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Abstract

Dynamic Programming (DP) over tree decompositions is a well-established method to
solve problems – that are in general NP-hard – efficiently for instances of small treewidth.
Experience shows that (i) heuristically computing a tree decomposition has negligible run-
time compared to the DP step; and (ii) DP algorithms exhibit a high variance in runtime
when using different tree decompositions; in fact, given an instance of the problem at hand,
even decompositions of the same width might yield extremely diverging runtimes. We thus
propose here a novel and general method that is based on selection of the best decompo-
sition from an available pool of heuristically generated ones. For this purpose, we require
machine learning techniques that provide automated selection based on features of the de-
composition rather than on the actual problem instance. Thus, one main contribution of
this work is to propose novel features for tree decompositions. Moreover, we report on
extensive experiments in different problem domains which show a significant speedup when
choosing the tree decomposition according to this concept over simply using an arbitrary
one of the same width.

1. Introduction

The notion of treewidth – and, as basic underlying concept, tree decompositions – was in-
troduced in the work of Bertelè and Brioschi (1973), Halin (1976) and Robertson and Sey-
mour (1984). Many NP-hard problems become tractable for instances whose treewidth is
bounded by some constant k (Arnborg & Proskurowski, 1989; Niedermeier, 2006; Bodlaen-
der & Koster, 2008). A famous result by Courcelle (1990), which became known as Cour-
celle’s theorem, states that any graph property expressible in monadic second-order logic
can be decided in linear time with respect to the parameter treewidth. A similar result was
developed independently by Borie et al. (1992). A problem exhibiting tractability by bound-
ing some problem-inherent constant is also called fixed-parameter tractable (FPT) (Downey
& Fellows, 1999). While constructing an optimal tree decomposition, i.e. a decomposition
with minimal width, is intractable (Arnborg, Corneil, & Proskurowski, 1987), researchers
proposed several exact methods for small graphs and efficient heuristic approaches that
usually construct tree decompositions of almost optimal width for larger graphs. The ap-
proaches by Shoikhet and Geiger (1997), Gogate and Dechter (2004) as well as by Bachoore
and Bodlaender (2006) are examples of exact algorithms for computing tree decompositions.
Greedy heuristic algorithms include Maximum Cardinality Search (MCS) (Tarjan & Yan-
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nakakis, 1984), Min-fill heuristic (Dechter, 2003), and Minimum Degree heuristic (Berry,
Heggernes, & Simonet, 2003), to mention just a few. Metaheuristic techniques have been
provided in terms of genetic algorithms (Larranaga, Kujipers, Poza, & Murga, 1997; Musliu
& Schafhauser, 2007), ant colony optimization (Hammerl & Musliu, 2010), and local search
based techniques (Kjaerulff, 1992; Clautiaux, Moukrim, Négre, & Carlier, 2004; Musliu,
2008). A more detailed description of tree decomposition techniques is given in the recent
surveys (Bodlaender & Koster, 2010; Hammerl, Musliu, & Schafhauser, 2015).

A promising technique for solving problems using graph decompositions is the com-
putation of a tree decomposition followed by a dynamic programming (DP) algorithm
that traverses the nodes of the decomposition and consecutively solves the respective sub-
problems (Niedermeier, 2006). For problems that are FPT w.r.t. treewidth, the general
runtime of such algorithms for an instance of size n is f(k) · nO(1), where f is an arbitrary
function over width k of the tree decomposition used. In fact, this approach has been used
for several applications, including inference in probabilistic networks (Lauritzen & Spiegel-
halter, 1988), frequency assignment (Koster, van Hoesel, & Kolen, 1999), computational
biology (Xu, Jiao, & Berger, 2005), logic programming (Morak, Musliu, Pichler, Rümmele,
& Woltran, 2012) and the Steiner Tree problem (Fafianie, Bodlaender, & Nederlof, 2015).

From a theoretical point of view, the actual width k is the crucial parameter towards
efficiency for FPT algorithms that use tree decompositions. However, as recently stressed
by Gutin (2015), to turn the concept of FPT to practical success, more empirical work is
required. In terms of FPT algorithms for treewidth, experience shows that even decompo-
sitions of the same width lead to significant differences in the runtime of DP algorithms and
recent results confirm that the width is indeed not the only important parameter that has
a significant influence on the runtime. Morak et al. (2012), for instance, suggested that the
consideration of further properties of tree decompositions is important for the runtime of
DP algorithms for answer set programming. In another paper, Jégou and Terrioux (2014)
observed that the existence of multiple connected components in the same tree node (bag)
may have a negative impact on the efficiency of solving constraint satisfaction problems.

Due to the fact that algorithms based on dynamic programming on tree decompositions
are often very sensitive to the shape of the actually used tree decomposition, Bodlaender
and Fomin (2005) introduced the concept of tree decompositions of small cost. The cost
associated to a node of the tree decomposition is defined based on a function f which maps
the bag size of a tree decomposition node to a real number according to the assumed time (or
memory) complexity of the problem at hand. The total f -cost of a tree decomposition is then
the sum over all evaluations of the formula f for the nodes of the given tree decomposition.
Hence, the work by Bodlaender and Fomin allows to distinguish tree decompositions in a
more fine-grained way than just by the width and in their article an extensive theoretical
analysis of the problem of finding tree decompositions of minimum f -cost is provided. In
the considerations made by Bodlaender and Fomin, the bag size is the only input for a
function that estimates the costs of a given tree decomposition node in the context of a DP
algorithm. Although no experimental evaluation is provided in the paper by Bodlaender
and Fomin, it is assumed that considering all bags (and not just the largest one, i.e., the bag
from which the width is derived) allows to better estimate the runtime of DP algorithms.

In our paper at hand we now go one step further by considering much more features
of tree decompositions for the estimation function for the runtime. More precisely, in this
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article we want to gain a deeper understanding of the impact of tree decompositions on
the actual runtime of DP algorithms by employing machine learning techniques. Recently,
researchers have successfully used machine learning for runtime prediction and algorithm
selection on several problem domains including SAT (Xu, Hutter, Hoos, & Leyton-Brown,
2008; Hutter, Xu, Hoos, & Leyton-Brown, 2014), combinatorial auctions (Leyton-Brown,
Nudelman, & Shoham, 2009), TSP (Smith-Miles, van Hemert, & Lim, 2010; Kanda, Car-
valho, Hruschka, & Soares, 2011; Mersmann, Bischl, Trautmann, Wagner, Bossek, & Neu-
mann, 2013; Pihera & Musliu, 2014; Hutter et al., 2014), graph coloring (Smith-Miles,
Wreford, Lopes, & Insani, 2013; Musliu & Schwengerer, 2013), etc. Surveys on this topic
are provided, for instance, by Smith-Miles (2008), Hutter et al. (2014) or Kotthoff (2014).

Our research gives new contributions in this area as, to the best of our knowledge,
this is the first application of machine learning techniques towards the optimization of
tree decompositions in DP algorithms. To this aim we propose new original features for
tree decompositions that allow for a reliable prediction of the influence of a given tree de-
composition on the performance of DP algorithms. Further, to select the most promising
tree decomposition from a pool of generated ones using those features we propose an ap-
proach that applies machine learning techniques. We create the appropriate training sets by
conducting extensive experiments on different problem domains, instances and tree decom-
positions. Moreover, we run our experiments on a state-of-the-art system that applies DP
algorithms on tree decompositions, namely D-FLAT (Abseher, Bliem, Charwat, Dusberger,
Hecher, & Woltran, 2014). D-FLAT is a problem-independent general-purpose framework
designed for (relatively) easy prototyping of various DP algorithms.

The complete picture of our evaluation shows a significant benefit of selecting a decom-
position that is promising according to the prediction in contrast to simply choosing an
arbitrary one. Furthermore, the results confirm that our approach is generally applicable
and independent from the particular problem domain. Hence, relying only on the width as
a measure for the quality of a tree decomposition appears to be a too narrow approach, and
we see the strong need for new, enhanced notions which allow for a better discrimination
between different tree decompositions of the same instance. In our experimental evalua-
tion we show that our proposed features are indeed promising candidates for these new
quality measures. Finally, the results provide valuable insights for laying the foundation to
construct customized decompositions optimizing the relevant features.

This work is a significantly extended version of a conference paper (Abseher, Dusberger,
Musliu, & Woltran, 2015). In particular, we consider here additional features and completely
rearrange the experiments. We now consider five problem domains instead of three used
in our original paper. A pool of sixteen machine learning algorithms replaces the five
algorithms used in the previous paper and the evaluation on real-world instances is now
done on the problem of Steiner Tree. Finally, we also give a thorough evaluation of
the sixteen models and provide the results of an inter-domain evaluation of our approach.
An additional evaluation conducted with another tree-decomposition based system, namely
SEQUOIA (Kneis, Langer, & Rossmanith, 2011), can be found in an accompanying technical
report (Abseher, Musliu, & Woltran, 2016). The results for the SEQUOIA system are very
similar to those we observe in the article at hand. Although in the case of SEQUOIA, the
variation in terms of solving time between different random seeds (and hence, different tree
decompositions) for the same problem instance is relatively small, predicting the runtime
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of DP algorithms based on tree decomposition features works very well. As the prediction
seems to be more complicated in the case of D-FLAT and also due to the fact that the edge
weights used in the context of the Steiner Tree problem are not handled by SEQUOIA,
we focus in this paper on D-FLAT as here the learning task seems to be more involved.

The remainder of this article is organized as follows. In Section 2 we give the background
of our work consisting of an introduction to tree decomposition and dynamic programming
on tree decompositions. In Section 3 we propose a novel approach on how to improve
the performance and robustness of dynamic programming on tree decompositions and in
Section 4 we provide an extensive experimental evaluation on random input data and real-
world instances. Section 5 finally concludes our article.

2. Background

In the following we give a formal definition of tree decompositions and treewidth, and we
illustrate the principle of DP on such decompositions. Furthermore, we provide a short
overview on D-FLAT (Abseher et al., 2014).

Tree decomposition is a technique often applied for solving NP-hard problems. The
underlying intuition is to obtain a tree from a (potentially cyclic) graph by subsuming
multiple vertices in one node and thereby isolating the parts responsible for the cyclicity.
Formally, the notions of tree decomposition and treewidth are defined as follows (Robertson
& Seymour, 1984; Bodlaender & Koster, 2010).

Definition 1 Given a graph G = (V,E), a tree decomposition of G is a pair (T, χ) where
T = (N,F ) is a tree and χ : N → 2V assigns to each node a set of vertices (called the
node’s bag), such that the following conditions hold:

1. For each vertex v ∈ V , there exists a node i ∈ N such that v ∈ χi.

2. For each edge (v, w) ∈ E, there exists an i ∈ N with v ∈ χi and w ∈ χi.

3. For each i, j, k ∈ N : If j lies on the path between i and k then χi ∩ χk ⊆ χj.

The width of a given tree decomposition is defined as maxi∈N |χi| − 1 and the treewidth of
a graph is the minimum width over all its tree decompositions.

Note that the tree decomposition of a graph is in general not unique. In the following we
consider rooted tree decompositions, for which a root r ∈ N is explicitly defined. Figure 1
shows a graph and one of its (non-normalized) tree decompositions.

Definition 2 Given a graph G = (V,E), a normalized tree decomposition of G is a rooted
tree decomposition T where each node i ∈ N is of one of the following types:

1. Leaf: i has no child nodes.

2. Introduce Node: i has one child j with χj ⊂ χi and |χi| = |χj |+ 1

3. Forget Node: i has one child j with χj ⊃ χi and |χi| = |χj | − 1

4. Join Node: i has two children j, k with χi=χj =χk
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Figure 1: Example Graph and a Possible Tree Decomposition

i a b ext.
0 o o -
1 d i -
2 i d -
3 i i -

i c d ext.
0 o o -
1 d i -
2 i d -
3 i i -

i a b c ext.
0 o o o {0}
1 d d i {0}
2 d i d {1}
3 d i i {1}
4 i d d {2}
5 i d i {2}
6 i i d {3}
7 i i i {3}

i c ext.
0 d {1}
1 i {2, 3}

i c ext.
0 d {(2, 0), (4, 0), (6, 0)}
1 i {(1, 1), (3, 1), (5, 1), (7, 1)}

Figure 2: Solving Dominating Set via DP for the Problem Instance in Figure 1

Each tree decomposition can be transformed into a normalized one in linear time without
increasing the width (Kloks, 1994). For graph problems and problems that can be formu-
lated on a graph, tree decompositions permit a natural way of applying DP by traversing
the tree from the leaf nodes to its root. For each node i ∈ N solutions for the subgraph
of the instance graph induced by the vertices in χi are computed. When traversing to the
next node the (partial) solutions computed for its children are taken into account, such
that only consistent solutions are computed. Thus the partial solutions computed in the
root node are consistent to the solutions for the whole problem. The key aspect of FPT
algorithms is to bound the costs for computing these solutions by the width of the given
tree decomposition. The complete solutions can be obtained (with polynomial delay) in a
reverse traversal from the root node to the leaves combining the computed partial solutions.

Example 1 Figure 2 shows the tables computed in a DP algorithm for solving the Dom-
inating Set1 problem on the graph given in Figure 1. The central columns of each table
list the possible values for the vertices in the node constituting the partial solutions. Here,
i, d and o stand for the respective vertex being in the selected set, dominated by being ad-
jacent to a vertex from the set or simply out. The last column stores the possible partial

1. Given a graph (V,E), find all sets S ⊆ V such that for all u ∈ V either u ∈ S or there is an edge
(u, v) ∈ E with v ∈ S.
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solutions from the child node(s) that can consistently be extended to these values. Note
that infeasibilities in the partial solutions can already lead to an early removal of solution
candidates. The partial solution {c = o, d = o} can, for instance, already be discarded when
d is forgotten during the traversal to the next node, since d cannot appear again in any
further node and can thus not become dominated or a part of the solution set anymore. The
solution for the example graph can then be simply extracted by starting at the root of the
tree decomposition and following the extension pointers down to the leaves. One solution
here is given by selecting the vertices b and d. This solution is represented in the dynamic
programming tables by the first line of the root table, row 2 of its left-hand and row 0 of its
right-hand child together with row 1 of the left leaf and row 1 of the right leaf.

As mentioned before, in our experiments we use a state-of-the-art system that applies
DP on tree decompositions, namely D-FLAT. D-FLAT (Abseher et al., 2014) is a general
framework capable of solving any problem expressible in monadic second-order logic (MSO)
in FPT time w.r.t. the parameter treewidth (Bliem, Pichler, & Woltran, 2013). The D-FLAT
system combines DP on tree decompositions with answer set programming (Brewka, Eiter,
& Truszczyński, 2011) which is used to specify the DP algorithm. Given an encoding Π of
the DP algorithm and an instance graph G, D-FLAT first constructs a tree decomposition
of G in polynomial time using internal heuristics. If desired, this decomposition can be
left untouched or be normalized before running the DP algorithm (it is common practice
to define DP algorithms on normalized tree decompositions (Bodlaender & Koster, 2008;
Kneis et al., 2011); thus, in the following, we refer to normalized decompositions unless
stated otherwise). The decomposition is then traversed bottom-up in the manner described
above, i.e. at each node the program specified by Π and the currently known facts for the
vertices in that node’s bag is solved.

3. Improving the Efficiency of DP Algorithms

Systems such as D-FLAT follow a straight-forward approach for using tree decompositions:
a single decomposition is generated heuristically and then fed into the DP algorithm used
in the system (see Figure 3a). However, experiments have shown that the “quality” of
such tree decompositions varies, leading to significantly differing runtimes for the same
problem instance. Most interestingly, “quality” in this context does not necessarily mean
low width. Even tree decompositions of exactly the same width lead to huge differences
in the observed solving times. For instance, in our experiments for the Steiner Tree
problem with real-world instances (see Section 4.3) we observe runtimes between 67 seconds
and around two hours for the problem instance vienna/metro 10terminals 46 for which
all the tree decompositions used in our evaluation are of width 5.

3.1 Automated Selection of Tree Decompositions

The approach we propose in this work is illustrated in Figure 3b. The main idea is to
generate a pool of tree decompositions for the given input instance and then to select,
based on features of the decomposition, the one which promises best performance. The key
aspects of the approach are as follows:

834



Improving the Efficiency of DP on Tree Decompositions via Machine Learning

Heuristic
Instance
Graph

Decomposition

Solver SolutionsProblem Specification

(a) Standard Approach

Heuristic
Instance
Graph

Decompositions

Selection

Optimal Decomposition

SolverProblem Specification Solutions

Model Features

(b) Improved Approach

Figure 3: Comparison of Approaches

• Generating a number of tree decompositions for a given input graph can be usually
done very efficiently by employing sophisticated heuristics for tree decompositions like,
e.g., Min-Fill heuristic (Dechter, 2003), thus the runtime overhead will be negligible
in most cases.

• Models allowing to predict the runtime behavior of a tree decomposition for a given
DP algorithm are required. These models can be obtained in an off-line training-
phase by running several instances with different tree decompositions and by storing
the runtime and the feature values which are then processed by machine learning algo-
rithms. For our purposes, machine learning techniques need to predict a good ranking
of tree decompositions based on the predicted runtime for these decompositions. We
note that a very accurate prediction of runtime is not crucial in our case, but rather
predicting a correct order of tree decompositions. For example, if the actual runtime
of the DP algorithm using tree decomposition TD1 is faster than with TD2 , it is im-
portant that machine learning algorithms predict that the runtime for TD1 is shorter
than the runtime for TD2 .

• The main challenge and novel aspect of the approach is given by the fact that the
features used to obtain these rankings need to be defined on the tree-decomposition,
not on the given problem instance. This is because instance features only help to
distinguish instances but they do not help us to choose a proper decomposition as they
are the same for each of the generated decompositions. To successfully apply learning
techniques we need to find powerful features that characterize tree decompositions.
Moreover, the computation of these features needs to be done efficiently.

In other words, our approach works as follows. First, a number (which can be arbitrarily
large) of tree decompositions of the given problem instance is computed and stored in a pool.
Second, the features (acting as explanatory variables) of these decompositions are extracted
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and used to predict the runtime as the response variable. This gives us a ranking from which
we select the decomposition with minimal predicted runtime (in case of existing ties, we
choose randomly one of the decompositions with minimal predicted runtime). We apply
several regression algorithms to generate the models for prediction. Finally, the selected
decomposition is handed over to the actual system to run the DP algorithm.

Note at this point that the model(s) as well as the features are crucial ingredients for
the applicability of our approach in practice. Indeed, it should be possible to compute each
feature efficiently. Furthermore, it can be a time-consuming task to train such a regression
model. Fortunately, as we will show in Section 4.5, it seems that models which were trained
for some specific problem domain can often be re-used in different application scenarios. In
the following section, we will propose a set of several tree decomposition features which are
all computable in polynomial time. In many cases, this is possible even in linear time.

3.2 Tree Decomposition Features

In what follows we address one of the main contributions of the work, namely the iden-
tification of new tree decomposition features. Subsequently we will give for each feature
a short description and formal specification. Providing multiple statistical key figures like
minimum, maximum, mean and median leads us to a total of 144 features.

Before we present the collection of tree decomposition features, let us fix the formal
notation we will use in the corresponding formulae. We assume a given tree decomposition
TD (T, χ) with T = (N,F ) of a graph G = (V,E). Each node i ∈ N has associated a
type ti ∈ {Leaf , Introduce,Forget , Join}. Furthermore, we define the sets Leaf , Introduce,
Forget and Join to contain exactly the nodes from TD where ti matches the name of the
set. The bag content of a node i is denoted by χi. The set NonLeaf is defined as N \ Leaf
and the set NonEmpty covers all nodes i ∈ N where |χi| > 0. The distance between two
nodes i and j (in T ) is given by the function distance(i, j). By li we denote the level (also
called depth) of a node i, given by the distance between the root and i. The level of the root
r is thus 0. The set of children of node i is denoted by Childreni. The set Nv of a vertex
v ∈ V is the set of decomposition nodes i ∈ N such that v ∈ χi. Some of the more elaborate
features require information about the neighborhood and the reachability relation. For this
reason we define the following functions:

• neighbors(v) returns the set of neighbors of vertex v (excluding v) in G;

• adjacent(u, v) returns 1 whenever vertices u and v are adjacent in G and 0 otherwise;

• reachable(u, v) returns 1 whenever v can be reached from u in G and 0 otherwise.

Most of the features we present and use in this paper rely heavily on the use of aggregates.
In order to avoid redundancies we employ two slightly different sets of aggregates in the
actual computations shown below. Note that we give here just the simple enumeration of
the aggregates we use for our experiments. When implementing our approach one can use
(almost) all possible subsets and every superset of the following sets.

• Agg1 = {count ,min,max ,mean,median, sd (Standard Deviation) }

• Agg2 = Agg1 \ {count}
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The proposed features are described below.

3.2.1 BagSize, NonLeafNodeBagSize, NonEmptyNodeBagSize

These feature shall capture the complexity of the tree decomposition by recording the size
of the bags. We have for each α ∈ Agg1

BagSizeα = α({|χi| : i ∈ N})
BagSizeαt = α({|χi| : i ∈ t}) for t ∈ {Leaf , Introduce,Forget , Join}

BagSizeαNonLeaf = α({|χi| : i ∈ NonLeaf })
BagSizeαNonEmpty = α({|χi| : i ∈ NonEmpty})

Additionally, to cover the overall size of the decomposition, we have

CumulativeBagSize =
∑
i∈N
|χi|

CumulativeBagSizet =
∑
i∈t
|χi| for t ∈ {Leaf , Introduce,Forget , Join}

DecompositionOverheadRatio =

(∑
i∈N
|χi|

)
/|V |

3.2.2 ContainerCount

By the container count of a vertex v we refer to the number of bags a vertex v of the original
graph appears in. For each α ∈ Agg2 we have

ContainerCountα = α(
⋃
v∈V
{|{i : v ∈ χi}|})

Note that ContainerCountmean = CumulativeBagSize/|V | = DecompositionOverheadRatio.
In this special case, the features are indeed equivalent. In practice, one can avoid redundancy
by using only a single one of these measures.

3.2.3 ItemLifetime

This feature is very similar to ContainerCount, but this time we only count the number of
distinct levels of the tree decomposition the vertex appears in. For each α ∈ Agg2 we have

ItemLifetimeα = α(
⋃
v∈V
{|{li : v ∈ χi}|})

3.2.4 NodeDepth, NonLeafNodeDepth, NonEmptyNodeDepth

These features measure the distance from the root node to the node under focus. For each
α ∈ Agg2 we have

NodeDepthα = α({li : i ∈ N})
NodeDepthαt = α({li : i ∈ t}) for t ∈ {Leaf , Introduce,Forget , Join}

NodeDepthαNonLeaf = α({li : i ∈ NonLeaf })
NodeDepthαNonEmpty = α({li : i ∈ NonEmpty})
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3.2.5 Percentage

This feature records the overall percentage of the respective node type in the tree decom-
position at hand.

Percentaget = |{i : i ∈ t}|/|N | for t ∈ {Leaf , Introduce,Forget , Join}

3.2.6 JoinNodeDistance

Join nodes often have a strong influence on the runtime of DP algorithms as they have the
potential to increase (or decrease) the number of valid solution candidates drastically. This
feature keeps track of the distance between join nodes and it is 0 in the case that not more
than a single join node is present in the decomposition. In case that two or more join nodes
are present, the distance is measured for each pair i and j of join nodes separately by taking
the length of the path between i and j in the decomposition. In case that not more than
one join node is present, all these values are set to 0. For each α ∈ Agg2 we have

JoinNodeDistanceα = α({distance(i, j) : i, j ∈ Join, i 6= j})

3.2.7 BranchingFactor

This feature measures the number of children for each node within the tree decomposition.
For each α ∈ Agg2 we have

BranchingFactorα = α({Childreni : i ∈ N})

3.2.8 BagAdjacencyFactor

This feature measures the ratio of the number of pairs of vertices in the bag that are adjacent
in the original graph G and the total number of vertex pairs in the bag. For each α ∈ Agg2
we have

BAFα = α

({
|{(u, v) : u, v ∈ χi, u 6= v, adjacent(u, v)}|

max (1, |χi| ∗ (|χi| − 1))
: i ∈ N

})
3.2.9 BagConnectednessFactor

This feature relates the number of pairs of vertices in the bag that are connected in the
original graph G to the total number of vertex pairs in the bag. The value for a single bag
i is computed by averaging over all values for the vertices in i. For each α ∈ Agg2 we have

BCFα = α

({
|{(u, v) : u, v ∈ χi, u 6= v, reachable(u, v)}|

max (1, |χi| ∗ (|χi| − 1))
: i ∈ N

})
3.2.10 BagNeighborhoodCoverageFactor

For each vertex in the bag the ratio between the number of neighbors in the bag to the
number of neighbors in the original graph is computed. The value for a single bag i is
computed by averaging over all values for the vertices in i. For each α ∈ Agg2 we have

BNCFα = α

({
mean

({
|neighbors(v) ∩ χi|
|neighbors(v)|

: v ∈ χi
})

: i ∈ N
})
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3.2.11 [Introduced | Forgotten]VertexNeighborCount

Experience shows that propagating information is in many cases not the bottleneck for DP
algorithms. In fact, most of the “real” work has to be done when vertices are introduced or
forgotten and the algorithm has to evaluate rules and check constraints between the new
(forgotten) vertex and the neighbors in the current bag. These two features are dedicated
exactly to this issue. For each α ∈ Agg2 we have, based on the introduced (forgotten)
vertices Xi for bags i

NCα = α ({|neighbors(v) ∩ χi| : v ∈ Xi, i ∈ Nv})

3.2.12 [Introduced | Forgotten]VertexConnectednessFactor

Closely related to the proposed feature of the neighbor count for introduced and forgotten
vertices is the connectedness factor. For the last two features used in this work we measure
the ratio between the number of vertices in the bag connected to a introduced (forgotten)
vertex v in the original graph and the total number of all possible connections between all
nodes in the bag. For each α ∈ Agg2 we have, based on the introduced (forgotten) vertices
Xi for bags i

CFα = α

({
|{(u, v) : u, v ∈ χi, u 6= v, reachable(u, v)}|

max (1, |χi| ∗ (|χi| − 1))
: v ∈ Xi, i ∈ Nv

})
Example 2 Consider graph G as shown in Figure 4. That figure also provides two different,
normalized tree decompositions for G. We can see that both decompositions TD1 and TD2
have a maximum bag size of 3; hence they have exactly the same width – namely 2 – but
their actual difference is clearly reflected by the proposed features, see Table 1. For brevity
we only provide the median for those features where multiple aggregates are applied.

Note that the set of tree decomposition features we present here shall act as a starting
point. It contains various features which quantify the structural parameters of a given tree
decomposition, but it also includes several measurements which are related to the general
runtime behavior of dynamic programming algorithms, like, e.g., the neighborhood-related
features. Although we focus solely on tree decomposition features in this work, considering
also problem-specific features may improve prediction quality in concrete scenarios. In the
following experiments we will use the complete set of our proposed features, but one can
also try to drop some of them, e.g., by using well-established feature selection techniques
from the area of machine learning (for an overview of feature selection approaches see, e.g.,
Guyon and Elisseeff, 2003, or Chandrashekar and Sahin, 2014).

4. Experimental Evaluation

In this section, we experimentally evaluate the proposed method. All our experiments were
performed on a single core of an Intel Xeon E5-2637@3.5GHz processor running Debian
GNU/Linux 8.3 and each test run was limited to a runtime of at most six hours and 64 GB
of main memory.

We evaluate our approach using a recently developed DP solver, D-FLAT (v. 1.0.1).
The machine learning tasks were carried out with WEKA 3.6.13 (Hall, Frank, Holmes,
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a
b

c
d

e

(a) Example graph G

1: {c, e}

2: {c}

3: {c, d}

4: {c}

5: {b, c}

6: {a, b, c}

(b) TD1

1: {c}

2: {c} 3: {c}

4: {b, c}

7: {a, b, c}

5: {c} 6: {c}

8: {c, d} 9: {c, e}

10: {a, b}

(c) TD2

Figure 4: Two Normalized Tree Decompositions TD1 and TD2 for Graph G

Feature TD1 TD2

BagSizemedian 2 1.5

NonLeafNodeBagSizemedian 2 1

CumulativeBagSize 11 16

DecompositionOverheadRatio 2.2 3.2

ContainerCountmedian 1 2

ItemLifetimemedian 1 2

NodeDepthmedian 2.5 2

JoinNodeDistancemedian 0 1

BranchingFactormedian 1 1

BagAdjacencyFactormedian 1 1

BagConnectednessFactormedian 1 1

BagNeighborhoodCoverageFactormedian 0.5 0.19

IntroducedVertexNeighborCountmedian 1 2

ForgottenVertexNeighborCountmedian 1 1

IntroducedVertexConnectednessFactormedian 1 1

ForgottenVertexConnectednessFactormedian 1 1

Table 1: Subset of Extracted Features for Decompositions TD1 and TD2 of Graph G
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Pfahringer, Reutemann, & Witten, 2009). The full benchmark setup including instances,
programs, configurations, problem encodings and all results can, together with a description
on how to reproduce the results of the paper, be downloaded under the following link:

www.dbai.tuwien.ac.at/research/project/dflat/features_2016_03.zip

4.1 Methodology

Subsequently, we give details of the setup on which the experimental evaluation is based.

4.1.1 Problems

In our analysis, we considered the following set of problems defined on an undirected graph
G = (V,E).

1. Minimum Dominating Set (MDS): Find all sets S ⊆ V of minimal cardinality, such
that for all u ∈ V either u ∈ S or there is an edge (u, v) ∈ E with v ∈ S.

2. 3-Colorability (Col): Is G 3-colorable?

3. Perfect Dominating Set (PDS): Find all sets S ⊆ V of minimum size meeting
the following requirements:

• S is a dominating set of G.

• ∀x ∈ S : x dominates at most one y ∈ (V \ S).

• ∀y ∈ (V \ S) : y is dominated by exactly one x ∈ S.

4. Connected Vertex Cover (CVC): Find all sets S ⊆ V , such that for all (u, v) ∈ E,
u ∈ S or v ∈ S, and the vertices in S form a connected subgraph of G.

Furthermore, we considered the following problem defined on undirected graph G =
(V,E) with edge weights E → N.

5. Steiner Tree (ST): Given a set of terminal vertices T ⊆ V , find all sets of edges
X ⊆ E of minimum total weight which meet the following requirements:

• For every t ∈ T there is an e ∈ X containing t.

• The graph formed by the edges in X is connected.

We note that the goal of this paper is not to outperform existing, specialized state-
of-the-art solvers for the respective problem domains but to improve the performance and
robustness of dynamic programming algorithms on tree decompositions. Indeed the methods
based on tree decomposition are exact techniques and currently can usually solve only
problems of limited size.

4.1.2 Machine Learning Algorithms

In our experiments we apply 16 models which are computed using WEKA’s regression
algorithms which have been used successfully in different application domains. For each
of the five problems and for each solver for the respective problem at hand, the following
machine learning algorithms were considered.
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1. GaussianProcesses (weka.classifiers.functions.GaussianProcesses)

2. IsotonicRegression (weka.classifiers.functions.IsotonicRegression)

3. LeastMedSq (weka.classifiers.functions.LeastMedSq)

4. LinearRegression (weka.classifiers.functions.LinearRegression)

5. MultilayerPerceptron (weka.classifiers.functions.MultilayerPerceptron)

6. PaceRegression (weka.classifiers.functions.PaceRegression)

7. PLSClassifier (weka.classifiers.functions.PLSClassifier)

8. SMOreg (weka.classifiers.functions.SMOreg)

9. IBk (weka.classifiers.lazy.IBk)

10. KStar (weka.classifiers.lazy.KStar)

11. LWL (weka.classifiers.lazy.LWL)

12. AdditiveRegression (weka.classifiers.meta.AdditiveRegression)

13. Bagging (weka.classifiers.meta.Bagging)

14. CVParameterSelection (weka.classifiers.meta.CVParameterSelection)

15. M5Rules (weka.classifiers.rules.M5Rules)

16. M5P (weka.classifiers.trees.M5P)

The initial evaluation which was used to find the exact configuration for the regression
algorithms considers all parameters provided by WEKA and was done on a separate bench-
mark set consisting of 500 tree decompositions (50 instances of 3-Colorability with 10
decompositions for each instance). For each parameter available in WEKA we experimented
with different values and used 10-fold cross validation to determine the performance of each
configuration. The fixed parameters that can be found in the report by Abseher et al. (2016)
were used for all problem domains investigated in this paper.

4.1.3 Training Set

All the aforementioned machine learning algorithms were trained separately for each prob-
lem using a training set consisting of 800 independent benchmark runs. These runs are
obtained by investigating 20 satisfiable2 instances and by considering 40 different tree de-
compositions (generated using the Min-Fill heuristic, see Dechter, 2003) for each of the

2. Not all generated instances are satisfiable for 3-Col or CVC. In our experiments for these problems, we
consider only those that are, because for unsatisfiable instances, a large part of the tree decomposition
might not even be visited by a DP algorithm. This is due to the fact that the algorithm terminates as
soon as it is evident that no solution exists for the instance at hand. Therefore, unsatisfiable problem
instances do not allow us to investigate the effect of decomposition selection on the runtime of DP
algorithms and we thus omit them in our comparisons.
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problem instances. In addition to restricting the training set to satisfiable instances, we
also ensured that the training set contains no benchmark runs which exceeded the allowed
time or the memory limit to definitively rule out biased results.

The problem instances we used in our experiments are of different size and also the
probability of whether an edge exists between two vertices of the input graph varies for
different instances. While these variations are automatically present in the real-world in-
stances we investigated, we applied the Erdős-Rényi random graph model to achieve an
appropriate level of randomness for the constructed instances. For these random instances,
we used three graph sizes and three different edge probabilities per problem to construct
the corresponding training set.

After the termination of a test run we extracted all of our proposed tree decomposition
features (in our experiments, this took at most two seconds even for the largest instances)
and stored the outcome together with the runtime achieved by the dynamic programming
algorithm. When all test runs for a problem instance were finished, we had to normalize
the results in order to make sure that each instance contributes equally to the computation
of the machine learning models. This normalization step is done by standardizing these
values X feature-wise based on the formula (X − µ)/σ. An example for this normalization
is the following: Assume that 2, 4 and 6 are three evaluations for a feature X, obtained
from three different tree decompositions of a problem instance. Obviously, the mean µ of
these values is 4 and the standard deviation σ is 2. Hence, after standardization, we obtain
the values −1, 0 and 1. When we consider another problem instance where feature X takes
the values 1, 2 and 3 (when given three tree decompositions of the instance), we again end
up with the normalized values −1, 0 and 1. In this way, the previously different domains of
the feature values for the two instances become comparable.

4.1.4 Evaluation Set

The evaluation set for the computed models consists of 2000 benchmark runs per problem
domain. These runs are obtained by running 50 problem instances with 40 different tree
decompositions. Again, we ensured that unsatisfiable instances and such that violate the
limits are excluded.

For a given instance, the actual evaluation is done by predicting the normalized runtime
the problem-specific DP algorithm will need to solve the problem. We do this for each
model and for each of the 40 tree decompositions. Afterwards, we select for each model the
tree decomposition with the minimum runtime predicted by the respective model (ties are
broken randomly). All that remains is to simply lookup the real, non-normalized runtime
and compare it with the median runtime (the runtime the “average” decomposition would
lead to) over all the tree decomposition for the problem instance.

The value for the runtime improvement is computed by subtracting the quotient of the
selected decomposition’s actual runtime and the median runtime from 1. This means that
a result of 0 implies that no improvement could be made. For the utopistic case that we
are able to save 100% of the runtime, i.e., when the dynamic programming algorithm needs
no time to solve the problem instance using the selected decomposition, we would obtain a
result of 1. Every value less than 0 means that we observe a deterioration of the performance
using the respective model as runtime predictor.
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As the runtime improvement is strongly dependent on the size of the problem at hand,
we also investigate the predicted rank. This measurement refers to the rank the tree decom-
position predicted as the optimal one achieves within the pool of 40 decompositions. The
tree decomposition which led to the fastest solving time is ranked first. Hence, the closer
the predicted rank is to 1, the better. One can expect a runtime improvement whenever
the predicted rank is less than the median rank, which is for our pool of 40 tree decompo-
sitions between 20 and 21. In this context it is important to mention that although rank
1 is not achieved one can still significantly improve the performance if the selected tree
decomposition is ranked better than the “average” one.

4.1.5 Evaluation Process

Indeed, the strict separation of the input data set into training and evaluation set makes the
experiments prone to potential bias. To overcome this issue, we use random sub-sampling
with 10 splits throughout our whole experimental evaluation. This approach constitutes
a randomized adaption of the well-established technique of 10-fold cross-validation. The
complete experimental setup for a problem therefore consists of 2800 benchmark runs based
on different tree decompositions (70 problem instances with 40 tree decompositions for each
of the instances).

For each of the ten iterations, we select randomly 20 problem instances (leading to 800
tree decompositions) for the training set and the remainder of the pool is put into the
evaluation set. The analysis then proceeds as described in the paragraph dedicated to the
evaluation set. This process is repeated ten times to rule out bias as good as possible. By
doing so, we obtain for each problem and model a total of 500 measurements from which
we can draw precise conclusions about the runtime improvement obtained by using the tree
decomposition predicted as the optimal one and the same holds also for conclusion about
the predicted rank.

4.2 Experiments on Random Instances

Subsequently we provide a thorough investigation of experiments on random instances to
show the potential of our approach. For every problem and each of the sixteen machine
learning algorithms in our experimental setup we will present the predicted rank and the
runtime improvement via box-plots. We also give aggregated performance measurements
based on all computed models to underline the advantages our approach of selecting the
optimal decomposition from a pool provides compared to the standard way of computing
only one decomposition for a given problem instance.

4.2.1 Minimum Dominating Set

The results we obtained for this problem in our experiments are summarized in Figure 5.
Before we go into the details of the figure, we first want to introduce its structure as it
is crucial for interpreting the expected performance gain and therefore it will follow us
throughout the remainder of the paper.

In the header of the figure the problem name as well as information about the minimum
and maximum runtime variation for the given instances are provided. These two ranges
refer to the span between minimum and maximum solving time for a given problem instance
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Minimum Dominating Set

Minimum Runtime Variation: 2.0 s – 5.2 s

Maximum Runtime Variation: 41.1 s – 2877.6 s

Minimum Improvement: 7.39 % Average Improvement: 21.80 %

Maximum Improvement: 31.15 % Median Improvement: 24.25 %

Statistical Significance: ≥ 99.95 %
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Figure 5: Performance Characteristics for Minimum Dominating Set

when considering all random seeds which were used. In the case at hand we observe that the
instance of Minimum Dominating Set with minimum runtime variation needed a solving
time between 2.0 and 5.2 seconds (leading to a variation of 3.2 seconds) and that the
instance with maximum variation requires solving times between 41.1 and 2877.6 seconds.
The second pair of values, indicating a runtime variation of more than half an hour for
the very same instance, impressively illustrates that there are huge differences in terms of
runtime and so there is a significant potential for improvements which we try to exploit.

The aggregated measurements for the performance improvements achieved by using our
approach are given in the subsequent rows of the header. The values are computed based on
the median improvement obtained by using each Model 1–16. Furthermore, in the last row
of the header we provide the results of our analysis for statistical significance. The value
gives the probability that our approach leads to an improvement and is computed by taking
the median significance of the one-sided t-test with the null-hypothesis that the observed
performance improvement for a given model is 0. In other words, this last value in the
header gives the probability that the average model, i.e., the hypothetical model ranked at
the median position 8.5 among the 16 models, will indeed lead to a statistically significant
performance improvement.

After this short introduction, let’s have a look at the concrete values for the problem
at hand. The figure headers for Minimum Dominating Set tell us that the improvement
for any of the sixteen models is between 7.39% and 31.15% for D-FLAT while both median
and average improvement are relatively close to the maximum. Please note that this is the
net runtime improvement we would achieve in practice, hence we immediately see that the
approach indeed pays off and that we can easily save a large portion of the total runtime.
The very high statistical significance of not less than 99.95 percent – quite close to absolute
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3-Colorability

Minimum Runtime Variation: 1.7 s – 3.1 s

Maximum Runtime Variation: 3.2 s – 1351.7 s

Minimum Improvement: 16.90 % Average Improvement: 29.74 %

Maximum Improvement: 36.67 % Median Improvement: 30.99 %

Statistical Significance: ≥ 99.95 %
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Figure 6: Performance Characteristics for 3-Colorability

certainty – for our benchmark setup finally tells us that the results are not a lucky strike
and that we can also expect performance improvements in future experiments, at least in
the same problem domain.

The two box-plots in Figure 5 are constructed on the basis of the 500 evaluations (50
instances with 10 iterations each) for each computed Model 1–16 (see Section 4.1.2). On
the left-hand side the predicted rank is illustrated and on the right-hand side we provide
the box-plot of the distribution of the runtime improvement. Due to the fact that box-plots
show the statistical distribution of values we gain even more insights into the capabilities
of our proposed approach: By looking at the quartiles and outliers we can directly reason
about the potential of our approach depending on the actual problem instances. To allow
for a uniform presentation and because models leading to performance deteriorations would
never be selected in practice, the box-plot for the performance improvement only shows the
interesting range between 0 and 1.

4.2.2 3-Colorability

We will now present our experiments on 3-Colorability, depicted in Figure 6. Compared
to the first problem we investigated in this paper, this one is less “complex” because one
does not have to keep track of additional, global information like the size of the dominating
set in order to minimize it.

In the problem at hand it is sufficient to look at each vertex in the input graph separately
and simply check for each introduced neighbor if it is assigned the same color as the vertex
under focus. Hence, there is almost no propagation of information needed, except for
keeping track of the vertex color within the current tree decomposition node. Therefore,
we could expect that machine learning for this second problem is somewhat easier than for
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Perfect Dominating Set

Minimum Runtime Variation: 2.3 s – 4.3 s

Maximum Runtime Variation: 47.3 s – 6470.8 s

Minimum Improvement: 46.22 % Average Improvement: 58.91 %

Maximum Improvement: 64.72 % Median Improvement: 60.69 %

Statistical Significance: ≥ 99.95 %
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Figure 7: Performance Characteristics for Perfect Dominating Set

Minimum Dominating Set and that the performance improvement is higher. Indeed these
assumptions are confirmed in this case when we compare the figures for the two problems.
Again, we observe a remarkable difference between the minimum and maximum solving
time for the very same problem instance, especially when we look at the maximum runtime
variation depicted in the header of Figure 6. In our experiments with 3-Colorability,
selecting a “good” tree decomposition can make the difference between solving an instance
within seconds or having to wait more than twenty minutes.

Apart from this small side remark we have for this problem domain the situation that
each of the computed models has a good selection quality (compared to selecting a decom-
position randomly) in most of the cases, as we can see in both figures. An interesting fact
visualized in the figures is the one that many models select in average a rank less than
10 out of 40 available tree decompositions for a problem instance while Models 7 and 13
(PLSClassifier and Bagging) are still good but significantly worse than the others.

4.2.3 Perfect Dominating Set

An extension to the problem of finding minimum dominating sets in a given input graph
is the problem of finding minimum perfect dominating sets in a graph. The only difference
between the two problems is the fact that in the latter, a dominated vertex must have exactly
one dominator. This allows for much fewer solutions and so we expect a higher impact of
the tree decomposition features on the solving time and therefore a better predicted rank
than in the case of Minimum Dominating Set.

Figure 7 shows that the predicted rank is almost perfect for most of the models and
also the runtime is cut in half in almost any of the investigated cases. Interestingly, most
of the models predict rank 5 or better for the majority of the input instances. Again we
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Connected Vertex Cover

Minimum Runtime Variation: 4.0 s – 10.0 s

Maximum Runtime Variation: 111.7 s – 2417.6 s

Minimum Improvement: 22.38 % Average Improvement: 32.91 %

Maximum Improvement: 42.78 % Median Improvement: 34.49 %

Statistical Significance: ≥ 99.95 %
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Figure 8: Performance Characteristics for Connected Vertex Cover

observe that Models 7 and 13 (PLSClassifier and Bagging) show a worse outcome than the
remaining models, but they still lead to an optimized runtime behavior.

Also in this case, the extremely diverging runtimes become apparent when interpreting
the minimum and maximum runtime depicted in Figure 7. Solving a problem instance in
less than a minute or waiting for the same result more than 1.5 hours can make a huge
difference and also for the easiest instances the runtime needed to solve the respective
instance is approximately cut in half.

4.2.4 Connected Vertex Cover

The next problem we want to focus on is Connected Vertex Cover. In practical sit-
uations, the connectedness of a solution often is a crucial feature and so it is important to
show that our proposed approach also works in these scenarios. The requirement for con-
nectedness makes the prediction of runtime even harder because before solving the problem
at hand there is no chance to maintain the solution’s property of connectedness and to keep
track of it only by looking at the tree decomposition features.

Figure 8 shows that also scenarios of this kind can be handled by our approach. Although
the prediction is less accurate than in the case of Perfect Dominating Set – a fact that
was expected, as mentioned above – we save one third of the overall runtime in the median
case. Even the Models 7 and 13 (PLSClassifier and Bagging) which again are performing
worst allow us to save a significant portion of the runtime in most of the cases. This time, we
also have with model number 6 (PaceRegression) a dedicated “winner” of the comparison
as it is able to predict a rank between 1 and 10 in 75% of the cases and it selects rank 4
out of 40 in the majority of the cases.
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Steiner Tree - 10 Terminals

Minimum Runtime Variation: 1.8 s – 8.1 s

Maximum Runtime Variation: 191.3 s – 10618.6 s

Minimum Improvement: 31.56 % Average Improvement: 59.05 %

Maximum Improvement: 66.33 % Median Improvement: 62.02 %

Statistical Significance: ≥ 99.95 %

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

1
1

5

10

15

20

25

30

35

40

P
re

di
ct

ed
 R

an
k

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

5

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

6 7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8

●

●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

9

●

●

●

●

●

●

●

●

●

●

●

●

●

10

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

11

●

●

●

●

●

●

●●

●

●

12 13

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

14

●

●

●

●

●

●

●

●

●

●

●

●

15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

16
Model

1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
un

tim
e 

Im
pr

ov
em

en
t

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model

Figure 9: Performance Characteristics for Steiner Tree

4.2.5 Steiner Tree

The final problem domain we investigate in this paper is the problem of Steiner Tree.
Given a graph with positive edge weights and a subset of the the graph’s vertices – the
so-called terminals – the goal is to determine a minimum-weight, cycle-free subgraph of
the input graph which connects all terminals. We will have a look at the performance
characteristics on real-world instances in the subsequent section. At this point, we first
want to analyze the impact of our approach by means of randomly generated instances. We
fix the number of terminals for each instance to ten randomly chosen ones and we use the
same terminal vertices in each tree decomposition generated for an instance.

The predicted rank and the runtime savings achieved during our experiments indicate
that our approach works well also for “hidden” information like the actual terminals which
are in no way distinguished from the other vertices in the generated tree decompositions.
Hence, the tree decomposition features are completely unaffected by this information. Still,
as shown in Figure 9, even the worst models – again Model 7 (PLSClassifier) holds the
red lantern, while Model 13 (Bagging) is only slightly better – lead to runtime savings of
about a third. The fact that even the models performing worst achieve significant savings
of around a third of the total runtime becomes even more important when we look at the
fact that these savings can be in the magnitude of hours when considering the maximum
runtime variation depicted in Figure 9.

4.3 Experiments on Real-World Instances

Until now we only considered random instances in our experiments. With the goal of
strengthening our findings, we additionally conducted a series of tests for Steiner Tree
on real-world graphs.
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The problem has many real-world applications like minimizing the effort (distance, time,
etc.) to connect different terminals. While in some contexts the terminals are fixed for an
input graph – one could for instance think of train stations – there are also situations where
the set of terminal vertices changes frequently for the same input graph. One such example
can be found in the area of predictive policing: In many cases the regions where crime is
occurring more frequently is known but depending on the daytime and events taking place
in the city these problematic regions can change rapidly. This is no problem as long as
we can send officers to all the places, but often not enough personnel is available to do so.
Therefore, there is a tendency to split the available officers into groups. One of the crucial
problems to prepare for the case of an emergency is to maintain the ability to combine the
forces with the least possible effort and this is exactly the point where the Steiner Tree
problem comes into play.

The graphs chosen for these experiments are shown in Table 2 and represent the metro
systems of some cities around the world. Compared to the random instances we have seen
before, metro systems are much more structured. Often they have a more or less complex
central region (covering the city center) and the remainder of the network is formed by
simple paths (which are of width 1).

City # Vertices # Edges
Tree Decomposition Width

Min. Max. Avg. Med.

Tokyo (JPN) 143 162 4 5 4.010 4

Osaka (JPN)* 145 160 4 5 4.334 4

Singapore (SGP) 101 114 4 5 4.487 4

Santiago (CHL) 127 138 4 6 4.218 4

Vienna (AUT)* 138 160 5 6 5.073 5

Table 2: Investigated Metro Systems (* ... Metro and Interurban Train)

Apart from the name of the selected cities, Table 2 also shows the size of the correspond-
ing network in terms of vertices and edges. Furthermore, the last four columns contain the
minimum, maximum, mean and median value for the width over the 2800 benchmark runs
for each of the cities. Note that the metro networks contain a higher number of vertices
than the random graphs investigated in the previous section. Therefore a different config-
uration for D-FLAT is used at this point in order to avoid problems due to main memory
limitations. We will see in Section 4.5 that this modified configuration does no harm to the
generality of our proposed approach.

Finally, note that Table 2 also highlights the fact that most tree decompositions for
the cities are of the same width and hence, the huge runtime differences we observe on the
different metro systems cannot be explained by considering the width only.

Figure 10 shows the aggregated outcome for our experiments on the metro systems,
hence each box-plot is constructed from 14000 benchmark runs. A separate discussion for
each of the cities is given in the accompanying technical report (Abseher et al., 2016). In
the figure we can see that each model leads to runtime savings and that the majority of
the models helps us saving more than a quarter of the total runtime in average. For the
metro system of Tokyo this saves us “only” a few seconds while in the case of Vienna we
sometimes save hours using our approach.

850



Improving the Efficiency of DP on Tree Decompositions via Machine Learning

Steiner Tree - 10 Terminals

Minimum Runtime Variation: 3.7 s – 8.4 s

Maximum Runtime Variation: 35.9 s – 21528.0 s

Minimum Improvement: 1.55 % Average Improvement: 27.33 %

Maximum Improvement: 35.61 % Median Improvement: 29.66 %

Statistical Significance: ≥ 99.95 %
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Figure 10: Performance Characteristics for Steiner Tree (Real-World)

4.4 Model Evaluation

After we presented the thorough investigation of our approach on random/real-world in-
stances, we also want to present the results of our performance analysis separately for each
model. Table 3 summarizes these outcomes. The table shows for each of the 16 models
under investigation the median predicted rank over all evaluation runs for each of the prob-
lems. The column “ST (Real)” contains the median predicted rank over 2500 evaluations
as we merge the results from the five cities under investigation. For all other problems,
the cell content is computed by taking the median over 500 evaluations. The numbers in
boldface highlight the best-performing models.

The last two rows (columns) then provide the mean and median of all preceding rows
(columns). Note that the three cells in the bottom right corner are left empty because in
these cases, the results will differ depending on whether one computes the median of means
or the mean of medians. The same applies for the median of the medians, which also differs
depending on whether we start with the column-wise or the row-wise median. What we can
compute easily is the average predicted rank over the average model and all problems and
this value is shown in the highlighted cell in the bottom right corner.

We can see that in the average case we predict rank 7 out of 40, which is much bet-
ter than the median rank of 20.5 and hence we can expect an important gain in terms of
performance. Even the machine learning algorithms holding the red lantern, Models 7 and
13 (PLSClassifier and Bagging), predict well in most cases. In fact, the only case in our
whole experimental evaluation where our approach does not lead to an improvement in the
average case is Model 13 (Bagging) on the real-world Steiner Tree Problem. In all other
cases we actually achieve quite impressive results. Especially noteworthy is Model 4 (Lin-
earRegression) which is able to select a Top-5 rank in the average case of our experiments.
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Model Col MDS PDS CVC ST
ST

Avg. Med.
(Real)

1 (Gauss.-Proc.) 9 15 4 9 7 13 9.50 9.00

2 (IsotonicReg.) 7 12 3 8 6 8 7.33 7.50

3 (LeastMedSq) 6 7 2.5 7 5 10 6.25 6.50

4 (LinearReg.) 5 6 2 6 5.5 6 5.08 5.75

5 (ML-Perc.) 11 14 3 8 7 8 8.50 8.00

6 (PaceReg.) 9 10 3 4 7 11 7.33 8.00

7 (PLSClassifier) 14 16 5 10.5 12 11 11.42 11.50

8 (SMOreg) 7 11 3 8 6 9 7.33 7.50

9 (IBk) 7 7 2 6 5 6 5.50 6.00

10 (KStar) 7 7 3 6 6 7 6.00 6.50

11 (LWL) 6 7 3 7 5 10 6.33 6.50

12 (AdditiveReg.) 6 8 3 8 5 10 6.67 7.00

13 (Bagging) 12 11 5 11 9 20 11.33 11.00

14 (CVPSel.) 6 7 2 6 5 7 5.50 6.00

15 (M5Rules) 6 8 3 7 6 7 6.17 6.50

16 (M5P) 7 11 3 8 6 8 7.17 7.50

Average 7.81 9.81 3.09 7.47 6.41 9.44 7.34 —

Median 7.00 9.00 3.00 7.50 6.00 8.50 — —

Table 3: Predicted Ranks (Median) for Computed Models

4.5 Inter-domain Evaluation

Until this point of the paper it was the case that we investigated the applicability of our
approach for each problem domain separately. For practical application scenarios it might
be of importance (or at least of interest) to be able to adapt algorithms or change the
application domain without having to re-train the models one has already computed as this
can be a time-consuming task.

Therefore we now want to have a deeper look at the inter-domain applicability of our
approach. All the results are summarized in Table 4. The rows refer to the problem that was
used to generate the training data for the models and the columns stand for the evaluation
dataset. The respective datasets are the same as for the domain-dependent experiments.
The cells of the table then show the median value of the predicted rank over all 16 models.
Cases in which we do not observe improvements are enclosed by brackets. The rightmost
two columns and the last two rows illustrate the mean and median over all problem domains,
analogous to Table 3. The only difference is the fact that this time we give two results:
The number on the top of the cells is the respective outcome over all domains while the
second number represents the outcome computed with the diagonal excluded. This means
that the first number gives the overall performance over all domains while the second one is
the performance we observe on average in our setting when we switch the problem domain.

We can see that in almost all cases (34 out of 36) we observe improved results and there
is only one problematic situation, namely the case where we use the dataset obtained from
solving Steiner Tree on random instances to predict the outcomes for 3-Colorability.
In this case we observed a slight deterioration of the predicted rank – on average, our
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Col MDS PDS CVC ST
ST

Avg. Med.
(Real)

Col 7 11.75 12 11 19 11.5
12.04 11.63

13.05 11.75

MDS 12.5 9 7 8 14 9.5
10.00 9.25

10.20 9.50

PDS (20) 10.75 3 6 6 12
9.63 8.38

10.95 10.75

CVC 16 8 5 7.5 8 11
9.25 8.00

9.60 8.00

ST (23.75) 17.25 5 9.5 6 16
12.92 12.75

14.30 16.00

ST
16.5 15.5 10 13.5 16 8.5

13.33 14.25

(Real) 14.30 15.5

Average
15.96 12.04 7.00 9.25 11.50 11.42 11.19

—
17.75 12.65 7.80 9.60 12.60 12.00 12.07

Median
16.25 11.25 6.00 8.75 11.00 11.25

— —
16.50 11.75 7.00 9.50 14.00 11.50

Table 4: Predicted Ranks (Median) for Computed Models (Inter-Domain Evaluation)

models predicted rank 23.75 compared to the median rank 20.5. – compared to a random
selection of the tree decomposition. As mentioned before, in all other cases we observed
improvements which are statistically highly significant with a confidence level of over 99.95%
and we have to keep in mind that these are the values for the average model, not for the
best one. In the complete picture, summarizing all the positive impact of our approach,
we have the fact that we were able to select rank 11 out of 40 on average (result shown
in the highlighted cell in the bottom right corner of the table) which gives us important
performance improvements compared to a random selection of the tree decomposition.

4.6 Discussion

As the evaluation underlines, our machine learning approach shows great potential for
improving the performance of DP algorithms. As the width of the tree decompositions is
the same for almost all decompositions for a given instance, just minimizing the width of
the tree decompositions is not always sufficient and one needs a better way to select and/or
to customize tree decompositions in order to improve the overall performance and especially
the robustness of dynamic programming algorithms.

We can see that in general there is no “perfect” model which performs best in every
case and that there exist differences between the problems. In our experimental evaluation
it was the case that Model 4 (Linear Regression) performed best and that the Models 7
(PLSClassifier) and 13 (Bagging) showed the worst – but in many cases still relatively
good – performance characteristics. We assume that the poor performance of PLSClassifier
originates from an overly restrictive filter being used. In the case of Bagging, the underlying
regression algorithm (the algorithm which is used in our experiments employs support-vector
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machines for regression) may be too strong and choosing a weaker base classifier may help
to improve the prediction quality, as suggested by Breiman (1996).

Our experiments show that it is hard to predict the very best rank, but in many cases
this is not needed. In general, every rank better than the median rank will increase the per-
formance and the advantage grows with the runtime variance. Furthermore, in Section 4.5
we showed that one does not need to train models for each new problem and that one can
achieve good results also by applying models trained in a completely different setting. This
makes our approach even more applicable in real-world application scenarios as one does
not necessarily have to re-train the model(s) when the problem domain changes or new
constraints are added.

5. Conclusion

In this work we studied the applicability of machine learning techniques to improve the
runtime behavior of DP algorithms based on tree decompositions. To this end we identified a
variety of tree decomposition features, beside the width, that strongly influence the runtime
behavior. Machine learning models using those features for the selection of the optimal
decomposition have been validated by means of an extensive experimental analysis including
real-world instances. In our experiments we considered five different problems and our
approach showed a remarkable, positive effect on the performance with a high statistical
significance. We thus conclude that turning the huge body of theoretical work on tree
decompositions and dynamic programing into efficient systems highly depends on the quality
of the chosen tree decomposition, and that advanced selection mechanisms for finding good
decompositions are crucial.

The presented work, however, is only a first step of a larger research project. In a
next step, we have to investigate whether the models we obtained will give further insights
about those features of tree decompositions that are most influential in order to reduce
the runtime of DP algorithms. Such insights then will be used to design and implement
new heuristics for constructing tree decompositions that optimize the relevant features.
Therefore, the ultimate goal of this research perspective is to achieve the potential speed-
up we have observed in our experiments by directly obtaining tree decompositions of higher
quality and thus without the initial training step.

Indeed, due to the fact that algorithms based on tree decompositions are an area of
intensive research, there also arise performance improvements for specialized algorithms, as
studied by Fafianie et al. (2015) who showed that the efficiency of solving the Steiner Tree
problem can be significantly improved by combining tree decompositions with methods from
linear algebra. It may be an interesting task in future work to investigate the impact of
tree decomposition selection also in this context. Furthermore, we expect that problem-
specific features are a promising enhancement of our approach. In the paper at hand, we
only used features of the tree decomposition in order to establish the problem-independent,
general applicability of our approach. In practical situations in which efficiency is crucial,
it may be worth trying to find some kind of problem-specific tuning. For instance, one
could aim to develop a good approximation function that estimates the time of filling the
dynamic programming tables, similar to the idea of the f -cost in the work by Bodlaender
and Fomin (2005), and then use this function to obtain a new feature.
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