all choices n for the number of players and all valuation distributions F .

Theorem 2.1 (Price of Anarchy of First-Price Single-Item Auctions). The price of anarchy
of the first-price single-item auction format is at least 1− 1

e ≈ 0.63.

Proof. We prove a bound of 1
2 ; the bound of 1− 1

e follows from an optimized version of the
following argument (see Syrgkanis & Tardos, 2013).

Let s be a Bayes-Nash equilibrium. By definition, every player i chooses a strategy
that maximizes her expected utility, given her valuation vi, the distribution on v−i, and
the strategies s−i(v−i) used by the other players. In particular, if a bidder i deviates from
the bid si(vi) that she uses in the equilibrium, to bidding half her value (b∗i = vi

2 ), then her
expected utility can only go down.4 The choice of such hypothetical deviations b∗i will be
an important theme throughout this survey.

It is simple to bound from below the utility of a bidder that bids half her value (b∗i = vi
2 ).

For every bid profile b, we have

ui(b
∗
i ,b−i; vi) ≥

1

2
vi − p(b), (5)

since the bidder either wins and obtains utility vi − b∗i = 1
2vi ≥

1
2vi − p(b) or loses (in

which case 1
2vi < p(b)) and obtains utility 0 ≥ 1

2vi− p(b). Since the bid b∗i = vi
2 guarantees

non-negative utility, we can also write

ui(b
∗
i ,b−i; vi) ≥

(
1

2
· vi − p(b)

)
· x∗i (v).

Summing this inequality over all bidders i, we obtain

n∑
i=1

ui(b
∗
i ,b−i; vi) ≥

n∑
i=1

(
1

2
· vi − p(b)

)
· x∗i (v) =

1

2
Opt(v)− p(b) (6)

for every valuation profile v and bid profile b, where x∗i is defined as in (4).

We now invoke the hypothesis that s is a Bayes-Nash equilibrium: for every player i
with valuation vi,

Ev−i [ui(s(v); vi)] ≥ Ev−i [ui(b
∗
i , s−i(v−i); vi)] . (7)

Taking expectations over vi, summing up the n inequalities of the form (7), and combining
with inequality (6), we obtain

n∑
i=1

Ev [ui(s(v); vi)] ≥
n∑
i=1

Ev [ui(b
∗
i , s−i(v−i); vi)] ≥ Ev

[
1

2
Opt(v)− p(s(v))

]
.

4. To obtain the 1− 1
e

bound, one needs to consider a randomized bid with support
[
0, (1− 1

e
)vi

]
in place

of the deterministic bid vi/2.
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Last, observe that by the quasi-linear form of bidders’ utilities, for every bid profile b
and valuation profile v we have

n∑
i=1

ui(b; vi) = SW (b; v)− p(b).

Combining the last inequality and equation yields

Ev [SW (s(v); v)] =
n∑
i=1

Ev[ui(s(v); vi)] + Ev [p(s(v))] ≥ 1

2
Ev [Opt(v)] ,

which concludes the proof.

Remark 2.1. It is natural to ask if the bound of 1 − 1/e in Theorem 2.1 is the best
possible. All that is currently known is that no bound better that .87 is possible (Hartline,
Hoy, & Taggart, 2014). Determining the precise worst-case price of anarchy of asymmetric
first-price auctions is an interesting open question (Section 9).

Interestingly, the proof of Theorem 2.1 never used the assumption that bidders’ valua-
tions are independent. We therefore have an even stronger guarantee.

Theorem 2.2. Every Bayes-Nash equilibrium of a first-price auction with correlated val-
uation distributions has expected social welfare at least 1 − 1/e times that of the expected
optimal welfare.

Remark 2.2. For correlated valuation distributions, this bound of 1− 1/e is tight (for
an explicit example see Syrgkanis, 2014).

3. A More Complex Example: Simultaneous Single-Item First-Price
Auctions

Before moving to a general auction setting, we explore a more complex example and in-
troduce the idea of smooth auctions. In this section, we consider an auction for multiple
heterogeneous items and quantify the equilibrium inefficiency of a simple decentralized auc-
tion format.

3.1 Multi-item Auctions

Consider a set of m items being auctioned off to a set of n bidders. Each bidder i ∈ [n]
has a value vij for each item j ∈ [m] and only wants one item. If she happens to win a
set of multiple items S, then her valuation for the set is the highest-valued item in the set,
i.e., vi(S) = maxj∈S vij . Such bidders are often called unit-demand bidders. This setting
has a long and distinguished history in the economics literature. It is a generalization of
the assignment model analyzed by Shapley and Shubik (1971), where the notion of core
outcomes was originally introduced, and it is also the setting considered by Demange, Gale,
and Sotomayor (1986), who introduced the first ascending auctions for multi-item settings
that implement welfare-optimal outcomes. From an algorithmic point of view, the welfare
optimization problem in this setting is simply the maximum weighted bipartite matching
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problem (Cook, Cunningham, Pulleyblank, & Schrijver, 1997), which also has a long and
distinguished history in combinatorial optimization.

This section analyzes the efficiency of the simple auction format that sells each item j
simultaneously and independently using a single-item first-price auction (Section 2). Each
player i submits a bid bij for each item j. Each item j is awarded to the highest bidder for
the item and each bidder is asked to pay her bid for each item that she won. The utility
of a player is her value for the set of items she won minus her total payment. Thus, if we
denote by Si(b) the set of items allocated to player i under a bid profile b, then:

ui(b; vi) = vi(Si(b))−
∑

j∈Si(b)

bij = max
j∈Si(b)

vij −
∑

j∈Si(b)

bij (8)

The analysis of this auction game with unit-demand bidders dates back to the early
work of Engelbrecht-Wiggans and Weber (1979) — when auction theory was still in its
infant stages — who analyzed the very special case of n bidders and n items, with all
players having a valuation of 1 for each item and constrained to bid on only one item.
The optimal welfare is clearly n. Interestingly, they show that there exists a symmetric
mixed Nash equilibrium whose expected welfare approaches (1 − 1/e)n as n → ∞. In
other words, they showed that the price of anarchy of this auction game can be as bad
as 1 − 1/e. This result can be viewed as the first price-of-anarchy bound in the realm
of simple auctions. Surprisingly, the techniques that we describe in this survey will show
that the example proposed by Engelbrecht-Wiggans and Weber (1979) exhibits the worst-
possible inefficiency, over all numbers of bidders and items, all choices of bidders’ valuation
distributions, and all Bayes-Nash equilibria.

Two decades later, Bikhchandani (1999) analyzed a generalization of the game where
players can have arbitrarily complex valuations over the items and without the restriction
of bidding on only one item. He focused on the special case of complete information,
where all players’ valuations are common knowledge, and of pure-strategy Nash equilibria,
where each bidder deterministically chooses a single strategy. He showed that complete-
information pure-strategy Nash equilibria are fully efficient. We are interested in the case
of incomplete information and general Bayes-Nash equilibria; as we know from the previous
section, these are not always fully efficient, even in the case of a single item.

The goal of this section is to prove an approximate efficiency guarantee for simultaneous
first-price auctions with arbitrary independent distributions over unit-demand valuations.

Theorem 3.1. Every Bayes-Nash equilibrium of the simultaneous first-price auction game
with unit-demand bidders and independent valuations achieves expected social welfare at
least 1− 1/e times the expected optimal welfare.

We start with the simple case where players’ valuations are common knowledge. Unlike
Bikhchandani (1999), we analyze the inefficiency of mixed-strategy Nash equilibria (where
players can randomize). We will then see how our conclusions for mixed Nash equilibria of
the complete information setting also extend to the incomplete information setting. In the
remainder of the survey we will see how this type of extension is not specific to the game
studied in this section, but applies more generally to many auction environments.
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3.2 Warm-up: Complete Information

We begin with the case studied by Bikhchandani (1999), of pure-strategy complete informa-
tion Nash equilibria. Fix a profile v of unit-demand valuations. Fix a welfare-maximizing
allocation, where without loss of generality each bidder receives at most one item, and let
j∗(i) denote the item awarded to bidder i in the allocation (if any).

At a pure Nash equilibrium, each player i submits a bid vector bi = (bij)j∈[m] such that,
for all vectors b′i:

ui(b; vi) ≥ ui(b′i,b−i; vi). (9)

Let pj(b) denote the price at which item j is sold. Since a player i does not gain from
deviating to any other strategy, she does not gain by bidding infinitesimally above the
current price on the item j∗(i) and zero on all other items. Denote this deviating bid vector
by b∗i . By bidding b∗i , player i definitely wins his optimal item and pays pj∗(i)(b), deriving
utility

ui(b
∗
i ,b−i; vi) = vij∗(i) − pj∗(i)(b)

Summing over the bidders i, we conclude that there exist deviations b∗1, . . . , b
∗
n such that∑

i∈[n]

ui(b
∗
i ,b−i; vi) = Opt(v)−

∑
j∈[m]

pj(b). (10)

Using the fact that the sum of the Nash equilibrium utilities is at least the sum of these
deviating utilities (applying (9) with b′i = b∗i ) and that the total utility equals the welfare
minus the revenue, we can easily derive the following theorem.

Theorem 3.2 (Bikhchandani, 1999). Every complete-information pure Nash equilibrium of
the simultaneous first-price auction game with unit-demand players achieves the maximum-
possible welfare.

The above result may seem surprising — every equilibrium outcome corresponds to an
optimal matching, the solution of a non-trivial combinatorial optimization problem. Thus
decentralized optimization by competing bidders yields a globally optimal solution. But
how robust is this result?

Unfortunately, the analysis in the proof of Theorem 3.2 breaks down when we try to
apply it to a mixed Nash equilibrium, even in the case of complete information. Specifically,
if the bid profile is random, then the price pj(b) of an item is a random variable. A
player is not in a position to deviate to bidding pj(b) on an item, since she does not
know the realization of pj(b) at the time of bidding. This issue cannot be mitigated by a
different analysis, as there exist inefficient mixed Nash equilibria of the complete-information
simultaneous first-price auction game.5

Example 3.1. (Inefficiency of Mixed Nash Equilibria) Consider the case of two bidders
and two items. Each bidder has a value of 1 for any of the items and bidders are restricted to
bid on at most one item. It is relatively easy to show that the following is a symmetric mixed

5. As mentioned above, this was first observed by Engelbrecht-Wiggans and Weber (1979). The price of
anarchy remains at most 1− 1/e even if players can bid on multiple items, if players can have valuations
slightly more general than unit-demand (Christodoulou, Kovács, Sgouritsa, & Tang, 2016b).
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Nash equilibrium of the game: each bidder picks an item uniformly at random and then
submits a bid x on that item drawn from a distribution with cumulative density function

F (x) =
x

1− x
and support

[
0, 1

2

]
. It is easy to check that the utility of a player from any bid between

[0, 1/2] on any item is equal to 1/2 and is strictly lower for higher bids. The expected
welfare of this equilibrium is equal to the expected number of items that are allocated to
some bidder. Each item is allocated to some bidder with probability 3/4. Thus the total
expected welfare is equal to 3/2, while the optimal welfare is equal to 2. If the example is
extended to n bidders and n items, then the price of anarchy tends to 1− 1/e as n→∞.

The primary obstacle to extending the full efficiency proof (Theorem 3.2) to mixed Nash
equilibria is the dependence of the proposed deviating bid on the current bids of the other
players. Any analysis that used deviations that depend on the realization of others’ bids
will only hold for the case of pure Nash equilibria.

One solution would be to prove an approximate efficiency result that makes use only of
deviations that are independent of others’ actions. But is this even possible?

The previous section provides an affirmative answer in the case of first-price single-item
auctions. Specifically, in the proof of Theorem 2.1, the deviations used only require that a
bidder bid half her value. This deviation did not depend on others’ bids, and guaranteed
a utility of at least half of the player’s valuation minus the realization of the item’s price,
whatever the price may be (recall (5)).

We now extend this idea to multi-item auctions. Define bidder i’s deviation b∗i as bidding
half her value on the item j∗(i) that she receives in some fixed optimal allocation (with at
most one item per bidder), and 0 on all other items. Following the proof of Theorem 2.1,
we have

ui(b
∗
i ,b−i; vi) ≥

vij∗(i)

2
− pj∗(i)(b)

for every bid profile b and hence∑
i∈[n]

ui(b
∗
i ,b−i; vi) ≥

1

2
Opt(v)−

∑
j∈[m]

pj(b). (11)

If b is a pure Nash equilibrium, then the inequality (11) and the reasoning in the proof of
Theorem 2.1 imply that the social welfare of b is at least half of the maximum possible.

The key point is that, because the deviations b∗i used in this derivation are independent
of the bid profile b, the approximation guarantee applies more generally to mixed Nash
equilibria (and even beyond mixed Nash equilibria, see Section 5). To see this, note that
each deviation b∗i is now well defined even when others’ bids are randomized. Taking the
expectation of (11) over the mixed Nash equilibrium bid profile distribution (with the
deviations b∗i fixed) and using the fact that players are best-responding in expectation
proves that the expected welfare of every mixed Nash equilibrium is at least 1

2Opt(v). The
optimized deviations mentioned in Section 2 can be used to improve the bound from 1

2 to
1− 1/e.

Theorem 3.3. Every complete-information mixed Nash equilibrium of the simultaneous
first-price auction game with unit-demand players achieves expected welfare at least 1− 1/e
times the maximum possible.
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3.3 Incomplete Information

The preceding section showed how to cope with randomness in bidders’ strategies and prove
efficiency guarantees for (complete-information) mixed Nash equilibria. We now consider
the incomplete-information case, where the valuation of each bidder i is drawn indepen-
dently from a distribution Fi. In this setting, a bidder knows her own valuation and the
Fi’s, but not the realizations of others’ valuations. Do our previous price-of-anarchy bounds
continue to hold?

Coming up with well-defined deviations b∗i is again the primary obstacle to extending our
results. To understand the issue, recall how we defined b∗i in the proof of Theorem 3.3, with
bidder i bidding half her valuation on the item j∗(i) (if any) that she receives in some fixed
optimal allocation. The optimal allocation, and hence the identity of the item j∗(i), depend
on the full valuation profile v. When valuations are commonly known, bidder i knows the
identity of the item j∗(i) and is in a position to execute the deviation b∗i . If bidder i only
knows a distribution over others’ valuations and not the valuations themselves, then she
only knows a distribution over the possible identities of j∗(i). The previous deviation b∗i is
no longer well defined, derailing the argument.

This obstacle motivates defining each deviation b∗i in a way that depends only on the
player’s own valuation. This seems rather restrictive! Interestingly, we show that there is,
essentially, a black-box way to transform each price-independent deviation used in the proof
of Theorem 3.3 in a way that it no longer depends on the valuations of other bidders, while
at the same time implying the exact same efficiency guarantee! The key idea is to use the
following (randomized) deviation: a bidder i samples valuations v′−i for the other bidders
according to the (known) valuation distributions and uses v′−i as a surrogate for the true but
unknown valuations v−i. That is, the bidder bids half her value on the item j′(i) and 0 on the
other items, where j′(i) is the item i receives (if any) in an optimal allocation when bidder i
has valuation vi and the other bidders have valuations v′−i. Crucially, this randomized
deviation depends only on bidder i’s valuation (and the distributions F−i), and not on
anyone’s bid nor on any other bidder’s valuation. This idea originates by Christodoulou,
Kovács, and Schapira (2016a) and its generality was made clear by Roughgarden (2012)
and Syrgkanis (2012). It enables us to extend the argument in the proof of Theorem 3.3 to
establish Theorem 3.1.

Proof of Theorem 3.1. We prove a price-of-anarchy bound of 1
2 . The improvement to

1− 1/e follows similar lines as in the proof of Theorem 2.1.

Denote by j∗(i,v) the item awarded to player i in the optimal allocation for the valuation
profile v. Define b∗i (v) as in the proof of Theorem 3.3, as the bid vector where player i bids
half of her value on item j∗(i,v) and zero on every other item. Inequality (11) from the
proof of Theorem 3.3 implies that, for every valuation profile v and every bid profile b,∑

i∈[n]

ui(b
∗
i (v),b−i; vi) ≥

1

2
Opt(v)−R(b), (12)

where R(b) =
∑

j∈[m] pj(b) denotes the total revenue of the auction. Recall that b∗i (v) is
not a valid deviation in the incomplete-information setting, as player i is not aware of the
valuations v−i.
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Consider a Bayes-Nash equilibrium profile of strategies where, conditional on her valua-
tion being vi, player i chooses a bid according to some distribution Di(vi). For conciseness,
denote by Gi the distribution of player i’s bid at this equilibrium (drawing vi from Fi and
then bi from Di(vi)). Crucially, because players’ valuations are independently distributed,
the joint distribution of equilibrium bids is just the product distribution G1× . . .×Gn, which
we denote by G. In particular, the distribution G−i of the equilibrium bids of players other
than i is unaffected by conditioning on player i’s valuation vi. This would not be the case
if players’ valuations were correlated.

Now consider the following valid incomplete-information randomized deviation b′i ∼
D′i(vi): player i first randomly samples a valuation profile v′−i ∼ F−i and then performs the
deviation b∗i (vi,v

′
−i). The Bayes-Nash equilibrium conditions imply that, for every player i

and possible valuation vi of the player,

Ebi∼Di(vi),b−i∼G−i
[ui(b; vi)] ≥ Eb′i∼D′i(vi),b−i∼G−i

[
ui(b

′
i,b−i; vi)

]
= Ev′−i∼F−i,b−i∼G−i

[
ui(b

∗
i (vi,v

′
−i),b−i; vi)

]
.

This inequality holds for every vi, and hence also in expectation over vi:

Evi∼Fi,bi∼Di(vi),b−i∼G−i
[ui(b; vi)] ≥ Evi∼Fi,v′−i∼F−i,b−i∼G−i

[
ui(b

∗
i (vi,v

′
−i)),b−i; vi)

]
= Ev∼F ,b∼G [ui(b

∗
i (v),b−i; vi)] , (13)

where in the equation we have renamed v′−i as v−i and also used the fact that the utility of
player i after deviating is independent of what she would bid at equilibrium. We emphasize
that, on the right-hand side of (13), v and b are drawn independently from F and G,
respectively.

On the other hand, taking the expectation of inequality (12) over v ∼ F and b ∼ G
shows that the sum of the expected deviating utilities across players is∑

i∈[n]

Ev∼F ,b∼G [ui(b
∗
i (v),b−i; vi)] ≥

1

2
Ev∈F [Opt(v)]− Eb∼G [R(b)] . (14)

Summing inequality (13) over the bidders i and combining it with inequality (14), we get

Ev∼F ,bi∼Di(vi)∀i

[∑
i

ui(b; vi)

]
≥ 1

2
Ev∈F [Opt(v)]− Eb∼G [R(b)] .

Now adding Eb∼G [R(b)] to both sides shows that the expected welfare of the Bayes-Nash
equilibrium is at least 1

2 times the expected maximum welfare.

4. General Auctions and Smoothness

The examples in the previous sections portrayed how we can bypass the daunting task of
characterizing the equilibria of a game of incomplete information and directly show that
every equilibrium is approximately efficient. Our next goal is to develop a general framework
for providing such efficiency guarantees, building on our previous arguments for single- and
multi-item first-price auctions.
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4.1 General Auction Mechanisms

We begin by formally defining a general mechanism design setting and a generic auction,
and introducing some essential notation that is used throughout the survey. In a general
mechanism design setting, the auctioneer solicits an action ai from each player i from some
action space Ai (a bid in the case of the auctions considered in the previous two sections).
Define A = A1 × . . .An. Given the action profile a = (a1, . . . , an) ∈ A, the auctioneer
decides an outcome o(a) among a set of feasible outcomes O. Part of an outcome is also a
payment pi(o) that the auctioneer receives from each player. We denote by R(o) =

∑
i pi(o)

the revenue of the auctioneer.

Each player derives some utility which is a function of the outcome and of a parameter vi
taking values in a parameter space Vi, typically referred to as the valuation or type of the
player. We denote by ui(o; vi) the utility of a player with type vi ∈ Vi in the outcome o ∈ O.
Write V for the set V1 × V2 × · · · × Vn of valuation profiles.

For a given auction, since the outcome is uniquely defined by the action profile, we
overload notation and write ui(a; vi) for the utility of the player with type vi for the outcome
in the auction under an action profile a. We also denote by R(a) the revenue of the
auctioneer in action profile a.

4.2 Additional Examples

Before formally defining equilibria and smoothness and proving price-of-anarchy bounds,
we will give a few additional examples of auctions of interest that fit in the framework that
was just defined. While the general definition allows the player utility ui(a; vi) to depend
on the price paid in more complex ways, in all of our examples we use quasi-linear utility,
where ui(a; vi) = vi(a) − pi(a), for some value function vi(a) that depends only on the
allocation of the auction, and pi(a) is the price paid by player i.

Our first additional example is again for the sale of a single item, but with the different
payment rule in which all players pay their bid, and not only the winner. Such all-pay
auctions arise naturally in contest settings where players have sunk costs that they have
to pay irrespective of whether they win or not (e.g., where the work invested acts as the
payment). There are many works in the economic literature (Amann & Leininger, 1996;
Baye, Kovenock, & de Vries, 1996; Gneezy & Smorodinsky, 2006; Siegel, 2014) and a
few recent ones in computer science (DiPalantino & Vojnovic, 2009; Chawla, Hartline, &
Sivan, 2012) that analyze properties of all-pay auctions. As with the first-price auction,
the asymmetric independent private values model has been under-studied because of the
difficulty of characterizing its equilibria in a closed form.

Example 4.1. (All-Pay Auction) Consider a setting where n players bid for a single
item. Each player has a value vi for the item, drawn from a commonly known distribution
Fi. Each player submits a bid bi. The highest bidder wins the item and every player pays
her bid (whether a winner or not).

A different example arises in the context of public goods, such as a bridge or a park. A
group of people needs to decide whether to build such a public good, and how to share the
cost. This scenario is especially tricky when the public good is non-excludable, meaning
that everyone can use it, whether or not they contributed to its construction (as with most
bridges and parks).
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Example 4.2. (Public Good) A group of n players bid on their share of a joint project
that has a publicly known cost c. Each player has a value vi for the completion of the
project. Each player submits a bid bi. If

∑
i bi ≥ c, the project is undertaken, and all

players pay their bids, so bidder i’s utility for the outcome is vi − bi. If
∑

i bi < c, then the
project is abandoned and payments are not collected.

4.3 Incomplete Information and Equilibria

The type vi of each player is private information and is drawn independently from a com-
monly known distribution Fi. We denote by Ai the possible actions of the player, and
by ∆(Ai) the probability distributions over these actions. The strategy of a player in this
auction is a mapping σi : Vi → ∆(Ai) from a type vi ∈ Vi to a distribution over actions
σi(vi) ∈ ∆(Ai).

Definition 4.1 (Bayes-Nash equilibrium (BNE)). A strategy profile σ = (σ1, . . . , σn) is a
Bayes-Nash equilibrium if: for each player i, for each type vi ∈ Vi, and for each action
a′i ∈ Ai:

Ev−i∼F−i

[
Ea∼σ(v) [ui(a; vi)]

]
≥ Ev−i∼F−i

[
Ea−i∼σ−i(v−i)

[
ui(a

′
i,a−i; vi)

]]
.

Social welfare. We will be interested in analyzing the social welfare, defined as the utility
of all participating parties (the bidders and the auctioneer):

SW (o; v) =

n∑
i=1

ui(o; vi) +R(o). (15)

For players with quasi-linear utilities, as in (1) and (8), this definition coincides with that
in (3). The definition in (15) makes sense with arbitrary player utility functions, not just
quasi-linear utility functions. For a given valuation profile v, we denote the optimal welfare
of a feasible outcome by Opt(v) = maxo∈O SW (o; v).

We measure the inefficiency of Bayes-Nash equilibria of an auction with the price of
anarchy (PoA), defined as

PoA = inf
F , σ is BNE

Ev∼F
[
Ea∼σ(v) [SW (a; v)]

]
Ev∼F [Opt(v)]

.

The PoA is between 0 and 1, with numbers closer to 1 corresponding to more efficient
equilibria.

4.4 Smooth Auctions

We begin our analysis of general auction settings by observing that all of the proofs of the
efficiency guarantees in Sections 2 and 3 follow the exact same paradigm. The key step
is to find an appropriate deviation (b∗i , or more generally an action a∗i ) for each player,
such that no matter what others’ actions are, the utility achieved by the deviation can be
bounded below by some fraction of the player’s contribution to the optimal welfare, less
some quantity that relates to the current revenue of the auction. (In fact, we only needed
this in aggregate over all of the players.) This was crystalized by Equation (6) for the
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case of Bayes-Nash equilibria of single-item first-price auctions, Equation (10) for complete-
information pure Nash equilibria of simultaneous first-price auctions, and Equation (11) for
mixed Nash equilibria of such auctions. All of these inequalities are variants of what we
will call a smoothness-type inequality.

The only difference in the different versions of the argument is the informational re-
quirements of the deviations a∗1, . . . , a

∗
n. For instance, in Equation (10) each b∗i depends

on the valuations and bids of all of the players; this restricts the analysis to complete-
information pure Nash equilibria. In Equation (11), each b∗i depends only on the valuations
of players and not on their bids; this is sufficient to analyze mixed Nash equilibria and,
after the application of a “black-box translation” to remove the dependence of a bidder’s
deviation on others’ valuations, Bayes-Nash equilibria in the incomplete-information setting
with independent valuation distributions. In Equation (6), each b∗i depends on the player’s
own valuation and on nothing else, and the consequent approximate efficiency bound ap-
plies even to Bayes-Nash equilibria of first-price single-item auctions with correlated bidder
valuations.

Our primary goal in this section is to understand the efficiency of Bayes-Nash equilibria
of auctions in the independent private values model. This motivates defining a smooth
auction as one that satisfies a natural generalization of Equation (11), with the restriction
that the deviations used do not depend on players’ actions (but can depend on all players’
valuations).

Definition 4.2 (Smooth auction). For parameters λ ≥ 0 and µ ≥ 1, an auction is (λ, µ)-
smooth if for every valuation profile v ∈ V there exist action distributions D∗1(v), . . . , D∗n(v)
over A1, . . . ,An such that, for every action profile a,∑

i

Ea∗i∼D∗i (v) [ui(a
∗
i ,a−i; vi)] ≥ λOpt(v)− µR(a). (16)

Definition 4.2 is due to Syrgkanis and Tardos (2013), inspired by previous definitions of
“smooth games” in complete-information (Roughgarden, 2015) and incomplete-information
(Roughgarden, 2012; Syrgkanis, 2012) settings. The realizable smoothness parameters of a
fixed auction format generally depend on the class V of permitted valuation profiles; this
point is particularly important in Section 6.

On the surface, inequality (16) appears relevant only for the case of complete information
(since v is fixed in (16)) and pure Nash equilibria (since a is similarly fixed). But the
ideas we developed for simultaneous first-price auctions (Section 3) indicate how to extend
efficiency guarantees when actions or valuations are randomized. For example, the proof of
Theorem 3.3 generalizes to all smooth auctions without difficulty.

Theorem 4.3. If an auction is (λ, µ)-smooth, then for every valuation profile v ∈ V, every
complete-information mixed Nash equilibrium of the auction has expected welfare at least
λ
µ ·Opt(v).

Similarly, the proof of Theorem 3.1 can be generalized to all smooth auctions.

Theorem 4.4 (Extension to Incomplete Information). If an auction is (λ, µ)-smooth, then
for every profile F1, . . . ,Fn of independent valuation distributions over V1, . . . ,Vn, every
Bayes-Nash equilibrium of the auction has expected welfare at least λ

µ · Ev∼F [Opt(v)].
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Results like Theorems 4.3 and 4.4 are sometimes called “extension theorems,” meaning
that they extend an approximate efficiency guarantee from a restricted class of equilibria
(like complete-information pure Nash equilibria) to a more general class (like Bayes-Nash
equilibria). They free the analyst to focus on proving inequalities of the form (16), without
concern for randomness in valuations or in actions. Proofs that establish inequalities of the
form (16), for a suitable λ and µ, are sometimes called “smoothness proofs.”

4.5 Another Example Application of Smoothness: All-Pay Auctions

To portray the generality of the smoothness approach, we discuss how it applies to all-pay
auctions (Example 4.1). The extension theorems are especially interesting in this case,
as all-pay auctions do not have pure Nash equilibria. Despite this, our results allow the
analyst to think only about a property of pure strategies, and then conclude an approximate
efficiency guarantee for Bayes-Nash equilibria.

We show that the all-pay auction is (1/2, 1)-smooth. Thus for every valuation profile
v, we require a deviation b∗i for each player (possibly randomized) such that for every bid
profile b, ∑

i∈[n]

Eb∗i [ui(b
∗
i ,b−i; vi)] ≥

1

2
Opt(v)−R(b). (17)

Without loss of generality, assume that player 1 has the highest valuation in the profile v.
Our deviating bids are: b∗1 is chosen uniformly at random from [0, v1], and b∗i = 0 for all
i > 1. Now fix a bid profile b. Player 1 wins the item after deviating to b∗1 whenever this bid
is above the highest bid in b−1, in which case she gets a value of v1. Her expected payment
is exactly v1/2 (recall it’s an all-pay auction). Thus her expected utility after deviating can
be bounded below as follows:

Eb∗1 [ui(b
∗
1,b−1; v1)] = v1 · Pr

[
b∗1 > max

j>1
bj

]
− v1

2
≥ v1 ·

v1 −maxj bj
v1

− v1

2
=
v1

2
−max

j
bj .

The utility of every other player from the deviation b∗i = 0 is non-negative. Summing
all these lower bounds and observing that Opt(v) = v1 and R(b) ≥ maxj bj verifies the
inequality (16) with λ = 1

2 and µ = 1.
Combining this smoothness proof with Theorem 4.4, we conclude that every Bayes-Nash

equilibrium of an asymmetric all-pay auction with players with independent types achieves
expected welfare at least half of the expected optimal welfare.

4.6 Correlated Valuations

The guarantee in Theorem 4.6 is for independently drawn player valuations — what if
valuations are correlated? Unfortunately, the guarantee no longer holds: there exist auctions
that satisfy Definition 4.2 for constant λ and µ, but which have unbounded inefficiency with
correlated valuations as the number of players and items in the market grows (Bhawalkar
& Roughgarden, 2011; Feldman, Fu, Gravin, & Lucier, 2013).

On the positive side, Theorem 2.2 shows that the Bayes-Nash equilibria of single-item
first-price auctions are approximately efficient even when players’ valuations are correlated.
The crucial property that enables this result is that the single-item first-price auction sat-
isfies a smoothness-type inequality where the deviating action depends only on the player’s
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own valuation (and not on others’ valuations). This type of smoothness property was defined
by Lucier and Paes Leme (2011), who called it semi-smoothness. Since the only difference
with Definition 4.2 is the independence of the deviating action from others’ valuations, we
refer to this property as smoothness with private deviations.

Definition 4.5 (Smooth Auction with Private Deviations). For parameters λ ≥ 0 and
µ ≥ 1, an auction is (λ, µ)-smooth with private deviations if for every valuation profile
v ∈ V there exist action distributions D∗1(v1), . . . , D∗n(vn) over A1, . . . ,An such that, for
every action profile a,∑

i

Ea∗i∼D∗i (vi) [ui(a
∗
i ,a−i; vi)] ≥ λOpt(v)− µR(a). (18)

The requirement in Definition 4.5 is considerably stronger than that in Definition 4.2,
but the reward is approximate efficiency guarantees with correlated valuations.

Theorem 4.6 (Extension to Correlated Valuations). If an auction is (λ, µ)-smooth, then
for every joint distribution F over players’ valuations, every Bayes-Nash equilibrium of the
auction has expected welfare at least λ

µ · Ev∼F [Opt(v)].

Because of the stronger condition in Definition 4.5, the proof of Theorem 4.6 is simpler
than that of Theorem 4.4 — one can just use each deviation D∗i (vi) directly, and there is
no need to randomly sample fictitious valuations for the other players (and hence no need
for independent valuations). The proof follows the same lines as that of Theorem 2.1 (for
details, see Lucier & Paes Leme, 2011; Roughgarden, 2012).

We note that the proof of smoothness in Section 4.5 for all-pay auctions does not use
private deviations, hence does not extend automatically to correlated valuations. Deter-
mining the price of anarchy of single-item all-pay auctions with correlated values is an open
problem.

5. No-Regret Learning

So far in this survey we have only analyzed auctions at equilibrium. But how do players
arrive at this equilibrium? In many real-world applications of auction design, players do
not participate in the auction only once and then vanish. Typically they participate in the
auction repeatedly.

The Bayes-Nash equilibrium condition implicitly assumes that when the players arrive
in a market, they have done their homework well: they have formed their beliefs about the
competition and have computed a Bayes-Nash equilibrium of the market for these beliefs.
On their arrival to the market, they simply invoke the equilibrium strategy that they have
pre-computed for their realized value.

In many auction settings, the assumption that players are such diligent students is a
strong one, especially in cases where entering players lack information about the environ-
ment, or when the problem of computing an equilibrium is computationally hard. The
expectation of such diligent preparation is even more unreasonable in repeated auction en-
vironments where the stakes of each individual auction are small, with the aggregate payoff
over time being of primary importance. A more reasonable assumption is that players ex-
periment in the market and try to optimize their bid over time using their past experience
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as a proxy for future rewards. For example, in Internet advertising auctions, there are a
number of different (adaptive) bidding agents available. In general, the study of adaptive
game playing is called the theory of learning in games (Fudenberg & Levine, 1998).

Can we bound the average efficiency of an auction when players use adaptive game-
playing algorithms? Do the equilibrium efficiency guarantees that we provided thus far
extend to such adaptive game playing?

One attractive model of adaptive game playing is no-regret learning (Freund & Schapire,
1999; Hart & Mas-Colell, 2000; Auer, Cesa-Bianchi, Freund, & Schapire, 1995), which
dates back to the very early work of Hannan (1957). No-regret learning has a long and
distinguished history even outside of game theory, when a single decision maker is facing
a sequence of decisions among a fixed set of actions whose rewards at each time step are
chosen by an adversary (for an extended survey see e.g. Cesa-Bianchi & Lugosi, 2006). It
is easy to see the relevance of this model to a repeated game environment: instead of an
adversary, the reward of each action at each iteration is affected by the actions of other
players. When the other players are hard to predict, the player might as well treat them as
adversaries.

A learning algorithm for a player satisfies the no-regret condition if, in the limit as the
number of times the game is played goes to infinity, the average reward of the algorithm
is at least as good as the average reward of the best fixed action in hindsight (assuming
the sequence of actions of the other players remain unchanged). Many simple algorithms
are known to achieve this property, including the multiplicative weight updates algorithm
(Littlestone & Warmuth, 1994; Freund & Schapire, 1999) and the regret matching algorithm
(Hart & Mas-Colell, 2000). See the work of Cesa-Bianchi and Lugosi (2006) for more general
classes of no-regret algorithms.

This section addresses whether the price-of-anarchy guarantees of the previous sections
extend to the average welfare of repeated auctions, assuming that each player uses a no-
regret learning algorithm. We will argue that the price of anarchy bound of λ

µ for a (λ, µ)-
smooth auction (Theorems 4.3–4.4) directly extends to such no-regret learning outcomes,
thereby providing further robustness for the welfare properties of smooth auctions.

More formally, we consider an auction with n players that is repeated for T time steps.
Each player i has some fixed valuation6 vi and at each iteration t, she chooses to submit
some action ati which can depend on the history of play. After each iteration, each player
observes the actions taken by the other players.7

If a player i uses a no-regret learning algorithm, then in hindsight her average regret
for any alternative strategy a′i (i.e. the difference between the average reward of always
playing action a′i and the average reward of the algorithm) goes to zero or becomes negative
(as T → ∞). When every player uses such an algorithm, the result is a vanishing regret
sequence.

6. This valuation can be thought of as being drawn at the beginning of time from the distribution Fi.
Recent work of Hartline, Syrgkanis, and Tardos (2015) extends the results of this section to the case
where player i’s valuation is drawn at each iteration from Fi, rather than being fixed.

7. This assumption can be relaxed, and the theory also extends to a “bandit” model where each player only
observes the utility of the action taken.
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Definition 5.1 (Vanishing Regret). A sequence of action profiles a1,a2, . . . , is a vanishing
regret sequence if for every player i and action a′i ∈ Ai,

lim
T→∞

1

T

T∑
t=1

(
ui(a

′
i,a

t
−i; vi)− ui(at; vi)

)
≤ 0. (19)

We now argue that if an auction is (λ, µ)-smooth, then eventually the average welfare
of every vanishing regret sequence is at least λ

µ times the optimal welfare. The proof is
not hard and we sketch it here. For simplicity, suppose that each player after T time steps
already has zero regret (or less) for each action. In particular, each player i has no regret
with respect to the randomized action a∗i ∼ D∗i (v) prescribed by the smoothness property
(Definition 4.2). This implies that

1

T

T∑
t=1

ui(a
t; vi) ≥

1

T

T∑
t=1

Eai∼D∗i (vi)

[
ui(a

∗
i ,a

t
−i; vi)

]
.

Summing this inequality over all players and invoking the smoothness inequality (16) for
each action profile at, we can easily conclude that 1

T

∑T
t=1 SW (at; v) ≥ λ

µOpt(v). The
same reasoning straightforwardly yields the following result for vanishing regret sequences.

Theorem 5.2 (Extension to Vanishing Regret Sequences). If an auction is (λ, µ)-smooth,
then for every valuation profile v, every vanishing regret sequence of the auction has expected
welfare at least λ

µ ·Opt(v) as T →∞.

6. Composability

“Most analyses of competitive bidding situations are based on the assumption
that each auction can be treated in isolation. This assumption is sometimes
unreasonable.” (Milgrom & Weber, 1982)

This section gives a general approach for analyzing the efficiency of multiple auctions
that take place simultaneously, when players have valuations that are complex functions
of the outcomes of the different auctions. Specifically, we will prove a “composition theo-
rem” stating that, under a “complement-free” assumption on players’ utility functions, the
simultaneous composition of smooth auctions is also smooth.

6.1 Simultaneous Composition

We consider a setting with n bidders and m auctions. Each auction j concerns its own set
of items, its own feasible outcome space Oj , for each player i its own action space Aij , and
its own outcome function oj(aj). Similarly, we denote by pij(oj) the payment of player i
in auction j in some outcome oj and by Rj(oj) =

∑
i pij(oj) the revenue of auctioneer j.

For example, if each auction is a first-price single-item auction, then each Aij is just the
set of possible bids (i.e., R+), oj(aj) awards item j to the player who bid the highest for it,
and Rj(oj) equals the highest bid on j. The simultaneous composition of the m auctions
is the auction in which each player i simultaneously picks an action aij for every auction j,
resulting in the outcome o = (o1(a1), . . . , om(am)).
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Utilities and valuations. Importantly, a player’s utility is now a function ui(o; vi) of
the outcomes o = (o1, . . . , om) of all of the auctions, where vi ∈ Vi is the player’s type. In
the most commonly studied utility model, each player has a quasi-linear utility function
and is indifferent about what happens to the other players. Mathematically, this translates
to

ui(o; vi) = vi(Si(o))−
∑
j

pij(oj), (20)

where Si(o) denotes the items awarded to player i in the outcome o, and vi is a valuation
function that assigns a nonnegative value vi(S) to each subset S of items that player i might
obtain. For example, if every auction is a single-item auction, then Si(o) corresponds to
the auctions for which i is the winner.

No positive results are possible with arbitrary valuation functions (see Section 7), so in
order to make progress we need to impose structure on players’ valuations. The simplest
type of valuation function vi is an additive function, where there are nonnegative “item valu-
ations” vi1, . . . , vim such that, for every bundle S of items, the valuation vi(S) for the bundle
is just the sum

∑
j∈S vij of the corresponding item valuations. A player with an additive

valuation can reason about each item separately. The unit-demand valuations introduced
in Section 3 are another example. Here, for nonnegative item valuations vi1, . . . , vim, the
corresponding unit-demand valuation is vi(S) = maxj∈S vij . Already in this case, the value
of a player for some item j might depend on whether or not she wins a different item j′

sold in a different auction.
Both additive and unit-demand valuations are special types of monotone submodular

valuations, meaning that vi(S) ≤ vi(T ) whenever S ⊆ T and vi(T ∪ {j})− vi(T ) ≤ vi(S ∪
{j})− vi(S) for every S ⊆ T and item j also, referred to as having the decreasing marginal
value property. Such functions model diminishing returns, and have been studied extensively
in machine learning, optimization, and economics.

It is technically convenient to work with a still more general class of valuations, which
we call complement-free valuations. Intuitively, the following definition prohibits comple-
mentarities between different items, where winning one item is valuable only if the bidder
also wins some other item.8 Precisely, a valuation function vi is complement-free if there
exist additive valuations w1

i , . . . ,w
r
i such that, for every subset S of items,

vi(S) =
r

max
`=1

∑
j∈S

w`ij

 . (21)

For example, if vi is a unit-demand valuation with item values vi1, . . . , vim, then vi is
the maximum of m additive valuations w1

i , . . . ,w
m
i , where w`ij equals vij if ` = j and

equals 0 otherwise. More generally, every monotone submodular valuation is complement-
free. The proof uses m! additive valuations, one for each ordering π of the m items, and
defines wπij as vi(S

π
j ∪ {j}) − vi(Sπj ), where Sπj denotes the set of items that precede j in

π. The condition (21) holds: for every subset S of items, wπ
i (S) ≤ vi(S) for every π (by

8. In the literature, “complement-free” is often equated with subadditivity. What we are calling
“complement-free” is often called “fractionally subadditive” or “XOS” (for “XOR-of-singletons”) in the
literature. Valuations that are complement-free in the sense of this survey are always subadditive, but
not conversely. See the work of Lehmann, Lehmann, and Nisan (2001) for further details.
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submodularity), and there exists a π such that wπ
i (S) = vi(S) (take a π where the items of

S come first).

We can analogously define a utility function ui over outcomes o ∈ O as additive if it has
the form

ui(o; vi) =

m∑
j=1

uij(oj ; vij)

for valuations of the form vi = (vi1, . . . , vim), and complement-free if it is the maximum of
additive utility functions:

ui(o; vi) =
r

max
`=1


m∑
j=1

uij(oj ; v
`
ij)

 . (22)

For example, with single-item auctions and quasi-linear utilities (20), additive and complement-
free valuations induce additive and complement-free utility functions, respectively (with
uij(oj ; v

`
ij) equal to v`ijxij(oj) − pij(oj), where xij(oj) indicates whether or not i wins the

jth item in oj). The composition theorem below requires only that players’ utilities are
complement-free in the sense of (22), and does not assume quasi-linear utilities or single-
item auctions.

6.2 The Composition Theorem

The main result of this section is the following composition theorem.

Theorem 6.1 (Composition Theorem). If players have complement-free utility functions,
then the simultaneous composition of (λ, µ)-smooth auctions is again a (λ, µ)-smooth auc-
tion.

Proof. As a warm-up, suppose that every player i actually has an additive utility function,
with valuation vi = (vi1, . . . , vim). Intuitively, in this case the composition theorem follows
just by adding up the smoothness inequalities for the constituent auctions.

Formally, write vj for the projection (v1j , . . . , vnj) of v onto the valuation space for
the jth auction. To save notation, we write ui(a; vi) to mean ui(o(a); vi), where o(a) is
the outcome resulting from the action profile a. Since each auction j is (λ, µ)-smooth
(Definition 4.2), there are action distributions D∗1j(vj), . . . , D

∗
nj(vj) over A1j , . . . ,Anj such

that, for every action profile aj ∈ A1j × · · · × Anj ,∑
i

Ea∗ij∼D∗ij(vj)

[
uij(a

∗
ij ,a−i,j ; vij)

]
≥ λOptj(vj)− µRj(aj), (23)

where Optj(vj) denotes the maximum social welfare (i.e., sum of players’ utilities plus
seller revenue) of any outcome of auction j with valuation profile vj . Now define D∗i (v) =
D∗i1(v1) × · · · × D∗im(vm). Using the additivity of players’ utilities and summing up (23)
over all j verifies the smoothness condition (16) for the composition of the auctions.

For the general case, fix a profile v of valuations such that all players’ have complement-
free utility functions. The idea is to reduce to the additive case. To extract additive utility
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functions from the given complement-free ones, let o∗ be a social welfare-maximizing out-
come of the composition of auctions for valuations v. For each player i, with valuation
vi = (v1

i , . . . , v
m
i ) with each ui(o; v`i ) additive, define the proxy valuation v∗i as a valu-

ation v`i that satisfies ui(o
∗; v`i ) = ui(o

∗; vi). With the valuation profile v∗, all players
have additive utility functions. By the previous paragraph, we can define action distribu-
tions D∗1(v∗), . . . , D∗m(v∗) such that, for every action profile a ∈ A,∑

i

Ea∗i∼D∗i (v∗) [ui(a
∗
i ,a−i; v

∗
i )] ≥ λOpt(v∗)− µR(a). (24)

The utilities on the left-hand side and social welfare on the right-hand side of (24) refer to
the proxy valuations v∗, not the true valuations v. The complement-free condition (22) and
choice of v∗i imply that ui(o

∗; vi) = ui(o
∗; v∗i ) and ui(o; vi) ≥ ui(o; v∗i ) for every player i and

outcome o ∈ O. Hence, the left-hand side of (24) is at most
∑

i Ea∗i∼D∗i (v∗)[ui(a
∗
i ,a−i; vi)].

Also, since o∗ is a feasible outcome, the optimal welfare with the proxy valuations v∗ is at
least as large as it is with the true valuations v:

Opt(v∗) ≥
∑
i

ui(o
∗; v∗i ) +R(o∗) =

∑
i

ui(o
∗; vi) +R(o∗) = Opt(v),

and so the right-hand side of (24) is at least λOpt(v)−µR(a) (for every a). Combining (24)
with these two inequalities verifies the smoothness condition for the auction composition.

From simpler to more complex valuations. The heart of the proof of Theorem 6.1
extends a smoothness inequality from additive player utility functions to complement-free
utility functions. The same argument shows more generally that whenever a mechanism
is smooth for some class of utilities and valuations, it is equally smooth when the utility
function of each player is a maximum over such utilities and valuations. Feige, Feldman,
Immorlica, Izsak, Lucier, and Syrgkanis (2015) and Lucier and Syrgkanis (2015) give appli-
cations of this generalization.

6.3 A Promise Fulfilled

In the Introduction, we mentioned that the following result follows easily from the machinery
developed in this survey.

Theorem 6.2. Every Bayes-Nash equilibrium of the simultaneous first-price auction game
with bidders with independent submodular valuations and quasi-linear utilities achieves ex-
pected social welfare at least 1− 1/e times the expected optimal welfare.

To review, Theorem 6.2 follows immediately from chaining together the following tools:
the fact that the first-price single-item auction is (1− 1

e , 1)-smooth (Theorem 2.1); the fact
that submodular functions are complement-free and hence induce complement-free utilities
for players with quasi-linear utility functions; the composition theorem, which implies that
simultaneous first-price auctions are (1− 1

e , 1)-smooth for such players (Theorem 6.1); and
the extension theorem stating that every Bayes-Nash equilibrium of a (λ, µ)-smooth auc-
tion with independent player valuations has expected social welfare at least λ

µ times the
maximum possible (Theorem 4.4).
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Of course, this same machinery applies far more generally — whenever an auction
can be expressed as the simultaneous composition of smooth auctions and players have
complement-free utility functions over the outcomes of these auctions.

Relationship to Theorem 3.1. To understand how the proof of Theorem 6.1 gener-
alizes that of Theorem 3.1, suppose that each of the m auctions is a first-price single-
item auction and that each player has a unit-demand valuation. Recall that such a valua-
tion vi = (vi1, . . . , vim) can be written as the maximum of m additive valuations w1

i , . . . ,w
m
i ,

where w`ij equals vij if ` = j and 0 otherwise. The proof of Theorem 6.1 defines proxy ad-

ditive valuations v∗ by setting each v∗i to w
j∗(i)
i , where j∗(i) is the item i receives in a

welfare-maximizing allocation (or to the all-zero function, if j∗(i) is not defined). The de-
viation D∗i (v

∗) of player i is then defined by deviating independently in each of single-item

auctions j, as if its valuation for that item is w
j∗(i)
ij . The deviation used to prove smooth-

ness of a first-price single-item auction is to bid half of one’s valuation (Theorem 2.1), so
player i’s deviation here is to bid vij∗(i)/2 on item j∗(i) and 0 on every other item. These
are exactly the deviations used in the proof of Theorem 3.1.

7. Impossibility Results

Can we improve over Theorem 6.2, either in the approximation guarantee or in the generality
of players’ valuations? If not with simultaneous first-price auctions, then what about with
some other “simple” auction format? This section outlines a general technique for ruling
out good price-of-anarchy bounds for simple auctions.

Consider a setting with n bidders and m items. We now impose no restrictions on the
valuation vi of each bidder i, other than monotonicity (meaning vi(S) ≤ vi(T ) whenever
S ⊆ T ) and normalization (meaning vi(∅) = 0). Such general valuations permit comple-
mentarities between items, where one item is valuable only in the presence of other items
(e.g., the left and right shoes of a pair). An extreme example is a single-minded valuation vi,
which is defined by a subset S of items and nonnegative number w as

vi(T ) =

{
w if T ⊇ S;
0 otherwise.

Can we extend the guarantee in Theorem 6.2 for simultaneous first-price auctions to
general valuations, or at least to single-minded bidders? Hassidim, Kaplan, Mansour, and
Nisan (2011) provided a negative answer, even for the complete-information case.

Theorem 7.1 (Hassidim et al., 2011). With two bidders with general valuations, simulta-
neous first-price auctions can have mixed Nash equilibria with expected welfare arbitrarily
smaller than the maximum possible (as m→∞).

For example, equilibria of simultaneous first-price auctions need not obtain even 1%
of the maximum-possible welfare when there are complementarities between many items.
The examples in the proof of Theorem 7.1 make use of one single-minded bidder and one
unit-demand bidder per item.

Can we overcome the negative result in Theorem 7.1 by designing a different auction?
The rule of thumb in practice is that simple auctions can perform poorly with comple-
mentarities between items (see e.g. Milgrom, 2004). One reason for this is the “exposure
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problem,” where a bidder with value only for a bundle of items risks acquiring only a strict
subset of the bundle, and at a significant price. But how would we prove a rigorous version
of this rule of thumb? For a fixed auction format, like simultaneous first-price auctions,
the obvious way to rule out good price-of-anarchy bounds is via an explicit example (as in
Theorem 7.1). How could we rule out good bounds for all simple auctions simultaneously?

The key idea is to proceed in two steps. The first step is to rule out good approximation
algorithms for the computational problem of allocating the items to maximize the social
welfare. The second step is to show that there is a simple auction with good equilibria only
if there is a good approximation algorithm for the welfare-maximization problem.

The first step is implemented by Dobzinski, Nisan, and Schapira (2010). The for-
mal statement is about the communication complexity of the welfare-maximization prob-
lem (Kushilevitz & Nisan, 1996; Roughgarden, 2016). Imagine a setup where each player i
initially knows only her own valuation, and the players cooperate to (approximately) max-
imize the social welfare by exchanging information (in the form of bits) about their valua-
tions. A communication protocol specifies how information is exchanged — who tells what
to whom, as a function of the history-so-far. The cost of a protocol is the maximum num-
ber of bits exchanged over all possibilities for the players’ valuations. The communication
complexity of a problem is the minimum cost of a communication protocol for it.

Theorem 7.2 (Dobzinski et al., 2010). For every constant α > 0, every communication
protocol that achieves an α-approximation of the maximum social welfare for general player
valuations has cost exponential in the number of items m.

Theorem 7.2 is proved via a reduction from a canonical hard communication problem (a
version of the “Disjointness” problem); further details are outside the scope of this survey.

The second step is to extend the lower bound in Theorem 7.2 from communication
protocols to equilibria of “simple” auctions. For the following result, by “simple” we mean
that the number of bids submitted by each player is subexponential in the number of
items m. For example, simultaneous single-item auctions require only a linear number of
bids per player. A “direct-revelation” mechanism, where each player submits her type,
requires 2m bids per player (one for each subset of items) and thus does not qualify as
simple.

Theorem 7.3 (Roughgarden, 2014). If every α-approximate communication protocol for
the welfare-maximization problem has cost exponential in the number of items m, then no
family of simple auctions guarantees equilibrium welfare at least α of the maximum possible.

The proof of Theorem 7.3 effectively shows how to compute an equilibrium allocation
of a simple auction without using too much communication. In the presence of a good
price-of-anarchy bound, this constitutes a low-cost communication protocol with a good
approximation guarantee. If the latter cannot exist, then neither can the former.

Technically, Theorem 7.3 (and Corollary 7.4 below) are only known to hold for ε-
approximate equilibria — meaning that every player mixes only over strategies with ex-
pected utility within ε of a best response — where ε > 0 can be taken arbitrarily small. The-
orem 7.3 applies even to (approximate) mixed Nash equilibria in the complete-information
setting.
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Combining Theorems 7.2 and 7.3 makes precise the empirical rule of thumb that simple
auctions cannot guarantee high welfare outcomes when there are complementarities between
items.

Corollary 7.4. With general bidder valuations, no family of simple mechanisms guarantees
equilibrium welfare at least a constant fraction of the maximum possible (as m→∞).

There are analogous results for restricted classes of valuations. For example, when play-
ers’ valuations are subadditive (meaning vi(S ∪ T ) ≤ vi(S) + vi(T ) for all S, T ), combining
another result by Dobzinski et al. (2010) with Theorem 7.3 shows that no family of simple
auctions guarantees equilibrium welfare more than 50% of the maximum possible. Since
simultaneous first-price auctions do guarantee at least 50% of the maximum-possible wel-
fare at equilibrium (Feldman et al., 2013), they are optimal simple auctions for subadditive
player valuations in a precise sense. It is an open question to determine the best equilib-
rium welfare guarantee achievable by simple auctions for submodular player valuations (see
Section 9).

8. Further Topics and a Guide to the Literature

This section surveys the many related topics not covered by this survey, with pointers for
further reading.

8.1 Second-Price-Type Auctions

Throughout the survey we focused on first-price auctions, with a cameo from all-pay auc-
tions. Some auctions used in practice have a different payment scheme. Examples include
the generalized second price auction used in online ad auctions, and the uniform-price auc-
tion used in financial institutions (e.g., to sell treasury bonds). In these auctions, a player
pays the minimum bid she would need to make to continue to win the same item(s).

The smoothness framework extends to such “second-price-type” auctions as well, with
small technical modifications to the smoothness definition. The primary change needed in
Definition 4.2 is that, in (16), the revenue of the bid profile b is replaced by the sum of the
winning bids in b. To obtain an approximate welfare guarantee, one needs to assume that
players do not bid above their valuations at equilibrium. This assumption implies that the
sum of the winning bids is bounded above by the current welfare at equilibrium, and the
resulting price-or-anarchy bound is λ/(1 + µ) (instead of λ/µ). Example applications in-
clude price-of-anarchy bounds for simultaneous second-price auctions (Christodoulou et al.,
2016a; Bhawalkar & Roughgarden, 2011), the generalized second-price auction (Paes Leme
& Tardos, 2010), and uniform-price auctions (Markakis & Telelis, 2012). Roughgarden
(2012) and Syrgkanis and Tardos (2013) explain how to interpret the analyses in these
papers as smoothness proofs.

One major technical issue in second-price-type auctions is the no-overbidding assump-
tion. Even in a single-item second-price auction, where bidding truthfully is a weakly
dominant strategy and leads to an efficient allocation, there are very inefficient equilibria if
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people overbid.9 Thus the no-overbidding assumption is essential for equilibrium efficiency
guarantees. In some cases, such as the generalized second-price auction (Paes Leme & Tar-
dos, 2010) and the uniform-price auction (Markakis & Telelis, 2012), the no-overbidding
assumption can be justified by proving that overbidding is a weakly dominated strategy. In
more complex settings, such as simultaneous second-price auctions (Bhawalkar & Rough-
garden, 2011), overbidding may be unnatural, but it is not always weakly dominated. For
other auction formats, it is open if one can replace the no-overbidding assumption with
the assumption that players do not play dominated strategies (for further discussion see
Christodoulou et al., 2016a; Bhawalkar & Roughgarden, 2011; Roughgarden, 2012; Syrgka-
nis & Tardos, 2013; Feldman et al., 2013).

8.2 Further Applications of the Smoothness Framework

The smoothness framework was originally introduced in the context of general games
(Roughgarden, 2015), and has been applied to many other games beyond auctions; for
examples, see the recent book of Roughgarden (2016). There are also several other auc-
tion formats and mechanism design settings, beyond the ones discussed so far, where the
smoothness framework has been employed to characterize the price of anarchy, or where in
retrospect existing price-of-anarchy analyses can be cast as smoothness proofs. We have
seen first-price auctions (Hassidim et al., 2011; Syrgkanis & Tardos, 2013) and all-pay auc-
tions (Syrgkanis & Tardos, 2013; Christodoulou, Sgouritsa, & Tang, 2015b). Other auction
formats include: variants of uniform-price auctions that are used widely in financial mar-
kets (Markakis & Telelis, 2012; de Keijzer, Markakis, Schfer, & Telelis, 2013), combinatorial
auctions where the allocation of items is decided by a greedy algorithm (Lucier & Borodin,
2010), position auctions such as the generalized second-price auction and generalizations
of it (Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, Lucier, Paes Leme, & Tardos,
2015; Paes Leme & Tardos, 2010; Syrgkanis & Tardos, 2013), the proportional mechanism
for bandwidth allocation (Johari & Tsitsiklis, 2004; Syrgkanis & Tardos, 2013; Caragiannis
& Voudouris, 2014; Christodoulou, Sgouritsa, & Tang, 2015a), the Walrasian mechanism
for combinatorial markets, (Babaioff, Lucier, Nisan, & Paes Leme, 2014a), a particularly
simple bidding system with a single bid for multiple items introduced by Devanur, Morgen-
stern, Syrgkanis, and Weinberg (2015), relax-and-round mechanisms (Dütting, Kesselheim,
& Tardos, 2015), and auctions for renewable energy markets (Kesselheim, Kleinberg, &
Tardos, 2015).

The price-of-anarchy bounds in all of these papers can be interpreted as showing that
the auction is smooth (Definition 4.2) or, in some cases, even smooth with private deviations
(Definition 4.5). As a rule of thumb, when the auction allows players to express their entire
private valuation through the action space, then the auction is likely to satisfy smoothness
with private deviations (e.g., the generalized second-price auction, relax-and-round mecha-
nisms, and the Walrasian mechanism). If the action space is restricted and only allows the
player to bid some proxy restricted valuation, then the auction tends to only satisfy the
weaker smoothness condition that extends only to the independent private values setting

9. Think of two players, with player a having valuation ε and player b having valuation 1. Player a bidding
1 and the player b bidding 0 is an equilibrium of the auction with welfare only ε times the maximum
possible.
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(e.g., simultaneous single-item auctions). The key intuition is that in the latter auction
formats, most price-of-anarchy proofs require some version of the argument in the proof of
Theorem 6.1 that extends a smoothness equality from some restricted class of valuations to
some more general class of valuations. However, this extension only establishes the weaker
smoothness condition for general valuations, even if the auction is smooth with private
deviations for the restricted class.

8.3 Price-of-Anarchy Bounds via Non-smooth Techniques

Not all of the known price-of-anarchy bounds for auctions are smoothness proofs. One nice
example is given in the work of Feldman et al. (2013), who analyze simultaneous first- and
second-price item auctions when players’ valuations are subadditive (meaning vi(S ∪ T ) ≤
vi(S) + vi(T ) for all subsets S, T of items). Subadditive valuations are strictly more general
than the completment-free valuations studied in Section 6. Feldman et al. (2013) prove
that the price of anarchy is constant in this case, while the smoothness framework is only
known to give a bound that degrades logarithmically with the number of items (Bhawalkar
& Roughgarden, 2011; Hassidim et al., 2011; Syrgkanis & Tardos, 2013). Feldman et al.
(2013) deviate from the smoothness framework by using a different set of deviating actions
for each Bayes-Nash equilibrium. Dütting, Henzinger, and Starnberger (2013) propose a
generalization of the smoothness framework that includes even the analysis of the work of
Feldman et al. (2013) as a special case.

A new approach to bounding the price of anarchy was recently proposed by Kulkarni
and Mirrokni (2015). For an arbitrary game, they formulate a convex program that has a
strong connection with the welfare-maximization problem associated with the game. They
prove that every vanishing regret sequence of action profiles (Definition 5.1) of the game can
be associated with a solution to the Fenchel dual of this convex program, with the average
welfare of the sequence being close to the value of the dual at this solution. Using duality,
one can argue that the average welfare of every such sequence is close to the optimal
welfare. The primary applications in the work of Kulkarni and Mirrokni (2015) concern
routing, scheduling, and location games. Interesting open questions include whether or not
this framework can prove better bounds than the smoothness framework for natural auction
games, and whether or not it extends to incomplete-information settings.

Another line of results that fall outside of the smoothness framework are those that prove
stronger bounds for restricted subclasses of equilibria. For example, Bikhchandani (1999)
proves that pure Nash equilibria of simultaneous first-price auctions are fully efficient (The-
orem 3.2). Since mixed-strategy Nash equilibria need not be fully efficient (Example 3.1),
this result cannot be established by a smoothness proof. For another example, Bhawalkar
and Roughgarden (2011) show that, assuming subadditive player valuations and no over-
bidding, every pure Nash equilibrium of simultaneous second-price auctions has welfare at
least 50% of the maximum possible. Again, this guarantee does not hold for mixed Nash
equilibria and hence cannot be established via a smoothness proof. Further examples are
provided by the works of Christodoulou et al. (2015a, 2015b), who prove better bounds
for mixed Nash equilibria of complete-information first-price and all-pay auctions than are
known for Bayes-Nash equilibria in the more general incomplete-information case.
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8.4 Sequential Auctions

In all of the auctions considered in this survey, actions are chosen simultaneously by the
players and the allocation and payments are decided in one shot. Many auctions in practice
have a sequential component to them. The simplest-possible theoretical model is that of
sequential item auctions, where items are sold one-by-one in some predefined order via
single-item auctions. This model has a long history in economics, starting from the work
of Milgrom and Weber (1982, 1999). Sequentiality leads to a host of new complications
in price-of-anarchy analyses. The biggest problem is that when a player deviates at some
stage of the game, the deviation can cause a ripple effect in subsequent stages, changing for
instance the prices of subsequent items. To bypass this complication, Paes Leme, Syrgkanis,
and Tardos (2012) and Syrgkanis and Tardos (2012) proposed a bluffing deviation, where
a player pretends to play as in equilibrium of some random type, until the right moment
arrives when she deviates to acquire some item. Such a deviation analysis, where the
deviation involves simulating some current equilibrium behavior, extends to the incomplete-
information setting in a black-box manner (Syrgkanis & Tardos, 2013). Technically, one
can show that most of the smoothness theory extends even if the deviations a∗i can depend
on the current action ai from which the player is deviating from. Such deviations unlock
the ability to analyze sequential auctions from a price-of-anarchy point of view.

8.5 Budget Constraints

Most of price-of-anarchy analyses of auctions assume that players have quasi-linear pref-
erences, meaning that a player’s utility is her valuation for the items received less the
payment made. This implicitly assumes that players are capable of paying an arbitrarily
large amount. In many practical auction settings, players also have budget constraints. The
simplest way to model a budget is to define the utility of a player as −∞ if her payment
exceeds her budget. Do the efficiency guarantees for smooth auctions extend to the setting
where players’ have finite budgets?

High prices can prevent a player with a small budget and a high valuation from obtaining
the allocation she would get in a welfare-maximizing outcome. To address this issue, a
sequence of papers have used an alternative benchmark to measure the efficiency of auctions
in the presence of budgets. This benchmark is called optimal effective welfare (Syrgkanis &
Tardos, 2013) or optimal liquid welfare (Dobzinski & Paes Leme, 2014), and it is defined as
the maximum welfare achievable after capping each player’s valuation for an allocation by
her budget. Syrgkanis and Tardos (2013) show that, under minor additional assumptions,
the equilibrium welfare of a (λ, µ)-smooth auction is at least λ

µ times the expected maximum
effective welfare. This benchmark was further analyzed by Caragiannis and Voudouris
(2014) for the proportional bandwidth allocation mechanism. One interesting open question
is whether one can also lower bound the effective welfare at equilibrium, rather than just the
actual welfare. Caragiannis and Voudouris (2014) provided such a result for the proportional
bandwidth allocation mechanism.
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8.6 The Price of Anarchy for Revenue

All of the price-of-anarchy guarantees covered in this survey concern the equilibrium welfare
of auctions. Another quantity of primary importance is the revenue of the auctioneer. It is
analytically intractable to explicitly characterize the expected revenue of most non-truthful
auctions at equilibrium, even in simple settings such as asymmetric single-item first-price
auctions (see e.g. Kirkegaard, 2014).

Remarkably, Hartline et al. (2014) showed that in “single-parameter” settings, where the
private information of a player boils down to a single number, a variant of the smoothness
framework can be used to prove lower bounds on the expected auction revenue at a Bayes-
Nash equilbrium, relative to the maximum-possible expected revenue. They formulated
a stronger version of smoothness, asserting a smoothness-type inequality on every player
individually (rather than in aggregate). They showed that this stronger condition implies
approximate revenue guarantees in several settings, for example when there is no bidder
with a unique valuation distribution, and when the auction is augmented with the appro-
priate reserve price. This implies, for example, that the expected revenue at a Bayes-Nash
equilibrium of an asymmetric first-price single-item auction with an appropriate reserve
price is at least 1

4 times the maximum expected revenue.

8.7 Algorithmic Characterizations of Smoothness

Smooth auctions have many advantages, including composition theorems, and extension
theorems for incomplete-information and no-regret learning settings. Which allocation al-
gorithms and payment rules yield smooth auctions?

Several papers provide sufficient (but not necessary) algorithmic conditions for smooth-
ness. Lucier and Borodin (2010) showed that if the allocation is based on a large class of
greedy c-approximation algorithms with a “loser-independence” property, then coupling it
with a first- or second-price payment scheme leads to a smooth auction with price of an-
archy Θ(c). Lucier and Syrgkanis (2015) gave a more general characterization along these
lines: if an auction can be viewed as running a greedy algorithm in some abstract “element
space,” subject to matroid or poly-matroid constraints, then coupling it with a first-price
payment scheme leads to a smooth auction. Examples of auctions that fall into this char-
acterization are simultaneous item auctions, uniform-price auctions and position auctions,
even in the presence of externalities (Roughgarden & Tardos, 2012). Babaioff et al. (2014a)
proved that in a combinatorial auction setting with gross substitute valuations, maximizing
welfare with respect to the reported valuations and charging suitable payments yields a
smooth auction. Dütting et al. (2015) showed that if an allocation algorithm is based on a
technique in approximation algorithms known as “relax-and-round,” then coupling it with
suitable payments yields a smooth auction.

Dütting and Kesselheim (2015) gave a necessary and sufficient condition for smoothness
in single-parameter settings. This characterization enables impossibility results for smooth
mechanisms that are independent of any computational concerns. Dütting and Kesselheim
(2015) defined the permeability of an allocation algorithm and showed that, for every single-
parameter setting, there exists a smooth auction with approximation guarantee c if and
only if there exists an allocation algorithm for the setting with permeability Θ(c). Variants
of permeability were used earlier as a sufficient condition for smoothness in the works of
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Syrgkanis and Tardos (2013) and Hartline et al. (2014). Dütting et al. (2015) showed how
their characterization yields impossibility results, for example for combinatorial auctions
with single-minded bidders.

8.8 Valuations with Complementarities

Most of the results presented in this survey assume that the valuation function of each
player exhibits no complementarities. The impossibility results in Section 7 show that some
assumption of this type is necessary for good price-of-anarchy bounds. A natural goal is to
prove welfare guarantees for auctions that degrade gracefully with the “degree of comple-
mentarity” of players’ valuations. Such an analysis was done for computationally efficient
truthful mechanisms in the work of Abraham, Babaioff, Dughmi, and Roughgarden (2012),
and for the equilibria of non-truthful auctions in the work of Feige et al. (2015). The results
in the work of Feige et al. (2015) include, for example, an extension of the composition
theorem in Section 6 (Theorem 6.1) beyond complement-free valuations. Feldman, Friedler,
Morgenstern, and Reiner (2016) considered the simple, single bid auction framework of De-
vanur et al. (2015) in the context of player valuations with some degree of complementarity
and showed that its inefficiency degrades smoothly with this degree.

8.9 The Price of Anarchy in Large Markets

A classic economic intuition is that as a market grows large, the effect of each player on the
market and hence the opportunities for strategic behavior should diminish, leading to more
efficient outcomes. Making this idea rigorous is non-trivial. Swinkels (2001) showed that in a
uniform-price auction, where there is generally inefficiency in small markets, the equilibrium
welfare converges to the optimal welfare as the number of players and units of the good go
to infinity, under a noise assumption on the arrival of players or units. Feldman, Immorlica,
Lucier, Roughgarden, and Syrgkanis (2016) extended these results to combinatorial markets
with arbitrary bidder valuations across different goods and to the simultaneous uniform-
price auction, offering an adaptation of the smoothness framework that can incorporate large
market assumptions. Cole and Tao (2015) subsequently provided similar full-efficiency, large
market results for the “Walrasian mechanism” with gross substitute valuations. One benefit
of using a smoothness approach to prove such large market results is that it can prove full
efficiency guarantees even when players do not behave straightforwardly in the limit (e.g.,
when players cannot fully express their valuations through their bids).

8.10 Complexity of Computing an Equilibrium

Another line of work addresses equilibrium computation in simple auctions. Cai and Pa-
padimitriou (2014) analyzed the complexity of computing a Bayes-Nash equilibrium in
simultaneous second-price auctions and showed that it is a computationally hard prob-
lem. Such computational intractability raises questions about the predictive power of the
equilibrium concept.

When a Nash or Bayes-Nash equilibrium is hard to compute, no-regret learning often
comes to the rescue. When the strategy space of each player is part of the input, the players
can use no-regret algorithms (as discussed in Section 5) to approximately compute learning
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outcomes, also called “coarse correlated equilibrium” (which is closely related to Defini-
tion 5.1) in polynomial time. The price-of-anarchy guarantees proved using smoothness
arguments apply to such equilibria (Section 5).

With implicitly defined exponential-size strategy spaces, as in simultaneous item auc-
tions with many items, it is an open question whether polynomial-time decentralized dynam-
ics that lead to no-regret outcomes exist. On the negative side, Daskalakis and Syrgkanis
(2016) showed that, under appropriate complexity assumptions, there are no polynomial-
time algorithms that guarantee no regret in the worst case. Conceivably, one could dodge
this hardness result by designing coordinated dynamics for all of the players (to avoid the
hard instances of the learning problem). Daskalakis and Syrgkanis (2016) complemented
their impossibility result by proposing a relaxed version of no-regret learning, called “no-
envy learning.” They showed that there exist polynomial-time no-envy learning algorithms,
and that most price-of-anarchy bounds proved via smoothness arguments extend to outcome
sequences generated by no-envy learners.

Motivated by equilibrium tractability, Devanur et al. (2015) seek combinatorial auctions
that simultaneously have good price-of-anarchy bounds and also a very small strategy space.
They proposed an algorithm where the strategy space of each player is a single number,
with equilibrium welfare at least an inverse logatihmic (in the number of items) fraction of
the maximum possible. Braverman, Mao, and Weinberg (2016) showed that a large class of
auctions cannot improve over this logarithmic bound.

Finally, Christodoulou et al. (2016a) and Dobzinski, Fu, and Kleinberg (2015) considered
the complexity of computing a complete-information pure Nash equilibrium of simultaneous
second-price auctions. In simultaneous first-price auctions, such equilibria correspond to
Walrasian equilibria (Bikhchandani, 1999), and can therefore be computed using linear
programming (whenever one exists).

8.11 No-Regret Learning in Dynamic Games

In discussing no-regret learning in games in Section 5 we analyzed learning outcomes in
auctions, under the assumptions that all participants use no-regret learning, and that the
underlying environment and player population are fixed. In typical online environments,
however, bidders need to constantly adjust to changes in the environment, e.g., in the popu-
lation of competitors. Lykouris, Syrgkanis, and Tardos (2016) studied learning outcomes in
a repeated game with dynamically changing player population. They considered dynamic
games where at each step a small fraction of the players is replaced by (arbitrary) new
participants. They showed that learning players can achieve close to optimal social welfare
in smooth mechanisms even in dynamically changing environments. To achieve this, the
learning method used needs to guarantee low regret against a shifting comparator, meaning
a sequence of bids that stays constant except for a small number of changes.

8.12 Bayesian No-Regret Learning and Bayes-Coarse Correlated Equilibria

Section 5 analyzed no-regret learning when players’ valuations remain fixed over time. Re-
cent work of Hartline et al. (2015) showed that the efficiency guarantees of a smooth auction
hold even when each player’s valuation is drawn anew at each iteration, independently from
some distribution Fi. The first step of the argument shows that if all players use no-regret
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learning algorithms in such an environment, then the empirical distribution of joint play
converges to an analog of the coarse correlated equilibrium for games of incomplete informa-
tion (“strategic form Bayes-coarse correlated equilibrium”). The second step shows that the
approximate efficiency guarantees of smooth auctions apply even to such equilibria. Cara-
giannis et al. (2015) had previously showed such a result only under the stronger condition
of smoothness via private deviations (Definition 4.5).

8.13 Signaling and Bayes-Correlated Equilibria

This survey discussed only private value settings where each player knows her own valuation
and nothing else. Caragiannis et al. (2015) show that for auctions that are smooth via
private deviations, the approximate welfare guarantees hold even if players receive arbitrary
signals about others’ valuations prior to bidding. The set of outcomes that can arise in such
a setting is closely related to the notion of a Bayes-correlated equilibrium (Bergemann &
Morris, 2011, 2013). Specifically, this result implies that in a (λ, µ)-smooth auction via
private deviations, every Bayes-correlated equilibrium where players know at least their
own valuation achieves expected welfare at least λ

µ times the expected optimal welfare.

9. Open Questions and Research Directions

We conclude with a dozen suggestions for future research.

9.1 Stronger Price-of-Anarchy Bounds for Common Auction Formats

This survey focused on auction formats for which the price of anarchy is relatively well
understood, but some open questions remain even for these auctions.

1. The price of anarchy of first-price single-item auctions. What is the exact
price of anarchy of asymmetric first-price single-item auctions with independent player
valuations? The answer is at least 1 − 1/e (Theorem 2.1, due to Syrgkanis and Tardos
(2013)) and at most .87 (Hartline et al., 2014).

2. Better simple auctions with submodular valuations. For subadditive player val-
uations, the communication complexity lower bounds in the work of Roughgarden (2014)
(Section 7) imply that simultaneous first-price auctions have the best-possible price of anar-
chy of any simple auction. With the stronger assumption of submodular bidder valuations
(Section 6), the price of anarchy of simultaneous first-price auctions is 1−1/e (Theorem 6.2),
and this is tight in the worst case (Christodoulou et al., 2016b). The state-of-the-art in
communication complexity only implies that there is no simple auction with price of anarchy
better than 1 − 1/2e (Dobzinski & Vondrak, 2013). Intriguingly, there is a low-cost com-
munication protocol that approximates the welfare to within a factor (slightly) larger than
1−1/e (Feige & Vondrak, 2010). Is there an analogously good simple auction? What is the
best price of anarchy achievable by a simple auction with submodular player valuations?

3. Explicit impossibility results. In some non-auction settings, such as in routing
and congestion games, there is a “generic” construction that always produces examples
with the worst-possible price of anarchy (Roughgarden, 2015). Is there a similiar generic
construction for some family of auctions, for example simultaneous first-price auctions, that
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generalizes the examples in the works of Christodoulou et al. (2015a) and Feldman et al.
(2016)? Impossibility results derived from communication complexity (Section 7) do not
seem to lead to such a construction.

9.2 Price-of-Anarchy Bounds for Other Auction Formats

There are a number of practically relevant auction formats that have been understudied
from a price-of-anarchy perspective.

4. Procurement auctions. The price-of-anarchy literature has focused on forward auc-
tions, where buyers with private valuations compete for resources in an auction. In many
applications, such as the procurement of energy from power firms, the situation is the op-
posite: a set of sellers with private costs compete to provide some service to one or more
buyers who are running an auction to obtain the service as cheaply as possible. Simple
non-truthful procurement auctions are common in practice, and not much is known about
their price of anarchy. See the work of Babaioff, Nisan, and Paes Leme (2014b) for some
initial results in this direction.

5. Double auctions. Even less is known about simple double auctions, where an interme-
diary runs an auction that has both buyers and sellers with private valuations. The classic
impossibility result of Myerson and Satterthwaite (1983) for worst-case instances suggests
that assumptions are needed for positive results. A line of work in economics (Rustichini,
Satterthwaite, & Williams, 1994; Satterthwaite & Williams, 2002; Cripps & Swinkels, 2006)
showed convergence to full efficiency at equilibrium of simple auctions as the market grows
large. Does the smoothness framework for large markets proposed in the work of Feldman
et al. (2016) extend to large double auctions, ideally unifying all such previous results in a
single analysis framework?

6. The combinatorial clock auction. Iterative auctions, which take place in rounds
rather than in a single shot, pose a particular challenge for price-of-anarchy analyses. For
example, the iterative combinatorial clock auction (Ausubel, Cramton, & Milgrom, 2006) is
widely used in practice for selling wireless spectrum. This auction contains both sequential
and simultaneous bidding elements, which complicates the analysis of its price of anarchy.
Bousquet, Cai, Hunkenschrder, and Vetta (2016) recently provided a theoretical analysis
of the efficiency of the auction when all players act truthfully. Extending this approximate
welfare guaranteee to equilibria appears highly non-trivial.

7. Mechanisms without money. In many of the “killer applications” of mechanism
design, including kidney exchange and residency matching, monetary transfers are prohib-
ited. These are examples of “mechanism design without money” (Schummer & Vohra,
2007; Procaccia & Tennenholtz, 2009). Can we quantify the equilibrium inefficiency of sim-
ple mechanisms in such settings, perhaps with a smoothness-type framework? In many of
these applications, the first challenge is to identify a well-motivated objective function for
which price-of-anarchy bounds might be possible.
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9.3 Richer Utility Models

Most of the results in this survey concern bidders with independent private values and with
quasi-linear utility functions. To what extent can these assumptions be relaxed?

8. Restricted correlation of private values. Equilibria of smooth auctions can have
very low welfare when players’ valuations are arbitrarily correlated (Bhawalkar & Rough-
garden, 2011; Feldman et al., 2013). Are there natural forms of valuation correlation for
which smooth auctions are still guaranteed to have near-optimal equilbiria? For exam-
ple, affiliation is a strong form of positive correlation that has unlocked several results in
economics (Milgrom & Weber, 1982). Can we bound the inefficiency of simple multi-item
auctions with some form of affiliated private valuations?

9. The price of anarchy with risk-averse players. Classical auction theory concerns
risk-neutral bidders, while in practice many bidders are risk-averse (all else being equal,
preferring low-variance outcomes to high-variance ones). Risk aversion poses a host of
problems to the analysis of auctions, and only partial results are known in economics on
understanding equilibria in this case (see Maskin & Riley, 1984, and several follow-up works).
Can we at least bound the equilibrium efficiency of a first-price single-item auction with
risk-adverse bidders? See the work of Fu, Hartline, and Hoy (2013) for some results on
revenue of such auctions and the work of Lianeas, Nikolova, and Stier-Moses (2015) for
some results along these lines in non-auction domains, such as selfish routing networks.

9.4 Generalizing the Smoothness Framework

The smoothness framework presented in this survey is already rather general, but good
researchers are greedy and always want more.

10. Beyond no-regret dynamics. The smoothness approach directly extends to adap-
tive game-playing when the vanishing regret condition holds (Section 5). There are a
number of interesting adaptive game-playing algorithms that are not guaranteed to achieve
this condition. One famous example is fictitious play (Brown, 1951), which is only known
to converge to an equilibrium (and therefore satisfy the vanishing regret condition) in some
special cases, such as zero-sum games (Robinson, 1951), potential games (Monderer & Shap-
ley, 1996), and two-player games where one player has only two strategies (Berger, 2005).
Does fictitious play achieve the vanishing regret property in smooth auctions? Is the av-
erage welfare of fictitious play over time guaranteed to be close to the maximum welfare
in smooth auctions? These questions are also relevant for many other forms of adaptive
game-playing. Recently, Dütting and Kesselheim (2017) provided results for best-response
dynamics in the context of simultaneous item auctions. See also the work of Fudenberg and
Levine (1998) for a starting point for other dynamics.

11. Characterizations of smoothness in multi-dimensional domains. Dütting and
Kesselheim (2015) provided the first algorithmic characterization of smoothness in single-
dimensional mechanism design domains. An obvious open question is whether or not there
is an analogous characterization for multi-dimensional domains like multi-item auctions.
A related direction is to understand the extent to which the approximation achievable by
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low-cost communication protocols (Section 7) characterizes the best-possible guarantee of
a simple smooth mechanism.

12. The price of anarchy for revenue in multi-dimensional settings. Hartline
et al. (2014) adapted the smoothness framework to prove bounds on the revenue of simple
auctions in single-dimensional environments. Can we obtain interesting guarantees for the
revenue of simple mechanisms for multi-dimensional environments? Key to the results of
Hartline et al. (2014) is the equivalence of expected revenue and expected “virtual welfare”
in single-parameter settings (Myerson, 1981). While this equivalence does not hold in multi-
parameter environments, there are cases where a version of virtual welfare well-approximates
the revenue of an auction (Chawla, Hartline, Malec, & Sivan, 2010). Similar connections
between revenue maximization and virtual welfare maximization were also given in the
works of Haghpanah and Hartline (2014) and Cai, Devanur, and Weinberg (2016) for more
general multidimensional settings. Can we use these connections and an adaptation of
smoothness to bound the revenue of other simple auctions?
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