Journal of Artificial Intelligence Research 57 (2016) 465-508 Submitted 03/16; published 11/16

ProMoca: Probabilistic Modeling and Analysis
of Agents in Commitment Protocols

Akin Giinay AKINGUNAY@NTU.EDU.SG
Yang Liu YANGLIUQNTU.EDU.SG
Jie Zhang ZHANGJ@QNTU.EDU.SG

School of Computer Science and Engineering
Nanyang Technological University, Singapore

Abstract

Social commitment protocols regulate interactions of agents in multiagent systems. Sev-
eral methods have been developed to analyze properties of commitment protocols. However,
analysis of an agent’s behavior in a commitment protocol, which should take into account
the agent’s goals and beliefs, has received less attention. In this paper we present ProMoca
framework to address this issue. Firstly, we develop an expressive formal language to model
agents with respect to their commitments. Our language provides dedicated elements to
define commitment protocols, and model agents in terms of their goals, behaviors, and
beliefs. Furthermore, our language provides probabilistic and non-deterministic elements
to model uncertainty in agents’ beliefs. Secondly, we identify two essential properties of an
agent with respect to a commitment protocol, namely compliance and goal satisfaction. We
formalize these properties using a probabilistic variant of linear temporal logic. Thirdly,
we adapt a probabilistic model checking algorithm to automatically analyze compliance
and goal satisfaction properties. Finally, we present empirical results about efficiency and
scalability of ProMoca.

1. Introduction

Social commitments provide a formal framework to define, regulate, and reason about inter-
actions of agents in multiagent systems (Singh, 1999). A commitment is made from a debtor
to a creditor to bring about a condition. For instance, a merchant (debtor) is committed
to a customer (creditor) to deliver the goods that are purchased by the customer. Every
commitment has a state that changes according to some events. For instance, when the
merchant delivers the purchased goods, her commitment to the customer becomes fulfilled.
Commitments do not enforce agents to bring about certain events. Instead, they regulate
agents by defining how events affect states of their commitments. In other words, agents de-
cide on fulfilling or violating their commitments autonomously. For instance, the merchant
may decide not to deliver the goods to the customer. However, this event result in violation
of her commitment, which may have consequences (e.g., the merchant may be sanctioned
and also loses reputation). Through regulation, commitments establish the desired level
of interdependence among agents without interfering with their autonomy. Commitments
can be combined to form commitment protocols, which can capture complex interactions
among agents (Yolum & Singh, 2002).

Analysis of commitment protocols’ properties is essential to ensure their effective op-
eration. However, such analysis is challenging due to the rapidly increasing complexity

(©2016 AI Access Foundation. All rights reserved.

GUNAY, L1u & ZHANG

of interaction in such protocols. Hence, development of efficient formal analysis methods
for commitment protocols, which can cope with their complexity, is essential to create ef-
fective multiagent systems. Various formal properties of commitment protocols have been
studied and several methods have been developed to analyze them (Yolum, 2007; Desai,
Cheng, Chopra, & Singh, 2007a; Desai, Narendra, & Singh, 2008; El Menshawy, Bentahar,
El Kholy, & Dssouli, 2013; El Kholy, Bentahar, Menshawy, Qu, & Dssouli, 2014).

However, analysis of an agent’s properties when enacting a commitment protocol has
received less attention (Marengo, Baldoni, Baroglio, Chopra, Patti, & Singh, 2011; Giinay &
Yolum, 2013; Kafali, Giinay, & Yolum, 2014). Such analysis aims to verify formal properties
of an agent’s behavior with respect to a commitment protocol (e.g., compliance of an agent’s
behavior with a protocol), which is crucial for developing effective agents. A key challenge
of analyzing an agent’s behavior with respect to a commitment protocol is uncertainty,
which naturally occurs in multiagent systems due to several factors. One major factor is
agent autonomy, which mainly corresponds to epistemic uncertainty. Specifically, agents act
autonomously to pursue their own private goals. Hence, an agent cannot be certain about
behaviors of other agents. Similarly, an agent’s lack of awareness about its environment,
which may be a result of limited sensory and reasoning capabilities, leads to epistemic
uncertainty. Furthermore, many physical systems involve irreducible aleatory uncertainty
that occurs due to physical variability present in an agent’s environment. Agents cope with
uncertainty by utilizing reasoning methods that can use potentially wrong or incomplete
beliefs instead of exact knowledge (Halpern, 2003).

Most of the previous work on commitments do not address uncertainty. To fill this gap,
in our previous work, we developed an analysis method for commitment protocols using
probabilistic model checking, which can handle uncertainty in behaviors of agents (Giinay,
Songzheng, Liu, & Zhang, 2015). Our method uses an abstract formalism (specifically, a
probabilistic automaton) for modeling and analyzing behaviors of agents in commitment
protocols. However, from practical point of view, manual definition of commitment proto-
cols and behaviors of agents in such an abstract formalism is a time consuming and error
prone task. Besides, it requires a modeler to have knowledge and expertise on the specific
abstract formalism. Because of these issues, use of an abstract formalism for modeling is
not adequate for practical development settings (e.g., when a developer verifies her own
agent’s implementation). The adequate approach is to use an expressive high level formal
language for modeling, which can be automatically translated into an abstract formalism for
formal analysis. To the best of our knowledge, there is no such dedicated formal modeling
language to capture uncertainty of agents in the context of commitment protocols.

In this paper we present PROMOCA framework to address this issue. PROMOCA pro-
vides an expressive modeling language that includes various language elements to model
commitment protocols, and also various aspects of agents, such as different goal types,
beliefs, and behaviors. Besides, PROMOCA supports probabilistic modeling to capture un-
certainty in behaviors and beliefs of agents. In PROMOCA we also pay special attention to
two essential properties of an agent’s behavior with respect to a commitment protocol. The
first of these properties is compliance of an agent’s behavior with a commitment protocol.
That is, whether an agent’s behavior fulfills the agent’s commitments. The second property
considers whether an agent’s behavior satisfies the agent’s goals in the context of a commit-
ment protocol. Since agents are interdependent, neither compliance nor goal satisfaction

466

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

can be analyzed just considering an agent’s own behavior in isolation. To cope with inter-
dependence, PROMOCA uses an agent’s beliefs about other agents’ behaviors. PRoMocA
adopts our previous probabilistic model checking method (Giinay et al., 2015) for analyzing
these properties. To evaluate efficiency and scalability of PROMoOCA we use three real-
istic examples. Besides, we compare PROMOCA’s performance with PRISM, which is a
state-of-the-art probabilistic model checker. Our main contributions are as follows:

e We develop the new modeling language PROMOCA (we use the name PROMOCA both
for the modeling language and the analysis framework interchangeably). We define
formal syntax and operational semantics of PROMoOCA, which provides dedicated
language elements to define and manage a commitment protocol. PROMOCA also
provides various language elements to define behaviors, goals, and beliefs of an agent in
the context of the commitment protocol. Moreover, PROMOCA provides probabilistic
and non-deterministic elements to model uncertainty in an agent’s beliefs. To the
best of our knowledge, PROMOCA is the first formal language that provides dedicated
elements for modeling commitment protocols, agents, and uncertainty in a unified
environment.

e We identify and develop formal definitions of compliance and goal satisfaction proper-
ties. Different than the previous definitions of these properties in the literature, in our
formalization we take uncertainty of an agent’s beliefs about other agents’ behaviors
into account using a probabilistic variant of linear temporal logic. Accordingly, we
can define these properties in a more precise and flexible manner.

e To analyze an agent’s behavior in the context of a commitment protocol by verifying
compliance and goal satisfaction, we define the complete PROMocCA framework, in
which modeling is done by using our new formal language that we develop in this
paper, and analysis is done by adopting our previously developed probabilistic model
checking method (Giinay et al., 2015).

e We substantially extend our earlier preliminary experimental result (Giinay et al.,
2015), by conducting a detailed empirical study to validate PROMOCA’s practical
usefulness and scalability in three well-studied scenarios from the literature, namely
aerospace aftercare, international insurance (Jakob, Péchoucek, Miles, & Luck, 2008),
and NetBill (Sirbu & Tygar, 1995). Our results show that PROMOCA outperforms
the state-of-the-art general purpose probabilistic model checker PRISM when verifying
compliance and goal satisfaction properties of an agent’s behavior in the context of a
commitment protocol.

This paper is organized as follows. In Section 2, we introduce the fundamental concepts
about commitment protocols, agents, and analysis of their behaviors. In Section 3, we define
ProOMocCA’s formal syntax and operational semantics. In Section 4, we define our analysis
framework and model checking algorithm. In Section 5, we present an empirical evaluation
of our framework. Section 6 provides a survey of related work. Finally, in Section 7, we
conclude the paper with a discussion of our approach and listing our future directions.

467

GUNAY, L1u & ZHANG

2. Background: Commitments, Agents, and Analysis

In this section we provide an overview of commitments, and agent concepts, such as behav-
iors, goals, and beliefs, which are key to PROMoOcCA. We also discuss compliance and goal
satisfaction properties with respect to these concepts to motivate our research.

2.1 Commitments

A commitment is made from one agent to another to bring about a condition (Singh, 1999).
Conventionally, a commitment is denoted by C(debtor, creditor, antecedent, consequent)
in which debtor and creditor are agents, and antecedent and consequent are conditions.
Intuitively, a commitment means that the debtor is committed to the creditor to bring
about the consequent, if the antecedent holds. For instance, the commitment C(merchant,
customer, goods-purchased, goods-delivered) captures the merchant’s commitment to the
customer to deliver some goods (represented by the proposition goods-delivered), if the
goods are purchased by the customer (represented by the proposition goods-purchased).

The exact meaning of a commitment depends on the type of the condition that is used
as its consequent. Achievement conditions are the most widely used type for a commit-
ment’s consequent. For brevity, we call a commitment with such a condition simply as an
achievement commitment. The above commitment of the merchant to deliver the purchased
goods to the customer is an example of an achievement commitment. Use of a maintenance
condition for a commitment’s consequent has been also considered in the literature (Fornara
& Colombetti, 2002; Mallya & Huhns, 2003; Giinay & Yolum, 2011; Chesani, Mello, Mon-
tali, & Torroni, 2013). A commitment with a maintenance condition as its consequent is
fulfilled, if the condition is maintained until another termination condition occurs. We call
a commitment with such a condition simply as a maintenance commitment. For instance,
an internet service provider may be committed to a customer to provide internet connection
for a month, if the customer purchases a data plan from the internet service provider.

Commitments can also be considered in a subscription model. For instance, instead of
purchasing a data plan for a single month, a customer may subscribe to a data plan for a
year in a monthly basis (i.e., duration of each period in the subscription is a month). As a
result, the internet service provider has a separate commitment for each month of the year to
provide internet connection to the customer, as long as the customer pays the corresponding
monthly subscription fee. In technical terms, the subscription itself can be considered as
a template (e.g., if the customer pays the subscription fee for a specific month, the service
provider becomes committed to provide internet connection for that month) for creating
the concrete commitment instances for each period of the subscription. For example, we
create twelve commitment instances from the above template (one for each month) by
setting each commitment’s antecedent and consequent to propositions that model payment
of subscription fee and provision of internet for a specific month, respectively. To the best
of our knowledge, such a subscription model is not formally considered in the previous
research. However, subscriptions are part of many real world settings. Accordingly, we
formalize them in PROMOCA. Note that the subscription model can be considered as a
special case of the meta-commitment concept (Chopra & Singh, 2015, 2016a), which is
more general since it is not bound by the specification of a subscription.

468

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

- null
creditor debtor antecedent
releases Creates expires
4-//—\ //—\L
released . conditional expired
creditor
releases creditor
detaches
fulfilled active violated compensated
debtor debtor cancels or debtor
discharges fails to discharge compensates

Figure 1: The lifecycle of a commitment.

A commitment’s state evolves over time according to public events (i.e., they are inde-
pendent from an agent’s internal state). The lifecycle of a commitment has been studied
extensively in the literature (Yolum & Singh, 2002; Fornara & Colombetti, 2002; Chesani
et al., 2013). Here, we use the commitment lifecycle that we show in Figure 1, where the
labels of the rectangles represent commitment states, and the edge labels show events with
corresponding agents who trigger the state changes.

A commitment is in null state before its creation. A commitment is created by its
debtor in conditional state. In this state neither the antecedent nor the consequent of the
commitment holds. For instance, the commitment from the merchant to the customer is
created by the merchant (i.e., debtor) and initially there is neither a payment nor a delivery.
Hence, the commitment is conditional. The intuitive meaning of a conditional commitment
is similar to an offer that states, if the antecedent starts to holds, the debtor becomes
committed to the creditor to bring about the consequent.

If a commitment’s antecedent is not satisfied, the commitment becomes expired. The
creditor of a conditional commitment may also explicitly release the debtor from its com-
mitment, which makes the commitment released. Expired and released states are terminal
states. If the antecedent of a conditional commitment is satisfied, the creditor detaches the
commitment, and the commitment becomes active. Detachment of a commitment is inde-
pendent from how its antecedent is satisfied. That is, the antecedent may be satisfied either
by an event that occurs as a direct result of an action of the creditor (e.g., customer pays),
or by an external event (e.g., the customer’s bank may pay on behalf of the customer).
An active commitment intuitively means that the debtor is committed to bring about the
consequent of the commitment.

Fulfillment and violation of a commitment depends on the type of the commitment’s
consequent. If the consequent of an active achievement commitment is satisfied, the debtor
immediately discharges the commitment, and the commitment becomes fulfilled (e.g., the
merchant delivers). A maintenance commitment is fulfilled, if the consequent of the com-
mitment is maintained until another condition that determines the termination of the com-
mitment occurs (e.g., the internet service provider maintains internet connection of the user
until the termination of the data plan). As in the case of the detachment, a commitment’s

469

GUNAY, L1u & ZHANG

fulfillment is also independent from how the consequent is satisfied (e.g., the merchant her-
self may deliver, or she could delegate the delivery to a courier). A fulfilled commitment
intuitively means that the debtor has honored her responsibility, and fulfilled state is ter-
minal. As in the case of a conditional commitment, a creditor may also release a debtor
from its active commitment.

If either the consequent of an active commitment is not satisfied, or the debtor explicitly
cancels her commitment, the commitment becomes violated. For an achievement commit-
ment, failure of the consequent may depend on another condition (e.g., a deadline). For a
maintenance commitment, failure of the consequent occurs, if the consequent condition does
not hold at any moment before the termination condition of the commitment holds. Note
that due to autonomy of agents, a debtor may intentionally choose to violate a commitment,
even if she can fulfill it. For instance, the merchant may decide to sell the goods to another
customer for better profit, and may violate her commitment to the original customer. On
the other hand, the debtor may also violate a commitment unintentionally. For instance,
the merchant may fail to deliver because of bad weather conditions. In any case, a violated
commitment intuitively means that the debtor failed to honor her responsibility. Depending
on the domain of application, a violated commitment can be compensated by the debtor by
taking a certain action, which makes the commitment state compensated (Torroni, Chesani,
Mello, & Montali, 2010; Kafali & Torroni, 2012; Chopra & Singh, 2015). For instance, if the
merchant fails to deliver the goods to the customer, she violates her commitment. However,
she can refund the customer to compensate her commitment’s violation. Compensation
allows agents to restore their interaction back to a desirable state, when it is interrupted
due to a violated commitment. Compensated state is terminal. If a commitment is violated
and there is no way for compensation, violated state is counted as terminal.

Note that a subscription does not have a state by itself, since it does not define a concrete
commitment, but it only provides a template for instantiating concrete commitments for
each period of the subscription. Hence, the notion of state for a subscription is captured in
an abstract manner by the states of corresponding concrete commitment instances.

In many applications, agents engage complex interactions that cannot be represented
by a single commitment. To capture all the aspects of such complex interactions, multiple
commitments are considered together as a commitment protocol (Yolum & Singh, 2002).
For instance, while the merchant’s commitment to the customer captures the payment and
delivery aspects of their interaction, another commitment C(merchant, customer, goods-
defective, goods-replaced), which states that the merchant is committed to the customer to
replace a defective good, captures the warranty related aspects of their interaction. These
two commitments (and other prospective commitments) form a commitment protocol.

2.2 Agents and Analysis of their Behaviors

In this paper, our main objective is to develop a dedicated formal language for modeling
and analyzing an agent’s behavior in a commitment protocol. When it is not clear from the
context, we call this particular agent as the target agent to distinguish it from other agents.

In our analysis we use three kinds of information, which are available to the target
agent. The first kind of information is the target agent’s goals. We divide goals into
two types as achievement and maintenance goals as it is customary in the agent literature

470

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

(van Riemsdijk, Dastani, & Meyer, 2009; Chopra, Dalpiaz, Giorgini, & Mylopoulos, 2010).
Achievement goals model situations, where an agent aims to achieve a certain satisfaction
condition. For instance, a customer may aim to possess some goods. Maintenance goals
model situations where an agent aims to maintain a certain satisfaction condition. For
instance, an internet service provider may aim to maintain its internet service up and
running. Furthermore, both goal types can be considered as one-time or persistent goals.
One-time goals are pursued only once, and in general, they are subject to preconditions. For
example, if the customer needs a certain type of good and she does not possess it, only than
she has a goal to possess the good. Similarly, the internet service provider aims to provide
and maintain internet connection for a customer, only if the customer has subscribed for
the service. One-time goals might also have a termination condition (e.g., a deadline). If
the termination condition of a goal holds before its satisfaction condition, the goal fails.
Contrary to one-time goals, persistent goals do not have pre or termination conditions, and
they persist for the whole lifespan of an agent. In the case of a persistent achievement goal,
an agent aims to satisfy a condition that may fail from time to time, but always restored
again after a while. For instance, a merchant may aim to dispose obsolete goods (e.g., old
versions of a mobile phone) from its warehouse. Occasionally, some obsolete goods may be
kept in the warehouse (e.g., when a new version of the mobile phone first appears, it takes
a while to dispose the old phones), but they should be disposed eventually. On the other
hand, a persistent maintenance goals represents a condition that an agent aims to keep
satisfied continuously during its whole lifespan without any precondition. For instance, the
merchant might aim to maintain a positive bank balance during its whole lifespan.

The second kind of information, which we use in our analysis, is a target agent’s behavior.
We assume that a target agent’s behavior is a persistent (i.e., non-terminating) computation,
in which the agent uses a set of if-then type rules to decide on its next action (e.g., if the
merchant has a commitment to make a delivery and the commitment is active, then she
delivers). If there is uncertainty about the results of the agent’s actions, the decision rules
may include non-deterministic and probabilistic components to model uncertainty. Suppose
that the merchant may fail to deliver on time with probability 0.1 depending on weather
conditions. In this case, the if-then rule that defines the merchant’s behavior would be:
if the merchant is committed to deliver and weather condition is bad, then the merchant
delivers on time (and fulfills her commitment) with 0.9 probability, and fails to deliver on
time (and violates her commitment) with 0.1 probability. As we demonstrate in the rest of
this paper, combination of if-then rules, non-determinism, and probabilistic choice, in the
context of a persistent computation provides us a rich and flexible model to define various
complex agent behaviors.

The last kind of information that we use in our analysis is the target agent’s beliefs about
behaviors of other agents. Uncertainty is a natural element of this kind of information, since
other agents are autonomous. Accordingly, we define the target agent’s beliefs about other
agents’ behaviors in a similar manner to the target agent’s own behavior using probabilistic
choice and non-determinism. For instance, suppose that the merchant is dependent on a
courier to make a delivery, which is necessary to fulfill her commitment to a customer. In
such a situation the merchant may believe that the courier successfully delivers on time with
probability 0.95 (and fails to deliver on time with probability 0.05). As we demonstrate
later, we capture such a situation using a probabilistic choice in the beliefs of the target

471

GUNAY, L1u & ZHANG

agent in a similar manner to our earlier example. Note that, in this paper we assume that
probability values in an agent’s behavior and beliefs are set by a modeler. These values
may reflect intuition of the modeler, or they can be obtained from a statistical model (e.g.,
previous delivery results of the merchant or courier in different weather conditions).

Considering these three kinds of information, our objective is to analyze two key prop-
erties about a target agent’s behavior in a commitment protocol. The first property is
compliance, which holds if a target agent’s behavior fulfills all of its active commitments
in a protocol. A relaxed version of compliance may take compensation into account. That
is, an agent complies with a commitment protocol by fulfilling its active commitments and
also by compensating its violated commitments. The second property is goal satisfaction,
which holds if a target agent satisfies its goals by enacting a commitment protocol. A tar-
get agent’s beliefs about other agents play a crucial role in analyzing both properties since
there is interdependence among agents. In other words, other agents’ behaviors directly
affect target agent. For instance, when the merchant relies on a courier for delivery, the
merchant’s compliance with the protocol and goal satisfaction cannot be correctly verified
without taking the courier’s behavior into account. In fact, if we consider only the mer-
chant’s own behavior, neither compliance nor goal satisfaction hold for the merchant, since
she does not have delivery capability. However, if the merchant believes that the courier
delivers with a high probability, then we can conclude that the merchant complies with the
protocol and also satisfies her goal by enacting this protocol.

2.3 Running Example

In the rest of the paper we use a running example from aerospace aftercare domain, which
is introduced by Jakob et al. (2008), and used in the literature for the evaluation of
commitments and other normative models (Modgil, Faci, Meneguzzi, Oren, Miles, & Luck,
2009; Desai, Chopra, & Singh, 2009). In this example scenario, there is a manufacturer that
provides aircraft engines to airline operators. When the manufacturer sells an engine to an
airline operator, the manufacturer becomes responsible for keeping the engine operational
by periodically servicing the engine. The airline operator should pay a service fee to the
manufacturer. Besides, the airline operator should also provide operational data of the
engine to the manufacturer, which is needed by the manufacturer to analyze the status
of the engine. In order to service an engine, the manufacturer needs spare engine parts
from several suppliers. However, the manufacturer can only use certain engine parts for
servicing, which are approved by a monitoring aerospace agency. The airline operator may
be monitored by different aerospace agencies depending on the regions in which the airline
operates. Different agencies may have different policies about approved spare engine parts.
Hence, use of a certain part for repair depends on the airline and the respective agencies. If
the operational status of an engine is not maintained, the manufacturer should compensate
this situation by paying a penalty to the airline operator. The manufacturer should also
bring the engine back to the operational state within a certain amount of time. If the
manufacturer fails to compensate, the contract may be canceled by the airline operator.
We consider this example from the engine manufacturer’s point of view to analyze its
compliance and goal satisfaction.

472

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

3. Modeling of Commitment Protocols and Agents in PROMOCA

We first present the formal syntax of PROMoOCA in Section 3.1. Then, we define the
operational semantics of PROMOCA in Section 3.2, and formalize compliance and goal
satisfaction properties in Section 3.3. Finally, we discuss our key design decisions about
PrROMoOCA in Section 3.4.

3.1 Syntax

A PrOMoOCA model is composed of three blocks, which define a set of global variables, a
commitment protocol, and a target agent (i.e., the agent that we aim to verify). Below we
define the syntax of each block with illustrative examples.

3.1.1 GLOBAL VARIABLES

A PrROMoOCA model includes a finite set of global variables, which are defined within the
block globals{var; ...var;}. Each variable var is defined using the keyword variable with
the following syntax:

var ::= variable variable-name : {value-set} = value

where variable-name is the unique name of the variable, value-set is a finite set of strings that
defines the domain of the variable (i.e., an enumeration of the variable’s possible values),
and value is the initial value of the variable, which must be an element of value-set. For
instance, the status of an aircraft engine can be modeled using the following variable:

variable engine-status : {'unknown’, 'operational’, 'malfunction’, 'maintenance’} = 'unknown’;

The name of the variable is engine-status. The domain of the variable consists of four
values, which capture different operational states of the engine. The initial value of this
variable is 'unknown’.

3.1.2 COMMITMENT PROTOCOL

A commitment protocol is a composition of a finite set of commitments. The commitment
protocol is defined within the block protocol{comm; ...comm;}. Each commitment comm
is defined using the keyword commitment and the following syntax:

comm ::= commitment(commitment-id, commitment-type, subscription-period,
debtor-id, creditor-id, antecedent, expiration, consequent, termination)
{observers}[commitment-id]

The first parameter commitment-id is the unique string identifier of the commitment.
The type of the commitment is defined by commitment-type, which is either achievement or
maintenance. Subscriptions are modeled using the subscription-period parameter, which is a
finite integer greater than 0 that represents the total number of the subscription’s periods.
If the commitment is not a subscription, this parameter can be omitted, and PROMOCA sets

473

GUNAY, L1u & ZHANG

its value to 1 by default. The parameters debtor-id and creditor-id are the identifiers of the
commitment’s debtor and creditor, respectively. The parameters antecedent, expiration, con-
sequent, and termination are expressions to define the antecedent, expiration, consequent,
and termination condition of the commitment, respectively. The optional parameter ob-
servers is a set of agent identifiers that includes the agents, who can observe the state of the
commitment. By default, the debtor and the creditor of a commitment can always observe
the state of their commitment, and it is not required to list them as observers. If there are
no observers other than the commitment’s debtor and creditor, observers can be omitted.
The last optional parameter commitment-id is the identifier of another commitment that
can be used to compensate violation of the commitment. If there is no compensation of the
commitment’s violation, this parameter can be omitted.

An expression (e.g., antecedent parameter of a commitment) is a logical expression that
is a compositions of conjunctions and disjunctions over global variable comparisons. Formal
syntax of an expression is as follows:

expression = expression and expression | expression or expression | comparison
comparison ::= variable-name == value | variable-name != value | const
const = TRUE | FALSE

In an expression, we use the standard semantics of the logical operators and and or.
Similarly, in comparison we use the standard “equal to” and “not equal to” semantics for
operators == and !=, respectively. TRUE and FALSE are the standard boolean constants.
Parentheses can be used regularly to define precedence of the logical operators, which we
omit in the formal syntax for brevity.

PrROMOCA automatically creates several variables to capture the lifecycle of a proto-
col’s commitments. Firstly, PROMOCA creates a status variable for each commitment in
the protocol. The names of these variables are automatically set by PROMOCA using the
<commitment-id>-state pattern (e.g., for a commitment with commitment-id 'c-1", the cor-
responding variable’s name is c-1-state). Each such status variable has the domain {'null’,
"conditional’, "active’, 'fulfilled’, 'violated’, 'expired’, 'released’, 'compensated’} to capture the
corresponding state of the commitment. These variables can be used in a PROMOCA model
as read-only variables. Secondly, PROMOCA creates a subscription counter for each com-
mitment to track the fulfillment of subscriptions. However, these counters are internal to
ProMocA, and they cannot be directly accessed within a PROMoOCA model. The semantics
of these variables are formalized later in Section 3.2.

Now we present some example commitments from the aerospace aftercare scenario to
illustrate use of PROMOCA’s commitment syntax. Let us start with the simple achievement
commitment: “if the operator pays the price of an engine to the manufacturer, the manu-
facturer is committed to deliver the engine”. Suppose that there are payment and delivery
deadlines (defined as variables). The commitment can be observed by the aerospace agency.
If the commitment is violated, it cannot be compensated. This commitment is written in
ProOMocA as follows:

commitment('c-1', achievement, 1, 'manufacturer’, 'operator’,

engine-paid == 'done’, payment-deadline == "past’,

474

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

engine-delivered == "done’, delivery-deadline == "past’)

{’aerospace-agency'};

In our second example we consider maintenance of an engine according to the com-
mitment: “if the manufacturer delivers an engine to the operator, the manufacturer is
committed to the operator to maintain the engine operational for a year”, which we iden-
tify as c-2. If the manufacturer fails to maintain the engine operational, and violates c-2, it
should compensate this situation by repairing the engine and also paying a penalty, which
is defined in the compensating commitment c-3. Note that c-2 explicitly declares c-3 as its
compensating commitment. This declaration is essential for correctly managing the lifecy-
cles of these commitments as we show later in Section 3.2. Note that we use the variable
contract in the commitments to capture whether the contract between the manufacturer
and operator is still valid. If the contract between these parties is terminated (e.g., delivery
of an engine is canceled), their commitments expire.

commitment('c-2’, maintenance, 1, 'manufacturer’, 'operator’,
contract == 'valid’ and engine-delivered == 'done’, contract == 'terminated’,
engine-status == 'operational’ or engine-status == 'maintenance’, end-of-year == 'past’)

{'aerospace-agency'}['c-3'];

commitment('c-3’, achievement, 1, 'manufacturer’, 'operator’,

contract == 'valid’ and c-2-status == 'violated’,

contract == "terminated’ or c-2-status == 'fulfilled’ or c-2-status == 'released’,
engine-status == 'operational’ and penalty-paid == 'done’,
compensation-deadline == ’past’)

{'aerospace-agency'};

Before we continue, let us emphasize the different meaning of the termination condition
in achievement and maintenance commitments. In an achievement commitment, the debtor
is committed to bring about the consequent at some point before the occurrence of the
termination condition. For example, in the achievement commitment c-1, the termination
condition is the delivery deadline, and c-1 is fulfilled, if the engine is delivered at any
point before this deadline. Otherwise, c-1 becomes violated. On the other hand, in a
maintenance commitment, the debtor is committed to maintain the consequent at every
point from the commitment’s detachment until the occurrence of the termination condition.
For example, in the maintenance commitment c-2, the termination condition is completion
of one year after delivery of an engine, and fulfillment occurs if the engine’s operational
status is preserved from the detachment of the commitment until the completion of the
year. Otherwise, the commitment becomes violated immediately.

To complement c-2, we need another commitment c-4 that defines monthly servicing
of an engine using a subscription model as follows. After the delivery of an engine, the
manufacturer is committed to the operator to service the engine in a monthly basis for a

475

GUNAY, L1u & ZHANG

year, as long as the operator pays the monthly service fee and provides the engine usage
reports. For brevity, we omit the observers and compensation for this commitment.

commitment('c-4-', achievement, 12, 'manufacturer’, 'operator’,
contract == 'valid’ and engine-delivered == 'done’ and service-fee-paid-* == 'done’ and
engine-report-provided-* == "'done’,
contract == 'terminated’ or fee-deadline-* == "past’ or engine-report-provided-* == "failed’,
engine-serviced-* == 'done’,
engine-serviced-* == 'failed’ or engine-serviced-* == "late’);

Since the commitment is modeled as a subscription for a year in a monthly basis, there
are twelve instances of this commitment. However, some conditions of the commitment
apply only to individual instances. For example, there is a separate payment of the service
fee for each month. PROMOCA provides * notation for the variables that correspond to such
instance conditions. For example, service-fee-paid-* means that there are twelve variables
(e.g., service-fee-paid-1, service-fee-paid-2, etc.) to model each separate payment of the
service fee. The first instance of the commitment becomes active, if service-fee-paid-1 and
the other conditions of the antecedent hold. Note that only some conditions are instance
specific. Other conditions, such as the delivery of the engine (i.e., engine-delivered), are used
by all instances referring to the same variable.

3.1.3 TARGET AGENT SPECIFICATION

The target agent specification is defined in the block agent[agent-id]{agent-spec}, where
agent-id is the unique identifier of the target agent. The target agent specification agent-spec
is composed of four parts. The first part is the definition of the target agent’s finite set
of local variables, which are enclosed by the block locals{var; ...var;}. Local variables are
intended to model the internal state of the target agent. Hence, they cannot be used in
the context of global elements, and accordingly they cannot be accessed by other agents.
For instance, the antecedent and the consequent of a commitment cannot include a local
variable of an agent. Local variables are defined using the global variable syntax.

The second part of the target agent specification is the definition of the target agent’s

goals, which are defined in the block goals{goal; ...goal;}. The syntax of goal is as follows:
goal = pa-goal | pm-goal | a-goal | m-goal
pa-goal ::= pagoal(satisfaction)
pm-goal := pmgoal(satisfaction)
a-goal ::= agoal(precondition, satisfaction, termination)
m-goal ::= mgoal(precondition, satisfaction, termination)

Persistent achievement and maintenance goals are denoted by pa-goal and pm-goal, re-
spectively. In both goal types, satisfaction parameters are expressions that model satisfaction
condition of the goal, which can include only global and local variable comparisons (i.e., no
commitment-state variables are allowed in these conditions). For example, the persistent
maintenance goal of the manufacturer to keep a positive bank balance while interacting
with operators and suppliers can be modeled by the following goal:

476

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

pmgoal(bank-balance == "positive’);

One-time achievement and maintenance goals are denoted by a-goal and m-goal, re-
spectively. For both goal types, precondition, satisfaction, termination are expressions that
model the pre, satisfaction, and termination condition of the goal. The pre and termination
conditions of both goal types can include global, local, and commitment state variable com-
parisons. However, the satisfaction condition for both goal types can include only global
and local variable comparisons.

For example, the manufacturer’s one-time goal to deliver an engine when a payment
is made (captured by the 'active’ status of commitment c-1) can be modeled using the
following achievement goal.

agoal(c-1-state == 'active’, engine-delivered == "done’,

engine-delivered == 'failed’ or engine-delivered == 'late’);

Note that if the delivery of the engine fails or it is delivered later than the deadline (i.e.,
delivered == 'failed’ or delivered == 'late’), the one-time goal becomes terminated.

The last two parts of the target agent specification are the definition of the target agent’s
own behavior and the target agent’s beliefs about the other agents’ behaviors. The target
agent’s own behavior is defined in the block behavior{behavior}. The target agent’s be-
liefs about the other agents’ behaviors are defined in the block beliefs{[agent-id]{behavior};
... |agent-id]{behavior};}. A behavior (either the target agent’s own behavior or a believed
behavior of another agent) is defined according to the following syntax:

behavior ::= cont | stop |
action-label{assign, ..., assign} -> behavior |
commit{commitment-id} -> behavior |
release{commitment-id} -> behavior |
cancel{commitment-id} -> behavior |
behavior <> behavior |
[expression] behavior |
(probability) behavior ... (probability) behavior

Let us explain the intuitive meaning of each element in the behavior syntax. The
primitive behaviors cont and stop restarts and terminates the current behavior, respectively.
We use action-label{assign; ...; assign;} to capture agent actions and their effects on the
variables. Each action has a label action-label that is used only to improve readability. That
is, the label of an action does not have any meaning and the same label can be used with
different sets of assignments at different places of the model. The effects of an action are
captured by assigning new values to a finite set of variables. Actions in PROMOCA are
atomic. Hence, all the assignments that occur as the result of an action, are done in the
given order without interruption. The syntax of an assignment assign is as fallows:

assign ::= var-name = value

477

GUNAY, L1u & ZHANG

Beside domain dependent actions (e.g., delivering an engine), PROMOCA also provides
three meta-actions commit, release, and cancel that capture the corresponding commit-
ment operations to alter the state of a commitment (i.e., commitment state variable). The
action commit is used by a debtor to create a commitment, release is used by a credi-
tor to release the debtor from its commitment, and cancel is used by a debtor to cancel
her commitment. Other than these three, PROMOCA does not provide any meta-action
to manipulate the state of a commitment directly. Instead, the state of a commitment is
captured internally by PROMOCA according to the values of the commitment’s parameters
(e.g., consequent) as we define in the semantics of PROMOCA.

A non-deterministic choice over behaviors is captured by behavior <> behavior. That is,
either the first or the second behavior can be performed by the agent, and the decision is
non-deterministic. [expression] behavior captures a guarded behavior (i.e., if-then rule). The
guard condition expression is a logical expression (as defined before). If the guard condition
holds, then the corresponding behavior is performed. Otherwise, the behavior becomes
blocked until the condition holds. Note that arbitrary number of guarded behaviors can be
combined using a non-deterministic choice to model complex decision procedures. If this is
the case, one of the behaviors, for which the corresponding guard condition holds, is selected
for execution in a non-deterministic manner. Finally, (probability) behavior ... (probability)
behavior denotes a probabilistic choice among the possible behaviors. Each probability is a
real value and the sum of all probabilities is equal to 1 for a probabilistic choice. Proba-
bilistic and non-deterministic choices are the main elements of PROMOCA to incorporate
uncertainty into the modeling and analysis processes.

An important distinction between the behavior and beliefs blocks is the use of variable
types. Global variables can be used (both for reading and assignment) in both blocks.
However, local variables of the target agent can only be used in the behavior block, since
they are private to the target agent. Local variables are not accessible either for reading or
for assignment in the beliefs block, since this block models other agents’ behaviors, which
should not use the target agent’s local variables. Accessibility of commitment state variables
(always as read-only) depend on the role of the corresponding agent in the commitments.
For instance, if the target agent is a debtor, creditor, or observer of a commitment, the
corresponding state variable can be queried from the behavior block. Similarly, if another
agent is a debtor, creditor, or observer of a commitment, the part of the beliefs block that
corresponds to this agent’s behavior, can query the state of a commitment.

Let us present a (partial) behavior example for the manufacturer as below, which is
interpreted as follows. If a commitment of the manufacturer to service an engine (i.e.,
an instance of c-4) becomes active, the manufacturer may behave in three different ways,
according to the current situation. If the manufacturer already has the necessary parts to
service the engine (modeled by the local variable part-availability), the manufacturer services
the engine on time with 0.99 probability. There is a small probability (0.01) of failure to
complete the service on time, which violates c-4. When the manufacturer does not have
the necessary parts to service the engine, it can order them either from the first or second
supplier. The manufacturer believes that (as we demonstrate later) the first supplier mostly
delivers ordered parts on time. The manufacturer also believes that the second supplier
delivers ordered parts late almost all the time. Furthermore, the manufacturer believes
that the second supplier may even completely fail to deliver ordered parts. Accordingly,

478

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

the manufacturer prefers to work with the first supplier. However, if the first supplier is
not approved by the aerospace agency for the particular operator, who owns the engine,
the manufacturer works with the second supplier. This situation is captured in the guard
statements. Note that in the case of late delivery of ordered parts, timely service of the
engine is affected. That is, if a late delivery occurs, the manufacturer services on time only
with 0.75 probability. Hence, there is a bigger risk for violating c-4. Finally, after servicing
and engine, availability of the spare parts for the next service period is determined as a
non-deterministic choice. That is, the manufacturer does not know in advance how many
spare parts it needs, and therefore any possible result (e.g., running out of spare parts)
should be considered.

[c-4-state == active’] {
[part-availability == "available’] {
(0.99) service-on-time{engine-serviced = 'done'} ->
all-parts-consumed{part-availability == 'unavailable’} <> cont
(0.01) service-late{engine-serviced = 'late'} ->
all-parts-consumed{part-availability == 'unavailable’} <> cont
} <>
[part-availability == 'unavailable’ and supplier-1 == "approved’] {
[part-delivery == "on-time’]

(0.99) service-on-time{engine-serviced = 'done’} ->

all-parts-consumed{ part-availability == 'unavailable'} <> cont
(0.01) service-late{engine-serviced = 'late’} ->
all-parts-consumed{ part-availability == 'unavailable'} <> cont
} <>
[part-delivery == "late’] {

(0.75) service-on-time{engine-serviced = 'done’'} ->
all-parts-consumed{part-availability == 'unavailable’} <> cont

(0.25) service-late{engine-serviced = 'late’} ->

all-parts-consumed{part-availability == 'unavailable’} <> cont
}
P <>
[part-availability == 'unavailable’ and supplier-1 != "approved’ and supplier-2 == "approved’] {
[part-delivery == 'late’]
(0.75) service-on-time{engine-serviced = 'done’} ->
all-parts-consumed{part-availability == 'unavailable'} <> cont
(0.25) service-late{engine-serviced = 'late’} ->
all-parts-consumed{ part-availability == 'unavailable'} <> cont
<>
[part-delivery == 'failed’]

service-failed{engine-serviced = 'failed’'} -> cont

479

GUNAY, L1u & ZHANG

Lastly, below we demonstrate some beliefs of the manufacturer about the suppliers.
Suppose that the interaction of the manufacturer with the first and second supplier is
regulated by the commitments c-5 and c-6, respectively. These commitments state that if
the manufacturer orders a batch of spare parts from a supplier, the supplier is committed to
deliver the parts to the manufacturer. For brevity we do not show these commitments. As
we have mentioned earlier, the manufacturer believes that the first supplier is more reliable.
Precisely, the first supplier delivers ordered parts on time with 0.8 probability, and late
with 0.2 probability. The manufacturer also believes that the second supplier is unreliable.
Precisely, the second supplier delivers order parts late with 0.95 probability. Besides, with
0.05 probability, the second supplier fails altogether to deliver ordered parts.

beliefs {
['supplier-1'] {
[c-5-state == "active’] {
(0.8) delivers-on-time{part-delivery = 'on-time'} -> cont

(0.2) delivers-late{part-delivery = 'late'} -> cont

}
};
['supplier-2'] {
[c-6-state == "active’] {
(0.95) delivers-late{part-delivery = 'late’} -> cont
(0.05) fails-to-deliver{part-delivery = 'failed'} -> cont
}
b

3.2 Semantics

Now we define PROMOCA’s operational semantics. We first define a PROMOCA model and
a configuration that captures the global state of a PROMOCA model.

Definition 1 (PrROMocA Model). A PROMoOCA model is a tuple O = (Var, Vipi, C, G,
Bagn|||Breiy ||| - - - || Bbet,,) where Var is the set of variables (i.e., the composed set of global,
local, commitment state, and internal variables), Vini is the initial valuation of the vari-
ables in Var, C is the commitment protocol (i.e., a set of commitments), and G is the target
agent’s goal set. Bagn|||Bpei, ||| - - - ||| Bbet, is the parallel composition of the interleaved be-
haviors of the target agent (represented by Bagn) and the other n number of agents (i.e.,
By, represents the ith agent’s believed behavior).

Definition 2 (Configuration). A configuration is a tuple (V, B), where V is a valuation of
the variables in Var, and B is a behavior.

We define the operational semantics of each behavioral element using firing rules, which
operate over configurations. Below, ¥ denotes the set of all (visible) agent actions, and
7 denotes an internal (invisible) action. We use « to denote any action in ¥. We write
V' |= expression to denote that the logical expression expression evaluates to true for valuation

480

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

V. We start from the operational semantics of cont, which causes the current behavior B
to continue from its initial location without making any changes to the valuation V. This
case is handled by the invisible 7 action, as it is defined by the rule [cont].

cont is encountered in B
(V,cont) = (V, B)

[cont]

Rule [prefix] captures how an action « of a behavior B modifies the values of the variables
in a valuation V.

o [prefix]
(V,a{assign, ..., assign} -> B) — (update(V,{assign, ..., assign},C), B)

For readability, we use the auxiliary update function to handle assignment of new values
to variables when modifying a configuration. We present this function in Algorithm 1. In
Algorithm 1 (and also in the other related algorithms) we slightly abuse our notation for
readability as follows. We assume that each assignment assign is represented as a variable
and value pair (i.e., (variable, value)). We use the bracket notation V[variable] to access to
variable in valuation V. The internal state (c-id-state) and subscription (c-id-subscription)
variables are available to the algorithm for each commitment with identifier c-id. We also
omit the observer lists of commitments, since they are irrelevant to assignments.

Input arguments of the update function are the current valuation V', the set of assign-
ments assignments that occur as the result of the action «, and the commitment protocol
C. The function first updates the global and local variables of V' according to assignments
(lines 1-2). Then, for each commitment ¢ in the protocol, the function updates the state of ¢
(i.e., c-id) with respect to the updated values of the variables if necessary as follows (lines 3—
22). If the commitment is conditional and the expiration condition of the commitment holds
in the updated valuation, then the commitment expires and its subscription counter is up-
dated by the auxiliary function update-subscription, which we present in Algorithm 2, and
explain in detail later (lines 5-7). Otherwise, if the antecedent of the conditional commit-
ment holds in the updated valuation, the commitment becomes active (lines 8-9). If neither
of these conditions hold, the state of the conditional commitment does not change, which
we do not show in Algorithm 1 for brevity.

If the commitment is active, it is necessary to consider its type (i.e., achievement or main-
tenance) to determine its next state. If the termination condition of an active achievement
commitment holds in the updated valuation, the commitment becomes violated (lines 12—
14). Otherwise, if the consequent of the commitment holds in the updated valuation, the
commitment becomes fulfilled (lines 15-16). If neither of these conditions hold, the state of
the active achievement commitment does not change. If the consequent of an active main-
tenance commitment does not hold in the updated valuation, the commitment becomes
violated (lines 18-20). Otherwise, if the termination condition of the commitment holds in
the updated valuation, the commitment becomes fulfilled (lines 21-22). If neither of these
conditions hold, the state of the maintenance commitment does not change. Finally, update
returns the updated valuation (line 23).

Subscription and fulfillment status of a commitment are handled by the auxiliary func-
tions update-subscription and fulfillment as we define in Algorithms 2, and 3, respectively.

481

GUNAY, L1U & ZHANG

Algorithm 1: Function update(V, assignments, C') returns the updated valuation V.

input : valuation V, set of assignments assignments, commitment protocol C'
output: updated valuation V'

[uny

foreach (variable, value) in assignments do

2 L V'variable] < value

3 foreach commitment(c-id, c-type, subs, deb, cre, ant, exp, con, ter)[c’-id] ¢ in C' do
4 if V[c-id-state] = 'conditional’ then

5 if V = exp then

6 V[c-id-state] < "expired’

7 V'« update-subscription(V, c)

8 else if V |= ant then

9 L V[c-id-state| < "active’

10 else if V[c-id-state] = 'active’ then

11 if c-type = achievement then

12 if V = ter then

13 V[c-id-state] < 'violated’

14 V' < update-subscription(V, c)
15 else if V = con then

16 L V' < fulfillment(V, ¢, C')

17 else if c-type = maintenance then
18 if V & con then

19 V[c-id-state] < 'violated’

20 V'« update-subscription(V, c)
21 else if V |= ter then

22 L V « fulfillment(V, ¢, C)

23 return V

When a commitment reaches to a terminal state (e.g., fulfilled) the internal subscription
counter of the commitment should be updated. If the commitment is not a subscription
(i.e., it is not a template commitment and enacted only once), this update has no effect.
Otherwise, the update occurs as it is defined in Algorithm 2, which takes the current valua-
tion V and the commitment ¢ with the identifier c-id as input arguments. First, the internal
subscription counter (i.e., c-id-subscription) of the commitment is increased by one (line 1).
Then, if the incremented subscription counter is less than or equal to the total subscrip-
tion period subs (i.e., some periods of the subscription have not been considered yet), the
commitment that corresponds to the next period of the subscription becomes conditional
(lines 2-4). Finally, the updated valuation is returned. Remember that the subscription
counter of any commitment is initially set by PROMOCA to 1. Hence, the condition at
line 2 should include equal to case. Also note that a non-subscription commitment has a

482

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

Algorithm 2: Function update-subscription(V, ¢) returns the updated valuation V.

input : valuation V, commitment c

output: updated valuation V'

V[c-id-subscription] <— V[c-id-subscription] + 1

if V[c-id-subscription] < subs then

L s-id-state <— concatenate (c-id, c-id-subscription)

W N =

V[s-id-state] « 'conditional’

5 return V

default period limit of 1. Hence, the condition at line 2 always fails for non-subscription
commitments as a result of increasing the subscription counter by one at line 1.

Algorithm 3 defines the auxiliary fulfillment function, which takes the current valuation
V', the fulfilled commitment ¢ with the identifier c-id, and the commitment protocol C as
input arguments. The function first sets the state of the commitment (i.e., c-id-state) to
'fulfilled” (line 1). Then, it updates the subscription counter of the commitment (line 2).
Lastly, if the fulfilled commitment ¢ is the compensation of another commitment ¢’ in
the context of C', which is determined by the auxiliary function compensates, and the
commitment ¢ is currently violated, the state of ¢ is set to 'compensated’ (lines 3-5). Note
that, if ¢ is a subscription, it compensates ¢’ only after all the periods of ¢ are fulfilled (i.e.,
condition subs < V[c-id-subscription] holds).

Algorithm 3: Function fulfillment(V,c,C') updates the valuation V' with respect to

fulfillment of commitment c.
input : valuation V, commitment ¢, commitment protocol C

output: updated valuation V

V[c-id-state| < 'fulfilled’

V'« update-subscription(V, c)

c + compensates(c,C)

if ¢ # none A V]c'-id-state] = 'violated’ A subs < V[c-id-subscription] then
L V[c'-id-state] <— 'compensated’

U R W

return V

(=]

Note that, all these algorithms can be encoded trivially as a set of firing rules, which
are similar to the ones that we use to define operational semantics of the other PROMocCA
elements. However, we prefer our algorithmic representation for readability. In practice,
these algorithms can be implemented efficiently using index structures from the variables
of a valuation to commitments that include an index variable in their conditions. However,
we prefer to explain them in the presented (less efficient but more intuitive) iterative form
for clarity.

We continue with the semantics of the meta-operations to create, release and cancel a
commitment, which are shown in rules [commit], [release] and [cancel], respectively. Here we

use auxiliary update update and update ; functions to handle change in the

commsitly release cance

483

GUNAY, L1u & ZHANG

valuation of the corresponding commitment’s state variable (as we do for assignments). For
instance, if [commit] fires for a commitment with the identifier commitment-id, update .,
function assigns the value 'conditional’ to the variable commitment-id-state, sets the corre-
sponding subscription counter to 1, and returns the updated valuation V.

V = commitment-id-state == "null’ .
, , : a : : [commit]
(V, commit{commitment-id} -> B) — (update commit(V,commitment-id), B)
V = commitment-id-state == 'conditional’ or commitment-id-state == "active’ frelease]
release
(V, release{commitment-id} -> B) % (update,iease(V, commitment-id), B)
V | commitment-id-state == "active’
[cancel]

(V, cancel{commitment-id} -> B) % (update anee(V, commitment-id), B)

These three rules do not define how a configuration changes when the condition of a rule
does not hold. For instance, [cancel] rule does not define how the configuration changes,
if the commitment is canceled when it is not active. To handle these situations we define
the following three rules, which ignore a commitment operation and do not change the
current configuration, if the condition of the rule does not hold. For instance, in [!cancel],
if a commitment that is not active, is canceled, the cancel operation is ignored and the
commitment’s current state is preserved (i.e., the current configuration does not change).

V = commitment-id-state ! = "null’ i it]

lcommi

(V, commit{commitment-id} -> B) % (V, B)
V = commitment-id-state | = 'conditional’ and commitment-id-state ! = active’ [release]
Irelease
(V, release{commitment-id} -> B) <= (V, B)

V = commitment-id-state ! = "active’ [I

lcance

(V, cancel{commitment-id} -> B) % (V, B)

Rules [non-1] and [non-2] capture the semantics of non-deterministic choice between the
behaviors B; and B;. If there is a non-deterministic choice between B; and Bj, either B; or
Bj is selected in a non-deterministic manner for progressing according to the rules [non-1]
or [non-2], respectively.

[non-1]

(V,B; <> Bj) = (V, B))

— [non-2]
(V. B; <> Bj) = (V, Bj)

Rule [guard] captures the semantics of guarded behaviors. If the expression guard that
is associated to the behavior B is evaluated to true according to the valuation V', then
the action « occurs and the model progresses to the configuration (V’,B’). Otherwise,

484

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

B becomes blocked until the model progresses to another configuration, in which guard
evaluates to true. This may happen, if an interleaving behavior assigns new values to some
variables, which causes the model to progress to a new configuration, in which guard is
evaluated to true. However, if there is no such interleaving behavior, the current behavior
is permanently blocked (i.e., deadlocked).

V k= guard and (V, B) (V',B’)
(V. [guard]B) = (V', B')

Lastly, we define operational semantics of interleaving behaviors’ parallel composition,
which is denoted by |||. Remember that PROMOCA models both the target agent’s own
behavior and the target agent’s beliefs about the other agents’ behaviors in separate inter-
leaving behaviors. We compose these behaviors into a single behavior to verify properties
of the target agent’s behavior as we explain in Section 4. We achieve this using rules [int-1]
and [int-2]. Intuitively, if there are two interleaving behaviors B; and Bj (e.g., the target
agent’s own behavior and a believed behavior of another agent), either B; or B; is executed
independently from the other behavior.

[guard]

(V. B) % (vV!, B))
V.5 115, S (7.5 1 5,

(V.By) = _ V. 5;) [int-2]
(V.BiIll By) = (/.5 || B)

To clarify parallel composition of two interleaving behaviors, we present a simple ex-
ample in Figure 2, which shows possible executions of the two interleaving behaviors
B; = {ial{vi = '1'} -> ia2{vi = '2'}} and B; = {jal{vj = 'I'} -> ja2{vj = '2'}} with
respect to the initial valuation V' = ((vi : '0"), (vj : '0")) for the variables vi and vj. Note
that we omit stop statements at the end of the behaviors for brevity. Each box in Figure 2
corresponds to a composed configuration such that the first line is the valuation V' and the
rest is the interleaving behaviors B; and B;. Edges between boxes show transitions between
configurations according to actions taken by the behaviors, which are shown as edge labels.
Note that once an action is taken, it is removed from the corresponding behavior to indicate
its completion. For instance, there are two possible actions that can be taken in the initial
configuration, namely ial in B; and jal in Bj. If ial is taken, the value of vi is set to '1’,
and B; becomes {ia2{vi = '2'}} in the new configuration that we reach as the result of ial.
In the final configuration, the valuation V is ((vi : '2'), (vj : '2")), and both behaviors B;
and B; are empty, hence they stop (i.e., all possible actions are taken).

Our firing rules define how a behavior progresses from one configuration to another in
a PROMocCA model. Now we define execution of a PROMOCA model with respect to these
rules as a Markov Decision Process (MDP) (Bellman, 1957), which is expressive enough to
capture both probabilistic and non-deterministic interleaving behaviors.

Definition 3 (Markov Decision Process). A Markov decision process is a tuple M =
(S, Act, P, tinit, AP, L) where

e S is a finite set of states,

485

GUNAY, L1u & ZHANG

((vi:'0"),(vj:'0Y),
(B; = {ial{vi = '1'} > ia2{vi = '2'}}
Il
B; = {jal{yj = 'I'} -> ja2{yj = '2'}})

ial{vi =/ Nj — 11
((vi: 1), (vj: '0")), ((vi:'0"),(vj: '1)),
(B; = {ia2{vi = '2'}} (B; = {ial{vi = "'} -> ia2{vi = '2'}}
Il I
B; = {jal{yj = "1} -> ja2{yj = '2}}) B; = {ja2{vj = '2}})
ia2{vi = "2} Nj = ial{vi —/ ja2{vj =2’}
(i 2,04 0)), (i 1), (4 1)), (i), (s 2)),
(Bili 0 (B; = {ia2||{‘vi =72} (B; = {ial{vi = '1"|}i > a2f{vi = '2'}}
Bj = {jal{vj = 'I'} -> ja2{vj = '2'}}) Bj = {ja2{vj = '2'}}) B; ={})
jal{vj ='1} Mi ="2"} ja2{vj :\ ial{vi="1"}
(i 2), 4 1)), (i 2),(4: 2)), (i1, (i 2)),
(BZ|W {3 ja2{vj ="2"} (Bl|ﬁ {} ia2{vi = '2'} | (B; = ia2‘fhvi ="2'}}
Bj = {ja2{vj = '2'}}) Bi={}) B ={})

Figure 2: Possible executions of the interleaving behaviors B; and B;.

Act is a finite set of actions,

e P:Sx Act x S+ [0,1] is a transition probability function such that for every state s
in S and for every action a in Act:

Z P(s,a,s') € {0,1}

s'eS

Linit + S = 1 is the initial distribution such that) g tinit(s) = 1,
e AP is a finite set of atomic propositions,
o L:S— 247 is q labeling function.

Without loss of generality we consider only finite MDPs (i.e., S, Act and AP are finite
sets), and there are no terminal states in an MDP. Precisely, if Act(s) denotes the set of
enabled actions in s, then for any s € S it is the case that Act(s) # (). An action « is
enabled in a state s if and only if Y, ¢P(s,a,s’) = 1. A state s’ is an a-successor of
another state s, if P(s,«,s’) > 0. An MDP executes as follows. An initial state s;,; is
selected according to a stochastic experiment of the initial distribution ¢;,,;+. In any state s,
first a non-deterministic choice is made between the enabled actions. Assume that action
a € Act(s) is selected. Then, an a-successor of s is selected randomly according to the
distribution P(s, a,).

486

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

Now we are ready to define the two necessary rules to systematically create an MDP
from a PROMOCA model using our operational semantics. Rule [non-prob| captures non-
probabilistic cases. That is, for any non-probabilistic firing rule (V,B) < (V/,B'), if a
is performed from a configuration (V, B), the result is a single distribution p that maps
configuration (V', B’) to 1.

(V,B) % (V', B') is a firing rule
(V.B) % p where (V1. BY) = 1

[non-prob]

Rule [prob] handles probabilistic choices, where the resulting distribution p associates
probability d; with (V, B;) for all i. Note that V remains unmodified during a 7 transition.

— prob
(V,(p1)B1...(pn)Bn) — p where u((V, B;)) = p; for all ¢ |]

Proposition 1. For any PRoOMocA model O = (Var, Vinit, C, G, Bagnl||Brel, ||| - - - ||| Bbet,,)
there exists a corresponding MDP M = (S, Act, P, tinit, AP, L).

Proof: For any given PROMOCA model O, the following procedure constructs a correspond-
ing MDP M. Below, we use Dom(var) to denote the domain of a variable var € Var and
B to denote Bugn|||Bpe, ||| - - - ||| Bret,, -

1. Creation of AP: For every value val € Dom(var) of every variable var € Var add a
new proposition ap to AP. For instance, if the variable engine-status is an element of
Var with the domain Dom(engine-status) = {'unknown’, 'operational’, 'malfunction’,
'maintenance’'}, add propositions engine-status-unknown, engine-status-operational,
engine-status-malfunction, and engine-status-maintenance to AP, which correspond
to the values 'unknown’, 'operational’, 'malfunction’, 'maintenance’ of engine-status,
respectively.

2. Creation of S and L: Add a state s for every combination of the propositions in
AP omitting combinations which include mutually exclusive propositions. A set of
propositions are mutually exclusive (i.e., they cannot hold in the same state), if they
are created from the domain of the same variable in Step 1. For instance, all the four
propositions that are created from the domain of engine-status are mutually exclusive.
Update the labeling L for each created state using the corresponding combination
of propositions. For instance, considering the propositions in the first step, we cre-
ate four states sg, $1, s2, and sz, and set the labeling function as follows: L(sg) =
{engine-status-unknown}, L(s1) = {engine-status-operational}, L(s2) = {engine-
status-malfunction}, and L(s3) = {engine-status-maintenance}. Note that there is
a one-to-one correspondence between labels of states and valuations of a behavior’s
configurations. As a result, there is also a direct correspondence between states and
configurations of a behavior.

3. Creation of t;;: Set the t;,;; such that the probability of the state, which has the
labeling that corresponds to the valuation Vj,;, is 1, and probabilities of all other
states are 0.

487

GUNAY, L1u & ZHANG

4. Creation of Act: For every assignment « in behavior B add a corresponding action
to Act. Besides, for every commitment ¢ € C' add a set of meta-actions to Act, which
correspond to the state changes of c.

5. Creation of P: First, for each state s € S determine the set of enabled actions
Actf C Act. An action act is enabled in a state s (i.e., act € Act?) only if one of the
following conditions hold:

e act corresponds to an assignment « that occurs from the configuration conf,
such that the valuation V of conf corresponds to the labeling of the state s
(i.e., L(s)). Note that the correspondence between a state and a configuration is
already described in Step 2, and the correspondence between an action and an
assignment is already described in Step 3. Intuitively, this condition captures the
[prefix] rule. That is, if the next behavior element to apply in a configuration is
an assignment, the action that corresponds to the assignment is enabled in the
state that corresponds to the configuration.

e act corresponds to a meta-action to change the state of a commitment, and
act can be performed (according to the algorithms and rules which define the
semantics of commitments) in the configuration conf, which corresponds to the
to the labeling of the state s (i.e., L(s)). This condition captures the state
changes of commitments.

Then, for each state s, if Act? includes one or more actions to change the state(s) of
some commitment(s), a single transition with probability 1 is set to the destination
state that labels the updated commitment states according to the algorithms and rules
which define the semantics of commitments. The rest of the actions are ignored, if
Actf includes one or more actions to change the state(s) of some commitment(s). In
other words, commitment states are updated instantaneously when needed, before any
further agent action occurs. Otherwise, if there are no actions to update commitment
states, a transition for each action act € Actl with probability pae:/ Ziév p; is set
for the destination states that are labeled according to the correspondences between
the actions and the assignments, where p; is the probability value of the action act;
as it is defined in the configuration conf that corresponds to the state s, and N is the
total number of actions in Act?. O

Note that the procedure that we describe in the proof of Proposition 1 creates a finite
MDP, since the number of variables (and their domains), and the number of assignments in
a PROMOCA model are finite. Also note that the actual computational complexity of this
procedure occurs due to the last step, where we determine the transition probabilities of
the MDP, which can be done in linear time with respect to the number of generated states
in Step 2 and actions in Step 4. However, it is clear that the number of states of an MDP is
exponential to the number of variables and their domains in the corresponding PROMocCA
model (see Step 1). This situation is commonly known as the state space explosion problem
and constitutes the theoretical lower bound of the probabilistic model checking (Baier &
Katoen, 2008).

488

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

3.3 Formal Properties

In this section we formalize the compliance and goal satisfaction properties using PLTL>
(Baier & Katoen, 2008), which is a probabilistic variant of Linear Temporal Logic (LTL)
(Pnueli, 1977). An LTL formula ¢ is defined over a set of atomic propositions AP using
the temporal operators globally (G), eventually (F), and until (U). Satisfaction of an LTL
formula is defined with respect to an infinite sequence of states ¢ = sq, s1, ... as follows.

e G ¢ holds in s;, if ¢ holds in all future states s; for ¢ < j.
e F ¢ holds in s;, if ¢ holds at least in one future state s; such that ¢ < j.

e U@’ holds in s;, if ¢ holds in all future states s; until ¢’ holds in a future s, such
that i < j < k.

PLTL> extends LTL with a probabilistic operator P>;(¢), where z € R and ¢ is an
LTL formula. Intuitively, P>, (¢) holds for an MDP model, if probability of satisfying ¢ is
greater or equal to . We define computation of this probability in detail in Section 4. In
Sections 3.3.1 and 3.3.2, we use A, V, = and — in PLTL> formulae for logical conjunction,
disjunction, implication, and negation, respectively.

3.3.1 COMPLIANCE

Compliance of a target agent’s behavior with a commitment protocol is the first property
that we particularly aim to verify in PROMOCA. Basically, if the target agent fulfills all
of its active commitments in a commitment protocol, then the target agent’s behavior
complies with the commitment protocol. However, due to interdependence among agents
and uncertainty about other agents’ behaviors, it is usually not possible to determine an
agent’s compliance exactly. For instance, in the aerospace example, the manufacturer’s
compliance depends on the behaviors of the suppliers. Hence, we define compliance of a
target agent’s behavior with a commitment protocol in a relaxed manner with respect to a
threshold ¢ that defines the minimal acceptable ratio of fulfillment for the target agent’s
active commitments. Precisely, for each commitment of the target agent, if a commitment
becomes active, the commitment’s fulfillment probability should be greater or equal to the
threshold 90. BGIOW, B is Bagn|”Bbel1||| e |||Bbeln-

Definition 4. Given a PROMOCA model (Var, Vipi, C, G, B) and the corresponding MDP
(S, Act, P, tinit, AP, L), the target agent’s behavior Bag, complies with the commitment
protocol C with respect to the threshold Oc, if the following PLTL> formula holds:

vV commitment(c-id, debtor, ...) € C such that debtor = agn :

P>o. (G(c-id-state-active = F(c-id-state-fulfilled V c-id-state-released)))

Intuitively, for every commitment of a protocol, in which the target agent is the debtor,
if the commitment becomes active at any given state of the MDP, then the commitment’s
probability of finally becoming fulfilled or released in a future state should be greater or

489

GUNAY, L1u & ZHANG

equal to the threshold . Note that in Definition 4, we omit commitment parameters (i.e.,
we instead use ...) that are irrelevant to compliance.

Even tough the threshold 6o relaxes the requirements of compliance, Definition 4 is
still a strict notion of compliance for some domains, since it requires fulfillment of every
active commitment, and ignores compensations in the case of violation. However, as we
have discussed in Section 2, compensation is a useful and widely used mechanism in many
domains. Accordingly, we define weak compliance, which considers compensation, as follows:

Definition 5. Given a PROMOCA model (Var, Vipi, C, G, B) and the corresponding MDP
(S, Act, P, tinit, AP, L), the target agent’s behavior By, weakly complies with the commit-
ment protocol C' with respect to the threshold Oc, if the following PLTL> formula holds:

V commitment(c-id, debtor, ...) € C such that debtor = agn :
P>o. (G(c-id-state-active =
F(c-id-state-fulfilled V c-id-state-released V c-id-state-compensated)))

Intuitively, for every commitment of the protocol, in which the target agent is the debtor,
if the commitment becomes active at any given state of the MDP, then the commitment’s
probability of finally becoming fulfilled, released, or compensated in a future state should
be greater or equal to the threshold 6.

Let us explain how compliance can be satisfied or failed on an example. Since compu-
tation of probabilities on an MDP is rather involved and not adequate for doing manually,
we use a simplified case from our aerospace aftercare example, where the manufacturer can
service an engine only if a supplier timely delivers the necessary parts for maintenance.
Suppose that the manufacturer believes that the supplier delivers the parts on time with
probability 0.9. Ignoring all other details, if the compliance threshold 6¢ is set to 0.8, the
verification process concludes that the manufacturer complies with the protocol, since the
probability of timely servicing the engine is above of the threshold. On the other hand,
if the compliance threshold 6 is set to 0.95, the verification process concludes that the
manufacturer fails to comply with the protocol, since the probability of timely servicing the
engine is below of the threshold.

3.3.2 GOAL SATISFACTION

The second property that we aim to analyze in PROMOCA is goal satisfaction, which defines
whether a target agent can satisfy its goals by enacting a commitment protocol. However,
as in the case of compliance, it is usually not possible to exactly determine goal satisfaction
due to interdependence among agents and uncertainty in a multiagent system. Hence, as
before, we define a threshold fg that defines the acceptable ratio of satisfaction for the goals
of a target agent.

Definition 6. Given a PROMoCA model (Var, Vipit, C, G, B) and the corresponding MDP
(S, Act, P, tinit, AP, L), the target agent can satisfy its goals in G by enacting the commit-
ment protocol C' with respect to the threshold 0g, if for each goal in G, the PLTL> formula
that corresponds to the goal’s type holds as below:

490

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

A persistent achievement goal can be satisfied, if the probability of achieving the
satisfaction condition sat infinitely often is greater or equal to fg.

V pagoal(sat) € G : P>g, GF(sat) [pa-sat]

e A persistent maintenance goal can be satisfied, if the probability of maintaining the
satisfaction condition sat in every reachable state is greater or equal to fg.

V pmgoal(sat) € G : P>y, G(sat) [pm-sat]

e A one-time achievement goal for which the precondition pre holds, can be satisfied if
probability of not reaching the termination condition ter until the satisfaction con-
dition sat is achieved, is greater or equal to fg. Intuitively, the goal should not be
terminated until it is achieved.

V agoal(pre, sat, ter) € G : P>g, G(pre = (- ter U sat)) [a-sat]

e A one-time maintenance goal for which the precondition pre holds, can be satisfied if
probability of maintaining the satisfaction condition sat until reaching the termination
condition ter is greater or equal to fg. Intuitively, the satisfaction condition should
be maintained until the goal’s termination.

V mgoal(pre, sat, ter) € G : P>y, G(pre = (sat U ter)) [m-sat]

Let us explain how goal satisfaction can be satisfied or failed on a simplified case from
our NetBill example, where the merchant has a persistent achievement goal to receive
payments from customers. Suppose that the merchant believes that there is a customer
who purchases a certain good every day with probability 0.5. Ignoring all other details, if
the goal satisfaction threshold 0g is set to 0.25, the verification process concludes that the
merchant satisfies its goal, since the probability of receiving a payment on a daily basis is
higher than the threshold. On the other hand, if the goal satisfaction threshold 6¢ is set to
0.75, the verification process concludes that the merchant fails to satisfy its goal, since the
probability of receiving a payment on a daily basis is lower than the threshold.

3.4 Remarks about PROMOCA Syntax and Semantics

While designing PROMOCA’s modeling language we are influenced from process algebra and
communicating sequential processes (Hoare, 1978), which are successfully used for modeling
various concurrent systems. However, in line with our objective of verifying properties of an
agent’s behavior in the context of a commitment protocol under uncertainty, we designed
a novel language to model commitment protocols and agents, taking into account their
goals, beliefs, and behaviors. One of our main motivations while designing PROMOCA is to
ease modeling of commitment protocols and agents by providing an intuitive language with
elements to model them, which differs PROMOCA from existing analysis tools. We discuss
about PROMo0CA’s modeling related benefits comparing to existing tools in more detail in
Section 7. In the rest of this section we discuss some important aspects of PROMOCA’s
modeling language.

491

GUNAY, L1u & ZHANG

A PrOMocA model involves three types of variables that capture global, local and
internal (commitment and subscription) state. This distinction among the variable types is
used for type checking in the syntactic level to restrict the use of different variable types in
certain language elements (e.g., commitments can include only global variables since they
are public, and a target agent’s beliefs about other agents’ behaviors cannot include its
local variables since they are private, etc.). On the other hand, in the semantic model of
PrOMocA, all variables are interpreted as global variables. It is straightforward to see
that type checking of variables in the syntactic level is sufficient to correctly define and
verify any PLTL> property, including compliance and goal satisfaction. Hence, it is safe to
consider all variables as global variables in the semantic level as long as they are checked in
the syntactic level.

As we discuss in PROMOCA semantics, states of a commitment are determined by
PrROMOCA according to evaluation of the commitment’s conditions (e.g., consequent).
Hence, PROMOCA does not provide explicit meta-actions for most transitions (e.g., ful-
fillment). The exceptions are commit, release, and cancel. Initiation of a commitment is
handled by commit as it is done by all previous work. Furthermore, explicit release and
cancellation provides flexibility for modeling. For instance, many protocols involve some
commitments to regulate exceptional situations. These commitments normally do not be-
come active unless the corresponding exception occurs. Hence, they stay in conditional state
even after the interaction of the involved parties has been completed. In such a situation,
the creditors of such commitments can release the debtors from their conditional commit-
ments. Cancellation can be used by a debtor to immediately terminate a commitment (by
violating it) without waiting the occurrence of the commitment’s termination condition.
This is useful if the debtor realizes that it cannot fulfill its commitment. By canceling the
commitment, the debtor gives time to the creditor to recover from the undesirable situation
that occurs due to the violation of the commitment.

As a final remark on probabilistic modeling, note that probability computations in a
PrROMOCA model may become rather complex. As our examples demonstrate, in many
situations behaviors and belief may have arbitrary nesting and long sequences of actions,
which involve non-deterministic and probabilistic choices. Furthermore, parallel composi-
tion of interleaving behaviors introduces additional complexity. As a result scalability of
model checking may suffer when verifying compliance and goal satisfaction in large models.
This is a common problem of probabilistic model checking. We address this issue in detail in
the next two sections, and show that PROMOCA can verify compliance and goal satisfaction
in many realistic situations, although it is affected from scalability issues.

4. Verification

In this section we present the overall verification process of PROMOCA, which is depicted
in Figure 3. The inputs of the verification process are a PROMOCA model, the type of
the property (i.e., compliance or goal satisfaction) that is aimed to be verified, and a real
value that corresponds to the threshold of the property (i.e., 8¢ or 0g). First, we create
an MDP M from the input PROMOCA model according to the operational semantics of
PROMoOCA as in Section 3. In parallel, we extract the PLTL property ¢ (i.e., the property
type and relevant propositions of the PROMOCA model), which we will verify, according to

492

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

————————————————————————————————

create corresponding MDP

PLTL formula ¢

MDP M

create corresponding Rabin automaton

Y

Rabin automaton R

Tcreate product MDP from M and R

Product MDP M ® R

apply probabilistic model checking algorithm

N property fails property holds T

Figure 3: The overview of PROMOCA’s verification process.

the input. Then, we create a (deterministic) Rabin automaton R from ¢ using the standard
translation of a PLTL formula into a Rabin automaton (Baier & Katoen, 2008). Once we
have the MDP M and the Rabin automaton R, we create their product M ® R, which
is also an MDP (Baier & Katoen, 2008). In the last step, we use our probabilistic model
checking algorithm that we present in Algorithm 4, on M ® R to compute the satisfaction
probability of ¢ in M. If the result of this computation is greater or equal to the input
threshold value, the verification process returns T to indicate that the property is satisfied.
On the other hand, if the computed value is below the threshold, the verification process
returns L to indicate that the property is not satisfied.

When a property is not satisfied in non-probabilistic model checking, a trace (i.e., coun-
terexample) is generated to explain why the failure occurs as a result of model checking.
However, in probabilistic model checking there is no clear definition of such a counterex-
ample since models are probabilistic, and properties are defined with respect to thresholds.
Although, recent research in probabilistic model checking has addressed this issue and sev-
eral approaches have been proposed (Andrés, D’Argenio, & Rossum, 2009; Han, Katoen, &
Berteun, 2009; Schmalz, Varacca, & Volzer, 2009), PROMOCA currently does not provide
any functionality to generate a counterexample.

PrROMoOCA uses the reachability checking algorithm that we have developed in our pre-
vious work (Giinay et al., 2015). We present this algorithm in Algorithm 4 for completeness.
The inputs of Algorithm 4 are an MDP M®R = (S, Act, P, tinit, AP, L), that is the product
of the MDP M and the Rabin automaton R, which are extracted from the input PROMoca
model, and 7' C S, the set of accept states of R as input. Algorithm 4 returns P®(T), which
is the minimal probability of reaching the set of projected accept states 1" in the product
MDP. In Algorithm 4, we use the auxiliary function Pre(s) that returns the pre-states of
a state s in an MDP. Formally, Pre(s) = {s' | P(s,a,s’) > 0}. We use ps to record the

493

GUNAY, L1u & ZHANG

Algorithm 4: Computation of reachability probabilities for target states.
input : M®R = (S, Act, P, tiny, AP,L), T C S
output: pg,

let S «— T and SP"¢ « (;
foreach s € S°“" do
L let ps < 1;
4 while S" # () do
5 foreach s € S°“" do
6 geur o Scur\{s};
7 foreach s’ € Pre(s) do
8
9

W N =

SPre «— sPre U {s'};
foreach (s¢,t,0) € Pr do
10 let p, = 0.0;
11 foreach s” € S such that 6(s”) > 0 do
12 | P a4 6(5") X par;
13 py = Min(py,pn);

14 Geur ¢ gpre.
15 SPre « ;

16 return pg,;

probability of reaching T from s. Due to the existence of non-determinism in MDP, the
result of reachability checking is a range instead of a single value. In Algorithm 4 we adopt
a cautious approach and compute the minimal probability of reaching T

The main idea of reachability checking is to start from target states and proceed back-
wards step by step while updating reachability probabilities of MDP states. Accordingly,
first 7" is assigned to S (Line 1), which represents the current states in the iterative
process, and the probabilities of these states are set to 1 (Lines 2-3). Then, a state s is
removed from S (Lines 5-6) and for each pre-state s’ of s (Line 7) the probabilities are
updated as follows: for each enabled transition ¢ from s’ with distribution §, a variable p,
is created (Line 9-10) to record the probability of reaching 7" from s’ via §. Afterwards, the
sum of §(s”) x pgr for all s” satisfying §(s”) > 0 is assigned to py, i.e., p, is the sum of the
transition probabilities of this distribution times the corresponding successor state’s proba-
bility to 7" (Lines 11-12). To keep the minimal probability, py is set to the minimum value
of py and p, using Min function (Line 13). When all states in S“" are considered, S"
is set to pre-states of s (Line 14). The while loop at Line 4 terminates when no pre-states
left (i.e., the minimal probability from sg to T is computed and stored in ps,). Finally, ps,
is returned as the probability of reaching 7" from s (Line 16).

5. Evaluation

We implement PROMoOCA framework in PAT (Process Analysis Toolkit) (Sun, Liu, Dong,
& Pang, 2009), which is a state-of-the-art extendable model checking framework that pro-

494

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

vides various probabilistic model checking techniques such as PLTL model checking and
reachability checking. To evaluate efficiency and scalability of PROMOCA, we conducted a
set of computational experiments. In these experiments we compared PROMOCA’s perfor-
mance with PRISM (Kwiatkowska, Norman, & Parker, 2011), which is the most well-known
probabilistic model checker. We used the following four examples in our experiments:

e AeroBase: In this example we use our aerospace aftercare case. However, we assume
that the manufacturer always has sufficient supply of spare parts. Hence, we do not
consider the interactions between the manufacturer and suppliers. The example in-
volves a commitment to model the purchase of an engine and a commitment to model
the overall maintenance agreement. Both of these commitments have also compen-
sating commitments. Hence, there are four commitments to model the base terms of
the agreement. Besides, for the whole duration of the agreement, there are two com-
mitments for each month to model the servicing responsibility of the manufacturer
(e.g., for a twelve month agreement there are 24 commitments). We consider this
scenario from the manufacturer’s perspective. The beliefs of the manufacturer involve
probability of engine failure and probability of repairing a failed engine on-time.

e AeroFull: In this example, we use our aerospace aftercare case, but we do not assume
that the manufacturer always has sufficient supply of spare parts. Hence, we consider
a new commitment for each month of the agreement to model provision of supplies by
the suppliers (e.g., there are 36 commitments for a twelve month agreement). Since,
the manufacturer interacts with the suppliers, the beliefs of the manufacturer involve
probability of successfully receiving spare parts from the suppliers.

e NetBill: In this example we model the well-known NetBill protocol (Sirbu & Ty-
gar, 1995). NetBill provides a secure protocol for transactions between two parties
(e.g., a merchant and a customer) in online environments. It is a standard protocol
that is widely used in the commitment literature for evaluation. It involves three
commitments to model offer, payment, and delivery phases of a transaction. In our
experiments, we consider arbitrary number of transactions between a merchant and
a set of customers from the merchant’s perspective. The merchant’s beliefs involve
probability of the customers’ acceptance for the merchant’s offers.

e AGFIL: This example models a real world car insurance claim processing case (Desai
et al., 2009). AGF Irish Life Holdings (AGFIL), a subsidiary of Allianz, is an insurance
company in Ireland that underwrites car insurance policies. AGFIL cooperates with a
call center and a consulting firm to process its policy holders’ claims. A policy holder
contacts the call center to make a claim. The call center forwards the claim to AGFIL.
Then, AGFIL requests an investigation for the claim from the consultant to decide
on the claim’s validity. The consultant provides a report to inform AGFIL about the
results of its investigation. Using the investigation report, AGFIL decides on whether
to pay the claimed repair cost. This example includes three commitments to model the
interactions of AGFIL with the other three stakeholders, namely, the policy holder,
the call center, and the consultant. In our experiments, we consider arbitrary number
of claims from a set of policy holders and verify properties of AGFIL’s behavior.
Beliefs of AGFIL involve probability of claim validity.

495

GUNAY, L1u & ZHANG

We run our experiments on a PC equipped with an Intel i7 3.0 GHz processor and 8GB
RAM, running an 64-bit Windows 8 operating system. We conducted our experiments to
verify both the compliance and goal satisfaction properties. However, in our experiments,
we observed similar results for both properties. Hence, for brevity, we report our results
only for the compliance property’s verification. In Table 1 we report execution times (in
seconds) of PROMocA and PRISM for verifying the compliance properties of the described
examples. If the model checking process takes more than 1200 seconds, we report timeout
(T/O). For each case, we reported average execution time of thirty runs to eliminate any
spike in execution times that may occur due to use of resources by other processes in our
system. We do not report variance of execution times since we observed negligible values.

To evaluate PROMOCA’s scalability with respect to different complexities of our exam-
ples, we use a control parameter in each example that determines the size of the corre-
sponding PROMOCA model. In the AeroBase and AeroFull examples this parameter is the
number of months the engine manufacturer is committed to service an engine, which is
represented by mon in Table 1. In the NetBill example the control parameter is the number
of customers the merchant interacts, which is represented by cus in Table 1. In the AGFIL
example the control parameter is the number of claims made by policy holders, which is
represented by cla in Table 1.

Before discussing about our results in Table 1, let us explain the characteristics of the
example models and how the described parameters affect them. In the aerospace examples,
the outcome of a commitment that models a service agreement for a particular month,
depends on the outcomes of the previous months’ commitments. That is, if the manufacturer
fails to service the engine in a previous month, there is a higher risk of engine failure for
the current month, which may cause the manufacturer to violate its commitment to keep
the engine operational. This is modeled in the manufacturer’s beliefs. Accordingly, because
of such dependencies, the models of the aerospace examples become substantially more
complex when the duration of a service agreement (i.e., number of months mon) increases.
Furthermore, the AeroFull example considers also the behaviors of the suppliers as part
of the manufacturer’s beliefs, which increases the complexity of the corresponding models
even further. Hence, these examples capture complex realistic situations.

The models of NetBill and AGFIL examples are relatively simpler than the aerospace
examples. We use this situation to evaluate PROMoOCA for cases where more than one
commitment protocols are composed to have a more complex protocol. There are two
possible compositions, namely sequential and parallel. We used NetBill example to examine
parallel composition of commitment protocols. To this end, we increase the number of
customers a merchant interacts in parallel from 1 to 10. That is, if there are 10 customers,
the merchant enacts 10 instances of NetBill protocol in parallel. Parallel composition causes
a model’s size to grow exponentially. Hence, it has a significant impact on model complexity.
We used AGFIL example to examine sequential composition of independent protocols. To
this end, we increase the number of customer claims from 10 to 100. Each claim is processed
sequentially one by one (i.e., first come first served) by AGFIL. Impact of independent
sequential protocols on model complexity is substantially less than parallel composition of
protocols, since each protocol instance can be verified independently. Therefore, model size
growth is linear to the number of claims. Note that in Table 1, the first reported execution
time for AeroBase example is when mon = 6. When mon is less than 6 both PROMoca

496

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

AeroBase AeroFull NetBill AGFIL
mon PRoOMocA PRISM |mon PRoOMocA PRISM |cus PROMocA PRISM| cla PRoMoca PRISM
6 0.42 1.32 3 0.03 0.10 | 4 0.01 > 0.07 |40 0.024 2.822

7 1.33 735 | 4 0.16 0.27 | 5 0.01 0.12 |50 0.030 4.197
8 3.76 33.68 | 5 0.75 3.80 | 6 0.02 0.18 |60 0.041 5.431
9 9.81 175.81| 6 3.62 2768 | 7 0.04 0.38 |70 0.051 6.843
10 27.86 T/O | 7 17.01 591.36| 8 0.09 1.25 |80 0.063 8.396
11 84.49 T/O | 8 85.56 T/O |9 0.15 4.68 |90 0.072 9.841
12 24237 T/O | 9 36582 T/O |10 0.31 32.23 (100 0.087 11.384

Table 1: Execution times of PROMocCA and PRISM to verify compliance of the target agent
in AeroBase, AeroFull, NetBill, and AGFIL examples.

and PRISM can verify compliance almost instantaneously in a few milliseconds. Similarly,
we report our results in AeroFull, NetBill, and AGFIL examples for the control parameters
starting from mon = 3, cus = 4 and cla = 40, respectively.

Table 1 indicates two main results. First, PROMOCA clearly outperforms PRISM in
terms of execution time for verifying an agent’s compliance with its commitments under
uncertainty. The main reason of this is the consideration of commitments as first-class ob-
jects in the syntax and semantics of PROMoOCA. Accordingly, PROMOCA takes advantage
of this dedicated representation, and uses several model checking techniques, which we have
developed particularly for commitment protocols, for reducing model size to improve effi-
ciency of model checking. For instance, PROMOCA uses a specific partial order reduction
technique that exploits dependencies among commitments to reduce the size of an MDP
model’s state space (Giinay et al., 2015). Effects of this reduction technique is easy to see
especially in the NetBill example, where there are a large number of parallel independent
commitments in each NetBill protocol instance with a different customer. PROMOCA ef-
fectively uses our dedicated partial order reduction technique to detect independence of
commitments, and reduces model size, which provides a clear advantage in the NetBill ex-
ample. In conclusion, our results show that development of dedicated model checking tools
such as PROMOCA is necessary for efficiently verifying an agent’s behavior with respect to
commitment protocols taking uncertainty into account.

Our second main result is usability of PROMOCA in practical cases. In NetBill example
PROMOCA verifies compliance in milliseconds when ten protocols are executed in parallel.
Similarly, in AGFIL example, PROMOCA verifies the case, where 100 claims are considered,
almost immediately. In AeroBase example, PROMOCA verifies compliance even for the
whole 12 month agreement within reasonable time. In the complete aerospace scenario,
PROMOCA verifies nine month agreement successfully. Note that given sufficient time and
resources PROMOCA can also verify a whole 12 month agreement. However, when a model
involves large number of dependent commitments, and complex behaviors and beliefs, as
our results show, PROMoCA suffers from exponentially growing execution times, which is
the result of rapidly growing model size in such situations. This is a well known issue of
probabilistic model checking, which is unavoidable (Clarke, Grumberg, & Peled, 1999; Baier

497

GUNAY, L1u & ZHANG

& Katoen, 2008). Nevertheless, our comparative results with PRISM show that PROMocA
is significantly more efficient than general purpose probabilistic model checkers for verifying
the compliance and goal satisfaction properties of an agent in a commitment protocol.

6. Related Work

In this section we provide a non-exhaustive survey of related research. We start with
previous work, which study various general properties of commitment protocols (i.e., inde-
pendent from behaviors of enacting agents), and their verification. Yolum (2007) developed
a framework to verify effectiveness, consistency, recovery, and fault-tolerance properties of
commitment protocols. A commitment protocol is effective, if it is deadlock-free. It is con-
sistent, if it does not involve conflicting propositions in commitment conditions. Finally, if
at least one role of a commitment protocol is capable of taking a certain recovery action
in the case of failure, the commitment protocol is recoverable. Besides, if any role is capa-
ble of recovering a commitment protocol, it is fault-tolerant. In addition to defining these
properties, Yolum also provides a set of algorithms for their verification, which are based
on analyzing states in arbitrary runs of commitment protocols. Desai et al. (2007a) also
study deadlock-free and live commitment protocols. They develop several models of com-
mitment protocols in PROMELA language of SPIN model checker (Holzmann, 2004), and
define deadlock-freeness and liveness properties in LTL. Later, Telang and Singh (2012) use
NuSMV model checker and Computation Tree Logic (CTL) to verify correctness of business
patterns that are modeled as commitment protocols. Gerard and Singh (2013) introduce an
approach to specify commitment protocols and their refinements through guarded messages.
They implement their approach using MCMAS model checker.

Montali, Calvanese, and De Giacomo (2014) develop a data-aware framework using a
first-order formalism to study impact of data that is available to agents, on commitments’
evolution. They also show that a rich set of temporal properties in p-calculus can be verified
in their framework. El-Menshawy et al. (2013) develop ACTL*“, which is an extension to
CTL, by introducing a set of operators to model semantics of active commitments. The
proposed semantics of the commitment operators are influenced by a previous proposal of
Singh (2008). The paper shows that the proposed logic can be reduced to another logic
GCTL*, which can be verified by CWB-NC model checker (Bhat, Cleaveland, & Groce,
2001). Later, El Kholy et al. (2014) propose another extension to CTL, which is called
CTLCC, to capture lifecycle of conditional commitments. They also extend the standard
symbolic model checking algorithm of CTL in line with their proposal. Sultan, Bentahar,
Wan, and Al-Saqqar (2014) propose PCTLC, which extends probabilistic CTL, to verify
commitment protocols. PCTLC includes social operators to represent active commitments
and their fulfillment. The proposed model checking technique consists of a set of reduction
rules to reduce the PCTLC model checking problem to PCTL model checking, which are
implemented on PRISM model checker.

Our proposal differs from these studies at several points. Firstly, none of these studies
consider development of a modeling language as we do in PROMOCA. They either use mod-
eling languages of general purpose model checkers or an abstract formalism for modeling.
Secondly, these studies do not consider behaviors of agents, since they aim to verify general
properties of commitment protocols. Finally, probabilistic models are not considered in the

498

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

previous work. The exception is the work by Sultan et al. (2014), which uses a proba-
bilistic variant of CTL. However, Sultan et al. only consider active commitments. Besides,
due to the use of CTL, they consider a different model checking algorithm than we use in
ProMocaA.

Some recent work aim to analyze a commitment protocol from an agent’s point of view.
Objectives of these studies are closer to the objective of PROMOCA. Marengo et al. (2011)
discuss agents’ control on events in commitment protocols. Basically, an agent has control
over an event, if the agent itself can initiate the event, or another agent that is capable to
initiate the event is committed to do so. They also discuss a notion of safety. A commitment
is safe for its debtor, if the debtor controls the antecedent and can avoid situations in which
the commitment becomes active, or if the debtor controls the consequent and therefore
able to fulfill the commitment when it becomes active. Marengo et al. develop REGULA
framework to formalize control and safety properties, which also provides reasoning rules
to evaluate systems for these properties. However, they do not develop a practical reasoner
and also do not address uncertainty.

Giinay and Yolum (2013) study feasibility of a commitment protocol for an agent, con-
sidering time constraints and resources requirements that should be satisfied by the agent
to fulfill its commitments. A commitment protocol is feasible for an agent, if the agent owns
sufficient resources, or the agent is the creditor of a set of commitments that provide the
agent the resources to fulfill its own commitments on time. They, model verification of fea-
sibility as a constraint satisfaction problem. Giinay and Yolum discuss potential behaviors
of agents and describe how unexpected behaviors (e.g., violations of commitments) may be
handled. However, their consideration of behaviors do not address probabilistic models and
requires manual configuration of their framework. Kafal, Giinay, and Yolum (2014) de-
velop GOSU framework that provides a reasoning mechanism to determine goal support in
a commitment protocol, which is similar to our goal satisfaction property. They model goal
support as a reachability property and use reactive event calculus for reasoning (Chesani
et al., 2013). Their approach considers only achievement goals, and avoid uncertainty by
assuming that agents always honor their commitments.

Torroni and colleagues develop a monitoring framework for commitments using SCIFF
abductive logic programming proof-procedure (Alberti, Chesani, Gavanelli, Lamma, Mello,
& Torroni, 2008; Chesani et al., 2013). Their main motivation is to develop a formal and
operational framework that efficiently monitors commitments and verifies compliance of
agents’ actions with protocols that they enact. Since the main interest of this framework is
run-time monitoring, Torroni and colleagues pay special attention to a commitment’s time
constraints. Although such constraints have been studied also by other researchers, Torroni
and colleagues provide a concrete operational framework that can handle these constraints
at run-time. For this purpose they utilize an event driven implementation of event calculus
called reactive event calculus, which is based on the maximum validity interval concept
of cached event calculus introduced by Chittaro and Montanari (1996). Use of reactive
event calculus eliminates the necessity of backward reasoning at each event occurrence and
accordingly it is possible to do reasoning efficiently at run-time. Their monitoring framework
and PrROMocCA are complementary to each other. While PROMOCA handles design-time
issues, their framework addresses run-time monitoring.

499

GUNAY, L1u & ZHANG

Compliance is addressed also in the context of norms (e.g., prohibitions). Vasconce-
los (2005) develops a declarative approach to analyze electronic institutions to determine
whether agents commit and fulfill norms of institutions. Aldewereld, Vazquez-Salceda,
Dignum, and Meyer (2006) develop a framework to verify norm compliance of agent behav-
ior templates, which they call as protocols. They consider only sequential protocols and
define norm compliance using LTL. A semi-automated theorem-proving approach is used
for verification instead of model checking. Craven and Sergot (2008) develop nC+ as an
extension to the action language C+ (Giunchiglia, Lee, Lifschitz, McCain, & Turner, 2004).
nC+ introduces two new forms of rules, namely state and action permission laws, for rep-
resenting normative aspects of multiagent systems. Semantics of their language is defined
with respect to colored labeled transition systems, which represent desired and undesired
states, and also transition of a modeled multiagent system. By associating a subset of tran-
sitions with a particular agent’s actions, they can verify compliance and other properties
of agent behaviors. nC+ provides a rich language to model multiagent systems. However,
Craven and Sergot do not consider uncertainty and accordingly they do not provide prob-
abilistic modeling and reasoning. Besides, norms are not defined with respect to a lifecycle
as we do for commitments. Instead, norms are considered as (if-then) rules. Furthermore,
they do not represent relations between different norms explicitly as we do, for instance for
compensation. An interesting future direction is to investigate how these two formalism
can be combined to develop a more expressive modeling and analysis environment.

In terms of model checking, the most relevant work to PROMocCA is MCMAS, which
is a state-of-the-art model checker dedicated to verification of multiagent systems (Lomus-
cio, Qu, & Raimondi, 2009). MCMAS uses Interpreted Systems Programming Language
(ISPL) for modeling, which is based on the interpreted systems semantics (Fagin, Halpern,
Moses, & Vardi, 2003). In ISPL, a multiagent system is modeled as a composition of a set
of agents and their environment. Each agent is defined as a set of internal states using a set
of private variables, and a protocol, which models the decision making mechanism of the
agent. Agents interact through publicly observable actions. Local states of agents evolve
according to an evolution function, which uses joint actions of agents. MCMAS supports
verification of agent-oriented logics, such as Alternating-time Temporal Logic (Alur, Hen-
zinger, & Kupferman, 2002) and epistemic operators (Fagin et al., 2003), using Ordered
Binary Decision Diagrams (Bryant, 1986) and symbolic model checking techniques. There
are several differences between MCMAS and PROMOCA. While MCMAS is a general model
checker for all types of multiagent systems, PROMOCA focuses on verifying agent behaviors
in commitment protocols. Accordingly, PROMocCA provides dedicated language elements
for defining commitment protocols. Moreover, PROMOCA aims to verify an agent’s behavior
taking uncertainty of the agent’s beliefs into account. To achieve this, PROMOCA provides
probabilistic modeling and reasoning capabilities for agent beliefs. PROMOCA does not use
interpreted systems semantics, since we do not aim to verify epistemic logic specifications.
Finally, PROMOCA uses an automata based approach instead of symbolic model checking,
which is more appropriate for verifying our properties.

In the recent years, commitments have been used to model various practical situations.
Desai, Chopra, Arrott, Specht, and Singh (2007b) provide a commitment-based solution
for formalizing foreign exchange market protocols. They show that rigorous specification
and verification of protocols via commitments solve many issues that emerge in existing

500

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

systems due their informal business semantics. Singh, Chopra, and Desai (2009) propose
a commitment-based service oriented architecture, which replaces invocation-based service
objects with engagement-based autonomous business services. A set of transaction patterns
over commitments are proposed, which reflect business requirements of various common
business transactions, and provide basic building blocks to develop complex interactions.
Benefits of this approach are flexible enactment of transactions, and ease of specification
and composition of business processes. Kafali, Giinay, and Yolum (2012, 2013) develop
a method using commitments to capture violation of privacy policies in social networks.
They model privacy policies between parties in social networks using commitments, and
employ model checking on these policies to capture violations. Their proposed approach
can capture privacy breaches that cannot be detected in traditional systems. Furthermore,
a prediction tool is also developed that utilizes Semantic Web technologies to capture po-
tential privacy breaches that may occur in the future due to evolution of social network
relations. Telang, Kalia and, Singh (2012, 2015) conducted an experimental evaluation of
the commitment-based Comma methodology, and show that Comma outperforms the tradi-
tional HL.7 Messaging Standard for healthcare process modeling. Chopra and Singh (2016b)
introduce Interaction-Oriented Software Engineering as a commitment-based paradigm to
capture social aspects of sociotechnical system emphasizing openness, autonomy, and ac-
countability. Chopra and Singh (2016a) also develop Custard framework, which provides a
relational schema and queries for commitments and their lifecycle, to build an abstraction
layer over underlying information stores such as databases.

7. Discussion

In this paper we presented PROMoOcCA framework for modeling and analyzing agent behav-
iors in commitment protocols taking uncertainty into account. Our main motivation for
developing PROMOCA is to analyze a target agent’s behavioral properties when enacting a
commitment protocol with respect to its goals, and beliefs about other agents’ uncertain
behaviors. In the recent years, commitments are applied to solve practical challenges in
many domains such as e-commerce, sociotechnical systems, privacy, security, and health-
care. Modeling and verification are essential aspects of the development process for such
practical systems, mainly to ensure correctness and effectiveness of a systems. PROMoOCA
provides a novel analysis tool to handle these two key aspects of development by providing
an expressive modeling language and an efficient model checking algorithm. The modeling
language of PROMoOCA is expressive enough to model practical situations as we demon-
strate in our examples. In fact, PROMOCA provides more expressive power than needed by
most of the previous work on commitments. The model checking algorithm of PRoMoca
is efficient and can handle complex situations as our empirical results show.

However, PROMOCA has also certain limitations. In terms of modeling, PROMOCA can
be extended to model a more wider range of practical cases by introducing new language
elements as we discuss in our future work at the end of this section. In terms of verification,
well-known scalability issues of probabilistic model checking applies also to PROMOCA.
However, our results show PROMoOCA’s efficiency in many practical situations. Our com-
parison with the state-of-the-art general purpose probabilistic model checker PRISM also
shows that PROMocCA outperforms PRISM when verifying an agent’s compliance and goal

501

GUNAY, L1u & ZHANG

satisfaction in a commitment protocol. Finally, social commitments framework itself is not
an all-around solution to model every practical situation. However, it can be integrated with
other approaches in multiagent systems to model and reason about more complex practi-
cal situations, e.g., integration with artifacts (Baldoni, Baroglio, & Capuzzimati, 2015) and
other normative concepts such as prohibitions and authorizations (Chopra & Singh, 2016a).

As we stated earlier, there are various general purpose tools, such as PRISM and MC-
MAS, which can be used to verify agents with respect to commitment protocols. There
are also several reasoning methodologies to handle uncertainty (Eiter & Lukasiewicz, 2003;
Richardson & Domingos, 2006). Let us justify, why we develop a new tool while such tools
and methodologies already exist. There are mainly two motivations behind the develop-
ment of PROMOCA as a new tool. The first one is the ease of modeling. Since general
purpose tools do not support commitments, they do not provide any facilities to model
them. Therefore, to be able to use one of these tools for commitments, first a model of a
commitment should be developed in the tool. According to our experience, this is a non-
trivial and error-prone task. Furthermore, such models are mostly developed considering
some specific properties that are aimed to be verified in a target system. Hence, reuse of
such models for other properties and systems is also limited. PROMOCA solves these issues
by providing an expressive modeling language that includes various facilities to model com-
mitments. Hence, users can easily model commitment protocols, without worrying about
the underlying model of commitments. Besides, PROMOCA is based on a general model
of commitments that is independent from particular properties and application specific
assumptions. Hence, it can be used in any domain to verify arbitrary properties. Our
second motivation is efficiency. As our experimental results clearly demonstrate, the state-
of-the-art probabilistic model checker PRISM cannot achieve efficiency of PROMoOCA while
verifying an agent’s compliance and goal satisfaction in a commitment protocol. The main
reason of PROMoOCA’s efficiency is the utilization of commitment semantics to efficiently
verify the addressed properties.

PROMOCA can be used to model a wide majority of commitment protocols that are
considered in the previous work. However, it is still open for many improvements. A major
improvement is to extend PROMOCA with an explicit representation of time. Currently,
time can be modeled in PROMOCA in an abstract manner using regular variables as we
demonstrated in our examples. This is sufficient for many domains, however, especially
for modeling commitments and agent in real-time systems, an explicit notion of time is
necessary. Another improvement is introduction of numerical variables and arithmetic op-
erations to PROMOCA. Such variables are necessary to precisely model resource related
issues (e.g., money, number of available spare parts, etc.). Addition of these features is
fairly straightforward from syntactic and semantic point of view. However, verification of
time and numerical variables increase complexity of model checking substantially. Hence,
development of novel abstraction and reduction techniques that use commitment semantics,
is essential for efficient and scalable model checking of such models. PROMOCA can also be
extended with more syntactic elements to simplify modeling of commitments. An example
is the use of parameters in commitment specifications for modeling generic commitments.

Beside the above improvements to PROMOCA, we also aim to extend PROMOCA to
model other commitment concepts such as choice and coordination (Baldoni, Baroglio,
Chopra, Desai, Patti, & Singh, 2009), and relevant properties such as feasibility (Giinay &

502

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

Yolum, 2013) and safety (Marengo et al., 2011). Besides, we plan to support other normative
concepts such as obligations and prohibitions, which are relevant to commitments (Boella
& van der Torre, 2004; Craven & Sergot, 2008; Agotnes, van der Hoek, & Wooldridge,
2010; Criado, Argente, & Botti, 2011). Last but not least integration of PROMOCA with
the recent work on dynamic protocol creation in open systems is an interesting future work
(Yolum & Singh, 2007; Artikis, 2009; Meneguzzi, Telang, & Singh, 2013; Giinay, Winikoff,
& Yolum, 2013, 2015; Cranefield, Savarimuthu, Meneguzzi, & Oren, 2015). This research
alms to automate creation of protocols at run-time, which requires agents to agree on a
commitment protocol to regulate their interaction according to their own requirements. To
achieve this, individual agents should be able of analyze their behaviors with respect to
their requirements and a commitment protocol, where PROMOCA can be a valuable tool.

Acknowledgments

We thank to the anonymous reviewers for their insightful comments. This work is supported
by “Formal Verification on Cloud” project under Grant No: M4081155.020 and “Bring the
Advanced Model Checking Techniques to Real-world Problems” project under Grant No:
M4011178.020.

References

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., & Torroni, P. (2008). Verifi-
able agent interaction in abductive logic programming: The SCIFF framework. ACM
Transactions on Computational Logic, 9(4), 29:1-29:43.

Aldewereld, H., Vazquez-Salceda, J., Dignum, F., & Meyer, J.-J. C. (2006). Verifying norm
compliancy of protocols. In Agents, Norms and Institutions for Regulated Multi-Agent
Systems, pp. 231-245.

Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic.
Journal of the ACM, 49(5), 672-713.

Andrés, M. E., D’Argenio, P., & Rossum, P. (2009). Significant diagnostic counterexamples
in probabilistic model checking. In Proceedings of the 4th International Haifa Verifi-
cation Conference on Hardware and Software: Verification and Testing, pp. 129-148.
Springer-Verlag.

Artikis, A. (2009). Dynamic protocols for open agent systems. In Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems, pp. 97-104.

Baier, C., & Katoen, J.-P. (2008). Principles of Model Checking. The MIT Press.

Baldoni, M., Baroglio, C., & Capuzzimati, F. (2015). Programming JADE and Jason agents
based on social relationships using a uniform approach. In Koch, F., Guttmann, C.,
& Busquets, D. (Eds.), Advances in Social Computing and Multiagent Systems, Vol.
541, pp. 167-184. Springer.

Baldoni, M., Baroglio, C., Chopra, A. K., Desai, N., Patti, V., & Singh, M. P. (2009).
Choice, interoperability, and conformance in interaction protocols and service chore-

503

GUNAY, L1u & ZHANG

ographies. In Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems, pp. 843-850.

Bellman, R. (1957). Markovian decision processes. Journal of Mathematics and Mechanics,
38, 716-719.

Bhat, G., Cleaveland, R., & Groce, A. (2001). Efficient model checking via Biichi tableau
automata. In Proceedings of the 13th International Conference on Computer Aided
Verification, pp. 38-52.

Boella, G., & van der Torre, L. (2004). Regulative and constitutive norms in normative
multiagent systems. In Proceedings of 9th International Conference on the Principles
of Knowledge Representation and Reasoning, pp. 255-265.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IFEFE
Transactions on Compututers, 35(8), 677-691.

Chesani, F., Mello, P., Montali, M., & Torroni, P. (2013). Representing and monitoring
social commitments using the event calculus. Autonomous Agents and Multi-Agent
Systems, 27(1), 85-130.

Chittaro, L., & Montanari, A. (1996). Efficient temporal reasoning in the cached event
calculus. Computational Intelligence, 12(3), 359-382.

Chopra, A. K., Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2010). Reasoning about agents
and protocols via goals and commitments. In Proceedings of the Ninth International
Conference on Autonomous Agents and Multiagent Systems, pp. 457-464.

Chopra, A. K., & Singh, M. P. (2015). Cupid: Commitments in relational algebra. In
Proceedings of 29th AAAI Conference on Artificial Intelligence, pp. 2052-2059.

Chopra, A. K., & Singh, M. P. (2016a). Custard: Computing norm states over information
stores. In Proceedings of the 2016 International Conference on Autonomous Agents
and Multiagent Systems, pp. 1096-1105.

Chopra, A. K., & Singh, M. P. (2016b). From social machines to social protocols: Soft-
ware engineering foundations for sociotechnical systems. In Proceedings of the 25th
International Conference on World Wide Web, pp. 903-914.

Clarke, Jr., E. M., Grumberg, O., & Peled, D. A. (1999). Model Checking. MIT Press,
Cambridge, MA, USA.

Cranefield, S., Savarimuthu, T., Meneguzzi, F., & Oren, N. (2015). A bayesian approach
to norm identification. In Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 1743-1744.

Craven, R., & Sergot, M. (2008). Agent strands in the action language nC+. Journal of
Applied Logic, 6(2), 172-191.

Criado, N., Argente, E., & Botti, V. (2011). Open issues for normative multi-agent systems.
AI Communications, 24(3), 233-264.

Desai, N., Cheng, Z., Chopra, A. K., & Singh, M. P. (2007a). Toward verification of com-
mitment protocols and their compositions. In Proceedings of the 6th International
Joint Conference on Autonomous Agents and Multiagent Systems, pp. 33:1-33:3.

504

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

Desai, N., Chopra, A. K., Arrott, M., Specht, B., & Singh, M. P. (2007b). Engineering foreign
exchange processes via commitment protocols. In IEEFE International Conference on
Services Computing, pp. 514-521.

Desai, N., Chopra, A. K., & Singh, M. P. (2009). Amoeba: A methodology for modeling
and evolving cross-organizational business processes. ACM Transactions on Software
Engineering and Methodology, 19(2), 6:1-6:45.

Desai, N., Narendra, N. C., & Singh, M. P. (2008). Checking correctness of business con-
tracts via commitments. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 787-794.

Eiter, T., & Lukasiewicz, T. (2003). Probabilistic reasoning about actions in nonmono-
tonic causal theories. In Proceedings of the Nineteenth Conference on Uncertainty in
Artificial Intelligence, pp. 192-199.

El Kholy, W., Bentahar, J., Menshawy, M. E., Qu, H., & Dssouli, R. (2014). Conditional
commitments: Reasoning and model checking. ACM Transactions on Software Engi-
neering Methodology, 24(2), 9:1-9:49.

El Menshawy, M., Bentahar, J., El Kholy, W., & Dssouli, R. (2013). Verifying conformance
of multi-agent commitment-based protocols. Ezxpert Systems with Applications, 40,
122-138.

Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (2003). Reasoning About Knowledge.
MIT Press, Cambridge, MA, USA.

Fornara, N., & Colombetti, M. (2002). Operational specification of a commitment-based
agent communication language. In Proceedings of the 1st International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pp. 536—542.

Gerard, S. N., & Singh, M. P. (2013). Formalizing and verifying protocol refinements. ACM
Transactions on Intelligent Syststems and Technology, 4 (2), 21:1-21:27.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004). Nonmonotonic
causal theories. Artificial Intelligence, 153(1-2), 49-104.

Glinay, A., Songzheng, S., Liu, Y., & Zhang, J. (2015). Automated analysis of commitment
protocols using probabilistic model checking. In Proceedings of 29th AAAI Conference
on Artificial Intelligence, pp. 2060—2066.

Gilinay, A., Winikoff, M., & Yolum, P. (2013). Commitment protocol generation. In Declar-
ative Agent Languages and Technologies X, Vol. 7784 of LNAI pp. 136-152. Springer.

Glinay, A., Winikoff, M., & Yolum, P. (2015). Dynamically generated commitment protocols
in open systems. Journal of Autonomous Agents and Multi-agent Systems, 29, 192—
229.

Glinay, A., & Yolum, P. (2011). Detecting conflicts in commitments. In Sakama, C.,
Sardina, S., Vasconcelos, W., & Winikoff, M. (Eds.), Declarative Agent Languages
and Technologies 1X, Vol. 7169 of LNAI, pp. 51-66. Springer.

Glinay, A., & Yolum, P. (2013). Constraint satisfaction as a tool for modeling and checking
feasibility of multiagent commitments. Applied Intelligence, 39(3), 489-509.

505

GUNAY, L1u & ZHANG

Halpern, J. Y. (2003). Reasoning About Uncertainty. MIT Press, Cambridge, MA, USA.

Han, T., Katoen, J.-P., & Berteun, D. (2009). Counterexample generation in probabilistic
model checking. IEEE Transactions on Software Engineering, 35(2), 241-257.

Hoare, C. A. R. (1978). Communicating sequential processes. Communications of ACM,
21(8), 666—677.

Holzmann, G. J. (Ed.). (2004). The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley.

Jakob, M., Péchoucek, M., Miles, S., & Luck, M. (2008). Case studies for contract-based
systems. In Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems: Industrial Track, pp. 55—62.

Kafal, O., Giinay, A., & Yolum, P. (2012). PROTOSS: A run time tool for detecting
PRivacy viOlaTions in Online Social networkS. In IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining, pp. 429-433.

Kafal, O, Gilinay, A., & Yolum, P. (2013). Detecting and predicting privacy violations in
online social networks with PROT OSS. Distributed and Parallel Databases, 32(1),
161-190.

Kafal, O., Giinay, A., & Yolum, P. (2014). GOSU: Computing goal support with commit-
ments in multiagent systems. In Proceedings of 21st European Conference on Artificial
Intelligence, pp. 477-482.

Kafal, O., & Torroni, P. (2012). Exception diagnosis in multiagent contract executions.
Annals of Mathematics and Artificial Intelligence, 64 (1), 73—-107.

Kwiatkowska, M., Norman, G., & Parker, D. (2011). PRISM 4.0: Verification of probabilistic
real-time systems. In Proceedings of the 23rd International Conference on Computer
Aided Verification, pp. 585-591.

Lomuscio, A., Qu, H., & Raimondi, F. (2009). MCMAS: A model checker for the verifica-
tion of multi-agent systems. In Proceedings of the 21st International Conference on
Computer Aided Verification, pp. 682—688.

Mallya, A. U., & Huhns, M. N. (2003). Commitments among agents. [EEE Internet
Computing, 7(4), 90-93.

Marengo, E., Baldoni, M., Baroglio, C., Chopra, A. K., Patti, V., & Singh, M. P. (2011).
Commitments with regulations: Reasoning about safety and control in REGULA.

In Proceedings of the Tenth International Conference on Autonomous Agents and
Multiagent Systems, pp. 467—-474.

Meneguzzi, F., Telang, P. R., & Singh, M. P. (2013). A first-order formalization of com-
mitments and goals for planning. In Proceedings of the 27th AAAI Conference on
Artificial Intelligence, pp. 697-703.

Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., & Luck, M. (2009). A framework for
monitoring agent-based normative systems. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems, pp. 153—160.

506

ProMocA: PROBABILISTIC MODELING AND ANALYSIS OF AGENTS IN COMMITMENT PROTOCOLS

Montali, M., Calvanese, D., & De Giacomo, G. (2014). Verification of data-aware
commitment-based multiagent system. In Proceedings of the 2014 International Con-
ference on Autonomous Agents and Multi-agent Systems, pp. 157-164.

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46-57.

Agotnes, T., van der Hoek, W., & Wooldridge, M. (2010). Robust normative systems and
a logic of norm compliance. Logic Journal of IGPL, 18(1), 4-30.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1-2),
107-136.

Schmalz, M., Varacca, D., & Vélzer, H. (2009). Counterexamples in probabilistic 1t] model
checking for markov chains. In Proceedings of the 20th International Conference on
Concurrency Theory, pp. 587-602. Springer-Verlag.

Singh, M. P. (1999). An ontology for commitments in multiagent systems: Toward a unifi-
cation of normative concepts. Artificial Intelligence and Law, 7(1), 97-113.

Singh, M. P. (2008). Semantical considerations on dialectical and practical commitments.
In Proceedings of the 23rd National Conference on Artificial Intelligence, pp. 176-181.

Singh, M. P., Chopra, A. K., & Desai, N. (2009). Commitment-based service-oriented
architecture. IEEE Computer, 42(11), 72-79.

Sirbu, M. A.; & Tygar, J. D. (1995). NetBill: An internet commerce system optimized for
network delivered services. IEEE Personal Communications, 2(4), 34-39.

Sultan, K., Bentahar, J., Wan, W., & Al-Saqqar, F. (2014). Modeling and verifying proba-
bilistic multi-agent systems using knowledge and social commitments. Ezpert Systems
and Applications, 41(14), 6291-6304.

Sun, J., Liu, Y., Dong, J. S., & Pang, J. (2009). PAT: Towards flexible verification under
fairness. In Proceedings of the 21th International Conference on Computer Aided
Verification (CAV), Vol. 5643 of Lecture Notes in Computer Science, pp. 709-714.
Springer.

Telang, P., & Singh, M. (2012). Specifying and verifying cross-organizational business
models: an agent-oriented approach. IEEE Transations on Services Computing, 5(3),

305-318.
Telang, P. R., Kalia, A. K., & Singh, M. P. (2015). Modeling healthcare pro-
cesses using commitments: An empirical evaluation. PLoS ONE, 10(11),

doi:10.1371 /journal.pone.0141202.

Telang, P. R., & Singh, M. P. (2012). Comma: A commitment-based business modeling
methodology and its empirical evaluation. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems, pp. 1073—1080.

Torroni, P., Chesani, F., Mello, P., & Montali, M. (2010). Social commitments in time: Satis-
fied or compensated. In Proceedings of the 7th International Conference on Declarative
Agent Languages and Technologies, pp. 228-243, Berlin, Heidelberg. Springer-Verlag.

507

GUNAY, L1u & ZHANG

van Riemsdijk, M. B., Dastani, M., & Meyer, J.-J. C. (2009). Goals in conflict: Semantic
foundations of goals in agent programming. Autonomous Agents and Multi-Agent
Systems, 18(3), 471-500.

Vasconcelos, W. W. (2005). Norm verification and analysis of electronic institutions. In
Proceedings of the Second International Conference on Declarative Agent Languages
and Technologies, pp. 166—182.

Yolum, P. (2007). Design time analysis of multiagent protocols. Data and Knowledge
Engineering, 63(1), 137-154.

Yolum, P., & Singh, M. P. (2002). Flexible protocol specification and execution: Applying
event calculus planning using commitments. In Proceedings of the 1st International
Joint Conference on Autonomous Agents and Multiagent Systems, pp. b27-534.

Yolum, P., & Singh, M. P. (2007). Enacting protocols by commitment concession. In
Proceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 27:1-27:8.

508

